WorldWideScience

Sample records for ground nuclear testing

  1. Nuclear Thermal Propulsion Ground Test History

    Science.gov (United States)

    Gerrish, Harold P.

    2014-01-01

    -ups in May-June 1966 with 30.75 minutes accumulative operating time at or above 1GW. The NRX-A6 was tested in December 1969 and ran for 62 minutes at 1100 MW. Each engine had post-test examination and found various structure anomalies which were identified for correction and the fuel element corrosion rate was reduced. The Phoebus series of research reactors began testing at test cell C, in June 1965 with Phoebus 1A. Phoebus 1A operated for 10.5 minutes at 1100 MW before unexpected loss of propellant and leading to an engine breakdown. Phoebus 1B ran for 30 minutes in February of 1967. Phoebus 2A was the highest steady state reactor built at 5GW. Phoebus 2A ran for 12 minutes at 4100 MW demonstrating sufficient power is available. The Peewee test bed reactor was tested November- December 1968 in test cell C for 40 minutes at 500MW with overall performance close to pre-run predictions. The XE' engine was the only engine tested with close to a flight configuration and fired downward into a diffuser at the Engine Test Stand (ETS) in 1969. The XE' was 1100 MW and had 28 start-ups. The nuclear furnace NF-1 was operated at 44 MW with multiple test runs at 90 minutes in the summer of 1972. The NF-1 was the last NTP reactor tested. The Rover/NERVA program was cancelled in 1973. However, before cancellation, a lot of other engineering work was conducted by Aerojet on a 75, 000 lbf prototype flight engine and by Los Alamos on a 16,000 lbf "Small Engine" nuclear rocket design. The ground test history of NTP at the NRDS also offers many lessons learned on how best to setup, operate, emergency shutdown, and post-test examine NTP engines. The reactor and engine maintenance and disassembly facilities were used for assembly and inspection of radioactive engines after testing. Most reactor/ engines were run at test cell A or test cell C with open air exhaust. The Rover/NERVA program became aware of a new environmental regulation that would restrict the amount of radioactive particulates

  2. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  3. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    Science.gov (United States)

    Allen, G. C.; Beck, D. F.; Harmon, C. D.; Shipers, L. R.

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program.

  4. An Assessment of Testing Requirement Impacts on Nuclear Thermal Propulsion Ground Test Facility Design

    Science.gov (United States)

    Shipers, Larry R.; Ottinger, Cathy A.; Sanchez, Lawrence C.

    1994-07-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  5. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    Energy Technology Data Exchange (ETDEWEB)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-10-25

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  6. A Hydrogen Containment Process For Nuclear Thermal Engine Ground Testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    A hydrogen containment process was proposed for ground testing of a nuclear thermal engine. The hydrogen exhaust from the engine is contained in two unit operations: an oxygen-rich burner and a tubular heat exchanger. The burner burns off the majority of the hydrogen, and the remaining hydrogen is removed in the tubular heat exchanger through the species recombination mechanism. A multi-dimensional, pressure-based multiphase computational fluid dynamics methodology was used to conceptually sizing the oxygen-rich burner, while a one-dimensional thermal analysis methodology was used to conceptually sizing the heat exchanger. Subsequently, a steady-state operation of the entire hydrogen containment process, from pressure vessel, through nozzle, diffuser, burner and heat exchanger, was simulated numerically, with the afore-mentioned computational fluid dynamics methodology. The computational results show that 99% of hydrogen reduction is achieved at the end of the burner, and the rest of the hydrogen is removed to a trivial level in the heat exchanger. The computed flammability at the exit of the heat exchanger is less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  7. Current Ground Test Options for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Gerrish, Harold P., Jr.

    2014-01-01

    About 20 different NTP engines/ reactors were tested from 1959 to 1972 as part of the Rover and Nuclear Engine for Rocket Vehicle Application (NERVA) program. Most were tested in open air at test cell A or test cell C, at the Nevada Test Site (NTS). Even after serious engine breakdowns of the reactor (e.g., Phoebus 1A), the test cells were cleaned up for other engine tests. The engine test stand (ETS) was made for high altitude (approximately 1 psia) testing of an NTP engine with a flight configuration, but still had the exhaust released to open air. The Rover/NERVA program became aware of new environmental regulations which would prohibit the release of any significant quantity of radioactive particulates and noble gases into the open air. The nuclear furnace (NF-1) was the last reactor tested before the program was cancelled in 1973, but successfully demonstrated a scrubber concept on how to filter the NTP exhaust. The NF-1 was demonstrated in the summer of 1972. The NF-1 used a 44MW reactor and operated each run for approximately 90 minutes. The system cooled the hot hydrogen exhaust from the engine with a water spray before entering a particle filter. The exhaust then passed through a series of heat exchangers and water separators to help remove water from the exhaust and further reduce the exhaust temperatures. The exhaust was next prepared for the charcoal trap by passing through a dryer and effluent cooler to bring exhaust temperatures close to liquid nitrogen. At those low temperatures, most of the noble gases (e.g., Xe and Kr made from fission products) get captured in the charcoal trap. The filtered hydrogen is finally passed through a flare stack and released to the air. The concept was overall successful but did show a La plating on some surfaces and had multiple recommendations for improvement. The most recent detailed study on the NTP scrubber concept was performed by the ARES Corporation in 2006. The concept is based on a 50,000 lbf thrust engine

  8. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  9. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    Science.gov (United States)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  10. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    Science.gov (United States)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative effluent containment system (ECS) that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal.

  11. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  12. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  13. NASA solar dynamic ground test demonstration (GTD) program and its application to space nuclear power

    Science.gov (United States)

    Harper, William B.; Shaltens, Richard K.

    1993-01-01

    Closed Brayton cycle power conversion systems are readily adaptable to any heat source contemplated for space application. The inert gas working fluid can be used directly in gas-cooled reactors and coupled to a variety of heat sources (reactor, isotope or solar) by a heat exchanger. This point is demonstrated by the incorporation in the NASA 2 kWe Solar Dynamic (SD) Space Power Ground Test Demonstration (GTD) Program of the turboalternator-compressor and recuperator from the Brayton Isotope Power System (BIPS) program. This paper will review the goals and status of the SD GTD Program, initiated in April 1992. The performance of the BIPS isotope-heated system will be compared to the solar-heated GTD system incorporating the BIPS components and the applicability of the GTD test bed to dynamics space nuclear power R&D will be discussed.

  14. Fabrication and Testing of Nuclear-Thermal Propulsion Ground Test Hardware Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient nuclear-thermal propulsion requires heating a low molecular weight gas, typically hydrogen, to high temperature and expelling it through a nozzle. The...

  15. Nuclear stress test

    Science.gov (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  16. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    Science.gov (United States)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  17. Calibration and Recovery of Nuclear Test Seismic Ground-Motion Data from the Leo Brady Seismic Network

    Science.gov (United States)

    Young, B.; Abbott, R. E.

    2016-12-01

    In 1960, Sandia National Laboratories established a small seismic network with stations in Nevada, Utah, and California with the mission to monitor underground nuclear tests (UGTs) at the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site). Over time, this seismic network came to be known as the Leo Brady Seismic Network (LBSN). The LBSN recorded approximately 800 UGTs at the NNSS from its inception through the end of testing in 1992. These irreplaceable data, mostly archived on analog, frequency-modulated magnetic tapes and stored in vaults, are now being digitized. This necessitated a calibration method to take the data from analog FM to digital counts to ground-motion units. Complicating the issue, the seismic system setup, telemetering, instrumentation, and calibration methods changed several times over the course of the LBSN's service life, and much of the documentation and knowledge of the system has been lost to time. The information necessary to understand, interpret, and ultimately calibrate these data was therefore collected from many disparate sources, each of which contains bits and pieces of relevant information. Contradictory information was often the rule rather than the exception. Where necessary (due to a lack of direct information) we made educated guesses as to the exact system, setup, and methodologies used. Ultimately, we documented the evolution and configuration of the seismic network, and determined both empirical and analytical approaches to calibrating these data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. The Las Vegas Valley Seismic Response Project: Ground Motions in Las Vegas Valley from Nuclear Explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Tkalcic, H; McCallen, D

    2005-03-18

    Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recorded at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV

  19. Evaluation of Cavity Collapse and Surface Crater Formation at the Norbo Underground Nuclear Test in U8c, Nevada Nuclear Security Site, and the Impact on Stability of the Ground Surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-06-18

    Lawrence Livermore National Laboratory (LLNL) Containment Program performed a review of nuclear test-related data for the Norbo underground nuclear test in U8c to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. This request is similar to one made for the Salut site in U8c (Pawloski, 2012b). Review of the Norbo site is complicated because the test first exhibited subsurface collapse, which was not unusual, but it then collapsed to the surface over one year later, which was unusual. Of particular interest is the stability of the ground surface above the Norbo detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeology due to the nuclear detonation. Aviva Sussman from the Los Alamos National Laboratory (LANL) has also proposed work at this site. Both proposals require physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Security Site (NNSS), formerly the Nevada Test Site (NTS), and focus on possible activities such as visual observation, multispectral measurements, and shallow and deep geophysical surveys.

  20. Radioactive Fallout From Nuclear Weapons Testing ...

    Science.gov (United States)

    2017-08-07

    Detonating nuclear weapons above ground sends radioactive materials into the atmosphere from the ground level up to very high elevations. Overtime, these materials settle out of the atmosphere and fall to the ground. Fallout typically contains hundreds of different radionuclides. Since the end of aboveground nuclear weapons testing, radionuclides have largely decayed away.

  1. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  2. Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-04-25

    At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

  3. Numerical Simulation of Ground Coupling of Low Yield Nuclear Detonation

    Science.gov (United States)

    2010-06-01

    Without nuclear testing, advanced simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring...in planning future experimental work at NIF . 15. NUMBER OF PAGES 93 14. SUBJECT TERMS National Ignition Facility, GEODYN, Ground Coupling...simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring safety, reliability, and effectiveness

  4. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    Science.gov (United States)

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2013-11-01

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys.0008-420410.1139/p65-139 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Excitation energy dependencies were found to be inconsistent with the Fermi-gas model.

  5. Inverter Ground Fault Overvoltage Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Andy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chebahtah, Justin [SolarCity Corporation, San Mateo, CA (United States); Wang, Trudie [SolarCity Corporation, San Mateo, CA (United States); McCarty, Michael [SolarCity Corporation, San Mateo, CA (United States)

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  6. Modular Nuclear Testing Concept

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, L. F.

    1964-07-01

    The continuing concern with efficient utilization of manpower at the Nevada Test Site (NTS) and the seemingly high cost of individual nuclear shots, together with the recent evolution of the L-12 scope, generated some fresh thoughts concerning more efficient procedures for the `average` test. Every time anyone looks at the problem., they tend to analyze the existing conventional approach and try to find the one or two most expensive and `lossy` factors in the can of worms. Usually this turns out to be a problem within the realm of specialization of the particular analyst! People not so directly concerned with the program tend to look for, or wish for, or even `invent` miracles`. Our present techniques appear to be the sum (and possibly even the product) of many small contributions which have all been beaten down to the same level of importance. Such a situation in any systemic problem is usually symptomatic of the need for fairly violent departures in the aver-all system approach, at least in thinking. This report proposes and details a modular nuclear testing concept.

  7. Ground calibrations of Nuclear Compton Telescope

    Science.gov (United States)

    Chiu, Jeng-Lun; Liu, Zhong-Kai; Bandstra, Mark S.; Bellm, Eric C.; Liang, Jau-Shian; Perez-Becker, Daniel; Zoglauer, Andreas; Boggs, Steven E.; Chang, Hsiang-Kuang; Chang, Yuan-Hann; Huang, Minghuey A.; Amman, Mark; Chiang, Shiuan-Juang; Hung, Wei-Che; Lin, Chih-Hsun; Luke, Paul N.; Run, Ray-Shine; Wunderer, Cornelia B.

    2010-07-01

    The Nuclear Compton Telescope (NCT) is a balloon-borne soft gamma ray (0.2-10 MeV) telescope designed to study astrophysical sources of nuclear line emission and polarization. The heart of NCT is an array of 12 cross-strip germanium detectors, designed to provide 3D positions for each photon interaction with full 3D position resolution to imaging, effectively reduces background, and enables the measurement of polarization. The keys to Compton imaging with NCT's detectors are determining the energy deposited in the detector at each strip and tracking the gamma-ray photon interaction within the detector. The 3D positions are provided by the orthogonal X and Y strips, and by determining the interaction depth using the charge collection time difference (CTD) between the anode and cathode. Calibrations of the energy as well as the 3D position of interactions have been completed, and extensive calibration campaigns for the whole system were also conducted using radioactive sources prior to our flights from Ft. Sumner, New Mexico, USA in Spring 2009, and from Alice Springs, Australia in Spring 2010. Here we will present the techniques and results of our ground calibrations so far, and then compare the calibration results of the effective area throughout NCT's field of view with Monte Carlo simulations using a detailed mass model.

  8. 49 CFR 234.249 - Ground tests.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ground tests. 234.249 Section 234.249 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Inspections and Tests § 234.249 Ground tests. A test for grounds on each energy...

  9. 49 CFR 236.107 - Ground tests.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ground tests. 236.107 Section 236.107...: All Systems Inspections and Tests; All Systems § 236.107 Ground tests. (a) Except as provided in paragraph (b) of this section, a test for grounds on each energy bus furnishing power to circuits,...

  10. 2011 Ground Testing Highlights Article

    Science.gov (United States)

    Ross, James C.; Buchholz, Steven J.

    2011-01-01

    Two tests supporting development of the launch abort system for the Orion MultiPurpose Crew Vehicle were run in the NASA Ames Unitary Plan wind tunnel last year. The first test used a fully metric model to examine the stability and controllability of the Launch Abort Vehicle during potential abort scenarios for Mach numbers ranging from 0.3 to 2.5. The aerodynamic effects of the Abort Motor and Attitude Control Motor plumes were simulated using high-pressure air flowing through independent paths. The aerodynamic effects of the proximity to the launch vehicle during the early moments of an abort were simulated with a remotely actuated Service Module that allowed the position relative to the Crew Module to be varied appropriately. The second test simulated the acoustic environment around the Launch Abort Vehicle caused by the plumes from the 400,000-pound thrust, solid-fueled Abort Motor. To obtain the proper acoustic characteristics of the hot rocket plumes for the flight vehicle, heated Helium was used. A custom Helium supply system was developed for the test consisting of 2 jumbo high-pressure Helium trailers, a twelve-tube accumulator, and a 13MW gas-fired heater borrowed from the Propulsion Simulation Laboratory at NASA Glenn Research Center. The test provided fluctuating surface pressure measurements at over 200 points on the vehicle surface that have now been used to define the ground-testing requirements for the Orion Launch Abort Vehicle.

  11. Test and Evaluation of Autonomous Ground Vehicles

    OpenAIRE

    Yang Sun; Guangming Xiong; Weilong Song; Jianwei Gong; Huiyan Chen

    2014-01-01

    A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China’s autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approac...

  12. Test facilities for evaluating nuclear thermal propulsion systems

    Science.gov (United States)

    Beck, David F.; Allen, George C.; Shipers, Larry R.; Dobranich, Dean; Ottinger, Cathy A.; Harmon, Charles D.; Fan, Wesley C.; Todosow, Michael

    1993-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  13. Power quality considerations for nuclear spectroscopy applications: Grounding

    Energy Technology Data Exchange (ETDEWEB)

    García-Hernández, J.M., E-mail: josemanuel.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Ramírez-Jiménez, F.J., E-mail: fjr@ieee.org [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Mondragón-Contreras, L.; López-Callejas, R. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Torres-Bribiesca, M.A. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); and others

    2013-11-21

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise. -- Highlights: •We analyze the performance of nuclear spectroscopy systems with different configurations of the grounding system. •The neutral to ground voltage is an indicator of the ground conditions, a high value may contribute to the increase of the FWHM in nuclear spectroscopy systems. •The use of an isolated ground system is the best option to preserve the best FWHM value. •The application of power quality concepts can help to guaranty the best configuration of the grounding system.

  14. Test and Evaluation of Autonomous Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2014-01-01

    Full Text Available A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China's autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approach, the test content is designed to be stage by stage, moving from simplicity to complexity and from individual modules to the entire vehicle. The hierarchical test environment is established according to the levels of test content. The test method based on multilevel platforms and sensors is put forward to ensure the accuracy of test results. A fuzzy comprehensive evaluation method combined with analytic hierarchy process (AHP is used for the comprehensive evaluation which can quantitatively evaluate the individual module and the overall technical performance of autonomous ground vehicles. The proposed test and evaluation system has been successfully applied to real autonomous ground vehicle competitions.

  15. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to the NTP Ground Testing

    Science.gov (United States)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.

  16. Nuclear explosives testing readiness evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Valk, T.C.

    1993-09-01

    This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

  17. Retention half times in the skeleton of plutonium and 90Sr from above-ground nuclear tests: a retrospective study of the Swiss population.

    Science.gov (United States)

    Froidevaux, Pascal; Bochud, François; Haldimann, Max

    2010-07-01

    Plutonium and (90)Sr are considered to be among the most radiotoxic nuclides produced by the nuclear fission process. In spite of numerous studies on mammals and humans there is still no general agreement on the retention half time of both radionuclides in the skeleton in the general population. Here we determined plutonium and (90)Sr in human vertebrae in individuals deceased between 1960 and 2004 in Switzerland. Plutonium was measured by sensitive SF-ICP-MS techniques and (90)Sr by radiometric methods. We compared our results to the ones obtained for other environmental compartments to reveal the retention half time of NBT fallout (239)Pu and (90)Sr in trabecular bones of the Swiss population. Results show that plutonium has a retention half time of 40+/-14 years. In contrast (90)Sr has a shorter retention half time of 13.5+/-1.0 years. Moreover (90)Sr retention half time in vertebrae is shown to be linked to the retention half time in food and other environmental compartments. These findings demonstrate that the renewal of the vertebrae through calcium homeostatic control is faster for (90)Sr excretion than for plutonium excretion. The precise determination of the retention half time of plutonium in the skeleton will improve the biokinetic model of plutonium metabolism in humans.

  18. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  19. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  20. Effect of ground motion from nuclear excavation: interim canal studies

    Energy Technology Data Exchange (ETDEWEB)

    King, C. Y.; Nadolski, M. E.

    1969-09-01

    The effect of ground motion due to nuclear excavation of a sea-level canal at two alternative routes, 17A and 25E, are discussed from the aspects of motion prediction and structural response. The importance of the high-rise building problem is stressed because of its complexity. Several damage criteria are summarized for advance planning of excavation and operation. The 1964 shot schedule and the latest revised schedule are included for comparison.

  1. Space Nuclear Thermal Propulsion (SNTP) tests

    Science.gov (United States)

    Allen, George C.

    1993-01-01

    Viewgraphs on the space nuclear thermal propulsion (SNTP) program are presented. The objective of the research is to develop advanced nuclear thermal propulsion (NTP) technology based on the particle bed reactor concept. A strong philosophical commitment exists in the industry/national laboratory team to emphasize testing in development activities. Nuclear testing currently underway to support development of SNTP technology is addressed.

  2. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  3. Nuclear ground-state masses and deformations: FRDM(2012)

    CERN Document Server

    Moller, P; Ichikawa, T; Sagawa, H

    2015-01-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from $^{16}$O to $A=339$. The calculations are based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model. Relative to our FRDM(1992) mass table in {\\sc Atomic Data and Nuclear Data Tables} [{\\bf 59} 185 (1995)], the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allows us to determine one additional macroscopic-model parameter, the density-symmetry coefficient $L$, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some high...

  4. Nuclear thermal propulsion test facility requirements and development strategy

    Science.gov (United States)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  5. Nuclear thermal propulsion test facility requirements and development strategy

    Science.gov (United States)

    Allen, George C.; Clark, John S.; Warren, John; Perkins, David R.; Martinell, John

    1992-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  6. Large Payload Ground Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  7. Ground acceleration in a nuclear power plant; Aceleracion del suelo en una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Pena G, P.; Balcazar, M.; Vega R, E., E-mail: pablo.pena@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)

  8. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Hardware and software for ground tests of onboard charged particle spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Batischev, A. G., E-mail: Alexey-Batischev@mail.ru; Galper, A. M. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Grishin, S. A. [Academy of Sciences of Belarus, Stepanov Institute of Physics, National (Belarus); Naumov, P. Yu. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Niadvetski, N. S. [Academy of Sciences of Belarus, Stepanov Institute of Physics, National (Belarus)

    2015-12-15

    The article presents a hardware and software complex for ground tests of onboard charged particle spectrometers that are designed at the National Research Nuclear University MEPhI for monitoring of nuclear-physical factors of space weather and can be installed in a wide class of satellites. The structural scheme and operating principles of component parts are discussed. The main algorithm and software features are presented. The technique of ground spectrometer tests and calibrations in various measurement modes at atmospheric cosmic particle flows, both in autonomous laboratories and in interface tests as part of a satellite, is also described.

  14. Improvement of Ground Truth Classification of Soviet Peaceful Nuclear Explosions

    Science.gov (United States)

    Mackey, K. G.; Fujita, K.; Bergman, E.

    2016-12-01

    From the 1960's through the late 1980's, the Soviet Union conducted 122 Peaceful Nuclear Explosions across its territory. These PNEs are now very important to the seismological community as so-called Ground Truth (GT) events. The PNE locations are widely distributed, thus GT0-1 locations, meaning that true location is known to within 1 km or better, are used as calibration events for developing seismic velocity models, model validation, seismic discrimination, etc. The nuclear monitoring/verification community generally utilizes published lists of PNE locations as known or verified GT events, though in reality there are errors and some PNEs are poorly located. We have determined or validated GT0-1 locations for 85 of the Soviet PNEs. Some PNEs published as GT1 or better also have larger errors. Our locations were determined using an integrated approach encompassing published open literature, analysis of satellite imagery and regional seismic data. We have visited and verified 10 PNE sites across Kazakhstan and Ukraine, allowing GPS coordinates to be obtained in the field.

  15. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  17. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    Science.gov (United States)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  18. Nuclear Weapon Testing Limitations and International Security

    Science.gov (United States)

    Corden, Pierce S.

    2017-01-01

    For over 50 years stopping nuclear weapon tests has been sought to support achieving international security without nuclear weapons. Testing is the critical path beyond primitive fission devices, e.g. to develop thermonuclear weapons, reduce weight and volume and increase yield. The 1958 Geneva Conference of Experts considered ways to verify a test ban. With then-limitations on seismology, and lack of in-country monitoring and on-site inspections, the 1963 Limited Test Ban Treaty prohibits testing only in the atmosphere, outer space and under water, and is verified by National Technical Means. The US and USSR agreed to a limit of 150 kilotons on underground explosions in the 1970s-80s. The 1996 Comprehensive Nuclear-Test-Ban Treaty bans all nuclear explosions. Its International Monitoring System - seismic, hydroacoustic, infrasound and radionuclide sensors - is being used, and has easily detected testing by the DPRK. On-site inspections will be available under an in-force Treaty. A 2012 National Academy report concludes that cheating attempts would not undermine U.S. security, and the program for monitoring and extending the life of US weapons has succeeded since US testing ceased in 1992.

  19. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  20. Ub-library of Atomic Masses and Nuclear Ground States Deformations (CENPL.AMD)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atomic mass is one of basic data of a nuclear. There are the atomic masses in all nuclear reaction model formulas and motion equations. For any reaction calculations atomic masses are basic data for getting binding energies or Q-values. In some applications, it is important also to have atomic masses even for exotic nuclei quite far from the valley of stability. In addition, nuclear ground state deformations and abundance values are also requisite in the nuclear data calculations. For this purpose, A data file on atomic masses and nuclear ground states deformations (AMD) were constructed, which

  1. Above-ground antineutrino detection for nuclear reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by {sup 6}LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of {sup 6}Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  2. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    Science.gov (United States)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  3. Initial Nuclear Radiation Hardness Validation Test

    Science.gov (United States)

    2008-11-03

    Test Business Management Division (TEDT-TMB) US Army Developmental Test Command 314 Longs Corner Road Aberdeen Proving Ground, MD 21005-5055 11...Above Increase in VCE (Sat) Logic Devices TTL 10K - Above Not concern @ tactical GTD levels Memory - DRAM CMOS 3K – Above Data corruption and shift in...1E13 Not concern @ tactical NF levels Insulated Gate Bipolar Transistors (IGBTs) IGBT 8E11 - Above Increase in VCE (Sat) Logic Devices TTL > 1E13

  4. Nuclear cask testing films misleading and misused

    Energy Technology Data Exchange (ETDEWEB)

    Audin, L. (Audin (Lindsay), Ossining, NY (United States))

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as proof'' to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  5. Nuclear cask testing films misleading and misused

    Energy Technology Data Exchange (ETDEWEB)

    Audin, L. [Audin (Lindsay), Ossining, NY (United States)

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ``proof`` to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  6. Radioactive fallout from Chinese nuclear weapons test

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.W.; Soldat, J.K.; Silker, W.B.; Perkins, R.W.

    1976-09-26

    Radioactive fallout from this Chinese nuclear test resulted in measurable deposition of short-lived debris over much of the United States. The fallout levels varied by more than 1000-fold and showed significant temporary or spatial fractionation with higher levels of deposition being associated with rain. The particle size with which the airborne debris was associated decreased continuously with time following detonation and a substantial fraction of the {sup 131}I was associated with inorganic and organic gases. The potential radiation dose to an infant consuming milk produced at the location of the highest concentration of {sup 131}I measured on grass was estimated to be {approximately}l rem. This dose is about 50 times the annual dose received in the vicinity of a power reactor operating under the existing US Nuclear Regulatory Commission design guides. The potential upper limit thyroid dose for the population of 17 eastern seaboard states from this single test was estimated to be about 2.4 {times} 10{sup 6} man-thyroid-rem under the assumption that all dairy cows remained on fresh pasture throughout the month following the initial decomposition of fallout debris. This dose is about 200 times the estimated dose from currently operating nuclear power reactors and about 50 times the annual US population thyroid dose that would be received from 500 GWe of nuclear power reactors in the year 2000.

  7. A history of US nuclear testing and its influence on nuclear thought, 1945-1963

    CERN Document Server

    Blades, David M

    2014-01-01

    As states continue to pursue nuclear weaponry, nuclear testing remains an important political issue in the twenty-first century. This survey examines how and why the U.S. conducted nuclear tests from 1945 through 1963 and the resulting influence on key questions from normalization and de-normalization up to the Nuclear Test Ban Treaty of 1963.

  8. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    CERN Document Server

    Li, Zhaokai; Chen, Hongwei; Lu, Dawei; Whitfield, James D; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than c...

  9. Mine seismicity and the Comprehensive Nuclear Test Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Chiappetta, F. [Blasting Analysis International, Allentown, PA (United States); Heuze, F.; Walter, W. [Lawrence Livermore National Lab., CA (United States); Hopler, R. [Powderman Consulting Inc., Oxford, MD (United States); Hsu, V. [Air Force Technical Applications Center, Patrick AFB, FL (United States); Martin, B. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, C. [Los Alamos National Lab., NM (United States); Stump, B. [Southern Methodist Univ., Dallas, TX (United States); Zipf, K. [Univ. of New South Wales (Australia)

    1998-12-09

    Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1

  10. Zero-Point Fluctuations in the Nuclear Born-Oppenheimer Ground State

    Science.gov (United States)

    Zettili, Nouredine

    The small-amplitude oscillations of rigid nuclei around the equilibrium state are described by means of the nuclear Born-Oppenheimer (NBO) method. In this limit, the method is shown to give back the random phase approximation (RPA) equations of motion. The contribution of the zero-point fluctuations to the ground state are examined, and the NBO ground state energy derived is shown to be identical to the RPA ground state energy.

  11. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    Science.gov (United States)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  12. Experimental test of nuclear magnetization distribution and nuclear structure models

    Energy Technology Data Exchange (ETDEWEB)

    Beirsdorfer, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lopez-Urrutia, J Crespo R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Utter, S. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-02-26

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron' s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to

  13. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  14. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  15. Ground vibration test and flutter analysis of air sampling probe

    Science.gov (United States)

    Ellison, J. F.

    1986-01-01

    The Dryden Flight Research Facility of NASA Ames Research Center conducted a ground vibration test and a flutter analysis of an air sampling probe that was to be mounted on a Convair 990 airplane. The probe was a steel, wing-shaped structure used to gather atmospheric data. The ground vibration test was conducted to update the finite-element model used in the flutter analysis. The analysis predicted flutter speeds well outside the operating flight envelope of the Convair 990 airplane.

  16. Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities

    Science.gov (United States)

    Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke

    2014-01-01

    High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.

  17. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Directory of Open Access Journals (Sweden)

    Bernd Grosche

    2015-05-01

    Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  18. AMS Ground Truth Measurements: Calibration and Test Lines

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, P. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2013-11-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  19. Ground tests with active neutron instrumentation for the planetary science missions

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, M.L., E-mail: litvak@mx.iki.rssi.ru [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Mitrofanov, I.G.; Sanin, A.B. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Jun, I. [Jet Propulsion Laboratory, Pasadena, CA USA (United States); Kozyrev, A.S. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Krylov, A.; Shvetsov, V.N.; Timoshenko, G.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Starr, R. [Catholic University of America, Washington DC (United States); Zontikov, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2015-07-11

    We present results of experimental work performed with a spare flight model of the DAN/MSL instrument in a newly built ground test facility at the Joint Institute for Nuclear Research. This instrument was selected for the tests as a flight prototype of an active neutron spectrometer applicable for future landed missions to various solid solar system bodies. In our experiment we have fabricated simplified samples of planetary material and tested the capability of neutron activation methods to detect thin layers of water/water ice lying on top of planetary dry regolith or buried within a dry regolith at different depths.

  20. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  1. Study on Site Specific Design Earthquake Ground Motion of Nuclear Power Plants in China1

    Institute of Scientific and Technical Information of China (English)

    Zhou Bochang; Li Xiaojun; Li Yaqi

    2008-01-01

    The main technical backgrounds and requirements are introduced with regard to earthquake ground motion design parameters in several domestic and American standards,codes and guides involved in the seismic analysis and design activities of nuclear power plants in China.Based on the research results from site seismic safety evaluation of domestic nuclear power plant projects in the last years,characteristics and differences of site specific design spectra are analyzed in comparison with standard response spectra,and the suitability of standard response spectra for domestic nuclear power plant projects is discussed.

  2. Testing the Nuclear Will of Japan

    Science.gov (United States)

    2007-12-01

    better to continue to develop Japan’s economy . If Japan were to develop nuclear weapons, the fear was that it would damage trade relations with more...Tokyo, Kure, and Osaka universities.24 The knowledge gained from the Japanese scientists was invaluable as they had either studied nuclear technology...rested on the United States; and (4) Japan’s economy could not support the development of nuclear weapons. The main point of this chapter draws out

  3. Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments

    Science.gov (United States)

    2013-01-02

    Offer Tools for Nuclear Testing—and Solving Nuclear Mysteries ,” Washington Post, November 1, 2011, p. 1. Horovitz, Liviu, “A Detour Strategy for the...Today, October 2009, pp. 46-52. Kimball, Daryl, “Reconsidering the Nuclear Test Ban Treaty: Sorting Fact from Fiction ,” Arms Control Association

  4. Surface Disturbances at the Punggye-ri Nuclear Test Site: Another Indicator of Nuclear Testing?

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank V. [Los Alamos National Laboratory; Coblentz, David [Los Alamos National Laboratory

    2017-02-03

    A review of available very high-resolution commercial satellite imagery (bracketing the time of North Korea’s most recent underground nuclear test on 9 September 2016 at the Punggye-ri Underground Nuclear Test Site) has led to the detection and identification of several minor surface disturbances on the southern flank of Mt. Mantap. These surface disturbances occur in the form of small landslides, either alone or together with small zones of disturbed bare rock that appear to have been vertically lofted (“spalled”) as a result of the most recent underground explosion. Typically, spall can be uniquely attributed to underground nuclear testing and is not a result of natural processes. However, given the time gap of up to three months between images (pre- and post-event), which was coincident with a period of heavy typhoon flooding in the area1, it is not possible to determine whether the small landslides were exclusively explosion induced, the consequence of heavy rainfall erosion, or some combination of the two.

  5. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    Science.gov (United States)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  6. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  7. Prevention of significant deterioration application for approval to construct SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The following application is being submitted by the US Department of Energy, Richland Operations Office, P.O. Box 550, Richland, Washington 99352, pursuant to WAC 173-403-080, and in compliance with the Department of Ecology Guide to Processing a Prevention of Significant Deterioration (PSD) Permit'' for a new source of airborne radionuclide emissions at the Hanford Site in Washington State. The new source, the SP-100 Ground Engineering System (GES) Test Site, will be located in the 309 Building of the 300 Area. The US Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), and the US Department of Defense (DOD) have entered into an agreement to jointly develop space nuclear reactor power system technology. The DOE has primary responsibility for developing and ground testing the nuclear subsystem. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. The SP-100 GES Test Site will provide a location for the operation and testing of a prototype space-based, liquid metal-cooled, fast flux nuclear reactor in an environment closely simulating the vacuum and temperature conditions of space operations. The purpose of the GES is to develop safe, compact, light-weight and durable space reactor power system technology. This technology will be used to provide electric power, in the range of tens to hundreds of kilowatts, for a variety of potential future civilian and military space missions requiring long-term, high-power level sources of energy. 20 refs., 8 figs., 7 tabs.

  8. The advisability of prototypic testing for space nuclear systems

    Science.gov (United States)

    Lenard, Roger X.

    2005-07-01

    From October 1987 until 1993, the US Department of Defense conducted the Space Nuclear Thermal Propulsion program. This program's objective was to design and develop a high specific impulse, high thrust-to-weight nuclear thermal rocket engine for upper stage applications. The author was the program manager for this program until 1992. Numerous analytical, programmatic and experimental results were generated during this period of time. This paper reviews the accomplishments of the program and highlights the importance of prototypic testing for all aspects of a space nuclear program so that a reliable and safe system compliant with all regulatory requirements can be effectively engineered. Specifically, the paper will recount how many non-prototypic tests we performed only to have more representative tests consistently generate different results. This was particularly true in area of direct nuclear heat generation. As nuclear tests are generally much more expensive than non-nuclear tests, programs attempt to avoid such tests in favor of less expensive non-nuclear tests. Each time this approach was followed, the SNTP program found these tests to not be verified by nuclear heated testing. Hence the author recommends that wherever possible, a spiral development approach that includes exploratory and confirmatory experimental testing be employed to ensure a viable design.

  9. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential

  10. Systematic study of α preformation probability of nuclear isomeric and ground states

    Science.gov (United States)

    Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua

    2017-01-01

    In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)

  11. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae using nuclear rDNA expansion segments and DNA barcodes

    Directory of Open Access Journals (Sweden)

    Raupach Michael J

    2010-09-01

    Full Text Available Abstract Background The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. Results We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97% of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95% of the studied Carabidae. Conclusion Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  12. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    Science.gov (United States)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  13. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    Science.gov (United States)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-01-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  14. Nuclear Geoplosics Sourcebook. Volume IV. Part I. Empirical Analysis of Ground Motion from Above and Underground Explosions

    Science.gov (United States)

    1979-03-01

    November 10, 1975. IV-1.8 Feynman , R. P., R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II, Chapter 39, Addison Wesley, Massachusetts...Event, POR 6400, Sandia Laboratories, March 1971. IV-2.18 Preston, R. G., and V. E. Wheeler , Response of the Line-of-Sight Pipe to Ground Shock in the...Hupmobile Nuclear Effects Test, Lawrence Radiation Laboratory (Unpublished). IV-2.19 Randolph, P. L., R. G. Preston, and V. E. Wheeler , Preliminary

  15. Cryogenic actuator testing for the SAFARI ground calibration setup

    Science.gov (United States)

    de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.

    2012-09-01

    For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.

  16. United States nuclear tests, July 1945 through September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  17. Relativistic analysis of nuclear ground state densities at 135 to 200 MeV

    Indian Academy of Sciences (India)

    M A Suhail; N Neeloffer; Z A Khan

    2005-12-01

    A relativistic analysis of p + 40Ca elastic scattering with different nuclear ground state target densities at 135 to 200 MeV is presented in this paper. It is found that the IGO densities are more consistent in reproducing the data over the energy range considered here. The reproduction of spin-rotation-function data with the simultaneous fitting of differential cross-section and analyzing power, and the appearance of wine-bottle-bottom shaped Re eff() in the transition energy region, sensitively depends on the input nuclear ground state densities and are not solely the relativistic characteristic signatures. We also found that the wine-bottle-bottom shaped Re eff() is preferred by the spin observables in the transition energy region (i.e. 181 MeV to 200 MeV).

  18. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  19. Loss-of-Use Damages From U.S. Nuclear Testing in the Marshall Islands: Technical Analysis of the Nuclear Claims Tribunal’s Methodology and Alternative Estimates

    Science.gov (United States)

    2005-08-12

    Islands (RMI) Changed Circumstances Petition, which requests $522 million in additional compensation for loss-of-use of Enewetak and Bikini atolls due to...the U.S. Government conducted an intensive program of nuclear testing on Bikini and Enewetak , two remote Northwesterly atolls in the RMI. Sixty-six...6 Gary Lee, “Postwar Pacific Fallout Wider than Thought,” Washington Post, February 24, 1994. On the Enewetak atoll , 43 above-ground nuclear devices

  20. Recent irradiation tests for future nuclear system at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Choo, Kee Nam; Yang, Seong Woo; Park, Sang Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-05-15

    The capsule at HANARO is a device that evaluates the irradiation effects of nuclear materials and fuels, which can reproduce the environment of nuclear power plants and accelerate to reach to the end of life condition. As the integrity assessment and the extension of lifetime of nuclear power plants are recently considered as important issues in Korea, the requirements for irradiation test are gradually being increased. The capacity and capability irradiation tests at HANARO are becoming important because Korea strives to develop SFR (Sodium-cooled Fast Reactor) and VHTR (Very High Temperature Reactor) among the future nuclear system and to export the research reactors and to develop the fusion reactor technology.

  1. Overview of the solar dynamic ground test demonstration program

    Science.gov (United States)

    Shaltens, Richard K.; Boyle, Robert V.

    1993-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR).

  2. Considerations for fault current testing of optical ground wire

    Energy Technology Data Exchange (ETDEWEB)

    Madge, R.C.; Barrett, J.S.; Maruice, C.G. (Ontario Hydro, Toronto, ON (Canada). Research Div.)

    1992-10-01

    Optical Ground Wires (OPGW) are being used more frequently by utilities. However, fault current testing of OPGW has not been fully examined. In this paper, peak component temperatures are measured for both 10 m and 60 m spans. The cable temperature decay time is measured, and is compared against a numerical model of convection and conduction losses. A numerical model is developed to predict the peak cable tension following a hit. This model can be used to establish appropriate initial cable tensions to simulate full-span faults. The issue of dynamic stresses in the form of cable whipping is reviewed. Lastly, various cable termination procedures are tested.

  3. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  4. Leak test of the charcoal filter in the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Lee, Key Soon; Hong, Kwon Pyo; Oh, Yon Woo; Park, Dae Kyu; Ahn, Sang Bok; Choo, Yong Sun; Kim, Sung Jung

    1998-06-01

    In the heating, ventilation and air conditioning(HVAC) system, pre-filter, HEPA(high efficiency particle air) filter and charcoal filter are instrumented in order to filter off the radioactive substance in the nuclear facility. Equipment of the charcoal filter off the radioactive substance in the nuclear facility. Equipment of the charcoal filter at the hot cell where manipulates the nuclear fuel irradiated in the nuclear reactor is essential for shutting off the leakage of the radioiodine which is produced from the cutting procedures of nuclear fuel. Also, the leak test of installed filter should be performed perfectly. In addition, charcoal filter is instrumented to filter the radioactive gas such as radioiodine which is produced in the nuclear facility. In this technical report, the theoretical discussion, the experimental procedures and the precautions of the leak test of charcoal filter are described. (author). 8 refs., 4 tabs., 8 figs.

  5. ISTAR: Project Status and Ground Test Engine Design

    Science.gov (United States)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  6. Nuclear ground-state spin and magnetic moment of 21Mg

    CERN Document Server

    Krämer, J; De Rydt, M; Flanagan, K T; Geppert, Ch; Kowalska, M; Lievens, P; Neugart, R; Neyens, G; Nörtershäuser, W; Stroke, H H; Vingerhoets, P; Yordanov, D T

    2009-01-01

    We present the results of combined laser spectroscopy and nuclear magnetic resonance studies of 21Mg. The nuclear ground-state spin was measured to be I=5/2 with a magnetic moment of μ=−0.983(7)μN. The isoscalar magnetic moment of the mirror pair is evaluated and compared to the extreme single-particle prediction and to nuclear shell-model calculations. We determine an isoscalar spin expectation value of σ=1.15(2), which is significantly greater than the empirical limit of unity given by the Schmidt values of the magnetic moments. Shell-model calculations taking into account isospin non-conserving effects, are in agreement with our experimental results.

  7. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Nuclear Thermal and Blast Hardness Validation Test

    Science.gov (United States)

    2008-11-03

    testing and subassemblies, components, and coupons are used to conduct thermal testing . Test coupons must be representative of the exposed area on...enclosure. 3.2.2 Data instrumentation for the thermal test should include thermocouples to measure the free field, test item (usually coupons...applicable, and perform final checkouts. f. Perform the thermal test and record data and video of the test item response. g. Once it is safe to

  9. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  10. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the ris...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....

  11. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Yingling, G. E.; Curran, R. N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II.

  12. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    Science.gov (United States)

    Graham, Thomas, Jr.

    2014-05-01

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a "threat to peace and security", in effect a violation of international law, which in today's world it clearly would be.

  13. Department of Health application for approval of construction SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The following Application For Approval of Construction is being submitted by the US Department of Energy-Richland Operations Office, for the SP-100 Ground Engineering System Test Site, which will provide a new source of radioactive emissions to the atmosphere. The US Department of Energy, the National Aeronautics and Space Administration, and the US Department of Defense have entered into an agreement to jointly develop space nuclear reactor power system technology. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. It is proposed that the SP-100 test reactor be tested in the existing decommissioned Plutonium Recycle Test Reactor containment building (309 Building). The reactor will be operated for at least three months and up to 2 yr. Following the test, the 309 Building will be decontaminated for potential use in other programs. It is projected this new source of emissions will contribute approximately 0.05 mrem/yr dose to the maximally exposed offsite individual. This application is being submitted in response to those projected emissions that would provide the described offsite dose. 28 refs., 9 figs., 7 tabs.

  14. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L H; Foxall, W; Rambo, J; Wagoner, J L

    2005-03-09

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  15. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L J; Foxall, W; Rambo, J; Wagoner, J L

    2005-02-14

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  16. Surface Nuclear Magnetic Resonance (SNMR - A new method for exploration of ground water and aquifer properties

    Directory of Open Access Journals (Sweden)

    U. Yaramanci

    2000-06-01

    Full Text Available The Surface Nuclear Magnetic Resonance (SNMR method is a fairly new technique in geophysics to assess ground water, i.e. existence, amount and productibility by measurements at the surface. The NMR technique used in medicine, physics and lately in borehole geophysics was adopted for surface measurements in the early eighties, and commercial equipment for measurements has been available since the mid nineties. The SNMR method has been tested at sites in Northern Germany with Quaternary sand and clay layers, to examine the suitability of this new method for groundwater exploration and environmental investigations. More information is obtained by SNMR, particularly with respect to aquifer parameters, than with other geophysical techniques. SNMR measurements were carried out at three borehole locations, together with 2D and 1D direct current geoelectrics and well logging (induction log, gamma-ray log and pulsed neutron-gamma log. Permeabilities were calculated from the grain-size distributions of core material determined in the laboratory. It is demonstrated that the SNMR method is able to detect groundwater and the results are in good agreement with other geophysical and hydrogeological data. Using the SNMR method, the water content of the unsaturated and saturated zones (i.e. porosity of an aquifer can be reliably determined. This information and resistivity data permit in-situ determination of other aquifer parameters. Comparison of the SNMR results with borehole data clearly shows that the water content determined by SNMR is the free or mobile water in the pores. The permeabilities estimated from the SNMR decay times are similar to those derived from sieve analysis of core material. Thus, the combination of SNMR with geoelectric methods promises to be a powerful tool for studying aquifer properties.

  17. High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Test Results

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed

  18. Quiet Spike Build-Up Ground Vibration Testing Approach

    Science.gov (United States)

    Spivey, Natalie D.; Herrera, Claudia Y.; Truax, Roger; Pak, Chan-gi; Freund, Donald

    2007-01-01

    NASA's Dryden Flight Research Center uses a modified F-15B (836) aircraft as a testbed for a variety of flight research:experiments mounted underneath the aircraft fuselage. The F-15B was selected to fly Gulfstream Aerospace Corporation's (GAC)QuietSpike(TM)(QS) project; however, this experiment is very unique and unlike any of the previous testbed experiments flown on the F-15B. It involves the addition of a relatively long quiet spike boom attached to the radar bulkhead of the aircraft. This QS experiment is a stepping stone to airframe structural morphing technologies designed to mitigate sonic born strength of business jets over land. The QS boom is a concept in Which an aircraft's front-end would be extended prior to supersonic acceleration. This morphing would effectively lengthen the aircraft, reducing peak sonic boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, non-coalescing shocklets. Prior to flying the Quietspike(TM) experiment on the F-15B aircraft several ground vibration tests (GVT) were required in order to understand the QS modal characteristics and coupling effects with the F-15B. However, due to the project's late hardware delivery of the QS and the intense schedule, a "traditional" GVT of the mated F-1513 Quietspike(tm) ready-for-flight configuration would not have left sufficient time available for the finite element model update and flutter analyses before flight testing. Therefore, a "nontraditional" ground vibration testing approach was taken. The objective of the QuietSpike (TM) build-up ground testing approach was to ultimately obtain confidence in the F-15B Quietspike(TM) finite element model (FEM) to be used for the flutter analysis. In order to obtain the F15B QS FEM with reliable foundation stiffness between the QS and the F-15B radar bulkhead as well as QS modal characteristics, several different GVT configurations were performed. EAch of the four GVT's performed had a

  19. Tritium as an indicator of venues for nuclear tests.

    Science.gov (United States)

    Lyakhova, O N; Lukashenko, S N; Mulgin, S I; Zhdanov, S V

    2013-10-01

    Currently, due to the Treaty on the Non-proliferation of Nuclear Weapons there is a highly topical issue of an accurate verification of nuclear explosion venues. This paper proposes to consider new method for verification by using tritium as an indicator. Detailed studies of the tritium content in the air were carried in the locations of underground nuclear tests - "Balapan" and "Degelen" testing sites located in Semipalatinsk Test Site. The paper presents data on the levels and distribution of tritium in the air where tunnels and boreholes are located - explosion epicentres, wellheads and tunnel portals, as well as in estuarine areas of the venues for the underground nuclear explosions (UNE). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Extreme Ground-Motion Rockfall Deposits on the Nevada Test Site

    Science.gov (United States)

    Whitney, J. W.; Buckingham, S. E.; Magner, J. E.; Finkel, R. C.; Brune, J. N.; von Seggern, D.; Honke, J. S.

    2007-12-01

    In order to detect the evidence of extreme ground motion in the past, we have begun to catalog geomorphic characteristics that distinguish slope deposits strongly influenced by extreme ground motion from deposits primarily influenced by climate processes. Underground nuclear explosions (UNEs) of yields between 200 kilotons and 1.3 megatons were conducted under Pahute Mesa at the Nevada Test site from 1962 to 1992. The primary surface effects from these tests were surface cracks, triggered earthquakes, offsets on pre-existing faults, and changes in land surface topography. Rockfall and rock spall were observed along cliffs after a few nuclear tests; however, few observations of accumulations of shattered rock were documented. A large volume of rockfall located along a 1.5-km¬-long cliff of welded ash-flow tuff resulted from extreme ground motions from two nearby UNEs. In 1968 UNE Rickey released maximum ground motions of 500 cm/s peak ground velocity (PGV) at the closest cliff face and PGV decreased to about 300 cm/s at the north end of the cliff. Large boulders with 1-3-m average diameters were shaken loose from fracture planes and cooling joints to form a stack of jumbled boulders at the base of the cliff. Very few large boulders rolled to the base of the hillslope. Subsequently, in 1976, UNE Pool induced 300-350 cm/s PGV along the same cliff. A significant volume of rock, also released along fractures and joints, was added to the coarse boulder colluvium shaken loose in 1968. Ground motion from Pool also rearranged the hillslope boulders from UNE Rickey, but did not cause many boulders to roll downslope. Extreme ground motions from these two UNEs resulted in 1.5-3.0 m of physical erosion to the cliff face. Rockfall from less welded ash-flow tuff units situated above and below the cliff produced significantly less boulder colluvium. Our observations indicate that boulder size and rockfall volume from a cliff or ridge crest due to extreme ground motion are

  1. Orbit-to-ground Wireless Power Transfer test mission

    Science.gov (United States)

    Bergsrud, C.; Noghanian, S.; Straub, J.; Whalen, D.; Fevig, R.

    Since the 1970s the concept of transferring power from orbit for use on Earth has had a great deal of consideration for future energy and environmental sustainability here on Earth. The cost, size and complexity of a production-grade system are extremely large, and have many environmental considerations. There has never been a publicly disclosed orbit-to-ground power transfer test mission. A proposed project provides an opportunity to test the conceptual operation of such a system, albeit at a much lower power level than the `grand' or `real scale' system. During this test, a small Solar Powered (SP) 6-U CubSat will be deployed into Low-Earth Orbit (LEO) (225 or 325 km) to collect and store 1 KW of power from solar energy as the satellite is orbiting. The goal is to transmit 1 KW of wireless power at a microwave frequency of 5.8 or 10 GHz to a ground antenna array system. This paper presents the architecture for the proposed mission and discusses the regulatory, legal, and environmental issues that such a mission poses. Furthermore, the gain of the transmitter is analyzed at 20 and 30 dB as well as the gain of the receiver is analyzed at 30, 40, and 50 dB. A SP 6-U CubeSat will have a Lithium Ion (LIon) battery capable of storing enough energy for 83.33 Whr charge to run the satellites controls, and 1 KW necessary for a 5-minute demonstration and test (in addition to power required for its own operational requirements). Once charged, the satellite will use highly accurate position and attitude knowledge provided by an onboard star-tracker, Global Positioning Satellite (GPS) and inertial measurement unit to determine the proper orientation for the power transfer test. The onboard Attitude Determination and Control (ADCS) will be utilized to achieve and maintain this orientation during the test period. A cold-gas propulsion system will be available to de-spin the reaction wheels to ensure that sufficient ADCS capabilities exist for attitude-stabilization use during

  2. NASA Boeing 757 HIRF test series low power on-the-ground tests

    Energy Technology Data Exchange (ETDEWEB)

    Poggio, A.J.; Pennock, S.T.; Zacharias, R.A.; Avalle, C.A.; Carney, H.L. [National Aeronautics and Space Administration, Langley AFB, VA (United States). Langley Research Center

    1996-08-01

    The data acquisition phase of a program intended to provide data for the validation of computational, analytical, and experimental techniques for the assessment of electromagnetic effects in commercial transports; for the checkout of instrumentation for following test programs; and for the support of protection engineering of airborne systems has been completed. Funded by the NASA Fly-By-Light/ Power-By-Wire Program, the initial phase involved on-the-ground electromagnetic measurements using the NASA Boeing 757 and was executed in the LESLI Facility at the USAF Phillips Laboratory. The major participants in this project were LLNL, NASA Langley Research Center, Phillips Laboratory, and UIE, Inc. The tests were performed over a five week period during September through November, 1994. Measurements were made of the fields coupled into the aircraft interior and signals induced in select structures and equipment under controlled illumination by RF fields. A characterization of the ground was also performed to permit ground effects to be included in forthcoming validation exercises. This report and the associated test plan that is included as an appendix represent a definition of the overall on-the-ground test program. They include descriptions of the test rationale, test layout, and samples of the data. In this report, a detailed description of each executed test is provided, as is the data identification (data id) relating the specific test with its relevant data files. Samples of some inferences from the data that will be useful in protection engineering and EM effects mitigation are also presented. The test plan which guided the execution of the tests, a test report by UIE Inc., and the report describing the concrete pad characterization are included as appendices.

  3. Performance tests for integral reactor nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  4. Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico

    Science.gov (United States)

    Cooper, J.B.

    1962-01-01

    Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.

  5. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B. (eds.)

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

  6. Task force for integral test of High Energy nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  7. Covariant energy density functionals: nuclear matter constraints and global ground state properties

    CERN Document Server

    Afanasjev, A V

    2016-01-01

    The correlations between global description of the ground state properties (binding energies, charge radii) and nuclear matter properties of the state-of-the-art covariant energy density functionals have been studied. It was concluded that the strict enforcement of the constraints on the nuclear matter properties (NMP) defined in Ref.\\ \\cite{RMF-nm} will not necessary lead to the functionals with good description of the binding energies and other ground and excited state properties. In addition, it will not substantially reduce the uncertainties in the predictions of the binding energies in neutron-rich systems. It turns out that the functionals, which come close to satisfying these NMP constraints, have some problems in the description of existing data. On the other hand, these problems are either absent or much smaller in the functionals which are carefully fitted to finite nuclei but which violate some NMP constraints. This is a consequence of the fact that the properties of finite nuclei are defined not o...

  8. Modeling Noble Gas Transport and Detection for The Comprehensive Nuclear-Test-Ban Treaty

    Science.gov (United States)

    Sun, Yunwei; Carrigan, Charles R.

    2014-03-01

    Detonation gases released by an underground nuclear test include trace amounts of 133Xe and 37Ar. In the context of the Comprehensive Nuclear Test Ban Treaty, On Site Inspection Protocol, such gases released from or sampled at the soil surface could be used to indicate the occurrence of an explosion in violation of the treaty. To better estimate the levels of detectability from an underground nuclear test (UNE), we developed mathematical models to evaluate the processes of 133Xe and 37Ar transport in fractured rock. Two models are developed respectively for representing thermal and isothermal transport. When the thermal process becomes minor under the condition of low temperature and low liquid saturation, the subsurface system is described using an isothermal and single-gas-phase transport model and barometric pumping becomes the major driving force to deliver 133Xe and 37Ar to the ground surface. A thermal test is simulated using a nonisothermal and two-phase transport model. In the model, steam production and bubble expansion are the major processes driving noble gas components to ground surface. After the temperature in the chimney drops below boiling, barometric pumping takes over the role as the major transport process.

  9. Solar Array at Very High Temperatures: Ground Tests

    Science.gov (United States)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees

  10. Motor sport in France: testing-ground for the world.

    Science.gov (United States)

    Cofaigh, Eamon O

    2011-01-01

    The birth of the automobile in the late nineteenth century was greeted with a mixture of awe, scepticism and sometimes even disdain from sections of the European public. In this article, the steps taken in France to pioneer and promote this new invention are examined. Unreliable and noisy, the early automobile owes a debt of gratitude to the French aristocracy who organised and codified motor racing in an effort to test these new inventions while at the same time introduce them to a wider public. City-to-city races demonstrated the potential of the automobile before the initiative of Gordon Bennett proved to be the catalyst for the birth of international motor sport as we recognise it today. Finally this article looks at the special connection between Le Mans and the automobile. Le Mans has, through its 24-hour race, maintained a strong link with the development of everyday automobile tourism and offers the enthusiast an alternative to the machines that reach incredible speeds on modern-day closed circuits. This article examines how French roads were veritable testing grounds for the earliest cars and how the public roads of Le Mans maintain the tradition to this day.

  11. Static tests of excess ground attenuation at Wallops Flight Center

    Science.gov (United States)

    Sutherland, L. C.; Brown, R.

    1981-01-01

    An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.

  12. Ground vibration tests of a helicopter structure using OMA techniques

    Science.gov (United States)

    Ameri, N.; Grappasonni, C.; Coppotelli, G.; Ewins, D. J.

    2013-02-01

    This paper is focused on an assessment of the state-of-the-art of operational modal analysis (OMA) methodologies in estimating modal parameters from output responses on helicopter structures. For this purpose, a ground vibration test was performed on a real helicopter airframe. In the following stages, several OMA techniques were applied to the measured data and compared with the results from typical input-output approach. The results presented are part of a more general research activity carried out in the Group of Aeronautical Research and Technology in Europe (GARTEUR) Action Group 19, helicopter technical activity, whose overall objective is the improvement of the structural dynamic finite element models using in-flight test data. The structure considered is a medium-size helicopter, a time-expired Lynx Mk7 (XZ649) airframe. In order to have a comprehensive analysis, the behaviour of both frequency- and time-domain-based OMA techniques are considered for the modal parameter estimates. An accuracy index and the reliability of the OMA methods with respect to the standard EMA procedures, together with the evaluation of the influence of the experimental setup on the estimate of the modal parameters, will be presented in the paper.

  13. Static tests of excess ground attenuation at Wallops Flight Center

    Science.gov (United States)

    Sutherland, L. C.; Brown, R.

    1981-06-01

    An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.

  14. Survey of hazardous materials used in nuclear testing

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, E.A.; Fabryka-Martin, J.

    1991-02-01

    The use of hazardous'' materials in routine underground nuclear tests at the Nevada Test Site has been reviewed. In addition the inventory of test yields, originally reported in 1976 has been updated. A trail down-hole inventory'' has been conducted for a selected test. The inorganic hazardous materials introduced during testing (with the exception of lead and the fissionable materials) produce an incremental change in the quantity of such materials already present in the geologic media surrounding the test points. 1 ref., 3 tabs.

  15. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  16. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-20

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program.

  17. Active Thermal Control Experiments for LISA Ground Verification Testing

    Science.gov (United States)

    Higuchi, Sei; DeBra, Daniel B.

    2006-11-01

    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  18. Ground Testing A 20-Meter Inflation Deployed Solar Sail

    Science.gov (United States)

    Mann, Troy; Behun, Vaughn; Lichodziejewski, David; Derbes, Billy; Sleight, David

    2006-01-01

    Solar sails have been proposed for a variety of future space exploration missions and provide a cost effective source of propellantless propulsion. Solar sails span very large areas to capture and reflect photons from the Sun and are propelled through space by the transfer of momentum from the photons to the solar sail. The thrust of a solar sail, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful space exploration missions utilizing solar sail propulsion. The team of L Garde, NASA Jet Propulsion Laboratory (JPL), Ball Aerospace, and NASA Langley Research Center, under the direction of the NASA In-Space Propulsion Office (ISP), has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The 100-m baseline solar sail concept was optimized around the one astronomical unit (AU) Geostorm mission, and features a Mylar sail membrane with a striped-net sail suspension architecture with inflation-deployed sail support beams consisting of inflatable sub-Tg (glass transition temperature) rigidizable semi-monocoque booms and a spreader system. The solar sail has vanes integrated onto the tips of the support beams to provide full 3-axis control of the solar sail. This same structural concept can be scaled to meet the requirements of a number of other NASA missions. Static and dynamic testing of a 20m scaled version of this solar sail concept have been completed in the Space Power Facility (SPF) at the NASA Glenn Plum Brook facility under vacuum and thermal conditions simulating the operation of a solar sail in space. This paper details the lessons learned from these and other similar ground based tests of gossamer structures during the three year solar sail project.

  19. Hunter standoff killer team (HSKT) ground and flight test results

    Science.gov (United States)

    Moreland, Balinda; Ennis, Mark; Yeates, Robert; Condon, Timothy

    2007-04-01

    Warfighter's Associate (WA) which was integrated onto the Apache Longbow, and the Mobile Commanders Associate (MCA) which was integrated onto the Army Airborne Command and Control System (A2C2S) UH-60 Blackhawk. In this paper we will discuss what WA and MCA provided to the warfighter, and the results of the HSKT ground and flight testing.

  20. Nuclear level densities with pairing and self-consistent ground-state shell effects

    CERN Document Server

    Arnould, M

    1981-01-01

    Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statistically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (41 refs).

  1. Modeling and Simulation of a Nuclear Fuel Element Test Section

    Science.gov (United States)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  2. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    Energy Technology Data Exchange (ETDEWEB)

    Morini, Filippo; Deleuze, Michael Simon, E-mail: michael.deleuze@uhasselt.be [Center of Molecular and Materials Modelling, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek (Belgium); Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  3. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal to determine compliance with specifications.

  4. Work and Risk: Perceptions of Nuclear-Power Personnel. a Study in Grounded Theory.

    Science.gov (United States)

    Fields, Claire Dewitt

    1992-01-01

    The utility industry has devoted time and money to assure personnel within nuclear power plants are informed about occupational risks. Radiation-protection training programs are designed to present information to employees about occupational radiation and protective procedures. Work -related concerns are known to create stress, affect the morale of the workforce, influence collective bargaining, and increase compensation claims. This study was designed to determine perceptions of risk among employees of nuclear power plants and identify variables that influence these perceptions. Four power plants were included in the study, one in Canada and three in the United States. Data were generated through participant observations and interviews of 350 participants during a period of 3 weeks at each plant. Data were gathered and analyzed following procedures advanced by Grounded Theory, a naturalistic methodology used in this study. Training content, information, and communication materials were additional sources of data. Findings indicated employees believed health and safety risks existed within the work environment. Perceptions of risk were influenced by training quality, the work environment, nuclear myths and images of the general public, and fears of family members. Among the three groups of workers, administration personnel, security personnel, and radiation workers, the latter identified a larger number of risks. Workers perceived radiation risks, shift work, and steam pipe ruptures as high-level concerns. Experiencing stress, making mistakes, and fear of sabotage were concerns shared among all employee groups at various levels of concern. Strategies developed by employees were used to control risk. Strategies included teamwork, humor, monitoring, avoidance, reframing, and activism. When risks were perceived as uncontrollable, the employee left the plant. A coping strategy of transferring concerns about radiological risks to nonradiological risks were uncovered in

  5. Nuclear thermal rocket nozzle testing and evaluation program

    Science.gov (United States)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.

  6. Resettlement of Bikini Atoll U.S. Nuclear Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.L.; Conrado, C.L.; Stuart, M.L.; Stoker, A.C.; Hamilton, T.F.

    1999-09-09

    The US conducted a nuclear testing program at Bikini and Enewetak Atolls in the Marshall Islands from 1946 through 1958. Several atolls, including Bikini, were contaminated as a result of the nuclear detonations. Since 1974 the authors have conducted an extensive research and monitoring program to determine the radiological conditions at the atolls, identify the critical radionuclides and pathways, estimate the radiological dose to current or resettling populations, and develop remedial measures to reduce the dose to atoll populations. This paper describes exposure pathways and radionuclides; composition of atoll soils; radionuclide transport and dose estimates; remedial measures; and reduction in dose from a combined option.

  7. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    DeAnn Long; Michael Murphy

    2008-07-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program.

  8. New signatures of underground nuclear tests revealed by satellite radar interferometry

    Science.gov (United States)

    Vincent, P.; Larsen, S.; Galloway, D.; Laczniak, R.J.; Walter, W.R.; Foxall, W.; Zucca, J.J.

    2003-01-01

    New observations of surface displacement caused by past underground nuclear tests at the Nevada Test Site (NTS) are presented using interferometric synthetic aperture radar (InSAR). The InSAR data reveal both coseismic and postseismic subsidence signals that extend one kilometer or more across regardless of whether or not a surface crater was formed from each test. While surface craters and other coseismic surface effects (ground cracks, etc.) may be detectable using high resolution optical or other remote sensing techniques, these broader, more subtle subsidence signals (one to several centimeters distributed over an area 1-2 kilometers across) are not detectable using other methods [Barker et al., 1998]. A time series of interferograms reveal that the postseismic signals develop and persist for months to years after the tests and that different rates and styles of deformation occur depending on the geologic and hydrologic setting and conditions of the local test area.

  9. Space exploration initiative candidate nuclear propulsion test facilities

    Science.gov (United States)

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  10. Guidelines for inservice testing at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, P.

    1995-04-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

  11. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer...

  12. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  13. On site inspection for nuclear test ban verirication

    Directory of Open Access Journals (Sweden)

    P. D. Marschall

    1994-06-01

    Full Text Available The problem of verifying compliance with a nuclear test ban treaty is mainly a technical one. However the problem of detecting, locating and identifying nuclear explosions has, since the late 1950s, been intimately involved with the political problems associated with negotiating a treaty. In fact there are few other areas in which policy, diplomacy and science have been so interwoven. This paper attempts to illustrate how technology can. be applied to solve some of the political problems which arise when considering the role of an On Site Inspection (OSI to determine whether or not a nuclear explosion, in violation of a treaty, has occurred or not. It is hoped that the reader, with a scientific background, but with little or no experience of treaty negotiations, will gain an. insight as to how technical matters can interact with political requirements. The demands made on scientists to provide technical support for negotiating and rnonitoring compliance of a treaty have increased significanfly over the last 40 years. This is a period in which a number of major treaties have contained a significant technical component e.g. the Limited Test Ban Treaty (Threshold Treaty and the Chemical Weapon Convention. This paper gives an indication of some of the political decisions which will have to be made and suggests some of the technical methods which are of value in the identification of a clandestine nuclear explosion.

  14. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  15. Nuclear weapons tests and environmental consequences: a global perspective.

    Science.gov (United States)

    Prăvălie, Remus

    2014-10-01

    The beginning of the atomic age marked the outset of nuclear weapons testing, which is responsible for the radioactive contamination of a large number of sites worldwide. The paper aims to analyze nuclear weapons tests conducted in the second half of the twentieth century, highlighting the impact of radioactive pollution on the atmospheric, aquatic, and underground environments. Special attention was given to the concentration of main radioactive isotopes which were released, such as ¹⁴C, ¹³⁷Cs, and ⁹⁰Sr, generally stored in the atmosphere and marine environment. In addition, an attempt was made to trace the spatial delimitation of the most heavily contaminated sites worldwide, and to note the human exposure which has caused a significantly increased incidence of thyroidal cancer locally and regionally. The United States is one of the important examples of assessing the correlation between the increase in the thyroid cancer incidence rate and the continental-scale radioactive contamination with ¹³¹I, a radioactive isotope which was released in large amounts during the nuclear tests carried out in the main test site, Nevada.

  16. Seismological analysis of the fourth North Korean nuclear test

    Science.gov (United States)

    Hartmann, Gernot; Gestermann, Nicolai; Ceranna, Lars

    2016-04-01

    The Democratic People's Republic of Korea has conducted its fourth underground nuclear explosions on 06.01.2016 at 01:30 (UTC). The explosion was clearly detected and located by the seismic network of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Additional seismic stations of international earthquake monitoring networks at regional distances, which are not part of the IMS, are used to precisely estimate the epicenter of the event in the North Hamgyong province (41.38°N / 129.05°E). It is located in the area of the North Korean Punggye-ri nuclear test site, where the verified nuclear tests from 2006, 2009, and 2013 were conducted as well. The analysis of the recorded seismic signals provides the evidence, that the event was originated by an explosive source. The amplitudes as well as the spectral characteristics of the signals were examined. Furthermore, the similarity of the signals with those from the three former nuclear tests suggests very similar source type. The seismograms at the 8,200 km distant IMS station GERES in Germany, for example, show the same P phase signal for all four explosions, differing in the amplitude only. The comparison of the measured amplitudes results in the increasing magnitude with the chronology of the explosions from 2006 (mb 4.2), 2009 (mb 4.8) until 2013 (mb 5.1), whereas the explosion in 2016 had approximately the same magnitude as that one three years before. Derived from the magnitude, a yield of 14 kt TNT equivalents was estimated for both explosions in 2013 and 2016; in 2006 and 2009 yields were 0.7 kt and 5.4 kt, respectively. However, a large inherent uncertainty for these values has to be taken into account. The estimation of the absolute yield of the explosions depends very much on the local geological situation and the degree of decoupling of the explosive from the surrounding rock. Due to the missing corresponding information, reliable magnitude-yield estimation for the

  17. Operation Grenadier. Onsite radiological safety report for announced nuclear tests, October 1984-September 1985

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, O.W.; Eubank, B.F.

    1986-09-01

    Grenadier was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1984 through September 30, 1985. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeros before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  18. Comparison of the Microbial Community Composition at Yucca Mountain and Laboratory Test Nuclear Repository Environments

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J; Carrillo, C; Dias, V

    2002-10-09

    The microbiological community structure within a proposed nuclear waste repository at Yucca Mountain (YM), NV was determined. Microbial growth from collected rock was detected using simulated ground water as a growth medium, with or without amendment of a carbon source. Grown isolates were identified by 16s ribosomal DNA (rDNA) sequence analysis. A more complete compositional analysis of the microbial community located at the proposed nuclear waste repository site was performed using environmental DNA isolation and subsequent identification of amplified 16s rDNA genes. Concurrently, a series of corrosion testing tanks that simulate the evolution of anticipated environmental conditions within the proposed repository have been subjected to the same type of analyses.

  19. The development and testing of pulsed detonation engine ground demonstrators

    Science.gov (United States)

    Panicker, Philip Koshy

    2008-10-01

    The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz

  20. Fallout from atmospheric bomb tests and releases from nuclear installations

    Science.gov (United States)

    Völkle, H.; Murith, C.; Surbeck, H.

    This work presents the radioactivity monitoring programme in Switzerland. Environmental radioactivity measurements for atomic bomb test fallout are discussed together with the radiation doses to the public caused by fallout. In the second part the monitoring programme around nuclear power stations is presented. The radioactivity releases to the environment, the results of the monitoring programme and the radiation doses to the public in the vicinity of the plants are discussed.

  1. Forensic Medicine: Age Written in Teeth by Nuclear Bomb Tests

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2005-05-04

    Establishing the age of individuals is an important step in identification and a frequent challenge in forensic medicine. This can be done with high precision up to adolescence by analysis of dentition, but establishing the age of adults has remained difficult. Here we show that measuring {sup 14}C from nuclear bomb tests in tooth enamel provides a sensitive way to establish when a person was born.

  2. Nuclear analysis of ITER Test Blanket Module Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Villari, Rosaria, E-mail: rosaria.villari@enea.it [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Kim, Byoung Yoon; Barabash, Vladimir; Giancarli, Luciano; Levesy, Bruno; Loughlin, Michael; Merola, Mario [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Moro, Fabio [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Petrizzi, Luigino [European Commission, DG Research & Innovation G5, CDMA 00/030, B-1049 Brussels (Belgium); Polunovsky, Eduard; Van Der Laan, Jaap G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France)

    2015-10-15

    Highlights: • 3D nuclear analysis of the ITER TBM Port Plug (PP). • Calculations of neutron fluxes, nuclear heating, damage and He-production in TBM PP components. • Shutdown dose rate assessment with Advanced D1S method considering different configurations. • Potential design improvements to reduce the shutdown dose rate in the port interspace. - Abstract: Nuclear analyses have been performed for the ITER Test Blanket Module Port Plug (TBM PP) using the MCNP-5 Monte Carlo Code. A detailed 3D model of the TBM Port Plug with dummy TBM has been integrated into the ITER MCNP model (B-lite v.3). Neutron fluxes, nuclear heating, helium production and neutron damage have been calculated in all the TBM PP components. Global shutdown dose rate calculations have also been performed with Advanced D1S method for different configurations of the TBM PP system. This paper presents the results of these analyses and discusses potential design improvements aiming to further reduce the shutdown dose rate in the port interspace.

  3. Testing of Small Graphite Samples for Nuclear Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Julie Chapman

    2010-11-01

    Accurately determining the mechanical properties of small irradiated samples is crucial to predicting the behavior of the overal irradiated graphite components within a Very High Temperature Reactor. The sample size allowed in a material test reactor, however, is limited, and this poses some difficulties with respect to mechanical testing. In the case of graphite with a larger grain size, a small sample may exhibit characteristics not representative of the bulk material, leading to inaccuracies in the data. A study to determine a potential size effect on the tensile strength was pursued under the Next Generation Nuclear Plant program. It focuses first on optimizing the tensile testing procedure identified in the American Society for Testing and Materials (ASTM) Standard C 781-08. Once the testing procedure was verified, a size effect was assessed by gradually reducing the diameter of the specimens. By monitoring the material response, a size effect was successfully identified.

  4. Eurobot Ground Prototype Control System Overview & Tests Results

    Science.gov (United States)

    Merlo, Andrea; Martelli, Andrea; Pensavalle, Emanuele; Ferraris, Simona; Didot, Frederic

    2010-08-01

    In the planned missions on Moon and Mars, robotics can play a key role, as robots can both assist astronauts and, above all, relieve them of dangerous or too difficult tasks. To this aim, both cooperative capabilities and a great level of autonomy are needed: the robotic crew assistant must be able to work on its own, without supervision by humans, and to help astronauts to accomplish tasks otherwise unfeasible for them. Within this context, a project named Eurobot Ground Prototype, conducted in conjunction with ESA and Thales Alenia Space, is presented. EGP is a dual-arm mobile manipulator and exploits both stereo cameras and force/torque sensors in order to rely on visual and force feedback. This paper provides an overview of the performed and on going activities within the Eurobot Ground Prototype project.

  5. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant....... Nevertheless, up to now, ground navigation has been the only possible solution. The technological breakthrough of advanced star trackers, like the micro-advanced stellar compass (mu ASC) might change this situation. Indeed, exploiting the capabilities of this instrument, the authors have devised a method...

  6. 78 FR 67206 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Science.gov (United States)

    2013-11-08

    ... COMMISSION Qualification Tests for Safety-Related Actuators in Nuclear Power Plants AGENCY: Nuclear...-Related Actuators in Nuclear Power Plants.'' This RG is being revised to provide applicants and licensees with the most current information on testing safety-related actuators in nuclear power plants. This...

  7. Nuclear Ground State Properties in Strontium by Fast Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii show a decrease with increasing neutron number below the N=50 shell closure. Above N=50 the charge radii increase regularly up to N=59 before revealing a strong discontinuity, indicating the onset of strong ground state deformation. A comparison of the droplet model shows that for the transitional isotopes below and above N=50, the zero point quadrupole motion describes part of the observed shell effect. Calculations carried out in the Hartree-Fock plus BCS model suggest an additional change in the surface region of the charge distribution at spherical shape. From these calculations it is furthermore proposed, that the isotopes $^7

  8. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient.

  9. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    Science.gov (United States)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  10. Azimuthal anisotropies as stringent test for nuclear transport models

    Science.gov (United States)

    Crochet, P.; Rami, F.; Donà, R.; Coffin, J. P.; Fintz, P.; Guillaume, G.; Jundt, F.; Kuhn, C.; Roy, C.; de Schauenburg, B.; Tizniti, L.; Wagner, P.; Alard, J. P.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Bendarag, A.; Berek, G.; Best, D.; Biegansky, J.; Buta, A.; Čaplar, R.; Cindro, N.; Dupieux, P.; Dželalija, M.; Fan, Z. G.; Fodor, Z.; Fraysse, L.; Freifelder, R. P.; Gobbi, A.; Herrmann, N.; Hildenbrand, K. D.; Hong, B.; Jeong, S. C.; Kecskemeti, J.; Kirejczyk, M.; Koncz, P.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Manko, V.; Moisa, D.; Mösner, J.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Reisdorf, W.; Ritman, J. L.; Sadchikov, A. G.; Schüll, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczyńska, K.; Sodan, U.; Teh, K. M.; Trzaska, M.; Wang, G. S.; Wessels, J. P.; Wienold, T.; Wisniewski, K.; Wohlfarth, D.; Zhilin, A.; Hartnack, C.; FOPI Collaboration

    1997-02-01

    Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600 A MeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar centre-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.

  11. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  12. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Stephen [VJ Technologies Inc, 89 Carlough Road, Bohemia, NY (United States)

    2013-07-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  13. MEASUREMENT OF AERODYNAMIC CHARACTERISTICS OF A HANG-GLIDER-WING BY GROUND RUN TESTS USING A TEST VEHICLE

    OpenAIRE

    Hozumi, Koki; KOMODA, Masaki; Ono, Takatsugu; TSUKANO, Yukichi; 穂積, 弘毅; 古茂田, 真幸; 小野, 孝次; 塚野, 雄吉

    1987-01-01

    In order to investigate longitudinal force and moment characteristics of a hang-glider-wing, ground run tests were conducted using a test vehicle. A hang-glider-wing was installed on a test vehicle using a six-components-balance for wind tunnel use. Aerodynamic force and moment were measrued during the vehicle run at various constant speeds. Geometrical twist distribution along the wing span was recorded as well. Measured force and moment data were corrected for possible ground effect and upw...

  14. Strategies for Ground Based Testing of Manned Lunar Surface Systems

    Science.gov (United States)

    Beyer, Jeff; Peacock, Mike; Gill, Tracy

    2009-01-01

    Integrated testing (such as Multi-Element Integrated Test (MEIT)) is critical to reducing risks and minimizing problems encountered during assembly, activation, and on-orbit operation of large, complex manned spacecraft. Provides the best implementation of "Test Like You Fly:. Planning for integrated testing needs to begin at the earliest stages of Program definition. Program leadership needs to fully understand and buy in to what integrated testing is and why it needs to be performed. As Program evolves and design and schedules mature, continually look for suitable opportunities to perform testing where enough components are together in one place at one time. The benefits to be gained are well worth the costs.

  15. Space Shuttle Damper System for Ground Wind Load Tests

    Science.gov (United States)

    Robinson, G. D.; Holt, J. R.; Chang, C. S.

    1973-01-01

    An active damper system which was originally developed for a 5.5% Saturn IB/Skylab Ground Winds Model was modified and used for similar purposes in a Space Shuttle model. A second damper system which was originally used in a 3% Saturn V/Dry Workshop model was also modified and made compatible with the Space Shuttle model to serve as a back-up system. Included in this final report are descriptions of the modified damper systems and the associated control and instrumentation.

  16. Fission xenon in trinities from the first nuclear test

    Science.gov (United States)

    Meshik, Alexander; Pravdivtseva, Olga; Hohenberg, Charles

    2008-04-01

    Trinitites, greenish glassy remnants found in the crater of the first nuclear test, refer to the molten material of the desert where the Trinity test was conducted. Recently the Los Alamos Lab^1 suggested that the sand was first vaporized by the fireball and then precipitated onto a cooler desert surface forming trinitites. We measured the Xe mass-spectra during stepped pyrolysis of two trinitites and found an unusual Xe isotopic structure, dominated by ^132Xe and ^131Xe compared to the nominal fission yield spectra, which cannot be due to n-capture or any other nuclear processes. This structure is caused by the chemical separation of the immediate neutron-rich fission products, a process similar to CFF observed in the Oklo natural reactor^2. When quantitatively applied to our observations it suggests that 17 min after the test one of the samples had a temperature of 1390^oC, while 5 min after the test the other was at 1320^oC. These results contribute to a reconstruction of the cooling history of the trinities and a demonstration of which formation scenario is the more likely. ^1V. Montoya et al, Denver X-ray Conf. (2007), ^2A. Meshik, C. Hohenberg and O. Pravdivtseva, PRL 93, 182302 (2004).

  17. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  18. The development of pure β-NQR techniques for measurements of nuclear ground state quadrupole moments in lithium isotopes

    Science.gov (United States)

    Voss, A.; Pearson, M. R.; Billowes, J.; Buchinger, F.; Chow, K. H.; Crawford, J. E.; Hossein, M. D.; Kiefl, R. F.; Levy, C. D. P.; MacFarlane, W. A.; Mané, E.; Morris, G. D.; Parolin, T. J.; Saadaoui, H.; Salman, Z.; Smadella, M.; Song, Q.; Wang, D.

    2011-09-01

    A β-NQR spectrometer becomes a powerful tool to study changes in nuclear ground state properties along isotopic chains when coupled to a laser excitation beamline to polarise the nuclei of interest. Recently, the β-NQR technique in a zero magnetic field has been applied for the first-time to measure ratios of static nuclear quadrupole moments of, Li. Preliminary results of the experiment determining the ratios Q9/Q8 and Q11/Q9 show agreement with present literature values with improved precision.

  19. Ground tests of the Dynamic Albedo of Neutron instrument operation in the passive mode with a Martian soil model

    Science.gov (United States)

    Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.

    2017-07-01

    The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).

  20. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to NTP Ground Testing

    Science.gov (United States)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment

  1. A new role of proficiency testing in nuclear analytical work

    DEFF Research Database (Denmark)

    Heydorn, Kaj

    2008-01-01

    The most recent definition of measurement result requires a statement of uncertainty whenever results obtained by nuclear or other quantitative methods of analysis are reported. Proficiency testing (PT) therefore must include the ability of laboratories to present not only unbiased quantity values...... that fully reflects the uncertainties reported by participants in a PT-scheme and permits calculation of En numbers to distinguish whether or not measurement results are consistent with the accepted definition of the measurand. The strategy is applied to PT-data from a recent international laboratory...

  2. Contaminant Boundary at the Faultless Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    Greg Pohll; Karl Pohlmann; Jeff Daniels; Ahmed Hassan; Jenny Chapman

    2003-04-01

    The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision

  3. Software Development and Test Methodology for a Distributed Ground System

    Science.gov (United States)

    Ritter, George; Guillebeau, Pat; McNair, Ann R. (Technical Monitor)

    2002-01-01

    The Marshall Space Flight Center's (MSFC) Payload Operations Center (POC) ground system has evolved over a period of about 10 years. During this time the software processes have migrated from more traditional to more contemporary development processes in an effort to minimize unnecessary overhead while maximizing process benefits. The Software processes that have evolved still emphasize requirements capture, software configuration management, design documenting, and making sure the products that have been developed are accountable to initial requirements. This paper will give an overview of how the Software Processes have evolved, highlighting the positives as well as the negatives. In addition, we will mention the COTS tools that have been integrated into the processes and how the COTS have provided value to the project.

  4. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    Science.gov (United States)

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; Zimmer, Mindy M.; Pollington, Anthony D.; Rector, Kirk D.

    2017-01-01

    Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test ("trinitite") and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.

  5. Spectral modulation effect in teleseismic P-waves from DPRK nuclear tests recorded at different azimuths

    Science.gov (United States)

    Gitterman, Yefim; Kim, So Gu; Hofstetter, Abraham

    2014-05-01

    Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by the Israel Seismic Network. Pronounced coherent minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P-waves. For a ground-truth explosion with a shallow source depth (relatively to an earthquake), this phenomenon can be interpreted in terms of the interference between the down-going P-wave and the pP phase reflected from the Earth's surface. A similar effect was observed at ISN stations for the Pakistan nuclear explosion at a different frequency 1.7 Hz indicating a source and not site-effect. Similar spectral minima with about the same frequency were observed in teleseismic P-waves of all three North Korea explosions (including the 2006 test) recorded at network stations and arrays in Kazakhstan (KURK), Norway (NORESS, ARCESS), Australia (Alice Springs, Warramunga) and Canada (Yellowknife), covering a broad azimuthal range. Data of the 2013 test at Warramunga array showed harmonic spectral modulation with several minima, evidencing a clear interference effect. These observations support the above-mentioned interpretation. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of the North Korea tests was estimated as ~2 km (different from the value ~1 km reported by USGS for the third test). This unusual depth estimation needs an additional validation based on more stations and verification by other methods.

  6. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  7. Local fallout from nuclear test detonations. Volume 2. Compilation of fallout patterns and related test data. Supplement. Foreign nuclear tests. Sanitized

    Energy Technology Data Exchange (ETDEWEB)

    Morgenthau, M.; Showers, R.L.

    1964-10-01

    The available fallout patterns and related test data for nuclear weapon tests conducted by the United Kingdom, the Republic of France, and the Union of Soviet Socialist Republics, are included in this supplement to NDL-TR-34. The related test data for the British and French tests include: date and time of detonation, location of test site, total yield, fission yield, type of burst and placement, height of burst, cloud-top and -bottom heights, crater data, and wind information up to nuclear cloud-top height. No fallout patterns are available for any of the Soviet detonations. The list of Soviet detonations, which is as comprehensive as possible, contains the chronological order of the detonations, date, yield, type of burst and location of test site.

  8. Single-shell tank riser resistance to ground test plan

    Energy Technology Data Exchange (ETDEWEB)

    Kiewert, L.R.

    1996-03-11

    This Test Procedure provides the general directions for conducting Single-Shell Tank Riser to Earth Measurements which will be used by engineering as a step towards providing closure for the Lightning Hazard Issue.

  9. Bikini Atoll coral biodiversity resilience five decades after nuclear testing

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Zoe T. [Museum of Tropical Queensland, Flinders St, Townsville, QLD 4810 (Australia) and Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 (Australia) and School of Marine and Tropical Biology, James Cook University, Townsville QLD 4811 (Australia); NRAS - Marshall Islands: Natural Resource Assessment Surveys (Australia)], E-mail: zoe.richards@jcu.edu.au; Beger, Maria [Ecology Centre and Commonwealth Research Facility for Applied Environmental Decision Analysis, University of Queensland, St Lucia, QLD 4072 (Australia); NRAS - Marshall Islands: Natural Resource Assessment Surveys (Australia); Pinca, Silvia [College of the Marshall Islands, Majuro, Marshall Islands, NRAS - Marshall Islands: Natural Resource Assessment Surveys (Australia); Wallace, Carden C. [Museum of Tropical Queensland, Flinders St, Townsville, QLD 4810 (Australia)

    2008-03-15

    Five decades after a series of nuclear tests began, we provide evidence that 70% of the Bikini Atoll zooxanthellate coral assemblage is resilient to large-scale anthropogenic disturbance. Species composition in 2002 was assessed and compared to that seen prior to nuclear testing. A total of 183 scleractinian coral species was recorded, compared to 126 species recorded in the previous study (excluding synonomies, 148 including synonomies). We found that 42 coral species may be locally extinct at Bikini. Fourteen of these losses may be pseudo-losses due to inconsistent taxonomy between the two studies or insufficient sampling in the second study, however 28 species appear to represent genuine losses. Of these losses, 16 species are obligate lagoonal specialists and 12 have wider habitat compatibility. Twelve species are recorded from Bikini for the first time. We suggest the highly diverse Rongelap Atoll to the east of Bikini may have contributed larval propagules to facilitate the partial resilience of coral biodiversity in the absence of additional anthropogenic threats.

  10. Simulating the venting of radioactivity from a soviet nuclear test

    Science.gov (United States)

    Rodriguez, Daniel J.; Peterson, Kendall R.

    Fresh fission products were found in several routine air samples in Europe during the second and third weeks of March 1987. Initially, it was suspected that the radionuclides, principally 133Xe and 131I, had been accidentally released from a European facility handling nuclear materials. However, the announcement of an underground nuclear test at Semipalatinsk, U.S.S.R. on 26 February 1987 suggested that the elevated amounts of radioactivity may, instead, have been caused by a venting episode. Upon learning of these events, we simulated the transport and diffusion of 133Xe with our Hemispheric MEDIC and ADPIC models, assuming Semipalatinsk to be the source of the radioactive emissions. The correspondence between the calculated concentrations and the daily average 133Xe measurements made by the Federal Office for Civil Protection in F.R.G. was excellent. While this agreement does not, in itself, prove that an atmospheric venting of radioactive material occurred at Semipalatinsk, a body of circumstantial evidence exists which, when added together, strongly supports this conclusion. Our calculations suggested a total fission yield of about 40 kt, which is within the 20-150 kt range of tests acknowledged by the U.S.S.R. Finally, dose calculations indicated that no health or environmental impact occurred outside of the U.S.S.R. due to the suspected venting of 133Xe. However, the inhalation dose resulting from 133I, an unmodeled component of the radioactive cloud, represented a greater potential risk to public health.

  11. Testing piezoelectric sensors in a nuclear reactor environment

    Science.gov (United States)

    Reinhardt, Brian T.; Suprock, Andy; Tittmann, Bernhard

    2017-02-01

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this work piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65×1020 nf/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 × 1020 nf/cm2, Zinc Oxide is capable of transduction up to at least 6.27 × 1020 nf/cm2, and Aluminum Nitride is capable of transduction up to at least 8.65 × 1020 nf/cm2.

  12. Enhanced ground-based vibration testing for aerodynamic environments

    Science.gov (United States)

    Daborn, P. M.; Ind, P. R.; Ewins, D. J.

    2014-12-01

    Typical methods of replicating aerodynamic environments in the laboratory are generally poor. A structure which flies "freely" in its normal operating environment, excited over its entire external surface by aerodynamic forces and in all directions simultaneously, is then subjected to a vibration test in the laboratory whilst rigidly attached to a high impedance shaker and excited by forces applied through a few attachment points and in one direction only. The two environments could hardly be more different. The majority of vibration testing is carried out at commercial establishments and it is understandable that little has been published which demonstrates the limitations with the status quo. The primary objective of this research is to do just that with a view to identifying significant improvements in vibration testing in light of modern technology. In this paper, case studies are presented which highlight some of the limitations with typical vibration tests showing that they can lead to significant overtests, sometimes by many orders of magnitude, with the level of overtest varying considerably across a wide range of frequencies. This research shows that substantial benefits can be gained by "freely" suspending the structure in the laboratory and exciting it with a relatively small number of electrodynamic shakers using Multi-Input-Multi-Output (MIMO) control technology. The shaker configuration can be designed to excite the modes within the bandwidth utilising the inherent amplification of the resonances to achieve the desired response levels. This free-free MIMO vibration test approach is shown to result in substantial benefits that include extremely good replication of the aerodynamic environment and significant savings in time as all axes are excited simultaneously instead of the sequential X, Y and Z testing required with traditional vibration tests. In addition, substantial cost savings can be achieved by replacing some expensive large shaker systems

  13. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  14. Model of a Nuclear Thermal Test Pipe Using Athena

    Science.gov (United States)

    1992-03-01

    1.2 Problem and Scope .. ............................. 3 1.3 Particle Bed Reactor .. .......................... 3 1.4 Nuclear Thermal Rocket .. ........................ 4...development of both the nuclear thermal rocket and space nuclear power technologies. The nuclear thermal rocket can be used to reduce the travel time to...1991). The manned mission to Mars is not the only use for the nuclear thermal rocket . Ramsthaler and Sulmeisters (1988:21) have determined that among

  15. Model for ground motion and atmospheric overpressure due to underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Walker, J.J.

    1980-10-01

    A physical model is proposed to describe the ground motion pattern resulting from an underground nulear explosion in an idealized homogeneous medium. Irregular behaviors in the observed ground motion are assumed to be perturbations caused by the local inhomogeneity of the ground medium. Our model correlates the ground motions at any point in the spalled zone to the initial acceleration pulse at the ground zero. Interestingly, the model predicts that the ground motion first comes to a stop at a definite radius about the ground zero, and the region expands both outward and inward as time goes on. We believe that this result is closely related to a phenomenon observed at NTS. In the far field approximation, we also calculate the overpressure in the lower atmosphere generated by the ground motion. We demonstrate that the irregular component of the ground motion does not affect the overpressure history in any significant way. Consequently the model ground motion can be used as a good approximation in generating the atmospheric overpressure.

  16. Nuclear Cryogenic Propulsion Stage (NCPS) Fuel Element Testing in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Science.gov (United States)

    Emrich, William J., Jr.

    2017-01-01

    To satisfy the Nuclear Cryogenic Propulsion Stage (NCPS) testing milestone, a graphite composite fuel element using a uranium simulant was received from the Oakridge National Lab and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) at various operating conditions. The nominal operating conditions required to satisfy the milestone consisted of running the fuel element for a few minutes at a temperature of at least 2000 K with flowing hydrogen. This milestone test was successfully accomplished without incident.

  17. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    Science.gov (United States)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  18. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.;

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  19. An Evaluation of North Korea’s Nuclear Test by Belbasi Nuclear Tests Monitoring Center-KOERI

    Science.gov (United States)

    Necmioglu, O.; Meral Ozel, N.; Semin, K.

    2009-12-01

    Bogazici University and Kandilli Observatory and Earthquake Research Institute (KOERI) is acting as the Turkish National Data Center (NDC) and responsible for the operation of the International Monitoring System (IMS) Primary Seismic Station (PS-43) under Belbasi Nuclear Tests Monitoring Center for the verification of compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) since February 2000. The NDC is responsible for operating two arrays which are part of the IMS, as well as for transmitting data from these stations to the International Data Centre (IDC) in Vienna. The Belbasi array was established in 1951, as a four-element (Benioff 1051) seismic array as part of the United States Atomic Energy Detection System (USAEDS). Turkish General Staff (TGS) and U.S. Air Force Technical Application Center (AFTAC) under the Defense and Economic Cooperation Agreement (DECA) jointly operated this short period array. The station was upgraded and several seismometers were added to array during 1951 and 1994 and the station code was changed from BSRS (Belbasi Seismic Research Station) to BRTR-PS43 later on. PS-43 is composed of two sub-arrays (Ankara and Keskin): the medium-period array with a ~40 km radius located in Ankara and the short-period array with a ~3 km radius located in Keskin. Each array has a broadband element located at the middle of the circular geometry. Short period instruments are installed at depth 30 meters from the surface while medium and broadband instruments are installed at depth 60 meters from surface. On 25 May 2009, The Democratic People’s Republic of Korea (DPRK) claimed that it had conducted a nuclear test. Corresponding seismic event was recorded by IMS and IDC released first automatic estimation of time (00:54:43 GMT), location (41.2896°N and 129.0480°E) and the magnitude (4.52 mb) of the event in less than two hours time (USGS: 00:54:43 GMT; 41.306°N, 129.029°E; 4.7 mb) During our preliminary analysis of the 25th May 2009 DPRK

  20. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    Science.gov (United States)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  1. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  2. The XRS Low Temperature Cryogenic System: Ground Performance Test Results

    Science.gov (United States)

    Breon, Susan; Sirron, Peter; Boyle, Robert; Canavan, Ed; DiPirro, Michael; Serlemitsos, Aristides; Tuttle, James; Whitehouse, Paul

    1998-01-01

    The X-Ray Spectrometer (XRS) instrument is part of the Astro-E mission scheduled to launch early in 2000. Its cryogenic system is required to cool a 32-element square array of x-ray microcalorimeters to 60-65 mK over a mission lifetime of at least 2 years. This is accomplished using an adiabatic demagnetization refrigerator (ADR) contained within a two-stage superfluid helium/solid neon cooler. Goddard Space Flight Center is providing the ADR and helium dewar. The flight system was assembled in Sept. 1997 and subjected to extensive thermal performance tests. This paper presents test results at both the system and component levels. In addition, results of the low temperature topoff performed in Japan with the engineering unit neon and helium dewars are discussed.

  3. Artificial intelligence techniques for ground test monitoring of rocket engines

    Science.gov (United States)

    Ali, Moonis; Gupta, U. K.

    1990-01-01

    An expert system is being developed which can detect anomalies in Space Shuttle Main Engine (SSME) sensor data significantly earlier than the redline algorithm currently in use. The training of such an expert system focuses on two approaches which are based on low frequency and high frequency analyses of sensor data. Both approaches are being tested on data from SSME tests and their results compared with the findings of NASA and Rocketdyne experts. Prototype implementations have detected the presence of anomalies earlier than the redline algorithms that are in use currently. It therefore appears that these approaches have the potential of detecting anomalies early eneough to shut down the engine or take other corrective action before severe damage to the engine occurs.

  4. Erroneous HIV test isn't grounds for recovering damages.

    Science.gov (United States)

    1995-04-21

    The Florida Supreme Court ruled that a Florida man cannot recover damages for the mental anguish he suffered for nineteen months after being misdiagnosed as HIV-positive. The court refused to drop the state's impact rule, which limits awards for mental anguish in negligence lawsuits to cases with underlying physical injuries or willful misconduct. The plaintiff, known as [name removed], filed suit against Humana Hospital-Lucerne in [name removed], where he received the test; [name removed] Clinical Laboratories, which performed the test and analysis; and the doctor, [name removed]. Although the court rejected [name removed]'s arguments, they gave him leave to file an amended complaint if he could demonstrate that the medical treatment he underwent as a result of his HIV diagnosis caused him physical injury.

  5. 78 FR 25488 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Science.gov (United States)

    2013-05-01

    ... COMMISSION Qualification Tests for Safety-Related Actuators in Nuclear Power Plants AGENCY: Nuclear..., ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants.'' DG-1235 is proposed Revision 1 of RG... Stations in order to demonstrate their ability to perform their intended safety functions under...

  6. Ground Handling of Batteries at Test and Launch-site Facilities

    Science.gov (United States)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  7. Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data

    Science.gov (United States)

    Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)

    2001-01-01

    A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.

  8. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    Science.gov (United States)

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  9. Plutonium and uranium contamination in soils from former nuclear weapon test sites in Australia

    Science.gov (United States)

    Child, D. P.; Hotchkis, M. A. C.

    2013-01-01

    The British government performed a number of nuclear weapon tests on Australian territory from 1952 through to 1963 with the cooperation of the Australian government. Nine fission bombs were detonated in South Australia at Emu Junction and Maralinga, and a further three fission weapons were detonated in the Monte Bello Islands off the coast of Western Australia. A number of soil samples were collected by the Australian Radiation Laboratories in 1972 and 1978 during field surveys at these nuclear weapon test sites. They were analysed by gamma spectrometry and, for a select few samples, by alpha spectrometry to measure the remaining activities of fission products, activation products and weapon materials. We have remeasured a number of these Montebello Islands and Emu Junction soil samples using the ANTARES AMS facility, ANSTO. These samples were analysed for plutonium and uranium isotopic ratios and isotopic concentrations. Very low 240Pu/239Pu ratios were measured at both sites (∼0.05 for Alpha Island and ∼0.02 for Emu Field), substantially below global fallout averages. Well correlated but widely varying 236U and plutonium concentrations were measured across both sites, but 233U did not correlate with these other isotopes and instead showed correlation with distance from ground zero, indicating in situ production in the soils.

  10. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  11. Residual radionuclide concentrations and estimated radiation doses at the former French nuclear weapons test sites in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Danesi, P.R. [Arsenal, Objekt 3/30, A-1030 Vienna (Austria)], E-mail: piero@danesi.at; Moreno, J. [Institut fuer Radiochemie, Technishe Universitaet Muenchen, Walther-Meissner Str. 3., D-85748 Garching (Germany); Makarewicz, M.; Louvat, D. [International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)

    2008-11-15

    In order to assess the level of residual radioactivity and evaluate the radiological conditions at the former French nuclear testing sites of Reggane and Taourirt Tan Afella in the south of Algeria, the International Atomic Energy Agency, at the request of the government of Algeria, conducted a field mission to the sites in 1999. At these locations, France conducted a number of nuclear tests in the early 1960s. At the ground zero locality of the ''Gerboise Blanche'' atmospheric test (Reggane) and in the vicinity of a tunnel where radioactive lava was ejected during a poorly contained explosion (Taourirt Tan Afella), non-negligible levels of radioactive material could still be measured. Using the information collected and using realistic potential exposure scenarios, radiation doses to potential occupants and visitors to the sites were estimated.

  12. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    Science.gov (United States)

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.

  13. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Tatsuo [JAEA; Sugita, Takeshi [JAEA; Okada, Colin E. [NSTec; Reed, Michael S. [NSTec; Blumenthal, Daniel J. [NNSA

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  14. Experimental facility for testing nuclear instruments for planetary landing missions

    Science.gov (United States)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  15. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  17. Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles

    Science.gov (United States)

    Tuma, Margaret L.; Asloms. Brice R.

    2009-01-01

    As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.

  18. Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments

    Science.gov (United States)

    2013-06-10

    09/205_119828.html; and Foster Klug and Matthew Pennington, “Photos Show NKorea Nuclear Readiness,” Associated Press/ ABC News, December 28, 2012, http...the CTBT, lack of Chinese ratification, U.S. efforts to seek renegotiation of the ABM Treaty, and efforts to ban nuclear weapons in the Middle East led...Readiness,” Associated Press/ ABC News, December 28, 2012, http://abcnews.go.com/International/wireStory/ap- exclusive-photos-show-nkorea-nuclear

  19. Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators

    Science.gov (United States)

    Bruce, Walter E., III; Mesick, Nathaniel J.; Ferlemann, Paul G.; Siemers, Paul M., III; DelCorso, Joseph A.; Hughes, Stephen J.; Tobin, Steven A.; Kardell, Matthew P.

    2012-01-01

    Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups.

  20. Dose assessment for sheep exposed to fallout from nuclear test Nancy

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, L.B.; Soldat, J.K.; Kennedy, W.E. Jr.; Murphy, D.W.

    1982-10-01

    Radiation doses were estimated for sheep wintering on Nevada ranges during the testing at the Nevada Test Site of the nuclear weapon Nancy on March 24, 1953. Exposure pathways considered were inhalation of radionuclides from both cloud passage and resuspension, external exposure of the total body and skin, and ingestion of contaminated forage and soil. Physiological, metabolic, and dosimetric data needed for these calculations were obtained from data appropriate for the sheep. Dose rate and radionuclide deposition values for shot Nancy were used. Radionuclide deposition and retention on the desert vegetation were obtained from data collected during several nuclear tests at the Nevada Test Site. Existing dosimetric computer programs, whose libraries were modified to include the sheep data, and specially developed models were used to estimate the dose commitment for the sheep. The total-body dose for reference sheep located within the 40-mR/hr (H+12) isopleth from all modes of exposure was estimated to be 2.6 rad. Ingestion of fallout on edible vegetation contributed the majority of the dose, whereas inhalation of radionuclides and consumption of contaminated soil from the ground contributed little to the internal doses. The dose to the thyroid of ewes from radioiodine and other radionuclides reaching the thyroid was approximately 400 rad. The calculated uniform dose to the reticulo-rumen was 4 rad; however, if fallout particles were assumed to concentrate in the ventral rumen, a localized dose of 200 rad could have been received by the rumen wall. Estimated dose to the bare skin of ewes was 120 rad. The dose to the fetal thyroid from radioiodine ingested by a pregnant ewe grazing at a location where the dose rate was 40 mR/hr (H+12) was estimated to be 700 rad, or approximately twice the dose to the maternal thyroid.

  1. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  2. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02.

    Science.gov (United States)

    Yu, Ruihang; Cai, Shaokun; Wu, Meiping; Cao, Juliang; Zhang, Kaidong

    2015-09-16

    In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter-SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS), a Global Navigation Satellite System (GNSS) remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS) of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  3. Quiet Spike(TradeMark) Build-up Ground Vibration Testing Approach

    Science.gov (United States)

    Spivey, Natalie D.; Herrera, Claudia Y.; Truax, Roger; Pak, Chan-gi; Freund, Donald

    2007-01-01

    Flight tests of the Gulfstream Aerospace Corporation s Quiet Spike(TradeMark) hardware were recently completed on the National Aeronautics and Space Administration Dryden Flight Research Center F-15B airplane. NASA Dryden uses a modified F-15B (836) airplane as a testbed aircraft to cost-effectively fly flight research experiments that are typically mounted underneath the airplane, along the fuselage centerline. For the Quiet Spike(TradeMark) experiment, instead of a centerline mounting, a forward-pointing boom was attached to the radar bulkhead of the airplane. The Quiet Spike(TradeMark) experiment is a stepping-stone to airframe structural morphing technologies designed to mitigate the sonic-boom strength of business jets flying over land. Prior to flying the Quiet Spike(TradeMark) experiment on the F-15B airplane several ground vibration tests were required to understand the Quiet Spike(TradeMark) modal characteristics and coupling effects with the F-15B airplane. Because of flight hardware availability and compressed schedule requirements, a "traditional" ground vibration test of the mated F-15B Quiet Spike(TradeMark) ready-for-flight configuration did not leave sufficient time available for the finite element model update and flutter analyses before flight-testing. Therefore, a "nontraditional" ground vibration testing approach was taken. This report provides an overview of each phase of the "nontraditional" ground vibration testing completed for the Quiet Spike(TradeMark) project.

  4. North Korea’s 2009 Nuclear Test: Containment, Monitoring, Implications

    Science.gov (United States)

    2010-04-02

    50 years of the nuclear weapons era, radiochemistry techniques were developed and used to determine the characteristics (such as yield, materials...meet national needs. Similarly, Congress, in P.L. 111-140, Nuclear Forensics and Attribution Act, found, “The number of radiochemistry programs and

  5. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Free Acid by Titration in an Oxalate Solution 8 to 15 Free Acid by Iodate Precipitation-Potentiometric Titration Test Method 16 to 22 Uranium by Arsenazo I Spectrophotometric Test Method 23 to 33 Thorium by Thorin Spectrophotometric Test Method 34 to 42 Iron by 1,10-Phenanthroline Spectrophotometric Test Method 43 to 50 Impurities by ICP-AES Chloride by Thiocyanate Spectrophotometric Test Method 51 to 58 Fluoride by Distillation-Spectrophotometric Test Method 59 to 66 Sulfate by Barium Sulfate Turbidimetric Test Method 67 to 74 Isotopic Composition by Mass Spectrom...

  6. X-51A Scramjet Demonstrator Program: Waverider Ground and Flight Test

    Science.gov (United States)

    2013-11-01

    USAF) WaveRider program. The overall test objective of the X-51A program was to demonstrate a scramjet engine using endothermic hydrocarbon fuel...Hypersonic Technology (HyTech) scramjet engine , integrated into the vehicle, used endothermic hydrocarbon fuel (JP-7). The X-51A was designed to be...unlimited, 412TW-PA-13417 X-51A SCRAMJET DEMONSTRATOR PROGRAM: WAVERIDER GROUND AND FLIGHT TEST Maj Christopher M. Rondeau Chief Flight Test Engineer

  7. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J

    2008-02-11

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.

  8. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

    2009-01-09

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors

  9. Technology benefits and ground test facilities for high-speed civil transport development

    Science.gov (United States)

    Winston, Matthew M.; Shields, Elwood M.; Morris, Shelby J., Jr.

    1992-01-01

    The advanced technology base necessary for successful twenty-first century High-Speed Civil Transport (HSCT) aircraft will require extensive ground testing in aerodynamics, propulsion, acoustics, structures, materials, and other disciplines. This paper analyzes the benefits of advanced technology application to HSCT concepts, addresses the adequacy of existing groundbased test facilities, and explores the need for new facilities required to support HSCT development. A substantial amount of HSCT-related ground testing can be accomplished in existing facilities. The HSCT development effort could also benefit significantly from some new facilities initially conceived for testing in other aeronautical research areas. A new structures testing facility is identified as critically needed to insure timely technology maturation.

  10. A study on the nondestructive test optimum design for a ground tracked combat vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim Byeong Ho; Seo, Jae Hyun; Gil, Hyeon Jun [Defence Agency for Technology and Quality, Seoul (Korea, Republic of); Kim, Seon Hyeong [Hanwha Techwin Co.,Ltd., Changwon (Korea, Republic of); Seo, Sang Chul [Changwon National University, Changwon (Korea, Republic of)

    2015-10-15

    In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

  11. Investigation of CTBT OSI Radionuclide Techniques at the DILUTED WATERS Nuclear Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Baciak, James E.; Milbrath, Brian D.; Detwiler, Rebecca S.; Kirkham, Randy R.; Keillor, Martin E.; Lepel, Elwood A.; Seifert, Allen; Emer, Dudley; Floyd, Michael

    2012-11-01

    Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a verification regime that includes the ability to conduct an On-Site Inspection (OSI) will be established. The Treaty allows for an OSI to include many techniques, including the radionuclide techniques of gamma radiation surveying and spectrometry and environmental sampling and analysis. Such radioactivity detection techniques can provide the “smoking gun” evidence that a nuclear test has occurred through the detection and quantification of indicative recent fission products. An OSI faces restrictions in time and manpower, as dictated by the Treaty; not to mention possible logistics difficulties due to the location and climate of the suspected explosion site. It is thus necessary to have a good understanding of the possible source term an OSI will encounter and the proper techniques that will be necessary for an effective OSI regime. One of the challenges during an OSI is to locate radioactive debris that has escaped an underground nuclear explosion (UNE) and settled on the surface near and downwind of ground zero. To support the understanding and selection of sampling and survey techniques for use in an OSI, we are currently designing an experiment, the Particulate Release Experiment (PRex), to simulate a small-scale vent from an underground nuclear explosion. PRex will occur at the Nevada National Security Site (NNSS). The project is conducted under the National Center for Nuclear Security (NCNS) funded by the National Nuclear Security Agency (NNSA). Prior to the release experiment, scheduled for Spring of 2013, the project scheduled a number of activities at the NNSS to prepare for the release experiment as well as to utilize the nuclear testing past of the NNSS for the development of OSI techniques for CTBT. One such activity—the focus of this report—was a survey and sampling campaign at the site of an old UNE that vented: DILUTED WATERS. Activities at DILUTED WATERS included vehicle-based survey

  12. Masses, Deformations and Charge Radii--Nuclear Ground-State Properties in the Relativistic Mean Field Model

    CERN Document Server

    Geng, L S; Meng, J

    2005-01-01

    We perform a systematic study of the ground-state properties of all the nuclei from the proton drip line to the neutron drip line throughout the periodic table employing the relativistic mean field model. The TMA parameter set is used for the mean-field Lagrangian density, and a state-dependent BCS method is adopted to describe the pairing correlation. The ground-state properties of a total of 6969 nuclei with $Z,N\\ge 8$ and $Z\\le 100$ from the proton drip line to the neutron drip line, including the binding energies, the separation energies, the deformations, and the rms charge radii, are calculated and compared with existing experimental data and those of the FRDM and HFB-2 mass formulae. This study provides the first complete picture of the current status of the descriptions of nuclear ground-state properties in the relativistic mean field model. The deviations from existing experimental data indicate either that new degrees of freedom are needed, such as triaxial deformations, or that serious effort is ne...

  13. Analysis of North Korea's Nuclear Tests under Prospect Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Ryu, Jae Soo; Lee, Kwang Seok; Lee, Dong Hoon; Jun, Eunju; Kim, Mi Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    North Korea has chosen nuclear weapons as the means to protect its sovereignty. Despite international society's endeavors and sanctions to encourage North Korea to abandon its nuclear ambition, North Korea has repeatedly conducted nuclear testing. In this paper, the reason for North Korea's addiction to a nuclear arsenal is addressed within the framework of cognitive psychology. The prospect theory addresses an epistemological approach usually overlooked in rational choice theories. It provides useful implications why North Korea, being under a crisis situation has thrown out a stable choice but taken on a risky one such as nuclear testing. Under the viewpoint of prospect theory, nuclear tests by North Korea can be understood as follows: The first nuclear test in 2006 is seen as a trial to escape from loss areas such as financial sanctions and regime threats; the second test in 2009 was interpreted as a consequence of the strategy to recover losses by making a direct confrontation against the United States; and the third test in 2013 was understood as an attempt to strengthen internal solidarity after Kim Jong-eun inherited the dynasty, as well as to enhance bargaining power against the United States. Thus, it can be summarized that Pyongyang repeated its nuclear tests to escape from a negative domain and to settle into a positive one. In addition, in the future, North Korea may not be willing to readily give up its nuclear capabilities to ensure the survival of its own regime.

  14. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  15. Non-destructive Testing Dummy Nuclear Fuel Rods by Neutron Radiography

    Institute of Scientific and Technical Information of China (English)

    WEI; Guo-hai; HAN; Song-bai; HE; Lin-feng; WANG; Yu; WANG; Hong-li; LIU; Yun-tao; CHEN; Dong-feng

    2013-01-01

    As a unique non-destructive testing technique,neutron radiography can be used to measure nuclear fuel rods with radioactivity.The images of the dummy nuclear fuel rods were obtained at the CARR.Through imaging analysis methods,the structure defections,the hydrogen accumulation in the cladding and the 235U enrichment of the pellet were studied and analyzed.Experiences for non-destructive testing real PWR nuclear fuel rods by NR

  16. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  17. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  18. Isotope Brayton ground demonstration testing and flight qualification program. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A proposal for the demonstration, development and production of the Isotope Brayton Flight System for space vehicles is presented with details on the technical requirements for designing and testing a ground demonstration system and on the program organization and personnel. (LCL)

  19. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  20. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing

    Science.gov (United States)

    Yim, John T.; Burt, Jonathan M.

    2015-01-01

    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  1. Non-destructive-Testing of Nuclear Fuel Element by Means of Neutron Imaging Technique

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Nuclear fuel element is the key component of nuclear reactor. People have to make strictly testing of the element to make sure the reactor operating safely. Neutron imaging is one of Non-destructive-Testing (NDT) techniques, which are very important techniques for

  2. Vertical distribution and estimated doses from artificial radionuclides in soil samples around the Chernobyl nuclear power plant and the Semipalatinsk nuclear testing site.

    Science.gov (United States)

    Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru

    2013-01-01

    For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241)Am, (134)Cs, (137)Cs, and (60)Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241)Am, (57)Co, (137)Cs, (95)Zr, (95)Nb, (58)Co, and (60)Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.

  3. Vertical distribution and estimated doses from artificial radionuclides in soil samples around the Chernobyl nuclear power plant and the Semipalatinsk nuclear testing site.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Taira

    Full Text Available For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS, the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241Am, (134Cs, (137Cs, and (60Co were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241Am, (57Co, (137Cs, (95Zr, (95Nb, (58Co, and (60Co were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991. These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP, and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.

  4. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  5. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    Science.gov (United States)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  6. On the Testing of Ground--Motion Prediction Equations against Small--Magnitude Data

    CERN Document Server

    Beauval, Céline; Laurendeau, Aurore; Delavaud, Elise; Cotton, Fabrice; Guéguen, Philippe; Kuehn, Nicolas; 10.1785/0120110271

    2012-01-01

    Ground-motion prediction equations (GMPE) are essential in probabilistic seismic hazard studies for estimating the ground motions generated by the seismic sources. In low seismicity regions, only weak motions are available in the lifetime of accelerometric networks, and the equations selected for the probabilistic studies are usually models established from foreign data. Although most ground-motion prediction equations have been developed for magnitudes 5 and above, the minimum magnitude often used in probabilistic studies in low seismicity regions is smaller. Desaggregations have shown that, at return periods of engineering interest, magnitudes lower than 5 can be contributing to the hazard. This paper presents the testing of several GMPEs selected in current international and national probabilistic projects against weak motions recorded in France (191 recordings with source-site distances up to 300km, 3.8\\leqMw\\leq4.5). The method is based on the loglikelihood value proposed by Scherbaum et al. (2009). The ...

  7. Ground test results and analysis advancements for the AFRL airborne CO2 DIAL system

    Science.gov (United States)

    Senft, Daniel C.; Fox, Marsha J.; Hamilton, Carla M.; Richter, Dale A.; Higdon, N. S.; Kelly, Brian T.; Babnick, Robert D.; Pierrottet, Diego F.

    1999-10-01

    The Air Force Research Laboratory (AFRL) Active Remote Sensing Branch has developed the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar technique. The system is based on a high-power CO2 laser which can use either the standard 12C16O2 or the 13C16O2 carbon dioxide isotopes as the lasing medium, and has output energies of up to 5 J on the stronger laser transitions. The lidar system is mounted on a flight-qualified optical breadboard designed for installation into the AFRL Argus C- 135E optical testbed aircraft. The Phase I ground tests were conducted at Kirtland AFB in 1997, prior to the LARS flight tests performed in September 1997 at Kirtland AFB and the Idaho National Engineering and Environmental Laboratory. The Phase II ground tests were conducted in 1998 to determine the optimum performance of the LARS systems, after the incorporation of modifications and improvements suggested by the flight test results. This paper will present some of the chemical detection and radiometric results obtained during the Phase II ground tests. Following the presentation of the direct detection results, a summary of current work on a heterodyne DIAL system is given.

  8. Performance characterization and ground testing of an airborne CO2 differential absorption lidar system (phase II)

    Science.gov (United States)

    Senft, Daniel C.; Fox, Marsha J.; Hamilton, Carla M.; Richter, Dale A.; Higdon, N. S.; Kelly, Brian T.

    1999-05-01

    The Air Force Research Laboratory (AFRL) Active Remote Sensing Branch has developed the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar (DIAL) technique. The system is based on a high-power CO2 laser which can use either the standard 12C16O2 or the 13C16O2 carbon dioxide isotopes as the lasing medium, and has output energies of up to 5 J on the stronger laser transitions. The lidar system is mounted on a flight-qualified optical breadboard designed for installation into the AFRL Argus C- 135E optical testbed aircraft. The Phase I ground tests were conducted at Kirtland AFB in 1997, prior to the LARS flight tests performed in September 1997 at Kirtland AFB and the Idaho National Engineering and Environmental Laboratory (INEEL). The Phase II ground tests were conducted in 1998 to determine the optimum performance of the LARS system, after the incorporation of modification and improvements suggested by the flight test results. This paper will present some of the chemical detection and radiometric results obtained during the Phase II ground tests.

  9. Without Testing: Stockpile Stewardship in the Second Nuclear Age

    Energy Technology Data Exchange (ETDEWEB)

    Martz, Joseph C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-07

    Stockpile stewardship is a topic dear to my heart. I’ve been fascinated by it, and I’ve lived it—mostly on the technical side but also on the policy side from 2009 to 2010 at Stanford University as a visiting scholar and the inaugural William J. Perry Fellow. At Stanford I worked with Perry, former secretary of defense, and Sig Hecker, former Los Alamos Lab director (1986–1997), looking at nuclear deterrence, nuclear policy, and stockpile stewardship and at where all this was headed.

  10. Lessons Learned in Applying Accelerometers to Nuclear Effects Testing

    Directory of Open Access Journals (Sweden)

    Patrick L. Walter

    2008-01-01

    Full Text Available Exoatmospheric nuclear effects, such as those that would be encounter by reentry bodies, provide instantaneous (near zero-duration, impulsive loading of structures. Endoatmospheric nuclear effects possess an impulse that is finite in duration, but whose rise time is still instantaneous. The commonality of these loadings is that they initiate waves propagating through structures, resulting in extremely short duration accelerations to free surfaces where accelerometers are mounted. Over the years, attempts have been made to measure free surface accelerations using ceramic, quartz, and piezoresistive accelerometers. This paper describes the lessons learned, and looks to the future. It also provides a history of shock accelerometer development.

  11. Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States

    CERN Document Server

    Tichai, Alexander; Binder, Sven; Roth, Robert

    2016-01-01

    We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree-Fock solution to construct the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to, e.g., a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation in not feasible, we perform third-order calculation and compare to advanced ab initio coupled-cluster calculations for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into tin isotopic chain that are in excellent agreement with the best available coupled-cluster results at a fraction of the computational cost.

  12. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Ning Xianwen

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  13. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Institute of Scientific and Technical Information of China (English)

    Ning Xianwen; Wang Yuying; Zhang Jiaxun; Liu Dongxiao

    2015-01-01

    Thermal vacuum test is widely used for the ground validation of spacecraft thermal con-trol system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the nor-mal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC) array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indi-cate that the proposed equivalent ground thermal test method can simulate the heat rejection per-formance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 ?C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large space-craft which employs single-phase fluid loop radiator as thermal control approach.

  14. Operation TEAPOT, 1955 Continental Nuclear Weapons Test Series

    Science.gov (United States)

    1981-11-23

    Engineering Co., Inc.) ATTN: Mr. Richard V. Nutley 2753 S. Highland P.O. Box 14100 Phone: (702) 734-3194 Las Vegas, Nevada 89114 FTS: 598-3194 Source...DASA. WT-1225. 10/28/59. 98 Pages. (A05) AD 460 282.* 236. McConnel, E.; Sampson, G. 0.; Sharf , J. M. "The Effect of Nuclear Explosions on Commercially

  15. The influence of the Lop Nor Nuclear Weapons Test Base to the population of the Republic of Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Zhumadilov, Kassym, E-mail: kassym@hiroshima-u.ac.j [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Ivannikov, Alexander [Medical Radiological Research Center, Korolev str. 4, Obninsk 249036 (Russian Federation); Zharlyganova, Dinara [Astana Medical University, Astana 010000 (Kazakhstan); Stepanenko, Valeriy [Medical Radiological Research Center, Korolev str. 4, Obninsk 249036 (Russian Federation); Zhumadilov, Zhaxybay [Nazarbayev University, Life Science Center, Astana 010000 (Kazakhstan); Apsalikov, Kazbek [Kazakh Scientific-Research Institute for Radiation Medicine and Ecology, Semey 071400 (Kazakhstan); Toyoda, Shin [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai, Okayama 700-0005 (Japan); Endo, Satoru [Department of Quantum Energy Applications, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Tanaka, Kenichi [Division of Physics, Department of Liberal Arts and Sciences, Center of Medical Education, Sapporo Medical University, South 1, West 17, Chuo-ku, Sapporo 060-8556 (Japan); Miyazawa, Chuzou [School of Dentistry, Ohu University, 31-1, Aza-Misumido, Tomita-machi, Koriyama-shi, Fukushima Pref. 963-8611 (Japan); Okamoto, Tetsuji [Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Sciences, Graduate School of Biomedical Sciences, Hiroshima University (Japan); Hoshi, Masaharu [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan)

    2011-04-15

    The method of electron spin resonance (ESR) dosimetry was applied to human tooth enamel to obtain estimates of individual absorbed dose for residents of Makanchi, Urdzhar and Taskesken settlements located near the Kazakhstan-Chinese border (about 400 km to the South-East, from the Semipalatinsk Nuclear Test Site (SNTS) and about 1000 km from the Lop Nor Nuclear Weapons Test Base, China). Since the ground and atmospheric nuclear tests (1964-1981) at Lop Nor, the people residing in these settlements are believed to have been heavily exposed to radioactive fallout. Tooth samples had been extracted for medical reasons during the course of ordinary dental treatment. The village of Kokpekty, located 400 km to the South-east of the SNTS, was chosen as the control group since it has not been subjected to any radioactive contamination. The mean excess doses in tooth enamel obtained after subtraction of the contribution of natural background radiation do not exceed 62 {+-} 28 mGy, 64 {+-} 30 mGy, 49 {+-} 27 mGy and -19 {+-} 36 mGy for all ages of the residents of Makanchi, Urdzhar, Taskesken and the control village of Kokpekty, respectively.

  16. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  17. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    Science.gov (United States)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  18. Interior noise control ground test studies for advanced turboprop aircraft applications

    Science.gov (United States)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  19. Nuclear orientation of 144Pm in the electronic singlet ground state system PrIn 3

    Science.gov (United States)

    Vermeulen, G. A.; Greidanus, F. J. A. M.; Hunik, R.; Huiskamp, W. J.

    1980-04-01

    The gamma-ray anisotropy of 144Pm in the Van Vleck paramagnet PrIn 3 is investigated both theoretically and experimentally. A simple model, which accounts for the essential experimental features is proposed. The purpose of this model is to extract the exchange interaction between the Pm ion and its nearest Pr neighbours and the crystal field splitting of the Pm ions. Both, the Pr and Pm ions have non-magnetic ground states in which magnetism is induced by external magnetic fields. Therefore, the interaction between the external magnetic field and the Pm nuclei is enhanced. We find an enhancement factor, к = 220. This enhancement is mainly induced by exchange interactions and for fields larger than 0.5 T there are already strong non-linear effects.

  20. A novel intelligent adaptive control of laser-based ground thermal test

    Directory of Open Access Journals (Sweden)

    Gan Zhengtao

    2016-08-01

    Full Text Available Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance. The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID controller and the conventional PID type fuzzy (F-PID controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  1. A novel intelligent adaptive control of laser-based ground thermal test

    Institute of Scientific and Technical Information of China (English)

    Gan Zhengtao; Yu Gang; Li Shaoxia; He Xiuli; Chen Ru; Zheng Caiyun; Ning Weijian

    2016-01-01

    Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the pro-posed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  2. NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures

    Science.gov (United States)

    Wheless, T. K.

    1985-01-01

    This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.

  3. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  4. Completion of Flow Interruption Capability Test Stand for Functional Qualification Test of Valves Used in Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    CHENG; Dao-xi; QI; Xiao-guang; ZHAI; Wei-ming; YANG; Bing; ZHOU; Ping

    2013-01-01

    The flow interruption capability test of valve is used for researching the capability of the valves used in nuclear power plants emergently shut off the flow,when the reactor loop is in emergency situations,especially in the design basis accident conditions.This test is one of the most difficult tests in the functional

  5. Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

  6. Direction and Integration of Experimental Ground Test Capabilities and Computational Methods

    Science.gov (United States)

    Dunn, Steven C.

    2016-01-01

    This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.

  7. High-stability temperature control for ST-7/LISA Pathfinder gravitational reference sensor ground verification testing

    Science.gov (United States)

    Higuchi, S.; Allen, G.; Bencze, W.; Byer, R.; Dang, A.; DeBra, D. B.; Lauben, D.; Dorlybounxou, S.; Hanson, J.; Ho, L.; Huffman, G.; Sabur, F.; Sun, K.; Tavernetti, R.; Rolih, L.; Van Patten, R.; Wallace, J.; Williams, S.

    2006-03-01

    This article demonstrates experimental results of a thermal control system developed for ST-7 gravitational reference sensor (GRS) ground verification testing which provides thermal stability δT control of the LISA spacecraft to compensate solar irradiate 1/f fluctuations. Although for ground testing these specifications can be met fairly readily with sufficient insulation and thermal mass, in contrast, for spacecraft the very limited thermal mass calls for an active control system which can simultaneously meet disturbance rejection and stability requirements in the presence of long time delay; a considerable design challenge. Simple control laws presently provide ~ 1mK/surdHz for >24 hours. Continuing development of a model predictive feedforward control algorithm will extend performance to <1 mK/surdHz at f < 0.01 mHz and possibly lower, extending LISA coverage of super massive black hole mergers.

  8. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J.M.

    1985-12-01

    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented.

  9. Hanford spent nuclear fuel hot conditioning system test procedure

    Energy Technology Data Exchange (ETDEWEB)

    Cleveland, K.J.

    1997-09-16

    This document provides the test procedures for cold testing of the prototype Hot Conditioning System (HCS) at the 306E Facility. The primary objective of this testing is to confirm design choices and provide data for the detailed design package prior to procurement of the process equipment. The current scope of testing in this document includes a fabricability study of the HCS, equipment performance testing of the HCS components, heat-up and cool-down cycle simulation, and robotic arm testing.

  10. GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Lowell, M.

    2012-05-01

    GSA's Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies.

  11. Contrast validation test for retrieval method of high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    WANG Hailong; GUO Peifang; HAN Shuzong; XIE Qiang; ZHOU Liangming

    2005-01-01

    In this paper, on the basis of the working principles of high frequency ground wave radar for retrieval of ocean wave and sea wind elements were used to systematically study the data obtained from contrast validation test in Zhoushan sea area of Zhejiang Province on Oct. 2000, to validate the accuracy of OSMAR2000for wave and wind parameters, and to analyze the possible error caused when using OSMAR2000 to retrieve ocean parameters.

  12. Prototype of space-borne LTT module and its ground tests

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to develop the technique of Laser Time Transfer(LTT) ,Shanghai Astronomical Observatory has built a prototype of space-borne LTT module. The performance of the LTT module and the results of ground tests are discussed in the paper. The average precision of time difference between two rubidium clocks measured by laser pulses is 196 ps,and the uncertainty of measurement for the relative frequency differences is 1.2×10-13/2800 s.

  13. Ongoing research experiments at the former Soviet nuclear test site in eastern Kazakhstan

    Science.gov (United States)

    Leith, William S.; Kluchko, Luke J.; Konovalov, Vladimir; Vouille, Gerard

    2002-01-01

    Degelen mountain, located in EasternKazakhstan near the city of Semipalatinsk, was once the Soviets most active underground nuclear test site. Two hundred fifteen nuclear tests were conducted in 181 tunnels driven horizontally into its many ridges--almost twice the number of tests as at any other Soviet underground nuclear test site. It was also the site of the first Soviet underground nuclear test--a 1-kiloton device detonated on October 11, 1961. Until recently, the details of testing at Degelen were kept secret and have been the subject of considerable speculation. However, in 1991, the Semipalatinsk test site became part of the newly independent Republic of Kazakhstan; and in 1995, the Kazakhstani government concluded an agreement with the U.S. Department of Defense to eliminate the nuclear testing infrastructure in Kazakhstan. This agreement, which calls for the "demilitarization of the infrastructure directly associated with the nuclear weapons test tunnels," has been implemented as the "Degelen Mountain Tunnel Closure Program." The U.S. Defense Threat Reduction Agency, in partnership with the Department of Energy, has permitted the use of the tunnel closure project at the former nuclear test site as a foundation on which to support cost-effective, research-and-development-funded experiments. These experiments are principally designed to improve U.S. capabilities to monitor and verify the Comprehensive Test Ban Treaty (CTBT), but have provided a new source of information on the effects of nuclear and chemical explosions on hard, fractured rock environments. These new data extends and confirms the results of recent Russian publications on the rock environment at the site and the mechanical effects of large-scale chemical and nuclear testing. In 1998, a large-scale tunnel closure experiment, Omega-1, was conducted in Tunnel 214 at Degelen mountain. In this experiment, a 100-ton chemical explosive blast was used to test technologies for monitoring the

  14. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  15. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    Science.gov (United States)

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  16. Ground-based remote sensing profiling and numerical weather prediction model to manage nuclear power plants meteorological surveillance in Switzerland

    Directory of Open Access Journals (Sweden)

    B. Calpini

    2011-08-01

    Full Text Available The meteorological surveillance of the four nuclear power plants in Switzerland is of first importance in a densely populated area such as the Swiss Plateau. The project "Centrales Nucléaires et Météorologie" CN-MET aimed at providing a new security tool based on one hand on the development of a high resolution numerical weather prediction (NWP model. The latter is providing essential nowcasting information in case of a radioactive release from a nuclear power plant in Switzerland. On the other hand, the model input over the Swiss Plateau is generated by a dedicated network of surface and upper air observations including remote sensing instruments (wind profilers and temperature/humidity passive microwave radiometers. This network is built upon three main sites ideally located for measuring the inflow/outflow and central conditions of the main wind field in the planetary boundary layer over the Swiss Plateau, as well as a number of surface automatic weather stations (AWS. The network data are assimilated in real-time into the fine grid NWP model using a rapid update cycle of eight runs per day (one forecast every three hours. This high resolution NWP model has replaced the former security tool based on in situ observations (in particular one meteorological mast at each of the power plants and a local dispersion model. It is used to forecast the dynamics of the atmosphere in the planetary boundary layer (typically the first 4 km above ground layer and over a time scale of 24 h. This tool provides at any time (e.g. starting at the initial time of a nuclear power plant release the best picture of the 24-h evolution of the air mass over the Swiss Plateau and furthermore generates the input data (in the form of simulated values substituting in situ observations required for the local dispersion model used at each of the nuclear power plants locations. This paper is presenting the concept and two validation studies as well as the results of an

  17. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    Science.gov (United States)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  18. Nuclear Propulsion and Power Non-Nuclear Test Facility (NP2NTF): Preliminary Analysis and Feasibility Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors, which power nuclear propulsion and power systems, and the nuclear radiation and residual radioactivity associated with these systems, impose...

  19. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  20. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  1. Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program

    Science.gov (United States)

    Shaltens, Richard K.; Boyle, Robert V.

    1994-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system.

  2. Development of a sine-dwell ground vibration test (GVT) system

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2006-02-27

    Full Text Available stream_source_info VanZyl_2006.pdf.txt stream_content_type text/plain stream_size 9765 Content-Encoding UTF-8 stream_name VanZyl_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Development of a Sine-Dwell Ground... vibration testing? • Basics of sine-dwell testing Getting the structure to vibrate in phase, and what then? • Excitation hardware Exciters are similar to speakers • Measurement system Force and response as complex numbers • Excitation control...

  3. Development of Methods to Predict the Effects of Test Media in Ground-Based Propulsion Testing

    Science.gov (United States)

    Drummond, J. Philip; Danehy, Paul M.; Gaffney, Richard L., Jr.; Parker, Peter A.; Tedder, Sarah A.; Chelliah, Harsha K.; Cutler, Andrew D.; Bivolaru, Daniel; Givi, Peyman; Hassan, Hassan A.

    2009-01-01

    This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data.

  4. Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments

    Science.gov (United States)

    2008-05-28

    considers a U.S. contribution to a global system to monitor events that might violate the CTBT. The FY2008 appropriation was $23.8 million; the FY2009...ratified the CTBT. On December 17, 2007, Representative Tauscher introduced H.Res. 882, “[e] xpressing the sense of the House of Representatives that...Limited, January 13, 2007. 26 “Indian Lawmakers Attack U.S. Nuclear Deal,” Global Security Newswire, November 29, 2007. 27 Kathy Gannon, “New Pakistani

  5. Ground-Based Tests of Spacecraft Polymeric Materials under OXY-GEN Plasma-Beam

    Science.gov (United States)

    Chernik, Vladimir; Novikov, Lev; Gaidar, Anna

    2016-07-01

    Spacecraft LEO mission is accompanied by destruction of polymeric material surface under influence of atomic oxygen flow. Sources of molecular, plasma and ion beams are used for the accelerated ground-based tests of spacecraft materials. In the work application of oxygen plasma accelerator of a duoplasmatron type is described. Plasma particles have been accelerated up to average speed of 13-16 km/s. Influence of such beam on materials leads to more intensive destruction of polymers than in LEO. This fact allows to execute tests in the accelerated time scale by a method of an effective fluence. Special measures were given to decrease a concentration of both gaseous and electrode material impurities in the oxygen beam. In the work the results of simulative tests of spacecraft materials and experiments on LEO are considered. Comparison of plasma beam simulation with LEO data has shown conformity for structures of a number of polymeric materials. The relative erosion yields (normalized with respect to polyimide) of the tested materials are shown practically equal to those in LEO. The obtained results give grounds for using the plasma-generation mode with ion energies of 20-30 eV to accelerated testing of spacecraft materials for long -term LEO missions.

  6. United States Nuclear Tests, July 1945 through September 1992, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    2000-12-01

    This document list chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Revision 15, dated December 2000.

  7. United States Nuclear Tests, July 1945 through September 1992, September 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-09-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. This is Revision 16, dated September 2015.

  8. Centrifuge model test on earthquake-induced differential settlement of foundation on cohesive ground

    Institute of Scientific and Technical Information of China (English)

    SHAMOTO; Yasuhiro; HOTTA; Hiroyuki

    2009-01-01

    Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1-or 2-dimensional structures, more evident differential settlement occurs under threedimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation.

  9. Centrifuge model test on earthquake-induced differential settlement of foundation on cohesive ground

    Institute of Scientific and Technical Information of China (English)

    ZHOU YanGuo; CHEN YunMin; SHAMOTO Yasuhiro; HOTTA Hiroyuki

    2009-01-01

    Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1- or 2-dimensional structures, more evident differential settlement occurs under three-dimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation.

  10. Analysis of test results of a ground demonstration of a Pluto/Express power generator

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, J.-M.; El-Genk, M.S. [University of New Mexico, Dept. of Chemical and Nuclear Engineering, Albuquerque, NM (United States)

    1999-07-01

    Results of recent tests of a Pluto/Express electric power generator ground demonstration were analysed. The performance parameters of each of the eight ground demonstrations vapour anode, multitube alkali-metal thermal-to-electric conversion (AMTEC) cells, designated PX-3G, were analysed and compared. The ground demonstration cells produced a total peak electric power of 27 W{sub e} at a load voltage of 16 V when tested at hot and cold side temperatures of 1123 K and 553 K, respectively. The electric power output and terminal voltage of the individual cells, however, differed by as much as 25%, from 2.94 to 3.76 W{sub e}, and from 1.73 to 2.21 V, respectively. These variations were attributed to differences among the cells in the values of: (a) the contact resistance of the BASE/electrode and of the electrode/current collector; (b) the leakage current between the anode and cathode electrodes through the metal-ceramic braze joint between the BASE tubes and the metal support plate; and (c) the charge-exchange polarisation losses. Analysis of results suggested the existence of large electrical leakage currents in some of the PX-3G cells. The performance of the PX-3G cells was below that needed for meeting the Pluto/Express mission's electric power requirement. (Author)

  11. Verification and Uncertainty Reduction of Amchitka Underground Nuclear Testing Models

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Jenny Chapman

    2006-02-01

    The modeling of Amchitka underground nuclear tests conducted in 2002 is verified and uncertainty in model input parameters, as well as predictions, has been reduced using newly collected data obtained by the summer 2004 field expedition of CRESP. Newly collected data that pertain to the groundwater model include magnetotelluric (MT) surveys conducted on the island to determine the subsurface salinity and porosity structure of the subsurface, and bathymetric surveys to determine the bathymetric maps of the areas offshore from the Long Shot and Cannikin Sites. Analysis and interpretation of the MT data yielded information on the location of the transition zone, and porosity profiles showing porosity values decaying with depth. These new data sets are used to verify the original model in terms of model parameters, model structure, and model output verification. In addition, by using the new data along with the existing data (chemistry and head data), the uncertainty in model input and output is decreased by conditioning on all the available data. A Markov Chain Monte Carlo (MCMC) approach is adapted for developing new input parameter distributions conditioned on prior knowledge and new data. The MCMC approach is a form of Bayesian conditioning that is constructed in such a way that it produces samples of the model parameters that eventually converge to a stationary posterior distribution. The Bayesian MCMC approach enhances probabilistic assessment. Instead of simply propagating uncertainty forward from input parameters into model predictions (i.e., traditional Monte Carlo approach), MCMC propagates uncertainty backward from data onto parameters, and then forward from parameters into predictions. Comparisons between new data and the original model, and conditioning on all available data using MCMC method, yield the following results and conclusions: (1) Model structure is verified at Long Shot and Cannikin where the high-resolution bathymetric data collected by CRESP

  12. Assinatura da deposição atmosférica de testes nucleares em sedimentos da costa brasileira (240+239Pu e 137Cs

    Directory of Open Access Journals (Sweden)

    Christian J. Sanders

    2012-01-01

    Full Text Available The aim of this review is to take a look at Cold War era nuclear tests signatures found in Brazilian coastal sediments. Both137Cs and 240+239Pu signatures have been documented in mangrove, coastal mudflats and continental shelf sediments, associated with above ground nuclear tests beginning in the 1950's. The dates associated to the anthropogenic radionuclide signatures 137Cs and 240+239Pu along sediment columns are confirmed by 210Pb geochronology in many of the studies highlighted in this review. The results outlined in this review characterize the extent to which nuclear fallout products reach the Brazilian coast in quantities sufficient for detection, allowing the use of these radioisotopes as geochronometers.

  13. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Montgomery, Edward E.; Young, Roy M.; Adams, Charles L.

    2007-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.

  14. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    Science.gov (United States)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  15. Subsize specimen testing of nuclear reactor pressure vessel material

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.S. [Missouri Univ., Rolla, MO (United States). Materials Research Center; Rosinski, S.T. [Sandia National Labs., Albuquerque, NM (United States); Cannon, N.S. [Westinghouse Hanford Co., Richland, WA (United States); Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States)

    1991-12-31

    A new methodology is proposed to correlate the upper shelf energy (USE) of full size and subsize Charpy specimens of a nuclear reactor pressure vessel plate material, A533B. The methodology appears to be more satisfactory than the methodologies proposed earlier. USE of a notched-only specimen is partitioned into macro-crack initiation and crack propagation energies. USE of a notched and precracked specimen provides the crack propagation energy. {Delta}USE, the difference between the USE`s of notched-only and precracked specimens, is an estimate of the crack initiation energy. {Delta}USE was normalized by a factor involving the dimensions of the Charpy specimen and the stress concentration factor at the notch root. The normalized values of the {Delta}USE were found to be invariant with specimen size.

  16. Subsize specimen testing of nuclear reactor pressure vessel material

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.S. (Missouri Univ., Rolla, MO (United States). Materials Research Center); Rosinski, S.T. (Sandia National Labs., Albuquerque, NM (United States)); Cannon, N.S. (Westinghouse Hanford Co., Richland, WA (United States)); Hamilton, M.L. (Pacific Northwest Lab., Richland, WA (United States))

    1991-01-01

    A new methodology is proposed to correlate the upper shelf energy (USE) of full size and subsize Charpy specimens of a nuclear reactor pressure vessel plate material, A533B. The methodology appears to be more satisfactory than the methodologies proposed earlier. USE of a notched-only specimen is partitioned into macro-crack initiation and crack propagation energies. USE of a notched and precracked specimen provides the crack propagation energy. [Delta]USE, the difference between the USE's of notched-only and precracked specimens, is an estimate of the crack initiation energy. [Delta]USE was normalized by a factor involving the dimensions of the Charpy specimen and the stress concentration factor at the notch root. The normalized values of the [Delta]USE were found to be invariant with specimen size.

  17. Laboratory tests of low density astrophysical nuclear equations of state.

    Science.gov (United States)

    Qin, L; Hagel, K; Wada, R; Natowitz, J B; Shlomo, S; Bonasera, A; Röpke, G; Typel, S; Chen, Z; Huang, M; Wang, J; Zheng, H; Kowalski, S; Barbui, M; Rodrigues, M R D; Schmidt, K; Fabris, D; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Rizzi, V; Viesti, G; Cinausero, M; Prete, G; Keutgen, T; El Masri, Y; Majka, Z; Ma, Y G

    2012-04-27

    Clustering in low density nuclear matter has been investigated using the NIMROD multidetector at Texas A&M University. Thermal coalescence modes were employed to extract densities, ρ, and temperatures, T, for evolving systems formed in collisions of 47A MeV (40)Ar+(112)Sn, (124)Sn and (64)Zn+(112)Sn, (124)Sn. The yields of d, t, (3)He, and (4)He have been determined at ρ=0.002 to 0.03 nucleons/fm(3) and T=5 to 11 MeV. The experimentally derived equilibrium constants for α particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.

  18. The risk of leukaemia in young children from exposure to tritium and carbon-14 in the discharges of German nuclear power stations and in the fallout from atmospheric nuclear weapons testing.

    Science.gov (United States)

    Wakeford, Richard

    2014-05-01

    Towards the end of 2007, the results were published from a case-control study (the "KiKK Study") of cancer in young children, diagnosed nuclear power stations in western Germany. The study found a tendency for cases of leukaemia to live closer to the nearest nuclear power station than their matched controls, producing an odds ratio that was raised to a statistically significant extent for residence within 5 km of a nuclear power station. The findings of the study received much publicity, but a detailed radiological risk assessment demonstrated that the radiation doses received by young children from discharges of radioactive material from the nuclear reactors were much lower than those received from natural background radiation and far too small to be responsible for the statistical association reported in the KiKK Study. This has led to speculation that conventional radiological risk assessments have grossly underestimated the risk of leukaemia in young children posed by exposure to man-made radionuclides, and particular attention has been drawn to the possible role of tritium and carbon-14 discharges in this supposedly severe underestimation of risk. Both (3)H and (14)C are generated naturally in the upper atmosphere, and substantial increases in these radionuclides in the environment occurred as a result of their production by atmospheric testing of nuclear weapons during the late 1950s and early 1960s. If the leukaemogenic effect of these radionuclides has been seriously underestimated to the degree necessary to explain the KiKK Study findings, then a pronounced increase in the worldwide incidence of leukaemia among young children should have followed the notably elevated exposure to (3)H and (14)C from nuclear weapons testing fallout. To investigate this hypothesis, the time series of incidence rates of leukaemia among young children risk of leukaemia in young children following the peak of above-ground nuclear weapons testing, or that incidence rates are

  19. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a comprehensive understanding of requirements for a facility that could safely conduct effluent treatment for a Nuclear Thermal Propulsion (NTP) rocket...

  20. Uncertainty quantification for discrimination of nuclear events as violations of the comprehensive nuclear-test-ban treaty.

    Science.gov (United States)

    Sloan, Jamison; Sun, Yunwei; Carrigan, Charles

    2016-05-01

    Enforcement of the Comprehensive Nuclear Test Ban Treaty (CTBT) will involve monitoring for radiologic indicators of underground nuclear explosions (UNEs). A UNE produces a variety of radioisotopes which then decay through connected radionuclide chains. A particular species of interest is xenon, namely the four isotopes (131m)Xe, (133m)Xe, (133)Xe, and (135)Xe. Due to their half lives, some of these isotopes can exist in the subsurface for more than 100 days. This convenient timescale, combined with modern detection capabilities, makes the xenon family a desirable candidate for UNE detection. Ratios of these isotopes as a function of time have been studied in the past for distinguishing nuclear explosions from civilian nuclear applications. However, the initial yields from UNEs have been treated as fixed values. In reality, these independent yields are uncertain to a large degree. This study quantifies the uncertainty in xenon ratios as a result of these uncertain initial conditions to better bound the values that xenon ratios can assume. We have successfully used a combination of analytical and sampling based statistical methods to reliably bound xenon isotopic ratios. We have also conducted a sensitivity analysis and found that xenon isotopic ratios are primarily sensitive to only a few of many uncertain initial conditions.

  1. Updating the Finite Element Model of the Aerostructures Test Wing using Ground Vibration Test Data

    Science.gov (United States)

    Lung, Shun-fat; Pak, Chan-gi

    2009-01-01

    Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the Aerostructures Test Wing (ATW), which was designed and tested at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.

  2. Estimation Source Parameters of Large-Scale Chemical Surface Explosions and Recent Underground Nuclear Tests

    Science.gov (United States)

    Gitterman, Y.; Kim, S.; Hofstetter, R.

    2013-12-01

    Large-scale surface explosions were conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR), Negev desert: 82 tons of strong HE explosives in August 2009, and 10&100 tons of ANFO explosives in January 2011. The main goal was to provide strong controlled sources in different wind conditions, for calibration of IMS infrasound stations. Numerous dense observations of blast waves were provided by high-pressure, acoustic and seismic sensors at near-source ( 2000 tons) ANFO surface shots at White Sands Military Range (WSMR) were analyzed for SS time delay. The Secondary Shocks were revealed on the records in the range 1.5-60 km and showed consistency with the SMR data, thus extending the charge and distance range for the developed SS delay relationship. Obtained results suggest that measured SS delays can provide important information about an explosion source character, and can be used as a new simple cost-effective yield estimator for explosions with known type of explosives. The new results are compared with analogous available data of surface nuclear explosions. Special distinctions in air-blast waves are revealed and analyzed, resulting from the different source phenomenology (energy release). Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by several stations of Israel Seismic Network. Pronounced minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P-waves. For a ground-truth explosion with a shallow source depth (relatively to an earthquake), this phenomenon can be interpreted in terms of the interference between the down-going P-wave energy and the pP phase reflected from the Earth's surface. A similar effect was observed before at ISN stations for the Pakistan explosion (28.05.98) at a different frequency 1.7 Hz indicating the source- and not site-effect. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of

  3. HEAVY METALS IN THE ECOSYSTEM COMPONENTS AT "DEGELEN" TESTING GROUND OF THE FORMER SEMIPALATINSK TEST SITE

    Directory of Open Access Journals (Sweden)

    A.B. Yankauskas

    2012-06-01

    Full Text Available The ecological situation in the former Semipalatinsk test site is characterized by a combination of both radiative and "nonradiative" factors. There were investigated near-portal areas of the tunnels with water seepage at "Degelen" site. All the tunnel waters are characterized by higher concentrations of uranium, beryllium, and molybdenum. The watercourse of the tunnel # 504 is unique for its elemental composition, in particular, the content of rare earth elements, whose concentration in the water is in the range n*10-5 – n*10-7 %. Of all the rare earth elements in the samples were found 13, the concentrations of aluminum, manganese, zinc are comparable to the concentrations of macro-components. Concentration of 238U in the studied waters lie in the range of n*10-4 – n*10-6 %, which suggests the influence of uranium, not only as a toxic element, but its significance as the radiation factor.

  4. Design and analysis of a natural-gradient ground-water tracer test in a freshwater tidal wetland, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Olsen, Lisa D.; Tenbus, Frederick J.

    2005-01-01

    A natural-gradient ground-water tracer test was designed and conducted in a tidal freshwater wetland at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The objectives of the test were to characterize solute transport at the site, obtain data to more accurately determine the ground-water velocity in the upper wetland sediments, and to compare a conservative, ionic tracer (bromide) to a volatile tracer (sulfur hexafluoride) to ascertain whether volatilization could be an important process in attenuating volatile organic compounds in the ground water. The tracer test was conducted within the upper peat unit of a layer of wetland sediments that also includes a lower clayey unit; the combined layer overlies an aquifer. The area selected for the test was thought to have an above-average rate of ground-water discharge based on ground-water head distributions and near-surface detections of volatile organic compounds measured in previous studies. Because ground-water velocities in the wetland sediments were expected to be slow compared to the underlying aquifer, the test was designed to be conducted on a small scale. Ninety-seven ?-inch-diameter inverted-screen stainless-steel piezometers were installed in a cylindrical array within approximately 25 cubic feet (2.3 cubic meters) of wetland sediments, in an area with a vertically upward hydraulic gradient. Fluorescein dye was used to qualitatively evaluate the hydrologic integrity of the tracer array before the start of the tracer test, including verifying the absence of hydraulic short-circuiting due to nonnatural vertical conduits potentially created during piezometer installation. Bromide and sulfur hexafluoride tracers (0.139 liter of solution containing 100,000 milligrams per liter of bromide ion and 23.3 milligrams per liter of sulfur hexafluoride) were co-injected and monitored to generate a dataset that could be used to evaluate solute transport in three dimensions. Piezometers were sampled 2 to 15 times

  5. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  6. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  7. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  8. Torsion pendulum facility for ground testing of gravitational sensors for LISA

    CERN Document Server

    Hüller, M; Dolesi, R; Vitale, S; Weber, W J

    2002-01-01

    We report here on a torsion pendulum facility for ground-based testing of the Laser Interferometer Space Antenna (LISA) gravitational sensors. We aim to measure weak forces exerted by a capacitive position sensor on a lightweight version of the LISA test mass, suspended from a thin torsion fibre. This facility will permit measurement of the residual, springlike coupling between the test mass and the sensor and characterization of other stray forces relevant to LISA drag-free control. The expected force sensitivity of the proposed torsion pendulum is limited by the intrinsic thermal noise at approx 3x10 sup - sup 1 sup 3 N Hz sup - sup 1 sup / sup 2 at 1 mHz. We briefly describe the design and implementation of the apparatus, its expected performance and preliminary experimental data.

  9. SSE software test management STM capability: Using STM in the Ground Systems Development Environment (GSDE)

    Science.gov (United States)

    Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo

    1992-01-01

    This report is one of a series discussing configuration management (CM) topics for Space Station ground systems software development. It provides a description of the Software Support Environment (SSE)-developed Software Test Management (STM) capability, and discusses the possible use of this capability for management of developed software during testing performed on target platforms. This is intended to supplement the formal documentation of STM provided by the SEE Project. How STM can be used to integrate contractor CM and formal CM for software before delivery to operations is described. STM provides a level of control that is flexible enough to support integration and debugging, but sufficiently rigorous to insure the integrity of the testing process.

  10. Self contamination effects in the TAUVEX UV Telescope: Ground testing and computer simulation

    Science.gov (United States)

    Lifshitz, Y.; Noter, Y.; Grossman, E.; Genkin, L.; Murat, M.; Saar, N.; Blasberger, A.

    1994-01-01

    The contamination effects due to outgassing from construction materials of the TAUVEX (Tel Aviv University UV Telescope) were evaluated using a combination of ground testing and computer simulations. Tests were performed from the material level of the system level including: (1) High sensitivity CVCM(10(exp -3 percent) measurements of critical materials. (2) Optical degradation measurements of samples specially contaminated by outgassing products at different contamination levels. (3) FTIR studies of chemical composition of outgassed products on above samples. (4) High resolution AFM studies of surface morphology of contaminated surfaces. The expected degradation of TAUVEX performance in mission was evaluated applying a computer simulation code using input parameters determined experimentally in the above tests. The results have served as guidelines for the proper selection of materials, cleanliness requirements, determination of the thermal conditions of the system and bakeout processes.

  11. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  12. Objectives and Progress on Ground Vibration Testing for the Ares Projects

    Science.gov (United States)

    Tuma, Margaret L.; Chenevert, Donald J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA s next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be conducting the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO will perform the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orion/lander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. The current plan is to test six configurations in three unique test positions inside TS 4550. Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Position 1 represents the entire launch stack at lift-off (using inert first stage segments). Because of long disuse, TS 4550 is being repaired and modified for reactivation to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. Two new cranes will help move test articles at the test stand and at the

  13. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  14. CHANG'E-3 Active Particle-induced X-ray Spectrometer: ground verification test

    Science.gov (United States)

    Guo, Dongya; Peng, Wenxi; Cui, XingZhu; Wang, Huanyu

    The Active Particle-induced X-ray Spectrometer (APXS) is one of the payloads of Chang’E-3 rover Yutu, with which the major elemental composition of lunar soils and rocks can be measured on site. In order to assess the instrument performance and the accuracy of determination, ground verification test was carried out with two blind samples(basaltic rock, powder). Details of the experiments and data analysis method are discussed. The results show that the accuracy of quantitative analysis for major elements(Mg,Al,Si,K,Ca,Ti,Fe) is better than 15%.

  15. Demonstration of the Military Ecological Risk Assessment Framework (MERAF): Apache Longbow - Hellfire Missile Test at Yuma Proving Ground

    Science.gov (United States)

    2001-11-01

    Associates, Yuma Proving Ground Office Sergio Obregon David Mcintyre BiuceGoff Yuma Proving Ground Aviation and Airdrop Systems Rick Douglas Bert Evans...on relatively narrow gullies, relative to the wide, braded channels of the wash test area. The Glass (2000) study area was dominated by pavement

  16. Proving test on the seismic reliability of nuclear power plant: PWR reactor containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi; Yoshikawa, Teiichi; Ohno, Tokue; Yoshikawa, Eiji.

    1989-01-01

    Seismic reliability proving tests of nuclear power plant facilities are carried out by the Nuclear Power Engineering Test Center, using the large-scale, high-performance vibration table of Tadotsu Engineering Laboratory, and sponsored by the Ministry of International Trade and Industry. In 1982, the seismic reliability proving test of a PWR containment vessel was conducted using a test component of reduced scale 1/3.7. As a result of this test, the test component proved to have structural soundness against earthquakes, and at the same time its stable function was proved by leak tests which were carried out before and after the vibration test. In 1983, the detailed analysis and evaluation of these test results were carried out, and the analysis methods for evaluating strength against earthquakes were established. The seismic analysis and evaluation on the actual containment vessel were then performed using these analysis methods, and the safety and reliability of the PWR reactor containment vessel were confirmed.

  17. Cancer in People Exposed to Nuclear Weapons Testing

    Science.gov (United States)

    ... small number being done at the Trinity (New Mexico) and South Atlantic testing sites. Military maneuvers involving ... In Cancer A-Z Cancer Basics Cancer Causes Breast Cancer Colon and Rectal Cancer Skin Cancer Lung Cancer ...

  18. Used nuclear fuel separations process simulation and testing

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D. [Argonne National Laboratory: 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  19. Temporal trends in childhood leukaemia incidence following exposure to radioactive fallout from atmospheric nuclear weapons testing.

    Science.gov (United States)

    Wakeford, Richard; Darby, Sarah C; Murphy, Michael F G

    2010-05-01

    Notably raised rates of childhood leukaemia incidence have been found near some nuclear installations, in particular Sellafield and Dounreay in the United Kingdom, but risk assessments have concluded that the radiation doses estimated to have been received by children or in utero as a result of operations at these installations are much too small to account for the reported increases in incidence. This has led to speculation that the risk of childhood leukaemia arising from internal exposure to radiation following the intake of radioactive material released from nuclear facilities has been substantially underestimated. The radionuclides discharged from many nuclear installations are similar to those released into the global environment by atmospheric nuclear weapons testing, which was at its height in the late-1950s and early-1960s. Measurements of anthropogenic radionuclides in members of the general public resident in the vicinity of Sellafield and Dounreay have found levels that do not differ greatly from those in persons living remote from nuclear installations that are due to ubiquitous exposure to the radioactive debris of nuclear weapons testing. Therefore, if the leukaemia risk to children resulting from deposition within the body of radioactive material discharged from nuclear facilities has been grossly underestimated, then a pronounced excess of childhood leukaemia would have been expected as a consequence of the short period of intense atmospheric weapons testing. We have examined childhood leukaemia incidence in 11 large-scale cancer registries in three continents for which data were available at least as early as 1962. We found no evidence of a wave of excess cases corresponding to the peak of radioactive fallout from atmospheric weapons testing. The absence of a discernible increase in the incidence of childhood leukaemia following the period of maximum exposure to the radioactive debris of this testing weighs heavily against the suggestion that

  20. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solutions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solution to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Determination of Uranium 7 Specific Gravity by Pycnometry 15-20 Free Acid by Oxalate Complexation 21-27 Determination of Thorium 28 Determination of Chromium 29 Determination of Molybdenum 30 Halogens Separation by Steam Distillation 31-35 Fluoride by Specific Ion Electrode 36-42 Halogen Distillate Analysis: Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 43 Determination of Chloride and Bromide 44 Determination of Sulfur by X-Ray Fluorescence 45 Sulfate Sulfur by (Photometric) Turbidimetry 46 Phosphorus by the Molybdenum Blue (Photometric) Method 54-61 Silicon by the Molybdenum Blue (Photometric) Method 62-69 Carbon by Persulfate Oxidation-Acid Titrimetry 70 Conversion to U3O8 71-74 Boron by ...

  1. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-03-12

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., DG-1269 ``Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear... lead-acid storage batteries in nuclear power plants. DATES: Submit comments by May 13, 2013....

  2. Concepts for Small-Scale Testing of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marschman, Steven Craig [Idaho National Laboratory; Winston, Philip Lon [Idaho National Laboratory

    2015-09-01

    This report documents a concept for a small-scale test involving between one and three Boiling Water Rector (BWR) high burnup (HBU) fuel assemblies. This test would be similar to the DOE funded High Burn-Up (HBU) Confirmatory Data Project to confirm the behavior of used high burn-up fuel under prototypic conditions, only on a smaller scale. The test concept proposed would collect data from fuel stored under prototypic dry storage conditions to mimic, as closely as possible, the conditions HBU UNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage.

  3. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    Energy Technology Data Exchange (ETDEWEB)

    L. D. Cecil; L. L. Knobel; J. R. Green (USGS); S. K. Frape (University of Waterloo)

    2000-06-01

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

  4. Testing alternative ground water models using cross-validation and other methods

    Science.gov (United States)

    Foglia, L.; Mehl, S.W.; Hill, M.C.; Perona, P.; Burlando, P.

    2007-01-01

    Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equivalent to the purpose served by some types of sensitivity analysis). Some of the measures investigated are computationally efficient; others are computationally demanding. The latter are generally needed to account for model nonlinearity. The efficient model discrimination methods investigated include the information criteria: the corrected Akaike information criterion, Bayesian information criterion, and generalized cross-validation. The efficient sensitivity analysis measures used are dimensionless scaled sensitivity (DSS), composite scaled sensitivity, and parameter correlation coefficient (PCC); the other statistics are DFBETAS, Cook's D, and observation-prediction statistic. Acronyms are explained in the introduction. Cross-validation (CV) is a computationally intensive nonlinear method that is used for both model discrimination and sensitivity analysis. The methods are tested using up to five alternative parsimoniously constructed models of the ground water system of the Maggia Valley in southern Switzerland. The alternative models differ in their representation of hydraulic conductivity. A new method for graphically representing CV and sensitivity analysis results for complex models is presented and used to evaluate the utility of the efficient statistics. The results indicate that for model selection, the information criteria produce similar results at much smaller computational cost than CV. For identifying important observations, the only obviously inferior linear measure is DSS; the poor performance was expected because DSS does not include the effects of parameter correlation and PCC reveals large parameter correlations. ?? 2007 National Ground Water Association.

  5. Correlation of horizontal and vertical components of strong ground motion for response-history analysis of safety-related nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yin-Nan, E-mail: ynhuang@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Yen, Wen-Yi, E-mail: b01501059@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Whittaker, Andrew S., E-mail: awhittak@buffalo.edu [Dept. of Civil, Structural and Environmental Engineering, MCEER, State University of New York at Buffalo, Buffalo, NY 14260 (United States)

    2016-12-15

    Highlights: • The correlation of components of ground motion is studied using 1689 sets of records. • The data support an upper bound of 0.3 on the correlation coefficient. • The data support the related requirement in the upcoming edition of ASCE Standard 4. - Abstract: Design standards for safety-related nuclear facilities such as ASCE Standard 4-98 and ASCE Standard 43-05 require the correlation coefficient for two orthogonal components of ground motions for response-history analysis to be less than 0.3. The technical basis of this requirement was developed by Hadjian three decades ago using 50 pairs of recorded ground motions that were available at that time. In this study, correlation coefficients for (1) two horizontal components, and (2) the vertical component and one horizontal component, of a set of ground motions are computed using records from a ground-motion database compiled recently for large-magnitude shallow crustal earthquakes. The impact of the orientation of the orthogonal horizontal components on the correlation coefficient of ground motions is discussed. The rules in the forthcoming edition of ASCE Standard 4 for the correlation of components in a set of ground motions are shown to be reasonable.

  6. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S K; Pawloski, G A; Raschke, K

    2007-04-26

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of NSTec and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemical Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary

  7. Ground Tests of Einstein's Equivalence Principle: From Lab-based to 10-m Atomic Fountains

    CERN Document Server

    Schlippert, D; Richardson, L L; Nath, D; Heine, H; Meiners, C; Wodey, É; Billon, A; Hartwig, J; Schubert, C; Gaaloul, N; Ertmer, W; Rasel, E M

    2015-01-01

    To date, no framework combining quantum field theory and general relativity and hence unifying all four fundamental interactions, exists. Violations of the Einstein's equivalence principle (EEP), being the foundation of general relativity, may hold the key to a theory of quantum gravity. The universality of free fall (UFF), which is one of the three pillars of the EEP, has been extensively tested with classical bodies. Quantum tests of the UFF, e.g. by exploiting matter wave interferometry, allow for complementary sets of test masses, orders of magnitude larger test mass coherence lengths and investigation of spin-gravity coupling. We review our recent work towards highly sensitive matter wave tests of the UFF on ground. In this scope, the first quantum test of the UFF utilizing two different chemical elements, Rb-87 and K-39, yielding an E\\"otv\\"os ratio $\\eta_{\\,\\text{Rb,K}}=(0.3\\pm 5.4)\\times 10^{-7}$ has been performed. We assess systematic effects currently limiting the measurement at a level of parts in...

  8. Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM

    Science.gov (United States)

    Jullien, Pierre

    2008-01-01

    During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.

  9. Ground test challenges in the development of the Space Shuttle orbiter auxiliary power unit

    Science.gov (United States)

    Chaffee, N. H.; Lance, R. J.; Weary, D. P.

    1984-01-01

    A conventional aircraft hydraulic system design approach was selected to provide fluid power for the Space Shuttle Orbiter. Developing the power unit, known as the Auxiliary Power Unit (APU), to drive the hydraulic pumps presented a major technological challenge. A small, high speed turbine drive unit powered by catalytically decomposed hydrazine and operating in the pulse mode was selected to meet the requirement. Because of limitations of vendor test facilities, significant portions of the development, flight qualification, and postflight anomaly testing of the Orbiter APU were accomplished at the Johnson Space Center (JSC) test facilities. This paper discusses the unique requirements of attitude, gravity forces, pressure profiles, and thermal environments which had to be satisfied by the APU, and presents the unique test facility and simulation techniques employed to meet the ground test requirements. In particular, the development of the zero-g lubrication system, the development of necessary APU thermal control techniques, the accomplishment of integrated systems tests, and the postflight investigation of the APU lube oil cooler behavior are discussed.

  10. Integral Benchmark Data for Nuclear Data Testing Through the ICSBEP & IRPhEP

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford; Ian Hill

    2013-10-01

    The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and International Reactor Physics Experiment Evaluation Project (IRPhEP) was last discussed directly with the nuclear data community at ND2007. Since ND2007, integral benchmark data that are available for nuclear data testing have increased significantly. The status of the ICSBEP and the IRPhEP is discussed and selected benchmark configurations that have been added to the ICSBEP and IRPhEP Handbooks since ND2007 are highlighted.

  11. A study of ground-structure interaction in dynamic plate load testing

    Science.gov (United States)

    Guzina, Bojan B.; Nintcheu Fata, Sylvain

    2002-10-01

    A mathematical treatment is presented for the forced vertical vibration of a padded annular footing on a layered viscoelastic half-space. On assuming a depth-independent stress distribution for the interfacial buffer, the set of triple integral equations stemming from the problem is reduced to a Fredholm integral equation of the second kind. The solution method, which is tailored to capture the stress concentrations beneath footing edges, is highlighted. To cater to small-scale geophysical applications, the model is used to investigate the near-field effects of ground-loading system interaction in dynamic geotechnical and pavement testing. Numerical results indicate that the uniform-pressure assumption for the contact load between the composite disc and the ground which is customary in dynamic plate load testing may lead to significant errors in the diagnosis of subsurface soil and pavement conditions. Beyond its direct application to non-intrusive site characterization, the proposed solution can be used in the seismic analysis of a variety of structures involving annular foundation geometries.

  12. Site Earthquake Characteristics and Dynamic Parameter Test of Phase Ⅲ Qinshan Nuclear Power Engineering

    Institute of Scientific and Technical Information of China (English)

    ZHOV Nian-qing; ZHAO Zai-li; QIN Min

    2009-01-01

    The earthquake characteristics and geological structure of the site to sitting the Qinshan Nuclear Power Station are closely related. According to site investigation drilling, sampling, seismic sound logging wave test in single-hole and cross-hole, laboratory wave velocity test of intact rock, together with analysis of the site geological conditions, the seismic wave test results of the site between strata lithology and the geologic structure were studied. The relationships of seismic waves with the site lithology and the geologic structure were set up.The dynamic parameters of different grades of weathering profile were deduced. The results assist the seismic design of Phase Ⅲ Qinshan Nuclear Power Plant, China.

  13. Fallout Deposition in the Marshall Islands from Bikini and Enewetak Nuclear Weapons Tests

    OpenAIRE

    Beck, Harold L.; Bouville, André; Moroz, Brian E.; Simon, Steven L.

    2010-01-01

    Deposition densities (Bq m-2) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for all the 31 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands an...

  14. Testing sea-level markers observed in ground-penetrating radar data from Feddet, south-eastern Denmark

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Nielsen, Lars; Clemmensen, Lars B;

    2012-01-01

    Ground-penetrating radar (GPR) data have been collected across the modern part (test identification of sea-level markers in GPR data from microtidal depositional environments. Nielsen and Clemmensen (2009) showed...

  15. Development of Neural Network Model for Predicting Peak Ground Acceleration Based on Microtremor Measurement and Soil Boring Test Data

    National Research Council Canada - National Science Library

    Kerh, T; Lin, J. S; Gunaratnam, D

    2012-01-01

    .... This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site...

  16. Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms

    Science.gov (United States)

    Han, Olyvia; Kienholz, David; Janzen, Paul; Kidney, Scott

    2010-01-01

    Gravity-off-loading of deployable spacecraft mechanisms during ground testing is a long-standing problem. Deployable structures which are usually too weak to support their own weight under gravity require a means of gravity-off-loading as they unfurl. Conventional solutions to this problem have been helium-filled balloons or mechanical pulley/counterweight systems. These approaches, however, suffer from the deleterious effects of added inertia or friction forces. The changing form factor of the deployable structure itself and the need to track the trajectory of the center of gravity also pose a challenge to these conventional technologies. This paper presents a novel testing apparatus for high-fidelity zero-gravity simulation for special application to deployable space structures such as solar arrays, magnetometer booms, and robotic arms in class 100,000 clean room environments

  17. Guideline to good practices for postmaintenance testing at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Purpose of this guide is to provide contractor maintenance organizations with information that may be used for development and implementation of a postmaintenance testing process for structures, systems, and components at DOE nuclear facilities. It is intended to be an example guideline for the implementation of DOE Order 4330.4A, Maintenance Management Program, Chapter 2, Element 9, Postmaintenance Testing.

  18. Active suspension design for a Large Space Structure ground test facility

    Science.gov (United States)

    Lange, Thomas J. H.; Schlegel, Clemens

    1993-01-01

    The expected future high performance requirements for Large Space Structures (LSS) enforce technology innovations such as active vibration damping techniques e.g., by means of structure sensors and actuators. The implementation of new technologies like that requires an interactive and integrated structural and control design with an increased effort in hardware validation by ground testing. During the technology development phase generic system tests will be most important covering verification and validation aspects up to the preparation and definition of relevant space experiments. For many applications using advanced designs it is deemed necessary to improve existing testing technology by further reducing disturbances and gravity coupling effects while maintaining high performance reliability. A key issue in this context is the improvement of suspension techniques. The ideal ground test facility satisfying these requirements completely will never be found. The highest degree of reliability will always be obtained by passive suspension methods taking into account severe performance limitations such as non-zero rigid body modes, restriction of degrees of freedom of motion and frequency response limitations. Passive compensation mechanisms, e.g., zero-spring-rate mechanisms, either require large moving masses or they are limited with respect to low-frequency performance by friction, stiction or other non-linear effects. With active suspensions these limitations can be removed to a large extent thereby increasing the range of applications. Despite an additional complexity which is associated with a potential risk in reliability their development is considered promising due to the amazing improvement of real-time control technology which is still continuing.

  19. Description of the Space Nuclear Thermal Propulsion (SNTP) cryogenic and hot-hydrogen test facility

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.A.; Riffle, G.K.; Merdich, J.A. (Allied-Signal Aerospace Company, Garrett Fluid Systems Division, 1300 W. Warner Rd. P.O. Box 22200, Tempe, Arizona 85282 (United States))

    1993-01-15

    Cryogenic and high-temperature and high-pressure hydrogen test capabilities are required for component development and qualification for the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program. To effectively support the non-nuclear test needs of the SNTP program, as well as other specialized programs that utilize hydrogen as a working fluid, Allied-Signal Aerospace Company, Garrett Fluid Systems Division (GFSD) is currently developing a hydrogen test facility at our remote San Tan test site. The facility is specifically designed to support turbopump, propellant management valves, instrumentation and general materials evaluation testing with hydrogen at pressures and temperatures representative of actual SNTP engine operating conditions. This paper presents a general description of the SNTP hot-hydrogen test facility including test capabilities, technical approach, and technical status.

  20. Description of the Space Nuclear Thermal Propulsion (SNTP) cryogenic and hot-hydrogen test facility

    Science.gov (United States)

    Thompson, David A.; Riffle, George K.; Merdich, Jeff A.

    1993-01-01

    Cryogenic and high-temperature and high-pressure hydrogen test capabilities are required for component development and qualification for the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program. To effectively support the non-nuclear test needs of the SNTP program, as well as other specialized programs that utilize hydrogen as a working fluid, Allied-Signal Aerospace Company, Garrett Fluid Systems Division (GFSD) is currently developing a hydrogen test facility at our remote San Tan test site. The facility is specifically designed to support turbopump, propellant management valves, instrumentation and general materials evaluation testing with hydrogen at pressures and temperatures representative of actual SNTP engine operating conditions. This paper presents a general description of the SNTP hot-hydrogen test facility including test capabilities, technical approach, and technical status.

  1. Anomalous transient uplift observed at the Lop Nor, China nuclear test site using satellite radar interferometry time-series analysis

    Science.gov (United States)

    Vincent, P.; Buckley, S. M.; Yang, D.; Carle, S. F.

    2011-12-01

    Anomalous uplift is observed at the Lop Nor, China nuclear test site using ERS satellite SAR data. Using an InSAR time-series analysis method, we show that an increase in absolute uplift with time is observed between 1997 and 1999. The signal is collocated with past underground nuclear tests. Due to the collocation in space with past underground tests we postulate a nuclear test-related hydrothermal source for the uplift signal. A possible mechanism is presented that can account for the observed transient uplift and is consistent with documented thermal regimes associated with underground nuclear tests conducted at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site).

  2. Nuclear electromagnetic moments of the ground states of /sup 148/Pm and /sup 210/Bi calculated with phenomenological wave functions derived from analyses of. beta. -decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, O.A.; Szybisz, L.

    1983-12-01

    The magnetic dipole and electric quadrupole moments of the ground states of /sup 148/Pm and /sup 210/Bi are evaluated with phenomenological wave functions derived from ..beta..-decay studies published in previous works. It is found that these wave functions account satisfactorily for the experimental data of both nuclear moments of the /sup 210/Bi ground state. In the case of /sup 148/Pm, while the calculated value of the electric quadrupole moment is not inconsistent with the experimental data, a strong disagreement between theory and experiment is found for the magnetic dipole moment. We attribute this failure to the use of a too small configuration space for the expansion of the nuclear wave function of /sup 148/Pm.

  3. Nuclear electromagnetic moments of the ground states of148Pm and210Bi calculated with phenomenological wave functions derived from analyses of β-decay experiments

    Science.gov (United States)

    Rosso, O. A.; Szybisz, L.

    1983-10-01

    The magnetic dipole and electric quadrupole moments of the ground states of148Pm and210Bi are evaluated with phenomenological wave functions derived from β-decay studies published in previous works. It is found that these wave functions account satisfactorily for the experimental data of both nuclear moments of the210Bi ground state. In the case of148Pm, while the calculated value of the electric quadrupole moment is not inconsistent with the experimental data, a strong disagreement between theory and experiment is found for the magnetic dipole moment. We attribute this failure to the use of a too small configuration space for the expansion of the nuclear wave function of148Pm.

  4. 1962 Pacific Nuclear Tests (Operation DOMINIC) RADSAFE. Enclosure N

    Science.gov (United States)

    1964-06-04

    and sent to the proper cognizant agency: Surgeons General, U.S. Army, U.S. Air Force; Chief, Bureau of Medicine and Surgery, Navy Department; Chief...was intended to be representative of the Fijian Island Group. Samples of vegetation, milk, soil, and water were collected periodically...range of\\ N-B-3-4 ^tf&’-ivj mMnwvtMwwi -■■ ■ each test device. This will include such vulnerable elements as plants and tree stands, man-made

  5. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  6. Peaceful Nuclear Explosion Datasets for Seismic Research and Nuclear Test Monitoring

    Science.gov (United States)

    Smithson, S. B.; Morozov, I. B.; Morozova, E. A.; Richards, P. G.; Solodilov, L. N.

    2001-12-01

    Within the next four years, IRIS databases will receive from the University of Wyoming and GEON recordings from nine ultra-long range Deep Seismic Sounding (DSS) projects conducted between 1970-1989 in the former Soviet Union: QUARTZ, CRATON, KIMBERLITE, METEORITE, RIFT, RUBY, BATHOLIT, BAZALT, and AGATE. Jointly sponsored by the Department of Defense and National Science Foundation, this effort will bring the unique recordings of 22 Peaceful Nuclear Explosions (PNEs) and hundreds of crustal-scale chemical shots to the broad seismological and monitoring research communities. A grid of reversed PNE profiles (plus fan recording for RUBY) covers the East European Platform, the Ural Mountains, the West Siberian Platform, the Siberian craton, and the Baikal Rift. Dense, 3-component, short-period recordings along these profiles provide a valuable source of seismic information for seismic calibration of these vast aseismic regions. DSS recordings offer unique opportunities to study propagation effects of body waves and regional seismic phases, to examine their correlation with geologic and tectonic features, to develop unusually well constrained models of the structure of the crust and upper mantle to 600-700 km depth, and to explore the variability of explosion discriminants such as spectral ratios of P- and S-waves. Though the data principally concern properties of the crust and upper mantle, some of the profiles also show strong reflections from the core-mantle boundary. We summarize the recent findings from the analysis of PNE datasets in Northern Eurasia. These results include (1) unusually detailed velocity and attenuation structure of the crust and uppermost mantle, (2) characterization of crustal attenuation through coda measurements, (3) constraints on seismic scattering from within the crust and uppermost mantle, (4) detailed imaging of the crustal basement using receiver functions, (5) continuous observations of the regional phases from the PNEs within 0

  7. Ground testing and flight demonstration of charge management of insulated test masses using UV-LED electron photoemission

    Science.gov (United States)

    Saraf, Shailendhar; Buchman, Sasha; Balakrishnan, Karthik; Lui, Chin Yang; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; Suwaidan, Badr Al; AlRashed, Abdullah; Al-Nassban, Badr; Alaqeel, Faisal; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin; Qasim, Bandar Bin; Alfauwaz, Abdulrahman; Al-Majed, Mohammed; DeBra, Daniel; Byer, Robert

    2016-12-01

    The UV-LED mission demonstrates the precise control of the potential of electrically isolated test masses. Test mass charge control is essential for the operation of space accelerometers and drag-free sensors which are at the core of geodesy, aeronomy and precision navigation missions as well as gravitational wave experiments and observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV-LED mission and prior ground testing demonstrates that AlGaN UVLEDs operating at 255 nm are superior to Hg lamps because of their smaller size, lower power draw, higher dynamic range, and higher control authority. We show laboratory data demonstrating the effectiveness and survivability of the UV-LED devices and performance of the charge management system. We also show flight data from a small satellite experiment that was one of the payloads on KACST’s SaudiSat-4 mission that demonstrates ‘AC charge control’ (UV-LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its housing. The result of the mission brings the UV-LED device Technology Readiness Level (TRL) to TRL-9 and the charge management system to TRL-7. We demonstrate the ability to control the test mass potential on an 89 mm diameter spherical test mass over a 20 mm gap in a drag-free system configuration, with potential measured using an ultra-high impedance contact probe. Finally, the key electrical and optical characteristics of the UV-LEDs showed less than 7.5% change in performance after 12 months in orbit.

  8. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    Science.gov (United States)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  9. FMCT after South Asia's tests. A view from a nuclear-weapon state

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, L.A. [Science Applications Int. Corp. (United States)

    1998-07-01

    Proposals to negotiate an international treaty to cutoff the production of plutonium and highly-enriched uranium for nuclear weapons have been on the international nuclear agenda for many decades. Hopes in the early 1990s that it would be possible finally to negotiate a FMCT, however, have not been borne out. Instead, a deadlock had ensued at the Geneva CD. It remains to be seen whether the recent nuclear tests by India and Pakistan will contribute to breaking that deadlock - or only to foreclosing any prospects for negotiating cutoff in the foreseeable future. The key lies in the attitudes of Delhi and Islamabad - influenced to the extent possible by the efforts of the international community to convince both countries' leaders to stop short of an escalating nuclear war in the region. Regardless, there are a variety of other initiatives aimed at heightening transparency and controls over the nuclear weapons materials in the five NPT nuclear weapon states that could be pursued as part of broader ongoing efforts to roll back the Cold War nuclear legacies.

  10. Summary of inspection findings of licensee inservice testing programs at United States commercial nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, A.; Colaccino, J.

    1996-12-01

    Periodic inspections of pump and valve inservice testing (IST) programs in United States commercial nuclear power plants are performed by Nuclear Regulatory Commission (NRC) Regional Inspectors to verify licensee regulatory compliance and licensee commitments. IST inspections are conducted using NRC Inspection Procedure 73756, {open_quotes}Inservice Testing of Pumps and Valves{close_quotes} (IP 73756), which was updated on July 27, 1995. A large number of IST inspections have also been conducted using Temporary Instruction 2515/114, {open_quotes}Inspection Requirements for Generic Letter 89-04, Acceptable Inservice Testing Programs{close_quotes} (TI-2515/114), which was issued January 15, 1992. A majority of U.S. commercial nuclear power plants have had an IST inspection to either IP 73756 or TI 2515/114. This paper is intended to summarize the significant and recurring findings from a number of these inspections since January of 1990.

  11. Ground Testing and Flight Demonstration of Charge Management of Insulated Test Masses Using UV LED Electron Photoemission

    CERN Document Server

    Saraf, Shailendhar; Balakrishnan, Karthik; Lui, Chin Yang; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; AlRashed, Abdullah; Nassban, Badr Al; Suwaidan, Badr Al; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin; Qasim, Bandar Bin; DeBra, Daniel; Byer, Robert

    2016-01-01

    The UV LED mission demonstrates the precise control of the potential of electrically isolated test masses that is essential for the operation of space accelerometers and drag free sensors. Accelerometers and drag free sensors were and remain at the core of geodesy, aeronomy, and precision navigation missions as well as gravitational science experiments and gravitational wave observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV LED mission and prior ground testing demonstrates that AlGaN UV LEDs operating at 255 nm are superior to Mercury vapor lamps because of their smaller size, lower draw, higher dynamic range, and higher control authority. We show flight data from a small satellite mission on a Saudi Satellite that demonstrates AC charge control (UV LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its h...

  12. Geology of the Chinese nuclear test site near Lop Nor, Xinjiang Uygur Autonomous Region, China

    Science.gov (United States)

    Matzko, J.R.

    1994-01-01

    The Chinese underground nuclear test site in the Kuruktag and Kyzyltag mountains of the Xinjiang Uygur Autonomous Region of northwest China, is the location of sixteen underground tests that occurred between 1969 and 1992. The largest test to date, conducted on 21 May 1992, had a reported yield of about one megaton. Geophysical properties of the rocks and a large-scale geologic map of part of the test area were published by the Chinese in 1986 and 1987 and are the first site-specific data available for this test site. In areas of low relief, underground nuclear testing has occurred below the water table, in shafts drilled vertically into dense, low porosity Paleozoic granitic and metasedimentary rocks. Additional testing in areas of more rugged terrain has occurred in horizontal tunnels, probably above the water table. At least one of these tunnels was driven into granite. The upper 50 m of the rock in the area of the vertical tests is weathered and fractured; these conditions have been shown to influence the magnitude of the disturbance of the land surface after a nuclear explosion. These descriptions suggest hard rock coupling at depth and a closer resemblance to the former Soviet test site in eastern Kazakhstan than to the U.S. test site in Nevada. ?? 1994.

  13. Discrimination and Relocation of The 2013 North Korea Underground Nuclear Test: A New Contribution

    Science.gov (United States)

    Sianipar, D. S.

    2015-12-01

    We successfully give contribution in discriminating the 2013 North Korea underground nuclear test from natural earthquakes by using analysis of ratio of seismic energy and seismic moment (Ɵ) and analysis of the rupture duration. We used the waveform data of the shallow seismic event which occurred in the region of North Korea mainland and vicinity in last decade. We conclude that this earthquake was a shallow seismic event with explosion characteristics and can be discriminated from a natural or tectonic earthquake. The 2013 North Korea test earthquake had 2.817822 x 1019 N.m of the seismic moment and 7.652314 x 1014 N.m of radiated seismic energy and -4.56 of the Ɵ value. The equivalent Ɵ value with the two previous nuclear events and differences with natural earthquakes was considered as an implication of the explosion event. The rupture duration value of this event was 11.13 s. The very low value of the rupture duration from the three nuclear tests event shows us the characteristic of the explosion. We also give contribution in determining the high precision location of the 2013 nuclear test earthquake using relocation algorithm of Modified Joint Hypocenter Determination (MJHD) and double difference using IMS CTBTO, BMKG, regional and global seismic stations respectively. We also compared the relative location results with absolute location method of Simulated Annealing (SA). Results of the all relocation method in this study show the locations with distance less than 7 km from the Punggye-ri nuclear test facility. A result was compared with the relocation results by all possible combination of seismic phase data and stations and by previous researchers and analyzed using topographic data satellite imagery. We proposed that the northwest of the Punggye-ri facility (named "A" location) in coordinate 129.04 E and 41.29 N with elevation around 2050-2150 meter is the high possibility location of the 2013 North Korea underground nuclear test.

  14. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    Science.gov (United States)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  15. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests

    Directory of Open Access Journals (Sweden)

    Donatella Feretti

    2012-02-01

    Full Text Available Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L and surface water (TOC=7.5 mg/L. These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia. No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  16. Prescribed differences in exercise intensity based on the TCAR test over sandy ground and grass.

    Directory of Open Access Journals (Sweden)

    Juliano Fernandes da Silva

    2010-01-01

    Full Text Available The intensity of training might be influenced by exercise mode and type of terrain. Thus, the objective of this study was a to compare the physiological indices determined in the TCAR test carried out on natural grass (NG and sandy ground (SG, and b to analyze heart rate (HR and blood lactate responses during constant exercise on SG and NG. Ten soccer players (15.11 ± 1.1 years, 168 ± 4.0 cm, 60 ± 4.0 kg were submitted to the TCAR test to determine peak velocity (PV and the intensity corresponding to 80.4% PV (V80.4 on NG and SG. The second evaluation consisted of two constant load tests (CLT (80.4% PV on NG and SG with a duration of 27 min. The paired Student t-test was used to compare the tests carried out on NG and SG. ANOVA (two-way, complemented by the Tukey test, was used to compare lactate concentrations [La] at 9, 18 and 27 min between the two types of terrain. A p value <0.05 was adopted. PV and V80.4 (15.3±1.0 and 12.3±0.6 km/h were significantly higher on grass than on sand (14.3±1.0 and 11.5±0.4 km/h. Lactate concentration during the CLT [LaV80.4] was significantly higher on sand (4.1±0.9 mmol/L than on grass (2.8±0.7 mmol/L. In the CLT, no significant difference in mean HR was observed between the two terrains, whereas there was a difference in [La]. In conclusion, the type of terrain interferes with indicators associated with aerobic power and capacity obtained by the TCAR test.

  17. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests.

    Science.gov (United States)

    Feretti, Donatella; Ceretti, Elisabetta; Gustavino, Bianca; Zerbini, Llaria; Zani, Claudia; Monarca, Silvano; Rizzoni, Marco

    2012-02-17

    Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC) concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L) and surface water (TOC=7.5 mg/L). These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia). No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  18. Radiological safety studies on ground disposal of low-level radioactive wastes. Environmental simulation test

    Energy Technology Data Exchange (ETDEWEB)

    Wadachi, Yoshiki; Yamamoto, Tadatoshi; Takebe, Shinichi; Ohnuki, Toshihiko; Washio, Masakazu (Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment)

    1982-03-01

    As the method of disposing low level radioactive wastes on land, the underground disposal method disposing the wastes in the structures constructed underground near the ground surface has been investigated as a feasible method. In order to contribute to the environmental safety assessment for this underground disposal method, environmental simulation test is planned at present, in which earth is sampled in the undisturbed state, and the behavior of radioactive nuclides is examined. The testing facilities are to be constructed in Japan Atomic Energy Research Institute from fiscal 1981. First, the research made so far concerning the movement of radioactive nuclides in airing layer and aquifer which compose natural barrier is outlined. As for the environmental simulation test, the necessity and method of the test, earth sampling, the underground simulation facility and the contribution to environmental safety assessment are explained. By examining the movement of radioactive nuclides through natural barrier and making the effective mddel for the underground movement of radioactive nuclides, the environmental safety assessment for the disposal can be performed to obtain the national consensus.

  19. Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements

    Science.gov (United States)

    Stryk, Josef; Matula, Radek; Pospisil, Karel

    2013-10-01

    Within the road pavement acceptance tests, destructive as well as non-destructive tests of individual road layers are performed to verify the standard requirements. The article describes a method for providing quick, effective and sufficiently accurate measurements of both dowel and tie bar positions in concrete pavements, using a two-channel ground penetrating radar (GPR). Measurements were carried out in laboratory and in-situ conditions. A special hand cart for field measurements, set for the testing requirements, was designed. It was verified that following the correct measuring and assessment method, it is possible to reach accuracy of determining the in-built rebar up to 1 cm in vertical direction and up to 1.5 cm per 11.5 m of measured length in horizontal direction. In the in-situ tests, GPR identification of possible anomalies due to the phase of concrete pavement laying was presented. In the conclusion, a measurement report is mentioned. The standard requirements for the position of dowels and tie bars cover maximum possible deviation of the rebar position from the project documentation in vertical and horizontal direction, maximum deflection of rebar ends to each other, and maximum translation of rebar in the direction of its longitudinal axis.

  20. An Analysis of Transport, Dispersion, and Deposition from Two Above-Ground Nuclear Tests in China

    Science.gov (United States)

    1999-04-14

    resulting distribution of radioactive material to the Second-order Closure Integrated PUFF ( SCIPUFF ) model to perform the transport and diffusion of the...Corp, MRC-R-243, Dec 1975 Sykes, R.I., "PC- SCIPUFF Version 0.2 Technical Documentation, Titan Corporation, DNA-TR-96-27, April 1997 Tripoli, G.J

  1. Development of deterioration models and tests of structural materials for nuclear containment structures(III)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan [Seoul National University, Seoul (Korea)

    2002-03-01

    The nuclear containment structures are very important infrastructures which require much cost for construction and maintenance. If these structures lose their functions and do not ensure their safety, great losses of human lives and properties will result. Therefore, the nuclear containment structures should secure appropriate safety and functions during these service lives. The nuclear concrete structures start to experience deterioration due to severe environmental condition, even though the concrete structures exhibit generally superior durability. It is, therefore, necessary to take appropriate actions at each stage of planning, design and construction to secure safety and functionability. Thorough examination of deterioration mechanism and comprehensive tests have been conducted to explore the durability characteristics of nuclear concrete structures. 88 refs., 70 figs., 12 tabs. (Author)

  2. Instrumentation and control developments in the Los Alamos nuclear test program

    Energy Technology Data Exchange (ETDEWEB)

    Perea, J.A.

    1988-01-01

    The United States Department of Energy contracts the Los Alamos National Laboratory to carry out a Nuclear Weapons Test Program in support of the national defense. The program is one of ongoing research to design, build, and test prototype nuclear devices. The goal is to determine what should ultimately be incorporated into the nation's nuclear defense stockpile. All nuclear tests are conducted underground at the Nevada Test Site (NTS). This paper describes the instrumentation and control techniques used by Los Alamos to carry out the tests. Specifically, the contrast between historical methods and new, computer-based technology are discussed. Previous techniques required large numbers of expensive, heavy hardwire cables extending from the surface to the diagnostics rack at the bottom of the vertical shaft. These cables, which provided singular control/monitor functions, have been replaced by a few optical fibers and power cables. This significant savings has been enabled through the adaptation of industrial process control technology using programmable computer control and distributed input/output. Finally, an ongoing process of developing and applying the most suitable instrumentation and control technology to the unique requirements of the Test Program is discussed. 2 refs.

  3. Validation Tests of a Non-Nuclear Combined Asphalt and Soil Density Gauge

    Science.gov (United States)

    2014-04-01

    ER D C/ G SL T R- 14 -1 0 Validation Tests of a Non-Nuclear Combined Asphalt and Soil Density Gauge G eo te ch ni ca l a nd S tr uc tu...Validation Tests of a Non-Nuclear Combined Asphalt and Soil Density Gauge Ernest S. Berney IV and Mariely Mejías-Santiago, Geotechnical and Structures...Engineer Research and Development Center in Vicksburg, MS validated the effectiveness of the Soil Density Gauge (SDG) and the Combined Asphalt Soil

  4. Radionuclide observables during the Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, Jonathan L.; Miley, Harry S.; Milbrath, Brian D.

    2016-03-01

    In 2014 the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook the Integrated Field Exercise (IFE) in Jordan. The exercise consisted of a simulated 0.5 – 2 kT underground explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation. This research evaluates two of the OSI techniques, including laboratory-based gamma-spectrometry of soil samples and in situ gamma-spectrometry for 17 particulate radionuclides indicative of nuclear weapon tests. The detection sensitivity is evaluated using real IFE and model data. It indicates that higher sensitivity laboratory measurements are the optimum technique during the IFE and OSI timeframes.

  5. Study of evaluation techniques of software testing and V and V in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Cheong; Baek, Y. W.; Kim, H. C.; Shin, C. Y.; Park, N. J. [Chungnam Nationl Univ., Taejon (Korea, Republic of)

    2000-03-15

    The study of activities to solve software safety and quality must be executed in base of establishing software development process for digitalized nuclear plant. Especially study of software testing and verification and validation must executed. For this purpose methodologies and tools which can improve software qualities are evaluated and software testing and V and V which can be applied to software life cycle are investigated. This study establish a guideline that can assure software safety and reliability requirements in digitalized nuclear plant systems and can be used as a guidebook of software development process to assure software quality many software development organization.

  6. Nuclear tests: the late indemnification of victims; Essais nucleaire: l'indemnisation tardive des victimes

    Energy Technology Data Exchange (ETDEWEB)

    Charbonneau, S. [Bordeaux-1 Univ., 33 (France)

    2010-04-15

    The author briefly recalls the historical context of the creation of the CEA and outlines the silence and denial about the radioactive contamination of military personnel during the nuclear tests performed in the Algerian Sahara and in Polynesia. He also outlines the continuous action of the association of veterans and victims of these nuclear tests which gathered proofs of health consequences. He comments the content and scope of application of laws which have been lately adopted (in 2010) to acknowledge these facts and indemnify the victims

  7. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  8. NUCLEAR PHYSICS Resonances-Excitation Calculation Studies Investigation of Δ(3, 3) in Ground State of 90Zr Cold Finite Heavy Nucleus at Equilibrium and Under Large Compression

    Science.gov (United States)

    Mohammed, H. E. Abu-Sei'leek

    2011-01-01

    A non-relativistic microscopic mean field theory of finite nuclei is investigated where the nucleus is described as a collection of nucleons and delta resonances. The ground state properties of 90Zr nucleus have been investigated at equilibrium and large amplitude compression using a realistic effective baryon-baryon Hamiltonian based on Reid Soft Core (RSC) potential. The sensitivity of the ground state properties is studied, such as binding energy, nuclear radius, radial density distribution, and single particle energies to the degree of compression. It is found that the most of increasing in the nuclear energy generated under compression is used to create the massive Δ particles. For 90Zr nucleus under compression at 2.5 times density of the normal nuclear density, the excited nucleons to Δ's are increased sharply up to 14% of the total number of constituents. This result is consistent with the values extracted from relativistic heavy-ion collisions. The single particle energy levels are calculated and their behaviors under compression are examined too. A good agreement between results with effective Hamiltonian and the phenomenological shell model for the low lying single-particle spectra is obtained. A considerable reduction in compressibility for the nucleus, and softening of the equation of state with the inclusion of the Δ's in the nuclear dynamics are suggested by the results.

  9. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  10. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report

  11. On-ground tests of LISA PathFinder thermal diagnostics system

    CERN Document Server

    Lobo, A; Ramos-Castro, J; Sanjuan, J; Lobo, Alberto; Nofrarias, Miquel; Ramos-Castro, Juan; Sanjuan, Josep

    2006-01-01

    Thermal conditions in the LTP, the LISA Technology Package, are required to be very stable, and in such environment precision temperature measurements are also required for various diagnostics objectives. A sensitive temperature gauging system for the LTP is being developed at IEEC, which includes a set of thermistors and associated electronics. In this paper we discuss the derived requirements applying to the temperature sensing system, and address the problem of how to create in the laboratory a thermally quiet environment, suitable to perform meaningful on-ground tests of the system. The concept is a two layer spherical body, with a central aluminium core for sensor implantation surrounded by a layer of polyurethane. We construct the insulator transfer function, which relates the temperature at the core with the laboratory ambient temperature, and evaluate the losses caused by heat leakage through connecting wires. The results of the analysis indicate that, in spite of the very demanding stability conditio...

  12. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  13. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  14. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report

  15. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  16. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    Science.gov (United States)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  17. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, J J; Walter, W R; Rodgers, A J; Richards, P; Pasyanos, M E; Myers, S C; Lay, T; Harris, D; Antoun, T

    2008-11-19

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags

  18. The glass bead game: nuclear tourism at the Australian weapon test sites.

    Science.gov (United States)

    Roff, S R

    1998-01-01

    In mid-summer 1997, just as the United States National Cancer Institute was acknowledging that the nuclear bomb tests at the Nevada Test Site may ultimately cause up to 75,000 cases of thyroid cancer in people who were living in the USA in the 1950s and 1960s, the Australian authorities were mooting the possibility that the Maralinga test sites in South Australia should become a tourist attraction. Some Aboriginal tribal leaders welcomed this proposed use when the 20 million Pounds 'clean-up' being paid for by the United Kingdom government as some compensation for using the area for its weapons tests in the 1950s and 1960s is completed. This paper surveys the attempts to clean up the site of UK nuclear weapons tests in the 1950s, not least by attempting to vitrify vast tracts of desert.

  19. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  20. The optical performance of the PILOT instrument from ground end-to-end tests

    Science.gov (United States)

    Misawa, R.; Bernard, J.-Ph.; Longval, Y.; Ristorcelli, I.; Ade, P.; Alina, D.; André, Y.; Aumont, J.; Bautista, L.; de Bernardis, P.; Boulade, O.; Bousqet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Chaigneau, M.; Charra, M.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J. P.; Engel, C.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Leriche, B.; Maestre, S.; Maffei, B.; Marty, C.; Marty, W.; Masi, S.; Montel, J.; Montier, L.; Mot, B.; Narbonne, J.; Pajot, F.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tauber, J.; Tucker, C.

    2017-06-01

    The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium ( PILOT) is a balloon-borne astronomy experiment designed to study the linear polarization of thermal dust emission in two photometric bands centred at wavelengths 240 μm (1.2 THz) and 550 μm (545 GHz), with an angular resolution of a few arcminutes. Several end-to-end tests of the instrument were performed on the ground between 2012 and 2014, in order to prepare for the first scientific flight of the experiment that took place in September 2015 from Timmins, Ontario, Canada. This paper presents the results of those tests, focussing on an evaluation of the instrument's optical performance. We quantify image quality across the extent of the focal plane, and describe the tests that we conducted to determine the focal plane geometry, the optimal focus position, and sources of internal straylight. We present estimates of the detector response, obtained using an internal calibration source, and estimates of the background intensity and background polarization.

  1. Theoretical foundations for on-ground tests of LISA PathFinder thermal diagnostics

    CERN Document Server

    Lobo, A; Ramos-Castro, J; Sanjuan, J; Lobo, Alberto; Nofrarias, Miquel; Ramos-Castro, Juan; Sanjuan, Josep

    2006-01-01

    This paper reports on the methods and results of a theoretical analysis to design an insulator which must provide a thermally quiet environment to test on ground delicate temperature sensors and associated electronics. These will fly on board ESA's LISA PathFinder (LPF) mission as part of the thermal diagnostics subsystem of the LISA Test-flight Package (LTP). We evaluate the heat transfer function (in frequency domain) of a central body of good thermal conductivity surrounded by a layer of a very poorly conducting substrate. This is applied to assess the materials and dimensions necessary to meet temperature stability requirements in the metal core, where sensors will be implanted for test. The analysis is extended to evaluate the losses caused by heat leakage through connecting wires, linking the sensors with the electronics in a box outside the insulator. The results indicate that, in spite of the very demanding stability conditions, a sphere of outer diameter of the order one metre is sufficient.

  2. Evaluation of the hydrologic source term from underground nuclear tests in Frenchman Flat at the Nevada Test Site: The Cambric test

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W L; Bruton, C J; Carle, S F; Kersting, A B; Pawloski, G A; Rard, J A; Shumaker, D E; Smith, D K; Tompson, A F

    1999-03-23

    The objectives of this project are to develop and apply a modeling frame- work to quantitatively evaluate the nature and extent of radionuclide migration within the immediate, near field environment about an underground nuclear test. Specifically, it will involve evaluation of ² The speciation and abundance of radionuclides that are introduced into groundwater as aqueous species or colloids, and ² The rate and extent of radionuclide movement, dilution, and reaction in groundwater surrounding the working point of a test. To be clear, interest will only be focused on processes that have occurred well after the nuclear test, as opposed to the more dynamic processes that take place during or immediately after detonation. The meaning of "near field" in this case will loosely refer to a volume of diameter 4-8 Rc, centered on the working point and chimney of the test, where Rc is the radius of the blast cavity. For a given nuclear test, this information will collectively comprise the test's "hydrologic source term". This work relies on and is being supported by existing data, analyses, and interpretations that have been made at the Nevada Test Site (NTS) during the American nuclear test program and previous and ongoing studies related to radionuclide migration in the subsurface (Kersting, 1996).

  3. The Comprehensive Nuclear-Test-Ban Treaty and Its Relevance for the Global Security

    Directory of Open Access Journals (Sweden)

    Dáša ADAŠKOVÁ

    2013-06-01

    Full Text Available The Comprehensive Nuclear-Test-Ban Treaty (CTBT is one of important international nuclear non-proliferation and disarmament measures. One of its pillars is the verification mechanism that has been built as an international system of nuclear testing detection to enable the control of observance of the obligations anchored in the CTBT. Despite the great relevance to the global non-proliferation and disarmament efforts, the CTBT is still not in force. The main aim of the article is to summarize the importance of the CTBT and its entry into force not only from the international relations perspective but also from the perspective of the technical implementation of the monitoring system.

  4. Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field

    Directory of Open Access Journals (Sweden)

    Yingmin Li

    2010-01-01

    Full Text Available The reasonability of artificial multi-point ground motions and the identification of abnormal records in seismic array observations, are two important issues in application and analysis of multi-point ground motion fields. Based on the dynamic time warping (DTW distance method, this paper discusses the application of similarity measurement in the similarity analysis of simulated multi-point ground motions and the actual seismic array records. Analysis results show that the DTW distance method not only can quantitatively reflect the similarity of simulated ground motion field, but also offers advantages in clustering analysis and singularity recognition of actual multi-point ground motion field.

  5. Bounds test approach to cointegration and causality between nuclear energy consumption and economic growth in India

    Energy Technology Data Exchange (ETDEWEB)

    Wolde-Rufael, Yemane

    2010-01-15

    This paper attempts to examine the dynamic relationship between economic growth, nuclear energy consumption, labor and capital for India for the period 1969-2006. Applying the bounds test approach to cointegration developed by we find that there was a short- and a long-run relationship between nuclear energy consumption and economic growth. Using four long-run estimators we also found that nuclear energy consumption has a positive and a statistically significant impact on India's economic growth. Further, applying the approach to Granger causality and the variance decomposition approach developed by, we found a positive and a significant uni-directional causality running from nuclear energy consumption to economic growth without feedback. This implies that economic growth in India is dependent on nuclear energy consumption where a decrease in nuclear energy consumption may lead to a decrease in real income. For a fast growing energy-dependent economy this may have far-reaching implications for economic growth. India's economic growth can be frustrated if energy conservation measures are undertaken without due regard to the negative impact they have on economic growth. (author)

  6. 77 FR 50722 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2012-08-22

    ... COMMISSION Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants... regulatory guide (DG), DG-1208, ``Software Unit Testing for Digital Computer Software used in Safety Systems... entitled ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear...

  7. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-09-24

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants.'' The guide... with regard to the maintenance, testing, and replacement of vented lead-acid storage batteries...

  8. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    Energy Technology Data Exchange (ETDEWEB)

    Black, S. C.; Grossman, R. F.; Mullen, A. A.; Potter, G. D.; Smith, D. D. [comps.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982.

  9. Review of recent benchmark experiments on integral test for high energy nuclear data evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Konno, Chikara; Fukahori, Tokio; Hayashi, Katsumi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    A survey work of recent benchmark experiments on an integral test for high energy nuclear data evaluation was carried out as one of the work of the Task Force on JENDL High Energy File Integral Evaluation (JHEFIE). In this paper the results are compiled and the status of recent benchmark experiments is described. (author)

  10. Design of Testing Set-up for Nuclear Fuel Rod by Neutron Radiography at CARR

    Institute of Scientific and Technical Information of China (English)

    WEI; Guo-hai; HAN; Song-bai; WANG; Hong-li; HAO; Li-jie; WU; Mei-mei; HE; Lin-feng; WANG; Yu; LIU; Yun-tao; SUN; Kai; CHEN; Dong-feng

    2012-01-01

    <正>An experimental set-up dedicated to non-destructively test a 15 cm long pressurized water reactor (PWR) nuclear fuel rod by neutron radiography (NR) is designed and fabricated. It consists of three parts: Transport container, imaging block and steel support. The design of the transport container was optimized with Monte-Carlo simulation by the MCNP code.

  11. Potential Benefits of the Comprehensive Nuclear-Test-Ban Treaty Organization to Ghana

    Directory of Open Access Journals (Sweden)

    P. Amponsah

    2014-03-01

    Full Text Available The National Data Centers established around the globe with the support of the Comprehensive Nuclear Test Ban Treaty Organization are used to monitor and manage its data, to control and ultimately eliminate nuclear weapon test explosions. The National Data Center in Ghana was established in February, 2010 at the Ghana Atomic Energy Commission. The Center is mandated to collate seismic, radionuclide, infrasound and hydroacoustic data for monitoring nuclear test explosions for global peace. The data are obtained from our neighboring country Cote d’Ivoire and the International Data Center in Austria. The objectives of the Data Center include the following: receive and use data from the International Monitoring System (IMS stations and products derived from the IMS from the International Data Center for verification and compliance of the Comprehensive Nuclear Test Ban Treaty and for earthquake hazard studies. From 2010 to date local seismic events from the Center are catalogued for earthquake hazard studies in the country. The data are also made available to our stakeholders for earthquake disaster risk reduction. The benefits of the National Data Center to Ghana are numerous. Apart from the data for seismic hazard studies, it can also provide data for research in fisheries, for the study of the crustal structure among others. DOI: http://dx.doi.org/10.5755/j01.erem.67.1.5402

  12. Potential Benefits of the Comprehensive Nuclear-Test-Ban Treaty Organization to Ghana

    Directory of Open Access Journals (Sweden)

    Paulina Amponsah

    2014-04-01

    Full Text Available The National Data Centers established around the globe with the support of the Comprehensive Nuclear Test Ban Treaty Organization are used to monitor and manage its data, to control and ultimately eliminate nuclear weapon test explosions. The National Data Center in Ghana was established in February, 2010 at the Ghana Atomic Energy Commission. The Center is mandated to collate seismic, radionuclide, infrasound and hydroacoustic data for monitoring nuclear test explosions for global peace. The data are obtained from our neighboring country Cote d’Ivoire and the International Data Center in Austria. The objectives of the Data Center include the following: receive and use data from the International Monitoring System (IMS stations and products derived from the IMS from the International Data Center for verification and compliance of the Comprehensive Nuclear Test Ban Treaty and for earthquake hazard studies. From 2010 to date local seismic events from the Center are catalogued for earthquake hazard studies in the country. The data are also made available to our stakeholders for earthquake disaster risk reduction. The benefits of the National Data Center to Ghana are numerous. Apart from the data for seismic hazard studies, it can also provide data for research in fisheries, for the study of the crustal structure among others.

  13. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  14. Feasibility of AEDC test facility support for nuclear thermal propulsion system development

    Science.gov (United States)

    Roler, Max A.; Turner, Eugene E.; Bradley, Dale

    1993-06-01

    Test facility requirements to support the development of nuclear propulsion have been evaluated and shortfalls within current test facility capabilities identified. The development of a nonnuclear heat source capable of heating the high-pressure, high mass flowrate hydrogen propellant to the required operating temperature has been identified as a key enabling technology. Other significant issues identified were the safety aspects associated with the cooling, pumping, and disposal of the hot hydrogen exhaust gas. The rocket test facilities at the U.S. Air Force Arnold Engineering Development Center (AEDC) were evaluated to determine the ability to support the operationally realistic testing of 'nonirradiated' nuclear propulsion components and/or subassemblies under simulated altitude conditions. An overview of the results from this evaluation process is presented herein.

  15. Feasibility of AEDC test facility support for nuclear thermal propulsion system development

    Energy Technology Data Exchange (ETDEWEB)

    Roler, M.A.; Turner, E.E.; Bradley, D.

    1993-06-01

    Test facility requirements to support the development of nuclear propulsion have been evaluated and shortfalls within current test facility capabilities identified. The development of a nonnuclear heat source capable of heating the high-pressure, high mass flowrate hydrogen propellant to the required operating temperature has been identified as a key enabling technology. Other significant issues identified were the safety aspects associated with the cooling, pumping, and disposal of the hot hydrogen exhaust gas. The rocket test facilities at the U.S. Air Force Arnold Engineering Development Center (AEDC) were evaluated to determine the ability to support the operationally realistic testing of 'nonirradiated' nuclear propulsion components and/or subassemblies under simulated altitude conditions. An overview of the results from this evaluation process is presented herein. 3 refs.

  16. GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Lowell, M.

    2012-05-01

    This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. The federal government's General Services Administration's (GSA) Public Buildings Service (PBS) acquires space on behalf of the federal government through new construction and leasing, and acts as a caretaker for federal properties across the country. PBS owns or leases 9,624 assets and maintains an inventory of more than 370.2 million square feet of workspace, and as such has enormous potential for implementing energy efficient and renewable energy technologies to reduce energy and water use and associated emissions. The Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies. In 2011, the GPG program selected 16 technologies or practices for rigorous testing and evaluation. Evaluations are currently being performed in collaboration with the Department of Energy's National Laboratories, and a steady stream of results will be forthcoming throughout 2012. This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. Lastly, it provides a general overview of the 2012 program.

  17. Trust Testing in Care Pathways for Neurodevelopmental Disorders: A Grounded Theory Study

    Directory of Open Access Journals (Sweden)

    Gustaf Waxegard

    2016-06-01

    Full Text Available Building care pathways for the expansive, heterogeneous, and complex field of neurodevelopmental disorders (ND is challenging. This classic grounded theory study conceptualizes problems encountered and resolved by professionals in the unpacking—diagnosis and work up—of ND. A care pathway for ND in children and adolescents was observed for six years. Data include interviews, documentation of a dialogue-conference devoted to the ND care pathway, 100+ hours of participant observations, and coding of stakeholder actions. Trust testing explores whether professional unpacking collaboration can occur without being “stuck with the buck” and if other professionals can be approached to solve own unpacking priorities. ND complexity, scarce resources, and diverging stakeholder interests undermine the ability to make selfless collaborative professional choices in the care pathway. ND professionals and managers should pay as much attention to trust issues as they do to structures and patient flows. The trust testing theory may improve the understanding of ND care pathways further as a modified social dilemma framework.

  18. A detailed numerical simulation of a liquid-propellant rocket engine ground test experiment

    Science.gov (United States)

    Lankford, D. W.; Simmons, M. A.; Heikkinen, B. D.

    1992-07-01

    A computational simulation of a Liquid Rocket Engine (LRE) ground test experiment was performed using two modeling approaches. The results of the models were compared with selected data to assess the validity of state-of-the-art computational tools for predicting the flowfield and radiative transfer in complex flow environments. The data used for comparison consisted of in-band station radiation measurements obtained in the near-field portion of the plume exhaust. The test article was a subscale LRE with an afterbody, resulting in a large base region. The flight conditions were such that afterburning regions were observed in the plume flowfield. A conventional standard modeling approach underpredicted the extent of afterburning and the associated radiation levels. These results were attributed to the absence of the base flow region which is not accounted for in this model. To assess the effects of the base region a Navier-Stokes model was applied. The results of this calculation indicate that the base recirculation effects are dominant features in the immediate expansion region and resulted in a much improved comparison. However, the downstream in-band station radiation data remained underpredicted by this model.

  19. Operational Phase Life Cycle Assessment of Select NASA Ground Test Facilities

    Science.gov (United States)

    Sydnor, George H.; Marshall, Timothy J.; McGinnis, Sean

    2011-01-01

    NASA's Aeronautics Test Program (ATP) is responsible for many large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. In order to accomplish these national objectives, significant energy and resources are consumed. A select group of facilities was analyzed using life-cycle assessment (LCA) to determine carbon footprint and environmental impacts. Most of these impacts stem from electricity and natural gas consumption, used directly at the facility and to generate support processes such as compressed air and steam. Other activities were analyzed but determined to be smaller in scale and frequency with relatively negligible environmental impacts. More specialized facilities use R-134a, R-14, jet fuels, or nitrogen gas, and these unique inputs can have a considerable effect on a facility s overall environmental impact. The results of this LCA will be useful to ATP and NASA as the nation looks to identify its top energy consumers and NASA looks to maximize research output and minimize environmental impact. Keywords: NASA, Aeronautics, Wind tunnel, Keyword 4, Keyword 5

  20. Tests for determining impact resistance and strength of glass used for nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Bunnell, L.R.

    1979-05-01

    Tests are described for determining the impact resistance (Section A) and static tensile strength (Section B) of glasses containing simulated or actual nuclear wastes. This report describes the development and use of these tests to rank different glasses, to assess effects of devitrification, and to examine the effect of impact energy on resulting surface area. For clarity this report is divided into two sections, Impact Resistance and Tensile Strength.

  1. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  2. Vibration test report on crossover piping system in seismic isolation nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Shinohara, Takaharu; Terada, Shuji; Yamazaki, Toshihiko; Tomita, Tsuneo; Kondo, Toshinari

    1999-03-01

    In a seismic isolation nuclear facility, crossover piping system is subjected to large relative displacement and inertia forces during earthquakes. Hinged bellows expansion joints are utilized for accommodation to such the large displacement. This report describes tests for validation of developed simulation code with analytical models. Seismic experiments by a vibration test machine were conducted using actual size piping system models. A comparison between test results and analytical results showed a favorable agreement. The vibration test demonstrated that the structural integrity of this piping system would be maintained during earthquakes. (H. Itami)

  3. A high resolution record of chlorine-36 nuclear-weapons-tests fallout from Central Asia

    Science.gov (United States)

    Green, J.R.; Cecil, L.D.; Synal, H.-A.; Santos, J.; Kreutz, K.J.; Wake, C.P.

    2004-01-01

    The Inilchek Glacier, located in the Tien Shan Mountains, central Asia, is unique among mid-latitude glaciers because of its relatively large average annual accumulation. In July 2000, two ice cores of 162 and 167 meters (m) in length were collected from the Inilchek Glacier for (chlorine-36) 36Cl analysis a part of a collaborative international effort to study the environmental changes archived in mid-latitude glaciers worldwide. The average annual precipitation at the collection site was calculated to be 1.6 m. In contrast, the reported average annual accumulations at the high-latitude Dye-3 glacial site, Greenland, the mid-latitude Guliya Ice Cap, China, and the mid-latitude Upper Fremont Glacier, Wyoming, USA, were 0.52, 0.16 and 0.76 m, respectively. The resolution of the 36Cl record in one of the Inilchek ice cores was from 2 to 10 times higher than the resolution of the records at these other sites and could provide an opportunity for detailed study of environmental changes that have occurred over the past 150 years. Despite the differences in accumulation among these various glacial sites, the 36Cl profile and peak concentrations for the Inilchek ice core were remarkably similar in shape and magnitude to those for ice cores from these other sites. The 36Cl peak concentration from 1958, the year during the mid-1900s nuclear-weapons-tests period when 36Cl fallout was largest, was preserved in the Inilchek core at a depth of 90.56 m below the surface of the glacier (74.14-m-depth water equivalent) at a concentration of 7.7 ?? 105 atoms of 36Cl/gram (g) of ice. Peak 36Cl concentrations from Dye-3, Guliya and the Upper Fremont glacial sites were 7.1 ?? 105, 5.4 ?? 105 and 0.7 ?? 105 atoms of 36Cl/g of ice, respectively. Measurements of 36Cl preserved in ice cores improve estimates of historical worldwide atmospheric deposition of this isotope and allow the sources of 36Cl in ground water to be better identified. ?? 2004 Published by Elsevier B.V.

  4. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  5. Probabilistic seismic safety assessment of a CANDU 6 nuclear power plant including ambient vibration tests: Case study

    Energy Technology Data Exchange (ETDEWEB)

    Nour, Ali [Hydro Québec, Montréal, Québec H2L4P5 (Canada); École Polytechnique de Montréal, Montréal, Québec H3C3A7 (Canada); Cherfaoui, Abdelhalim; Gocevski, Vladimir [Hydro Québec, Montréal, Québec H2L4P5 (Canada); Léger, Pierre [École Polytechnique de Montréal, Montréal, Québec H3C3A7 (Canada)

    2016-08-01

    Highlights: • In this case study, the seismic PSA methodology adopted for a CANDU 6 is presented. • Ambient vibrations testing to calibrate a 3D FEM and to reduce uncertainties is performed. • Procedure for the development of FRS for the RB considering wave incoherency effect is proposed. • Seismic fragility analysis for the RB is presented. - Abstract: Following the 2011 Fukushima Daiichi nuclear accident in Japan there is a worldwide interest in reducing uncertainties in seismic safety assessment of existing nuclear power plant (NPP). Within the scope of a Canadian refurbishment project of a CANDU 6 (NPP) put in service in 1983, structures and equipment must sustain a new seismic demand characterised by the uniform hazard spectrum (UHS) obtained from a site specific study defined for a return period of 1/10,000 years. This UHS exhibits larger spectral ordinates in the high-frequency range than those used in design. To reduce modeling uncertainties as part of a seismic probabilistic safety assessment (PSA), Hydro-Québec developed a procedure using ambient vibrations testing to calibrate a detailed 3D finite element model (FEM) of the containment and reactor building (RB). This calibrated FE model is then used for generating floor response spectra (FRS) based on ground motion time histories compatible with the UHS. Seismic fragility analyses of the reactor building (RB) and structural components are also performed in the context of a case study. Because the RB is founded on a large circular raft, it is possible to consider the effect of the seismic wave incoherency to filter out the high-frequency content, mainly above 10 Hz, using the incoherency transfer function (ITF) method. This allows reducing significantly the non-necessary conservatism in resulting FRS, an important issue for an existing NPP. The proposed case study, and related methodology using ambient vibration testing, is particularly useful to engineers involved in seismic re-evaluation of

  6. Distribution of Pu isotopes and {sup 137}Cs in and around the former soviet union`s Semipalatinsk nuclear test site

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masayoshi [Kanazawa Univ., Tatsunokuchi, Ishikawa (Japan). Low Level Radioactivity Laboratory; Hoshi, Masaharu; Takada, Jun; Tsukatani, Tsuneo; Sekerbaev, A.Kh.; Busev, B.I.

    1999-03-01

    This paper is a report on our survey of residual radioactivity, Pu isotopes and {sup 137}Cs, within and without the territory of the Semipalatinsk nuclear test site. Soil samples within the test site were collected at approximately 30 sites along the roads connecting Kurchatov City, ground zero for the first USSR nuclear test, Balapan, Degelen Mountain and Salzhal settlement. Furthermore, outside the test site, the soil was sampled at about 20 sites, including some settlements (Mostik, Dolon, Tchagan, etc.), forest and pasture areas, along the roads from Semipalatinsk City to Kurchatov City and north Korosteli settlement. The contamination levels of long-lived radionuclides, {sup 137}Cs, {sup 238}Pu and {sup 239,240}Pu as well as {sup 240}Pu/{sup 239}Pu atomic ratio in the soil were determined by non-destructive {gamma}-spectrometric method and radiochemical separation followed by {alpha}-spectrometric and/or ICP-MS methods, respectively. The results showed that although {sup 137}Cs was within typical environmental levels except for an areas near ground zero and Balapan, {sup 239,240}Pu was elevated levels contaminated with weapons-grade plutonium in all area we visited. From the stepwise leaching of Pu from the soil, 50-80% of total {sup 239,240}Pu in most samples was found to be tightly incorporated into the soil components which might have been melted at time of detonation. (author)

  7. [The Chinese nuclear test and 'atoms for peace' as a measure for preventing nuclear armament of Japan: the nuclear non-proliferation policy of the United States and the introduction of light water reactors into Japan, 1964-1968].

    Science.gov (United States)

    Yamazaki, Masakatsu

    2014-07-01

    Japan and the United States signed in 1968 a new atomic energy agreement through which US light-water nuclear reactors, including those of the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, were to be introduced into Japan. This paper studies the history of negotiations for the 1968 agreement using documents declassified in the 1990s in the US and Japan. After the success of the Chinese nuclear test in October 1964, the United States became seriously concerned about nuclear armament of other countries in Asia including Japan. Expecting that Japan would not have its own nuclear weapons, the US offered to help the country to demonstrate its superiority in some fields of science including peaceful nuclear energy to counter the psychological effect of the Chinese nuclear armament. Driven by his own political agenda, the newly appointed Prime Minister Eisaku Sato responded to the US expectation favorably. When he met in January 1965 with President Johnson, Sato made it clear that Japan would not pursue nuclear weapons. Although the US continued its support after this visit, it nevertheless gave priority to the control of nuclear technology in Japan through the bilateral peaceful nuclear agreement. This paper argues that the 1968 agreement implicitly meant a strategic measure to prevent Japan from going nuclear and also a tactic to persuade Japan to join the Nuclear Non -Proliferation Treaty.

  8. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    Energy Technology Data Exchange (ETDEWEB)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Knight, K. B.; Eppich, G. R. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Holliday, K. S. [Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-05-21

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  9. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    Science.gov (United States)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-01

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  10. OSIRIS—Gamma-ray spectroscopy software for on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, A.J., E-mail: Gus.Caffrey@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Bowyer, T.W. [Pacific Northwest National Laboratory, Richland, WA (United States); Egger, A.E. [Idaho National Laboratory, Idaho Falls, ID (United States); Hall, J.C. [Pacific Northwest National Laboratory, Richland, WA (United States); Kelly, S.M.; Krebs, K.M. [Idaho National Laboratory, Idaho Falls, ID (United States); Kreek, S.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Jordan, D.V.; Milbrath, B.D. [Pacific Northwest National Laboratory, Richland, WA (United States); Padgett, S.W. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Wharton, C.J. [Idaho National Laboratory, Idaho Falls, ID (United States); Wimer, N.G. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2015-06-01

    We have designed and tested software for the acquisition and analysis of high-resolution gamma-ray spectra during on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The On-Site Inspection RadioIsotopic Spectroscopy—OSIRIS—software filters the spectral data to display only radioisotopic information relevant to CTBT on-site inspections, e.g.,{sup 131}I. A set of over 100 fission-product spectra was employed for OSIRIS testing. These spectra were measured where possible, or generated by modeling. The test spectral compositions include non-nuclear-explosion scenarios, e.g., a severe nuclear reactor accident, and nuclear-explosion scenarios such as a vented underground nuclear test. Comparing its computer-based analyses to expert visual analyses of the test spectra, OSIRIS correctly identifies CTBT-relevant fission product isotopes at the 95% level or better.

  11. Some results of a simulated test for administration of activity in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Oropesa, P. [Centro de Isotopos (CENTIS), San Jose de las Lajas, Habana (Cuba)]. E-mail: poropesa@centis.edu.cu; Hernandez, A.T. [Centro de Isotopos (CENTIS), San Jose de las Lajas, Habana (Cuba); Serra, R.A. [Centro de Isotopos (CENTIS), San Jose de las Lajas, Habana (Cuba); Varela, C. [Centro de Control Estatal de Equipos Medicos (CCEEM). Havana (Cuba); Woods, M.J. [Ionising Radiation Metrology Consultants Ltd, Teddington (United Kingdom)

    2006-04-15

    This paper describes the results obtained using a simulated test for administration of activity in nuclear medicine between 2002 and 2004. Measurements in the radionuclide calibrator are made during the different stages of the procedure. The test attempts to obtain supplementary information on the quality of the measurement, with the aim of evaluating in a more complete way the accuracy of the administered activity value compared with the prescribed one. The participants' performance has been assessed by means of a statistical analysis of the reported data. Dependences between several attributes of the simulated administration tests results are discussed. Specifically, the proportion of satisfactory results in the 2003-2004 period was found to be higher than in 2002. It reveals an improvement of the activity administration in the Cuban nuclear medicine departments since 2003.

  12. Results of the first nuclear blowdown test on single fuel rods (LOC-11 Series in PBF)

    Energy Technology Data Exchange (ETDEWEB)

    Larson, J.R.; Evans, D.R.; McCardell, R.K.

    1978-01-01

    This paper presents results of the first nuclear blowdown tests (LOC-11A, LOC-11B, LOC-11C) ever conducted. The Loss-of-Coolant Accident (LOCA) Test Series is being conducted in the Power Burst Facility (PBF) reactor at the Idaho National Engineering Laboratory, near Idaho Falls, Idaho, for the Nuclear Regulatory Commission. The objective of the LOC-11 tests was to obtain data on the behavior of pressurized and unpressurized rods when exposed to a blowdown similar to that expected in a pressurized water reactor (PWR) during a hypothesized double-ended cold-leg break. The data are being used for the development and verification of analytical models that are used to predict coolant and fuel rod pressure during a LOCA in a PWR.

  13. Radionuclide observables for the Platte underground nuclear explosive test on 14 April 1962.

    Science.gov (United States)

    Burnett, Jonathan L; Milbrath, Brian D

    2016-11-01

    Past nuclear weapon explosive tests provide invaluable information for understanding the radionuclide observables expected during an On-site Inspection (OSI) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These radioactive signatures are complex and subject to spatial and temporal variability. The Platte underground nuclear explosive test on 14 April 1962 provides extensive environmental monitoring data that can be modelled and used to calculate the maximum time available for detection of the OSI-relevant radionuclides. The 1.6 kT test is especially useful as it released the highest amounts of recorded activity during Operation Nougat at the Nevada Test Site - now known as the Nevada National Security Site (NNSS). It has been estimated that 0.36% of the activity was released, and dispersed in a northerly direction. The deposition ranged from 1 × 10(-11) to 1 × 10(-9) of the atmospheric release (per m(2)), and has been used in this paper to evaluate an OSI and the OSI-relevant radionuclides at 1 week to 2 years post-detonation. Radioactive decay reduces the activity of the OSI-relevant radionuclides by 99.7% within 2 years of detonation, such that detection throughout the hypothesized inspection is only achievable close to the explosion where deposition was highest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. In-reactor tests of the nuclear light bulb rocket concept

    Science.gov (United States)

    Gauntt, R. O.; Slutz, S. A.; Latham, T. S.; Roman, W. C.; Rogers, R. J.

    1992-07-01

    An overview is given of the closed-cycle Gas Core Nuclear Rocket outlining scenarios for its use in short-duration Mars missions and results of Nuclear Light Bulb (NLB) tests. Isothermal and nonnuclear tests are described which confirmed the fundamental concepts behind the NLB. NLB reference-engine performance characteristics are given for hypothetical engines that could be used for manned Mars missions. Vehicle/propulsion sizing is based on a Mars mission with three trans-Mars impulse burns, capture and escape burns, and a total mission duration of 600 days. The engine would have a specific impulse of 1870 seconds, a 412-kN thrust, and a thrust/weight ratio of 1.3. Reactor tests including small-scale in-reactor tests are shown to be prerequisites for studying: (1) fluid mechanical confinement of the gaseous nuclear fuel; (2) buffer gas separation and circulation; and (3) the minimization of transparent wall-heat loading. The reactor tests are shown to be critical for establishing the feasibility of the NLB concept.

  15. Radionuclide observables for the Platte underground nuclear explosive test on 14 April 1962

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, Jonathan L.; Milbrath, Brian D.

    2016-11-01

    Past nuclear weapons tests provide invaluable information for understanding the radionuclide observables and data quality objectives expected during an On-site Inspection (OSI) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These radioactive signatures are complex and subject to spatial and temporal variability. The Platte Underground Nuclear Test on 14 April 1962 provides extensive environmental monitoring data that can be modelled and used to assess an OSI. The 1.6 kT test is especially useful as it released the highest amounts of recorded activity during Operation Nougat at the Nevada Test Site – now known as the Nevada National Security Site (NNSS). It has been estimated that 0.36% of the activity was released, and dispersed in a northerly direction. The deposition ranged from 1 x 10-11 to 1 x 10-9 of the atmospheric release (per m2), and has been used to evaluate a hypothetical OSI at 1 week to 2 years post-detonation. Radioactive decay reduces the activity of the 17 OSI relevant radionuclides by 99.7%, such that detection throughout the inspection is only achievable close to the explosion where deposition was highest.

  16. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    Science.gov (United States)

    Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.; Guimbal, P.

    2016-02-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  17. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    Directory of Open Access Journals (Sweden)

    Amharrak H.

    2016-01-01

    Full Text Available The nuclear heating measurements in Material Testing Reactors (MTRs are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  18. Enhanced analysis methods to derive the spatial distribution of 131I deposition on the ground by airborne surveys at an early stage after the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E; Reed, Michael S; Blumenthal, Daniel J

    2013-08-01

    This paper applies both new and well tested analysis methods to aerial radiological surveys to extract the I ground concentrations present after the March 2011 Fukushima Daiichi nuclear power plant (NPP) accident. The analysis provides a complete map of I deposition, an important quantity incalculable at the time of the accident due to the short half-life of I and the complexity of the analysis. A map of I deposition is the first step in conducting internal exposure assessments, population dose reconstruction, and follow-up epidemiological studies. The short half-life of I necessitates the use of aerial radiological surveys to cover the large area quickly, thoroughly, and safely. Teams from the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) performed aerial radiological surveys to provide initial maps of the dispersal of radioactive material in Japan. This work reports on analyses performed on a subset of the initial survey data by a joint Japan-U.S. collaboration to determine I ground concentrations. The analytical results show a high concentration of I northwest of the NPP, consistent with the previously reported radioactive cesium deposition, but also shows a significant I concentration south of the plant, which was not observed in the original cesium analysis. The difference in the radioactive iodine and cesium patterns is possibly the result of differences in the ways these materials settle out of the air.

  19. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later.

    Science.gov (United States)

    Hanson, Susan K; Pollington, Anthony D; Waidmann, Christopher R; Kinman, William S; Wende, Allison M; Miller, Jeffrey L; Berger, Jennifer A; Oldham, Warren J; Selby, Hugh D

    2016-07-19

    This paper describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products (95)Zr and (97)Zr. By measuring both the perturbation of the (95)Mo/(96)Mo and (97)Mo/(96)Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the (95)Zr and (97)Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.

  20. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

  1. Ground Tests and In-Orbit Performance of Variable Emittance Device Based on Manganese Oxide

    Science.gov (United States)

    Tachikawa, Sumitaka; Ohnishi, Akira; Nakamura, Yasuyuki; Okamoto, Akira

    A new thermal control material named the Smart Radiation Device (SRD) has shown improvement in development. The SRD can be used as a variable emittance radiator that controls the heat radiated into deep space without assistances of any electrical instruments or mechanical parts. Its total hemispherical emittance changes from low to high as the temperature increases. This new device reduces the energy consumption of the on-board heater, and decreases the weight and the cost of the thermal control system (TCS). Space environmental simulation tests on the ground were performed, and the first generation of the SRD has been demonstrating success on the MUSES-C ‘HAYABUSA’ spacecraft that was launched in May 2003. During its cruise on the orbit, the distance from the spacecraft to the sun varied from 0.86AU to 1.70AU. As the spacecraft experienced solar intensity variation by a factor 4, it was effective to use the variable emittance radiator for decreasing the heater power. In-orbit temperature indicated that the SRD had successfully minimized component temperature variation and saved heater power, as expected. With the opportunity to validate the SRD in space, this lightweight and low cost thermal control device offers a possibility for flexible thermal control on future spacecrafts.

  2. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.

  3. HV Test of the CTS Edgeless Silicon Detector in Vacuum and Close to a Grounded Plate

    CERN Document Server

    Eremin, Vladimir; Ruggiero, Gennaro

    2007-01-01

    The TOTEM Roman Pot Silicon sensors will be operated in vacuum to minimise the mechanical stress of the thin metal window which separates the detector package from the ultra high vacuum of the beam. To approach the beam axis as close as possible the detectors will be mounted with their edge at a distance of the order 100 - 200 um from the thin metal window. As the detectors will be run in overdepletion mode to allow the full charge collection within the shaping time of the readout electronics, there will be a potential drop of more than 100 V across their edge. Moreover this potential drop might need to be further increased with the accumulated radiation dose. The main goals of the tests described in this note are: - Characterisation of the voltage-current characteristics when the detector edge is in the direct vicinity of a grounded metal plate which simulates the above mentioned vacuum window; - Demonstration of the detector operation in vacuum at different pressures.

  4. 76 FR 52355 - NUREG-1482, Revision 2, “Guidelines for Inservice Testing at Nuclear Power Plants, Draft Report...

    Science.gov (United States)

    2011-08-22

    ... COMMISSION NUREG-1482, Revision 2, ``Guidelines for Inservice Testing at Nuclear Power Plants, Draft Report... a document entitled: NUREG-1482, Revision 2, ``Guidelines for Inservice Testing at Nuclear Power... was submitted previously for public comments as draft NUREG-1946. Based on public comments,...

  5. 78 FR 47011 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2013-08-02

    ... COMMISSION Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants..., ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This... software elements if those systems include software. This RG is one of six RG revisions addressing...

  6. Fallout Deposition in the Marshall Islands from Bikini and Enewetak Nuclear Weapons Tests

    Science.gov (United States)

    Beck, Harold L.; Bouville, André; Moroz, Brian E.; Simon, Steven L.

    2009-01-01

    Deposition densities (Bq m-2) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for all the 31 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 25 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers. PMID:20622548

  7. Fallout deposition in the Marshall Islands from Bikini and Enewetak nuclear weapons tests.

    Science.gov (United States)

    Beck, Harold L; Bouville, André; Moroz, Brian E; Simon, Steven L

    2010-08-01

    Deposition densities (Bq m(-2)) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for 32 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 23 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers.

  8. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    Science.gov (United States)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  9. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Science.gov (United States)

    Schroer, Bert

    2006-02-01

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g., chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work, I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff( S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL (2, Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular "Euclideanization" is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J.A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an "Encyclopedia of Mathematical Physics" contribution hep-th/0502125.

  10. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [FU Berlin (Germany). Institut fuer Theoretische Physik

    2005-04-15

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)

  11. NUCLEAR PHYSICS: Δ-Resonances in Ground State Properties of 2040Ca Spherical Cold Finite Nucleus at Equilibrium and under Compression

    Science.gov (United States)

    Abu-Sei'leek, Mohammed H. E.; Hasan, Mahmoud A.

    2010-08-01

    The ground state properties of the spherical nucleus 40Ca have been investigated by using constrained spherical Hartree-Fock (CSHF) approximation at equilibrium and under high radial compression in a six major shells. The effective baryon-baryon interaction that includes the Δ(1236) resonance freedom degrees to calculate nuclear properties is used. The nucleon-nucleon (N-N) interaction is based on Reid soft core (RSC) potential. The results of calculations show that much of increase in the nuclear energy generated under compression is used to create the massive Δ particles. The number of Δ's can be increased to about 2.1% of constituents of nucleus when nuclear density reaches about 1.34 times of normal density. The single particle energy levels are calculated and their behavior under compression is also examined. A good agreement has been found between current calculations and phenomenological shell model for low lying single-particle spectra. The gap between shells is very clear and L-S coupling become stronger as increasing the static load on the nucleus. The results show a considerable reduction in compressibility when freedom degrees of Δ's are taken into account. It has been found that the total nuclear radial density becomes denser in the interior and less dense in the exterior region of nucleus. The surface of nucleus becomes more and more responsive to compression than outer region.

  12. Ionospheric Signatures of North Korean Nuclear Test on 12 February 2013

    Science.gov (United States)

    Yoon, M.; Kim, D.; Yang, Y. M.; Lee, J.; Komjathy, A.

    2014-12-01

    Previous studies on interactions between the atmospheric waves and ionospheric perturbations concluded that the acoustic-gravity waves triggered by solid earth events such as earthquakes, tsunamis and underground nuclear tests may be used in detecting the ionospheric perturbations. Ionospheric perturbations have been observed using sounding radars and GPS remote sensing techniques since 1970s. As primary examples, ionospheric disturbances associated with 2006 and 2009 North Korean underground nuclear tests were observed using GPS measurements. In this work, we processed GNSS stations in South Korea and Japan and analyzed traveling ionospheric disturbances that were coincident with the 2013 North Korean underground test. North Korea conducted the third underground nuclear test at 2:57 UTC on February 12, 2013. The magnitude of earthquake generated by this event was registered to be an Mw 5.1 event. After analyzing GPS measurements from nearby stations, strong ionospheric perturbations were observed 15-30 minutes after the reported event, and the disturbances were shown to have primarily two different wave trains. The maximum VTEC perturbations turned out to be between 0.4 to 0.7 TECU. Five stations located in the northwest-to-southeast direction were also scrutinized for the propagation direction and amplitude variation related to ionospheric wave structures. The results clearly showed that the maximum amplitude of the waves may be higher as the stations are closer to the epicenter indicating that the waveforms may propagate away from the epicenter. In this research, we will analyze the characteristics of the detected ionospheric perturbations associated with the underground nuclear test. These findings are expected to verify our modeling results. We hope to get a better understanding of the influence of man-made hazards on the temporal and spatial variability of the global ionosphere.

  13. User input verification and test driven development in the NJOY21 nuclear data processing code

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Amelia Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Conlin, Jeremy Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCartney, Austin Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-21

    Before physically-meaningful data can be used in nuclear simulation codes, the data must be interpreted and manipulated by a nuclear data processing code so as to extract the relevant quantities (e.g. cross sections and angular distributions). Perhaps the most popular and widely-trusted of these processing codes is NJOY, which has been developed and improved over the course of 10 major releases since its creation at Los Alamos National Laboratory in the mid-1970’s. The current phase of NJOY development is the creation of NJOY21, which will be a vast improvement from its predecessor, NJOY2016. Designed to be fast, intuitive, accessible, and capable of handling both established and modern formats of nuclear data, NJOY21 will address many issues that many NJOY users face, while remaining functional for those who prefer the existing format. Although early in its development, NJOY21 is quickly providing input validation to check user input. By providing rapid and helpful responses to users while writing input files, NJOY21 will prove to be more intuitive and easy to use than any of its predecessors. Furthermore, during its development, NJOY21 is subject to regular testing, such that its test coverage must strictly increase with the addition of any production code. This thorough testing will allow developers and NJOY users to establish confidence in NJOY21 as it gains functionality. This document serves as a discussion regarding the current state input checking and testing practices of NJOY21.

  14. Turning Points in Containment of Lawrence Livermore National Laboratory Underground Nuclear Tests

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B C; Rambo, J T; Pawloski, G A; Burkhard, N R

    2006-11-21

    Sometime in 1987 Billy Hudson, a long-time LLNL Containment Scientist and the Task Leader for Containment Diagnostics, put together a presentation entitled ''Turning Points in Containment''. This presentation identifies challenges, lessons learned, and changes made in containment practice over a 20-year period, from 1967-1987. Besides providing a significant historical summary, the presentation is valuable as we maintain a position of readiness 14 years after the last underground nuclear detonation. It is particularly valuable to personnel who are new to the program and have no first-hand experience in implementing underground nuclear test containment for actual tests. We now view this material as a unique containment summary with timeless importance. We envision this report to be particularly useful to new Containment Program members and anyone interested in the history of underground nuclear test containment practices. We believe that the Barnwell test, detonated in 1989, would have been added to this summary if Billy Hudson had the opportunity to update the presentation. We have chosen to add a few slides to the end of the original presentation to describe the issues and lessons learned from Barnwell.

  15. The struggle of the veterans of the French nuclear tests; La lutte des veterans des essais nucleaires francais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The question debated in this article concerns the demand of compensation and recognition of the impact on their health of nuclear tests. The military personnel that worked during nuclear tests in French Polynesia and the Sahara sites, but also the inhabitants of the atolls of Moruroa and Fangataufa equally in French Polynesia. An observatory of the veterans health has been created in order to improve the medical management of military personnel and former military personnel. An association 'Moruroa e tatou' contains the Polynesian former workers of the Nuclear tests of the Pacific and the association A.V.E.N. contains the veterans of nuclear tests. numerous examples are detailed. The question is tackled too for the consequences on health of the British nuclear tests, in Australia, Christmas Islands, and New Zealand. (N.C.)

  16. Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G.A.

    1999-09-21

    Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to

  17. Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N.

    1990-06-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85{degree}C and 25{degree}C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs.

  18. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, R.S. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Maret, D.; Seniuk, P.; Smith, L.

    1996-12-01

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development`s (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing.

  19. Testing nuclear parton distributions with pA collisions at the LHC

    CERN Document Server

    Quiroga-Arias, Paloma; Wiedemann, Urs Achim

    2010-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non-linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at...

  20. Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    CERN Document Server

    Quiroga-Arias, Paloma; Wiedemann, Urs Achim

    2011-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program a...

  1. UK National Data Centre archive of seismic recordings of (presumed) underground nuclear tests 1964-1996

    Science.gov (United States)

    Young, John; Peacock, Sheila

    2016-04-01

    The year 1996 has particular significance for forensic seismologists. This was the year when the Comprehensive Test Ban Treaty (CTBT) was signed in September at the United Nations, setting an international norm against nuclear testing. Blacknest, as a long time seismic centre for research into detecting and identifying underground explosions using seismology, provided significant technical advice during the CTBT negotiations. Since 1962 seismic recordings of both presumed nuclear explosions and earthquakes from the four seismometer arrays Eskdalemuir, Scotland (EKA), Yellowknife, Canada (YKA), Gauribidanur, India (GBA), and Warramunga, Australia (WRA) have been copied, digitised, and saved. There was a possibility this archive would be lost. It was decided to process the records and catalogue them for distribution to other groups and institutions. This work continues at Blacknest but the archive is no longer under threat. In addition much of the archive of analogue tape recordings has been re-digitised with modern equipment, allowing sampling rates of 100 rather than 20 Hz.

  2. Thermal-hydraulic tests of a recirculation cooling installation for the Rostov nuclear power station

    Science.gov (United States)

    Balunov, B. F.; Balashov, V. A.; Il'in, V. A.; Krayushnikov, V. V.; Lychakov, V. D.; Meshalkin, V. V.; Ustinov, A. N.; Shcheglov, A. A.

    2013-09-01

    Results obtained from thermal-hydraulic tests of the recirculation cooling installation used as part of the air cooling system under the containments of the Rostov nuclear power station Units 3 and 4 are presented. The operating modes of the installation during normal operation (air cooling on the surface of finned tubes), under the conditions of anticipated operational occurrences (air cooling and steam condensation from a steam-air mixture), and during an accident (condensation of pure steam) are considered. Agreement is obtained between the results of tests and calculations carried out according to the recommendations given in the relevant regulatory documents. A procedure of carrying out thermal calculation for the case of steam condensation from a steam-air mixture on the surface of fins is proposed. The possibility of efficient use of the recirculation cooling installation in the system for reducing emergency pressure under the containment of a nuclear power station is demonstrated.

  3. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test si

  4. Geophysical assessment of near-field ground motion and the implications for the design of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.L.

    1977-09-30

    This paper gives an in-depth discussion on the various methodologies currently available to predict the near-field ground motion from an earthquake. The limitations of the various methods are discussed in some detail in light of recently available data. It is shown that, (at least for California earthquakes) for an earthquake with a given magnitude a wide variation in the peak ground motion can occur. The change in the spectral content of the ground motion is given as a function of earthquake magnitude and peak ground acceleration. It is shown that the large g values associated with small earthquakes are relatively unimportant in the design provided the structures have a modest amount of ductility. Data recently obtained from the Friuli earthquake are also examined. Although not all the geophysical data are currently available, the provisional conclusion is reached that the relation between the strong ground motion from this earthquake and its source parameters is the same as for the western United States.

  5. Surface coatings as xenon diffusion barriers on plastic scintillators : Improving Nuclear-Test-Ban Treaty verification

    OpenAIRE

    Bläckberg, Lisa

    2011-01-01

    This thesis investigates the ability of transparent surface coatings to reduce xenon diffusion into plastic scintillators. The motivation for the work is improved radioxenon monitoring equipment, used with in the framework of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty. A large part of the equipment used in this context incorporates plastic scintillators which are in direct contact with the radioactive gas to be detected. One problem with such setup is that radioxenon...

  6. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  7. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    Science.gov (United States)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology

  8. An Overview of Comprehensive Inspection Technologies Under Investigation at Legacy Underground Nuclear Test Sites

    Science.gov (United States)

    Chipman, V.; Emer, D. F.; Townsend, M.; Drellack, S.

    2013-12-01

    Comprehensive Inspection Technologies (CIT) under investigation include methods that might be of use in detecting a clandestine underground nuclear test. These include techniques for detecting noble gases, visual observation methods, hyperspectral imaging, controlled- and passive-source seismic surveys, and other geophysical methods. Noble gas detection studies include a series of experiments called the Noble Gas Migration (NGM) experiments, that explore the fundamental parameters that determine the capability to detect radioxenon isotopes and 37Ar produced in underground nuclear tests. These isotopes are of interest to both the International Monitoring System (IMS) global monitoring and On-Site Inspection (OSI) regimes. Through a unique combination of field experiments, sampling of radioactive noble gas from a legacy underground nuclear test, large-scale hydrogeologic computer simulations, and a regimen involving carefully designed field-sampling techniques, the experiments are providing information about the production, release, and sampling challenges that determine the ability to detect these two important noble gases. Other CIT experiments explore and validate geophysical (controlled-source and passive-source seismic, gravity, electrical, magnetic, etc.) and optical techniques (both visual and instrument-based) that greatly enhance the understanding of the efficiency of these techniques for OSI, including how to better integrate the various technologies with each other and individually at different physical scales. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25936--1840.

  9. Environmental assessment report: Nuclear Test Technology Complex. [Construction and operation of proposed facility

    Energy Technology Data Exchange (ETDEWEB)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report.

  10. Test Suite for Nuclear Data I: Deterministic Calculations for Critical Assemblies and Replacement Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Brown, D A; Descalle, M

    2006-05-22

    The authors describe tools developed by the Computational Nuclear Physics group for testing the quality of internally developed nuclear data and the fidelity of translations from ENDF formatted data to ENDL formatted data used by Livermore. These tests include S{sub n} calculations for the effective k value characterizing critical assemblies and for replacement coefficients of different materials embedded in the Godiva and Jezebel critical assemblies. For those assemblies and replacement materials for which reliable experimental information is available, these calculations provide an integral check on the quality of data. Because members of the ENDF and reactor communities use calculations for these same assemblies in their validation process, a comparison between their results with ENDF formatted data and their results with data translated into the ENDL format provides a strong check on the accuracy of translations. As a first application of the test suite they present a study comparing ENDL 99 and ENDF/B-V. They also consider the quality of the ENDF/B-V translation previously done by the Computational Nuclear Physics group. No significant errors are found.

  11. The particle swarm optimization algorithm applied to nuclear systems surveillance test planning; Otimizacao aplicada ao planejamento de politicas de testes em sistemas nucleares por enxame de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Newton Norat

    2006-12-15

    This work shows a new approach to solve availability maximization problems in electromechanical systems, under periodic preventive scheduled tests. This approach uses a new Optimization tool called PSO developed by Kennedy and Eberhart (2001), Particle Swarm Optimization, integrated with probabilistic safety analysis model. Two maintenance optimization problems are solved by the proposed technique, the first one is a hypothetical electromechanical configuration and the second one is a real case from a nuclear power plant (Emergency Diesel Generators). For both problem PSO is compared to a genetic algorithm (GA). In the experiments made, PSO was able to obtain results comparable or even slightly better than those obtained b GA. Therefore, the PSO algorithm is simpler and its convergence is faster, indicating that PSO is a good alternative for solving such kind of problems. (author)

  12. The re-instrumentation irradiation test of nuclear fuel using fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Yong; Joung, C. Y.; Hong, J. T.; Ahn, S. H.; Choo, K. N. [KAERI, Daejeon (Korea, Republic of)

    2011-07-15

    This report is the status art report on re-instrumentation. The main techniques described in this report are technology that is developed in Norway HALDEN and domestic research facilities. Although re-instrumentation is not gone vigorously after 1990, HALDEN's re-instrumentation equipment was made until recently. In the meantime, re-instrumentation research was gone in domestic, but irradiation test did not performed actually. But DUPIC fuel irradiation is similar to re-instrumentation, so the irradiation test can be utilized directly to the Fuel Test Loop

  13. Ground Testing of the EMCS Seed Cassette for Biocompatibility with the Tardigrade, Hypsibius dujardini

    Science.gov (United States)

    Reinsch, Sigrid; Myers, Zachary Alan; DeSimone, Julia Carol; Freeman, John L.; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David

    2014-01-01

    The European Modular Cultivation System, EMCS, was developed by ESA for plant experiments. We performed ground testing to determine whether ARC EMCS seed cassettes could be adapted for use with tardigrades for future spaceflight experiments. Tardigrades (water bears) are small invertebrates that enter the tun state in response to desiccation or other environmental stresses. Tardigrade tuns have suspended metabolism and have been shown to be survive exposure to space vacuum, high pressure, temperature and other stresses. For spaceflight experiments using the EMCS, the organisms ideally must be able to survive desiccation and storage in the cassette at ambient temperature for several weeks prior to the initiation of the experiment by the infusion of water to the cassette during spaceflight. The ability of tardigrades to survive extremes by entering the tun state make them ideal candidates for growth experiments in the EMCS cassettes. The growth substratum in the cassettes is a gridded polyether sulfone (PES) membrane. A blotter beneath the PES membrane contains dried growth medium. The goals of our study were to (1) determine whether tardigrades survive and reproduce on PES membranes, (2) develop a consistent method for dehydration of the tardigrades with high recovery rates upon rehydration, (3) to determine an appropriate food source for the tardigrades that can also be dehydrated/rehydrated and (4) successful mock rehydration experiment in cassettes with appropriate food source. We present results that show successful multigenerational growth of tardigrades on PES membranes with a variety of wet food sources. We have successfully performed a mock rehydration with tardigrades and at least one candidate food, protonema of the moss Polytrichum, that supports multigenerational growth and whose spores germinate quickly enough to match tardigrade feeding patterns post rehydration. Our results indicate that experiments on the ISS using the tardigrade, Hypsibius dujardini

  14. Partial Nucleate Pool Boiling at Low Heat Flux: Preliminary Ground Test for SOBER-SJ10

    Science.gov (United States)

    Wu, Ke; Li, Zhen-Dong; Zhao, Jian-Fu; Li, Hui-Xiong; Li, Kai

    2016-05-01

    Focusing on partial nucleate pool boiling at low heat flux, SOBER-SJ10, one of 27 experiments of the program SJ-10, has been proposed to study local convection and heat transfer around an isolated growing vapor bubble during nucleate pool boiling on a well characterized flat surface in microgravity. An integrated micro heater has been developed. By using a local pulse overheating method in the experimental mode of single bubble boiling, a bubble nucleus can be excited with accurate spatial and temporal positioning on the top-side of a quartz glass substrate with a thickness of 2 mm and an effective heating area of 4.5 mm in diameter, and then grows under an approximate constant heat input provided by the main heater on the back-side of the substrate. Ten thin film micro-RTDs are used for local temperature measurements on the heating surface underneath the growing bubble. Normal pool boiling experiments can also be carried out with step-by-step increase of heating voltage. A series of ground test of the flight module of SOBER-SJ10 have been conducted. Good agreement of the measured data of single phase natural convection with the common-used empirical correlation warrants reasonable confidence in the data. It is found that the values of the incipience superheat of pool boiling at different subcooling are consistent with each others, verifying that the influence of subcooling on boiling incipience can be neglected. Pool boiling curves are also obtained, which shows great influence of subcooling on heat transfer of partial nucleate pool boiling, particularly in lower heat flux.

  15. Nuclear power plant Olkiluoto 3. Containment leakage test under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fleckenstein, Tobias [TUEV SUED Industrie Service GmbH, Munich (Germany). Measaruement Technology Dept.

    2015-01-15

    Modern nuclear power plants place high demands on the design and execution of safety checks. TUEV SUED supported the containment leakage test for the largest- capacity third generation nuclear power plant in the world - Olkiluoto 3 in Finland. The experts successfully met the challenges presented by exceptional parameters of the project. The containment of Olkiluoto 3 is unique in that the vessel's volume is 80,000 m{sup 3} while measurements were carried out over a period of ten days. To execute the test, 75 temperature and 15 humidity sensors had to be installed and correctly interlinked by more than ten kilometres of cable. These instruments also needed to withstand an absolute pressure of 6 bar, ambient temperatures of 30 C and high levels of humidity. These conditions required comprehensive preparation and a high amount of qualification tests. Parts of the qualifications were carried out at the autoclave system of the Technical University in Munich, Germany, where the project test conditions could be simulated. The software required to determine the tests was developed by TUEV SUED and verified by German's national accreditation body DAkkS under ISO 17025. TUEV SUED enabled the test schedule to continue without delay by analysing all recorded data continuously on site, including pressure, temperature, humidity and leakage mass flow curves. With the comprehensive preparation, data acquisition system recording measurements continuously and the on-time result calculation, all components of the leak-tightness assessment were successfully completed in accordance with requirements.

  16. Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Damoy, S.; Perez Loureiro, D. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Chambert, V.; Dorangeville, F. [IPNO, CNRS/IN2P3, Orsay (France); Druillole, F. [CEA, DSM/Irfu/SEDI, Gif-Sur-Yvette (France); Grinyer, G.F. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Lermitage, A.; Maroni, A.; Noël, G. [IPNO, CNRS/IN2P3, Orsay (France); Porte, C.; Roger, T. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Rosier, P. [IPNO, CNRS/IN2P3, Orsay (France); Suen, L. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France)

    2014-01-21

    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm{sup 2} pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics.

  17. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    Science.gov (United States)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

  18. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, W.

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  19. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system.

  20. Testing sea-level markers observed in ground-penetrating radar data from Feddet, south-eastern Denmark

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Nielsen, Lars; Clemmensen, Lars B

    2012-01-01

    Ground-penetrating radar (GPR) data have been collected across the modern part (test identification of sea-level markers in GPR data from microtidal depositional environments. Nielsen and Clemmensen (2009) showed that iden......Ground-penetrating radar (GPR) data have been collected across the modern part (... that identified downlap points in GPR data from Anholt (an island in the Kattegat Sea, Denmark) can be interpreted to mark sea level at the time of deposition. The data presented here support this hypothesis. The GPR reflection data have been acquired with shielded 250 MHz Sensors & Software antennae along...

  1. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  2. Assessment of artificial radionuclides issued from French nuclear bomb testing at Mururoa (French Polynesia)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.-M.; Thomas, A.J. (Ecole Normale Superieure, Montrouge (France). Inst. de Biogeochimie Marine); Charrier, B.; Cousteau, J.-Y.; Sarano, F. (Fondation Cousteau, Paris (France))

    1990-03-01

    The Mururoa lagoon was sampled immediately after a nuclear test. {sup 131}I was found in sediments and plankton. Official French sources explain its occurrence by an accidental release during a control operation. Long-lived nuclides ({sup 137}Cs, Pu isotopes, etc) are ascribed to past local atmospheric tests. Their total flux to the Pacific Ocean is markedly low as compared to discharges by major reprocessing plants. Radionuclides short-term impact on Pacific ecosystems and man is insignificant. Long-term processes could not be assessed. (author).

  3. Bayesian Zero-Failure (BAZE) reliability demonstration testing procedure for components of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Waller, R.A.

    1977-06-01

    A Bayesian-Zero-Failure (BAZE) reliability demonstration testing procedure is presented. The method is developed for an exponential failure-time model and a gamma prior distribution on the failure-rate. A simple graphical approach using percentiles is used to fit the prior distribution. The procedure is given in an easily applied step-by-step form which does not require the use of a computer for its implementation. The BAZE approach is used to obtain sample test plans for selected components of nuclear reactor safety systems.

  4. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    Science.gov (United States)

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  5. Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, James W., LTC [Editor

    2000-09-15

    These proceedings contain papers prepared for the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), held 13-15 September 2000 in New Orleans, Louisiana. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), US Army Space and Missile Defense Command, Defense Special Weapons Agency (DSWA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Development of Causality Analyzer for Maintenance/Test Tasks in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyun Young; Oh, Kye Min; Kim, So Young; Kim, Tae Mi; Ahmed, Rizwan [KyungHee University, Yongin (Korea, Republic of)

    2010-02-15

    The purpose of this project is to propose a causality analyzer for maintenance/test tasks in nuclear power plants in terms of fault tree analysis and turbine cycle simulation for a secondary side. In nuclear power plants, a lot of efforts to reduce unanticipated trips caused by maintenance or tests have been conducted, so many of trip causalities in a primary side were eliminated. However, it is still difficult to effectively recognize the causalities for the tasks of maintenance/tests in a secondary side. This study, therefore, attempted to propose a methodology based on fault tree analysis and derate simulation, which is particularly applicable for a secondary side. Ultimately, it is possible to develop the guidelines to warn the vulnerability in the tasks by proactively providing the human errors from maintenance or tests. The products of this study is able to predict the enhancement of plant availability by correlating the human errors resulting from maintenance/tests with a various type of plant losses

  7. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems` Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

  8. Simulation of the nuclear fuel assembly drop test with LS-Dyna

    Energy Technology Data Exchange (ETDEWEB)

    Petkevich, P., E-mail: petya2306@gmail.com; Abramov, V.; Yuremenko, V.; Piminov, V.; Makarov, V.; Afanasiev, A.

    2014-04-01

    Transportation of the nuclear fuel containing objects is especially sensitive to accidental drops, as any event, affecting the fuel spacial arrangement, alters also neutron multiplication factor and can result in uncontrolled chain reaction. The latter is particularly important for nuclear fuel being immersed in water. Apart from that, fall can result in a mechanical damage of the fuel rods, which can cause environmental pollution by radionuclides. Final and intermediate fuel configurations during the accident depend on the impact velocity and the angle between falling object and the surface. Experiments cannot cover all the possible variants of drops, as it would result in their unacceptable prices. Therefore elaboration of the approaches to numerically simulate such kind of accidents is an essential step in the nuclear fuel transportation safety analysis and is the principal goal of the present research. Series of drop tests with fuel assemblies (FA) models of different complexity have been performed and numerically simulated with LS-Dyna software in order to proof the reliability of such kind of analysis. The paper contains description of the drop test experimental facility, some experimental results and their numerical simulation. It has been found that the finite element model of the FA and the material properties used for the simulation provide reliable predictions of the FA materials deformation and failure in case of accidental drops onto a rigid surface.

  9. CALMOS: Innovative device for the measurement of nuclear heating in material testing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carcreff, H. [Alternative Energies and Atomic Energy Commission CEA, Saclay Center, DEN/DANS/DRSN/SIREN, Gif Sur Yvette, 91191 (France)

    2011-07-01

    An R and D program has been carried out since 2002 in order to improve gamma heating measurements in the 70 MWth OSIRIS Material Testing Reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. Throughout this program an innovative calorimetric probe associated to a specific handling system has been designed in order to make measurements both along the fissile height and on the upper part of the core, where nuclear heating rates still remain high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for the process validation, while a displacement system has been especially designed to move the probe axially. A final probe has been designed thanks to modeling results and to preliminary measurements obtained with mock-ups irradiated to a heating level of 2W/g, This paper gives an overview of the development, describes the calorimetric probe, and expected advantages such as the possibility to use complementary methods to get the nuclear heating measurement. Results obtained with mock-ups irradiated in ex-core area of the reactor are presented and discussed. (authors)

  10. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kriz, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5 day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.

  11. Aquifer tests and simulation of ground-water flow in Triassic sedimentary rocks near Colmar, Bucks and Montgomery Counties, Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Bird, Philip H.

    2003-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to evaluate ground-water flow in Triassic sedimentary rocks near Colmar, in Bucks and Montgomery Counties, Pa. The study was conducted to help the U.S. Environmental Protection Agency evaluate remediation alternatives at the North Penn Area 5 Superfund Site near Colmar, where ground water has been contaminated by volatile organic solvents (primarily trichloroethene). The investigation focused on determining the (1) drawdown caused by separately pumping North PennWater Authority wells NP?21 and NP?87, (2) probable paths of groundwater movement under present-day (2000) conditions (with NP?21 discontinued), and (3) areas contributing recharge to wells if pumping from wells NP-21 or NP?87 were restarted and new recovery wells were installed. Drawdown was calculated from water levels measured in observation wells during aquifer tests of NP?21 and NP?87. The direction of ground-water flow was estimated by use of a three-dimensional ground-water-flow model. Aquifer tests were conducted by pumping NP?21 for about 7 days at 257 gallons per minute in June 2000 and NP?87 for 3 days at 402 gallons per minute in May 2002. Drawdown was measured in 45 observation wells during the NP?21 test and 35 observation wells during the NP?87 test. Drawdown in observation wells ranged from 0 to 6.8 feet at the end of the NP?21 test and 0.5 to 12 feet at the end of the NP?87 test. The aquifer tests showed that ground-water levels declined mostly in observation wells that were completed in the geologic units penetrated by the pumped wells. Because the geologic units dip about 27 degrees to the northwest, shallow wells up dip to the southeast of the pumped well showed a good hydraulic connection to the geologic units stressed by pumping. Most observation wells down dip from the pumping well penetrated units higher in the stratigraphic section that were not well

  12. Differences in rates of decrease of environmental radiation dose rates by ground surface property in Fukushima City after the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2013-01-01

    After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.

  13. Insights to repository performance through study of a nuclear test site

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D K; Kersting, A B; Thompson, J L; Finnegan, D L

    2000-07-12

    Underground nuclear test sites offer an unprecedented opportunity to evaluate processes relevant to high-level waste repository performance in the absence of engineered barriers. Radionuclide migration programs at the Nevada Test Site represent a twenty-five year systematic investigation of the diverse radiologic source terms residual from weapons testing and the evolution of the hydrologic source term which comprises those radionuclides dissolved in or otherwise available for transport by groundwater. The Nevada Test Site shares actinide source terms, correlative geology, an identical tectonic setting, similar climate, and a thick unsaturated zone with the adjacent proposed Yucca Mountain high-level waste repository and provides a natural laboratory to assess long-term radionuclide transport in the near field. Analog studies may ultimately help validate predictions of radionuclide transport from the Yucca Mountain repository.

  14. 78 FR 71676 - NUREG-1482, Revision 2, “Guidelines for Inservice Testing at Nuclear Power Plants, Final Report”

    Science.gov (United States)

    2013-11-29

    ... COMMISSION NUREG-1482, Revision 2, ``Guidelines for Inservice Testing at Nuclear Power Plants, Final Report.... Nuclear Regulatory Commission (NRC) has issued a final report entitled: NUREG-1482, Revision 2....'' In the previous Revisions 0 and 1 of NUREG-1482, the NRC staff provides licensees guidelines...

  15. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-01

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  16. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  17. In situ radiation measurements at the former Soviet Nuclear Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  18. Handling missing data in transmission disequilibrium test in nuclear families with one affected offspring.

    Science.gov (United States)

    Bourget, Gulhan

    2012-01-01

    The Transmission Disequilibrium Test (TDT) compares frequencies of transmission of two alleles from heterozygote parents to an affected offspring. This test requires all genotypes to be known from all members of the nuclear families. However, obtaining all genotypes in a study might not be possible for some families, in which case, a data set results in missing genotypes. There are many techniques of handling missing genotypes in parents but only a few in offspring. The robust TDT (rTDT) is one of the methods that handles missing genotypes for all members of nuclear families [with one affected offspring]. Even though all family members can be imputed, the rTDT is a conservative test with low power. We propose a new method, Mendelian Inheritance TDT (MITDT-ONE), that controls type I error and has high power. The MITDT-ONE uses Mendelian Inheritance properties, and takes population frequencies of the disease allele and marker allele into account in the rTDT method. One of the advantages of using the MITDT-ONE is that the MITDT-ONE can identify additional significant genes that are not found by the rTDT. We demonstrate the performances of both tests along with Sib-TDT (S-TDT) in Monte Carlo simulation studies. Moreover, we apply our method to the type 1 diabetes data from the Warren families in the United Kingdom to identify significant genes that are related to type 1 diabetes.

  19. Handling missing data in transmission disequilibrium test in nuclear families with one affected offspring.

    Directory of Open Access Journals (Sweden)

    Gulhan Bourget

    Full Text Available The Transmission Disequilibrium Test (TDT compares frequencies of transmission of two alleles from heterozygote parents to an affected offspring. This test requires all genotypes to be known from all members of the nuclear families. However, obtaining all genotypes in a study might not be possible for some families, in which case, a data set results in missing genotypes. There are many techniques of handling missing genotypes in parents but only a few in offspring. The robust TDT (rTDT is one of the methods that handles missing genotypes for all members of nuclear families [with one affected offspring]. Even though all family members can be imputed, the rTDT is a conservative test with low power. We propose a new method, Mendelian Inheritance TDT (MITDT-ONE, that controls type I error and has high power. The MITDT-ONE uses Mendelian Inheritance properties, and takes population frequencies of the disease allele and marker allele into account in the rTDT method. One of the advantages of using the MITDT-ONE is that the MITDT-ONE can identify additional significant genes that are not found by the rTDT. We demonstrate the performances of both tests along with Sib-TDT (S-TDT in Monte Carlo simulation studies. Moreover, we apply our method to the type 1 diabetes data from the Warren families in the United Kingdom to identify significant genes that are related to type 1 diabetes.

  20. Geology in the Vicinity of the TYBO and BENHAM Underground Nuclear Tests, Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    L. B. Prothro

    2001-12-01

    Recent radiochemical evidence from groundwater characterization and monitoring wells in the vicinity of the TYBO and BENHAM underground nuclear tests in Area 20 of the Nevada Test Site, suggests that migration of radionuclides within groundwater beneath this portion of Area 20 may be more rapid than previously thought. In order to gain a better understanding of the hydrogeologic conditions in the TYBO-BENHAM area for more accurate flow and transport modeling, a reevaluation of the subsurface geologic environment in the vicinity of the two underground tests was conducted. Eight existing drill holes provided subsurface control for the area. These holes included groundwater characterization and monitoring wells, exploratory holes, and large-diameter emplacement holes used for underground nuclear weapons tests. Detailed and consistent geologic descriptions of these holes were produced by updating existing geologic descriptions with data from petrographic, chemical, and mineralogic analyses, and current stratigraphic concepts of the region. The updated descriptions, along with surface geologic data, were used to develop a detailed geologic model of the TYBO-BENHAM area. This model is represented by diagrams that correlate stratigraphic, lithologic, and alteration intervals between holes, and by isopach and structure maps and geologic cross sections. Regional data outside the TYBO-BENHAM area were included in the isopach and structure maps to better evaluate the geology of the TYBO-BENHAM area in a regional context. The geologic model was then evaluated with regard to groundwater flow and radionuclide migration to assess the model's implications for flow and transport modeling. Implications include: (1) confirmation of the general hydrogeology of the area described in previous studies; (2) the presence of two previously unrecognized buried faults that could act as zones of enhanced permeability within aquifers; and (3) secondary alteration within tuff confining

  1. PRex: An Experiment to Investigate Detection of Near-field Particulate Deposition from a Simulated Underground Nuclear Weapons Test Vent.

    Science.gov (United States)

    Keillor, Martin E; Arrigo, Leah M; Baciak, James E; Chipman, Veraun; Detwiler, Rebecca S; Emer, Dudley F; Kernan, Warnick J; Kirkham, Randy R; MacDougall, Matthew R; Milbrath, Brian D; Rishel, Jeremy P; Seifert, Allen; Seifert, Carolyn E; Smart, John E

    2016-05-01

    A radioactive particulate release experiment to produce a near-field ground deposition representative of small-scale venting from an underground nuclear test was conducted to gather data in support of treaty capability development activities. For this experiment, a CO2-driven "air cannon" was used to inject (140)La, a radioisotope of lanthanum with 1.7-d half-life and strong gamma-ray emissions, into the lowest levels of the atmosphere at ambient temperatures. Witness plates and air samplers were laid out in an irregular grid covering the area where the plume was anticipated to deposit based on climatological wind records. This experiment was performed at the Nevada National Security Site, where existing infrastructure, radiological procedures, and support personnel facilitated planning and execution of the work. A vehicle-mounted NaI(Tl) spectrometer and a polyvinyl toluene-based backpack instrument were used to survey the deposited plume. Hand-held instruments, including NaI(Tl) and lanthanum bromide scintillators and high purity germanium spectrometers, were used to take in situ measurements. Additionally, three soil sampling techniques were investigated and compared. The relative sensitivity and utility of sampling and survey methods are discussed in the context of on-site inspection.

  2. 7th International Workshop on Application of Lasers in Atomic Nuclei Research “Nuclear Ground and Isometric State Properties”

    CERN Document Server

    Błaszczak, Z; Marinova, K; LASER 2006

    2007-01-01

    7th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, May 29-June 01, 2006 Researchers and PhD students interested in recent results in the nuclear structure investigation by laser spectroscopy, the progress of the experimental technique and the future developments in the field will find this volume indispensable. Reprinted from Hyperfine Interactions (HYPE) Volume ???

  3. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  4. Vessel grounding in entrance channels: case studies and physical model tests

    CSIR Research Space (South Africa)

    Tulsi, K

    2014-05-01

    Full Text Available Physical model studies were conducted of a 250K DWT fully laden iron ore vessel grounding on the side slopes of the outbound channel at a major Australian port. A key deliverable of the study was to estimate the tug force required to pull the vessel...

  5. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blaine Grover

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of

  6. Distribution of 99Tc and 129I in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Hu, Q; Rose, T P; Nimz, G J; Zavarin, M

    2006-03-17

    {sup 99}Tc and {sup 129}I are important contributors to risk assessment due to their long half-lives and high mobility as aqueous anionic species. We analyzed {sup 99}Tc and {sup 129}I in groundwater samples in and near 11 underground nuclear tests and in melt glass and rock samples retrieved from the Chancellor test cavity, Nevada Test Site. The {sup 129}I/{sup 127}I ratio ranges from 10{sup -3} to 10{sup -6} in cavity water and 10{sup -4} to 10{sup -9} in satellite wells. The {sup 99}Tc concentration ranges from 3 to 10{sup -4} Bq/L in cavity waters and from 0.3 to 10{sup -4} Bq/L in satellite wells. Downstream migration is apparent for both radionuclides. However, it is affected by both retardation and initial distribution. In-situ {sup 99}Tc and {sup 129}I K{sub d}s calculated using rubble and water concentrations are 3 to 22 mL/g and 0 to 0.12 mL/g, respectively and are suggestive of mildly reducing conditions. {sup 129}I distribution in the melt glass, rubble and groundwater of the Chancellor test cavity is 28%, 24% and 48%, respectively; for {sup 99}Tc, it is 65%, 35% and 0.3%, respectively. Our partitioning estimates differ from those of underground tests in French Polynesia, implying that fission product distribution may vary from test to test. Factors that may influence this distribution include geologic conditions (e.g. lithology, water and CO{sub 2} content) and the cooling history of the test cavity.

  7. Ground tests with prototype of CeBr3 active gamma ray spectrometer proposed for future venus surface missions

    Science.gov (United States)

    Litvak, M. L.; Sanin, A. B.; Golovin, D. V.; Jun, I.; Mitrofanov, I. G.; Shvetsov, V. N.; Timoshenko, G. N.; Vostrukhin, A. A.

    2017-03-01

    The results of a series of ground tests with a prototype of an active gamma-ray spectrometer based on a new generation of scintillation crystal (CeBr3) are presented together with a consideration to its applicability to future Venus landing missions. We evaluated the instrument's capability to distinguish the subsurface elemental composition of primary rock forming elements such as O, Na, Mg, Al, Si, K and Fe. Our study uses heritage from previous ground and field tests and applies to the analysis of gamma lines from activation reaction products generated by a pulsed neutron generator. We have estimated that the expected accuracies achieved in this approach could be as high as 1-10% for the particular chemical element being studied.

  8. Selected fault testing of electronic isolation devices used in nuclear power plant operation

    Energy Technology Data Exchange (ETDEWEB)

    Villaran, M.; Hillman, K.; Taylor, J.; Lara, J.; Wilhelm, W. [Brookhaven National Lab., Upton, NY (United States)

    1994-05-01

    Electronic isolation devices are used in nuclear power plants to provide electrical separation between safety and non-safety circuits and systems. Major fault testing in an earlier program indicated that some energy may pass through an isolation device when a fault at the maximum credible potential is applied in the transverse mode to its output terminals. During subsequent field qualification testing of isolators, concerns were raised that the worst case fault, that is, the maximum credible fault (MCF), may not occur with a fault at the maximum credible potential, but rather at some lower potential. The present test program investigates whether problems can arise when fault levels up to the MCF potential are applied to the output terminals of an isolator. The fault energy passed through an isolated device during a fault was measured to determine whether the levels are great enough to potentially damage or degrade performance of equipment on the input (Class 1E) side of the isolator.

  9. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

  10. Evaluation of the Hydrologic Source Term from Underground Nuclear Tests on Pahute Mesa at the Nevada Test Site: The CHESHIRE Test

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A; Tompson, A F B; Carle, S F; Bourcier, W L; Bruton, C J; Daniels, J I; Maxwell, R M; Shumaker, D E; Smith, D K; Zavarin, M

    2001-05-01

    The objectives of this report are to develop, summarize, and interpret a series of detailed unclassified simulations that forecast the nature and extent of radionuclide release and near-field migration in groundwater away from the CHESHIRE underground nuclear test at Pahute Mesa at the NTS over 1000 yrs. Collectively, these results are called the CHESHIRE Hydrologic Source Term (HST). The CHESHIRE underground nuclear test was one of 76 underground nuclear tests that were fired below or within 100 m of the water table between 1965 and 1992 in Areas 19 and 20 of the NTS. These areas now comprise the Pahute Mesa Corrective Action Unit (CAU) for which a separate subregional scale flow and transport model is being developed by the UGTA Project to forecast the larger-scale migration of radionuclides from underground tests on Pahute Mesa. The current simulations are being developed, on one hand, to more fully understand the complex coupled processes involved in radionuclide migration, with a specific focus on the CHESHIRE test. While remaining unclassified, they are as site specific as possible and involve a level of modeling detail that is commensurate with the most fundamental processes, conservative assumptions, and representative data sets available. However, the simulation results are also being developed so that they may be simplified and interpreted for use as a source term boundary condition at the CHESHIRE location in the Pahute Mesa CAU model. In addition, the processes of simplification and interpretation will provide generalized insight as to how the source term behavior at other tests may be considered or otherwise represented in the Pahute Mesa CAU model.

  11. Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga-Arias, Paloma [Departamento de Fisica de PartIculas and IGFAE, Universidade de Santiago de Compostela 15706 Santiago de Compostela (Spain); Milhano, Jose Guilherme [CENTRA, Departamento de Fisica, Instituto Superior Tecnico (IST), Av. Rovisco Pais 1, P-1049-001 Lisboa (Portugal); Wiedemann, Urs Achim, E-mail: pquiroga@fpaxpl.usc.es [Physics Department, Theory Unit, CERN, CH-1211 Geneve 23 (Switzerland)

    2011-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.

  12. Capabilities Development for Transient Testing of Advanced Nuclear Fuels at TREAT

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, N. E.; Baker, C. C.; Bess, J. D.; Davis, C. B.; Hill, C. M.; Housley, G. K.; Jensen, C. B.; Jerred, N. D.; O' Brien, R. C.; Snow, S. D.; Wachs, D. M.

    2016-09-01

    The TREAT facility is a unique capability at the Idaho National Laboratory currently being prepared for resumption of nuclear transient testing. Accordingly, designs for several transient irradiation tests are being pursued to enable development of advanced nuclear fuels and materials. In addition to the reactor itself, the foundation for TREAT’s capabilities also include a suite of irradiation vehicles and supporting infrastructure to provide the desired specimen boundary conditions while supporting a variety of instrumentation needs. The challenge of creating these vehicles, especially since many of the modern data needs were not historically addressed in TREAT experiment vehicles, has necessitated a sizeable engineering effort. This effort is currently underway and maturing rapidly. This paper summarizes the status, future plans, and rationale for TREAT experiment vehicle capabilities. Much of the current progress is focused around understanding and demonstrating the behavior of fuel design with enhanced accident tolerance in water-cooled reactors. Additionally, several related efforts are underway to facilitate transient testing in liquid sodium, inert gas, and steam environments. This paper discusses why such a variety of capabilities are needed, outlines plans to accomplish them, and describes the relationship between transient data needs and the irradiation hardware that will support the gathering of this information.

  13. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  14. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history.

  15. Recent advances of annular centrifugal extractor for hot test of nuclear waste partitioning process

    Institute of Scientific and Technical Information of China (English)

    HeXiang-Ming; YanYu-Shun; 等

    1998-01-01

    Advances are being made in the design of the annular centrifugal extractor fornuclear fuel reprocessing extraction process studies.The extractors have been built and tested.Twelve stages of this extractor and 50 stages are used toimplement the TRPO process for the cleanup ofcommercial and defense nuclear waste liquids,respectively.Following advances are available:(1) simple way of assembly and disassembly between rotor part and housing part of extractor,ease of manipulator operation;(2)automatic sampling from housing of extractor in hot cell;(3) compact multi-stage housing system;(4) easy interstage link;(5) computer data acquisition and monitoring system of speed.

  16. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  17. Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, P.H.; Dawson, J.F.; Friesel, M.A.; Harris, J.C.; Pappas, R.A.

    1984-06-01

    Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Power Plant during hot functional preservice testing is described in this report. The report deals with background, methodology, and results. The work discussed here is a major milestone in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing toward AE monitoring during reactor operation.

  18. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  19. Dynamic parameters test of Haiyang Nuclear Power Engineering in reactor areas, China

    Science.gov (United States)

    Zhou, N.; Zhao, S.; Sun, L.

    2012-12-01

    Haiyang Nuclear Power Project is located in Haiyang city, China. It consists of 6×1000MW AP1000 Nuclear Power generator sets. The dynamic parameters of the rockmass are essential for the design of the nuclear power plant. No.1 and No.2 reactor area are taken as research target in this paper. Sonic logging, single hole and cross-hole wave velocity are carried out respectively on the site. There are four types of rock lithology within the measured depth. They are siltstone, fine sandstone, shale and allgovite. The total depth of sonic logging is 409.8m and 2049 test points. The sound wave velocity of the rocks are respectively 5521 m/s, 5576m/s, 5318 m/s and 5576 m/s. Accroding to the statistic data, among medium weathered fine sandstone, fairly broken is majority, broken and relatively integrity are second, part of integrity. Medium weathered siltstone, relatively integrity is mojority, fairly broken is second. Medium weathered shale, fairly broken is majority, broken and relatively integrity for the next and part of integrity. Slight weathered fine sandstone, siltstone, shale and allgovite, integrity is the mojority, relatively integrity for the next, part of fairly broken.The single hole wave velocity tests are set in two boreholesin No.1 reactor area and No.2 reactor area respectively. The test depths of two holes are 2-24m, and the others are 2-40m. The wave velocity data are calculated at different depth in each holes and dynamic parameters. According to the test statistic data, the wave velocity and the dynamic parameter values of rockmass are distinctly influenced by the weathering degree. The test results are list in table 1. 3 groups of cross hole wave velocity tests are set for No.1 and 2 reactor area, No.1 reactor area: B16, B16-1, B20(Direction:175°, depth: 100m); B10, B10-1, B11(269°, 40m); B21, B21-1, B17(154°, 40m); with HB16, HB10, HB21 as trigger holes; No.2 reactor area: B47, B47-1, HB51(176°, 100m); B40, B40-1, B41(272°, 40m); B42, B42-1, B

  20. Development of a Ground Test and Analysis Protocol to Support NASA's NextSTEP Phase 2 Habitation Concepts

    Science.gov (United States)

    Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Gernhardt, Michael L.

    2018-01-01

    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support extensive human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts have been tasked with developing the ground test protocol that will serve as the primary means by which these Phase 2 prototype habitats will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational products, tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the NextSTEP Phase 2 Habitation Concepts is to consistently evaluate the different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3.