Modeling and synthesis of strong ground motion
Indian Academy of Sciences (India)
S T G Raghu Kanth
2008-11-01
Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.
Ground Motion Prediction Models for Caucasus Region
Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino
2016-04-01
Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.
A simple model for strong ground motions and response spectra
Safak, Erdal; Mueller, Charles; Boatwright, John
1988-01-01
A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.
Modeling of earthquake ground motion in the frequency domain
Thrainsson, Hjortur
In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation
Developments in Ground-Motion Modeling in Eastern North America
Atkinson, G. M.; Boore, D. M.
2012-12-01
Recent well-recorded earthquakes in Eastern North America (ENA) have led us to re-evaluate concepts that have been "standard fare" in the development of ground-motion prediction equations (GMPEs) for ENA for decades, including all published GMPEs that are used in current practice (e.g. Atkinson and Boore, 2011, 2006, 1995; Pezeshk et al., 2011; Campbell, 2003; Toro et al., 1997, etc.). Assumptions common to all ENA GMPEs that may not be true include the following. (1) Typical ENA stress drops, in the context of a Brune model representation of the source spectrum, are in the range of 150-300 bars, with the exception of occasional high-stress events like the 1988 Saguenay earthquake. (2) Attenuation of ground motions can be modeled with a frequency-independent geometric spreading function, either bilinear or trilinear in shape (e.g. Street and Turcotte, 1975; Herrmann and Kijko, 1983; Atkinson and Mereu, 1992; Atkinson, 2004; Boatwright and Seekins, 2011), and an associated frequency-dependent anelastic attenuation term related to the regional Quality factor. The use of a bilinear or trilinear form models the transition from geometric spreading of body waves at close distances to slower surface-wave-type spreading at regional distances. We use ground-motion recordings from recent ENA events to re-examine these basic tenets of GMPE development, in light of constraints on the problem provided at low frequencies by seismic moment, and at high frequencies by stresses inferred from Empirical Greens Function (EGF) analysis. We find strong evidence, in both ground-motion data and from the constraints, that geometric attenuation may be frequency dependent. Moreover, EGF stress drops may be very high (>500 bars) - but they do not lead to particularly large high-frequency ground motions, at least at distances for which we have observations. More complex models of ENA source and attenuation processes appear to be required in order to reconcile our growing ground-motion database
Bora, Sanjay; Scherbaum, Frank; Kuehn, Nicolas; Stafford, Peter; Edwards, Benjamin
2016-04-01
The current practice of deriving empirical ground motion prediction equations (GMPEs) involves using ground motions recorded at multiple sites. However, in applications like site-specific (e.g., critical facility) hazard ground motions obtained from the GMPEs are need to be adjusted/corrected to a particular site/site-condition under investigation. This study presents a complete framework for developing a response spectral GMPE, within which the issue of adjustment of ground motions is addressed in a manner consistent with the linear system framework. The present approach is a two-step process in which the first step consists of deriving two separate empirical models, one for Fourier amplitude spectra (FAS) and the other for a random vibration theory (RVT) optimized duration (Drvto) of ground motion. In the second step the two models are combined within the RVT framework to obtain full response spectral amplitudes. Additionally, the framework also involves a stochastic model based extrapolation of individual Fourier spectra to extend the useable frequency limit of the empirically derived FAS model. The stochastic model parameters were determined by inverting the Fourier spectral data using an approach similar to the one as described in Edwards and Faeh (2013). Comparison of median predicted response spectra from present approach with those from other regional GMPEs indicates that the present approach can also be used as a stand-alone model. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, the Middle East and the Mediterranean region.
Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.
2010-01-01
We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.
Energy Technology Data Exchange (ETDEWEB)
Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C
2009-11-04
We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.
Modeling of Strong Ground Motion in "The Geysers" Geothermal Area
Sharma, N.; Convertito, V.; Maercklin, N.; Zollo, A.
2012-04-01
The Geysers is a vapor-dominated geothermal field located about 120 km north of San Francisco, California. The field is actively exploited since the 1960s, and it is now perhaps the most important and most productive geothermal field in the USA. The continuous injection of fluids and the stress perturbations of this area has resulted in induced seismicity which is clearly felt in the surrounding villages. Thus, based on these considerations, in the present work Ground Motion Prediction Equations (GMPEs) are derived, as they play key role in seismic hazard analysis control and for monitoring the effects of the seismicity rate levels. The GMPEs are derived through the mixed non-linear regression technique for both Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA). This technique includes both fixed effects and random effects and allows to account for both inter-event and intra-event dependencies in the data. In order to account for site/station effects, a two steps approach has been used. In the first step, regression analysis is performed without station corrections and thus providing a reference model. In the second step, based on the residual distribution at each station and the results of a Z-test, station correction coefficients are introduced to get final correct model. The data from earthquakes recorded at 29 stations for the period September 2007 through November 2010 have been used. The magnitude range is (1.0 geothermal fields with respect to those obtained from natural seismic events. The residual analysis is performed at individual stations to check the reliability of the station corrections and for evaluating the fitting reliability of the retrieved model. The best model has been chosen on the basis of inter-event standard error and R-square test. After the introduction of the site/station correction factor, an improvement in the fit is observed, which resulted in total standard error reduction and increased R-square values.
Energy Technology Data Exchange (ETDEWEB)
Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L
2007-02-09
We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.
A coherency function model of ground motion at base rock corresponding to strike-slip fault
Institute of Scientific and Technical Information of China (English)
丁海平; 刘启方; 金星; 袁一凡
2004-01-01
At present, the method to study spatial variation of ground motions is statistic analysis based on dense array records such as SMART-1 array, etc. For lacking of information of ground motions, there is no coherency function model of base rock and different style site. Spatial variation of ground motions in elastic media is analyzed by deterministic method in this paper. Taking elastic half-space model with dislocation source of fault, near-field ground motions are simulated. This model takes strike-slip fault and earth media into account. A coherency function is proposed for base rock site.
Model for ground motion and atmospheric overpressure due to underground nuclear explosion
Energy Technology Data Exchange (ETDEWEB)
Lee, H.; Walker, J.J.
1980-10-01
A physical model is proposed to describe the ground motion pattern resulting from an underground nulear explosion in an idealized homogeneous medium. Irregular behaviors in the observed ground motion are assumed to be perturbations caused by the local inhomogeneity of the ground medium. Our model correlates the ground motions at any point in the spalled zone to the initial acceleration pulse at the ground zero. Interestingly, the model predicts that the ground motion first comes to a stop at a definite radius about the ground zero, and the region expands both outward and inward as time goes on. We believe that this result is closely related to a phenomenon observed at NTS. In the far field approximation, we also calculate the overpressure in the lower atmosphere generated by the ground motion. We demonstrate that the irregular component of the ground motion does not affect the overpressure history in any significant way. Consequently the model ground motion can be used as a good approximation in generating the atmospheric overpressure.
Stochastic ground motion simulation
Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan
2014-01-01
Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.
Hazard-consistent ground motions generated with a stochastic fault-rupture model
Energy Technology Data Exchange (ETDEWEB)
Nishida, Akemi, E-mail: nishida.akemi@jaea.go.jp [Center for Computational Science and e-Systems, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Igarashi, Sayaka, E-mail: igrsyk00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Sakamoto, Shigehiro, E-mail: shigehiro.sakamoto@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Uchiyama, Yasuo, E-mail: yasuo.uchiyama@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Yamamoto, Yu, E-mail: ymmyu-00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Muramatsu, Ken, E-mail: kmuramat@tcu.ac.jp [Department of Nuclear Safety Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan); Takada, Tsuyoshi, E-mail: takada@load.arch.t.u-tokyo.ac.jp [Department of Architecture, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2015-12-15
obtain these acceleration deviations. A similar tendency can be found for some other seismic-source characteristics, meaning that ground motions obtained in this study cannot be generated by simulations of deterministic fault-rupture models with averaged seismic-source characteristics. Generated ground motions incorporate differences between each seismic-source characteristic, and they are effectively available for PRAs of structures.
Validation and modeling of earthquake strong ground motion using a composite source model
Zeng, Y.
2001-12-01
Zeng et al. (1994) have proposed a composite source model for synthetic strong ground motion prediction. In that model, the source is taken as a superposition of circular subevents with a constant stress drop. The number of subevents and their radius follows a power law distribution equivalent to the Gutenberg and Richter's magnitude-frequency relation for seismicity. The heterogeneous nature of the composite source model is characterized by its maximum subevent size and subevent stress drop. As rupture propagates through each subevent, it radiates a Brune's pulse or a Sato and Hirasawa's circular crack pulse. The method has been proved to be successful in generating realistic strong motion seismograms in comparison with observations from earthquakes in California, eastern US, Guerrero of Mexico, Turkey and India. The model has since been improved by including scattering waves from small scale heterogeneity structure of the earth, site specific ground motion prediction using weak motion site amplification, and nonlinear soil response using geotechnical engineering models. Last year, I have introduced an asymmetric circular rupture to improve the subevent source radiation and to provide a consistent rupture model between overall fault rupture process and its subevents. In this study, I revisit the Landers, Loma Prieta, Northridge, Imperial Valley and Kobe earthquakes using the improved source model. The results show that the improved subevent ruptures provide an improved effect of rupture directivity compared to our previous studies. Additional validation includes comparison of synthetic strong ground motions to the observed ground accelerations from the Chi-Chi, Taiwan and Izmit, Turkey earthquakes. Since the method has evolved considerably when it was first proposed, I will also compare results between each major modification of the model and demonstrate its backward compatibility to any of its early simulation procedures.
Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion
DEFF Research Database (Denmark)
Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.
This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....
Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion
DEFF Research Database (Denmark)
Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.
1997-01-01
This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....
Analytical approach to calculation of response spectra from seismological models of ground motion
Safak, Erdal
1988-01-01
An analytical approach to calculate response spectra from seismological models of ground motion is presented. Seismological models have three major advantages over empirical models: (1) they help in an understanding of the physics of earthquake mechanisms, (2) they can be used to predict ground motions for future earthquakes and (3) they can be extrapolated to cases where there are no data available. As shown with this study, these models also present a convenient form for the calculation of response spectra, by using the methods of random vibration theory, for a given magnitude and site conditions. The first part of the paper reviews the past models for ground motion description, and introduces the available seismological models. Then, the random vibration equations for the spectral response are presented. The nonstationarity, spectral bandwidth and the correlation of the peaks are considered in the calculation of the peak response.
Dynamic corner frequency in source spectral model for stochastic synthesis of ground motion
Institute of Scientific and Technical Information of China (English)
Xiaodan Sun; Xiaxin Tao; Guoxin Wang; Taojun Liu
2009-01-01
The static corner frequency and dynamic corner frequency in stochastic synthesis of ground motion from finite-fault modeling are introduced, and conceptual disadvantages of the two are discussed in this paper. Furthermore, the non-uniform radiation of seismic wave on the fault plane, as well as the trend of the larger rupture area, the lower corner frequency, can be described by the source spectral model developed by the authors. A new dynamic corner frequency can be developed directly from the model. The dependence of ground motion on the size of subfault can be eliminated if this source spectral model is adopted in the synthesis. Finally, the approach presented is validated from the comparison between the synthesized and observed ground motions at six rock stations during the Northridge earthquake in 1994.
Strong Ground Motion in the 2011 Tohoku Earthquake: a 1Directional - 3Component Modeling
D'Avila, Maria Paola Santisi; Lenti, Luca
2013-01-01
Local wave amplification due to strong seismic motions in surficial multilayered soil is influenced by several parameters such as the wavefield polarization and the dynamic properties and impedance contrast between soil layers. The present research aims at investigating seismic motion amplification in the 2011 Tohoku earthquake through a one-directional three-component (1D-3C) wave propagation model. A 3D nonlinear constitutive relation for dry soils under cyclic loading is implemented in a quadratic line finite element model. The soil rheology is modeled by mean of a multi-surface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan (MPII) type. Its major advantage is that the rheology is characterized by few commonly measured parameters. Ground motions are computed at the surface of soil profiles in the Tohoku area (Japan) by propagating 3C signals recorded at rock outcrops, during the 2011 Tohoku earthquake. Computed surface ground motions are compared to the Tohoku earthquake records at alluvial ...
Rodgers, A. J.; Xie, X.; Petersson, A.
2007-12-01
The next major earthquake in the San Francisco Bay area is likely to occur on the Hayward-Rodgers Creek Fault system. Attention on the southern Hayward section is appropriate given the upcoming 140th anniversary of the 1868 M 7 rupture coinciding with the estimated recurrence interval. This presentation will describe ground motion simulations for large (M > 6.5) earthquakes on the Hayward Fault using a recently developed elastic finite difference code and high-performance computers at Lawrence Livermore National Laboratory. Our code easily reads the recent USGS 3D seismic velocity model of the Bay Area developed in 2005 and used for simulations of the 1906 San Francisco and 1989 Loma Prieta earthquakes. Previous work has shown that the USGS model performs very well when used to model intermediate period (4-33 seconds) ground motions from moderate (M ~ 4-5) earthquakes (Rodgers et al., 2008). Ground motions for large earthquakes are strongly controlled by the hypocenter location, spatial distribution of slip, rise time and directivity effects. These are factors that are impossible to predict in advance of a large earthquake and lead to large epistemic uncertainties in ground motion estimates for scenario earthquakes. To bound this uncertainty, we are performing suites of simulations of scenario events on the Hayward Fault using stochastic rupture models following the method of Liu et al. (Bull. Seism. Soc. Am., 96, 2118-2130, 2006). These rupture models have spatially variable slip, rupture velocity, rise time and rake constrained by characterization of inferred finite fault ruptures and expert opinion. Computed ground motions show variability due to the variability in rupture models and can be used to estimate the average and spread of ground motion measures at any particular site. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No.W-7405-Eng-48. This is
Strong ground-motion prediction from Stochastic-dynamic source models
Guatteri, Mariagiovanna; Mai, P.M.; Beroza, G.C.; Boatwright, J.
2003-01-01
In the absence of sufficient data in the very near source, predictions of the intensity and variability of ground motions from future large earthquakes depend strongly on our ability to develop realistic models of the earthquake source. In this article we simulate near-fault strong ground motion using dynamic source models. We use a boundary integral method to simulate dynamic rupture of earthquakes by specifying dynamic source parameters (fracture energy and stress drop) as spatial random fields. We choose these quantities such that they are consistent with the statistical properties of slip heterogeneity found in finite-source models of past earthquakes. From these rupture models we compute theoretical strong-motion seismograms up to a frequency of 2 Hz for several realizations of a scenario strike-slip Mw 7.0 earthquake and compare empirical response spectra, spectra obtained from our dynamic models, and spectra determined from corresponding kinematic simulations. We find that spatial and temporal variations in slip, slip rise time, and rupture propagation consistent with dynamic rupture models exert a strong influence on near-source ground motion. Our results lead to a feasible approach to specify the variability in the rupture time distribution in kinematic models through a generalization of Andrews' (1976) result relating rupture speed to apparent fracture energy, stress drop, and crack length to 3D dynamic models. This suggests that a simplified representation of dynamic rupture may be obtained to approximate the effects of dynamic rupture without having to do full dynamic simulations.
Generation of a mixture model ground-motion prediction equation for Northern Chile
Haendel, A.; Kuehn, N. M.; Scherbaum, F.
2012-12-01
In probabilistic seismic hazard analysis (PSHA) empirically derived ground motion prediction equations (GMPEs) are usually applied to estimate the ground motion at a site of interest as a function of source, path and site related predictor variables. Because GMPEs are derived from limited datasets they are not expected to give entirely accurate estimates or to reflect the whole range of possible future ground motion, thus giving rise to epistemic uncertainty in the hazard estimates. This is especially true for regions without an indigenous GMPE where foreign models have to be applied. The choice of appropriate GMPEs can then dominate the overall uncertainty in hazard assessments. In order to quantify this uncertainty, the set of ground motion models used in a modern PSHA has to capture (in SSHAC language) the center, body, and range of the possible ground motion at the site of interest. This was traditionally done within a logic tree framework in which existing (or only slightly modified) GMPEs occupy the branches of the tree and the branch weights describe the degree-of-belief of the analyst in their applicability. This approach invites the problem to combine GMPEs of very different quality and hence to potentially overestimate epistemic uncertainty. Some recent hazard analysis have therefore resorted to using a small number of high quality GMPEs as backbone models from which the full distribution of GMPEs for the logic tree (to capture the full range of possible ground motion uncertainty) where subsequently generated by scaling (in a general sense). In the present study, a new approach is proposed to determine an optimized backbone model as weighted components of a mixture model. In doing so, each GMPE is assumed to reflect the generation mechanism (e. g. in terms of stress drop, propagation properties, etc.) for at least a fraction of possible ground motions in the area of interest. The combination of different models into a mixture model (which is learned from
Infrasonic induced ground motions
Lin, Ting-Li
On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body
Naderyan, Vahid; Hickey, Craig J.; Raspet, Richard
2016-02-01
Wind noise is a problem in seismic surveys and can mask the seismic signals at low frequency. This research investigates ground motions caused by wind pressure and shear stress perturbations on the ground surface. A prediction of the ground displacement spectra using the measured ground properties and predicted pressure and shear stress at the ground surface is developed. Field measurements are conducted at a site having a flat terrain and low ambient seismic noise. Triaxial geophones are deployed at different depths to study the wind-induced ground vibrations as a function of depth and wind velocity. Comparison of the predicted to the measured wind-induced ground displacement spectra shows good agreement for the vertical component but significant underprediction for the horizontal components. To validate the theoretical model, a test experiment is designed to exert controlled normal pressure and shear stress on the ground using a vertical and a horizontal mass-spring apparatus. This experiment verifies the linear elastic rheology and the quasi-static displacements assumptions of the model. The results indicate that the existing surface shear stress models significantly underestimate the wind shear stress at the ground surface and the amplitude of the fluctuation shear stress must be of the same order of magnitude as the normal pressure. Measurement results show that mounting the geophones flush with the ground provides a significant reduction in wind noise on all three components of the geophone. Further reduction in wind noise with depth of burial is small for depths up to 40 cm.
Aagaard, B.T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.
2008-01-01
We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.
Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion
Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.
2014-01-01
The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.
ARMA models for earthquake ground motions. Seismic safety margins research program
Energy Technology Data Exchange (ETDEWEB)
Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.; Oliver, R. M.; Pister, K. S.
1981-02-01
Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulating earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.
A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers
Porter, K.
2014-12-01
Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of
A neural model of the temporal dynamics of figure-ground segregation in motion perception.
Raudies, Florian; Neumann, Heiko
2010-03-01
How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy
Institute of Scientific and Technical Information of China (English)
Zhang Xiaozhi; Hu Jinjun; Xie Lili; Wang Haiyun
2006-01-01
This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.
Understanding Ground Motion in Las Vegas: Insights from Data Analysis and Two-Dimensional Modeling
Energy Technology Data Exchange (ETDEWEB)
Rodgers, A; Tkalcic, H; McCallen, D
2004-02-05
Seismic ground motions are amplified in low velocity sedimentary basins relative to adjacent sites on high velocity hard rock. We used historical recordings of NTS nuclear explosions and earthquake recordings in Las Vegas Valley to quantify frequency-dependent basin amplification using Standard Spectral Ratios. We show that amplifications, referred to as site response, can reach a factor of 10 in the frequency band 0.4-2.0 Hz. Band-averaged site response between 0.4-2.0 Hz is strongly correlated with basin depth. However, it is also well known that site response is related to shallow shear-wave velocity structure. We simulated low frequency (f<1Hz) ground motion and site response with two-dimensional elastic finite difference simulations. We demonstrate that physically plausible models of the shallow subsurface, including low velocity sedimentary structure, can predict relative amplification as well as some of the complexity in the observed waveforms. This study demonstrates that site response can be modeled without invoking complex and computationally expensive three-dimensional structural models.
Porter, K.
2015-12-01
There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.
Chan, C. H.; Wang, Y.; Thant, M.; Maung Maung, P.; Sieh, K.
2015-12-01
We have constructed an earthquake and fault database, conducted a series of ground-shaking scenarios, and proposed seismic hazard maps for all of Myanmar and hazard curves for selected cities. Our earthquake database integrates the ISC, ISC-GEM and global ANSS Comprehensive Catalogues, and includes harmonized magnitude scales without duplicate events. Our active fault database includes active fault data from previous studies. Using the parameters from these updated databases (i.e., the Gutenberg-Richter relationship, slip rate, maximum magnitude and the elapse time of last events), we have determined the earthquake recurrence models of seismogenic sources. To evaluate the ground shaking behaviours in different tectonic regimes, we conducted a series of tests by matching the modelled ground motions to the felt intensities of earthquakes. Through the case of the 1975 Bagan earthquake, we determined that Atkinson and Moore's (2003) scenario using the ground motion prediction equations (GMPEs) fits the behaviours of the subduction events best. Also, the 2011 Tarlay and 2012 Thabeikkyin events suggested the GMPEs of Akkar and Cagnan (2010) fit crustal earthquakes best. We thus incorporated the best-fitting GMPEs and site conditions based on Vs30 (the average shear-velocity down to 30 m depth) from analysis of topographic slope and microtremor array measurements to assess seismic hazard. The hazard is highest in regions close to the Sagaing Fault and along the Western Coast of Myanmar as seismic sources there have earthquakes occur at short intervals and/or last events occurred a long time ago. The hazard curves for the cities of Bago, Mandalay, Sagaing, Taungoo and Yangon show higher hazards for sites close to an active fault or with a low Vs30, e.g., the downtown of Sagaing and Shwemawdaw Pagoda in Bago.
Empirical models for the prediction of ground motion duration for intraplate earthquakes
Anbazhagan, P.; Neaz Sheikh, M.; Bajaj, Ketan; Mariya Dayana, P. J.; Madhura, H.; Reddy, G. R.
2017-02-01
Many empirical relationships for the earthquake ground motion duration were developed for interplate region, whereas only a very limited number of empirical relationships exist for intraplate region. Also, the existing relationships were developed based mostly on the scaled recorded interplate earthquakes to represent intraplate earthquakes. To the author's knowledge, none of the existing relationships for the intraplate regions were developed using only the data from intraplate regions. Therefore, an attempt is made in this study to develop empirical predictive relationships of earthquake ground motion duration (i.e., significant and bracketed) with earthquake magnitude, hypocentral distance, and site conditions (i.e., rock and soil sites) using the data compiled from intraplate regions of Canada, Australia, Peninsular India, and the central and southern parts of the USA. The compiled earthquake ground motion data consists of 600 records with moment magnitudes ranging from 3.0 to 6.5 and hypocentral distances ranging from 4 to 1000 km. The non-linear mixed-effect (NLMEs) and logistic regression techniques (to account for zero duration) were used to fit predictive models to the duration data. The bracketed duration was found to be decreased with an increase in the hypocentral distance and increased with an increase in the magnitude of the earthquake. The significant duration was found to be increased with the increase in the magnitude and hypocentral distance of the earthquake. Both significant and bracketed durations were predicted higher in rock sites than in soil sites. The predictive relationships developed herein are compared with the existing relationships for interplate and intraplate regions. The developed relationship for bracketed duration predicts lower durations for rock and soil sites. However, the developed relationship for a significant duration predicts lower durations up to a certain distance and thereafter predicts higher durations compared to the
Empirical models for the prediction of ground motion duration for intraplate earthquakes
Anbazhagan, P.; Neaz Sheikh, M.; Bajaj, Ketan; Mariya Dayana, P. J.; Madhura, H.; Reddy, G. R.
2017-07-01
Many empirical relationships for the earthquake ground motion duration were developed for interplate region, whereas only a very limited number of empirical relationships exist for intraplate region. Also, the existing relationships were developed based mostly on the scaled recorded interplate earthquakes to represent intraplate earthquakes. To the author's knowledge, none of the existing relationships for the intraplate regions were developed using only the data from intraplate regions. Therefore, an attempt is made in this study to develop empirical predictive relationships of earthquake ground motion duration (i.e., significant and bracketed) with earthquake magnitude, hypocentral distance, and site conditions (i.e., rock and soil sites) using the data compiled from intraplate regions of Canada, Australia, Peninsular India, and the central and southern parts of the USA. The compiled earthquake ground motion data consists of 600 records with moment magnitudes ranging from 3.0 to 6.5 and hypocentral distances ranging from 4 to 1000 km. The non-linear mixed-effect (NLMEs) and logistic regression techniques (to account for zero duration) were used to fit predictive models to the duration data. The bracketed duration was found to be decreased with an increase in the hypocentral distance and increased with an increase in the magnitude of the earthquake. The significant duration was found to be increased with the increase in the magnitude and hypocentral distance of the earthquake. Both significant and bracketed durations were predicted higher in rock sites than in soil sites. The predictive relationships developed herein are compared with the existing relationships for interplate and intraplate regions. The developed relationship for bracketed duration predicts lower durations for rock and soil sites. However, the developed relationship for a significant duration predicts lower durations up to a certain distance and thereafter predicts higher durations compared to the
Cotton, Fabrice; Scherbaum, Frank; Bommer, Julian J.; Bungum, Hilmar
2006-04-01
A vital component of any seismic hazard analysis is a model for predicting the expected distribution of ground motions at a site due to possible earthquake scenarios. The limited nature of the datasets from which such models are derived gives rise to epistemic uncertainty in both the median estimates and the associated aleatory variability of these predictive equations. In order to capture this epistemic uncertainty in a seismic hazard analysis, more than one ground-motion prediction equation must be used, and the tool that is currently employed to combine multiple models is the logic tree. Candidate ground-motion models for a logic tree should be selected in order to obtain the smallest possible suite of equations that can capture the expected range of possible ground motions in the target region. This is achieved by starting from a comprehensive list of available equations and then applying criteria for rejecting those considered inappropriate in terms of quality, derivation or applicability. Once the final list of candidate models is established, adjustments must be applied to achieve parameter compatibility. Additional adjustments can also be applied to remove the effect of systematic differences between host and target regions. These procedures are applied to select and adjust ground-motion models for the analysis of seismic hazard at rock sites in West Central Europe. This region is chosen for illustrative purposes particularly because it highlights the issue of using ground-motion models derived from small magnitude earthquakes in the analysis of hazard due to much larger events. Some of the pitfalls of extrapolating ground-motion models from small to large magnitude earthquakes in low seismicity regions are discussed for the selected target region.
Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.
2016-12-01
The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw < 5) and are shallow with focal depths of about 2 to 4 km. Such events are very common in oil/gas reservoirs all over the world, including North America, Europe, and the Middle East. We determined the location and source mechanism of these local earthquakes, with the uncertainties, using a Bayesian inversion method. The triggering stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high enough to cause damage to local structures without using seismic design criteria.
Pitarka, Arben; Graves, Robert; Irikura, Kojiro; Miyake, Hiroe; Rodgers, Arthur
2017-02-01
We analyzed the performance of the Irikura and Miyake (Pure and Applied Geophysics 168(2011):85-104, 2011) (IM2011) asperity-based kinematic rupture model generator, as implemented in the hybrid broadband ground motion simulation methodology of Graves and Pitarka (Bulletin of the Seismological Society of America 100(5A):2095-2123, 2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0-20 Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (Bulletin of the Seismological Society of America, 2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-West2 Project (NGA-West2) ground motion prediction equations (GMPEs) over the frequency band 0.1-10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-fault distances (1 s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1-3 s where the IM2011 motions are about 20-30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1-3 s bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study. We concluded
Broadband Synthetic Ground Motion Records
U.S. Geological Survey, Department of the Interior — The dataset contains broadband synthetic ground motion records for three events: 1) 1994 M6.7 Northridge, CA, 2) 1989 M7.0 Loma Prieta, CA, and 3) 1999 M7.5 Izmit,...
Sørensen, Mathilde Bøttger
2006-01-01
Seismic hazard assessment has an important societal impact in describing levels of ground motions to be expected in a given region in the future. Challenges in seismic hazard assessment are closely associated with the fact that different regions, due to their differences in seismotectonics setting (and hence in earthquake occurrence) as well as socioeconomic conditions, require different and innovative approaches. One of the most important aspects in this regard is the seismici...
Recording ground motions where people live
Cranswick, E.; Gardner, B.; Hammond, S.; Banfill, R.
The 1989 Loma Prieta, Calif., earthquake caused spectacular damage to structures up to 100 km away in the San Francisco Bay sedimentary basin, including the Cypress Street viaduct overpass, the Bay Bridge, and buildings in the San Francisco Marina district. Although the few mainshock ground motions recorded in the northern San Francisco Bay area were “significantly larger … than would be expected from the pre-existing data set,” none were recorded at the sites of these damaged structures [Hanks and Krawinkler, 1991].Loma Prieta aftershocks produced order-of-magnitude variations of ground motions related to sedimentary basin response over distances of 1-2 km and less [Cranswick et al., 1990]. In densely populated neighborhoods, these distances can encompass the residences of thousands of people, but it is very unlikely that these neighborhoods are monitored by even one seismograph. In the last decade, the complexity of computer models used to simulate high-frequency ground motions has increased by several orders of magnitude [e.g., Frankel and Vidale, 1992], but the number of seismograph stations—hence, the spatial density of the sampling of ground motion data—has remained relatively unchanged. Seismologists must therefore infer the nature of the ground motions in the great unknown regions between observation points.
Ground Motion Zoning of Santiago de Cuba: An Approach by SH Waves Modelling
Alvarez, Leonardo; García, Julio; Vaccari, Franco; Panza, Giuliano F.; González, Bertha; Reyes, Carmen; Fernández, Bárbara; Pico, Ramón; Zapata, José A.; Arango, Enrique
The expected ground motion in Santiago de Cuba basin from earthquakes which occurred in the Oriente fault zone is studied. Synthetic SH-waves seismograms have been calculated along four profiles in the basin by the hybrid approach (modal summation for the path source-profile and finite differences for the profile) for a maximum frequency of 1 Hz. The response spectra ratio (RSR) has been determined in 49 sites, distributed along all considered profiles with a spacing of 900 m. The corresponding RSR versus frequency curves have been classified using a logical-combinatorial algorithm. The results of the classification, in combination with the uppermost geological setting (geotechnical information and geological geometry of the subsoil) are used for the seismic zoning of the city. Three different main zones are identified, and a small sector characterized by major resonance effects, due to the particular structural conditions. Each zone is characterized in terms of its expected ground motion parameters for the most probable strong earthquake (MS=7), and for the maximum possible (MS=8).
Ground motion modeling for the 6 April 2009 earthquake (MW 6.3) at Poggio Picenze (central Italy)
Costanzo, M. R.; Nunziata, C.
2015-04-01
The town of Poggio Picenze (central Italy), located ~12 km SE of L'Aquila, reported a damage intensity of VIII-IX (MCS) for the 6 April 2009 (MW = 6.3) earthquake. In the following days, two stations (M128 and PGG) were operating in the historical centre and recorded several aftershocks. The aim of this paper is to model ground motion at Poggio Picenze for the 6 April 2009 earthquake. First, recordings of 16 aftershocks (2.0 ≤ ML ≤ 4.2), located in the epicentral area of the strong event, are processed to define average shear wave velocity (VS) profiles with depth through the non-linear inversion of Rayleigh wave group velocity dispersion curves of the fundamental mode extracted with the frequency-time analysis. Then, the local average VS model and the regional model, in addition to two shallow downhole measurements, are used to define two 2-D cross-sections passing through the seismic stations. Ground motion is modeled along such cross-sections for the strongest aftershock (ML = 4.2) with the hybrid method consisting of modal summation and finite difference algorithms. Once the modeling results at the M128 and PGG stations are validated, the ground motion is computed for the main shock. Spectral amplifications up to factors 5-6 are estimated at 3-4 Hz for the vertical component and up to factors 2-3 at 2-6 Hz for the radial and transverse components. Ground accelerations are maximum in the horizontal plane, along the transverse component (around 0.4 g) and are half along the vertical component.
Engineering applications of strong ground motion simulation
Somerville, Paul
1993-02-01
The formulation, validation and application of a procedure for simulating strong ground motions for use in engineering practice are described. The procedure uses empirical source functions (derived from near-source strong motion recordings of small earthquakes) to provide a realistic representation of effects such as source radiation that are difficult to model at high frequencies due to their partly stochastic behavior. Wave propagation effects are modeled using simplified Green's functions that are designed to transfer empirical source functions from their recording sites to those required for use in simulations at a specific site. The procedure has been validated against strong motion recordings of both crustal and subduction earthquakes. For the validation process we choose earthquakes whose source models (including a spatially heterogeneous distribution of the slip of the fault) are independently known and which have abundant strong motion recordings. A quantitative measurement of the fit between the simulated and recorded motion in this validation process is used to estimate the modeling and random uncertainty associated with the simulation procedure. This modeling and random uncertainty is one part of the overall uncertainty in estimates of ground motions of future earthquakes at a specific site derived using the simulation procedure. The other contribution to uncertainty is that due to uncertainty in the source parameters of future earthquakes that affect the site, which is estimated from a suite of simulations generated by varying the source parameters over their ranges of uncertainty. In this paper, we describe the validation of the simulation procedure for crustal earthquakes against strong motion recordings of the 1989 Loma Prieta, California, earthquake, and for subduction earthquakes against the 1985 Michoacán, Mexico, and Valparaiso, Chile, earthquakes. We then show examples of the application of the simulation procedure to the estimatation of the
Energy Technology Data Exchange (ETDEWEB)
Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J
2008-02-11
The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.
Implementation of NGA-West2 ground motion models in the 2014 U.S. National Seismic Hazard Maps
Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Harmsen, Stephen C.; Frankel, Arthur D.
2014-01-01
The U.S. National Seismic Hazard Maps (NSHMs) have been an important component of seismic design regulations in the United States for the past several decades. These maps present earthquake ground shaking intensities at specified probabilities of being exceeded over a 50-year time period. The previous version of the NSHMs was developed in 2008; during 2012 and 2013, scientists at the U.S. Geological Survey have been updating the maps based on their assessment of the “best available science,” resulting in the 2014 NSHMs. The update includes modifications to the seismic source models and the ground motion models (GMMs) for sites across the conterminous United States. This paper focuses on updates in the Western United States (WUS) due to the use of new GMMs for shallow crustal earthquakes in active tectonic regions developed by the Next Generation Attenuation (NGA-West2) project. Individual GMMs, their weighted combination, and their impact on the hazard maps relative to 2008 are discussed. In general, the combined effects of lower medians and increased standard deviations in the new GMMs have caused only small changes, within 5–20%, in the probabilistic ground motions for most sites across the WUS compared to the 2008 NSHMs.
Directory of Open Access Journals (Sweden)
A. Caserta
1995-06-01
Full Text Available The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves produced in the different areas of the city by a large (M ? 7 potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineering parameters (peak ground acceleration and velocity, Arias intensity, energy flux, response spectra whose spatial variations are consistent with the damage distribution caused by the strongest earthquakes felt in Rome during its long history. Based on the macroseismic inforination and the results of the numerical simulations, general criteria for seismic zonation of the city of Rome are proposed.
Gallovič, F.
2016-11-01
Strong ground motion simulations require physically plausible earthquake source model. Here, I present the application of such a kinematic model introduced originally by Ruiz et al. (Geophys J Int 186:226-244, 2011). The model is constructed to inherently provide synthetics with the desired omega-squared spectral decay in the full frequency range. The source is composed of randomly distributed overlapping subsources with fractal number-size distribution. The position of the subsources can be constrained by prior knowledge of major asperities (stemming, e.g., from slip inversions), or can be completely random. From earthquake physics point of view, the model includes positive correlation between slip and rise time as found in dynamic source simulations. Rupture velocity and rise time follows local S-wave velocity profile, so that the rupture slows down and rise times increase close to the surface, avoiding unrealistically strong ground motions. Rupture velocity can also have random variations, which result in irregular rupture front while satisfying the causality principle. This advanced kinematic broadband source model is freely available and can be easily incorporated into any numerical wave propagation code, as the source is described by spatially distributed slip rate functions, not requiring any stochastic Green's functions. The source model has been previously validated against the observed data due to the very shallow unilateral 2014 Mw6 South Napa, California, earthquake; the model reproduces well the observed data including the near-fault directivity (Seism Res Lett 87:2-14, 2016). The performance of the source model is shown here on the scenario simulations for the same event. In particular, synthetics are compared with existing ground motion prediction equations (GMPEs), emphasizing the azimuthal dependence of the between-event ground motion variability. I propose a simple model reproducing the azimuthal variations of the between-event ground motion
Raschke, Mathias
2015-01-01
In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke (2013a), with the sample of random difference xi=ln(Y1)-ln(Y2), in which Y1 and Y2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure the distribution of difference xi was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference xi of the sample o...
Energy Technology Data Exchange (ETDEWEB)
Pitarka, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-11-22
We analyzed the performance of the Irikura and Miyake (2011) (IM2011) asperity- based kinematic rupture model generator, as implemented in the hybrid broadband ground-motion simulation methodology of Graves and Pitarka (2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0 - 20Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-West2 Project (NGA-West2) ground-motion prediction equations (GMPEs) over the frequency band 0.1–10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-fault distances (<12km) and at long periods (>1s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1 – 3 sec where the IM2011 motions are about 20 – 30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1 – 3 second bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study.
Spatial distribution of near-fault ground motion
Institute of Scientific and Technical Information of China (English)
刘启方; 袁一凡; 金星
2004-01-01
Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates.There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.
Regional differences in subduction ground motions
Beauval, Céline; Abrahamson, N; Theodulidis, N; Delavaud, E; Rodriguez, L; Scherbaum, F; Haendel, A
2012-01-01
A few ground-motion prediction models have been published in the last years, for predicting ground motions produced by interface and intraslab earthquakes. When one must carry out a probabilistic seismic hazard analysis in a region including a subduction zone, GMPEs must be selected to feed a logic tree. In the present study, the aim is to identify which models provide the best fit to the dataset M6+, global or local models. The subduction regions considered are Japan, Taiwan, Central and South America, and Greece. Most of the data comes from the database built to develop the new BCHydro subduction global GMPE (Abrahamson et al., submitted). We show that this model is among best-fitting models in all cases, followed closely by Zhao et al. (2006), whereas the local Lin and Lee (2008) is well predicting the data in Taiwan and also in Greece. The Scherbaum et al. (2009) LLH method prove to be efficient in providing one number quantifying the overall fit, but additional analysis on the between-event and within-ev...
Investigation of topographical effects on rupture dynamics and ground motions
Huang, H.; Chen, X.; Zhang, Z.
2016-12-01
Using the curved grid finite-difference method (CG-FDM), we model spontaneous dynamic rupture on vertical strike-slip faults with irregular free surfaces to investigate the effect of topography on near-source ground motion. Four groups of simulations, in which the epicentral distances from the topographical perturbations of the nucleation patch were varied, are modeled in this work. The simulated results show that the presence of irregular topography along the fault trace may increase the ground motion. Whether the irregular topography exhibits higher ground motion overall depends on the irregular topography's ability to prevent the sub-Rayleigh-to-supershear transition. When irregular topography prevents this transition, sub-Rayleigh rupture produces stronger ground motions than those of the sub-Rayleigh-to-supershear transition, although the moment magnitudes does not differ substantially between the two cases. To thoroughly understand the effects of irregular topography on near-source ground motion, we also model spontaneous dynamic rupture on a planar fault in full-space and half-space with varying initial shear stresses, and the corresponding modeling results indicate that the effect of initial shear stress on near-source ground motion is strong. These results may have implications for ground-motion prediction in future earthquakes involving geometrically complex faults.
Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures
Energy Technology Data Exchange (ETDEWEB)
Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon
2007-03-15
This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.
Seismic Ground Motion Hazards with 10 Percent Probability
Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...
Seismic Ground Motion Hazards with 2 Percent Probability
Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...
Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization
D'Avila, Maria Paola Santisi; Semblat, Jean-François
2013-01-01
Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in th...
SCEC Broadband Platform Strong Ground Motion Simulations
Kumar, S.; Callaghan, S.; Maechling, P. J.; Olsen, K. B.; Archuleta, R. J.; Somerville, P. G.; Graves, R. W.; Jordan, T. H.; Broadband Platform Working Group
2011-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The goal of the SCEC Broadband Simulation Platform is to generate broadband (0-10 Hz) ground motions for earthquakes using deterministic low-frequency and stochastic high-frequency simulations. SCEC developers have integrated complex scientific modules for rupture generation, low-frequency deterministic seismogram synthesis, high-frequency stochastic seismogram synthesis, and non-linear site effects calculation into a system that supports easy on-demand computation of broadband seismograms. The SCEC Broadband platform has two primary modes of operation, validation mode, and scenario mode. In validation mode, the earthquake modeling software calculates broadband seismograms for one of three earthquakes, Northridge, Loma Prieta, or Landers at sites with observed strong motion data. Then, the platform calculates goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for each event. In scenario mode, the user can specify a scenario earthquake and a list of sites and calculate ground motions at each site for the scenario event. In February 2011, SCEC released Broadband Platform 11.2 as an open-source scientific software distribution. Since that time, we have continued development of the platform by adding a new site response module and new goodness of fit measures by Mayhew and Olsen. Along with a source code distribution of the Broadband Platform, we now offer a virtual software image distribution of the platform to support its use on a variety of computing hardware and operating systems.
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L H; Foxall, W; Rambo, J; Wagoner, J L
2005-03-09
Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L J; Foxall, W; Rambo, J; Wagoner, J L
2005-02-14
Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.
Böse, Maren; Graves, Robert W.; Gill, David; Callaghan, Scott; Maechling, Philip J.
2014-09-01
Real-time applications such as earthquake early warning (EEW) typically use empirical ground-motion prediction equations (GMPEs) along with event magnitude and source-to-site distances to estimate expected shaking levels. In this simplified approach, effects due to finite-fault geometry, directivity and site and basin response are often generalized, which may lead to a significant under- or overestimation of shaking from large earthquakes (M > 6.5) in some locations. For enhanced site-specific ground-motion predictions considering 3-D wave-propagation effects, we develop support vector regression (SVR) models from the SCEC CyberShake low-frequency (415 000 finite-fault rupture scenarios (6.5 ≤ M ≤ 8.5) for southern California defined in UCERF 2.0. We use CyberShake to demonstrate the application of synthetic waveform data to EEW as a `proof of concept', being aware that these simulations are not yet fully validated and might not appropriately sample the range of rupture uncertainty. Our regression models predict the maximum and the temporal evolution of instrumental intensity (MMI) at 71 selected test sites using only the hypocentre, magnitude and rupture ratio, which characterizes uni- and bilateral rupture propagation. Our regression approach is completely data-driven (where here the CyberShake simulations are considered data) and does not enforce pre-defined functional forms or dependencies among input parameters. The models were established from a subset (˜20 per cent) of CyberShake simulations, but can explain MMI values of all >400 k rupture scenarios with a standard deviation of about 0.4 intensity units. We apply our models to determine threshold magnitudes (and warning times) for various active faults in southern California that earthquakes need to exceed to cause at least `moderate', `strong' or `very strong' shaking in the Los Angeles (LA) basin. These thresholds are used to construct a simple and robust EEW algorithm: to declare a warning, the
Engineering uses of physics-based ground motion simulations
Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.
2014-01-01
This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.
Directory of Open Access Journals (Sweden)
V. Di Fiore
2002-06-01
Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response
High Frequency Ground Motion from Finite Fault Rupture Simulations
Crempien, Jorge G. F.
There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.
Preliminary results of ground-motion characteristics
Directory of Open Access Journals (Sweden)
Francesca Bozzoni
2012-10-01
Full Text Available The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.
Strong ground motion prediction using virtual earthquakes.
Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C
2014-01-24
Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.
Ground motion estimation and nonlinear seismic analysis
Energy Technology Data Exchange (ETDEWEB)
McCallen, D.B.; Hutchings, L.J.
1995-08-14
Site specific predictions of the dynamic response of structures to extreme earthquake ground motions are a critical component of seismic design for important structures. With the rapid development of computationally based methodologies and powerful computers over the past few years, engineers and scientists now have the capability to perform numerical simulations of many of the physical processes associated with the generation of earthquake ground motions and dynamic structural response. This paper describes application of a physics based, deterministic, computational approach for estimation of earthquake ground motions which relies on site measurements of frequently occurring small (i.e. M < 3 ) earthquakes. Case studies are presented which illustrate application of this methodology for two different sites, and nonlinear analyses of a typical six story steel frame office building are performed to illustrate the potential sensitivity of nonlinear response to site conditions and proximity to the causative fault.
Earthquake Source and Ground Motion Characteristics of Great Kanto Earthquakes
Somerville, P. G.; Sato, T.; Wald, D. J.; Graves, R. W.; Dan, K.
2003-12-01
This paper describes the derivation of a rupture model of the 1923 Kanto earthquake, and the estimation of ground motions that occurred during that earthquake and that might occur during future great Kanto earthquakes. The rupture model was derived from the joint inversion of geodetic and teleseismic data. The leveling and triangulation data place strong constraints on the distribution and orientation of slip on the fault. The most concentrated slip is in the shallow central and western part of the fault. The location of the hypocenter on the western part of the fault gives rise to strong near fault rupture directivity effects, which are largest toward the east in the Boso Peninsula. To estimate the ground motions caused by this earthquake, we first calibrated 1D and 3D wave propagation path effects using the Odawara earthquake of 5 August 1990 (M 5.1), the first earthquake larger than M 5 in the last 60 years near the hypocenter of the 1923 Kanto earthquake. The simulation of the moderate-sized Odawara earthquake demonstrates that the 3D velocity model works quite well at reproducing the recorded long-period (T > 3.33 sec) strong motions, including basin-generated surface waves, for a number of sites located throughout the Kanto basin region. Using this validated 3D model along with the rupture model described above, we simulated the long-period (T > 4 sec) ground motions in this region for the 1923 Kanto earthquake. The largest ground motions occur east of the epicenter along the central and southern part of the Boso Peninsula. These large motions arise from strong rupture directivity effects and are comprised of relatively simple, source-controlled pulses with a dominant period of about 10 sec. Other rupture models and hypocenter locations generally produce smaller long period ground motion levels in this region that those of the 1923 event. North of the epicentral region, in the Tokyo area, 3D basin-generated phases are quite significant, and these phases
Ground motion: An introduction for accelerator builders
Energy Technology Data Exchange (ETDEWEB)
Fischer, G.E.
1992-02-01
In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.
Ground motion: An introduction for accelerator builders
Energy Technology Data Exchange (ETDEWEB)
Fischer, G.E.
1992-02-01
In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.
Identiﬁcation of resonant earthquake ground motion
Indian Academy of Sciences (India)
Abbas Moustafa
2010-06-01
Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy principle and the dispersion index. These measures are based on the geometric properties of the power spectral density function of the ground acceleration. The application of these measures to quantify the frequency content of random earthquake models is demonstrated ﬁrst. Subsequently, these measures are used to quantify the frequency content of the ground acceleration for near-ﬁeld records measured at rock and soil sites, short-duration and long-duration earthquakes.
Aagaard, Brad T.; Graves, Robert W.; Schwartz, David P.; Ponce, David A.; Graymer, Russell W.
2010-01-01
We construct kinematic earthquake rupture models for a suite of 39 Mw 6.6-7.2 scenario earthquakes involving the Hayward, Calaveras, and Rodgers Creek faults. We use these rupture models in 3D ground-motion simulations as discussed in Part II (Aagaard et al., 2010) to provide detailed estimates of the shaking for each scenario. We employ both geophysical constraints and empirical relations to provide realistic variation in the rupture dimensions, slip heterogeneity, hypocenters, rupture speeds, and rise times. The five rupture lengths include portions of the Hayward fault as well as combined rupture of the Hayward and Rodgers Creek faults and the Hayward and Calaveras faults. We vary rupture directivity using multiple hypocenters, typically three per rupture length, yielding north-to-south rupture, bilateral rupture, and south-to-north rupture. For each rupture length and hypocenter, we consider multiple random distributions of slip. We use two approaches to account for how aseismic creep might reduce coseismic slip. For one subset of scenarios, we follow the slip-predictable approach and reduce the nominal slip in creeping regions according to the creep rate and time since the most recent earthquake, whereas for another subset of scenarios we apply a vertical gradient to the nominal slip in creeping regions. The rupture models include local variations in rupture speed and use a ray-tracing algorithm to propagate the rupture front. Although we are not attempting to simulate the 1868 Hayward fault earthquake in detail, a few of the scenarios are designed to have source parameters that might be similar to this historical event.
1909 Taipei Earthquake Ground Motion Simulation
Directory of Open Access Journals (Sweden)
Yi-Wun Liao
2016-06-01
Full Text Available The 1909 Taipei earthquake (M 7.3 occurred beneath the Taipei metropolitan area (TMA causing substantial damage according to the historical literature. According to the hypocenter relocation and tectonic implications provided in a previous study, we simulated ground motions within the TMA using a hybrid simulation method involving the spectral-element method (SEM and the empirical Green’s function method (EGFM. We used the SEM for simulating low-frequency components and the EGFM for simulating high-frequency components. These high and low frequency components were subsequently combined. For the EGFM we used the records from a recent ML 4.9 earthquake (11 October 2013, depth = 143.8 km in the Taipei area as the empirical Green’s function. According to the historical literature, the observed PGA (peak ground acceleration values are 59.2 and 67.0 gal at ancient stations TAP and KEE, with periods of 1.21 and 1.34 s, respectively. By comparing the simulated PGA values at modern stations TAPB and WFSB to the historical documented ones for 12 different models, our result suggests that the 1909 Taipei earthquake was an event with a magnitude of about Mw 7.3 and stress drop of approximately 30 bars, or a smaller equivalent magnitude between Mw 6.8 - 7.3 but with much higher average stress drop of more than 100 bars. For a deep event beneath TMA a larger vertical P-wave motion and longer period shaking wave, as addressed in the historical literature, might be expected with prolonged shaking as found in the simulation. A seismic hazard assessment is necessary for metropolitan Taipei to better understand the long period shaking from deep subduction zone intra plate events.
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L.
1992-01-01
This report outlines a method of using empirical Green's functions in an earthquake simulation program EMPSYN that provides realistic seismograms from potential earthquakes. The theory for using empirical Green's functions is developed, implementation of the theory in EMPSYN is outlined, and an example is presented where EMPSYN is used to synthesize observed records from the 1971 San Fernando earthquake. To provide useful synthetic ground motion data from potential earthquakes, synthetic seismograms should model frequencies from 0.5 to 15.0 Hz, the full wave-train energy distribution, and absolute amplitudes. However, high-frequency arrivals are stochastically dependent upon the inhomogeneous geologic structure and irregular fault rupture. The fault rupture can be modeled, but the stochastic nature of faulting is largely an unknown factor in the earthquake process. The effect of inhomogeneous geology can readily be incorporated into synthetic seismograms by using small earthquakes to obtain empirical Green's functions. Small earthquakes with source corner frequencies higher than the site recording limit f{sub max}, or much higher than the frequency of interest, effectively have impulsive point-fault dislocation sources, and their recordings are used as empirical Green's functions. Since empirical Green's functions are actual recordings at a site, they include the effects on seismic waves from all geologic inhomogeneities and include all recordable frequencies, absolute amplitudes, and all phases. They scale only in amplitude with differences in seismic moment. They can provide nearly the exact integrand to the representation relation. Furthermore, since their source events have spatial extent, they can be summed to simulate fault rupture without loss of information, thereby potentially computing the exact representation relation for an extended source earthquake.
The Anti-Emetic Properties of 1-Sulpiride in a Ground-Based Model of Space Motion Sickness
Miller, Joseph D.; Brizzee, Kenneth R.
1987-01-01
L-sulpiride, at a dose of 4 mg/kg, essentially abolished motion- induced emesis in a group of 6 squirrel monkeys undergoing horizontal rotation at 25 rpm, a terrestrial model of space motion sickness (SMS). Extrapyramidal side effects were not observed. In the absence of the drug, the usual emetic response returned. In comparison while typical neuroleptics were also strongly anti-emetic, they produced a considerable degree of rigidity and akinesia.
Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.
2005-01-01
In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.
Stochastic nature of earthquake ground motion
Kostić, Srđan; Vasović, Nebojša; Perc, Matjaž; Toljić, Marinko; Nikolić, Dobrica
2013-09-01
In this paper, we analyze the irregular behavior of earthquake ground motion as recorded during the Kraljevo M5.4 earthquake, which occurred on November 3rd, 2010 in Serbia. We perform the analysis for the ground accelerations recorded at 6 seismological stations: Grua, Ruda, Rada, Bara, Zaga and Bdva. The latter were carefully chosen based on their corresponding tectonic zone and the local geological setting. For each station, we analyze the horizontal component of the ground acceleration in the north-south direction, which is the one of primary interest for engineering design. We employ surrogate data testing and methods of nonlinear time series analysis. The obtained results indicate that strong ground accelerations are stochastic, in particular belonging to a class of linear stationary stochastic processes with Gaussian inputs or distorted by a monotonic, instantaneous, time-independent nonlinear function. This type of motion is detected regardless of the corresponding tectonic setting and the local geological conditions. The revealed stochastic nature is in disagreement with the frequently assumed deterministically chaotic nature of earthquake ground motion.
Ground motion analysis of OSSY
Energy Technology Data Exchange (ETDEWEB)
Swift, R.P.; Snell, C.M. [Los Alamos National Lab., NM (United States)
1993-11-01
The On Site Seismic Yield experiment, OSSY, was performed to investigate the viability of a high-explosive technique to help estimate the yield of nuclear explosions. We have analyzed recorded data and conducted numerical simulations of the 100-pound OSSY experiments performed in hole UE-10 ITS No. 3 at the Nevada Test Site. Particle velocity wave forms from these experiments show a distinct dual-pulse structure in the close-in and far-field regions, with the amplitude of the second pulse being as large as or larger than the first pulse. To gain some insight into the cause of the dual-pulse feature, we examine how the explosion-induced close-in response is affected by (1) certain features of inelastic rock/soil constitutive models applied in the near-field region, (2) the large length-to-diameter charge ratio of 8, (3) the charge and gauge package emplacement, and (4) geology (e.g., layering) in the vicinity of the explosion. Our results from 1-D and 2-D simulations show the following: (a) the response, measured by accelerometers located above the charges, is significantly influenced by the charge length-to-diameter ratio out to a distance of 8 m. (b) the grout emplacement of the charge has very little effect on the response. (c) the geologic layering serves mainly to phase the arrival of the pulses. (d) the second pulse can be best accounted for by applying a dilatant feature that allows for pore recovery during unloading. Other material property variations do not provide any contribution to the formation of a second pulse.
Energy Technology Data Exchange (ETDEWEB)
Zucca, J J; Walter, W R; Rodgers, A J; Richards, P; Pasyanos, M E; Myers, S C; Lay, T; Harris, D; Antoun, T
2008-11-19
The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags
Ground Motion in Central Mexico: A Comprehensive Analysis
Ramirez-Guzman, L.; Juarez, A.; Rábade, S.; Aguirre, J.; Bielak, J.
2015-12-01
This study presents a detailed analysis of the ground motion in Central Mexico based on numerical simulations, as well as broadband and strong ground motion records. We describe and evaluate a velocity model for Central Mexico derived from noise and regional earthquake cross-correlations, which is used throughout this research to estimate the ground motion in the region. The 3D crustal model includes a geotechnical structure of the Valley of Mexico (VM), subduction zone geometry, and 3D velocity distributions. The latter are based on more than 200 low magnitude (Mw Valley of Mexico originating from intra-slab deep events and temblors located along the Pacific coast. Also, we quantify the effects Trans-Mexican Volcanic Belt (TMVB) and the low-velocity deposits on the ground motion. The 3D octree-based finite element wave propagation computations, valid up to 1 Hz, reveal that the inclusion of a basin with a structure as complex as the Valley of Mexico dramatically enhances the regional effects induced by the TMVB. Moreover, the basin not only produces ground motion amplification and anomalous duration, but it also favors the energy focusing into zones of Mexico City where structures typically undergo high levels of damage.
Energy Technology Data Exchange (ETDEWEB)
Stump, B.W. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Geological Sciences; Weaver, T.A. [Los Alamos National Lab., NM (United States)
1992-01-24
Spall, the tensile failure of near-surface layers, which is observed above contained explosions, has been identified as a possible secondary seismic source contributing to teleseismic and regional signals. The relative importance of this secondary source can be constrained if the motion field in the spall zone is characterized. Spall zone motions from nuclear explosions detonated above the water table at Pahute Mesa are analyzed to develop these models. Acceleration, velocity, displacement, and dwell time measurements are made from gauges placed directly above the explosion, most often at the free surface. Decay of peak motions are strongly affected by the free surface with little change in amplitude out to a free surface range of 100 m/kt{sup l/3} followed by rapid decay beyond. Free surface interactions are assessed with first-order elastic spherical wave calculations that match observed peak velocity decays. These results indicate that the spall zone motions may be strongly affected by the scaled depth of burial of the explosion. Spall zone velocities, displacements and dwell times are compared for consistency with a gravitational model. The data is in agreement with the functional form of theoretical models although observed displacements may be as much as a factor of two to four greater than the model predicts for observed velocities and dwell times. These differences may reflect the continuous nature of the spall process and/or the role of material strength in these phenomena.
Compression of ground-motion data
Long, J. W.
1981-04-01
Ground motion data has been recorded for many years at Nevada Test Site and is stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.
Compression of ground-motion data
Energy Technology Data Exchange (ETDEWEB)
Long, J.W.
1981-04-01
Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.
Directory of Open Access Journals (Sweden)
G-A. Tselentis
2010-12-01
Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.
Uncertainty and Spatial Correlation of Earthquake Ground Motion in Taiwan
Directory of Open Access Journals (Sweden)
Vladimir Sokolov
2010-01-01
Full Text Available In this work we analyzed characteristics of aleatory variability with regard to intra-event and inter-event components in the prediction of peak ground acceleration in Taiwan and the spatial (site-to-site correlation of ground motion residuals. The characteristics are very important for an assessment of seismic hazard and loss for regionally located building assets (portfolio and spatially distributed systems (lifelines and ShakeMap generation. The strong-motion database collected by the TSMIP network in Taiwan, which includes about 4650 records from 66 shallow earthquakes (ML > 4.5, focal depth < 30 km occurred in 1993 - 2004, was used for this purpose. The results of the analysis show that the ground motion correlation structure is highly dependent on local geology and on peculiarities of the propagation path (azimuth-dependent attenuation. Thus, a single generalized spatial correlation model may not be adequate for all of Taiwan territory or similar large areas.
Status of Ground Motion Mitigation Techniques for CLIC
Snuverink, J; Collette, C; Duarte Ramos, F; Gaddi, A; Gerwig, H; Janssens, S; Pfingstner, J; Schulte, D; Balik, G; Brunetti, L; Jeremie, A; Burrows, P; Caron, B; Resta-Lopez, J
2011-01-01
The Compact Linear Collider (CLIC) accelerator has strong stability requirements on the position of the beam. In particular, the beam position will be sensitive to ground motion. A number of mitigation techniques are proposed - quadrupole stabilisation and positioning, final doublet stabilisation as well as beam based orbit and interaction point (IP) feedback. Integrated studies of the impact of the ground motion on the CLIC Main Linac (ML) and Beam Delivery System (BDS) have been performed, which model the hardware and beam performance in detail. Based on the results future improvements of the mitigation techniques are suggested and simulated. It is shown that with the current design the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed.
Hybrid-Empirical Ground Motion Estimations for Georgia
Directory of Open Access Journals (Sweden)
Tsereteli Nino
2016-10-01
Full Text Available Ground motion prediction equations are essential for several purposes ranging from seismic design and analysis to probabilistic seismic hazard assessment. In seismically active regions without sufficiently strong ground motion data to build empirical models, hybrid models become vital. Georgia does not have sufficiently strong ground motion data to build empirical models. In this study, we have applied the host-to-target method in two regions in Georgia with different source mechanisms. According to the tectonic regime of the target areas, two different regions are chosen as host regions. One of them is in Turkey with the dominant strike-slip source mechanism, while the other is in Iran with the prevalence of reverse-mechanism events. We performed stochastic finite-fault simulations in both host and target areas and employed the hybrid-empirical method as introduced in Campbell (2003. An initial set of hybrid empirical ground motion estimates is obtained for PGA and SA at selected periods for Georgia.
Alvarez, L.; Panza, G. F.; Vaccari, F.; González, B. E.
We present the results of complete P-SV and SH waves modelling, up to a maximum frequency of 1Hz, along two profiles in Santiago de Cuba city. The seismic sources are located in the depth range from 10 to 40km on the Oriente fault zone at distances of several tens of kilometres from the city. The calculation has been made by a hybrid method: Modal summation in the regional anelastic model (one-dimensional) where the source is buried, and finite differences in the local sedimentary anelastic models (two-dimensional). The analysis of the influence of the depth and of the distance of the source on the site effects shows that standard traditional methods, based on the deconvolution analysis of the rock outcrop motion, can lead to erroneous results.
Predicting Ground Motion from Induced Earthquakes in Geothermal Areas
Douglas, J.; Edwards, B.; Convertito, V.; Sharma, N.; Tramelli, A.; Kraaijpoel, D.; Cabrera, B. M.; Maercklin, N.; Troise, C.
2013-06-01
Induced seismicity from anthropogenic sources can be a significant nuisance to a local population and in extreme cases lead to damage to vulnerable structures. One type of induced seismicity of particular recent concern, which, in some cases, can limit development of a potentially important clean energy source, is that associated with geothermal power production. A key requirement for the accurate assessment of seismic hazard (and risk) is a ground-motion prediction equation (GMPE) that predicts the level of earthquake shaking (in terms of, for example, peak ground acceleration) of an earthquake of a certain magnitude at a particular distance. Few such models currently exist in regard to geothermal-related seismicity, and consequently the evaluation of seismic hazard in the vicinity of geothermal power plants is associated with high uncertainty. Various ground-motion datasets of induced and natural seismicity (from Basel, Geysers, Hengill, Roswinkel, Soultz, and Voerendaal) were compiled and processed, and moment magnitudes for all events were recomputed homogeneously. These data are used to show that ground motions from induced and natural earthquakes cannot be statistically distinguished. Empirical GMPEs are derived from these data; and, although they have similar characteristics to recent GMPEs for natural and mining-related seismicity, the standard deviations are higher. To account for epistemic uncertainties, stochastic models subsequently are developed based on a single corner frequency and with parameters constrained by the available data. Predicted ground motions from these models are fitted with functional forms to obtain easy-to-use GMPEs. These are associated with standard deviations derived from the empirical data to characterize aleatory variability. As an example, we demonstrate the potential use of these models using data from Campi Flegrei.
Ground motions and its effects in accelerator design
Energy Technology Data Exchange (ETDEWEB)
Fischer, G.E.
1984-07-01
This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)
Extreme ground motions and Yucca Mountain
Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.
2013-01-01
Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program
Directory of Open Access Journals (Sweden)
Hadi Ghofrani
2017-09-01
Full Text Available Ground motions for earthquakes of M7.5 to 9.0 on the Cascadia subduction interface are simulated based on a stochastic finite-fault model and used to estimate average response spectra for reference firm soil conditions. The simulations are first validated by modeling the wealth of ground-motion data from the 2011 M9.0 Tohoku earthquake of Japan. Adjustments to the calibrated model are then made to consider average source, attenuation and site parameters for the Cascadia region. This includes an evaluation of the likely variability in stress drop for large interface earthquakes and an assessment of regional attenuation and site effects. We perform best-estimate simulations for a preferred set of input parameters. Typical results suggest mean values of 5%-damped pseudoacceleration in the range from about 100 to 200 cm/s2, at frequencies from 1 to 4 Hz, for firm-ground conditions in Vancouver. Uncertainty in most-likely value of the parameter representing stress drop causes variability in simulated response spectra of about ±50%. Uncertainties in the attenuation model produce even larger variability in response spectral amplitudes—a factor of about two at a closest distance to the rupture plane (Rcd of 100 km, becoming even larger at greater distances. It is thus important to establish the regional attenuation model for ground-motion simulations and to bound the source properties controlling radiation of ground motion. We calculate theoretical one-dimensional spectral amplification estimates for four selected Fraser River Delta sites to show how the presence of softer sediments in the region may alter the predicted ground motions. The amplification functions are largely consistent with observed spectral amplification at Fraser River delta sites, suggesting amplification by factors of 2.5–5 at the peak frequency of the site; we note that deep sites in the delta have a low peak frequency, ∼0.3 Hz. This work will aid in seismic hazard
Analysis of ground-motion simulation big data
Maeda, T.; Fujiwara, H.
2016-12-01
We developed a parallel distributed processing system which applies a big data analysis to the large-scale ground motion simulation data. The system uses ground-motion index values and earthquake scenario parameters as input. We used peak ground velocity value and velocity response spectra as the ground-motion index. The ground-motion index values are calculated from our simulation data. We used simulated long-period ground motion waveforms at about 80,000 meshes calculated by a three dimensional finite difference method based on 369 earthquake scenarios of a great earthquake in the Nankai Trough. These scenarios were constructed by considering the uncertainty of source model parameters such as source area, rupture starting point, asperity location, rupture velocity, fmax and slip function. We used these parameters as the earthquake scenario parameter. The system firstly carries out the clustering of the earthquake scenario in each mesh by the k-means method. The number of clusters is determined in advance using a hierarchical clustering by the Ward's method. The scenario clustering results are converted to the 1-D feature vector. The dimension of the feature vector is the number of scenario combination. If two scenarios belong to the same cluster the component of the feature vector is 1, and otherwise the component is 0. The feature vector shows a `response' of mesh to the assumed earthquake scenario group. Next, the system performs the clustering of the mesh by k-means method using the feature vector of each mesh previously obtained. Here the number of clusters is arbitrarily given. The clustering of scenarios and meshes are performed by parallel distributed processing with Hadoop and Spark, respectively. In this study, we divided the meshes into 20 clusters. The meshes in each cluster are geometrically concentrated. Thus this system can extract regions, in which the meshes have similar `response', as clusters. For each cluster, it is possible to determine
The strong ground motion observation for the Wenchuan aftershock
Institute of Scientific and Technical Information of China (English)
Ruizhi Wen; Zhenghua Zhou; Xiaojun Li; Cheng Yang; Yuhuan Wang; Quan Liu; Xiaotao Yin; Mindu Zhou; Jianwen Cui
2009-01-01
In this paper, the mobile strong ground motion observation for the destructive earthquake is introduced. Considering the characteristics and its spatial distributions of aftershock, 59 strong ground motion instruments were installed along the Longmenshan fault area, and more than 2 000 records have been accumulated. It shows that it is necessary to perform the mobile strong ground motion observation after the destructive earthquake, and the precious collected data could be applied for further research.
Simulation of ground motion using the stochastic method
Boore, D.M.
2003-01-01
A simple and powerful method for simulating ground motions is to combine parametric or functional descriptions of the ground motion's amplitude spectrum with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to the distance from the source. This method of simulating ground motions often goes by the name "the stochastic method." It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers (generally, f>0.1 Hz), and it is widely used to predict ground motions for regions of the world in which recordings of motion from potentially damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude and in diverse tectonic environments. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms. This provides a means by which the results of the rigorous studies reported in other papers in this volume can be incorporated into practical predictions of ground motion.
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves
2013-04-01
Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of
Directivity in NGA earthquake ground motions: Analysis using isochrone theory
Spudich, P.; Chiou, B.S.J.
2008-01-01
We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.
Study on equivalent velocity pulse of nearfault ground motions
Institute of Scientific and Technical Information of China (English)
李新乐; 朱晞
2004-01-01
Near-fault strong ground motions that resulted in serious structural damage are characterized by directivity effect and pulse-type motion. Large-amplitude and long-period pulses are contained in the velocity time-history traces of near-fault pulse-type records. A reasonable model of equivalent velocity pulse is proposed on the basis of the existed models in this paper to simplify the calculation and analysis. Based on the large amount of collected near-fault strong earthquakes records, the parameters describing equivalent velocity pulse model such as pulse period, pulse intensity and number of predominant pulses are studied, and comparison is made with the results obtained by others models. The proposed model is contributive to the seismic design for structures in near-fault areas.
Portable sensor technology for rotational ground motions
Bernauer, Felix; Wassermann, Joachim; Guattari, Frédéric; Igel, Heiner
2016-04-01
In this contribution we present performance characteristics of a single component interferometric fiber-optic gyroscope (IFOG). The prototype sensor is provided by iXBlue, France. It is tested in the framework of the European Research Council Project, ROMY (Rotational motions - a new observable for seismology), on its applicability as a portable and field-deployable sensor for rotational ground motions. To fully explore the benefits of this new seismic observable especially in the fields of vulcanology, ocean generated noise and geophysical exploration, such a sensor has to fulfill certain requirements regarding portability, power consumption, time stamping stability and dynamic range. With GPS-synchronized time stamping and miniseed output format, data acquisition is customized for the use in seismology. Testing time stamping accuracy yields a time shift of less than 0.0001 s and a correlation coefficient of 0.99 in comparison to a commonly used data acquisition system, Reftek 120. Sensor self-noise is below 5.0 ṡ 10-8 rads-1Hz-1/2 for a frequency band from 0.001 Hz to 5.0 Hz. Analysis of Allan deviation shows an angle random walk of 3.5 ṡ 10-8 rads-1Hz-1/2. Additionally, the operating range diagram is shown and ambient noise analysis is performed. The sensitivity of sensor self-noise to variations in surrounding temperature and magnetic field is tested in laboratory experiments. With a power consumption of less than 10 W, the whole system (single component sensor + data acquisition) is appropriate for field use with autonomous power supply.
Ground motion observations of the 2014 South Napa earthquake
Baltay, Annemarie S.; Boatwright, John
2015-01-01
Ground motions of the South Napa earthquake (24 August 2014; M 6.0) were recorded at 19 stations within 20 km and 292 stations within 100 km of the rupture surface trace, generating peak ground motions in excess of 50%g and 50 cm/s in and near Napa Valley. This large dataset allows us to compare the ground motion from the earthquake to existing ground‐motion prediction equations (GMPEs) in considerable detail.
Graves, Robert W.; Aagaard, Brad T.
2011-01-01
Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (models may need improvement.
Ground motion input in seismic evaluation studies
Energy Technology Data Exchange (ETDEWEB)
Sewell, R.T.; Wu, S.C.
1996-07-01
This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.
Broadband Ground Motion Simulations for the Puente Hills Fault System
Graves, R. W.
2005-12-01
Recent geologic studies have identified the seismic potential of the Puente Hills fault system. This system is comprised of multiple blind thrust segments, a portion of which ruptured in the Mw 5.9 Whittier-Narrows earthquake. Rupture of the entire system could generate a Mw 7.2 (or larger) earthquake. To assess the potential hazard posed by the fault system, we have simulated the response for several earthquake scenarios. These simulations are unprecedented in scope and scale. Broadband (0-10 Hz) ground motions are computed at 66,000 sites, covering most of the LA metropolitan region. Low frequency (f 1 Hz) motions are calculated using a stochastic approach. We consider scenarios ranging from Mw 6.7 to Mw 7.2, including both high and low stress drop events. Finite-fault rupture models for these scenarios are generated following a wavenumber filtering technique (K-2 model) that has been calibrated against recent earthquakes. In all scenarios, strong rupture directivity channels large amplitude pulses of motion directly into the Los Angeles basin, which then propagate southward as basin surface waves. Typically, the waveforms near downtown Los Angeles are dominated by a strong, concentrated pulse of motion. At Long Beach (across the LA basin from the rupture) the waveforms are dominated by late arriving longer period surface waves. The great density of sites used in the calculation allows the construction of detailed maps of various ground motion parameters (PGA, PGV, SA), as well as full animations of the propagating broadband wave field. Additionally, the broadband time histories are available for use in non-linear response analyses of built structures.
Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion
Institute of Scientific and Technical Information of China (English)
YE Kun; LI Li; FANG Qin-han
2008-01-01
An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.
Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area
Reshi, Owais A.
2016-04-13
Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes
Strong Ground-Motion Prediction in Seismic Hazard Analysis: PEGASOS and Beyond
Scherbaum, F.; Bommer, J. J.; Cotton, F.; Bungum, H.; Sabetta, F.
2005-12-01
The SSHAC Level 4 approach to probabilistic seismic hazard analysis (PSHA), which could be considered to define the state-of-the-art in PSHA using multiple expert opinions, has been fully applied only twice, firstly in the multi-year Yucca Mountain study and subsequently (2002-2004) in the PEGASOS project. The authors of this paper participated as ground-motion experts in this latter project, the objective of which was comprehensive seismic hazard analysis for four nuclear power plant sites in Switzerland, considering annual exceedance frequencies down to 1/10000000. Following SSHAC procedure, particular emphasis was put on capturing both the aleatory and epistemic uncertainties. As a consequence, ground motion prediction was performed by combining several empirical ground motion models within a logic tree framework with the weights on each logic tree branch expressing the personal degree-of-belief of each ground-motion expert. In the present paper, we critically review the current state of ground motion prediction methodology in PSHA in particular for regions of low seismicity. One of the toughest lessons from PEGASOS was that in systematically and rigorously applying the laws of uncertainty propagation to all of the required conversions and adjustments of ground motion models, a huge price has to be paid in an ever-growing aleatory variability. Once this path has been followed, these large sigma values will drive the hazard, particularly for low annual frequencies of exceedance. Therefore, from a post-PEGASOS perspective, the key issues in the context of ground-motion prediction for PSHA for the near future are to better understand the aleatory variability of ground motion and to develop suites of ground-motion prediction equations that employ the same parameter definitions. The latter is a global rather than a regional challenge which might be a desirable long-term goal for projects similar to the PEER NGA (Pacific Earthquake Engineering Research Center, Next
Measurement of ground motion in various sites
Energy Technology Data Exchange (ETDEWEB)
Bialowons, W.; Amirikas, R.; Bertolini, A.; Kruecker, D.
2007-04-15
Ground vibrations may affect low emittance beam transport in linear colliders, Free Electron Lasers (FEL) and synchrotron radiation facilities. This paper is an overview of a study program to measure ground vibrations in various sites which can be used for site characterization in relation to accelerator design. Commercial broadband seismometers have been used to measure ground vibrations and the resultant database is available to the scientific community. The methodology employed is to use the same equipment and data analysis tools for ease of comparison. This database of ground vibrations taken in 19 sites around the world is first of its kind. (orig.)
Orientation effect on ground motion measurement for Mexican subduction earthquakes
Institute of Scientific and Technical Information of China (English)
H.P Hong; A. Pozos-Estrada; R. Gomez
2009-01-01
The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.
Study on simulating strong ground motion by fractal stochastic method
Institute of Scientific and Technical Information of China (English)
GUO Meng-qiu; WANG Bin; XU Zhao-yong
2005-01-01
@@ The time history of strong ground motion can be synthesized by empirical Green's function (EGF) method.Firstly a large seismic event is discretized into a series of subevents; secondly recordings of earthquakes with proper size and spatial distribution are chosen as time history (EGF) of those subevents; finally the EGFs are summated to get the time history of ground motion caused by the large event.
Explosion source strong ground motions in the Mississippi embayment
Langston, C.A.; Bodin, P.; Powell, C.; Withers, M.; Horton, S.; Mooney, W.
2006-01-01
Two strong-motion arrays were deployed for the October 2002 Embayment Seismic Excitation Experiment to study the spatial variation of strong ground motions in the deep, unconsolidated sediments of the Mississippi embayment because there are no comparable strong-motion data from natural earthquakes in the area. Each linear array consisted of eight three-component K2 accelerographs spaced 15 m apart situated 1.2 and 2.5 kin from 2268-kg and 1134-kg borehole explosion sources, respectively. The array data show distinct body-wave and surface-wave arrivals that propagate within the thick, unconsolidated sedimentary column, the high-velocity basement rocks, and small-scale structure near the surface. Time-domain coherence of body-wave and surface-wave arrivals is computed for acceleration, velocity, and displacement time windows. Coherence is high for relatively low-frequency verticalcomponent Rayleigh waves and high-frequency P waves propagating across the array. Prominent high-frequency PS conversions seen on radial components, a proxy for the direct S wave from earthquake sources, lose coherence quickly over the 105-m length of the array. Transverse component signals are least coherent for any ground motion and appear to be highly scattered. Horizontal phase velocity is computed by using the ratio of particle velocity to estimates of the strain based on a plane-wave-propagation model. The resulting time-dependent phase-velocity map is a useful way to infer the propagation mechanisms of individual seismic phases and time windows of three-component waveforms. Displacement gradient analysis is a complementary technique for processing general spatial-array data to obtain horizontal slowness information.
Ground-motion signature of dynamic ruptures on rough faults
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.
2016-04-01
Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.
Pei, Shiling; van de Lindt, John W.; Hartzell, Stephen; Luco, Nicolas
2014-01-01
Earthquake damage to light-frame wood buildings is a major concern for North America because of the volume of this construction type. In order to estimate wood building damage using synthetic ground motions, we need to verify the ability of synthetically generated ground motions to simulate realistic damage for this structure type. Through a calibrated damage potential indicator, four different synthetic ground motion models are compared with the historically recorded ground motions at corresponding sites. We conclude that damage for sites farther from the fault (>20 km) is under-predicted on average and damage at closer sites is sometimes over-predicted.
Ground motion improvements in SPEAR3
Energy Technology Data Exchange (ETDEWEB)
Safranek, James A.; Yan, Yiton T.; Dell’Orco, Domenico; Gassner, Georg; Sunilkumar, Nikita
2016-09-01
SPEAR3 is a third-generation synchrotron light source storage ring, about 234 meters in circumference. To meet the beam stability requirement, our goal is to ultimately achieve an orbit variation (relative to the photon beam lines) of less than 10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic leveling system (HLS) measurements show that the height of the SPEAR3 tunnel floor can vary by tens of microns daily without thermal insulation improvements. We present an analysis of the HLS data that shows that adding thermal insulation to the concrete walls of the storage ring tunnel dramatically decreased diurnal tunnel floor motion.
Physical limits on ground motion at Yucca Mountain
Andrews, D.J.; Hanks, T.C.; Whitney, J.W.
2007-01-01
Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr-Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.
Karimzadeh, Shaghayegh; Askan, Aysegul; Yakut, Ahmet
2017-07-01
Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the corresponding real records. In this study, a framework is outlined for assessment of simulated ground motions in terms of their use in structural engineering. Misfit criteria are determined for both ground motion parameters and structural response by comparing the simulated values against the corresponding real values. For this purpose, as a case study, the 12 November 1999 Duzce earthquake is simulated using stochastic finite-fault methodology. Simulated records are employed for time history analyses of frame models of typical residential buildings. Next, the relationships between ground motion misfits and structural response misfits are studied. Results show that the seismological misfits around the fundamental period of selected buildings determine the accuracy of the simulated responses in terms of their agreement with the observed responses.
Computing spatial correlation of ground motion intensities for ShakeMap
Verros, Sarah A.; Wald, David J.; Worden, C. Bruce; Hearne, Mike; Ganesh, Mahadevan
2017-02-01
Modeling the spatial correlation of ground motion residuals, caused by coherent contributions from source, path, and site, can provide valuable loss and hazard information, as well as a more realistic depiction of ground motion intensities. The U.S. Geological Survey (USGS) software package, ShakeMap, utilizes a deterministic empirical approach to estimate median ground shaking in conjunction with observed seismic data. ShakeMap-based shaking estimates are used in concert with loss estimation algorithms to estimate fatalities and economic losses after significant seismic events around the globe. Incorporating the spatial correlation of ground motion residuals has been shown to improve seismic loss estimates. In particular, Park, Bazzuro, and Baker (Applications of Statistics and Probability in Civil Engineering, 2007) investigated computing spatially correlated random fields of residuals. However, for large scale ShakeMap grids, computational requirements of the method are prohibitive. In this work, a memory efficient algorithm is developed to compute the random fields and implemented using the ShakeMap framework. This new, iterative parallel algorithm is based on decay properties of an associated ground motion correlation function and is shown to significantly reduce computational requirements associated with adding spatial variability to the ShakeMap ground motion estimates. Further, we demonstrate and quantify the impact of adding peak ground motion spatial variability on resulting earthquake loss estimates.
On the unsteady motion and stability of a heaving airfoil in ground effect
Institute of Scientific and Technical Information of China (English)
Juan Molina; Xin Zhang; David Angland
2011-01-01
This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces' behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity.However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.
On the Testing of Ground--Motion Prediction Equations against Small--Magnitude Data
Beauval, Céline; Laurendeau, Aurore; Delavaud, Elise; Cotton, Fabrice; Guéguen, Philippe; Kuehn, Nicolas; 10.1785/0120110271
2012-01-01
Ground-motion prediction equations (GMPE) are essential in probabilistic seismic hazard studies for estimating the ground motions generated by the seismic sources. In low seismicity regions, only weak motions are available in the lifetime of accelerometric networks, and the equations selected for the probabilistic studies are usually models established from foreign data. Although most ground-motion prediction equations have been developed for magnitudes 5 and above, the minimum magnitude often used in probabilistic studies in low seismicity regions is smaller. Desaggregations have shown that, at return periods of engineering interest, magnitudes lower than 5 can be contributing to the hazard. This paper presents the testing of several GMPEs selected in current international and national probabilistic projects against weak motions recorded in France (191 recordings with source-site distances up to 300km, 3.8\\leqMw\\leq4.5). The method is based on the loglikelihood value proposed by Scherbaum et al. (2009). The ...
Song, Shiyan
In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions. For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions. To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building's natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building's capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion. The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis. The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records. Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures. We also provide a
Ground motion improvements in SPEAR3
Safranek, James A.; Yan, Yiton T.; Dell'Orco, Domenico; Gassner, Georg; Sunilkumar, Nikita
2016-09-01
SPEAR3 is a third-generation synchrotron light source storage ring, about 234 meters in circumference. To meet the beam stability requirement, our goal is to ultimately achieve an orbit variation (relative to the photon beam lines) of less than 10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic leveling system (HLS) measurements show that the height of the SPEAR3 tunnel floor can vary by tens of microns daily without thermal insulation improvements. We present an analysis of the HLS data that shows that adding thermal insulation to the concrete walls of the storage ring tunnel dramatically decreased diurnal tunnel floor motion. Supported by US Department of Energy (DE-AC02-76SF00515) and the SULI program at SLAC National Laboratory
Local site effects on weak and strong ground motion
Aki, Keiiti
1993-02-01
This is a review of the current state of the art in characterizing effects of local geology on ground motion. A new horizon is clear in this aspect of strong motion studies. Non-linear amplification at sediment sites appears to be more pervasive than seismologists used to think. Several recent observations about the weak motion and the strong motion suggest that the non-linear amplification at sediment sites may be very common. First, on average, the amplification is always greater at the younger sediment sites for all frequencies up to 12 Hz, in the case of weak motion; while the relation is reversed for frequencies higher than 5 Hz, in the case of strong motion. Secondly, the application of the amplification factor determined from weak motion overestimates significantly the strong motion at sediment sites observed during the Loma Prieta earthquake within the epicentral distance of about 50 km. Thirdly, the variance of peak ground acceleration around the mean curve decreases with the increasing earthquake magnitude. Finally, the above non-linear effects are expected from geotechnical studies both in the magnitude of departure from the linear prediction and in the threshold acceleration level beyond which the non-linearity begins.
Simulation of non-stationary ground motion processes (II)
Institute of Scientific and Technical Information of China (English)
LIANG Jian-wen
2005-01-01
This paper proposes a method for simulation of non-stationary ground motion processes having the identical statistical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simulation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the target power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is verified by simulation of one acceleration record in Landers earthquake.
Broadband ground-motion simulation using a hybrid approach
Graves, R.W.; Pitarka, A.
2010-01-01
This paper describes refinements to the hybrid broadband ground-motion simulation methodology of Graves and Pitarka (2004), which combines a deterministic approach at low frequencies (f 1 Hz). In our approach, fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time. The prescribed slip distribution is constrained to follow an inverse wavenumber-squared fall-off and the average rupture speed is set at 80% of the local shear-wave velocity, which is then adjusted such that the rupture propagates faster in regions of high slip and slower in regions of low slip. We use a Kostrov-like slip-rate function having a rise time proportional to the square root of slip, with the average rise time across the entire fault constrained empirically. Recent observations from large surface rupturing earthquakes indicate a reduction of rupture propagation speed and lengthening of rise time in the near surface, which we model by applying a 70% reduction of the rupture speed and increasing the rise time by a factor of 2 in a zone extending from the surface to a depth of 5 km. We demonstrate the fidelity of the technique by modeling the strong-motion recordings from the Imperial Valley, Loma Prieta, Landers, and Northridge earthquakes.
SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.
Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.
1985-01-01
Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.
Effect of ground motion from nuclear excavation: interim canal studies
Energy Technology Data Exchange (ETDEWEB)
King, C. Y.; Nadolski, M. E.
1969-09-01
The effect of ground motion due to nuclear excavation of a sea-level canal at two alternative routes, 17A and 25E, are discussed from the aspects of motion prediction and structural response. The importance of the high-rise building problem is stressed because of its complexity. Several damage criteria are summarized for advance planning of excavation and operation. The 1964 shot schedule and the latest revised schedule are included for comparison.
Strong ground motion from the michoacan, Mexico, earthquake.
Anderson, J G; Bodin, P; Brune, J N; Prince, J; Singh, S K; Quaas, R; Onate, M
1986-09-05
The network of strong motion accelerographs in Mexico includes instruments that were installed, under an international cooperative research program, in sites selected for the high potenial of a large earthquake. The 19 September 1985 earthquake (magnitude 8.1) occurred in a seismic gap where an earthquake was expected. As a result, there is an excellent descripton of the ground motions that caused the disaster.
Broad-band near-field ground motion simulations in 3-dimensional scattering media
Imperatori, W.; Mai, P. M.
2013-02-01
The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0-10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5-10 per cent range
Broad-band near-field ground motion simulations in 3-dimensional scattering media
Imperatori, W.
2012-12-06
The heterogeneous nature of Earth\\'s crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent
Energy Technology Data Exchange (ETDEWEB)
1993-03-18
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.
Broadband Ground Motion Estimates for Scenario Earthquakes in the San Francisco Bay Region
Graves, R. W.
2006-12-01
Using broadband (0-10 Hz) simulation procedures, we are assessing the ground motions that could be generated by different earthquake scenarios occurring on major strike-slip faults of the San Francisco Bay region. These simulations explicitly account for several important ground motion features, including rupture directivity, 3D basin response, and the depletion of high frequency ground motions that occurs for surface rupturing events. This work compliments ongoing USGS efforts to quantify the ground shaking hazards throughout the San Francisco Bay region. These efforts involve development and testing of a 3D velocity model for northern California (USGS Bay Area Velocity Model, version 05.1.0) using observations from the 1989 Loma Prieta earthquake, characterization of 1906 rupture scenarios and ground motions, and the development and analysis of rupture scenarios on other Bay Area faults. The adequacy of the simulation model has been tested using ground motion data recorded during the 1989 Loma Prieta earthquake and by comparison with the reported intensity data from the 1906 earthquake. Comparisons of the simulated broadband (0-10 Hz) ground motions with the recorded motions for the 1989 Loma Prieta earthquake demonstrate that the modeling procedure matches the observations without significant bias over a broad range of frequencies, site types, and propagation distances. The Loma Prieta rupture model is based on a wavenumber-squared refinement of the Wald et al (1991) slip distribution, with the rupture velocity set at 75 percent of the local shear wave velocity and a Kostrov-type slip function having a rise time of about 1.4 sec. Simulations of 1906 scenario ruptures indicate very strong directivity effects to the north and south of the assumed epicenter, adjacent to San Francisco. We are currently analyzing additional earthquake scenarios on the Hayward-Rodgers Creek and San Andreas faults in order to provide a more comprehensive framework for assessing
Simulation of near-fault bedrock strong ground-motion field by explicit finite element method
Institute of Scientific and Technical Information of China (English)
ZHANG Xiao-zhi; HU Jin-jun; XIE Li-li; WANG Hai-yun
2006-01-01
Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained.The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.
Near-fault directivity pulse-like ground motion effect on high-speed railway bridge
Institute of Scientific and Technical Information of China (English)
陈令坤; 张楠; 蒋丽忠; 曾志平; 陈格威; 国巍
2014-01-01
The vehicle-track-bridge (VTB) element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions. Based on the PEER NAG Strong Ground Motion Database, the spatial analysis model of a vehicle-bridge system was developed, the VTB element was derived to simulate the interaction of train and bridge, and the elasto-plastic seismic responses of the bridge were calculated. The calculation results show that girder and pier top displacement, and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes, and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading. The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base, which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve. The results show that there is an amplification of the vertical deflection in the girder’s mid-span owing to the high vertical ground motion. In light of these findings, the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.
Institute of Scientific and Technical Information of China (English)
李杰; 王鼎
2013-01-01
Applying the PEER NGA Database,the parametric probability distributions of the random function model of seismic ground motions are presented.According to the site classification in GB50011-2010,4438 ground motion records are classified.The sample values of the stochastic parameters are identified on different site classes using the system identification method.Based on the parametric identification results,the statistic analysis of the stochastic parameters in the random function model of seismic ground motions is made,and the probability density functions of the stochastic parameters are obtained.Selecting the representative point sets in the probability space of the random function parameters,the sample sets of the seismic ground motions are generated with the application of the superposition method of wave groups and the response spectrum sample scts are calculated.The statistical feature comparisons of response spectra between the realistic ground motion records and the synthesized ground motion samples show the validity of the random function model and the statistic results of the physical random parameters.%利用PEER强震记录数据库,确定了一类实用的随机地震动模型的参数概率分布.依据GB50011-2010规定的场地类别,对4438条实测地震动记录进行分组.引用系统识别方法对不同场地上的地震动记录进行参数识别,据此结果,对工程地震动物理随机函数模型的基本参数进行了统计分析,给出了随机地震动模型参数的概率分布密度.对基本随机参数的概率空间进行剖分,结合波群叠加方法生成地震动时程,计算获得了随机地震动反应谱.通过比较随机反应谱和实测地震动反应谱的统计特征量,验证了地震动物理随机函数模型及基本随机参数统计结果的正确性.
Thein, Pyi Soe; Pramumijoyo, Subagyo; Brotopuspito, Kirbani Sri; Wilopo, Wahyu; Kiyono, Junji; Setianto, Agung; Putra, Rusnardi Rahmat
2015-04-01
In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green's function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.
Energy Technology Data Exchange (ETDEWEB)
Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)
2015-04-24
In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.
Directory of Open Access Journals (Sweden)
Kotaro eKojima
2016-01-01
Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.
Outdoor ground impedance models.
Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram
2011-05-01
Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.
Ground Motion Expectations for the LCLS Undulator Hall
Energy Technology Data Exchange (ETDEWEB)
Welch, J.
2005-01-31
The Undulator Hall (UH) for the LCLS will consist of a tunneled structure completely beneath the ''berm'' at the east end of the Research Yard. This location should provide better thermal and geologic stability compared with the previous siting at ground level in the Research Yard. Nevertheless, microscopic motion of the tunnel foundation will contribute to misalignments among quadrupoles and reduce the time interval required between beam based alignment sessions. Based on historical measurements of slow ground motion at the SLAC site and measurements of atmospheric pressure effects, assuming a girder support system we estimate that during the first three years of operation the interval between periodic beam-based re-alignments should be about one week. Implications for the support system stability tolerance and the maximum range of motion to be accommodated are also discussed.
Pacor, F.; Spallarossa, D.; Oth, A.; Luzi, L.; Puglia, R.; Cantore, L.; Mercuri, A.; D'Amico, M.; Bindi, D.
2016-02-01
.0-5.8. We find a significant stress drop increase with seismic moment for events with Mw larger than 3.75, with so-called scaling parameter ε close to 1.5. We also observe that the overall offset of the stress-drop scaling is controlled by earthquake depth. We evaluate the performance of the proposed parametric models through the residual analysis of the Fourier spectra in the frequency range 0.5-25 Hz. The results show that the considered stress-drop scaling with magnitude and depth reduces, on average, the standard deviation by 18 per cent with respect to a constant stress-drop model. The overall quality of fit (standard deviation between 0.20 and 0.27, in the frequency range 1-20 Hz) indicates that the spectral model calibrated in this study can be used to predict ground motion in the L'Aquila region.
Analysis of strong ground motions to evaluate regional attenuation relationships
Directory of Open Access Journals (Sweden)
V. Montaldo
2002-06-01
Full Text Available Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations.
Hancilar, Ufuk; Harmandar, Ebru; Çakti, Eser
2014-05-01
Empirical fragility functions are derived by statistical processing of the data on: i) Damaged and undamaged buildings, and ii) Ground motion intensity values at the buildings' locations. This study investigates effects of different ground motion inputs on the derived fragility functions. The previously constructed fragility curves (Hancilar et al. 2013), which rely on specific shaking intensity maps published by the USGS after the 2010 Haiti Earthquake, are compared with the fragility functions computed in the present study. Building data come from field surveys of 6,347 buildings that are grouped with respect to structural material type and number of stories. For damage assessment, the European Macroseismic Scale (EMS-98) damage grades are adopted. The simplest way to account for the variability in ground motion input could have been achieved by employing different ground motion prediction equations (GMPEs) and their standard variations. However, in this work, we prefer to rely on stochastically simulated ground motions of the Haiti earthquake. We employ five different source models available in the literature and calculate the resulting strong ground motion in time domain. In our simulations we also consider the local site effects by published studies on NEHRP site classes and micro-zoning maps of the city of Port-au-Prince. We estimate the regional distributions from the waveforms simulated at the same coordinates that we have damage information from. The estimated spatial distributions of peak ground accelerations and velocities, PGA and PGV respectively, are then used as input to fragility computations. The results show that changing the ground motion input causes significant variability in the resulting fragility functions.
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2015-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.
Motion Model Employment using interacting Motion Model Algorithm
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar
2006-01-01
model being correct is computed through a likelihood function for each model. The study presented a simple technique to introduce additional models into the system using deterministic acceleration which basically defines the dynamics of the system. Therefore, based on this value more motion models can...... be employed to increase the coverage. Finally, the combined estimate is obtained using posteriori probabilities from different filter models. The implemented approach provides an adaptive scheme for selecting various number of motion models. Motion model description is important as it defines the kind...
Ground Motion Relations While TBM Drilling in Unconsolidated Sediments
Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel
2016-05-01
The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.
Institute of Scientific and Technical Information of China (English)
ZHAO Zhixin; XU Jiren; Ryuji Kubota
2004-01-01
Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interferences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array survey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplification ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a complicated distribution of the maximum amplitudes of acceleration waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak amplitude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplification effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the
Motion Model Employment using interacting Motion Model Algorithm
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar
2006-01-01
The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets. Initially, there are two motion models in the system to track a target. Probability of each...... model being correct is computed through a likelihood function for each model. The study presented a simple technique to introduce additional models into the system using deterministic acceleration which basically defines the dynamics of the system. Therefore, based on this value more motion models can...... be employed to increase the coverage. Finally, the combined estimate is obtained using posteriori probabilities from different filter models. The implemented approach provides an adaptive scheme for selecting various number of motion models. Motion model description is important as it defines the kind...
Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena
2012-01-01
Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.
Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements
Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles
2013-01-01
Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.
Cramer, C. H.; Kutliroff, J.; Dangkua, D.
2010-12-01
A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have
Interaction between stope support and ground motion in the hangingwall and footwall Project.
CSIR Research Space (South Africa)
Cichowicz, A
2002-07-01
Full Text Available and limitations were verified by detailed testing with the strong ground motion data. The support response may be simulated using SDOF model when PGA is in the range 18 - 100 m/s 2 ; for this data model shows that the maximal value of the stiffness is 120,000 k...
Ground Motion Relations for the Upper Rhine Graben
Calbini, V.; Granet, M.; Camelbeeck, T.
2006-12-01
Earthquake in Europe are primarily located within the Euro-Mediterranean domain. However, the Upper Rhine Graben (URG) region regularly suffers earthquakes which are felt physically by inhabitants and cause damage to private property and the industrial infrastructure. In 1356, a major earthquake (I0 = X) destroyed part of the city of Basel. Recently, several events having M > 5 have shaken this area. In the framework of an INTERREG III project funded by the European community, a microzonation study has been achieved across the "three borders" area including the cities of Basel and Mulhouse. In particular, the ground motion was studied. The URG, which belongs to the ECRIS (European Cenozoic Rift System), is characterized by rift-related sedimentary basins with several hundreds meters of tertiary sediments overlaying the basement. Such a subsurface geology leads to strong site effects. Predictive attenuation laws and their related uncertainties are evaluated considering strong motions records and velocimetric records from small to moderate local events (Magnitude ranging 3
Revisions to some parameters used in stochastic-method simulations of ground motion
Boore, David; Thompson, Eric M.
2015-01-01
The stochastic method of ground‐motion simulation specifies the amplitude spectrum as a function of magnitude (M) and distance (R). The manner in which the amplitude spectrum varies with M and R depends on physical‐based parameters that are often constrained by recorded motions for a particular region (e.g., stress parameter, geometrical spreading, quality factor, and crustal amplifications), which we refer to as the seismological model. The remaining ingredient for the stochastic method is the ground‐motion duration. Although the duration obviously affects the character of the ground motion in the time domain, it also significantly affects the response of a single‐degree‐of‐freedom oscillator. Recently published updates to the stochastic method include a new generalized double‐corner‐frequency source model, a new finite‐fault correction, a new parameterization of duration, and a new duration model for active crustal regions. In this article, we augment these updates with a new crustal amplification model and a new duration model for stable continental regions. Random‐vibration theory (RVT) provides a computationally efficient method to compute the peak oscillator response directly from the ground‐motion amplitude spectrum and duration. Because the correction factor used to account for the nonstationarity of the ground motion depends on the ground‐motion amplitude spectrum and duration, we also present new RVT correction factors for both active and stable regions.
Ground-Motion Simulations of Scenario Earthquakes on the Hayward Fault
Energy Technology Data Exchange (ETDEWEB)
Aagaard, B; Graves, R; Larsen, S; Ma, S; Rodgers, A; Ponce, D; Schwartz, D; Simpson, R; Graymer, R
2009-03-09
We compute ground motions in the San Francisco Bay area for 35 Mw 6.7-7.2 scenario earthquake ruptures involving the Hayward fault. The modeled scenarios vary in rupture length, hypocenter, slip distribution, rupture speed, and rise time. This collaborative effort involves five modeling groups, using different wave propagation codes and domains of various sizes and resolutions, computing long-period (T > 1-2 s) or broadband (T > 0.1 s) synthetic ground motions for overlapping subsets of the suite of scenarios. The simulations incorporate 3-D geologic structure and illustrate the dramatic increase in intensity of shaking for Mw 7.05 ruptures of the entire Hayward fault compared with Mw 6.76 ruptures of the southern two-thirds of the fault. The area subjected to shaking stronger than MMI VII increases from about 10% of the San Francisco Bay urban area in the Mw 6.76 events to more than 40% of the urban area for the Mw 7.05 events. Similarly, combined rupture of the Hayward and Rodgers Creek faults in a Mw 7.2 event extends shaking stronger than MMI VII to nearly 50% of the urban area. For a given rupture length, the synthetic ground motions exhibit the greatest sensitivity to the slip distribution and location inside or near the edge of sedimentary basins. The hypocenter also exerts a strong influence on the amplitude of the shaking due to rupture directivity. The synthetic waveforms exhibit a weaker sensitivity to the rupture speed and are relatively insensitive to the rise time. The ground motions from the simulations are generally consistent with Next Generation Attenuation ground-motion prediction models but contain long-period effects, such as rupture directivity and amplification in shallow sedimentary basins that are not fully captured by the ground-motion prediction models.
Ground motions at the outermost limits of seismically triggered landslides
Jibson, Randall W.; Harp, Edwin L.
2016-01-01
Over the last few decades, we and our colleagues have conducted field investigations in which we mapped the outermost limits of triggered landslides in four earthquakes: 1987 Whittier Narrows, California (M 5.9), 1987 Superstition Hills, California (M 6.5), 1994 Northridge, California (M 6.7), and 2011 Mineral, Virginia (M 5.8). In an additional two earthquakes, 1976 Guatemala (M 7.5) and 1983 Coalinga, California (M 6.5), we determined limits using high‐resolution aerial‐photographic interpretation in conjunction with more limited ground investigation. Limits in these earthquakes were defined by the locations of the very smallest failures (landslide limits with peak ground accelerations (PGAs) from ShakeMap models of each earthquake. For the four earthquakes studied by field investigation, the minimum PGA values associated with farthest landslide limits ranged from 0.02g to 0.08g. The range for the two earthquakes investigated using aerial‐photographic interpretations was 0.05–0.11g. Although PGA values at landslide limits depend on several factors, including material strength, topographic amplification, and hydrologic conditions, these values provide an empirically useful lower limiting range of PGA needed to trigger the smallest failures on very susceptible slopes. In a well‐recorded earthquake, this PGA range can be used to identify an outer boundary within which we might expect to find landsliding; in earthquakes that are not well recorded, mapping the outermost landslide limits provides a useful clue about ground‐motion levels at the mapped limits.
High Resolution Geological Site Characterization Utilizing Ground Motion Data
1992-06-26
of the Loma Prieta earthquake. haracicri/aion demonstrate the need for the separation of stochastic and The results of our small field experiments...Array studies of ground Aki, K.. and P. Richards, Quantitative Seismology. Theory and Methods, motions using aftershocks from the Loma Prieta ...Zone with Complete Seismograms is by Bogaards and Stump. This work documents the separation of stochastic and deterministic wave propagation effects in
Identification of acceleration pulses in near-fault ground motion using the EMD method
Institute of Scientific and Technical Information of China (English)
Zhang Yushan; Hu Yuxian; Zhao Fengxin; Liang Jianwen; Yang Caihong
2005-01-01
In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing)and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.
Energy Technology Data Exchange (ETDEWEB)
1993-03-18
This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz.
A Partially Non-Ergodic Ground-Motion Prediction Equation for Europe
Kuehn, Nicolas M
2016-01-01
A partially non-ergodic ground-motion prediction equation is estimated for Europe. Therefore, a hierarchical model is presented that accounts for regional differences. For this purpose, the scaling of ground-motion intensity parameters is assumed to be similar, but not identical in different regions. This is achieved by assuming a hierarchical model, where some coefficients are treated as random variables which are sampled from an underlying global distribution. The coefficients are estimated by Bayesian inference. This allows one to estimate the epistemic uncertainty in the coefficients, and consequently in model predictions, in a principled way. The model is estimated based on peak ground acceleration data from nine different European regions. There are large differences in the amount of earthquakes and records in the different regions. However, due to the hierarchical nature of the model, regions with only few data points borrow strength from other regions with more data. This makes it possible to estimate...
Detect ground motion effects on the trajectory at ATF2
Rénier, Yves; Garcia, Rogelio
2011-01-01
The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the Beam Delivery System (BDS) of the next linear colliders (ILC and CLIC) as well as to define and to test the tunning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. The magnet displacements induced by ground motion are large enough for CLIC to perturb the beam stability above requirements. It is planned to measure the displacement of the magnets and implement a feed-forward correcting the effects on the beam trajectory with correctors (dipoles). This article studies the possibility to detect ground motion effects on the beam trajectory at ATF2. Characteristics of the ground motion at ATF2 are presented, the effects of the magnet displacements on the beam trajectory are simulated and an algorithm predicting the induced trajectory fluctuations is evaluated. After the estimated...
On the Relation of Earthquake Stress Drop and Ground Motion Variability
Oth, A.; Miyake, H.; Bindi, D.
2015-12-01
The physical properties of the seismic source play a major role in the generation of earthquake ground motions. One of the key parameters typically used in this context is the so-called stress drop since it can be directly linked to the high-frequency spectral level of ground motion, and it is an important input parameter for ground motion modeling. At the same time, classically determined stress drop estimates from moment-corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than might be expected from the decomposition of ground motion variability into its between-event and within-event components following the random effects approach (Cotton et al., 2013). This discrepancy raises the question of whether classically determined stress drop variability is too large, which would have significant implications for ground motion prediction in seismic hazard analysis. We use the rich high-quality accelerometric databases available in Japan to derive non-parametric ground motion models on these data that serve as reference models. We then investigate the relation between the between-event terms for the individual earthquakes from these regressions with stress drop estimates determined nation-wide for crustal earthquakes. As a complement to the non-parametric models, we also apply a parametric mixed effects modeling approach to investigate the influence of between-event, between-region and between-sequence variability. The analysis is carried out for JMA equivalent seismic intensity, PGA and PGV data. Our results indicate a clear correlation of the between-event terms with stress drops estimates, both for non-parametric and parametric approaches - however with the interesting effect of the appearance of two major families of events with widely different stress drop, yet similar range of between-event terms. This effect is in agreement with the observation made by Cotton et al. (2013) that the between-event ground motion
Site response zones and short-period earthquake ground motion projections for the Las Vegas Basin
Indian Academy of Sciences (India)
Barbara Luke; Ying Liu
2008-11-01
A deterministic seismic hazard analysis was conducted to address the effect of local soil conditions on earthquake-induced strong ground motion in the Las Vegas Basin, Nevada (US). Using a large geological and geotechnical database, two response units were defined: a fine-grained unit, predominantly clay; and a coarse-grained unit, predominantly gravel. A moderate number of high-quality shallow shear wave velocity measurements were collected from which characteristic shear wave velocity profiles were developed for each response unit. An equivalent-linear one-dimensional site response model was used. The model was calibrated using a basin-wide, small-strain ground motion database. Calibration tests showed that ground motion projections become increasingly conservative with increasing ground-motion amplitude. Projections were overconservative for the coarsegrained response unit, likely due to the sparseness of the velocity database. For the earthquake response analyses, historical ground motions were used to model characteristic ‘bedrock’ motion for earthquakes on 10 faults judged to be critical. Response spectral envelopes were generated for each unit through Monte-Carlo simulations. For the fine-grained response unit, 95th percentile peak ground acceleration, peak spectral acceleration and predominant period were 310 cm/s2, 1100cm/s2, and 0.29 s, respectively. With respect to codified design spectra, projections are lower at short periods and higher at long periods. Projections of peak spectral accelerations for the coarsegrained response unit, were more than double that of codified spectra; however, they are believed to be overconservative. Near-fault effects and basin-edge effects, though potentially important, were not considered in these analyses.
Influence of earthquake ground motion incoherency on multi-support structures
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A linear response history analysis method is used to determine the influence of three factors: geometric incoherency, wave-passage, and local site characteristics on the response of multi-support structures subjected to differential ground motions. A one-span frame and a reduced model of a 24-span bridge, located in Las Vegas, Nevada are studied, in which the influence of each of the three factors and their combinations are analyzed. It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response, which does not exist in structures subjected to uniform excitation. The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.
Effects of 3D random correlated velocity perturbations on predicted ground motions
Hartzell, S.; Harmsen, S.; Frankel, A.
2010-01-01
Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.
Vibrating barrier: a novel device for the passive control of structures under ground motion.
Cacciola, P; Tombari, A
2015-07-08
A novel device, called vibrating barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves is proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. The underlying theoretical aspects of the novel control strategy are scrutinized along with its numerical modelling. Closed-form solutions are also derived to design the ViBa in the case of harmonic excitation. Numerical and experimental analyses are performed in order to investigate the efficiency of the device in mitigating the effects of ground motion waves on the structural response. A significant reduction in the maximum structural acceleration of 87% has been achieved experimentally.
Ground motion issues for seismic analysis of tall buildings: A status report
Bozorgnia, Y.; Campbell, K.W.; Luco, N.; Moehle, J.P.; Naeim, F.; Somerville, P.; Yang, T.Y.
2007-01-01
The Pacific Earthquake Engineering Research Center (PEER) is coordinating a major multidisciplinary programme, the Tall Buildings Initiative (TBI), to address critical technical issues related to the design and analysis of new tall buildings located in coastal California. The authors of this paper, listed alphabetically, are involved in various research studies related to ground motion modelling, selection, modification and simulation for analysis of tall buildings. This paper summarizes the scope and progress of ongoing activities related to ground motion issues for response history analysis of tall buildings.
The fiber optic gyroscope - a portable rotational ground motion sensor
Wassermann, J. M.; Bernauer, F.; Guattari, F.; Igel, H.
2016-12-01
It was already shown that a portable broadband rotational ground motion sensor will have large impact on several fields of seismological research such as volcanology, marine geophysics, seismic tomography and planetary seismology. Here, we present results of tests and experiments with one of the first broadband rotational motion sensors available. BlueSeis-3A, is a fiber optic gyroscope (FOG) especially designed for the needs of seismology, developed by iXBlue, France, in close collaboration with researchers financed by the European Research council project ROMY (Rotational motions - a new observable for seismology). We first present the instrument characteristics which were estimated by different standard laboratory tests, e.g. self noise using operational range diagrams or Allan deviation. Next we present the results of a field experiment which was designed to demonstrate the value of a 6C measurement (3 components of translation and 3 components of rotation). This field test took place at Mt. Stromboli volcano, Italy, and is accompanied by seismic array installation to proof the FOG output against more commonly known array derived rotation. As already shown with synthetic data an additional direct measurement of three components of rotation can reduce the ambiguity in source mechanism estimation and can be taken to correct for dynamic tilt of the translational sensors (i.e. seismometers). We can therefore demonstrate that the deployment of a weak motion broadband rotational motion sensor is in fact producing superior results by a reduction of the number of deployed instruments.
Energy Technology Data Exchange (ETDEWEB)
Rodgers, A
2008-01-16
In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.
Algorithmic Issues in Modeling Motion
DEFF Research Database (Denmark)
Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.
2003-01-01
This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory...
Institute of Scientific and Technical Information of China (English)
SHI Bao-ping; LIU Bo-yan; ZHANG Jian
2007-01-01
A composite source model has been used to simulate a broadband strong ground motion with an associated fault rupture process. A scenario earthquake fault model has been used to generate 1 000 earthquake events with a magnitude of Mw8.0. The simulated results show that, for the characteristic event with a strike-slip faulting, the characteristics of near fault ground motion is strongly dependent on the rupture directivity. If the distance between the sites and fault was given, the ground motion in the forward direction (Site A) is much larger than that in the backward direction (Site C) and that close to the fault (Site B). The SH waves radiated from the fault, which corresponds to the fault-normal component plays a key role in the ground motion amplification. Corresponding to the sites A, B, and C, the statistical analysis shows that the ratio of their aPG is 2.15:1.5:1 and their standard deviations are about 0.12, 0.11, and 0.13, respectively. If these results are applied in the current probabilistic seismic hazard analysis (PSHA), then, for the lower annual frequency of exceedance of peak ground acceleration, the predicted aPG from the hazard curve could reduce by 30% or more compared with the current PSHA model used in the developing of seismic hazard map in the USA. Therefore, with a consideration of near fault ground motion caused by the rupture directivity, the regression model used in the development of the regional attenuation relation should be modified accordingly.
Energy Technology Data Exchange (ETDEWEB)
Reddy, D.P.
1983-04-01
This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)
A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta
Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.
2015-12-01
Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.
Strong Ground Motion Database System for the Mexican Seismic Network
Perez-Yanez, C.; Ramirez-Guzman, L.; Ruiz, A. L.; Delgado, R.; Macías, M. A.; Sandoval, H.; Alcántara, L.; Quiroz, A.
2014-12-01
A web-based system for strong Mexican ground motion records dissemination and archival is presented. More than 50 years of continuous strong ground motion instrumentation and monitoring in Mexico have provided a fundamental resource -several thousands of accelerograms- for better understanding earthquakes and their effects in the region. Lead by the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM), the engineering strong ground motion monitoring program at IE relies on a continuously growing network, that at present includes more than 100 free-field stations and provides coverage to the seismic zones in the country. Among the stations, approximately 25% send the observed acceleration to a processing center in Mexico City in real-time, and the rest require manual access, remote or in situ, for later processing and cataloguing. As part of a collaboration agreement between UNAM and the National Center for Disaster Prevention, regarding the construction and operation of a unified seismic network, a web system was developed to allow access to UNAM's engineering strong motion archive and host data from other institutions. The system allows data searches under a relational database schema, following a general structure relying on four databases containing the: 1) free-field stations, 2) epicentral location associated with the strong motion records available, 3) strong motion catalogue, and 4) acceleration files -the core of the system. In order to locate and easily access one or several records of the data bank, the web system presents a variety of parameters that can be involved in a query (seismic event, region boundary, station name or ID, radial distance to source or peak acceleration). This homogeneous platform has been designed to facilitate dissemination and processing of the information worldwide. Each file, in a standard format, contains information regarding the recording instrument, the station, the corresponding earthquake
Representation of near-fault pulse-type ground motions
Institute of Scientific and Technical Information of China (English)
Xie Lili; Xu Longjun; Adrian Rodriguez-Marek
2005-01-01
Near-fault ground motions with long-period pulses have been identified as critical in the design of structures.To aid in the representation of this special type of motion, eight simple pulses that characterize the effects of either the flingstep or forward-directivity are considered. Relationships between pulse amplitudes and velocity pulse period for different pulses are discussed. Representative ratios and peak acceleration amplification can exhibit distinctive features depending on variations in pulse duration, amplitude and the selected acceleration pulse shape. Additionally, response spectral characteristics for the equivalent pulses are identified and compared in terms of fixed PGA and PGV, respectively. Response spectra are strongly affected by the duration of pulses and the shape of the basic pulses. Finally, dynamic time history response features of a damped SDOF system subjected to pulse excitations are examined. These special aspects of pulse waveforms and their response spectra should be taken into account in the estimation of ground motions for a project site close to a fault.
Earthquake Ground Motion in the Valley of Mexico: Basin Effects
Ramirez, L.; Contreras, M.; Bielak, J.; Aguirre, J.
2007-12-01
We present a study of the ground motion and resulting amplification in the Mexico City Basin due to strong earthquakes in the Mexican Pacific Coast. We propose an approximation of the regional structure and Mexico City's basin and analyze their response to two shallow earthquakes generated near the coast. We compare two sets of three dimensional simulations: the first includes a soft structure similar in shape and properties to the Valley of Mexico, while the second excludes the soft soil deposits. Our 3D computations, with a maximum resolution of 0.75 Hz, reproduce the amplitude and long durations characteristics usually observed in the basin. We confirm that stations inside the Mexican Volcanic Belt experience amplification. In the frequency band 0.2-0.4 Hz additional amplification occurs inside the valley due to the shallow soil deposits in the lake bed region. We compare the normalized durations of the ground motion at several stations against observed data, and speculate on the durations of the soil motion as being a local effect due to the basin's shape and low velocities.
SM-ROM-GL (Strong Motion Romania Ground Level Database
Directory of Open Access Journals (Sweden)
Ioan Sorin BORCIA
2015-07-01
Full Text Available The SM-ROM-GL database includes data obtained by the processing of records performed at ground level by the Romanian seismic networks, namely INCERC, NIEP, NCSRR and ISPH-GEOTEC, during recent seismic events with moment magnitude Mw ≥ 5 and epicenters located in Romania. All the available seismic records were re-processed using the same basic software and the same procedures and options (filtering and baseline correction, in order to obtain a consistent dataset. The database stores computed parameters of seismic motions, i.e. peak values: PGA, PGV, PGD, effective peak values: EPA, EPV, EPD, control periods, spectral values of absolute acceleration, relative velocity and relative displacement, as well as of instrumental intensity (as defined bz Sandi and Borcia in 2011. The fields in the database include: coding of seismic events, stations and records, a number of associated fields (seismic event source parameters, geographical coordinates of seismic stations, links to the corresponding ground motion records, charts of the response spectra of absolute acceleration, relative velocity, relative displacement and instrumental intensity, as well as some other representative parameters of seismic motions. The conception of the SM-ROM-GL database allows for an easy maintenance; such that elementary knowledge of Microsoft Access 2000 is sufficient for its operation.
Mechanisms for Generation of Near-Fault Ground Motion Pulses for Dip-Slip Faulting
Poiata, Natalia; Miyake, Hiroe; Koketsu, Kazuki
2017-04-01
We analyzed the seismological aspects of the near-fault ground motion pulses and studied the main characteristics of the rupture configuration that contribute to the pulse generation for dip-slip faulting events by performing forward simulations in broadband and low-frequency ranges for different rupture scenarios of the 2009 L'Aquila, Italy (M w 6.3) earthquake. The rupture scenarios were based on the broadband source model determined by Poiata et al. (Geophys J Int 191:224-242, 2012). Our analyses demonstrated that ground motion pulses affect spectral characteristics of the observed ground motions at longer periods, generating significantly larger seismic demands on the structures than ordinary records. The results of the rupture scenario simulations revealed the rupture directivity effect, the radial rupture propagation toward the site, and the focusing effect as the main mechanisms of the near-fault ground motion pulse generation. The predominance of one of these mechanisms depends on the location of the site relative to the causative fault plane. The analysis also provides the main candidate mechanisms for the worst-case rupture scenarios of pulse generation for the city of L'Aquila and, more generally, the hanging-wall sites located above the area of large slip (strong motion generation area).
Simulation of Near-Fault High-Frequency Ground Motions from the Representation Theorem
Beresnev, Igor A.
2017-07-01
"What is the maximum possible ground motion near an earthquake fault?" is an outstanding question of practical significance in earthquake seismology. In establishing a possible theoretical cap on extreme ground motions, the representation integral of elasticity, providing an exact, within limits of applicability, solution for fault radiation at any frequency, is an under-utilized tool. The application of a numerical procedure leading to synthetic ground displacement, velocity, and acceleration time histories to modeling of the record at the Lucerne Valley hard-rock station, uniquely located at 1.1 km from the rupture of the M w 7.2 Landers, California event, using a seismologically constrained temporal form of slip on the fault, reveals that the shape of the displacement waveform can be modeled closely, given the simplicity of the theoretical model. High precision in the double integration, as well as carefully designed smoothing and filtering, are necessary to suppress the numerical noise in the high-frequency (velocity and acceleration) synthetic motions. The precision of the integration of at least eight decimal digits ensures the numerical error in the displacement waveforms generally much lower than 0.005% and reduces the error in the peak velocities and accelerations to the levels acceptable to make the representation theorem a reliable tool in the practical evaluation of the magnitude of maximum possible ground motions in a wide-frequency range of engineering interest.
Computing spatial correlation of ground motion intensities for ShakeMap
Verros, Sarah; Wald, David J.; Worden, Charles; Hearne, Mike; Ganesh, Mahadevan
2017-01-01
Modeling the spatial correlation of ground motion residuals, caused by coherent contributions from source, path, and site, can provide valuable loss and hazard information, as well as a more realistic depiction of ground motion intensities. The U.S. Geological Survey (USGS) software package, ShakeMap, utilizes a deterministic empirical approach to estimate median ground shaking in conjunction with observed seismic data. ShakeMap-based shaking estimates are used in concert with loss estimation algorithms to estimate fatalities and economic losses after significant seismic events around the globe. Incorporating the spatial correlation of ground motion residuals has been shown to improve seismic loss estimates. In particular, Park, Bazzuro, and Baker (Applications of Statistics and Probability in Civil Engineering, 2007) investigated computing spatially correlated random fields of residuals. However, for large scale ShakeMap grids, computational requirements of the method are prohibitive. In this work, a memory efficient algorithm is developed to compute the random fields and implemented using the ShakeMap framework. This new, iterative parallel algorithm is based on decay properties of an associated ground motion correlation function and is shown to significantly reduce computational requirements associated with adding spatial variability to the ShakeMap g
Validation of Broadband Ground Motion Simulations for Japanese Crustal Earthquakes by the Recipe
Iwaki, A.; Maeda, T.; Morikawa, N.; Miyake, H.; Fujiwara, H.
2015-12-01
The Headquarters for Earthquake Research Promotion (HERP) of Japan has organized the broadband ground motion simulation method into a standard procedure called the "recipe" (HERP, 2009). In the recipe, the source rupture is represented by the characterized source model (Irikura and Miyake, 2011). The broadband ground motion time histories are computed by a hybrid approach: the 3-D finite-difference method (Aoi et al. 2004) and the stochastic Green's function method (Dan and Sato, 1998; Dan et al. 2000) for the long- (> 1 s) and short-period (structure model. As the engineering significance of scenario earthquake ground motion prediction is increasing, thorough verification and validation are required for the simulation methods. This study presents the self-validation of the recipe for two MW6.6 crustal events in Japan, the 2000 Tottori and 2004 Chuetsu (Niigata) earthquakes. We first compare the simulated velocity time series with the observation. Main features of the velocity waveforms, such as the near-fault pulses and the large later phases on deep sediment sites are well reproduced by the simulations. Then we evaluate 5% damped pseudo acceleration spectra (PSA) in the framework of the SCEC Broadband Platform (BBP) validation (Dreger et al. 2015). The validation results are generally acceptable in the period range 0.1 - 10 s, whereas those in the shortest period range (0.01-0.1 s) are less satisfactory. We also evaluate the simulations with the 1-D velocity structure models used in the SCEC BBP validation exercise. Although the goodness-of-fit parameters for PSA do not significantly differ from those for the 3-D velocity structure model, noticeable differences in velocity waveforms are observed. Our results suggest the importance of 1) well-constrained 3-D velocity structure model for broadband ground motion simulations and 2) evaluation of time series of ground motion as well as response spectra.
Sato, T.; Dan, K.; Irikura, K.; Furumura, M.
2001-12-01
Based on the existing ideas on characterizing complex fault rupture process, we constructed four different characterized fault models for predicting strong motions from the most likely scenario earthquake along the active fault zone of the Itoigawa-Shizuoka Tectonic Line in central Japan. The Headquarters for Earthquake Research Promotion in Japanese government (2001) estimated that the earthquake (8 +/- 0.5) has the total fault length of 112 km with four segments. We assumed that the characterized fault model consisted of two regions: asperity and background (Somerville et al., 1999; Irikura, 2000; Dan et al., 2000). The main differences in the four fault models were 1) how to determine a seismic moment Mo from a fault rupture area S, 2) number of asperities N, 3) how to determine a stress parameter σ , and 4) fmax. We calculated broadband strong motions at three stations near the fault by a hybrid method of the semi-empirical and theoretical approaches. A comparison between the results from the hybrid method and those from empirical attenuation relations showed that the hybrid method using the characterized fault model could evaluate near-fault rupture directivity effects more reliably than the empirical attenuation relations. We also discussed the characterized fault models and the strong motion characteristics. The Mo extrapolated from the empirical Mo-S relation by Somerville et al. (1999) was a half of that determined from the mean value of the Wells and Coppersmith (1994) data. The latter Mo was consistent with that for the 1891 Nobi, Japan, earthquake whose fault length was almost the same as the length of the target earthquake. In addition, the fault model using the latter Mo produced a slip amount of about 6 m on the largest asperity, which was consistent with the displacement of 6 m to 9 m per event obtained from a trench survey. High-frequency strong motions were greatly influenced by the σ for the asperities (188 bars, 246 bars, 108 bars, and 134
Sympathetic cooling of molecular ion motion to the ground state
Rugango, Rene; Dixon, Thomas H; Gray, John M; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J; Brown, Kenneth R
2014-01-01
We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm 0.02$, corresponding to a temperature of $15.36 \\pm 0.01~\\mu$K.
Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field
Directory of Open Access Journals (Sweden)
Yingmin Li
2010-01-01
Full Text Available The reasonability of artificial multi-point ground motions and the identification of abnormal records in seismic array observations, are two important issues in application and analysis of multi-point ground motion fields. Based on the dynamic time warping (DTW distance method, this paper discusses the application of similarity measurement in the similarity analysis of simulated multi-point ground motions and the actual seismic array records. Analysis results show that the DTW distance method not only can quantitatively reflect the similarity of simulated ground motion field, but also offers advantages in clustering analysis and singularity recognition of actual multi-point ground motion field.
New Evidence for Nonlinearity in Strong Ground Motion
Beroza, G. C.; Schaff, D. P.
2001-12-01
Dynamic strains associated with the strong ground motion of large earthquakes are well within the regime found to show nonlinearity in the laboratory; however, evidence for nonlinearity in recorded seismic waves is often ambiguous and controversial. We present new and independent evidence that nonlinearity in strong ground motion may be widespread. The evidence consists of velocity changes measured by repeating microearthquakes in the aftermath of the 1984 M=6.2 Morgan Hill and 1989 M=6.9 Loma Prieta events. We have identified over 20 sets of repeating earthquakes in the aftershock zones of these mainshocks that contain up to 40 repeats of the same event. Waveform analysis reveals clearly detectable delays of arrivals from events after the Loma Prieta earthquake, compared with events before, of as much as 3.5% in the early S-wave coda. Source array analysis and waveform similarity over a wide range of source-receiver distances both suggest that the early coda is generated by scattering in the shallow crust near the receiver. We find that the magnitude of the velocity change decreases logarithmically in time following the Loma Prieta mainshock. We have not yet recovered repeating earthquake seismograms from before the Morgan Hill earthquake; however, we observe a clear post-seismic increase in velocity, again with a logarithmic time dependence, suggesting that the same effect accompanied both events. Recent experiments indicate that velocity decreases followed by logarithmic recovery in time accompany recoverable nonlinearity in laboratory samples at ambient conditions [Ten Cate et al., 2000]. Thus, we believe that we have detected the lingering effects of nonlinear mainshock strong ground motion in the time-varying wave propagation characteristics of the Earth's crust. The changes are strongly concentrated near the rupture zones of the two mainshocks; however, the effect is also observed at more distant stations. We use our observations to illuminate the possible
The case for 6-component ground motion observations in planetary seismology
Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner
2017-04-01
The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.
Directory of Open Access Journals (Sweden)
Li Tian
2010-01-01
Full Text Available The behavior of power transmission tower-line system subjected to spatially varying base excitations is studied in this paper. The transmission towers are modeled by beam elements while the transmission lines are modeled by cable elements that account for the nonlinear geometry of the cables. The real multistation data from SMART-1 are used to analyze the system response subjected to spatially varying ground motions. The seismic input waves for vertical and horizontal ground motions are also generated based on the Code for Design of Seismic of Electrical Installations. Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear time history analytical method is used in the analysis. The effects of boundary conditions, ground motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel on the system are investigated. The results show that the uniform ground motion at all supports of system does not provide the most critical case for the response calculations.
Grounding Bottom Damage and Ship Motion over a Rock
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1996-01-01
A model for prediction of damage to tankers during grounding is presented. The model takes into account the coupling between the external ship dynamics and the local damage process of the hull girder. The model for the local damage is based on a least upper bound solution with kinematic compatibi...
Grounding Bottom Damage and Ship Motion over a Rock
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1996-01-01
A model for prediction of damage to tankers during grounding is presented. The model takes into account the coupling between the external ship dynamics and the local damage process of the hull girder. The model for the local damage is based on a least upper bound solution with kinematic compatibi...
Optimal ground motion intensity measure for long-period structures
Guan, Minsheng; Du, Hongbiao; Cui, Jie; Zeng, Qingli; Jiang, Haibo
2015-10-01
This paper aims to select the most appropriate ground motion intensity measure (IM) that is used in selecting earthquake records for the dynamic time history analysis of long-period structures. For this purpose, six reinforced concrete frame-core wall structures, designed according to modern seismic codes, are studied through dynamic time history analyses with a set of twelve selected earthquake records. Twelve IMs and two types of seismic damage indices, namely, the maximum seismic response-based and energy-based parameters, are chosen as the examined indices. Selection criteria such as correlation, efficiency, and proficiency are considered in the selection process. The optimal IM is identified by means of a comprehensive evaluation using a large number of data of correlation, efficiency, and proficiency coefficients. Numerical results illustrate that peak ground velocity is the optimal one for long-period structures and peak ground displacement is also a close contender. As compared to previous reports, the spectral-correlated parameters can only be taken as moderate IMs. Moreover, the widely used peak ground acceleration in the current seismic codes is considered inappropriate for long-period structures.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.
A study on the characteristics of strong ground motions in southern Korea
Energy Technology Data Exchange (ETDEWEB)
Bang, Chang Eob; Lee, Kie Hwa; Kang, Tae Seob [Seoul National Univ., Seoul (Korea, Republic of)
2001-12-15
Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets.
Kaklamanos, James; Boore, David M.; Thompson, Eric M.; Campbell, Kenneth W.
2010-01-01
This report presents two methods for implementing the earthquake ground-motion prediction equations released in 2008 as part of the Next Generation Attenuation of Ground Motions (NGA-West, or NGA) project coordinated by the Pacific Earthquake Engineering Research Center (PEER). These models were developed for predicting ground-motion parameters for shallow crustal earthquakes in active tectonic regions (such as California). Of the five ground-motion prediction equations (GMPEs) developed during the NGA project, four models are implemented: the GMPEs of Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008a); these models are abbreviated as AS08, BA08, CB08, and CY08, respectively. Since site response is widely recognized as an important influence of ground motions, engineering applications typically require that such effects be modeled. The model of Idriss (2008) is not implemented in our programs because it does not explicitly include site response, whereas the other four models include site response and use the same variable to describe the site condition (VS30). We do not intend to discourage the use of the Idriss (2008) model, but we have chosen to implement the other four NGA models in our programs for those users who require ground-motion estimates for various site conditions. We have implemented the NGA models by using two separate programming languages: Fortran and R (R Development Core Team, 2010). Fortran, a compiled programming language, has been used in the scientific community for decades. R is an object-oriented language and environment for statistical computing that is gaining popularity in the statistical and scientific community. Derived from the S language and environment developed at Bell Laboratories, R is an open-source language that is freely available at http://www.r-project.org/ (last accessed 11 January 2011). In R, the functions for computing the NGA equations can be loaded as an
He, Qiumei; Li, Xiaojun; Yang, Yu; Liu, Aiwen; Li, Yaqi
2016-04-01
In order to study the influence of the velocity pulse to seismic displacement response of base-isolated buildings and the differences of the influent of the two types of near-fault ground motions with velocity pulse to seismic response of base-isolated buildings, the seismic responses are analyzed by three dimensional finite element models for three base-isolated buildings, 4 stories, 9 stories and 14 stories. In this study, comparative analyses were done for the seismic displacement responses of the base-isolated structures under 6 near-fault ground motion records with velocity pulse and no velocity pulse, in which, 6 artificial ground motion time histories with same elastic response spectrum as the 6 near-fault ground motion records are used as the ground motion with no velocity pulse. This study indicates that under the ground motions with velocity pulse the seismic displacement response of base-isolated buildings is significantly increased than the ground motions with no velocity pulse. To the median-low base-isolated buildings, the impact of forward directivity pulses is bigger than fling-step pulses. To the high base-isolated buildings, the impact of fling-step pulses is bigger than forward directivity pulses. The fling-step pulses lead to large displacement response in the lower stories. This work has been supported by the National Natural Science Foundation of China (Grant No.51408560)
Upper and lower bounds of ground-motion variabilities: implication for source properties
Cotton, Fabrice; Reddy-Kotha, Sreeram; Bora, Sanjay; Bindi, Dino
2017-04-01
One of the key challenges of seismology is to be able to analyse the physical factors that control earthquakes and ground-motion variabilities. Such analysis is particularly important to calibrate physics-based simulations and seismic hazard estimations at high frequencies. Within the framework of the development of ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-source records and modern GMPE analysis technics allow to partition these residuals into between- and a within-event components. In particular, the between-event term quantifies all those repeatable source effects (e.g. related to stress-drop or kappa-source variability) which have not been accounted by the magnitude-dependent term of the model. In this presentation, we first discuss the between-event variabilities computed both in the Fourier and Response Spectra domains, using recent high-quality global accelerometric datasets (e.g. NGA-west2, Resorce, Kiknet). These analysis lead to the assessment of upper bounds for the ground-motion variability. Then, we compare these upper bounds with lower bounds estimated by analysing seismic sequences which occurred on specific fault systems (e.g., located in Central Italy or in Japan). We show that the lower bounds of between-event variabilities are surprisingly large which indicates a large variability of earthquake dynamic properties even within the same fault system. Finally, these upper and lower bounds of ground-shaking variability are discussed in term of variability of earthquake physical properties (e.g., stress-drop and kappa_source).
A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles
Directory of Open Access Journals (Sweden)
Chang-sheng Gao
2016-01-01
Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.
Assessment of potential strong ground motions in the city of Rome
Directory of Open Access Journals (Sweden)
L. Malagnini
1994-06-01
Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions
Estimation of seismic ground motions using deterministic approach for major cities of Gujarat
Shukla, J.; Choudhury, D.
2012-06-01
A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh) of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA) and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental records of India specifically in the Gujarat region are far from being satisfactory for modeling the seismic hazard using the probabilistic approach, an attempt has been made in this study to accomplish it through the deterministic approach. In this regard, all small and large faults of the Gujarat region were evaluated to obtain major fault systems. The empirical relations suggested by earlier researchers for the estimation of maximum magnitude of earthquake motion with various properties of faults like length, surface area, slip rate, etc. have been applied to those faults to obtain the maximum earthquake magnitude. For the analysis, seven different ground motion attenuation relations (GMARs) of strong ground motion have been utilized to calculate the maximum horizontal ground accelerations for each major city of Gujarat. Epistemic uncertainties in the hazard computations are accounted for within a logic-tree framework by considering the controlling parameters like b-value, maximum magnitude and ground motion attenuation relations (GMARs). The corresponding deterministic spectra have been prepared for each major city for the 50th and 84th percentiles of ground motion occurrence. These deterministic spectra are further compared with the specified spectra of Indian design code IS:1893-Part I (2002) to validate them for further practical use. Close examination of the developed spectra reveals that the expected ground motion values become high for the Kachchh region i.e. Bhuj
Estimation of seismic ground motions using deterministic approach for major cities of Gujarat
Directory of Open Access Journals (Sweden)
J. Shukla
2012-06-01
Full Text Available A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental records of India specifically in the Gujarat region are far from being satisfactory for modeling the seismic hazard using the probabilistic approach, an attempt has been made in this study to accomplish it through the deterministic approach. In this regard, all small and large faults of the Gujarat region were evaluated to obtain major fault systems. The empirical relations suggested by earlier researchers for the estimation of maximum magnitude of earthquake motion with various properties of faults like length, surface area, slip rate, etc. have been applied to those faults to obtain the maximum earthquake magnitude. For the analysis, seven different ground motion attenuation relations (GMARs of strong ground motion have been utilized to calculate the maximum horizontal ground accelerations for each major city of Gujarat. Epistemic uncertainties in the hazard computations are accounted for within a logic-tree framework by considering the controlling parameters like b-value, maximum magnitude and ground motion attenuation relations (GMARs. The corresponding deterministic spectra have been prepared for each major city for the 50th and 84th percentiles of ground motion occurrence. These deterministic spectra are further compared with the specified spectra of Indian design code IS:1893-Part I (2002 to validate them for further practical use. Close examination of the developed spectra reveals that the expected ground motion values become high for the
Energy Technology Data Exchange (ETDEWEB)
Foxall, W.; Hutchings, L.; Jarpe, S.
1994-09-01
This paper tests a new approach to predict a range of ground motion hazard at specific sites generated by earthquakes on specific faults. The approach utilizes geodynamics to link structural, lithological and Theological descriptions of the fault zones to development of fault rupture scenarios and computation of synthetic seismograms. Faults are placed within a regional geomechanical model that is used to calculate stress conditions along the fault. The approach is based upon three hypothesis: (1) An exact solution of the representation relation that u@s empirical. Green`s functions enables very accurate computation of ground motions generated by a given rupture scenario; (2) a general description of the rupture is sufficient; and (3) the structural, lithological and Theological characteristics of a fault can be used to constrain, in advance, possible future rupture histories. Ground motion hazard here refers to three-component, full wave train descriptions of displacement, velocity, and acceleration over the frequency band 0.01 to 25 Hz. Corollaries to these hypotheses are that the range of possible fault rupture histories is narrow enough to functionally constrain the range of strong ground motion predictions, and that a discreet set of rupture histories is sufficient to span the infinite combinations possible from a given range of rupture parameters.
Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground.
Froyen, Vicky; Feldman, Jacob; Singh, Manish
2013-08-14
We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)-despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception.
Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.
1999-01-01
This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).
Prediction of long-period ground motions from huge subduction earthquakes in Osaka, Japan
Kawabe, H.; Kamae, K.
2008-04-01
There is a high possibility of reoccurrence of the Tonankai and Nankai earthquakes along the Nankai Trough in Japan. It is very important to predict the long-period ground motions from the next Tonankai and Nankai earthquakes with moment magnitudes of 8.1 and 8.4, respectively, to mitigate their disastrous effects. In this study, long-period (>2.5 s) ground motions were predicted using an earthquake scenario proposed by the Headquarters for Earthquake Research Promotion in Japan. The calculations were performed using a fourth-order finite difference method with a variable spacing staggered-grid in the frequency range 0.05 0.4 Hz. The attenuation characteristics ( Q) in the finite difference simulations were assumed to be proportional to frequency ( f) and S-wave velocity ( V s) represented by Q = f · V s / 2. Such optimum attenuation characteristic for the sedimentary layers in the Osaka basin was obtained empirically by comparing the observed motions during the actual M5.5 event with the modeling results. We used the velocity structure model of the Osaka basin consisting of three sedimentary layers on bedrock. The characteristics of the predicted long-period ground motions from the next Tonankai and Nankai earthquakes depend significantly on the complex thickness distribution of the sediments inside the basin. The duration of the predicted long-period ground motions in the city of Osaka is more than 4 min, and the largest peak ground velocities (PGVs) exceed 80 cm/s. The predominant period is 5 to 6 s. These preliminary results indicate the possibility of earthquake damage because of future subduction earthquakes in large-scale constructions such as tall buildings, long-span bridges, and oil storage tanks in the Osaka area.
Response of a transmission tower-line system at a canyon site to spatially varying ground motions
Institute of Scientific and Technical Information of China (English)
Hong-nan LI; Feng-long BAI; Li TIAN; Hong HAO
2011-01-01
Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan, China. These collapses were partially caused by the pulling forces from the transmission lines generated from out-of-phase responses of the adjacent towers owing to spatially varying earthquake ground motions. In this paper, a 3D finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. The nonlinear responses of the structural system at a canyon site are analyzed subjected to spatially varying ground motions. The spatial variations of ground motion associated with the wave passage, coherency loss, and local site effects are given. The spatially varying ground motions are simulated stochastically based on an empirical coherency loss function and a filtered Tajimi-Kanai power spectral density function. The site effect is considered by a transfer function derived from ID wave propagation theory. Compared with structural responses calculated using the uniform ground motion and delayed excitations, numerical results indicate that seismic responses of transmission towers and power lines are amplified when considering spatially varying ground motions including site effects. Each factor of ground motion spatial variations has a significant effect on the seismic response of the structure, especially for the local site effect. Therefore, neglecting the earthquake ground motion spatial variations may lead to a substantial underestimation of the response of transmission tower-line system during strong earthquakes. Each effect of ground motion spatial variations should be incorporated in seismic analysis of the structural system.
van Altena, William F.; Girard, T. M.; Platais, I.; Kozhurina-Platais, V.; López, C. E.
The derivation of accurate positions and proper motions from ground-based photographic materials requires the minimization of systematic errors due to inaccurate modeling of the telescopes' field-of-view and the magnitude equation. We describe the procedures that have been developed for the Southern Proper Motions Program (SPM) to deal with these important problems. The SPM is based on photographic plates taken at our Carlos Cesco Observatory at El Leoncito, Argentina and will yield absolute proper motions and positions to magnitude B approximately 19 for approximately 1 million stars south of declination -20 degrees. The SPM is a joint program between the Yale Southern Observatory and the Universidad Nacional de San Juan, Argentina. The SPM Catalog 2.0, which is the current version covering the -25 to -40 degree declination zones, provides positions, absolute proper motions, and photographic BV photometry for over 320,000 stars and galaxies. Stars cover the magnitude range 5 astrom/. Our web-side contains several useful plots showing the sky coverage, error distribution, a quick comparison with the Hipparcos proper motions, etc. We would appreciate your comments on the SPM 2.0 and our Web page.
Earthquake ground-motion in presence of source and medium heterogeneities
Vyas, Jagdish Chandra
2017-01-01
This dissertation work investigates the effects of earthquake rupture complexity and heterogeneities in Earth structure on near-field ground-motions. More specifically, we address two key issues in seismology: (1) near-field ground-shaking variability as function of distance and azimuth for unilateral directive ruptures, and (2) impact of rupture complexity and seismic scattering on Mach wave coherence associated with supershear rupture propagation. We examine earthquake ground-motion variability associated with unilateral ruptures based on ground-motion simulations of the MW 7.3 1992 Landers earthquake, eight simplified source models, and a MW 7.8 rupture simulation (ShakeOut) for the San Andreas fault. Our numerical modeling reveals that the ground-shaking variability in near-fault distances (< 20 km) is larger than that given by empirical ground motion prediction equations. In addition, the variability decreases with increasing distance from the source, exhibiting a power-law decay. The high near-field variability can be explained by strong directivity effects whose influence weaken as we move away from the fault. At the same time, the slope of the power-law decay is found to be dominantly controlled by slip heterogeneity. Furthermore, the ground-shaking variability is high in the rupture propagation direction whereas low in the directions perpendicular to it. However, the variability expressed as a function of azimuth is not only sensitive to slip heterogeneity, but also to rupture velocity. To study Mach wave coherence for supershear ruptures, we consider heterogeneities in rupture parameters (variations in slip, rise time and rupture speed) and 3D scattering media having small-scale random heterogeneities. The Mach wave coherence is reduced at near-fault distances (< 10 km) by the source heterogeneities. At the larger distances from the source, medium scattering plays the dominant role in reducing the Mach wave coherence. Combined effect of the source and
Asano, K.; Iwata, T.
2016-12-01
The 2016 Kumamoto earthquake sequence started with an MJMA 6.5 foreshock on April 14, 2016 occurring along the northern part of the Hinagu fault, central Kyushu, Japan, and the MJMA 7.3 mainshock occurred just 28 h after the foreshock. Both events brought severe ground motions to the near-source region. We analyzed the kinematic source rupture processes of the foreshock and mainshock by the multiple time window linear waveform inversion using strong motion data (e.g., Hartzell and Heaton, 1983). The foreshock (Mw 6.1) was characterized by right-lateral strike-slip occurring on a nearly vertical fault plane along the northern part of the Hinagu fault, and it had two large-slip areas: one near the hypocenter and another at a shallow depth. These two large-slip areas mainly contribute ground motions in the near-source area. For the analysis of the mainshock, we assumed a fault geometry changing strike and dip angles along the Hinagu and Futagawa faults in accordance with the surface ruptures mapped by emergency field surveys (Kumahara et al., 2016). We assigned point sources densely with an interval of 0.2 km on the assumed fault planes in order to reproduce appropriately near-fault ground motions, and estimated spatiotemporal slip history, which was discretized with an interval of 1.8 km on the fault planes. The estimated source model reveals that the rupture of the mainshock started at a northwest-dipping fault plane along the Hinagu fault, which is close to the vertical fault plane of the foreshock, and almost continuously propagated across the junction of the Hinagu and Futagawa faults. Then the rupture propagated northeastward along the Futagawa fault, and stopped to rupture in the western part of the Aso caldera. The significant slip with 3-5 m were observed on the Futagawa fault, and shallowest part has slip ranging from 1 to 2 m. We also tried to reproduce ground motions observed at some near-fault strong motion stations, which recorded significant coseismic
Ground motion prediction for the Vienna Basin area using the ambient seismic field
Schippkus, Sven; Zigone, Dimitri; Bokelmann, Götz; AlpArray Working Group
2016-04-01
The Vienna Basin is one of the most seismically active regions in Austria. Because of the population density and sensitive infrastructure, seismic hazard assessment in this area is of critical importance. An important part of seismic hazard analysis is ground motion prediction, which can in principle be done using either empirical studies to derive ground motion prediction equations (GMPEs) or using a physics-based approach to simulate ground motion by modelling surface wave propagation. Recently a new method has been presented that is based on the emergence of the inter-station Green's function from ambient noise cross-correlations (Denolle et al. 2013), which provides the impulse response of the Earth from a point source at the surface (from the site of one of the two receivers to the other). These impulse responses are dominated by surface waves, which would, in the case of a real earthquake, cause the major damages. The Green's function can in principle be modified to simulate a double couple dislocation at depth, i.e., a virtual earthquake. Using an adapted pre-processing method, the relative amplitudes of the ambient noise records of different inter-station paths are preserved in the correlation functions, and effects like attenuation and amplification of surface waves in sedimentary basins can be studied. This provides more precise information that will help improve seismic hazard evaluations. Here we present a preliminary study of such ground motion prediction for the Vienna Basin using about two dozen broadband stations from available networks in the area, e.g., stations from the University of Vienna (AlpArray) and Vienna Technical University. References Denolle, M. A., E. M. Dunham, G. A. Prieto, and G. C. Beroza (2013), Ground motion prediction of realistic earthquake sources using the ambient seismic field, J. Geophys. Res. Solid Earth, 118, 2102-2118, doi:10.1029/2012JB009603.
Soghrat, M. R.; Ziyaeifar, M.
2017-01-01
Recent studies have shown that the vertical component of ground motion can be quite destructive on a variety of structural systems. Development of response spectrum for design of buildings subjected to vertical component of earthquake needs ground motion prediction equations (GMPEs). The existing GMPEs for northern Iranian plateau are proposed for the horizontal component of earthquake, and there is not any specified GMPE for the vertical component of earthquake in this region. Determination of GMPEs is mostly based on regression analyses on earthquake parameters such as magnitude, site class, distance, and spectral amplitudes. In this study, 325 three-component records of 55 earthquakes with magnitude ranging from M w 4.1 to M w 7.3 are used for estimation on the regression coefficients. Records with distances less than 300 km are selected for analyses in the database. The regression analyses on earthquake parameters results in determination of GMPEs for peak ground acceleration and spectral acceleration for both horizontal and vertical components of the ground motion. The correlation between the models for vertical and horizontal GMPEs is studied in details. These models are later compared with some other available GMPEs. According to the result of this investigation, the proposed GMPEs are in agreement with the other relationships that were developed based on the local and regional data.
Simulation of non-stationary ground motion processes (I)
Institute of Scientific and Technical Information of China (English)
LIANG Jian-wen
2005-01-01
This paper presents a spectral representation method for simulation of non-stationary ground motion processes on the basis of Priestley's evolutionary spectral theory. Following this method, sample processes can be generated using a cosine series formula. It is shown that, these sample processes accurately reflect the prescribed characteristics of the evolutionary power spectral density function when the number of the terms in the cosine series is large enough; and the ensemble expected value and the ensemble autocorrelation function approach the corresponding target functions, respectively, as the sample size increases; and these sample processes are asymptotically normal as the number of the terms in the series tends to infinity. Finally, a few special cases of the formula are discussed, one of which is non-stationary white noise process, and other one is reduced to the formula for simulation of stationary stochastic processes.
On selection and scaling of ground motions for analysis of seismically isolated structures
Pant, Deepak R.; Maharjan, Manika
2016-12-01
A broader consensus on the number of ground motions to be used and the method of scaling to be adopted for nonlinear response history analysis (RHA) of structures is yet to be reached. Therefore, in this study, the effects of selection and scaling of ground motions on the response of seismically isolated structures, which are routinely designed using nonlinear RHA, are investigated. For this purpose, isolation systems with a range of properties subjected to bidirectional excitation are considered. Benchmark response of the isolation systems is established using large sets of unscaled ground motions systematically categorized into pulse-like, non-pulse-like, and mixed set of motions. Different subsets of seven to 14 ground motions are selected from these large sets using (a) random selection and (b) selection based on the best match of the shape of the response spectrum of ground motions to the target spectrum. Consequences of weighted scaling (also commonly referred to as amplitude scaling or linear scaling) as well as spectral matching are investigated. The ground motion selection and scaling procedures are evaluated from the viewpoint of their accuracy, efficiency, and consistency in predicting the benchmark response. It is confirmed that seven time histories are sufficient for a reliable prediction of isolation system displacement demands, for all ground motion subsets, selection and scaling procedures, and isolation systems considered. If ground motions are selected based on their best match to the shape of the target response spectrum (which should be preferred over randomly selected motions), weighted scaling should be used if pulse-like motions are considered, either of weighted scaling or spectral matching can be used if non-pulse-like motions are considered, and an average of responses from weighted-scaled and spectrum-matched ground motions should be used for a mixed set of motions. On the other hand, the importance of randomly selected motions in
Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.
2016-12-01
Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.
Energy Technology Data Exchange (ETDEWEB)
I. Wong
2004-11-05
This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.
Prediction of near-field strong ground motions for scenario earthquakes on active fault
Institute of Scientific and Technical Information of China (English)
Wang Haiyun; Xie Lili; Tao Xiaxin; Li Jie
2006-01-01
A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First,macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width,rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws.Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic corner frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.
Scaling earthquake ground motions for performance-based assessment of buildings
Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.
2011-01-01
The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.
Attenuation characteristics of ground motions in northern China
Institute of Scientific and Technical Information of China (English)
黄玉龙; 赵兴权; 罗奇峰
2002-01-01
Four recently developed attenuation models are calibrated by using a very limited amount of strong motion data recorded in China. The research shows that the attenuation characteristics of the earthquake shaking in northern China are similar to those in the western US. The supporting evidence includes Q factors, preliminary results of kappa values, stress drop,shear wave velocity profile in the shallow earth crust, areas enclosed by the isoseismals of Modified Mercalli Intensity V. From these comparisons of different attenuation models, it is recommended that the Crouse and McGuire spectral attenuation model could possibly be used for northern China.
Earthquake data visualization shows ground motion in real time
Schultz, Colin
2011-12-01
On 11 March 2011 a magnitude 9.0 earthquake shattered the seabed off the eastern coast of Japan's Honshu Island. Visualizations of scientific data showing the peaks of a seismograph or maps overlain with the locations and magnitudes of the earthquake and its numerous aftershocks were brought out to help explain the devastation to the public. While dramatic, such displays can be difficult for the public to interpret clearly because people have trouble trying to picture what the recordings of a seismograph might look like on the ground or because they have trouble understanding the logarithmic relationship between earthquake magnitude and energy. Drawing on the three-dimensional position records of a dense web of high-frequency GPS ground receiver stations, Grapenthin and Freymueller developed an animation of the abrupt horizontal and vertical motions that pulled parts of the country more than 4 meters to the east and sank large portions of its eastern shore more than half a meter into the sea.
Earthquake scenario ground motions for the urban area of Evansville, Indiana
Haase, Jennifer S.; Nowack, Robert L.; Cramer, Chris H.; Boyd, Oliver S.; Bauer, Robert A.
2011-01-01
The Wabash Valley seismic zone and the New Madrid seismic zone are the closest large earthquake source zones to Evansville, Indiana. The New Madrid earthquakes of 1811-1812, over 180 kilometers (km) from Evansville, produced ground motions with a Modified Mercalli Intensity of VII near Evansville, the highest intensity observed in Indiana. Liquefaction evidence has been documented less than 40 km away from Evansville resulting from two large earthquakes in the past 12,000 years in the Wabash Valley. Two earthquake scenarios are described in this paper that demonstrate the expected ground motions for a 33×42-km region around Evansville based on a repeat earthquake from each of these source regions. We perform a one-dimensional analysis for a grid of sites that takes into account the amplification or deamplification of ground motion in the unconsolidated soil layer using a new three-dimensional model of seismic velocity and bedrock depth. There are significant differences in the calculated amplification from that expected for National Earthquake Hazard Reduction Program site class D conditions, with deamplification at many locations within the ancient bedrock valley underlying Evansville. Ground motions relative to the acceleration of gravity (g) in the Evansville area from a simulation of a magnitude (M) 7.7 New Madrid earthquake range from 0.15 to 0.25 g for peak ground acceleration, 0.14 to 0.7 g for 0.2-second (s) spectral acceleration, and 0.05 to 0.25 g for 1.0-s spectral acceleration. Ground motions from a M6.8 Wabash Valley earthquake centered 40 km northwest of the city produce ground motions that decrease with distance from 1.5 to 0.3 g for 0.2-s spectral acceleration when they reach the main part of Evansville, but then increase in amplitude from 0.3 to 0.6 g south of the city and the Ohio River. The densest urbanization in Evansville and Henderson, Ky., is within the area of preferential amplification at 1.0-s period for both scenarios, but the area
Response of base isolation system excited by spectrum compatible ground motions
Energy Technology Data Exchange (ETDEWEB)
Kim, Jung Han; Kim, Min Kyu; Choi, In Kil [KAERI, Daejeon (Korea, Republic of)
2012-10-15
Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, the response history analysis should be performed. Especially for the performance based design, where the failure probability of a system needs to be evaluated, the variation of response should be evaluated. In this study, the spectrum compatible ground motions, the artificial ground motion and the modified ground motion, were generated. Using these ground motions, the variations of seismic responses of a simplified isolation system were evaluated.
Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe
Delavaud, Elise; Cotton, Fabrice; Akkar, Sinan; Scherbaum, Frank; Danciu, Laurentiu; Beauval, Céline; Drouet, Stéphane; Douglas, John; Basili, Roberto; Sandikkaya, M. Abdullah; Segou, Margaret; Faccioli, Ezio; Theodoulidis, Nikos
2012-07-01
The Seismic Hazard Harmonization in Europe (SHARE) project, which began in June 2009, aims at establishing new standards for probabilistic seismic hazard assessment in the Euro-Mediterranean region. In this context, a logic tree for ground-motion prediction in Europe has been constructed. Ground-motion prediction equations (GMPEs) and weights have been determined so that the logic tree captures epistemic uncertainty in ground-motion prediction for six different tectonic regimes in Europe. Here we present the strategy that we adopted to build such a logic tree. This strategy has the particularity of combining two complementary and independent approaches: expert judgment and data testing. A set of six experts was asked to weight pre-selected GMPEs while the ability of these GMPEs to predict available data was evaluated with the method of Scherbaum et al. (Bull Seismol Soc Am 99:3234-3247, 2009). Results of both approaches were taken into account to commonly select the smallest set of GMPEs to capture the uncertainty in ground-motion prediction in Europe. For stable continental regions, two models, both from eastern North America, have been selected for shields, and three GMPEs from active shallow crustal regions have been added for continental crust. For subduction zones, four models, all non-European, have been chosen. Finally, for active shallow crustal regions, we selected four models, each of them from a different host region but only two of them were kept for long periods. In most cases, a common agreement has been also reached for the weights. In case of divergence, a sensitivity analysis of the weights on the seismic hazard has been conducted, showing that once the GMPEs have been selected, the associated set of weights has a smaller influence on the hazard.
A Refined Vs30 Map for Taiwan Based on Ground Motion Attenuation Relationships
Directory of Open Access Journals (Sweden)
Kun-Sung Liu and Yi-Ben Tsai
2015-01-01
Full Text Available Seismic hazard evaluations require an estimate of the expected ground motion at the site of interest usually by using attenuation relationships. The mean shear-wave velocity over the top 30 m (Vs30 is incorporated in the ground motion attenuation relationships in this study. By comparing the standard deviations of the residuals between the observed and predicted values before and after incorporating the site effect term Vs30, the reduction in standard deviation for the peak ground velocity (PGV is significantly reduced by about 11%. Clearly, the refined attenuation relationships will be more useful for engineering purposes. Analyzing the site effect term using the amplification factor (relative to a site with Vs30 = 760 m s-1, has revealed that the Changhua Plain, Chianan Plain, Pingtung Valley, Ilan Plain, and Taipei Basin have high values, implying large ground motion amplification. Following a disastrous earthquake, quick assessment and timely peak ground acceleration (PGA and PGV map reporting will be critical for effective emergency response operations. After an earthquake we can combine the simple attenuation relationships, as determined from Model 1, to provide near real-time estimation and reporting of the PGA and PGV values for the Taiwan area. We can also use the relations between the intra-event site residual and the Vs30 to estimate the Vs30 for stations that have recorded strong motions, but do not yet have Vs30 information. Our approach including sites with estimated Vs30 has resulted in a refined Vs30 contour map that can be used for more realistic seismic hazard assessment for Taiwan. This approach is especially applicable to the foothill and mountain areas.
Hysteresis and Soil Site Dependent Input and Hysteretic Energy Spectra for Far-Source Ground Motions
Directory of Open Access Journals (Sweden)
Mebrahtom Gebrekirstos Mezgebo
2016-01-01
Full Text Available Earthquake input energy spectra for four soil site classes, four hysteresis models, and five ductility levels are developed for far-source ground motion effect. These energy spectra are normalized by a quantity called velocity index (VI. The use of VI allows for the creation of dimensionless spectra and results in smaller coefficients of variation. Hysteretic energy spectra are then developed to address the demand aspect of an energy-based seismic design of structures with 5% critical damping and ductility that ranges from 2 to 5. The proposed input and hysteretic energy spectra are then compared with response spectra generated using nonlinear time history analyses of real ground motions and are found to produce reasonably good results over a relatively large period range.
Del Gaudio, Sergio; Hok, Sébastian; Causse, Mathieu; Festa, Gaetano; Lancieri, Maria
2016-04-01
A fundamental stage in seismic hazard assessment is the prediction of realistic ground motion for potential future earthquakes. To do so, one of the steps is to make an estimation of the expected ground motion level and this is commonly done by the use of ground motion prediction equations (GMPEs). Nevertheless GMPEs do not represent the whole variety of source processes and this can lead to incorrect estimates for some specific case studies, such as in the near-fault range because of the lack of records of large earthquakes at short distances. In such cases, ground motion simulations can be a valid tool to complement prediction equations for scenario studies, provided that both source and propagation are accurately described and uncertainties properly addressed. Such simulations, usually referred to as "blind", require the generation of a population of ground motion records that represent the natural variability of the source process for the target earthquake scenario. In this study we performed simulations using the empirical Green's function technique, which consists in using records of small earthquakes as the medium transfer function provided the availability of small earthquakes located close to the target fault and recorded at the target site. The main advantage of this technique is that it does not require a detailed knowledge of the propagation medium, which is not always possible, but requires availability of high quality records of small earthquakes in the target area. We couple this empirical approach with a k-2 kinematic source model, which naturally let us to introduce high frequency in the source description. Here we present an application of our technique to the Upper Rhine Graben. This is an active seismic region with a moderate rate of seismicity and for which it is interesting to provide ground motion estimation in the vicinity of the faults to be compared with estimations traditionally provided by GMPEs in a seismic hazard evaluation study. We
Long Duration of Ground Motion in the Paradigmatic Valley of Mexico
Cruz-Atienza, V. M.; Tago, J.; Sanabria-Gómez, J. D.; Chaljub, E.; Etienne, V.; Virieux, J.; Quintanar, L.
2016-12-01
Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away the city. By means of high performance computational modeling we show that, despite the highly dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively, which are two frequencies with the largest observed amplification. This conclusion contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City.
Combinatorial fractal Brownian motion model
Institute of Scientific and Technical Information of China (English)
朱炬波; 梁甸农
2000-01-01
To solve the problem of how to determine the non-scaled interval when processing radar clutter using fractal Brownian motion (FBM) model, a concept of combinatorial FBM model is presented. Since the earth (or sea) surface varies diversely with space, a radar clutter contains several fractal structures, which coexist on all scales. Taking the combination of two FBMs into account, via theoretical derivation we establish a combinatorial FBM model and present a method to estimate its fractal parameters. The correctness of the model and the method is proved by simulation experiments and computation of practial data. Furthermore, we obtain the relationship between fractal parameters when processing combinatorial model with a single FBM model. Meanwhile, by theoretical analysis it is concluded that when combinatorial model is observed on different scales, one of the fractal structures is more obvious.
Characteristics of near-fault ground motion containing velocity pulses
Institute of Scientific and Technical Information of China (English)
WEI Tao; ZHAO Feng-xin; ZHANG Yu-shan
2006-01-01
There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure. However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code.
Strong Ground Motion Evaluation for an Active Fault System by the Empirical Green Function Method
Energy Technology Data Exchange (ETDEWEB)
Choi, In Kil; Choun, Young Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Shiba, Yoshiaki; Ohtori, Yasuki [Central Research Institute of Electric Power Industry, Chiba (Japan)
2005-07-01
In an area with a high seismic activity, a design earthquake ground motion is generally determined empirically by investigating the historical records concerning damaging events. But it is difficult in Korea to obtain such seismic records that reflect the local characteristics because of the low seismic activity. A geological survey on the active faults near the sites of nuclear power plants has been carried out recently, and the segmentation, slip rate and the latest activity of the fault system are partly revealed. It will be significant for the advanced seismic design of nuclear facilities to utilize the information derived from these geological investigations and evaluate the strong ground motions. In this study, the empirical Green's function method (EFGM) was used to simulate strong ground motions from an active fault system in Korea. The source models are assumed by using the information obtained from the geological survey and the trench investigation on the fault system. Finally, the applicability of this approach to Korea was estimated.
A new procedure to account for epistemic uncertainty in the Ground Motion Prediction Equations
Roselli, P.; Marzocchi, W.; faenza, L.
2013-12-01
One of the largest sources of uncertainty in the Probabilistic Seismic Hazard Assessment (PSHA) is the definition of the models that describe the source-site propagation of seismic waves, usually named Ground Motion Prediction Equations (GMPEs). To date, a large number of GMPEs have been produced and applied in different geological domains in the world, even if there is not an objective accepted procedure to select the 'best' GMPE to use for each specific case-region. In order to account for the large uncertainty related to the incomplete knowledge of processes that control ground motion generation along the wave path, it is common practice to implement a set of GMPE candidates in a logic tree scheme where the weights associated to each GMPE derive from an expert opinion. Here, we propose an alternative tool to the logic tree procedure focalized on a more objective weighing process of each GMPE and we show how these weights can be used to create an 'ensemble' GMPE (EGMPE). Noteworthy, this new procedure overcomes some of the conceptual problems related to the logic tree scheme. For the sake of example, we apply this procedure to the new version of Italian Accelerometric Archive (ITACA1.1), investigating also the potential relations between the ground motion, the focal mechanisms and the spatial regionalization with respect to each GMPE treated separately for different site conditions.
Energy Technology Data Exchange (ETDEWEB)
Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.
1984-05-01
This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.
Constraints provided by ground gravity observations on geocentre motions
Rogister, Y.; Mémin, A.; Rosat, S.; Hinderer, J.; Calvo, M.
2016-08-01
The geocentre motion is the motion of the centre of mass of the entire Earth, considered an isolated system, in a terrestrial system of reference. We first derive a formula relating the harmonic degree-1 Lagrangian variation of the gravity at a station to both the harmonic degree-1 vertical displacement of the station and the displacement of the whole Earth's centre of mass. The relationship is independent of the nature of the Earth deformation and is valid for any source of deformation. We impose no constraint on the system of reference, except that its origin must initially coincide with the centre of mass of the spherically symmetric Earth model. Next, we consider the geocentre motion caused by surface loading. In a system of reference whose origin is the centre of mass of the solid Earth, we obtain a specific relationship between the gravity variation at the surface, the geocentre displacement and the load Love number formula>math id="TM0001" notation="LaTeX">h^' }_1math>formula>, which demands the Earth's structure and rheological behaviour be known. For various networks of real or fictitious stations, we invert synthetic signals of surface gravity variations caused by atmospheric loading to retrieve the degree-1 variation of gravity. We then select six well-distributed stations of the Global Geodynamics Project, which is a world network of superconducting gravimeters, to invert actual gravity data for the degree-1 variations and determine the geocentre displacement between the end of 2004 and the beginning of 2012, assuming it to be due to surface loading. We find annual and semi-annual displacements with amplitude 0.5-2.3 mm.
Institute of Scientific and Technical Information of China (English)
Mai Tong; Vladimir Rzhevsky; Dai Junwu; George C Lee; Qi Jincheng; Qi Xiaozhai
2007-01-01
Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum,a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse.
Directory of Open Access Journals (Sweden)
K. Hacıefendioğlu
2012-04-01
Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.
Seismic Safety Program: Ground motion and structural response
Energy Technology Data Exchange (ETDEWEB)
1993-05-01
In 1964, John A. Blume & Associates Research Division (Blume) began a broad-range structural response program to assist the Nevada Operations Office of the US Atomic Energy Commission (AEC) in ensuring the continued safe conduct of underground nuclear detonation testing at the Nevada Test Site (NTS) and elsewhere. Blume`s long experience in earthquake engineering provided a general basis for the program, but much more specialized knowledge was required for the AEC`s purposes. Over the next 24 years Blume conducted a major research program to provide essential understanding of the detailed nature of the response of structures to dynamic loads such as those imposed by seismic wave propagation. The program`s results have been embodied in a prediction technology which has served to provide reliable advanced knowledge of the probable effects of seismic ground motion on all kinds of structures, for use in earthquake engineering and in building codes as well as for the continuing needs of the US Department of Energy`s Nevada Operations Office (DOE/NV). This report is primarily an accounting of the Blume work, beginning with the setting in 1964 and the perception of the program needs as envisioned by Dr. John A. Blume. Subsequent chapters describe the structural response program in detail and the structural prediction procedures which resulted; the intensive data acquisition program which, as is discussed at some length, relied heavily on the contributions of other consultant-contractors in the DOE/NV Seismic Safety Support Program; laboratory and field studies to provide data on building elements and structures subjected to dynamic loads from sources ranging from testing machines to earthquakes; structural response activities undertaken for testing at the NTS and for off-NTS underground nuclear detonations; and concluding with an account of corollary studies including effects of natural forces and of related studies on building response.
Seismic ground motion scenarios in Lower Tagus Valley Basin
Borges, José; Torres, Ricardo; Furtado, José; Silva, Hugo; Caldeira, Bento; Pinto, Carlos; Bezzeghoud, Mourad; Carvalho, João
2013-04-01
Throughout its history the Lower Tagus Valley (LTV) has been struck by several earthquakes which produced important material damage and loss of lives: The 1st of November 1755 Lisbon earthquake and the 1969 earthquake (Mw=7.3), located in the SW Iberia Margin and the 1344, 1531 and 1909 (M= 6 to 7) with epicenter located inside the LTV basin. Since this region is the most highly populated region in Portugal, it is expected that an earthquake of similar magnitude of those that have occurred in the past will cause an enormous destruction and casualties. This fact makes LTV a high priority area for earthquake research in Portugal. In order to overcome the problems related to the absence of geological outcrops, low slip-rates (based on Seismic reflection, Seismic Noise and potential field data [2,3]. In order to improve assessment of the seismic hazard in the LTV basin, we simulate long-period (0-1 Hz) ground motion time histories for a suite of scenarios earthquakes (Mw =5.5 to 7) within the basin, using fault geometries and the 3D seismic velocity structure based on the previous mentioned works. References [1] Pinto, Carlos C. (2011). Identification of Seismogenic Structures in the Lower Tagus Basin. Master Thesis, Universidade de Évora, 128 pp. [2] Torres, R.J.G., (2012). Modelo de velocidade da Bacia do Vale do Tejo: uma abordagem baseada no estudo do ruído sísmico ambiental, Master Thesis, Universidade de Évora, 83pp. [3] Furtado, J.A (2010). Confirmação do modelo da estrutura 3D do Vale Inverior do Tejo a partir de dados de ruído sísmico ambiente, Master Thesis, Universidade de Évora, 136pp.
Li, Ruijiang; Jia, Xun; Zhao, Tianyu; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B
2010-01-01
Organ motion induced by respiration may cause clinically significant targeting errors and greatly degrade the effectiveness of conformal radiotherapy. It is therefore crucial to be able to model respiratory motion accurately. A recently proposed lung motion model based on principal component analysis (PCA) has been shown to be promising on a few patients. However, there is still a need to understand the underlying reason why it works. In this paper, we present a much deeper and detailed analysis of the PCA-based lung motion model. We provide the theoretical justification of the effectiveness of PCA in modeling lung motion. We also prove that under certain conditions, the PCA motion model is equivalent to 5D motion model, which is based on physiology and anatomy of the lung. The modeling power of PCA model was tested on clinical data and the average 3D error was found to be below 1 mm.
Institute of Scientific and Technical Information of China (English)
尹犟; 周先雁; 易伟建; 陈伯望; 段绍伟
2015-01-01
The parameters of an improved stochastic model for earthquake ground motion were determined according to current seismic code (GB 50011—2010),the conditional probability model of elastic acceleration demand was deduced for SDOF system, and the probability spectrum of displacement demand and acceleration demand were established. Considering the relationship between the strength reduction factorR and the ductility factorμ, the conditional probability distribution function was derived for non-linear displacement demand of SDOF system. Then according to the random vibration theory and probabilistic methods, the probability displacement spectrum was established for inelastic SDOF system under given earthquake intensity or in 50 years design reference period. Using the ground motion records collected from U.S. Pacific Earthquake Engineering Research Center, dynamic time-history analyses of SDOF system were carried out, and the statistical results of time-history analyses were compared with the theoretical solutions to verify their accuracy. The results show that the theoretical method is accurate, reasonable, and the efficiency in computation is high.%结合我国现行抗震规范(GB 50011—2010)，给出一种改进随机地震动模型的相关参数。推导单自由度体系(SDOFS)弹性加速度需求的条件概率模型，进而建立弹性 SDOFS 的概率加速度需求谱以及概率位移需求谱。在此基础上，据强度折减系数R与延性系数μ之间的关系，确定SDOFS非弹性位移需求的条件概率分布函数，进而运用随机振动理论和概率方法，建立非弹性SDOFS在给定强度地震作用下及50 a设计基准期内的概率位移需求谱。从美国太平洋地震工程研究中心收集大量实测地震记录，基于大量 SDOFS 动力时程分析的统计结果，对本文方法所得的理论结果进行Monte Carlo数值验证。研究结果表明：该理论方法准确、合理，且计算效率高。
Modeled ground water age distributions
Woolfenden, Linda R.; Ginn, Timothy R.
2009-01-01
The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.
Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions
Energy Technology Data Exchange (ETDEWEB)
Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2004-07-01
The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions.
Representation of bidirectional ground motions for design spectra in building codes
Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.
2011-01-01
The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.
Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge
Directory of Open Access Journals (Sweden)
Swagata Banerjee Basu
2011-01-01
Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.
A Bayesian and Physics-Based Ground Motion Parameters Map Generation System
Ramirez-Guzman, L.; Quiroz, A.; Sandoval, H.; Perez-Yanez, C.; Ruiz, A. L.; Delgado, R.; Macias, M. A.; Alcántara, L.
2014-12-01
We present the Ground Motion Parameters Map Generation (GMPMG) system developed by the Institute of Engineering at the National Autonomous University of Mexico (UNAM). The system delivers estimates of information associated with the social impact of earthquakes, engineering ground motion parameters (gmp), and macroseismic intensity maps. The gmp calculated are peak ground acceleration and velocity (pga and pgv) and response spectral acceleration (SA). The GMPMG relies on real-time data received from strong ground motion stations belonging to UNAM's networks throughout Mexico. Data are gathered via satellite and internet service providers, and managed with the data acquisition software Earthworm. The system is self-contained and can perform all calculations required for estimating gmp and intensity maps due to earthquakes, automatically or manually. An initial data processing, by baseline correcting and removing records containing glitches or low signal-to-noise ratio, is performed. The system then assigns a hypocentral location using first arrivals and a simplified 3D model, followed by a moment tensor inversion, which is performed using a pre-calculated Receiver Green's Tensors (RGT) database for a realistic 3D model of Mexico. A backup system to compute epicentral location and magnitude is in place. A Bayesian Kriging is employed to combine recorded values with grids of computed gmp. The latter are obtained by using appropriate ground motion prediction equations (for pgv, pga and SA with T=0.3, 0.5, 1 and 1.5 s ) and numerical simulations performed in real time, using the aforementioned RGT database (for SA with T=2, 2.5 and 3 s). Estimated intensity maps are then computed using SA(T=2S) to Modified Mercalli Intensity correlations derived for central Mexico. The maps are made available to the institutions in charge of the disaster prevention systems. In order to analyze the accuracy of the maps, we compare them against observations not considered in the
DEFF Research Database (Denmark)
Hibino, Y.; Ichinose, T.; Costa, J.L.D.
2009-01-01
A procedure is presented to predict the storey where plastic drift dominates in two-storey buildings under strong ground motion. The procedure utilizes the yield strength and the mass of each storey as well as the peak ground acceleration. The procedure is based on two different assumptions: (1....... The efficiency of the procedure is verified by dynamic response analyses using elasto-plastic model....
Alternative (G-16v2) Ground Motion Prediction Equations for the Central and Eastern North America
Graizer, V.
2016-12-01
Introduced is the ground motion prediction equations model for the Central and Eastern North America that represents an alternative more physically justified approach to ground motion attenuation modeling then previous Graizer (2016) G-16 model. The new model has a bilinear slope of R-1 within 70 km from the fault with a slope of R-0.5 at larger distances corresponding to the geometrical spreading of body and surface waves. The new (G-16v2) model is based in part on the NGA-East database for the horizontal peak ground acceleration and 5%-damped pseudo spectral acceleration (SA) and also on comparisons with the Western U.S. data and ground motion simulations. Based on data, I estimated the average slope of the distance attenuation within the 50-70 km distance from the fault to be -1.0 at most of the frequencies supporting regular geometrical spreading of body waves. Multiple inversions are performed to estimate apparent (combined intrinsic and scattering) attenuation of SA amplitudes from the NGA-East database for incorporation into the model. These estimates demonstrate a difference between seismological Q(f) and the above mentioned attenuation factor that I recommend calling QSA(f). I adjusted previously developed site correction which was based on multiple runs of representative VS30 (time-averaged shear-wave velocity in the upper 30 m) profiles through SHAKE-type equivalent-linear codes. Site amplifications are calculated relative to the hard rock definition used in nuclear industry (VS=2800 m/s). These improvements resulted in a modest reduction in standard deviation in the new G-16v2 relative to the G-16 model. The number of model predictors is limited to a few measurable parameters: moment magnitude M, closest distance to fault rupture plane Rrup, VS30, and apparent attenuation factor QSA(f). The model is applicable for the stable continental regions and covers the following range: 4.0≤M≤8.5, 0≤Rrup≤1000 km, 450≤VS30≤2800 m/s and frequencies 0.1
Enhancement of long period components of recorded and synthetic ground motions using InSAR
Abell, J.A.; Carlos de la Llera, J.; Wicks, C.W.
2011-01-01
Tall buildings and flexible structures require a better characterization of long period ground motion spectra than the one provided by current seismic building codes. Motivated by that, a methodology is proposed and tested to improve recorded and synthetic ground motions which are consistent with the observed co-seismic displacement field obtained from interferometric synthetic aperture radar (InSAR) analysis of image data for the Tocopilla 2007 earthquake (Mw=7.7) in Northern Chile. A methodology is proposed to correct the observed motions such that, after double integration, they are coherent with the local value of the residual displacement. Synthetic records are generated by using a stochastic finite-fault model coupled with a long period pulse to capture the long period fling effect. It is observed that the proposed co-seismic correction yields records with more accurate long-period spectral components as compared with regular correction schemes such as acausal filtering. These signals provide an estimate for the velocity and displacement spectra, which are essential for tall-building design. Furthermore, hints are provided as to the shape of long-period spectra for seismic zones prone to large co-seismic displacements such as the Nazca-South American zone. ?? 2011 Elsevier Ltd.
Study on the effect of ground motion direction on the response of engineering structure
Sun, Menghan; Fan, Feng; Sun, Baitao; Zhi, Xudong
2016-12-01
Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW (East -West) direction, NS (South- North) direction and perpendicular to the surface ( z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations: (1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined; (2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and (3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage
Institute of Scientific and Technical Information of China (English)
JIANG Tong; CHEN Laiyun; XING Hailing; L(U) Xilin
2007-01-01
The terminal No.Ⅱ of Shanghai Pudong International Airport is located at Pudong District of Shanghai City near shore of East China Sea,and the area of the long-span terminal is 400 m × 200 m.The construction site of the terminal locates on the irregular topography,and its alluvium achieves about 300 m in thickness.The spatial correlation of seismic ground motion,as well as the amplification of soft alluvium and the effect of irregular topography,should be considered.This paper uses a simplified method to obtain the response spectrum of the engineering bedrock under the irregular topography.The spectrum is used to generate the sets of spatially correlative horizontal and vertical seismic motions.The surface ground motion was calculated under incidence of the spatially correlative seismic motion by 2D finite element method (FEM) model considering nonlinear properties of the soil by means of the equivalent linear method.In order to compare the effect of 2D irregular topography,the seismic response analysis of 1D model is carried out by using the equivalent linear method.For indicating the effect of the spatial correlation of input motions,the horizontal uniform inputs,as well as the horizontal and vertical uniform input are carried out for the seismic response analysis of the site.Finally,some characteristics of seismic ground motion calculated for previously mentioned cases are compared.
Su, Wei-Jou
This thesis consists of two parts. Part one is concerned with the effect of fault zone heterogeneity on the strong ground motion of the Loma Preita earthquake. Part two is concerned with the effect of the effective hexagonal anisotropy of a fault zone on strong ground motion. A superposition of Gaussian beams is used to analyze these problems because it can account for both the rupture history of the fault plane and the fault zone heterogeneity. We also extend this method to investigate the combined effects of the rupture process on a fault plane and medium anisotropy on the synthetic seismograms. The strong ground motion of the Loma Prieta Earthquake is synthesized using a known three-dimensional crustal model of the region, a rupture model determined under the assumption of laterally homogeneous structure, and Green's functions computed by superposition of Gaussian beams. Compared to results obtained assuming a laterally homogeneous crust, stations lying to the northeast of the rupture zone are predicted to be defocused, while stations lying to the west of the fault trace are predicted to be focused. The defocusing is caused by a zone of high velocity material between the San Andreas and Sargent faults, and the focusing is caused by a region of low velocity lying between the Zayantes and San Andreas faults. If lateral homogeneity is assumed, the net effect of the predicted focusing and defocusing is to bias estimates of the relative slip of two high slip regions found in inversions of local and teleseismic body waves. These biases are similar in magnitude to those estimated for waveform inversions from the effects of using different subsets of data and/or different misfit functions and are similar in magnitude to the effects predicted for non-linear site responses.
Liu, K.
2009-12-01
An evaluation of seismic hazards requires an estimate of the expected ground motion at the site of interest. The most common means of estimating this ground motion in engineering practice is the use of an attenuation relation. A number of developments have arisen recently to suggest that a new generation of attenuation relationships is warranted. The project named Next Generation Attenuation of Ground Motions (NGA) Project was developed by Pacific Earthquake Engineering Research Center (PEER) in response to a core objective: reducing uncertainty in earthquake ground motion estimation. This objective reflects recognition from industry sponsors that improvements in earthquake ground motion estimation will result in significant cost savings and will result in improved system performance in the event of a large earthquake. The Central Weather Bureau has implemented the Taiwan Strong Motion Instrumentation Program (TSMIP) to collect high-quality instrumental recordings of strong earthquake shaking.It is necessary for us to study the strong ground motion characteristics at the Ilan area of northeastern Taiwan. Further analyses using a good quality data base that includes 486 events and 4172 recordings of magnitude greater than 4.0 are required to derive the next generation attenuation of ground motion in Ilan area. In addition, Liu and Tsai (2007) used a catalog of more than 1840 shallow earthquakes with homogenized Mw magnitude ranging from 5.0 to 8.2 in 1900-2007 to estimate the seismic hazard potential in Taiwan. As a result, the PGA and PGV contour patterns of maximum ground motion show that Ilan Plain has high values of 0.2g and 80cm/sec with respect to MMI intensity VII and IX, respectively. Furthermore, from the mean ground motion and the seismic intensity rate analyses, they show that a high annul probability of MMI > VI greater than 35 percents are located at the Chianan area of western Taiwan and Ilan Plain in northeastern Taiwan. However, these results was
Strong ground motion in the Taipei basin from the 1999 Chi-Chi, Taiwan, earthquake
Fletcher, Joe B.; Wen, K.-L.
2005-01-01
The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/ sec2 compared to - 24.2 cm/sec2 for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3 - 0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant
Characteristics of ground motion at permafrost sites along the Qinghai-Tibet railway
Wang, L.; Wu, Z.; Sun, Jielun; Liu, Xiuying; Wang, Z.
2009-01-01
Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied. ?? 2008 Elsevier Ltd. All rights reserved.
Soft Soil Site Characterization on the Coast of Yantai and Its Effect on Ground Motion Parameters
Institute of Scientific and Technical Information of China (English)
Lü Yuejun; Tang Rongyu; Peng Yanju
2005-01-01
According to the Chinese GB50011-2001 code and the recommended provisions of FEMANEHRP and EUROCODE 8, by using shear wave velocity and borehole data, the site classification is evaluated for a typical soft soil site on the Yantai seacoast. The site seismic ground motion effect is analyzed and the influence of the coastal soil on design ground motion parameters is discussed. The results show that the brief site classification can not represent the real conditions of a soft soil site; the soft soil on the coast has a remarkable impact on the magnitude and spectrum of ground motion acceleration. The magnification on peak acceleration is bigger, however, due to the nonlinear deformation of the soil. The magnification is reduced nonlinearly with the increase of input ground motion; the spectrum is broadened and the characteristic period elongated on the soft soil site.
AN EXPRESSION OF THE SEISMIC INTENSITY LEVEL FOR LONG-PERIOD GROUND MOTION
National Research Council Canada - National Science Library
SAKAI, Akira
2015-01-01
... on the instrumental seismic intensity is used. The present study proposes the long-period ground motion scale by using a long-period seismic intensity level with the intermediate characteristics of velocity and displacement...
Institute of Scientific and Technical Information of China (English)
Saurabh Baruah; Santanu Baruah; Naba Kumar Gogoi; Olga Erteleva; Felix Aptikaev; J.R.Kayal
2009-01-01
Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.
S2-Project: Near-fault earthquake ground motion simulation in the Sulmona alluvial basin
Faccioli, E.; Stupazzini, M.; Galadini, F.; Gori, S.
2008-12-01
Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems" , the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and
Regional Characterization of Metropolitan Areas in Japan for Strong Ground Motion Evaluation
Hirata, N.; Sato, H.; Koketsu, K.; Umeda, Y.; Iwata, T.; Kasahara, K.; Okaya, D.
2002-12-01
Introduction After the 1995 Kobe earthquake, the Japanese government increased its focus and funding of earthquake hazards evaluation, studies of man-made structures integrity, and emergency response planning in the major urban centers. A new agency, the Headquarters for Earthquake Research Promotion, was formed to oversee appropriate research in the earth sciences and civil engineering. This agency distributes research funds of \\$130 million per year. Projects include these topics: 1) Densification of seismic and GPS networks, 2) Paleoseismological investigation of major active faults, 3) Research on the geometry and physical properties of basins under the cities, 4) Probablistic strong ground motion estimation, and 5) Regional characterization of faults and physical parameters. Regional Characterization Study A long-term goal is to produce map of reliable estimations of strong ground motion. This requires accurate determination of: Source, Propagation path, Near surface and Ground motion response.A new five year project starts this year to characterize the "source" and "propagation path" in the Kanto (Tokyo) region and Kinki (Osaka) region. The proximity of the Pacific and Philippine Sea subducting plates requires study of the relationship between earthquakes and regional tectonics. This projects focuses on identification and geometry of: 1) Source faults, 2) Subducting plates and mega-thrust faults, 3)Crustal structure, 4) Seismogenic zone, 5) Sedimentary basins, 6) 3D velocity properties Reconstruction of source fault and velocity models allow for more realistic 3D EQ wave simulations. All of these information will be synthesized and provided to communities involved in probablistic hazards analysis, risk assessment and societal response. In 2002, we have started to deploy seismic profiling lines in the Boso Peninsula (112 km) and the Sagami bay area( 75 km) to image the subducting Philippine Sea plate
Experimental Study of Ground Effect on Three-Dimensional Insect-Like Flapping Motion
Zhang, Xiaohu; Lua, Kim Boon; Chang, Rong; Lim, Tee Tai; Yeo, Khoon Seng
2014-11-01
This paper focuses on an experimental investigation aimed at evaluating the aerodynamics force characteristics of three-dimensional (3D) insect-like flapping motion in the vicinity of ground. The purpose is to establish whether flapping wing insects can derive aerodynamic benefit from ground effect similar to that experienced by a fixed wing aircraft. To evaluate this, force measurements were conducted in a large water tank using a 3D flapping mechanism capable of executing various insect flapping motions. Here, we focus on three types of flapping motions, namely simple harmonic flapping motion, hawkmoth-like hovering motion and fruitfly-like hovering motion, and two types of wing planforms (i.e. hawkmoth-like wing and fruitfly-like wing). Results show that hawkmoth-like wing executing simple harmonic flapping motion produces average lift to drag ratio (\\bar C\\bar L/\\bar C\\bar D) similar to that of fruitfly wing executing the same motion. In both cases, they are relatively independent of the wing distance from the ground. On the other hand, a hawkmoth wing executing hawkmoth flapping motion produces (\\bar C\\bar L/\\bar C\\bar D) characteristic different from that of fruitfly wing executing fruitfly motion. While the (\\bar C\\bar L/\\bar C\\bar D) value of the former is a function of the wing distance from the ground, the latter is minimally affected by ground effect. Unlike fixed wing aerodynamics, all the flapping wing cases considered here do not show a monotonic increase in (\\bar C\\bar L/\\bar C\\bar D) with decreasing wing distance from the ground.
Energy Technology Data Exchange (ETDEWEB)
1991-03-01
This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart.
Ground Motion Models and Computer Techniques
1972-04-01
of the Ouid pressure through the pores of the rock. Both the cime rate of loading in the rock matrix and the pore fluid are depicted. The...oU 10 m«t the lull range" of pressure and strain encountered in undo rg.oun tests Gene , aliped Moh.-Coulonb nodels include one without work
2.5D Simulation of basin-edge effects on the ground motion characteristics
Indian Academy of Sciences (India)
J P Narayan
2003-09-01
The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated using 2.5D modeling. One of the most significant advantages of the 2.5D simulation is that 3D radiation pattern can be generated in a 2D numerical grid using double-couple shear dislocation source. Further, 2.5D numerical modeling avoids the extensive computational cost of 3D modeling. The responses of basin-edge model using different soil velocities revealed that surface waves were generated near the edge of the basin and propagated normal to the edge, towards the basin. Further, the results depict increase of amplification, duration and surface wave generation with the decrease in soil velocity.
Energy Technology Data Exchange (ETDEWEB)
Carr, J.R.; Roberts, K.P.
1989-02-01
Universal kriging is compared with ordinary kriging for estimation of earthquake ground motion. Ordinary kriging is based on a stationary random function model; universal kriging is based on a nonstationary random function model representing first-order drift. Accuracy of universal kriging is compared with that for ordinary kriging; cross-validation is used as the basis for comparison. Hypothesis testing on these results shows that accuracy obtained using universal kriging is not significantly different from accuracy obtained using ordinary kriging. Test based on normal distribution assumptions are applied to errors measured in the cross-validation procedure; t and F tests reveal no evidence to suggest universal and ordinary kriging are different for estimation of earthquake ground motion. Nonparametric hypothesis tests applied to these errors and jackknife statistics yield the same conclusion: universal and ordinary kriging are not significantly different for this application as determined by a cross-validation procedure. These results are based on application to four independent data sets (four different seismic events).
Vertical ground motion and historical sea-level records in Dakar (Senegal)
Le Cozannet, Gonéri; Raucoules, Daniel; Wöppelmann, Guy; Garcin, Manuel; Da Sylva, Sylvestre; Meyssignac, Benoit; Gravelle, Médéric; Lavigne, Franck
2015-08-01
With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992-2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year-1. Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions.
Animal models in motion sickness research
Daunton, Nancy G.
1990-01-01
Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L.; Jarpe, S.; Kasameyer, P.; Foxall, W.
1998-01-01
We model the 1988, M=6.0, Saguenay earthquake. We utilize an approach that has been developed to predict strong ground motion. this approach involves developing a set of rupture scenarios based upon bounds on rupture parameters. rupture parameters include rupture geometry, hypocenter, rupture roughness, rupture velocity, healing velocity (rise times), slip distribution, asperity size and location, and slip vector. Scenario here refers to specific values of these parameters for an hypothesized earthquake. Synthetic strong ground motion are then generated for each rupture scenario. A sufficient number of scenarios are run to span the variability in strong ground motion due to the source uncertainties. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the one standard deviation value of engineering parameters we have introduced a probabilistic component to the deterministic hazard calculation, For this study we developed bounds on rupture scenarios from previous research on this earthquake. The time history closest to the observed ground motion was selected as a model for the Saguenay earthquake.
Motion sickness: a negative reinforcement model.
Bowins, Brad
2010-01-15
Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.
Attenuation Characteristics of Strong Ground Motions during the Mw 6.1 South Napa Earthquake
Si, H.; Koketsu, K.; Miyake, H.; Ibrahim, R.
2014-12-01
The 2014 South Napa earthquake (Mw 6.1, GCMT) occurred near the American Canyon, California, at 3:20 on 24 August 2014. The earthquake is the largest damaging earthquakes in the area since the 1989 Mw 6.9 Loma Prieta earthquake. A large number of strong ground motions were recorded during this earthquake. We discuss the attenuation characteristics of the strong ground motions of the earthquake.The data used in this study are PGAs compiled by the Center for Engineering Strong Motion Data (CESMD), while the records derived at the stations located in a building were excluded. PGA is defined as the larger one among the PGAs of two horizontal components. We use a source model derived based on the waveform inversion by Dreger (2014). Based on the source model, we calculated the fault distance (FD) and the median distance (MED) which defined as the closest distance from a station to the middle line of the fault plane. We compared the observed PGAs with the GMPEs developed both in US (Boore et al., 2014) and Japan (Si and Midorikawa, 1999; Koketsu et al., 2013), as shown in Figure 1 (left, and center). The predictions by the GMPEs are generally consistent with the observations in near-field area, but overestimated at stations farther than about 10 km in fault distance. The reasons of the overestimates are assumed as follows: (1) the backward propagation effects since many far stations are located in bay area, (2) the energy loss when the seismic waves pass through the sharp discontinuities in the shear wave velocity structure. The second reason are taken into account for the case using MED based on the methods used in Si et al. (2012, 15WCEE). The corrected predictions are significantly improved (Figure 1, right).
Harmsen, Stephen C.; Hartzell, Stephen
2008-01-01
Models of the Santa Clara Valley (SCV) 3D velocity structure and 3D finite-difference software are used to predict ground motions from scenario earthquakes on the San Andreas (SAF), Monte Vista/Shannon, South Hayward, and Calaveras faults. Twenty different scenario ruptures are considered that explore different source models with alternative hypocenters, fault dimensions, and rupture velocities and three different velocity models. Ground motion from the full wave field up to 1 Hz is exhibited as maps of peak horizontal velocity and pseudospectral acceleration at periods of 1, 3, and 5 sec. Basin edge effects and amplification in sedimentary basins of the SCV are observed that exhibit effects from shallow sediments with relatively low shear-wave velocity (330 m/sec). Scenario earthquakes have been simulated for events with the following magnitudes: (1) M 6.8–7.4 Calaveras sources, (2) M 6.7–6.9 South Hayward sources, (3) M 6.7 Monte Vista/Shannon sources, and (4) M 7.1–7.2 Peninsula segment of the SAF sources. Ground motions are strongly influenced by source parameters such as rupture velocity, rise time, maximum depth of rupture, hypocenter, and source directivity. Cenozoic basins also exert a strong influence on ground motion. For example, the Evergreen Basin on the northeastern side of the SCV is especially responsive to 3–5-sec energy from most scenario earthquakes. The Cupertino Basin on the southwestern edge of the SCV tends to be highly excited by many Peninsula and Monte Vista fault scenarios. Sites over the interior of the Evergreen Basin can have long-duration coda that reflect the trapping of seismic energy within this basin. Plausible scenarios produce predominantly 5-sec wave trains with greater than 30 cm/sec sustained ground-motion amplitude with greater than 30 sec duration within the Evergreen Basin.
Simulation of strong ground motion parameters of the 1 June 2013 Gulf of Suez earthquake, Egypt
Toni, Mostafa
2017-06-01
This article aims to simulate the ground motion parameters of the moderate magnitude (ML 5.1) June 1, 2013 Gulf of Suez earthquake, which represents the largest instrumental earthquake to be recorded in the middle part of the Gulf of Suez up to now. This event was felt in all cities located on both sides of the Gulf of Suez, with minor damage to property near the epicenter; however, no casualties were observed. The stochastic technique with the site-dependent spectral model is used to simulate the strong ground motion parameters of this earthquake in the cities located at the western side of the Gulf of Suez and north Red Sea namely: Suez, Ain Sokhna, Zafarana, Ras Gharib, and Hurghada. The presence of many tourist resorts and the increase in land use planning in the considered cities represent the motivation of the current study. The simulated parameters comprise the Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and Peak Ground Displacement (PGD), in addition to Pseudo Spectral Acceleration (PSA). The model developed for ground motion simulation is validated by using the recordings of three accelerographs installed around the epicenter of the investigated earthquake. Depending on the site effect that has been determined in the investigated areas by using geotechnical data (e.g., shear wave velocities and microtremor recordings), the investigated areas are classified into two zones (A and B). Zone A is characterized by higher site amplification than Zone B. The ground motion parameters are simulated at each zone in the considered areas. The results reveal that the highest values of PGA, PGV, and PGD are observed at Ras Gharib city (epicentral distance ∼ 11 km) as 67 cm/s2, 2.53 cm/s, and 0.45 cm respectively for Zone A, and as 26.5 cm/s2, 1.0 cm/s, and 0.2 cm respectively for Zone B, while the lowest values of PGA, PGV, and PGD are observed at Suez city (epicentral distance ∼ 190 km) as 3.0 cm/s2, 0.2 cm/s, and 0.05 cm/s respectively for Zone A
Directory of Open Access Journals (Sweden)
G. Tecchio
2012-01-01
Full Text Available This study carries out a parametrical analysis of the seismic response to asynchronous earthquake ground motion of a long multispan rc bridge, the Fener bridge, located on a high seismicity area in the north-east of Italy. A parametrical analysis has been performed investigating the influence of the seismic input correlation level on the structural response: a series of nonlinear time history analyses have been executed, in which the variation of the frequency content in the accelerograms at the pier bases has been described by considering the power spectral density function (PSD and the coherency function (CF. In order to include the effects due to the main nonlinear behaviours of the bridge components, a 3D finite element model has been developed, in which the pounding of decks at cap-beams, the friction of beams at bearings, and the hysteretic behaviour of piers have been accounted for. The sensitivity analysis has shown that the asynchronism of ground motion greatly influences pounding forces and deck-pier differential displacements, and these effects have to be accurately taken into account for the design and the vulnerability assessment of long multispan simply supported bridges.
Synthetic seismograms of ground motion near earthquake fault using simulated Green's function method
Institute of Scientific and Technical Information of China (English)
ZHAO Zhixin; ZHAO Zhao; XU Jiren; Ryuji Kubota
2006-01-01
Seismograms near source fault were synthesized using the hybrid empirical Green's function method where he discretely simulated seismic waveforms are used for Green's functions instead of the observed waveforms of small earthquakes. The Green's function seismic waveforms for small earthquake were calculated by solving wave equation using the pseudo-spectral method with the staggered grid real FFT strategy under a detailed 2-D velocity structure in Kobe region. Magnitude and seismic moment of simulated Green's function waveforms were firstly determined by using the relationship between fault length and corner frequency of source spectrum. The simulated Green's function waveforms were employed to synthesize seismograms of strong ground motion near the earthquake fault. The synthetic seismograms of the target earthquake were performed based on the model with multiple source rupture processes. The results suggest that synthesized seismograms coincide well with observed seismic waveforms of the 1995 Hyogo-ken Nanbu earthquake. The simulated Green's function method is very useful for prediction of the strong ground motion in region without observed seismic waveforms.The present technique spreads application field of the empirical Green's function method.
Time evolution of ground motion-dependent depolarisation at linear colliders
Bailey, I; Beckmann, M; Hartin, A; Helebrant, C; Kaefer, D; List, J; Moortgat-Pick, G
2011-01-01
Future linear colliders plan to collide polarised beams and the planned physics reach requires knowledge of the state of polarisation as precisely as possible. The polarised beams can undergo depolarisation due to various mechanisms. In order to quantify the uncertainty due to depolarisation, spin tracking simulations in the International Linear Collider (ILC) Beam Delivery System (BDS) and at the Interaction Point (IP) have been performed. Spin tracking in the BDS was achieved using the BMAD subroutine library, and the CAIN program was used to do spin tracking through the beam-beam collision. Assuming initially aligned beamline elements in the BDS, a ground motion model was applied to obtain realistic random misalignments over various time scales. Depolarisation at the level of 0.1% occurs within a day of ground motion at a noisy site. Depolarisation at the IP also exceeds 0.1% for the nominal parameter sets for both the ILC and for the Compact Linear Collider (CLIC). Theoretical work is underway to include ...
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations
Mai, Paul Martin
2017-04-03
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.
The Response of Long-Span Bridges to Low Frequency, Near-Fault Earthquake Ground Motions
Energy Technology Data Exchange (ETDEWEB)
McCallen, David; Astaneh-Asl, A.; Larsen, S.C.; Hutchings, Larry
2009-02-27
Historical seismic hazard characterizations did not include earthquake ground motion waveforms at frequencies below approximately 0.2 Hz (5 seconds period). This resulted from limitations in early strong motion instrumentation and signal processing techniques, a lack of measurements in the near-field of major earthquakes and therefore no observational awareness, and a delayed understanding in the engineering community of the potential significance of these types of motions. In recent years, there is a growing recognition of the relevance of near-fault, low frequency motions, particularly for long-period structures such as large bridges. This paper describes a computationally based study of the effects of low frequency (long-period) near-fault motions on long-span bridge response. The importance of inclusion of these types of motions for long span cable supported bridges is demonstrated using actual measured broad-band, near-fault motions from large earthquakes.
Ground Motion Prediction for the Vicinity by Using the Microtremor Site-effect Correction
Lin, C. M.; Wen, K. L.; Kuo, C. H.
2015-12-01
This study develops a method analyzing the seismograms of a strong-motion station and the microtremor site effects (H/V ratios) around it to predict the ground motion of its vicinity. The Hsinchu Science Park (HSP) in Taiwan was chosen as our study site. The horizontal S-wave seismograms of the TCU017 strong-motion station, which locates at the center of the HSP, were convoluted by the difference of the microtremor H/V ratio between various sites to synthesize the seismograms of several strong-motion stations around the HSP. The comparisons between synthetic and observed seismograms show that this method of ground motion prediction for the vicinity is feasible for far-field earthquakes. However, the seismic source and attenuation effects make this method ineffectual for near-field earthquakes. Because the microtremor H/V ratios at about 200 sites, which are densely distributed in the HSP, were conducted, the seismic ground motion distributions of some historical earthquakes were synthesized by this study. The synthetic ground motion distributions ignore the seismic source and attenuation effects but still show notable variations in the HSP because of the seismic site effects.
Ground motion prediction and earthquake scenarios in the volcanic region of Mt. Etna (Southern Italy
Langer, Horst; Tusa, Giuseppina; Luciano, Scarfi; Azzaro, Raffaela
2013-04-01
available. Our small earthquakes provide useful information, in particular with respect to the effects of wave propagation. This information can be used for the calibration of input parameters used in synthetic modeling of larger earthquakes. We discuss the application of a finite-fault stochastic simulation method of ground motion (i.e., EXSIM software by Motazedian and Atkinson, 2005) considering the small earthquakes as being representative for the subfaults foriming the extended sources. With this strategy we are able to resolve basic discrepancies between our GMPEs and those reported in the literature, especially regarding to the decay of peak ground motion parameters with distance and their dependence on magnitude. We show case-studies for both instrumentally recorded events as well as stronger historical earthquakes for which only macroseismic data are available.
Conditional shape models for cardiac motion estimation
DEFF Research Database (Denmark)
Metz, Coert; Baka, Nora; Kirisli, Hortense
2010-01-01
We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...
Ground Motion Prediction Equations for the Central and Eastern United States
Seber, D.; Graizer, V.
2015-12-01
New ground motion prediction equations (GMPE) G15 model for the Central and Eastern United States (CEUS) is presented. It is based on the modular filter based approach developed by Graizer and Kalkan (2007, 2009) for active tectonic environment in the Western US (WUS). The G15 model is based on the NGA-East database for the horizontal peak ground acceleration and 5%-damped pseudo spectral acceleration RotD50 component (Goulet et al., 2014). In contrast to active tectonic environment the database for the CEUS is not sufficient for creating purely empirical GMPE covering the range of magnitudes and distances required for seismic hazard assessments. Recordings in NGA-East database are sparse and cover mostly range of Mindustry (Vs=2800 m/s). The number of model predictors is limited to a few measurable parameters: moment magnitude M, closest distance to fault rupture plane R, average shear-wave velocity in the upper 30 m of the geological profile VS30, and anelastic attenuation factor Q0. Incorporating anelastic attenuation Q0 as an input parameter allows adjustments based on the regional crustal properties. The model covers the range of magnitudes 4.010 Hz) and is within the range of other models for frequencies lower than 2.5 Hz
Nagasaka, Yosuke; Nozu, Atsushi
2017-02-01
The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This
Oglesby, David D.
2012-03-01
Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.
Singh, R. P.; Ahmad, R.
2015-12-01
A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.
Modeling repetitive motions using structured light.
Xu, Yi; Aliaga, Daniel G
2010-01-01
Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.
Olsen, Anna
2008-01-01
This thesis studies the response of steel moment-resisting frame buildings in simulated strong ground motions. I collect 37 simulations of crustal earthquakes in California. These ground motions are applied to nonlinear finite element models of four types of steel moment frame buildings: six- or twenty-stories with either a stiffer, higherstrength design or a more flexible, lower-strength design. I also consider the presence of fracture-prone welds in each design. Since these b...
Estimating Inland Ground Motions from Lake Turbidite Sequences, Northern Cascadia margin, USA.
Goldfinger, C.; Hausmann, R. B.; Black, B.; Romsos, C. G.; Beeson, J. W.; Galer, S.; Collins, T.
2016-12-01
Using cores collected from lakes in northern Oregon and Washington, we are attempting to estimate ground motions from plate boundary earthquakes at inland paleoseismic sites. Paleoseismic evidence in Cascadia comes largely from coastal and offshore sites, while population the main population centers of Seattle, Victoria, Vancouver and Portland are 100-180 km inland. Cores from Leland Lake on the Olympic Peninsula, Lake Sawyer, near Seattle, and Bull Run Lake, 65 km east of Portland contain sequences of event beds that are interpreted as internal lake turbidites. The number, timing based on 14C constrained age models, sequencing, and individual event characteristics correlated with physical properties and CT data are compatible with onshore and offshore paleoseismic records of plate boundary earthquakes. The likely correlative turbidite sequence at Bull Run is well-matched to the nearest offshore turbidite sequences at Hydrate Ridge and Oceanus Basin (see also Hausmann et al. this meeting). Similarly, the Washington lake sequences are well matched to the offshore Washington sequences (Goldfinger et al. 2016), with the likely inclusion of a single Seattle Fault earthquake 1000 cal BP. Bull Run Lake has several ashes, but otherwise, additional event beds related to crustal faulting or other events are not observed. Our strategy is to investigate lakes that have low sensitivity to subaquatic slope failures in order to explore the limits of stability. In this case, the minimum ground shaking required for slope failure will approach actual ground motions as stability increases. We mapped failure zones within the lakes, and collected shear vane measurements to estimate sediment cohesion. We then computed minimum ground motions for these sites. For Leland Lake, there are no mappable failures, indicating internal lake turbidites likely were generated by thin surface failures below mapping resolution. For Sawyer and Bull Run, the most stable failure sites require 0.2-0.3g
Application and API for Real-time Visualization of Ground-motions and Tsunami
Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.
2015-12-01
Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are
Dynamic Response and Ground-Motion Effects of Building Clusters During Large Earthquakes
Isbiliroglu, Y. D.; Taborda, R.; Bielak, J.
2012-12-01
The objective of this study is to analyze the response of building clusters during earthquakes, the effect that they have on the ground motion, and how individual buildings interact with the surrounding soil and with each other. We conduct a series of large-scale, physics-based simulations that synthesize the earthquake source and the response of entire building inventories. The configuration of the clusters, defined by the total number of buildings, their number of stories, dynamic properties, and spatial distribution and separation, is varied for each simulation. In order to perform these simulations efficiently while recurrently modifying these characteristics without redoing the entire "source to building structure" simulation every time, we use the Domain Reduction Method (DRM). The DRM is a modular two-step finite-element methodology for modeling wave propagation problems in regions with localized features. It allows one to store and reuse the background motion excitation of subdomains without loss of information. Buildings are included in the second step of the DRM. Each building is represented by a block model composed of additional finite-elements in full contact with the ground. These models are adjusted to emulate the general geometric and dynamic properties of real buildings. We conduct our study in the greater Los Angeles basin, using the main shock of the 1994 Northridge earthquake for frequencies up to 5Hz. In the first step of the DRM we use a domain of 82 km x 82 km x 41 km. Then, for the second step, we use a smaller sub-domain of 5.12 km x 5.12 km x 1.28 km, with the buildings. The results suggest that site-city interaction effects are more prominent for building clusters in soft-soil areas. These effects consist in changes in the amplitude of the ground motion and dynamic response of the buildings. The simulations are done using Hercules, the parallel octree-based finite-element earthquake simulator developed by the Quake Group at Carnegie
Impact of ground motion characterization on conservatism and variability in seismic risk estimates
Energy Technology Data Exchange (ETDEWEB)
Sewell, R.T.; Toro, G.R.; McGuire, R.K.
1996-07-01
This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.
Kalkan, Erol; ,
2012-01-01
Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.
Ju, Dianshu; Dan, Kazuo; Fujiwara, Hiroyuki; Morikawa, Nobuyuki
2016-04-01
We proposed a procedure of evaluating fault parameters of asperity models for predicting strong ground motions from inland earthquakes caused by long strike-slip faults. In order to obtain averaged dynamic stress drops, we adopted the formula obtained by dynamic fault rupturing simulations for surface faults of the length from 15 to 100 km, because the formula of the averaged static stress drops for circular cracks, commonly adopted in existing procedures, cannot be applied to surface faults or long faults. The averaged dynamic stress drops were estimated to be 3.4 MPa over the entire fault and 12.2 MPa on the asperities, from the data of 10 earthquakes in Japan and 13 earthquakes in other countries. The procedure has a significant feature that the average slip on the seismic faults longer than about 80 km is constant, about 300 cm. In order to validate our proposed procedure, we made a model for a 141 km long strike-slip fault by our proposed procedure for strike-slip faults, predicted ground motions, and showed that the resultant motions agreed well with the records of the 1999 Kocaeli, Turkey, earthquake (Mw 7.6) and with the peak ground accelerations and peak ground velocities by the GMPE of Si and Midorikawa (1999).
Ground motion observations of the South Napa earthquake (M6.0 August 24, 2014)
Baltay, A.
2014-12-01
The South Napa earthquake generated peak ground motions in excess of 50%g and 50 cm/s in Napa Valley and also along strike to the south, and was recorded at 17 stations within 20 km rupture distance (Rrup) of the finite fault plane, 115 stations within 50 km, and 246 within 100 km. We compare the densely recorded ground motions to existing ground motion prediction equations (GMPEs) to understand both the spatial distribution of ground-motion amplitudes and also the relative excitation and attenuation terms from the earthquake. Using the ground-motion data as reported by ShakeMap, we examine the peak ground acceleration (PGA) and velocity, as well as the pseudo-spectral acceleration (PSA) at 0.3, 1.0 and 3.0 seconds, adjusted empirically to a single site condition of 760 m/s. Overall, the ground motions on the north-south components are larger than those on the east-west, consistent with both the generally north-south strike of the fault and the rupture directivity. At the higher frequencies (PGA and PSA of 0.3 s), the close data are very consistent with the GMPEs, implying a median stress drop near 5 MPa. For the longer period data, the GMPEs underpredict the data at close stations. At all frequencies, the distance attenuation seems to be stronger than the GMPEs would predict, which could either be a station coverage bias, given that most of the stations are to the south of the epicenter, or may indicate that the attenuation structure in the Napa and delta region is stronger than the average attenuation in California, on which the GMPEs were built. The spatial plot of the ground motion residuals is positive to the north, in both Napa and Sonoma Valley, consistent with both the directivity and basin effect. More interestingly, perhaps, is that there is strong ground motion to the south, as well, in the along-strike direction, particularly for PSA at 1.0s. These strongly positive residuals align along an older, Quaternary fault structure associated with the Franklin
Directory of Open Access Journals (Sweden)
Chen Ling-kun
2014-01-01
Full Text Available Based on the Next Generation Attenuation (NGA project ground motion library, the finite element model of the high-speed railway vehicle-bridge system is established. The model was specifically developed for such system that is subjected to near-fault ground motions. In addition, it accounted for the influence of the rail irregularities. The vehicle-track-bridge (VTB element is presented to simulate the interaction between train and bridge, in which a train can be modeled as a series of sprung masses concentrated at the axle positions. For the short period railway bridge, the results from the case study demonstrate that directivity pulse effect tends to increase the seismic responses of the bridge compared with far-fault ground motions or nonpulse-like motions and the directivity pulse effect and high values of the vertical acceleration component can notably influence the hysteretic behaviour of piers.
Dutta, Sekhar Chandra; Roy, Rana; Das, Prithwish Kumar; Roy, Raghupati; Reddy, G. R.
2007-11-01
Structures may experience degradation in strength in the event of strong seismic shaking. A rational estimation of the reserve strength of the structures is often desired in the process of retrofitting or strengthening the same. To achieve this end, the present paper confirms the suitability of an existing hysteresis model in reproducing experimental load-displacement characteristics for reinforced concrete ( R/C) structural members. Attempt has also been made for rational and realistic estimation of the degradation parameter required for the model in absence of any case-specific calibrated value. Subsequently, post-earthquake behaviour of the low-rise symmetric structures is assessed with and without accounting for the effect of soil-structure interaction. Such response for low-rise multistorey systems with regular asymmetry has also been investigated in the sample form. To develop insight into the behaviour of asymmetric (uni-directional and bi-directional) systems, detailed investigation has been made on idealized single-storey asymmetric systems under simulated and real ground motions with different phase difference or time lag variation. This suggests a serious implication of occurrence of peaks of the ground motions on the seismic performance of bi-directionally eccentric structures and indicates a relatively higher torsional vulnerability of bi-directionally eccentric system compared to equivalent uni-directional counterpart. The results along with the endeavour toward measuring the ductility capacity for R/C structural members based on the systematic observation and interpretation of the available experimental results, made in the paper, may prove useful in evaluating the seismic safety of low-rise R/C structures.
Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion
Hirata, N.; Sato, H.; Koketsu, K.; Umeda, Y.; Iwata, T.; Kasahara, K.
2003-12-01
Introduction: After the 1995 Kobe earthquake, the Japanese government increased its focus and funding of earthquake hazards evaluation, studies of man-made structures integrity, and emergency response planning in the major urban centers. A new agency, the Ministry of Education, Science, Sports and Culture (MEXT) has started a five-year program titled as Special Project for Earthquake Disaster Mitigation in Urban Areas (abbreviated to Dai-dai-toku in Japanese) since 2002. The project includes four programs: I. Regional characterization of the crust in metropolitan areas for prediction of strong ground motion. II. Significant improvement of seismic performance of structure. III. Advanced disaster management system. IV. Investigation of earthquake disaster mitigation research results. We will present the results from the first program conducted in 2002 and 2003. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion: A long-term goal is to produce map of reliable estimations of strong ground motion. This requires accurate determination of ground motion response, which includes a source process, an effect of propagation path, and near surface response. The new five-year project was aimed to characterize the "source" and "propagation path" in the Kanto (Tokyo) region and Kinki (Osaka) region. The 1923 Kanto Earthquake is one of the important targets to be addressed in the project. The proximity of the Pacific and Philippine Sea subducting plates requires study of the relationship between earthquakes and regional tectonics. This project focuses on identification and geometry of: 1) Source faults, 2) Subducting plates and mega-thrust faults, 3) Crustal structure, 4) Seismogenic zone, 5) Sedimentary basins, 6) 3D velocity properties We have conducted a series of seismic reflection and refraction experiment in the Kanto region. In 2002 we have completed to deploy seismic profiling lines in the Boso peninsula (112 km) and the
LCD motion blur: modeling, analysis, and algorithm.
Chan, Stanley H; Nguyen, Truong Q
2011-08-01
Liquid crystal display (LCD) devices are well known for their slow responses due to the physical limitations of liquid crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an efficient deblurring algorithm are needed. However, existing LCD motion blur models are insufficient to reflect the limitation of human-eye-tracking system. Also, the spatiotemporal equivalence in LCD motion blur models has not been proven directly in the discrete 2-D spatial domain, although it is widely used. There are three main contributions of this paper: modeling, analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed. The proposed algorithm solves an l(1)-norm regularized least-squares minimization problem using a subgradient projection method. Numerical results show that the proposed algorithm gives higher peak SNR, lower temporal error, and lower spatial error than motion-compensated inverse filtering and Lucy-Richardson deconvolution algorithm, which are two state-of-the-art LCD deblurring algorithms.
Site dependence of far-source ground motions during the Wenchuan earthquake
Institute of Scientific and Technical Information of China (English)
Longjun Xu; Haiying Yu; Wenhai Cao; Lili Xie
2009-01-01
This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes 1 to III. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.
Graves, R.W.; Wald, D.J.
2004-01-01
During the MW 7.1 Hector Mine earthquake, peak ground velocities recorded at sites in the central San Bernardino basin region were up to 2 times larger and had significantly longer durations of strong shaking than sites just outside the basin. To better understand the effects of 3D structure on the long-period ground-motion response in this region, we have performed finite-difference simulations for this earthquake. The simulations are numerically accurate for periods of 2 sec and longer and incorporate the detailed spatial and temporal heterogeneity of source rupture, as well as complex 3D basin structure. Here, we analyze three models of the San Bernardino basin: model A (with structural constraints from gravity and seismic reflection data), model F (water well and seismic refraction data), and the Southern California Earthquake Center version 3 model (hydrologic and seismic refraction data). Models A and F are characterized by a gradual increase in sediment thickness toward the south with an abrupt step-up in the basement surface across the San Jacinto fault. The basin structure in the SCEC version 3 model has a nearly uniform sediment thickness of 1 km with little basement topography along the San Jacinto fault. In models A and F, we impose a layered velocity structure within the sediments based on the seismic refraction data and an assumed depth-dependent Vp/Vs ratio. Sediment velocities within the SCEC version 3 model are given by a smoothly varying rule-based function that is calibrated to the seismic refraction measurements. Due to computational limitations, the minimum shear-wave velocity is fixed at 600 m/sec in all of the models. Ground-motion simulations for both models A and F provide a reasonably good match to the amplitude and waveform characteristics of the recorded motions. In these models, surface waves are generated as energy enters the basin through the gradually sloping northern margin. Due to the basement step along the San Jacinto fault, the
Institute of Scientific and Technical Information of China (English)
Diao Ting; Chen Shijun; Jiang Zaofeng
2011-01-01
In this paper, the amplification factor （ks ） of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil layers collected from 358 boreholes of class Ⅱ sites and 140 boreholes of class Ⅲ site. From the results, one can conclude that： （1） The scatter plot of ks generally obeys a normal distribution ; （2） ks decreases with the increase of the strength of input ground motion, which is more apparent in Class Ⅲ site than in class lI site; （3） for class Ⅱ site, with the increase of depth of the bedrock interface where ground motion inputs, ks increases gradually until to a stable value when the depth reaches up to approximately 20 meters or larger. Yet, for class Ⅲ site, ks is insensitive to the depth; （4） the average of ks for class Ⅱ site is 1.47, slightly larger than that used in the Seismic Ground Motion Parameters Zonation Map of China （ GB 18306-2001 ）. Also, ks in class Ⅱ and Ⅲ sites at different levels of peak ground acceleration over Shandong Province is preliminarily discussed in the paper.
Artificial ground motion compatible with specified peak velocity and target spectrum
Institute of Scientific and Technical Information of China (English)
ZHAO Feng-xin; ZHANG Yu-shan
2006-01-01
In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initial acceleration time history a(0)g (t), which satisfies the prescribed peak ground acceleration, the target spectral acceleration ST(ω,ζ ), and the specified intensity envelope, is generated by the traditional method that generates the response-spectrum-compatible artificial ground motion by modifying the Fourier amplitude spectrum in the frequency domain; secondly, a(0)g (t) is further modulated by superimposing narrow-band time histories upon it in the time domain to make its peak velocity, approach the target peak ground velocity, and at the same time to improve its fitting precision to the target spectrum. Numerical examples show that this algorithm boasts high calculation precisions.
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L; Ioannidou, E; Voulgaris, N; Kalogeras, I; Savy, J; Foxall, W; Stavrakakis, G
2004-08-06
We test a methodology to predict the range of ground-motion hazard for a fixed magnitude earthquake along a specific fault or within a specific source volume, and we demonstrate how to incorporate this into probabilistic seismic hazard analyses (PSHA). We modeled ground motion with empirical Green's functions. We tested our methodology with the 7 September 1999, Mw=6.0 Athens earthquake, we: (1) developed constraints on rupture parameters based on prior knowledge of earthquake rupture processes and sources in the region; (2) generated impulsive point shear source empirical Green's functions by deconvolving out the source contribution of M < 4.0 aftershocks; (3) used aftershocks that occurred throughout the area and not necessarily along the fault to be modeled; (4) ran a sufficient number of scenario earthquakes to span the full variability of ground motion possible; (5) found that our distribution of synthesized ground motions span what actually occurred and their distribution is realistically narrow; (6) determined that one of our source models generates records that match observed time histories well; (7) found that certain combinations of rupture parameters produced ''extreme'' ground motions at some stations; (8) identified that the ''best fitting'' rupture models occurred in the vicinity of 38.05{sup o} N 23.60{sup o} W with center of rupture near 12 km, and near unilateral rupture towards the areas of high damage, and this is consistent with independent investigations; and (9) synthesized strong motion records in high damage areas for which records from the earthquake were not recorded. We then developed a demonstration PSHA for a source region near Athens utilizing synthesized ground motion rather that traditional attenuation. We synthesized 500 earthquakes distributed throughout the source zone likely to have Mw=6.0 earthquakes near Athens. We assumed an average return period of 1000 years for this
Okada, Yoshihisa; Ogawa, Yoshimi
There are many bridges in lowland areas in East Tokyo and soft ground in Tokyo Bay Coast. A bare possibility is that these structures might suffer disastrous damage due to liquefaction when the area is hit by a large earthquake. In this paper, interaction spring and damping model considering a process of liquefaction and relationship between natural period of ground and pier are proposed, and it is verified by using the dynamic centrifugal model test in level 2 earthquake motion. As the result, it is verified that the response of pier and footing behaviors of the test and the analysis can be well corresponded, the interaction spring and damping model considering the process of liquefaction and the relationship between natural period of ground and pier is suitable for the purpose.
Model-Based Motion Tracking of Infants
DEFF Research Database (Denmark)
Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo;
2014-01-01
Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...... that resembles the body surface of an infant, where the model is based on simple geometric shapes and a hierarchical skeleton model....
Path durations for use in the stochastic‐method simulation of ground motions
Boore, David M.; Thompson, Eric M.
2014-01-01
The stochastic method of ground‐motion simulation assumes that the energy in a target spectrum is spread over a duration DT. DT is generally decomposed into the duration due to source effects (DS) and to path effects (DP). For the most commonly used source, seismological theory directly relates DS to the source corner frequency, accounting for the magnitude scaling of DT. In contrast, DP is related to propagation effects that are more difficult to represent by analytic equations based on the physics of the process. We are primarily motivated to revisit DT because the function currently employed by many implementations of the stochastic method for active tectonic regions underpredicts observed durations, leading to an overprediction of ground motions for a given target spectrum. Further, there is some inconsistency in the literature regarding which empirical duration corresponds to DT. Thus, we begin by clarifying the relationship between empirical durations and DT as used in the first author’s implementation of the stochastic method, and then we develop a new DP relationship. The new DP function gives significantly longer durations than in the previous DP function, but the relative contribution of DP to DT still diminishes with increasing magnitude. Thus, this correction is more important for small events or subfaults of larger events modeled with the stochastic finite‐fault method.
Lasocki, Stanisław
2013-10-01
Ground motion database from the region of Żelazny Most tailings pond, the largest in Europe ore-flotation waste repository, is used to identify ground motion prediction equations (GMPE-s) for peak horizontal and peak vertical acceleration. A GMPE model including both geometrical spreading and anelastic damping terms cannot be correctly identified and the model with only spreading term is accepted. The analysis of variance of this model's residuals with station location as grouping variable indicates that station locations contribute significantly to the observed ground motion variability. Therefore, a site specific GMPE model with relative site amplifications is assessed. Despite short distances among stations, the amplification considerably vary from point to point, up to 1.8 times for the horizontal and 3.5 times for the vertical peak amplitude. The model including site effects enhances GMPE-s fit to observations, explains more than 60% dependent variables variability and correctly accounts for site effects.
Prediction of ground motion parameters for the volcanic area of Mount Etna
Tusa, Giuseppina; Langer, Horst
2016-01-01
Ground motion prediction equations (GMPEs) have been derived for peak ground acceleration (PGA), velocity (PGV), and 5 % damped spectral acceleration (PSA) at frequencies between 0.1 and 10 Hz for the volcanic area of Mt. Etna. The dataset consists of 91 earthquakes with epicentral distances between 0.5 and 100 km. Given the specific characteristics of the area, we divided our data set into two groups: shallow events (SE, focal depth 5 km). The range of magnitude covered by the SE and the DE is 3.0 ≤ M L ≤ 4.3 and 3.0 ≤ M L ≤ 4.8, respectively. Signals of DE typically have more high frequencies than those of SE. These differences are clearly reflected in the empirical GMPEs of the two event groups. Empirical GMPEs were estimated considering several functional forms: Sabetta and Pugliese (Bull Seism Soc Am 77:1491-1513, 1987) (SP87), Ambraseys et al. (Earth Eng Struct Dyn 25:371-400, 1996) (AMB96), and Boore and Atkinson (Earth Spectra 24:99-138, 2008) (BA2008). From ANOVA, we learn that most of the errors in our GMPEs can be attributed to unmodeled site effects, whereas errors related to event parameters are limited. For DE, BA2008 outperforms the simpler models SP87 or AMB96. For SE, the simple SP87 is preferable considering the Bayesian Information Criterion since it proves more stable with respect to confidence and gives very similar or even lower prediction errors during cross-validation than the BA2008 model. We compared our results to relationships derived for Italy (ITA10, Bindi et al. Bull Earth Eng 99:2471-2488, 2011). For SE, the main differences are observed for distances greater than about 5 km for both horizontal and vertical PGAs. Conversely, for DE the ITA10 heavily overestimates the peak ground parameters for short distances.
DEFF Research Database (Denmark)
Konakli, Katerina; Der Kiureghian, Armen
2012-01-01
A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....... In the first, simulated motions are consistent with the power spectral densities of a segmented recorded motion and are characterized by uniform variability at all locations. Uniform variability in the array of ground motions is essential when synthetic motions are used for statistical analysis of the response...
Seismic fragility analysis of a CANDU containment structure for near-fault ground motions
Energy Technology Data Exchange (ETDEWEB)
Choi, In Kil; Choun, Young Sun; Seo, Jeong Moon; Ahn, Seong Moon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2005-07-01
The R. G. 1.60 spectrum used for the seismic design of Korean nuclear power plants provides a generally conservative design basis due to its broadband nature. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near these faults. The probability based scenario earthquakes were identified as near-field earthquakes. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. It is necessary to estimate the near-fault ground motion effects on the nuclear power plant structures and components located near the faults. In this study, the seismic fragility analysis of a CANDU containment structure was performed based on the results of nonlinear dynamic time-history analyses.
Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath
2016-06-23
The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.
Effects of a Group of High-Rise Structures on Ground Motions under Seismic Excitation
Directory of Open Access Journals (Sweden)
Qing-jun Chen
2015-01-01
Full Text Available A three-dimensional simulation was created to determine the seismic performance of coupled systems with a group of up to 100 pile-high-rise structures resting on soil layers using system modal, harmonic, and time domain analysis. The results demonstrated that the existence of a structural group mitigates the structural responses with respect to the single-structure-soil interaction (SSI and results in significantly nonuniform ground seismic motions. Due to the influence of a structural group, adjacent structures can exhibit fully alternating mechanical behavior, and buildings in the urban fringe are subjected to stronger shaking than downtown buildings. The overall trend of the influence of structural groups is that ground motions are lessened inside an urban area, and ground motions at the locations between structures differ from those at the locations of the structures. Moreover, the effective distance of a structural group on ground motions is associated with the urban width. Less distance between structures enhances the interaction effect. In addition, the soil properties can greatly influence the system’s seismic responses and can even completely change the effect trends. The results in our paper are consistent with the phenomena observed in the Mexico City earthquake and the 1976 earthquake in Friuli, Italy.
Chen, H.; Kuo, L.; Yu, S.; Liu, C.
2007-12-01
Two sequence earthquakes (ML=6.96 and 6.99) occurred in southern Taiwan off Pingtung, and the main shocks are only at an interval of 8 minutes. These earthquakes caused more than ten centimeters of ground motion, and a few centimeters of coseismic deformation, respectively. All of these displacements have been recorded by the Continuously Observation Recording GPS Stations (CORS), and estimated by two different post-processing methods, namely the kinematic positioning and the daily solution algorithm. Precise evaluation of the capturing instantaneous ground motion and coseismic deformation at a level of just millimeters requires rigorous computational procedures. In this paper, a set of high sampling rate (1Hz) data from the CORS has been used to study simultaneous ground motion during the Pingtung earthquakes. A completely regular algorithm to estimate the crustal deformation in the Taiwan area has been applied to acquire coseismic deformation as a result of the Pingtung earthquakes. Applying beyond 2 weeks of data and 50 stations of the CORS, the coseismic deformation can be precisely estimated. Since the instantaneous ground motion can be computed by continuous GPS observations and the coseismic deformation can be acquired precisely and integrated with seismic data, these results can assist the study of earthquake geodesy.
Ground Motions in the Near Field of the November 3, 2002 Denali Fault, Alaska, Earthquake
Ellsworth, W. L.; Celebi, M.; Evans, J. R.; Jensen, E. G.; Metz, M. C.; Nyman, D. J.; Roddick, J. W.; Stephens, C. D.; Spudich, P. A.
2003-12-01
A free-field strong-motion recording of the Denali Fault, Alaska, Earthquake was obtained by Alyeska Pipeline Service Company just 3 km from where the Denali Fault slipped over 5 m horizontally and 1 m vertically in the earthquake. The instrument was part of the monitoring and control system for the Trans-Alaska Pipeline and was located at Pump Station 10, approximately 84 km east of the epicenter. After correction for a 0.1 Hz high-pass filter, we recover a fault-parallel permanent displacement of the instrument of 2.3 m. Dynamic ground motions during the earthquake have relatively low acceleration (0.39 g) and very high velocity (1.86 m/s). The most intense motions occurred during a 1.5 s interval generated by the propagation of the rupture front past the site. Growth of the fault-parallel displacement is nearly monotonic, with over half of the permanent displacement occurring during this 1.5 s interval. Preliminary modeling suggests that the rupture velocity exceeded the shear wave velocity near the instrument, and that the peak slip velocity on the fault exceeds several m/s. The low accelerations and high velocities observed near the fault in this earthquake agree with observations from other recent large-magnitude earthquakes. Following the earthquake, the permanent displacement of the support structure for the pipeline and other geodetic reference points was determined by GPS survey along more than 50 miles of the pipeline route. These permanent displacement data display a clear signature of elastic rebound, with displacement amplitudes decreasing with increasing distance from the fault trace. The best-fitting model consisting of a uniform dislocation in an elastic half-space has 6 m of right-lateral fault slip from the surface to a depth of 11 km. This model predicts 2.4 m of displacement at Pump Station 10, in good agreement with the strong motion displacement measurement. At the fault crossing, additional displacements were determined from orthographically
Imperatori, W.
2015-07-28
The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken
Directory of Open Access Journals (Sweden)
Kou-Cheng Chen
2014-01-01
Full Text Available Strong-motion seismograms from the 11 February, 2014 Tatunshan earthquake were recorded at stations around the source area. These recordings were used to analyze the strong-motion characteristics in the area. The largest peak ground acceleration (PGA values of 100.7, 93.4, and 66.6 cm sec-2 in the vertical, EW, and NS directions, respectively, were recorded at station TAP056, about 4.9 km to the northwest of the epicenter. The PGA decays fast with distance, indicating high attenuation in the Tatun volcanic area. The PGA ratio of vertical to horizontal ground motions decreases with increasing epicenter distance. The PGA values in the EW component are larger than those in the NS component. This might be associated with the focal mechanism of the earthquake. The spectral accelerations decrease rapidly with increasing period.
Nath, Sankar Kumar
2013-12-01
We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.
Ground motions on rocky, cliffed, and sandy shorelines generated by ocean waves
Young, Adam P.; Guza, Robert T.; Dickson, Mark E.; O'Reilly, William C.; Flick, Reinhard E.
2013-12-01
We compare ground motions observed within about 100 m of the waterline on eight sites located on shorelines with different morphologies (rock slope, cliff, and sand beaches). At all sites, local ocean waves generated ground motions in the frequency band 0.01-40 Hz. Between about 0.01 and 0.1 Hz, foreshore loading and gravitational attraction from ocean swell and infragravity waves drive coherent, in-phase ground flexing motions mostly oriented cross-shore that decay inland. At higher frequencies between 0.5 and 40 Hz, breaking ocean waves and wave-rock impacts cause ground shaking. Overall, seismic spectral shapes were generally consistent across shoreline sites and usually within a few orders of magnitude despite the diverse range of settings. However, specific site response varied and was influenced by a combination of tide level, incident wave energy, site morphology, ground composition, and signal decay. Flexing and shaking increased with incident wave energy and was often tidally modulated, consistent with a local generation source. Flexing magnitudes were usually larger than shaking, and flexing displacements of several mm were observed during relatively large incident wave conditions (Hs 4-5 m). Comparison with traffic noise and earthquakes illustrate the relative significance of local ocean-generated signals in coastal seismic data. Seismic observations are not a simple proxy for wave-cliff interaction.
The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico
Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.
2014-12-01
The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network
Zafarani, H.; Rahpeyma, S.; Mousavi, M.
2016-10-01
Ground-motion prediction equations (GMPEs) are essential tools in seismic hazard studies to estimate ground motions generated by potential seismic sources. Global GMPEs which are based on well-compiled global strong-motion databanks, have certain advantages over local GMPEs, including more sophisticated parameters in terms of distance, faulting style, and site classification but cannot guarantee the local/region-specific propagation characteristics of shear wave (e.g., geometric spreading behavior, quality factor) for different seismic regions at larger distances (beyond about 80 km). Here, strong-motion records of northern Iran have been used to estimate the propagation characteristics of shear wave and determine the region-specific adjustment parameters for three of the NGA-West2 GMPEs to be applicable in northern Iran. The dataset consists of 260 three-component records from 28 earthquakes, recorded at 139 stations, with moment magnitudes between 4.9 and 7.4, horizontal distance to the surface projection of the rupture (R JB) less than 200 km, and average shear-wave velocity over the top 30 m of the subsurface (V S30) between 155 and 1500 m/s. The paper also presents the ranking results for three of the NGA-West2 GMPEs against strong motions recorded in northern Iran, before and after adjustment for region-dependent attenuation characteristics. The ranking is based on the likelihood and log-likelihood methods (LH and LLH) proposed by Scherbaum et al. (Bull Seismol Soc Am 94: 2164-2185, 2004, Bull Seismol Soc Am 99, 3234-3247, 2009, respectively), the Nash-Sutcliffe model efficiency coefficient (Nash and Sutcliffe, J Hydrol 10:282-290, 1970), and the EDR method of Kale and Akkar (Bull Seismol Soc Am 103:1069-1084, 2012). The best-fitting models over the whole frequency range are the ASK14 and BSSA14 models. Taking into account that the models' performances were boosted after applying the adjustment factors, at least moderate regional variation of ground motions
Three-dimensional ground-motion simulations of earthquakes for the Hanford area, Washington
Frankel, Arthur; Thorne, Paul; Rohay, Alan
2014-01-01
This report describes the results of ground-motion simulations of earthquakes using three-dimensional (3D) and one-dimensional (1D) crustal models conducted for the probabilistic seismic hazard assessment (PSHA) of the Hanford facility, Washington, under the Senior Seismic Hazard Analysis Committee (SSHAC) guidelines. The first portion of this report demonstrates that the 3D seismic velocity model for the area produces synthetic seismograms with characteristics (spectral response values, duration) that better match those of the observed recordings of local earthquakes, compared to a 1D model with horizontal layers. The second part of the report compares the response spectra of synthetics from 3D and 1D models for moment magnitude (M) 6.6–6.8 earthquakes on three nearby faults and for a dipping plane wave source meant to approximate regional S-waves from a Cascadia great earthquake. The 1D models are specific to each site used for the PSHA. The use of the 3D model produces spectral response accelerations at periods of 0.5–2.0 seconds as much as a factor of 4.5 greater than those from the 1D models for the crustal fault sources. The spectral accelerations of the 3D synthetics for the Cascadia plane-wave source are as much as a factor of 9 greater than those from the 1D models. The differences between the spectral accelerations for the 3D and 1D models are most pronounced for sites with thicker supra-basalt sediments and for stations with earthquakes on the Rattlesnake Hills fault and for the Cascadia plane-wave source.
Extreme Ground-Motion Rockfall Deposits on the Nevada Test Site
Whitney, J. W.; Buckingham, S. E.; Magner, J. E.; Finkel, R. C.; Brune, J. N.; von Seggern, D.; Honke, J. S.
2007-12-01
In order to detect the evidence of extreme ground motion in the past, we have begun to catalog geomorphic characteristics that distinguish slope deposits strongly influenced by extreme ground motion from deposits primarily influenced by climate processes. Underground nuclear explosions (UNEs) of yields between 200 kilotons and 1.3 megatons were conducted under Pahute Mesa at the Nevada Test site from 1962 to 1992. The primary surface effects from these tests were surface cracks, triggered earthquakes, offsets on pre-existing faults, and changes in land surface topography. Rockfall and rock spall were observed along cliffs after a few nuclear tests; however, few observations of accumulations of shattered rock were documented. A large volume of rockfall located along a 1.5-km¬-long cliff of welded ash-flow tuff resulted from extreme ground motions from two nearby UNEs. In 1968 UNE Rickey released maximum ground motions of 500 cm/s peak ground velocity (PGV) at the closest cliff face and PGV decreased to about 300 cm/s at the north end of the cliff. Large boulders with 1-3-m average diameters were shaken loose from fracture planes and cooling joints to form a stack of jumbled boulders at the base of the cliff. Very few large boulders rolled to the base of the hillslope. Subsequently, in 1976, UNE Pool induced 300-350 cm/s PGV along the same cliff. A significant volume of rock, also released along fractures and joints, was added to the coarse boulder colluvium shaken loose in 1968. Ground motion from Pool also rearranged the hillslope boulders from UNE Rickey, but did not cause many boulders to roll downslope. Extreme ground motions from these two UNEs resulted in 1.5-3.0 m of physical erosion to the cliff face. Rockfall from less welded ash-flow tuff units situated above and below the cliff produced significantly less boulder colluvium. Our observations indicate that boulder size and rockfall volume from a cliff or ridge crest due to extreme ground motion are
Bonì, R.; Cigna, F.; Bricker, S.; Meisina, C.; McCormack, H.
2016-09-01
In this paper, Persistent Scatterer Interferometry was applied to ERS-1/2 and ENVISAT satellite data covering 1992-2000 and 2002-2010 respectively, to analyse the relationship between ground motion and hydraulic head changes in the London Basin, United Kingdom. The integration of observed groundwater levels provided by the Environment Agency and satellite-derived displacement time series allowed the estimation of the spatio-temporal variations of the Chalk aquifer storage coefficient and compressibility over an area of ∼1360 km2. The average storage coefficient of the aquifer reaches values of 1 × 10-3 and the estimated average aquifer compressibility is 7.7 × 10-10 Pa-1 and 1.2 × 10-9 Pa-1 for the periods 1992-2000 and 2002-2010, respectively. Derived storage coefficient values appear to be correlated with the hydrogeological setting, where confined by the London Clay the storage coefficient is typically an order of magnitude lower than where the chalk is overlain by the Lambeth Group. PSI-derived storage coefficient estimates agree with the values obtained from pumping tests in the same area. A simplified one-dimensional model is applied to simulate the ground motion response to hydraulic heads changes at nine piezometers. The comparison between simulated and satellite-observed ground motion changes reveals good agreement, with errors ranging between 1.4 and 6.9 mm, and being 3.2 mm on average.
Characteristics of the strong ground motion from the 24th August 2016 Amatrice earthquake
Directory of Open Access Journals (Sweden)
Marta Pischiutta
2016-12-01
Full Text Available The 2016 August 24 Amatrice earthquake occurred at 03:36 local time in central Apennines Italy with an epicentre at 43.36°E, 38.76°N, Istituto Nazionale di Geofisica e Vulcanologia (INGV, few kilometers north of the city of Amatrice. The earthquake ruptured a North-West (NW–South-East (SE oriented normal fault dipping toward the South-West (SW (Scognamiglio et al., 2016. High values of peak ground acceleration (~0.45 g were observed close to Amatrice (3 stations being few kilometer distances from the fault. The present study presents an overview of the main features of the seismic ground shaking during the Amatrice earthquake. We analyze the ground motion characteristics of the main shock in terms of peak ground acceleration (PGA, peak ground velocity (PGV and spectral accelerations (SA, 5 per cent of critical damping. In order to understand the characteristics of the ground motions induced by Amatrice earthquake, we also study the source-related effects relative to the fault rupture directivity.
Running On-Demand Strong Ground Motion Simulations with the Second-Generation Broadband Platform
Callaghan, S.; Maechling, P. J.; Graves, R. W.; Somerville, P. G.; Collins, N.; Olsen, K. B.; Imperatori, W.; Jones, M.; Archuleta, R. J.; Schmedes, J.; Jordan, T. H.; Broadband Platform Working Group
2010-12-01
We have developed the second-generation Southern California Earthquake Center (SCEC) Broadband Platform by integrating scientific modeling codes into a system capable of computing broadband seismograms (0-10 Hz) for historical and scenario earthquakes in California. The SCEC Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment (SCEC/CME) software development group. SCEC scientific groups have contributed software modules to the Broadband Platform including rupture generation, low-frequency deterministic seismogram synthesis, high-frequency stochastic seismogram synthesis, and non-linear site effects. These complex scientific codes have been integrated into a system that supports easy on-demand computation of broadband seismograms. The SCEC Broadband Platform is designed to be used by both scientific and engineering researchers familiar with ground motion simulations. Users may calculate broadband seismograms for both historical earthquakes (validation events including Northridge, Loma Prieta, and Landers) and user-defined earthquakes. Users may select among various codebases for rupture generation, low-frequency synthesis, high-frequency synthesis, and incorporation of site effects, with the option of running a goodness-of-fit comparison against observed or simulated seismograms. The platform produces a variety of data products, including broadband seismograms, rupture visualizations, and goodness-of-fit plots. The Broadband Platform was implemented using software development best practices that support software accuracy, reliability, and ease of use, including version control, user documentation, acceptance tests, and formal software releases. Users can install the platform on their own machine, verify that it is installed correctly, and run their own simulations on demand. The Broadband Platform enables users to run complex ground motion modeling codes without
Institute of Scientific and Technical Information of China (English)
高广运; 宋健
2014-01-01
基于小波分析方法，从NGA数据库的3551条地震记录中选取189条速度脉冲地震动，地震动均转换成发生最强脉冲的方向。基于 Newmark 方法，分析了近断层速度脉冲地震动作用引起的边坡永久位移值。结果表明：近断层速度脉冲地震动对边坡产生特殊的破坏作用，表现在滑动位移值大、滑动体破坏力强等方面；边坡永久位移值与速度脉冲地震动的峰值速度具有高度相关性，位移值较大时尤为明显。建立了基于单变量形式的峰值速度及双变量形式的峰值速度、峰值加速度两种边坡永久位移预测模型，模型简单实用，与回归数据具有很好的相关性，前者更适用于预测对实际工程影响较大的永久位移值，且离散性较小。提出的预测模型为考虑近断层地震动速度脉冲特性影响的边坡永久位移值的概率地震灾害分析提供了基础。%189 ground motions from 3 551 recordings in the next generation attenuation (NGA) database are classified as pulse-like ground motions based on wavelet analysis; and all ground motions are rotated to orientations of the strongest observed pulse. Newmark method is used to calculate the permanent displacement of slopes induced by near-fault pulse-like ground motions;and the effects of velocity pulse-like characteristics on the slope permanent displacements are studied. The analyses indicate that the near-fault pulse-like ground motion has a significant effect on the damage of slopes, resulting in strong potential damage of permanent block and larger permanent displacement. It is shown that permanent displacement has a close relationship with the peak ground velocity; especially for the case of relatively large displacement. Two empirical predictive models for permanent displacements are developed by using the scalar intensity measure of peak ground velocity and vector intensity measures of peak ground velocity and peak ground
Hybrid Simulations of the Broadband Ground Motions for the 2008 MS8.0 Wenchuan, China, Earthquake
Yu, X.; Zhang, W.
2012-12-01
The Ms8.0 Wenchuan earthquake occurred on 12 May 2008 at 14:28 Beijing Time. It is the largest event happened in the mainland of China since the 1976, Mw7.6, Tangshan earthquake. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and "quake lakes" which formed by landslide-induced reservoirs. These resulted in tremendous losses of life and property. Casualties numbered more than 80,000 people, and there were major economic losses. However, this earthquake is the first Ms 8 intraplate earthquake with good close fault strong motion coverage. Over four hundred strong motion stations of the National Strong Motion Observation Network System (NSMONS) recorded the mainshock. Twelve of them located within 20 km of the fault traces and another 33 stations located within 100 km. These observations, accompanying with the hundreds of GPS vectors and multiple ALOS INSAR images, provide an unprecedented opportunity to study the rupture process of such a great intraplate earthquake. In this study, we calculate broadband near-field ground motion synthetic waveforms of this great earthquake using a hybrid broadband ground-motion simulation methodology, which combines a deterministic approach at low frequencies (f Green's function calculation approach at high frequency ( ~ 10.0 Hz). The fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time that were obtained by an inversion kinematic source model. At the same time, based on the aftershock data, we analyze the site effects for the near-field stations. Frequency-dependent site-amplification values for each station are calculated using genetic algorithms. For the calculation of the synthetic waveforms, at first, we carry out simulations using the hybrid methodology for the frequency up to 10.0 Hz. Then, we consider for the soil site simulations
Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico
2016-04-01
It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform
Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion
Borcherdt, Roger D.
1994-01-01
Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits
Ground ice and hydrothermal ground motions on aufeis plots of river valleys
Directory of Open Access Journals (Sweden)
V. R. Alekseev
2015-01-01
Full Text Available Localized groundwater outflow and layered freezing of them in forms of large ice clusters on the surface creates specific conditions for energy and mass exchange in the «atmosphere–soil–lithosphere» system. In winter, the soil temperature profile is essentially deformed due to heat emission by the aufeis layer of water at its freezing that forms a specific thermocline layer. Deformation of the temperature profile, gradually decreasing, moves down the cross-section and disappearing at the interface between frozen and thawed rocks. Magnitude and number of the temperature deviations from a «normal» state depends on the heat storage of the aufeis-forming waters and on the number of outflows at a given point. The thermocline formation changes conditions of freezing for underlying ground layers together with mechanism of ice saturation of them, and that results in formation of two-layer ice-ground complexes (IGC which differ drastically from cryogenic features in adjacent parts of the valley. Analysis of genetic characteristics and relation of components of the surface and subsurface layers allowed identification of seven types of the aufeis IGC: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressureinjection, and fissure-vein. Yearly formation and destruction of aufeises and subsurface ices is accompanied by a sequence of particularly hazardous geodynamical phenomena, among which the most important are winter flooding of territories, layered freezing of water, ground heaving, thermokarst, and thermoerosion. Combination of these processes may cause a rapid (often unexpected reconfiguration of channels of both surface and subsurface runoff, abrupt uplifts and subsidences of the surface, and decompaction and «shaking-up» of seasonally thawing and seasonally freezing rocks, which may create exceptionally unfavorable conditions for construction and operation of engineering structures. Aufeis plots
Efficient sympathetic motional ground-state cooling of a molecular ion
Wan, Yong; Wolf, Fabian; Schmidt, Piet O
2015-01-01
Cold molecular ions are promising candidates in various fields ranging from precision spectroscopy and test of fundamental physics to ultra-cold chemistry. Control of internal and external degrees of freedom is a prerequisite for many of these applications. Motional ground state cooling represents the starting point for quantum logic-assisted internal state preparation, detection, and spectroscopy protocols. Robust and fast cooling is crucial to maximize the fraction of time available for the actual experiment. We optimize the cooling rate of ground state cooling schemes for single $^{25}\\mathrm{Mg}^{+}$ ions and sympathetic ground state cooling of $^{24}\\mathrm{MgH}^{+}$. In particular, we show that robust cooling is achieved by combining pulsed Raman sideband cooling with continuous quench cooling. Furthermore, we experimentally demonstrate an efficient strategy for ground state cooling outside the Lamb-Dicke regime.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients ρ. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.
Cramer, C. H.; Bhattacharya, S. N.; Kumar, A.
2002-12-01
It has been suggested that the Mw7.7 2001 Bhuj, India earthquake occurred in a stable continental region with ground-motion attenuation properties similar to eastern North America (ENA). No strong motion recordings for M7 or greater earthquakes have been recorded in ENA, so, if the two regions share similar properties, then observations from the Bhuj earthquake provide important information for hazard assessments in ENA as well as India. This thesis can be tested using seismic data for the Bhuj mainshock. The Indian Meteorological Department recorded accelerograph and broadband seismograph data at distances of 500 to 1800 km. Accelerograph and engineering seismoscope data were recorded at distances of 40 to 1100 km by the Department of Earthquake Engineering at the Indian Institute of Technology, Roorkee. We have processed the accelerograph and broadband data for response spectral accelerations and corrected them to a common NEHRP site class using Joyner and Boore (2000) site factors. The geologic conditions at each recording site were determined using the geologic map of India and categorized as Quaternary sediments, Tertiary sediments, or hard rock. Comparisons were then made to available ENA ground-motion attenuation relations. For peak ground acceleration (PGA) and 1.0 s spectral acceleration (Sa), the geologically-corrected Bhuj data generally fall among the ENA ground-motion attenuation relations. The Bhuj mainshock ground-motion data agree with the collective predictions of the ENA relations given the random uncertainty in ground-motion measurements of a factor of two or more plus the ground-motion attenuation relation modeling uncertainty. From an engineering perspective, this comparison supports the thesis that seismic-wave attenuation in stable continental India is similar to eastern North America.
Institute of Scientific and Technical Information of China (English)
Dai Hongyan; Zou Hongxing
2007-01-01
The time-frequency analysis of the signal acquired by a single ground-based microphone shows a two-dimensional interference pattern in the time-frequency plane,which is caused by the time delay of the received signal emitted from a low flying aircraft via the direct path and the ground-reflected path.A model is developed for estimating the motion parameters of an aircraft flying along a straight line at a constant height and with a constant speed.Monte Carlo simulation results and experimental results are presented to validate the model,and an error analysis of the model is presented to verify the effectiveness of the estimation scheme advocated.
Directory of Open Access Journals (Sweden)
Marin Petrov
1993-12-01
Full Text Available Ground motion intensity caused by deep-hole blasting on the stone quarries »Hercegovac« and »Max-Stoja« was determined by measuring of ground vibrations magnitudes and by interpretation of measuring results under world damage criteria for structures. Reduction of ground motion intensity was realized on the basis of calculation of permissible charge quantity per ignition level (the paper is published in Croatian.
Energy Technology Data Exchange (ETDEWEB)
Beattie, S.G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)
1995-02-01
A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.
Ground motion-simulations of 1811-1812 New Madrid earthquakes, central United States
Ramirez-Guzman, L.; Graves, Robert; Olsen, Kim B.; Boyd, Oliver; Cramer, Chris H.; Hartzell, Stephen; Ni, Sidao; Somerville, Paul G.; Williams, Robert; Zhong, Jinquan
2015-01-01
We performed a suite of numerical simulations based on the 1811–1812 New Madrid seismic zone (NMSZ) earthquakes, which demonstrate the importance of 3D geologic structure and rupture directivity on the ground‐motion response throughout a broad region of the central United States (CUS) for these events. Our simulation set consists of 20 hypothetical earthquakes located along two faults associated with the current seismicity trends in the NMSZ. The hypothetical scenarios range in magnitude from M 7.0 to 7.7 and consider various epicenters, slip distributions, and rupture characterization approaches. The low‐frequency component of our simulations was computed deterministically up to a frequency of 1 Hz using a regional 3D seismic velocity model and was combined with higher‐frequency motions calculated for a 1D medium to generate broadband synthetics (0–40 Hz in some cases). For strike‐slip earthquakes located on the southwest–northeast‐striking NMSZ axial arm of seismicity, our simulations show 2–10 s period energy channeling along the trend of the Reelfoot rift and focusing strong shaking northeast toward Paducah, Kentucky, and Evansville, Indiana, and southwest toward Little Rock, Arkansas. These waveguide effects are further accentuated by rupture directivity such that an event with a western epicenter creates strong amplification toward the northeast, whereas an eastern epicenter creates strong amplification toward the southwest. These effects are not as prevalent for simulations on the reverse‐mechanism Reelfoot fault, and large peak ground velocities (>40 cm/s) are typically confined to the near‐source region along the up‐dip projection of the fault. Nonetheless, these basin response and rupture directivity effects have a significant impact on the pattern and level of the estimated intensities, which leads to additional uncertainty not previously considered in magnitude estimates of the 1811–1812 sequence based only on historical
The Loma Prieta, California, Earthquake of October 17, 1989: Strong Ground Motion and Ground Failure
Coordinated by Holzer, Thomas L.
1992-01-01
Professional Paper 1551 describes the effects at the land surface caused by the Loma Prieta earthquake. These effects: include the pattern and characteristics of strong ground shaking, liquefaction of both floodplain deposits along the Pajaro and Salinas Rivers in the Monterey Bay region and sandy artificial fills along the margins of San Francisco Bay, landslides in the epicentral region, and increased stream flow. Some significant findings and their impacts were: * Strong shaking that was amplified by a factor of about two by soft soils caused damage at up to 100 kilometers (60 miles) from the epicenter. * Instrumental recordings of the ground shaking have been used to improve how building codes consider site amplification effects from soft soils. * Liquefaction at 134 locations caused $99.2 million of the total earthquake loss of $5.9 billion. Liquefaction of floodplain deposits and sandy artificial fills was similar in nature to that which occurred in the 1906 San Francisco earthquake and indicated that many areas remain susceptible to liquefaction damage in the San Francisco and Monterey Bay regions. * Landslides caused $30 million in earthquake losses, damaging at least 200 residences. Many landslides showed evidence of movement in previous earthquakes. * Recognition of the similarities between liquefaction and landslides in 1906 and 1989 and research in intervening years that established methodologies to map liquefaction and landslide hazards prompted the California legislature to pass in 1990 the Seismic Hazards Mapping Act that required the California Geological Survey to delineate regulatory zones of areas potentially susceptible to these hazards. * The earthquake caused the flow of many streams in the epicentral region to increase. Effects were noted up to 88 km from the epicenter. * Post-earthquake studies of the Marina District of San Francisco provide perhaps the most comprehensive case history of earthquake effects at a specific site developed for
Seismic fragility analysis of typical pre-1990 bridges due to near- and far-field ground motions
Mosleh, Araliya; Razzaghi, Mehran S.; Jara, José; Varum, Humberto
2016-03-01
Bridge damages during the past earthquakes caused several physical and economic impacts to transportation systems. Many of the existing bridges in earthquake prone areas are pre-1990 bridges and were designed with out of date regulation codes. The occurrences of strong motions in different parts of the world show every year the vulnerability of these structures. Nonlinear dynamic time history analyses were conducted to assess the seismic vulnerability of typical pre-1990 bridges. A family of existing concrete bridge representative of the most common bridges in the highway system in Iran is studied. The seismic demand consists in a set of far-field and near-field strong motions to evaluate the likelihood of exceeding the seismic capacity of the mentioned bridges. The peak ground accelerations (PGAs) were scaled and applied incrementally to the 3D models to evaluate the seismic performance of the bridges. The superstructure was assumed to remain elastic and the nonlinear behavior in piers was modeled by assigning plastic hinges in columns. In this study the displacement ductility and the PGA are selected as a seismic performance indicator and intensity measure, respectively. The results show that pre-1990 bridges subjected to near-fault ground motions reach minor and moderate damage states.
Systematic comparisons between PRISM version 1.0.0, BAP, and CSMIP ground-motion processing
Kalkan, Erol; Stephens, Christopher
2017-02-23
A series of benchmark tests was run by comparing results of the Processing and Review Interface for Strong Motion data (PRISM) software version 1.0.0 to Basic Strong-Motion Accelerogram Processing Software (BAP; Converse and Brady, 1992), and to California Strong Motion Instrumentation Program (CSMIP) processing (Shakal and others, 2003, 2004). These tests were performed by using the MatLAB implementation of PRISM, which is equivalent to its public release version in Java language. Systematic comparisons were made in time and frequency domains of records processed in PRISM and BAP, and in CSMIP, by using a set of representative input motions with varying resolutions, frequency content, and amplitudes. Although the details of strong-motion records vary among the processing procedures, there are only minor differences among the waveforms for each component and within the frequency passband common to these procedures. A comprehensive statistical evaluation considering more than 1,800 ground-motion components demonstrates that differences in peak amplitudes of acceleration, velocity, and displacement time series obtained from PRISM and CSMIP processing are equal to or less than 4 percent for 99 percent of the data, and equal to or less than 2 percent for 96 percent of the data. Other statistical measures, including the Euclidian distance (L2 norm) and the windowed root mean square level of processed time series, also indicate that both processing schemes produce statistically similar products.
Mitigation of ground motion effects via feedback systems in the Compact Linear Collider
Pfingstner, Jürgen; Schmickler, Hermann; Schulte, Daniel
The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate ...
Laurendeau, Aurore; Bonilla, Luis Fabian
2012-01-01
For earthquake-resistant design, engineering seismologists employ time-history analysis for nonlinear simulations. The nonstationary stochastic method previously developed by Pousse et al. (2006) has been updated. This method has the advantage of being both simple, fast and taking into account the basic concepts of seismology (Brune's source, realistic time envelope function, nonstationarity and ground-motion variability). Time-domain simulations are derived from the signal spectrogram and depend on few ground-motion parameters: Arias intensity, significant relative duration and central frequency. These indicators are obtained from empirical attenuation equations that relate them to the magnitude of the event, the source-receiver distance, and the site conditions. We improve the nonstationary stochastic method by using new functional forms (new surface rock dataset, analysis of both intra-event and inter-event residuals, consideration of the scaling relations and VS30), by assessing the central frequency with...
Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media
Bydlon, Samuel A.; Dunham, Eric M.
2015-03-01
We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ˜20 km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ˜3 km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length.
Analysis on effect of surface fault to site ground motion using finite element method
Institute of Scientific and Technical Information of China (English)
曹炳政; 罗奇峰
2003-01-01
Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.
Tiberi, Lara; Costa, Giovanni
2017-04-01
The possibility to directly associate the damages to the ground motion parameters is always a great challenge, in particular for civil protections. Indeed a ground motion parameter, estimated in near real time that can express the damages occurred after an earthquake, is fundamental to arrange the first assistance after an event. The aim of this work is to contribute to the estimation of the ground motion parameter that better describes the observed intensity, immediately after an event. This can be done calculating for each ground motion parameter estimated in a near real time mode a regression law which correlates the above-mentioned parameter to the observed macro-seismic intensity. This estimation is done collecting high quality accelerometric data in near field, filtering them at different frequency steps. The regression laws are calculated using two different techniques: the non linear least-squares (NLLS) Marquardt-Levenberg algorithm and the orthogonal distance methodology (ODR). The limits of the first methodology are the needed of initial values for the parameters a and b (set 1.0 in this study), and the constraint that the independent variable must be known with greater accuracy than the dependent variable. While the second algorithm is based on the estimation of the errors perpendicular to the line, rather than just vertically. The vertical errors are just the errors in the 'y' direction, so only for the dependent variable whereas the perpendicular errors take into account errors for both the variables, the dependent and the independent. This makes possible also to directly invert the relation, so the a and b values can be used also to express the gmps as function of I. For each law the standard deviation and R2 value are estimated in order to test the quality and the reliability of the found relation. The Amatrice earthquake of 24th August of 2016 is used as case of study to test the goodness of the calculated regression laws.
Institute of Scientific and Technical Information of China (English)
Li Jie; Liu Zhangjun; Chen Jianbing
2009-01-01
This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described, An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L.; Stavrakakis, G.N.; Ioannidou, E.; Wu, F.T.; Jarpe, S.; Kasameyer, P.
1998-01-01
We synthesize strong ground motion at three sites from a M=7.2 earthquake along the MW-trending Gulf of Cornith seismic zone. We model rupture along an 80 segment of the zone. The entire length of the fault, if activated at one time, can lead to an event comparable to that of the 1995 Kobe earthquake. With the improved digital data now routinely available, it becomes possible to use recordings of small earthquakes as empirical Green`s functions to synthesize potential ground motion for future large earthquakes. We developed a suite of 100 rupture scenarios for the earthquake and computed the commensurate strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. The synthesized ground motions obtained are source and site specific. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to a site from the statistical distribution of engineering parameters, we have introduced a probabilistic component to the deterministic hazard calculation. The time histories suggested for engineering design are the ones that most closely match either the average or one standard deviation absolute accelerations response values.
Wang, Z.; Lu, M.
2011-01-01
The 12 May 2008 Wenchuan earthquake (M 7.9) occurred along the western edge of the eastern China SCR and was well recorded by modern strong-motion instruments: 93 strong-motion stations within 1.4 to 300 km rupture distance recorded the main event. Preliminary comparisons show some similarities between ground-motion attenuation in the Wenchuan region and the central and eastern United States, suggesting that ground motions from the Wenchuan earthquake could be used as a database providing constraints for developing GMPEs for large earthquakes in the central and eastern United States.
A global earthquake discrimination scheme to optimize ground-motion prediction equation selection
Garcia, Daniel; Wald, David J.; Hearne, Michael
2012-01-01
We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.
Seismic Response of Long-Span Triple-Tower Suspension Bridge under Random Ground Motion
Directory of Open Access Journals (Sweden)
Chang-ke Jiao
2017-01-01
Full Text Available Multitower suspension bridge is of different style compared to the traditional suspension bridge with two towers, and consequently the dissimilarity of static and dynamic behaviors is distinct. As a special case of multitower suspension bridge, two long-span triple-tower suspension bridges have been constructed in China and the seismic random response of triple-tower suspension bridges is studied in this paper. A nonlinear dynamic analysis finite element model is established in ABAQUS and the Python language is utilized to facilitate the preprocess and postprocess during the finite element analysis. The procedure for random response calculation of structures based on the pseudoexcitation method is presented, with the initial equilibrium state of structure considered, which may be ignored for long-span bridges during calculating of stochastic response. The stationary seismic random responses of triple-tower suspension bridge under uniform excitation in firm, medium, and soft soil conditions and under spatially varying excitation in soft soil are investigated. The distribution of RMS of random responses of displacements and internal forces of the stiffening girder and towers is presented and discussed in detail. Results show that spatially variable ground motions should be considered in the stochastic analysis of triple-tower suspension bridge.
Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media
Bydlon, Samuel A.
2015-03-21
©2015. American Geophysical Union. All Rights Reserved. We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ∼20km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length. Key Points Fault roughness, not material heterogeneity, dominates rupture process Introduce parameter that can be used to quantify near-fault scattering Scattering affects the duration and amplitude of high-frequency ground motions
Non radial motions in a CDM model
Gambera, M
1998-01-01
We show how non-radial motions, originating in the outskirts of clusters of galaxies, may reduce the discrepancy between the Cold Dark Matter (CDM) predicted X-ray temperature distribution function of clusters of galaxies and the observed one and also the discrepancy between the CDM predicted two-point correlation function of clusters of galaxies and that observed. We compare Edge et al. (1990) and Henry & Arnaud (1991) data with the distribution function of X-ray temperature, calculated using Press- Schechter's (1974 - hereafter PS) theory and Evrard's (1990) prescriptions for the mass-temperature relation and taking account of the non-radial motions originating from the gravitational interaction of the quadrupole moment of the protocluster with the tidal field of the matter of the neighboring protostructures. We find that the model produces a reasonable clusters temperature distribution. We compare the two-point cluster correlation function which takes account of the non-radial motions both with that ob...
Energy Technology Data Exchange (ETDEWEB)
Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-06-15
We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.
An analytical model of prominence mass motion
Routh, Swati; Bhat, Atul
2016-01-01
Solar Prominences are intriguing, but poorly understood magnetic structures of the solar corona. Convective motions in the photosphere and sub-photosphere may be responsible for generating the magnetic fields that support long-lived quiescent solar prominence. The dynamics of solar prominence has been the subject of a large number of studies. We develop a theoretical model using analytical approximations to analyze the nature of the dynamics of these quiescent solar prominences based on the K-S model.
Refinements to the Graves and Pitarka (2010) Broadband Ground Motion Simulation Method
Graves, Robert; Arben Pitarka,
2015-01-01
This brief article describes refinements to the Graves and Pitarka (2010) broadband ground motion simulation methodology (GP2010 hereafter) that have been implemented in version 14.3 of the SCEC Broadband Platform (BBP). The updated version of our method on the current SCEC BBP is referred to as GP14.3. Our simulation technique is a hybrid approach that combines low-‐frequency and high-‐frequency motions computed with different methods into a single broadband response. The separate low-‐ and high-‐frequency components have traditionally been called “deterministic” and “stochastic”, respectively; however, this nomenclature is an oversimplification. In reality, the low-‐frequency approach includes many stochastic elements, and likewise, the high-‐frequency approach includes many deterministic elements (e.g., Pulido and Kubo, 2004; Hartzell et al., 2005; Liu et al., 2006; Frankel, 2009; Graves and Pitarka, 2010; Mai et al., 2010). While the traditional terminology will likely remain in use by the broader modeling community, in this paper we will refer to these using the generic terminology “low-‐frequency” and “high-‐ frequency” approaches. Furthermore, one of the primary goals in refining our methodology is to provide a smoother and more consistent transition between the low-‐ and high-‐ frequency calculations, with the ultimate objective being the development of a single unified modeling approach that can be applied over a broad frequency band. GP2010 was validated by modeling recorded strong motions from four California earthquakes. While the method performed well overall, several issues were identified including the tendency to over-‐predict the level of longer period (2-‐5 sec) motions and the effects of rupture directivity. The refinements incorporated in GP14.3 are aimed at addressing these issues with application to the simulation of earthquakes in Western US (WUS). These refinements include the
Reyes, Juan C.; Kalkan, Erol
2012-01-01
In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide
Frankel, A.; Stephenson, W.
2000-01-01
We used the 3D finite-difference method to model observed seismograms of two earthquakes (ML 4.9 and 3.5) in the Seattle region and to simulate ground motions for hypothetical M 6.5 and M 5.0 earthquakes on the Seattle fault, for periods greater than 2 sec. A 3D velocity model of the Seattle Basin was constructed from studies that analyzed seismic-reflection surveys, borehole logs, and gravity and aeromagnetic data. The observations and the simulations highlight the importance of the Seattle Basin on long-period ground motions. For earthquakes occurring just south of the basin, the edge of the basin and the variation of the thickness of the Quaternary deposits in the basin produce much larger surface waves than expected from flat-layered models. The data consist of seismograms recorded by instruments deployed in Seattle by the USGS and the University of Washington (UW). The 3D simulation reproduces the peak amplitude and duration of most of the seismograms of the June 1997 Bremerton event (ML 4.9) recorded in Seattle. We found the focal mechanism for this event that best fits the observed seismograms in Seattle by combining Green's functions determined from the 3D simulations for the six fundamental moment couples. The February 1997 event (ML 3.5) to the south of the Seattle Basin exhibits a large surface-wave arrival at UW whose amplitude is matched by the synthetics in our 3D velocity model, for a source depth of 9 km. The M 6.5 simulations incorporated a fractal slip distribution on the fault plane. These simulations produced the largest ground motions in an area that includes downtown Seattle. This is mainly caused by rupture directed up dip toward downtown, radiation pattern of the source, and the turning of S waves by the velocity gradient in the Seattle basin. Another area of high ground motion is located about 13 km north of the fault and is caused by an increase in the amplitude of higher-mode Rayleigh waves caused by the thinning of the Quaternary
Dynamics and control of motion on the ground and in the air with application to biped robots
Hemami, H.; Zheng, Y.-F.
The dynamics of a multi-linkage model of natural or man-made systems with arbitrary holonomic and non-holonomic constraints at the joints are formulated. The formulation is equally applicable to movements on the ground or in the air. Nonlinear control strategies for postural balance and rhythmic motion are presented. A predictive algorithm to compensate for computation or transmission delay is proposed. Digital computer simulations are presented to demonstrate the effectiveness of the control strategy for a five-link three-dimensional biped.
Energy Technology Data Exchange (ETDEWEB)
Yamanaka, H.; Kurita, K. [Tokyo Institute of Technology, Tokyo (Japan)
1997-12-01
This paper introduces the result of a case study in the Kanto Plain, Japan on estimation of strong ground motion taking underground structure into account and exploration of the underground structures. Methods for estimating the strong ground motion may be classified into the following three methods: an empirical method represented by the distance attenuation expression, a semi-empirical method, in which small to medium earthquakes occurred in the vicinity of a focus fault of the subject earthquake are conceived as a Green function, and superposed according to the analogy of the earthquakes, and an analytic method. These three approaches are used respectively in the present situation. Micro motion array observation is being carried at a large number of points in the Kanto Plain to explore S-wave velocity structures. Seven seismograph arrays have observed micro motions with slightly long cycles, phase velocities of Raleigh waves were derived, and then S-wave velocity distribution down to the seismic base was estimated from reverse analysis therefrom. S-wave amplification characteristics were calculated by using one-dimensional duplicate reflection on the prepared ground bed model. The result well explains the observation values, indicating that the ground bed model is reasonable for estimating the seismic motion amplifying characteristics. 33 refs., 10 figs., 1 tab.
Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai; Lu, Xiaochun
2017-01-01
Strong-motion's baseline shift error is very difficult to process precisely; it is mainly caused by the tilting, rotation of the ground and environment noises during the co-seismic period. In the study, we first studied how to effectively extract the strong-motion's baseline shift error with GPS observation; this also provides a new way of correcting the baseline shift errors. Then we studied how to retrieve the ground tilting information of the station point with the collocated GPS and strong-motion observations, the information is an important input parameter of rotational seismology. In addition, both experimental result and seismic data show that the baseline shift error is mainly caused by the ground tiling and rotation during the co-seismic period. Also, there is a strong directly proportional relationship between the baseline shift error and ground tilting, of which the proportionality constant is approximately equal to the value of gravitational acceleration of the station.
Model of human visual-motion sensing
Watson, A. B.; Ahumada, A. J., Jr.
1985-01-01
A model of how humans sense the velocity of moving images is proposed. The model exploits constraints provided by human psychophysics, notably that motion-sensing elements appear tuned for two-dimensional spatial frequency, and by the frequency spectrum of a moving image, namely, that its support lies in the plane in which the temporal frequency equals the dot product of the spatial frequency and the image velocity. The first stage of the model is a set of spatial-frequency-tuned, direction-selective linear sensors. The temporal frequency of the response of each sensor is shown to encode the component of the image velocity in the sensor direction. At the second stage, these components are resolved in order to measure the velocity of image motion at each of a number of spatial locations and spatial frequencies. The model has been applied to several illustrative examples, including apparent motion, coherent gratings, and natural image sequences. The model agrees qualitatively with human perception.
Institute of Scientific and Technical Information of China (English)
LI Chun-feng; ZHANG Yang; ZHAO Jin-bao; TANG Hui
2006-01-01
This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches the importance to the variation of strength of the long-period ground motion with the magnitude, distance, and site condition. In the meantime, the near-fault long-period ground motion characteristic is analyzed. The result shows that the shape of the long-period response spectrum is mainly controlled by site condition and magnitude (the spectrum of class D+E is wider than that of class B+C, and the spectrum of larger magnitude is wider than that of smaller magnitude), and the effect of fault distance on the shape is not evident. And near-fault long-period ground motion characteristic depends on fault activity apparently, that is to say, the long-term ground motion in the hanger is stronger than that in the footwall, and the long-term ground motion in the north is stronger than that in the south.
A motion retargeting algorithm based on model simplification
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A new motion retargeting algorithm is presented, which adapts the motion capture data to a new character. To make the resulting motion realistic, the physically-based optimization method is adopted. However, the optimization process is difficult to converge to the optimal value because of high complexity of the physical human model. In order to address this problem, an appropriate simplified model automatically determined by a motion analysis technique is utilized, and then motion retargeting with this simplified model as an intermediate agent is implemented. The entire motion retargeting algorithm involves three steps of nonlinearly constrained optimization: forward retargeting, motion scaling and inverse retargeting. Experimental results show the validity of this algorithm.
Grandin, Raphaël; Borges, José Fernando; Bezzeghoud, Mourad; Caldeira, Bento; Carrilho, Fernando
2007-11-01
This is the second paper of a series of two concerning strong ground motion in SW Iberia due to earthquakes originating from the adjacent Atlantic area. The aim of this paper is to use the velocity model that was proposed and validated in the companion paper for seismic intensity modelling of the 1969 (Ms = 8.0) and 1755 (M = 8.5-8.7) earthquakes. First, we propose a regression to convert simulated values of Peak Ground Velocity (PGV) into Modified Mercalli Intensity (MMI) in SW Iberia, and using this regression, we build synthetic isoseismal maps for a large (Ms = 8.0) earthquake that occurred in 1969. Based on information on the seismic source provided by various authors, we show that the velocity model effectively reproduces macroseismic observations in the whole region. We also confirm that seismic intensity distribution is very sensitive to a small number of source parameters: rupture directivity, fault strike and fault dimensions. Then, we extrapolate the method to the case of the great (M = 8.5-8.7) 1755 earthquake, for a series of hypotheses recently proposed by three authors about the location of the epicentral region. The model involving a subduction-related rupture in the Gulf of Cádiz results in excessive ground motion in northern Morocco, suggesting that the source of the 1755 earthquake should be located further west. A rupture along the western coast of Portugal, compatible with an activation of the passive western Iberian margin, would imply a relatively low average slip, which, alone, would could not account for the large tsunami observed in the whole northern Atlantic ocean. A seismic source located below the Gorringe Bank seems the most likely since it is more efficient in reproducing the distribution of high intensities in SW Iberia due to the 1755 earthquake.
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patton, Howard John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-25
This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patton, Howard John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-25
This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.
Directory of Open Access Journals (Sweden)
Kotaro Kojima
2016-07-01
Full Text Available In the 2016 Kumamoto earthquake in Japan, two severe ground shakings with the seismic intensity 7 (the highest level in Japan Metheorological Agency (JMA scale; approximately X-XII in Mercalli scale occurred consecutively on April 14 and April 16. In the seismic regulations of most countries, it is usually prescribed that such severe earthquake ground motion occurs once in the working period of buildings. In this paper, a simple evaluation method is presented on the seismic resistance of residential houses under two consecutive severe ground motions with intensity 7. Therefore the proposed method can be used for the design of buildings under two consecutive severe ground motions. The present paper adopts an impulse as a representative of near-fault ground motion and two separated impulses are used as the repetition of intensive ground shakings with the seismic intensity 7. Two scenarios to building collapse (collapse limit in terms of zero restoring force with P-delta effect and collapse limit in terms of maximum deformation under two repeated severe ground shakings are provided and energy consideration is devised for the response evaluation. The validity and accuracy of the proposed theories are discussed through numerical analysis using recorded ground motions.
Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations
Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.
2015-08-01
This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using
Institute of Scientific and Technical Information of China (English)
Li Xinle; Dou Huijuan; Zhu Xi
2007-01-01
A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion,focusing on the effect of earthquake magnitude,site conditions,pulse duration,and statistical component.The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes,and the relationship between the vertical and horizontal ground motions is comparatively intricate.In addition,the effect of the near-fault ground motions on bridge performance is analyzed,considering both the material nonlinear characteristics and the P～△ effect.
Ground Motions Induced by Precipitation and Fluvial Processes: An Example from Taiwan
Yang, Chu-Fang; Chi, Wu-Cheng; Lai, Ying-Ju
2016-04-01
Ground motions can be induced by weather-related processes. Analyzing such signals might help quantify those natural processes. Here, we used continuous seismic, meteorological and stream data to analyze broadband ground motions during heavy precipitation events in Taiwan. We detected long period seismic signals in drainage basins during two meteorological cases: Typhoon Morakot in 2009 and East Asian rainy season in 2012. The amplitudes of the seismic waveform correlate well with the amount of the precipitation and the derivative of water level and discharge in a nearby river. We proposed that these seismic signals were induced by ground tilt induced by the loading from the increased water volume in the nearby river. Furthermore, we used the seismic data to estimate and quantify the strength of precipitation during such events. The seismically derived precipitation correlates well with the observed meteorological data. It shows that the long period seismic data may be used to monitor rainfall in real-time. Next, we will try to test our tilt hypothesis using other independent datasets.
Directory of Open Access Journals (Sweden)
AHMER ALI
2014-10-01
Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.
Directory of Open Access Journals (Sweden)
Elham Shabani
2014-01-01
Full Text Available This article presents the results of disaggregation of ground motion hazard obtained for two of Iran’s urban centers, Kermanshah and Sanandaj. Disaggregation of peak ground acceleration (PGA and spectral acceleration hazard corresponding to mean return periods of 475 and 50 years is performed. 12 area seismic sources in the study region as well as 15 area seismic sources in a 150-km distance from the region are delineated. The scenario earthquakes are characterized by bins of magnitude, M, source-to-site distance, R, and number of standard deviations, ε, that the ground-motion parameter is away from its median value for that M-R pair as estimated by a prediction equation. In most cases, the sources closer to the site dominate. Larger, more distant earthquakes contribute more significantly to hazard for longer periods than for shorter periods. Disaggregation plots can provide useful information on the distance and magnitude of predominant sources, which can be used to generate scenario earthquakes and select corresponding time histories for seismic design.
Arici, Y.; Bybordiani, M.
2016-12-01
The use of time histories for the seismic design and analysis of dams is becoming increasingly common given the state of the art of the computational tools for assessing the seismic demands on these systems. Determination of the ground motions that will be used in time history analysis is a crucial task since the results usually show a wide variability in the required quantity due to the stochastic nature of the applied earthquake record. In order to reduce this variability and predict the "true" demand related to the seismic hazard conditions of the site, the ground motions are usually carefully selected and subjected to scaling procedures. A separate but equally important goal in this regard is to obtain the required demand with a small number of representative motions reducing the considerable analysis workload for these large systems. In this regard, the common ground motion scaling techniques are evaluated in this study in a robust dam-foundation-reservoir interaction (DFRI) setting for determining the efficiency and accuracy of the scaling techniques for predicting the target demands for concrete gravity dams. A large ensemble of ground motions were used on a range of systems with different canyon geometries and moduli ratios in order to consider the effect of the soil-structure interaction (SSI) on the motion selection for concrete gravity dams. The frequency response of different systems and their interaction with the frequency content of the ground motions were henceforth considered. The required number of ground motions for consistent and efficient analyses of such systems was investigated considering different engineering demand parameters on the dam systems. The choice of EDP, and the corresponding effect of the scaling procedure on the analyses were evaluated in order to provide guidelines on the scaling of the ground motions for the seismic analyses of these systems.
Energy Technology Data Exchange (ETDEWEB)
1991-03-01
This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section`s Seismic Qualification Program for reactor restart.
Applying Modeling Tools to Ground System Procedures
Di Pasquale, Peter
2012-01-01
As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.
Yerlikaya-Özkurt, Fatma; Askan, Aysegul; Weber, Gerhard-Wilhelm
2014-12-01
Ground Motion Prediction Equations (GMPEs) are empirical relationships which are used for determining the peak ground response at a particular distance from an earthquake source. They relate the peak ground responses as a function of earthquake source type, distance from the source, local site conditions where the data are recorded and finally the depth and magnitude of the earthquake. In this article, a new prediction algorithm, called Conic Multivariate Adaptive Regression Splines (CMARS), is employed on an available dataset for deriving a new GMPE. CMARS is based on a special continuous optimization technique, conic quadratic programming. These convex optimization problems are very well-structured, resembling linear programs and, hence, permitting the use of interior point methods. The CMARS method is performed on the strong ground motion database of Turkey. Results are compared with three other GMPEs. CMARS is found to be effective for ground motion prediction purposes.
Li, Y. Y.; Zhang, Y. H.
2016-09-01
An analytical method is formulated for the seismic analysis of multi-span continuous beams with random structural parameters subjected to spatially varying ground motions. An earthquake-induced ground motion is modelled as a stationary random process defined by power spectral density function, and the spatial variation is considered. The physical parameters of the multi-span beams are random and modelled as continuous random Gaussian variables. The stationary random responses are determined as approximate explicit functions of the structural parameters. Direct differentiation of these functions with respect to the structural parameters provides analytical expressions of the sensitivities of the stationary responses. On the basis of Taylor expansion, the statistic moments of the random responses are obtained. Taking the four-span beam as an illustrative example, the mean value and standard deviation of the random responses are computed and compared with those from Monte Carlo simulation to demonstrate the accuracy of the proposed method. Results are illustrated for the influence of different structural parameters on the statistic moments of the random responses. It is found that randomness in Young's modulus and the mass per unit length has approximate equivalent and significant influence on the random responses, while that of damping is negligible.
Zhao, Fengfan; Meng, Lingyuan
2016-04-01
The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).
A numerical model for ground temperature determination
Jaszczur, M.; Polepszyc, I.; Biernacka, B.; Sapińska-Śliwa, A.
2016-09-01
The ground surface temperature and the temperature with respect to depth are one of the most important issues for geotechnical and environmental applications as well as for plants and other living organisms. In geothermal systems, temperature is directly related to the energy resources in the ground and it influences the efficiency of the ground source system. The ground temperature depends on a very large number of parameters, but it often needs to be evaluated with good accuracy. In the present work, models for the prediction of the ground temperature with a focus on the surface temperature at which all or selected important ground and environmental phenomena are taken into account have been analysed. It has been found that the simplest models and the most complex model may result in a similar temperature variation, yet at a very low depth and for specific cases only. A detailed analysis shows that taking into account different types of pavement or a greater depth requires more complex and advanced models.
Energy Technology Data Exchange (ETDEWEB)
Ruland, R.E.
1990-08-01
Ground motions resulting from the October 17th 1989 (Loma Prieta) earthquake are described and can be correlated with some geologic features of the SLAC site. Recent deformations of the linac are also related to slow motions observed over the past 20 years. Measured characteristics of the earthquake are listed. Some effects on machine components and detectors are noted. 18 refs., 16 figs.
On the coherence of ground motion in the San Fernando valley
Hough, S.E.; Field, E.H.
1996-01-01
We present an analysis of the coherence of seismic ground motion recorded on alluvial sediments in the San Fernando Valley, California. Using aftershocks of the 17 January 1994 Mw6.7 earthquake recorded at a quasi-dense array of portable stations, we analyze the coherence of three well-recorded magnitude 3.7 to 4.0 events over the frequency range 0.5 to 15 Hz and a distance range of 0.5 to 5.3 km. All stations are located at sites with broadly similar near-site geology, characterized by medium to fine-grain Quaternary alluvial sediments. On average, relatively high values of coherence are observed for distances up to 3 to 4 km and frequencies up to 2 to 3 Hz; coherence drops sharply at frequencies near and above 3 Hz. Although average coherence functions are described reasonably well by a log-linear relationship with frequency, the curves at all distances exhibit a flattening at low frequencies that is not consistent with previous observations of coherence at hardrock sites. The distance decay of coherence is also markedly less strong, with high coherence values observed over station separations corresponding to multiple wavelengths. This may reflect fundamental differences in shallow-wave propagation in the two environments, with high-frequency scattering relatively more dominant in regions of hard-rock near-surface geology. Within a sedimentary basin or valley, the site response itself generally reflects a resonance phenomenon that may tend to give rise to more uniform ground motions. However, previous studies have demonstrated the existence of pathological focusing and amplification effects within complex sedimentary basin environments such as the greater Los Angeles region; our results undoubtedly do not quantify the full range of ground-motion variability at all sites, but rather represent the level of that variability that can be expected, and quantified, for typical source/receiver paths.
Initiation of a Database of CEUS Ground Motions for NGA East
Cramer, C. H.
2007-12-01
The Nuclear Regulatory Commission has funded the first stage of development of a database of central and eastern US (CEUS) broadband and accelerograph records, along the lines of the existing Next Generation Attenuation (NGA) database for active tectonic areas. This database will form the foundation of an NGA East project for the development of CEUS ground-motion prediction equations that include the effects of soils. This initial effort covers the development of a database design and the beginning of data collection to populate the database. It also includes some processing for important source parameters (Brune corner frequency and stress drop) and site parameters (kappa, Vs30). Besides collecting appropriate earthquake recordings and information, existing information about site conditions at recording sites will also be gathered, including geology and geotechnical information. The long-range goal of the database development is to complete the database and make it available in 2010. The database design is centered on CEUS ground motion information needs but is built on the Pacific Earthquake Engineering Research Center's (PEER) NGA experience. Documentation from the PEER NGA website was reviewed and relevant fields incorporated into the CEUS database design. CEUS database tables include ones for earthquake, station, component, record, and references. As was done for NGA, a CEUS ground- motion flat file of key information will be extracted from the CEUS database for use in attenuation relation development. A short report on the CEUS database and several initial design-definition files are available at https://umdrive.memphis.edu:443/xythoswfs/webui/_xy-7843974_docstore1. Comments and suggestions on the database design can be sent to the author. More details will be presented in a poster at the meeting.
Energy Technology Data Exchange (ETDEWEB)
Rodgers, A; Tkalcic, H; McCallen, D
2005-03-18
Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recorded at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV
Ground Motions during the 2015 Gorkha, Nepal, Earthquake: An Expected Event that Defied Expectations
Hough, S. E.; Martin, S. S.; Dixit, A. M.; Shrestha, S.; Guragain, R.; Cochran, E. S.; Sumy, D. F.; Ringler, A. T.; McNamara, D. E.; Asimaki, D.; Bilham, R. G.; Mencin, D.; Galetzka, J.; Luetgert, J. H.; Meng, L.; Ampuero, J. P.; Rajaure, S.
2015-12-01
Earthquakes with magnitudes close to, and exceeding, Mw8 have long been expected along the Himalayan arc. A repeat of the 1934 Bihar-Nepal earthquake was expected to cause heavy damage, with as many as 40,000 fatalities in Kathmandu Valley. The 2015 Gorkha earthquake was smaller than the 1934 event, but unlike the 1934 earthquake, involved rupture of the segment of the Main Central Thrust directly beneath the valley. Despite the large magnitude and proximity to the valley, the damage was lower than expected. Throughout Kathmandu Valley as well as the near-field region, European Macroseismic Scale intensities exceeded 8 in only rare instances. The extent of landsliding and liquefaction was also lower than had been expected (Collins and Jibson, 2015). Strong motion data from one conventional (NetQuakes) instrument, several low-cost MEMS accelerometers, and high-rate GPS provide insights into the extent to which mainshock and aftershock ground motions were controlled by source, path, and site effects. Mainshock horizontal peak accelerations recorded in central Kathmandu were ≈0.16g, with shaking strongly peaked near 5 s. The long period character of the mainshock can be attributed in part to source properties (Avouac et al., 2015). The expected basin response resonance (≈1-3-s period) is, however, also absent in the mainshock coda, but present in the coda of large aftershocks. A progressive shift in predominant period is also observed over ≈10 minutes following the mainshock. We conclude that shallow soft sediments underlying Kathmandu Valley responded nonlinearly during the mainshock, such that the predominant period of amplification was shifted to longer periods than the weak-motion resonance, and high frequencies were deamplified. Mainshock ground motions, controlled by site and well as source effects, were therefore concentrated at periods that were too long to significantly impact vernacular structures in Kathmandu Valley, most of which are between 3
Anisotropic stellar models admitting conformal motion
Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali
2017-04-01
We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.
Study on Site Specific Design Earthquake Ground Motion of Nuclear Power Plants in China1
Institute of Scientific and Technical Information of China (English)
Zhou Bochang; Li Xiaojun; Li Yaqi
2008-01-01
The main technical backgrounds and requirements are introduced with regard to earthquake ground motion design parameters in several domestic and American standards,codes and guides involved in the seismic analysis and design activities of nuclear power plants in China.Based on the research results from site seismic safety evaluation of domestic nuclear power plant projects in the last years,characteristics and differences of site specific design spectra are analyzed in comparison with standard response spectra,and the suitability of standard response spectra for domestic nuclear power plant projects is discussed.
Seismic Response of Base-Isolated Structures under Multi-component Ground Motion Excitation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square response of the system is obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored.
Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki
2016-04-01
Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large
Recharge estimation for transient ground water modeling.
Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D
2002-01-01
Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.
Motion perception modelling in flight simulation
Groen, E.L.; Hosman, R.J.A.W.; Bos, J.E.; Dominicus, J.W.
2004-01-01
Motion cueing algorithms are indispensable to transform aircraft motions into simulator motions. Usually, such algorithms apply to the whole flight envelope. Since a motion base should stay within its six degrees of freedom workspace, the parameter settings necessarily involve concessions, which may
Human Muscle Fatigue Model in Dynamic Motions
Ma, Ruina; Bennis, Fouad; Ma, Liang
2012-01-01
Human muscle fatigue is considered to be one of the main reasons for Musculoskeletal Disorder (MSD). Recent models have been introduced to define muscle fatigue for static postures. However, the main drawbacks of these models are that the dynamic effect of the human and the external load are not taken into account. In this paper, each human joint is assumed to be controlled by two muscle groups to generate motions such as push/pull. The joint torques are computed using Lagrange's formulation to evaluate the dynamic factors of the muscle fatigue model. An experiment is defined to validate this assumption and the result for one person confirms its feasibility. The evaluation of this model can predict the fatigue and MSD risk in industry production quickly.
Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.
2009-04-01
Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Element (SE) method, extensively published by Faccioli and his co-workers, and
Weather-related Ground Motions Recorded by Taiwan Broadband Seismic Network Stations
Yang, C. F.; Chi, W. C.; Lai, Y. J.
2015-12-01
Broadband seismometers record ground motions, which can be induced by weather-related processes. Analyzing such signals might help to better understand those natural processes. Here, we used continuous seismic data, meteorological data and stream data to analyze the weather-related ground motions during typhoon cases and rainy season case in Taiwan. We detected some long period seismic signals at the station Mahsi (MASB) during three meteorological cases (Typhoon Kalmaegi in 2008, Typhoon Morakot in 2009 and the East Asian rainy season in 2012). The amplitude of the seismic waveform correlated with the amount of the precipitation and the derivative of water level and discharge in the nearby river. According to the relationships of waveforms in main and minor rainfall events, we derived apparent source time functions (ASTFs) and used the ASTFs to estimate and quantify the precipitation of main rainfall events in the cases. The estimated precipitation has high correlation coefficients (> 0.82) with the observation. It shows that the long period seismic data may be applied to rainfall monitoring.
Review of seismicity and ground motion studies related to development of seismic design at SRS
Energy Technology Data Exchange (ETDEWEB)
Stephenson, D.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Acree, J.R. [Westinghouse Environmental and Geotechnical Services, Inc., Columbia, SC (United States)
1992-08-01
The NRC response spectra developed in Reg. Guide 1.60 is being used in the studies related to restarting of the existing Savannah River Site (SRS) reactors. Because it envelopes all the other site specific spectra which have been developed for SRS, it provides significant conservatism in the design and analysis of the reactor systems for ground motions of this value or with these probability levels. This spectral shape is also the shape used for the design of the recently licensed Vogtle Nuclear Station, located south of the Savannah River from the SRS. This report provides a summary of the data base used to develop the design basis earthquake. This includes the seismicity, rates of occurrence, magnitudes, and attenuation relationships. A summary is provided for the studies performed and methodologies used to establish the design basis earthquake for SRS. The ground motion response spectra developed from the various studies are also summarized. The seismic hazard and PGA`s developed for other critical facilities in the region are discussed, and the SRS seismic instrumentation is presented. The programs for resolving outstanding issues are discussed and conclusions are presented.
Ground Motion Data Profile of Western Turkey with Intelligent Hybrid Processing
Korkmaz, Kasim A.; Demir, Fuat
2016-09-01
The recent earthquakes caused severe damages on the existing buildings. By this motivation, an important amount of research work has been conducted to determine the seismic risk of seismically active regions. For an accurate seismic risk assessment, processing of ground motions would provide an advantage. Using the current technology, it is not possible to precisely predict the future earthquakes. Therefore, most of the current seismic risk assessment methodologies are based on statistical evaluation by using recurrence and magnitude of the earthquakes hit the specified region. Because of the limited number of records on earthquakes, the quality of definitions is questionable. Fuzzy logic algorithm can be used to improve the quality of the definition. In the present study, ground motion data profile of western Turkey is defined using an intelligent hybrid processing. The approach is given in a practical way for an easier and faster calculation. Earthquake data between 1970 and 1999 from western part of Turkey have been used for training. The results are tested and validated with the earthquake data between 2000 and 2015 of the same region. Enough approximation was validated between calculated values and the earthquake data by using the intelligent hybrid processing.
Ground Motion Data Profile of Western Turkey with Intelligent Hybrid Processing
Korkmaz, Kasim A.; Demir, Fuat
2017-01-01
The recent earthquakes caused severe damages on the existing buildings. By this motivation, an important amount of research work has been conducted to determine the seismic risk of seismically active regions. For an accurate seismic risk assessment, processing of ground motions would provide an advantage. Using the current technology, it is not possible to precisely predict the future earthquakes. Therefore, most of the current seismic risk assessment methodologies are based on statistical evaluation by using recurrence and magnitude of the earthquakes hit the specified region. Because of the limited number of records on earthquakes, the quality of definitions is questionable. Fuzzy logic algorithm can be used to improve the quality of the definition. In the present study, ground motion data profile of western Turkey is defined using an intelligent hybrid processing. The approach is given in a practical way for an easier and faster calculation. Earthquake data between 1970 and 1999 from western part of Turkey have been used for training. The results are tested and validated with the earthquake data between 2000 and 2015 of the same region. Enough approximation was validated between calculated values and the earthquake data by using the intelligent hybrid processing.
UC Berkeley Seismic Guidelines, Appendix II: Ground Motion Time Histories for the UC Berkeley Campus
Energy Technology Data Exchange (ETDEWEB)
Authors, Various
2003-06-03
Three sets of ten time histories each were developed to represent the ground motions for each of the three return periods. All of the time histories are provided as pairs of fault-normal and fault-parallel components. The ground motion time histories are provided in two forms: unmodified, and spectrally modified to match the probabilistic response spectra. The unmodified time histories can be scaled to match the probabilistic response spectra at a specified period, such as the first mode period of the structure being analyzed, while leaving the shape of the response spectrum unmodified. This approach preserves the particular characteristics of the individual time history, together with the peaks and troughs of its response spectrum. These individual characteristics are modified in the spectrally matched time histories, resulting in a suite of ten time histories (for a given return period) that all have the same response spectrum for a given component (fault normal or fault parallel) that follows the smooth shape of the probabilistic response spectrum.
UC Berkeley Seismic Guidelines, Appendix II: Ground Motion TimeHistories for the UC Berkeley Campus
Energy Technology Data Exchange (ETDEWEB)
Various
2003-06-03
Three sets of ten time histories each were developed to represent the ground motions for each of the three return periods. All of the time histories are provided as pairs of fault-normal and fault-parallel components. The ground motion time histories are provided in two forms: unmodified, and spectrally modified to match the probabilistic response spectra. The unmodified time histories can be scaled to match the probabilistic response spectra at a specified period, such as the first mode period of the structure being analyzed, while leaving the shape of the response spectrum unmodified. This approach preserves the particular characteristics of the individual time history, together with the peaks and troughs of its response spectrum. These individual characteristics are modified in the spectrally matched time histories, resulting in a suite of ten time histories (for a given return period) that all have the same response spectrum for a given component (fault normal or fault parallel) that follows the smooth shape of the probabilistic response spectrum.
An experience model for anyspeed motion
Fraundorf, P B
2001-01-01
Simple airtrack simulations, like those now possible with web-based 3D environments, can provide explorers of any age with experiential data sufficient to formulate their own models of motion. In particular, with a compressable spring, two gliders, a moving clock and two gate pairs with timers (pre and post collision), Newton's laws (or one's own version thereof) may emerge (or be tested) in the lab. With a high speed simulation, one may find instead Minkowski's spacetime version of Pythagoras' theorem (the metric equation) in the data, along with ``anyspeed'' expressions for momentum and kinetic energy.
Institute of Scientific and Technical Information of China (English)
孟令媛; 史保平
2011-01-01
The great Wenchuan Earthquake of May 12, 2008, Mw7. 9 occurred in Sichuan province of western China with the epicenter at longitude 103.4°E and latitude 31.0°N. The main fault ruptured more than 300 km in length with a striking direction from southwest toward northeast along the Longmenshan Central Fault. The geological and geophysical investigations also revealed significant fault segmentation during the earthquake faulting. The Wenchuan-Yingxiu segment of the fault is dominated by pure thrusting with a dip angle about 40°, while the Beichuan-Anxian segment of the fault in the central part of the main fault underwent both thrusting and strike-slipping with a dip angle of 70°, and the remained segment of the fault, a part of the Qingchuan fault, underwent an almost pure strike slip motion with a dip angle of 80°. In this study, a modified composite source model, named as dynamical composite source model (DCSM), has been developed to simulate near-fault strong ground motion with associated fault rupture properties from a kinematic point of view. For the Wenchuan event, a specific finite fault model with a length of 320 km and a width of 20 km is constructed for simulation purpose. Moreover,the fault model consists of three major segments in which each segment could has a specific geometry related to the dip angle and strike direction. In addition, the rakes related to the slip direction on the fault plane of each segment could be assigned dynamically based on the focal mechanism solution. For comparing purpose, we conduct broadband ground motion predictions for three typical near-fault strong motion stations of Wolong, Pixian-Zoushishan and Mianzhu-Qingping. In general, the synthetic seismograms produced for these stations have good agreement with the observations in time histories, waveforms, peak values and frequency contents, which indicate that the numerical technique of current source model could reproduce the main characteristics of strong ground motion
小波变换在地震动模拟中应用研究%Research on application of wavelet transform in ground motion simulation
Institute of Scientific and Technical Information of China (English)
宋志勇
2012-01-01
The study explores the nonstationarity in the simulation of random ground motion,simulates the nonstationarity feature of the ground motion by adopting the wavelet transform and analyzing all sorts of frequency components in the ground motion,and utilizing the relationship between the wavelet coefficients and the power spectral density function,and indicates it is more consistent with the factual ground motion by comparing its with the traditional stable analyzing models,so as to lay the foundation for further research.%对模拟随机地震动的非平稳性进行了探讨,利用小波变换,通过分析地震动中各频率成分,利用小波系数与功率谱密度函数的关系模拟地震动的非平稳特性,和传统的平稳分析模型相比,更符合地震动实际,为进一步研究奠定了基础。
Imperatori, W.
2012-03-01
In this paper, we investigate ground-motion variability due to different faulting approximations and crustal-model parametrizations in the Messina Straits area (Southern Italy). Considering three 1-D velocity models proposed for this region and a total of 72 different source realizations, we compute broad-band (0-10 Hz) synthetics for Mw 7.0 events using a fault plane geometry recently proposed. We explore source complexity in terms of classic kinematic (constant rise-time and rupture speed) and pseudo-dynamic models (variable rise-time and rupture speed). Heterogeneous slip distributions are generated using a Von Karman autocorrelation function. Rise-time variability is related to slip, whereas rupture speed variations are connected to static stress drop. Boxcar, triangle and modified Yoffe are the adopted source time functions. We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.
Simulating intrafraction prostate motion with a random walk model
Directory of Open Access Journals (Sweden)
Tobias Pommer, PhD
2017-07-01
Conclusions: Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during delivery of radiation therapy.
EVALUATING AND IMPROVING REAL-TIME STRATEGIES FOR ENGINEERING GROUND MOTION PREDICTIONS
Iervolino, I.; Giorgio, M.; Manfredi, G.
2009-12-01
Because, from the engineering perspective, the effectiveness of earthquake early warning systems (EEWS) depends only on the possibility of immediately detecting the earthquake and estimating the expected loss, or a proxy for it, for an engineered system of interest in order to undertake actions to manage/mitigate the risk before the strike, it is worthwhile to assess the efficiency of strategies to predict in real-time the earthquake’s destructive potential. The simplest engineering ground motion parameter is the peak ground acceleration (PGA) which may be predicted through probabilistic seismic hazard analysis in the framework of EEW conditional on some measures the seismologists use to estimate the magnitude from the early recorded signal. The effects of different sources of uncertainty on the prediction of PGA are assessed with reference to the ISNet (Irpinia Seismic Network) EEWS, although results can be considered general. The analyses show how the uncertainty of the ground motion prediction equation (GMPE) dominates those of magnitude and distance, almost independently of the information available for the event. Because the uncertainty related to GMPE is usually very large, it seems that the estimation of PGA should be where to put effort rather than improving the estimation of magnitude and/or earthquake location. An attempt to reduce the uncertainty in the estimation of PGA is made by adding more information (i.e., a second parameter measured in the early part of the signal from real-time seismology) and using the intra-event spatial correlation of peak accelerations at different sites. Based on these analyses distance-related bounds to uncertainty and information-dependent lead-time maps are defined and illustratively computed for the Campania (southern Italy) region.
Liu, P.; Archuleta, R.J.; Hartzell, S.H.
2006-01-01
We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (3D velocity structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been
Rodgers, A. J.; Pitarka, A.; Petersson, N. A.; Sjogreen, B.; McCallen, D.; Miah, M.
2016-12-01
Simulation of earthquake ground motions is becoming more widely used due to improvements of numerical methods, development of ever more efficient computer programs (codes), and growth in and access to High-Performance Computing (HPC). We report on how SW4 can be used for accurate and efficient simulations of earthquake strong motions. SW4 is an anelastic finite difference code based on a fourth order summation-by-parts displacement formulation. It is parallelized and can run on one or many processors. SW4 has many desirable features for seismic strong motion simulation: incorporation of surface topography; automatic mesh generation; mesh refinement; attenuation and supergrid boundary conditions. It also has several ways to introduce 3D models and sources (including Standard Rupture Format for extended sources). We are using SW4 to simulate strong ground motions for several applications. We are performing parametric studies of near-fault motions from moderate earthquakes to investigate basin edge generated waves and large earthquakes to provide motions to engineers study building response. We show that 3D propagation near basin edges can generate significant amplifications relative to 1D analysis. SW4 is also being used to model earthquakes in the San Francisco Bay Area. This includes modeling moderate (M3.5-5) events to evaluate the United States Geologic Survey's 3D model of regional structure as well as strong motions from the 2014 South Napa earthquake and possible large scenario events. Recently SW4 was built on a Commodity Technology Systems-1 (CTS-1) at LLNL, new systems for capacity computing at the DOE National Labs. We find SW4 scales well and runs faster on these systems compared to the previous generation of LINUX clusters.
Joint PET-MR respiratory motion models for clinical PET motion correction
Manber, Richard; Thielemans, Kris; Hutton, Brian F.; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David
2016-09-01
Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.
Hausmann, R. B.; Goldfinger, C.; Black, B.; Collins, T.; Romsos, C. G.; Medeiros, L.; Mutschler, M.; Galer, S.; Raymond, R.; Morey, A. E.
2015-12-01
measurements. Initial slope stability models suggest that slopes less than ~ 25 degrees are statically stable. We are investigating the levels of ground motion required to destabilize surface sediments around the lake, and radiocarbon dating the disturbance events for comparison to other paleoseismic records, including new offshore cores at a similar latitude.
Ezzedine, S. M.; Vorobiev, O.; Herbold, E. B.; Glenn, L. A.; Antoun, T.
2013-12-01
This work is focused on analysis of near-field measurements (up to 100 m from the source) recorded during Source Physics Experiments in a granitic formation. One of the main goals of these experiments is to investigate the possible mechanisms of shear wave generation in the nonlinear source region. SPE experiments revealed significant tangential motion (up to 30 % of the magnitude in the radial direction) at many locations. Furthermore, azimuthal variations in radial velocities were also observed which cannot be generated by a spherical source in isotropic materials. Understanding the nature of this non-radial motion is important for discriminating between the natural seismicity and underground explosions signatures. Possible mechanisms leading to such motion include, but not limited to, heterogeneities in the rock such as joints, faults and geologic layers as well as surface topography and vertical motion at the surface caused by material spall and gravity. We have performed a three dimensional computational studies considering all these effects. Both discrete and continuum methods have been employed to model heterogeneities. In the discrete method, the joints and faults were represented by cohesive contact elements. This enables us to examine various friction laws at the joints which include softening, dilatancy, water saturation and rate-dependent friction. Yet this approach requires the mesh to be aligned with joints, which may present technical difficulties in three dimensions when multiple non-persistent joints are present. In addition, the discrete method is more computationally expensive. The continuum approach assumes that the joints are stiff and the dilatancy and shear softening can be neglected. In this approach, the joints are modeled as weakness planes within the material, which are imbedded into and pass through many finite elements. The advantage of this approach is that it requires neither sophisticated meshing algorithms nor contact detection
Mai, Paul Martin
2010-09-20
We present a new approach for computing broadband (0-10 Hz) synthetic seismograms by combining high-frequency (HF) scattering with low-frequency (LF) deterministic seismograms, considering finite-fault earthquake rupture models embedded in 3D earth structure. Site-specific HF-scattering Green\\'s functions for a heterogeneous medium with uniformly distributed random isotropic scatterers are convolved with a source-time function that characterizes the temporal evolution of the rupture process. These scatterograms are then reconciled with the LF-deterministic waveforms using a frequency-domain optimization to match both amplitude and phase spectra around the target intersection frequency. The scattering parameters of the medium, scattering attenuation ηs, intrinsic attenuation ηi, and site-kappa, as well as frequency-dependent attenuation, determine waveform and spectral character of the HF-synthetics and thus affect the hybrid broadband seismograms. Applying our methodology to the 1994 Northridge earthquake and validating against near-field recordings at 24 sites, we find that our technique provides realistic broadband waveforms and consistently reproduces LF ground-motion intensities for two independent source descriptions. The least biased results, compared to recorded strong-motion data, are obtained after applying a frequency-dependent site-amplification factor to the broadband simulations. This innovative hybrid ground-motion simulation approach, applicable to any arbitrarily complex earthquake source model, is well suited for seismic hazard analysis and ground-motion estimation.
An Inexpensive Mechanical Model for Projectile Motion
Kagan, David
2011-01-01
As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…
Report of Earthquake Drills with Experiences of Ground Motion in Childcare for Young Children, Japan
Yamada, N.
2013-12-01
After the Great East Japan Earthquake of 2011, this disaster has become one of the opportunities to raise awareness of earthquake and tsunami disaster prevention, and the improvement of disaster prevention education is to be emphasized. The influences of these bring the extension to the spatial axis in Japan, and also, it is important to make a development of the education with continuous to the expansion of time axes. Although fire or earthquake drills as the disaster prevention education are often found in Japan, the children and teachers only go from school building to outside. Besides, only the shortness of the time to spend for the drill often attracts attention. The complementary practice education by the cooperation with experts such as the firefighting is practiced, but the verification of the effects is not enough, and it is the present conditions that do not advance to the study either. Although it is expected that improvement and development of the disaster prevention educations are accomplished in future, there are a lot of the problems. Our target is construction and utilization of material contributing to the education about "During the strong motion" in case of the earthquake which may experience even if wherever of Japan. One of the our productions is the handicraft shaking table to utilize as teaching tools of the education to protect the body which is not hurt at the time of strong motion. This made much of simplicity than high reproduction of the earthquake ground motions. We aimed to helping the disaster prevention education including not only the education for young children but also for the school staff and their parents. In this report, the focusing on a way of the non-injured during the time of the earthquake ground motion, and adopting activity of the play, we are going to show the example of the framework of earthquake disaster prevention childcare through the virtual experience. This presentation has a discussion as a practice study with
Institute of Scientific and Technical Information of China (English)
Chin-Kuo Su; Yu-Chi Sung; Shuenn-Yih Chang; Chao-Hsun Huang
2007-01-01
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocitywave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC)bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake.Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However; the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member.FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns.They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear loaddeformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach,the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.
Nozu, Atsushi; Nagasaka, Yosuke
2017-01-01
In this study, the rupture process of the main shock of the Kumamoto earthquake, particularly the generation of strong ground motions in the frequency range relevant to structural damage, was investigated based on the inversion of strong ground motions. Strong-motion records in the near-source region were mainly utilized because the authors were interested in the generation mechanism of damaging ground motions in the near-source region. Empirical Green's functions (EGFs) were applied to avoid uncertainty in the subsurface structure model. Four cases of inversions with different combinations of small events were used to investigate the dependence of the inversion results on the selection of the small events. It was found that the dependence of the final slip distribution and peak slip velocity distribution on the selection of the EGF events is small. The results clearly indicate that a region of significantly large slip and slip velocity existed approximately 15 km northeast of the hypocenter. However, no "asperity" was observed between the hypocenter and Mashiki. Thus, it is not appropriate to conclude that the large-amplitude pulse-like ground motion in Mashiki was generated by the forward-directivity effect associated with the rupture of an asperity. As far as the source effect is concerned, the ground motion in Mashiki cannot be interpreted as the worst case scenario. On the other hand, the rupture of the "asperity" 15 km northeast of the hypocenter should have caused significantly large ground motions in regions close to the asperity. The significant damage of highway bridges in the region can potentially be attributed to the rupture of the asperity. The result of this study was compared with an inversion result obtained from numerical Green's functions for a layered half-space. The two results share the main features in spite of the difference of the Green's functions and stations used. Therefore, it can be concluded that these two source models capture the
Kano, M.; Nagao, H.; Shiomi, K.; Sakai, S.; Nakagawa, S.; Mizusako, S.; Hori, M.; Hirata, N.
2014-12-01
Prediction of structural motions during large earthquakes is important to prevent secondary disasters. To evaluate such strong motion as accurately as possible, it is essential to infer the image of ground motion in the target area based on densely installed seismological networks. In the Tokyo metropolitan area of Japan, the dense seismological array "MeSO-net" was established in 2007, and has approximately 300 stations with several kilometer intervals. Mizusako et al. (2014, AGU) applies lasso, which is a linear regression modeling method using the L1 regularization, to the MeSO-net data during the 2011 off the Pacific coast of Tohoku Earthquake to infer the spatially-high-resolution strong motions in the metropolitan area. Their method succeeds in reproducing the waveforms up to much higher frequency component than previous studies. However, there are two topics to deal with before practical use of their study. The first topic is that real azimuths of MeSO-net seismometers installed after 2009 have not been verified, while those installed in 2007 and 2008 were already verified based on cross correlation with nearby tiltmeters of Hi-net and/or seismometers of F-net (Shiomi et al., 2009). Since azimuths of seismometers obviously affect the data processing, we evaluate the azimuths of seismometers following Shiomi et al. (2009). The second topic is that we cannot directly obtain the ground motion data on surface since MeSO-net seismometers are installed at 20m depth. We have been also developing the method to estimate transfer functions that convert strong motion at 20m depth to that on surface, by utilizing continuous observations obtained both on surface and at 20m depth at two stations, and short-term observations obtained above the boreholes at more than 100 stations. A combination of this vertical transformation method and the horizontal estimation method (Mizusako et al., 2014), enables us to infer an image of ground motions in the whole Tokyo area.
Modeling depth from motion parallax with the motion/pursuit ratio
Directory of Open Access Journals (Sweden)
Mark eNawrot
2014-10-01
Full Text Available The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax is to determine the relationship between these stimulus parameters and empirically determined perceived depth magnitude. Observers compared perceived depth magnitude of dynamic motion parallax stimuli to static binocular disparity comparison stimuli at three different viewing distances, in both head-moving and head-stationary conditions. A stereo-viewing system provided ocular separation for stereo stimuli and monocular viewing of parallax stimuli. For each motion parallax stimulus, a point of subjective equality was estimated for the amount of binocular disparity that generates the equivalent magnitude of perceived depth from motion parallax. Similar to previous results, perceived depth from motion parallax had significant foreshortening. Head-moving conditions produced even greater foreshortening due to the differences in the compensatory eye movement signal. An empirical version of motion/pursuit law, termed the empirical motion/pursuit ratio, which models perceived depth magnitude from these stimulus parameters, is proposed.
Modeling depth from motion parallax with the motion/pursuit ratio.
Nawrot, Mark; Ratzlaff, Michael; Leonard, Zachary; Stroyan, Keith
2014-01-01
The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax is to determine the relationship between these stimulus parameters and empirically determined perceived depth magnitude. Observers compared perceived depth magnitude of dynamic motion parallax stimuli to static binocular disparity comparison stimuli at three different viewing distances, in both head-moving and head-stationary conditions. A stereo-viewing system provided ocular separation for stereo stimuli and monocular viewing of parallax stimuli. For each motion parallax stimulus, a point of subjective equality (PSE) was estimated for the amount of binocular disparity that generates the equivalent magnitude of perceived depth from motion parallax. Similar to previous results, perceived depth from motion parallax had significant foreshortening. Head-moving conditions produced even greater foreshortening due to the differences in the compensatory eye movement signal. An empirical version of the motion/pursuit law, termed the empirical motion/pursuit ratio, which models perceived depth magnitude from these stimulus parameters, is proposed.
Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.
Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max
2013-04-01
In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.
Multi-Hazard Analysis for the Estimation of Ground Motion Induced by Landslides and Tectonics
Iglesias, Rubén; Koudogbo, Fifame; Ardizzone, Francesca; Mondini, Alessandro; Bignami, Christian
2016-04-01
Space-borne synthetic aperture radar (SAR) sensors allow obtaining all-day all-weather terrain complex reflectivity images which can be processed by means of Persistent Scatterer Interferometry (PSI) for the monitoring of displacement episodes with extremely high accuracy. In the work presented, different PSI strategies to measure ground surface displacements for multi-scale multi-hazard mapping are proposed in the context of landslides and tectonic applications. This work is developed in the framework of ESA General Studies Programme (GSP). The present project, called Multi Scale and Multi Hazard Mapping Space based Solutions (MEMpHIS), investigates new Earth Observation (EO) methods and new Information and Communications Technology (ICT) solutions to improve the understanding and management of disasters, with special focus on Disaster Risk Reduction rather than Rapid Mapping. In this paper, the results of the investigation on the key processing steps for measuring large-scale ground surface displacements (like the ones originated by plate tectonics or active faults) as well as local displacements at high resolution (like the ones related with active slopes) will be presented. The core of the proposed approaches is based on the Stable Point Network (SPN) algorithm, which is the advanced PSI processing chain developed by ALTAMIRA INFORMATION. Regarding tectonic applications, the accurate displacement estimation over large-scale areas characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. In this context, a low-resolution approach based in the integration of differential phase increments of velocity and topographic error (obtained through the fitting of a linear model adjustment function to data) will be evaluated. Data from the default mode of Sentinel-1, the Interferometric Wide Swath Mode, will be considered for this application. Regarding landslides
Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers
2010-12-01
Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The
On large amplitude motions of simplest amides in the ground and excited electronic states
Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.
2016-12-01
For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.
Institute of Scientific and Technical Information of China (English)
Lei Jiancheng
2003-01-01
Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake-resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11-89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map.
Efficient Raman sideband cooling of trapped ions to their motional ground state
Che, H.; Deng, K.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H.
2017-07-01
Efficient cooling of trapped ions is a prerequisite for various applications of the ions in precision spectroscopy, quantum information, and coherence control. Raman sideband cooling is an effective method to cool the ions to their motional ground state. We investigate both numerically and experimentally the optimization of Raman sideband cooling strategies and propose an efficient one, which can simplify the experimental setup as well as reduce the number of cooling pulses. Several cooling schemes are tested and compared through numerical simulations. The simulation result shows that the fixed-width pulses and varied-width pulses have almost the same efficiency for both the first-order and the second-order Raman sideband cooling. The optimized strategy is verified experimentally. A single 25Mg+ ion is trapped in a linear Paul trap and Raman sideband cooled, and the achieved average vibrational quantum numbers under different cooling strategies are evaluated. A good agreement between the experimental result and the simulation result is obtained.
Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments
Annamalai, P.; Subramanian, R. S.; Cole, R.
1982-01-01
The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.
Mean and modal ϵ in the deaggregation of probabilistic ground motion
Harmsen, Stephen C.
2001-01-01
An important element of probabilistic seismic-hazard analysis (PSHA) is the incorporation of ground-motion uncertainty from the earthquake sources. The standard normal variate ϵ measures the difference between any specified spectral-acceleration level, or SA0, and the estimated median spectral acceleration from each probabilistic source. In this article, mean and modal values of ϵ for a specified SA0 are defined and computed from all sources considered in the USGS 1996 PSHA maps. Contour maps of ϵ are presented for the conterminous United States for 1-, 0.3-, and 0.2-sec SA0 and for peak horizontal acceleration, PGA0 corresponding to a 2% probability of exceedance (PE) in 50 yr, or mean annual rate of exceedance, r, of 0.000404.
Spectral characteristics of vertical ground motion in the Northridge and other earthquakes
Energy Technology Data Exchange (ETDEWEB)
Bozorgnia, Y. [ATS Engineering, Walnut Creek, CA (United States); Niazi, M. [Berkeley Geophysical Consultants, CA (United States); Campbell, K.W. [EQE International, Evergreen, CO (United States)
1995-12-31
Spectral characteristics of vertical ground motion recorded during the Northridge earthquake are evaluated and compared to those of other earthquakes. Relationship between vertical and horizontal spectra is examined through development of attenuation of vertical and horizontal response spectra. Vertical-to-horizontal response spectral relationship is then compared to that of 1989 Loma Prieta earthquake, and several other earthquakes recorded over SMART-1 array in Taiwan. This preliminary analysis shows that the main characteristics of vertical-to-horizontal spectral ratio are similar to those of other earthquakes. One main characteristic is that in the near-field region and in short period range, the ratio is much higher than commonly assumed ratio of 2/3.
Chang, Kao-Hao; Tsaur, Deng-How; Wang, Jeen-Hwa
2014-12-01
A simplified mathematical model, composed of a semi-circular valley partially filled with an inclined alluvial layer under plane SH-wave incidence, is presented. To evaluate the site response theoretically, a rigorous series solution is derived via the region-matching technique. For angular wavefunctions constrained by an inclined free surface, the original form of Graf's addition formula is recast to arbitrarily shift the local coordinate system. The valley geometry, filling material, angle of incidence, and wave frequency are taken as significant parameters in exploring the site effect on ground motions. Also included are the frequency- and time-domain computations. Two canonical cases, the semi-circular vacant canyon and the fully filled semi-circular alluvial valley, with exact analytical solutions, and the partly horizontally filled case previously studied, are taken to be particular cases of the proposed general model. Steady-state results show that the peak amplitudes of motion may increase at low frequencies when the filling layer inclines to the illuminated region. At low-grazing incidence, the phenomenon of wave focusing becomes evident on the shadow side of the filling layer. Transient-state simulations elucidate how a sequence of surface waves travel on the topmost alluvium along opposite directions and interfere with multiple reflected waves within the filling layer.
Caffagni, Enrico; Cattaneo, Marco; Bordoni, Paola
2016-04-01
Spectral ratio techniques, such as the Horizontal-to-Vertical (HV) and Standard (SSR) may exhibit different trends in specific frequency bands when conducted in alluvial basins. A possible explanation of this discrepancy can be provided by the presence of Rayleigh oscillations, that are considered responsible of an amplification of the vertical component with respect to the horizontal. We propose a new methodology for the identification of Rayleigh waves arrivals, to test on small-size basins. With this procedure, candidate Rayleigh waves are localized in time-frequency domain on an instantaneous polarization plane which is constructed by defining the instantaneous maximum vertical and horizontal spectral amplitudes. Validation of the candidate Rayleigh arrivals is performed by evaluating the instantaneous ellipticity. This step yields to a quantitative measure of the polarization, providing an indicator of the Rayleigh contribution to ground motion. We tested this methodology in the Norcia basin (central Italy) using a 18 selected earthquakes (2.0 L'Aquila sequence (2009). We demonstrate the robustness of our methodology by localizing evidences of Rayleigh wave arrivals immediately from (1 s) up to 30 s after the first S-wave group, even for low-magnitude events (Ml < 3.0). The generation of the detected Rayleigh waves analyzed in time-frequency range, appears to be magnitude-dependent and in function of the location in the basin. Our quantitative estimate of the Rayleigh polarization resulted to be comparable to the HV response value in specific frequency bands, for example in deamplification, demonstrating a plausible connection with Rayleigh oscillations. The authors encourage the usage or implementation of similar procedures conducted in basin studies, in order to determine quantitatively the Rayleigh contribution to ground motion, for a better characterization of the local seismic response.
NUMERICAL MODEL FOR FLOW MOTION WITH VEGETATION
Institute of Scientific and Technical Information of China (English)
ZHANG Jian-tao; SU Xiao-hui
2008-01-01
A set of governing equations for turbulent flows in vegetated area were derived with the assumption that vegetation is of straight and rigid cylinder. The effect of vegetation on flow motion was represented by additional inertial and drag forces. The new model was validated by available experimental data for open channel flows passing through vegetated areas with different vegetation size, density and distribution. Numerical results are in good agreement with the experimental data. Finally, the flow around a supposed isolated vegetated pile was simulated and the effects of vegetation density on the wake flow were discussed. It is found that the presence of vegetation, even at a very low density, has the pronounced influence on the dissipation of flow energy, both inside the vegetation domain and outside it in the wake flow region.
Realistic modelling of observed seismic motion in compIex sedimentary basins
Directory of Open Access Journals (Sweden)
G. F. Panza
1994-06-01
Full Text Available Three applications of a numerical technique are illustrated to model realistically the seismic ground motion for complex two-dimensional structures. First we consider a sedimentary basin in the Friuli region, and we model strong motion records from an aftershock of the 1976 earthquake. Then we simulate the ground motion caused in Rome by the 1915, Fucino (Italy earthquake, and we compare our modelling with the damage distribution observed in the town. Finally we deal with the interpretation of ground motion recorded in Mexico City, as a consequence of earthquakes in the Mexican subduction zone. The synthetic signals explain the major characteristics (relative amplitudes, spectral amplification, frequency content of the considered seismograms, and the space distribution of the available macroseismic data. For the sedimentary basin in the Friuli area, parametric studies demonstrate the relevant sensitivity of the computed ground motion to small changes in the subsurface topography of the sedimentary basin, and in the velocity and quality factor of the sediments. The relative Arias Intensity, determined from our numerical simulation in Rome, is in very good agreoment with the distribution of damage observed during the Fucino earthquake. For epicentral distances in the range 50 km-100 km, the source location and not only the local soil conditions control the local effects. For Mexico City, the observed ground motion can be explained as resonance effects and as excitation of local surface waves, and the theoretical and the observed maximum spectral amplifications are very similar. In general, our numerical simulations estimate the maximum and average spectral amplification for specific sites, i.e. they are a very powerful tool for accurate micro-zonation
On a PCA-based lung motion model
Li, Ruijiang; Lewis, John H.; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A.; Jiang, Steve. B.
2011-01-01
Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772–81), we believe that the spatiotemporal relationship of the entire lung motion can be acc...
The historical seismicity and prediction of ground motion in northeast Mexico
Galván-Ramírez, Iván N.; Montalvo-Arrieta, Juan C.
2008-02-01
This work constitutes the first attempt to understand the seismic hazard in northeast Mexico. We present a compilation of regional seismicity in northeast Mexico (24-31°N, 97-106°W), finding 148 earthquakes for the 1787-2006 period. The study area lies within three morphotectonic provinces: Basin, Range, and Rio Grande rift; Sierra Madre Oriental; and Gulf coastal plain. Peak ground acceleration (PGA) maps were computed for three different scenarios: 1928 Parral, Chihuahua ( MW = 6.5); 1931 Valentine, Texas ( MW = 6.4); and a hypothetical earthquake located in central Coahuila. Ground motion values were computed using attenuation relations developed for central and eastern North America and the Basin and Range provinces. The earthquake in central Coahuila is considered a critical scenario for the main cities of northeast Mexico. The damage associated with this hypothetical earthquake could be severe because most buildings were constructed without seismic criteria. The expected PGA values in Monterrey, Saltillo, and Monclova are between 30 and 70 cm/s 2. This earthquake might also produce or trigger significant landslides and rock falls in the Sierra Madre Oriental, where several cities are located on the mountain range.
Energy Technology Data Exchange (ETDEWEB)
Bernreuter, D.L.
1977-09-30
This paper gives an in-depth discussion on the various methodologies currently available to predict the near-field ground motion from an earthquake. The limitations of the various methods are discussed in some detail in light of recently available data. It is shown that, (at least for California earthquakes) for an earthquake with a given magnitude a wide variation in the peak ground motion can occur. The change in the spectral content of the ground motion is given as a function of earthquake magnitude and peak ground acceleration. It is shown that the large g values associated with small earthquakes are relatively unimportant in the design provided the structures have a modest amount of ductility. Data recently obtained from the Friuli earthquake are also examined. Although not all the geophysical data are currently available, the provisional conclusion is reached that the relation between the strong ground motion from this earthquake and its source parameters is the same as for the western United States.
Vestibular models for design and evaluation of flight simulator motion
Bussolari, S. R.; Sullivan, R. B.; Young, L. R.
1986-01-01
The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.
Rohay, A.; Reidel, S.; Hartshorn, D.; Valenta, M.
2001-12-01
We have been operating five free-field strong motion accelerometers (SMA) at locations near the facilities on the Hanford Site since November 1998. The 28 February 2001 Nisqually earthquake was the first earthquake to be recorded by these instruments. The USGS and Caltech each operate one additional SMA/broadband seismometer site at Hanford (stations HAWA and LTH). Taken together, the elements of this network have an inter-station spacing of 8-12 km. The distance range of the instruments from the epicenter is 245-277 km. Peak ground accelerations ranged from 0.0016 to 0.0035 g (vertical), from 0.0017 to 0.0057 g (radial), and from 0.0022 to 0.0064 g (transverse). The lowest accelerations were observed at the bedrock site HAWA, but accelerations at another station on soil (H300A) were not significantly larger. The other stations on soil show significant amplification across the frequency spectrum and also within variable, narrow frequency ranges. For example, Fourier spectra from the station H100K, the furthest north of these stations, shows nearly a factor of 10 amplification of the transverse ground acceleration in the frequency range 0.5 to 1.0 Hz relative to the bedrock station. We are investigating the differences in soil geology beneath the network of SMA stations to understand these effects. The ground motions recorded from this earthquake are significantly lower than those predicted by intra-slab earthquake ground motion attenuation relationships that were used for Hanford's probabilistic seismic hazard assessment. Although these relationships include statistical variation in ground motion, they do not predict the range of amplification determined at the soil sites for this earthquake. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC06-76RL01830.
Directory of Open Access Journals (Sweden)
D. García Moreno
2013-08-01
Full Text Available On 8 November 1983 an earthquake of magnitude 4.6 damaged more than 16 000 buildings in the region of Liège (Belgium. The extraordinary damage produced by this earthquake, considering its moderate magnitude, is extremely well documented, giving the opportunity to compare the consequences of a recent moderate earthquake in a typical old city of Western Europe with scenarios obtained by combining strong ground motions and vulnerability modelling. The present study compares 0.3 s spectral accelerations estimated from ground motion prediction equations typically used in Western Europe with those obtained locally by applying the statistical distribution of damaged masonry buildings to two fragility curves, one derived from the HAZUS programme of FEMA (FEMA, 1999 and another developed for high-vulnerability buildings by Lang and Bachmann (2004, and to a method proposed by Faccioli et al. (1999 relating the seismic vulnerability of buildings to the damage and ground motions. The results of this comparison reveal good agreement between maxima spectral accelerations calculated from these vulnerability and fragility curves and those predicted from attenuation law equations, suggesting peak ground accelerations for the epicentral area of the 1983 earthquake of 0.13–0.20 g (g: gravitational acceleration.
Autonomous Coordination and Online Motion Modeling for Mobile Robots
2007-09-01
COORDINATION AND ONLINE MOTION MODELING FOR MOBILE ROBOTS by Eric Sjoberg September 2007 Co-Advisors: Kevin Squire Craig Martell...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Autonomous Coordination and Online Motion Modeling for Mobile Robots 6. AUTHOR Eric J...unlimited AUTONOMOUS COORDINATION AND ONLINE MOTION MODELING FOR MOBILE ROBOTS Eric J. Sjoberg Captain, United States Marine Corps B.S
Kojima, K; Sakaguchi, K; Takewaki, I.
2015-01-01
The mechanism of earthquake energy input to building structures is clarified by considering the surface ground amplification and soil–structure interaction. The earthquake input energies to superstructures, soil–foundation systems and total swaying–rocking system are obtained by taking the corresponding appropriate free bodies into account and defining the energy transfer functions. It has been made clear that, when the ground surface motion is white, the input energy to the swaying–rocking m...
Hailemikael, S.; Lenti, L.; Martino, S.; Paciello, A.; Rossi, D.; Mugnozza, G. Scarascia
2016-07-01
Following the Mw 6.3 L'Aquila Earthquake of 2009 April 6, the Colle di Roio village, central Italy, suffered severe building damages. The village is located on top of an elongated carbonate ridge characterized by a complex subsurface structure, a condition prone to seismic amplification due to topographic and stratigraphic effects. We address the role of the subsurface structure and topography in the ground-motion amplification observed at the ridge top. To characterize the subsurface structure of the ridge we performed geological investigations and ambient vibration measurements in single-station as well as 2-D-array configuration. Geological investigations pointed out that the ridge top is characterized by the presence of fractured rock material as a consequence of its anticlinal fold structure. Horizontal-to-vertical spectral ratio (HVSR) processing of ambient vibration records showed a broad peak in the HVSR functions in the frequency range 4-6 Hz and 2-D-array data demonstrated that locally the subsurface structure at the ridge top cannot be considered homogeneous. In summer 2009, we further installed one accelerometric station on the ridge top to experimentally evaluate the site amplification. By means of HVSR analysis of a sample of 18 weak-motion records (H/V), we found that ground-motion amplification occurs in a narrow frequency range centred around 4 Hz with mean ratio amplitude of 6. We also analysed the dependence of seismic amplification on the azimuth by calculating H/V ratios for horizontal components rotated into a range of azimuths. This analysis showed that the higher level of horizontal amplification occurs in the direction perpendicular to the ridge trending direction. With the aim of evaluating the contribution of the topography and the local subsurface structure on the observed seismic amplification, we performed 2-D finite-difference modelling of wave propagation through the ridge, adopting both homogeneous and heterogeneous models. We were
A model of neural mechanisms in monocular transparent motion perception.
Raudies, Florian; Neumann, Heiko
2010-01-01
Transparent motion is perceived when multiple motions are presented in the same part of visual space that move in different directions or with different speeds. Several psychophysical as well as physiological experiments have studied the conditions under which motion transparency occurs. Few computational mechanisms have been proposed that allow to segregate multiple motions. We present a novel neural model which investigates the necessary mechanisms underlying initial motion detection, the required representations for velocity coding, and the integration and segregation of motion stimuli to account for the perception of transparent motion. The model extends a previously developed architecture for neural computations along the dorsal pathway, particularly, in cortical areas V1, MT, and MSTd. It emphasizes the role of feedforward cascade processing and feedback from higher to earlier processing stages for selective feature enhancement and tuning. Our results demonstrate that the model reproduces several key psychophysical findings in perceptual motion transparency using random dot stimuli. Moreover, the model is able to process transparent motion as well as opaque surface motion in real-world sequences of 3-d scenes. As a main thesis, we argue that the perception of transparent motion relies on the representation of multiple velocities at one spatial location; however, this feature is necessary but not sufficient to perceive transparency. It is suggested that the activations simultaneously representing multiple activities are subsequently integrated by separate mechanisms leading to the segregation of different overlapping segments.
Cotton, Fabrice
2017-04-01
Recent damaging earthquakes (e.g. Japan 2011, Nepal 2014, Italy 2016) and associated ground-shaking (ground-motion) records challenge the engineering models used to quantify seismic hazard. The goal of this presentation is to present the lessons learned from these recent events and discuss their implications for ground-motion prediction and probabilistic seismic hazard assessment. The following points will be particularly addressed: 1) Recent observations clearly illustrate the dependency of ground-shaking on earthquake source related factors (e.g. fault properties and geometry, earthquake depth, directivity). The weaknesses of classical models and the impact of these factors on hazard evaluation will be analysed and quantified. 2) These observations also show that events of similar magnitude and style of faulting are producing ground-motions which are highly variable. We will analyse this variability and show that the exponential growth of recorded data give a unique opportunity to quantify regional or between-events shaking variations. Indeed, most seismic-hazard evaluations do not consider the regional specificities of earthquake or wave-propagation properties. There is little guidance in the literature on how this should be done and we will show that this challenge is interdisciplinary, as structural geology, neotectonic and tomographic images can provide key understanding of these regional variations. 3) One of the key lessons of recent earthquakes is that extreme hazard scenarios and ground-shaking are difficult to predict. In other words, we need to mobilize "scientific imagination" and define new strategies based on the latest research results to capture epistemic uncertainties and integrate them in engineering seismology projects. We will discuss these strategies and show an example of their implementation to develop new seismic hazard maps of Europe (Share and Sera FP7 projects) and Germany.
U(6)-Phonon model of nuclear collective motion
Ganev, H. G.
2015-05-01
The U(6)-phonon model of nuclear collective motion with the semi-direct product structure [HW(21)]U(6) is obtained as a hydrodynamic (macroscopic) limit of the fully microscopic proton-neutron symplectic model (PNSM) with Sp(12, R) dynamical group. The phonon structure of the [HW(21)]U(6) model enables it to simultaneously include the giant monopole and quadrupole, as well as dipole resonances and their coupling to the low-lying collective states. The U(6) intrinsic structure of the [HW(21)]U(6) model, from the other side, gives a framework for the simultaneous shell-model interpretation of the ground state band and the other excited low-lying collective bands. It follows then that the states of the whole nuclear Hilbert space which can be put into one-to-one correspondence with those of a 21-dimensional oscillator with an intrinsic (base) U(6) structure. The latter can be determined in such a way that it is compatible with the proton-neutron structure of the nucleus. The macroscopic limit of the Sp(12, R) algebra, therefore, provides a rigorous mechanism for implementing the unified model ideas of coupling the valence particles to the core collective degrees of freedom within a fully microscopic framework without introducing redundant variables or violating the Pauli principle.
Optimal displacement in apparent motion and quadrature models of motion sensing
Watson, Andrew B.
1990-01-01
A grating appears to move if it is displaced by some amount between two brief presentations, or between multiple successive presentations. A number of recent experiments have examined the influence of displacement size upon either the sensitivity to motion, or upon the induced motion aftereffect. Several recent motion models are based upon quadrature filters that respond in opposite quadrants in the spatiotemporal frequency plane. Predictions of the quadrature model are derived for both two-frame and multiframe displays. Quadrature models generally predict an optimal displacement of 1/4 cycle for two-frame displays, but in the multiframe case the prediction depends entirely on the frame rate.
Directory of Open Access Journals (Sweden)
J. R. LI
2016-02-01
Full Text Available Playing an important role in local and national seaport activities, container wharves are susceptible to structural failure and damage during earthquake events. Therefore, factors that affect the seismic response of crane–wharf structures under different types of earthquake ground motions should be elucidated. In this paper, 3D finite element models were established to investigate the differences of natural vibration characteristics between the wharf and crane–wharf structures. The dynamic response of a typical pile-supported wharf structure and the interaction behavior of a crane and wharf structural system under seismic actions of near-field and far-field ground motions were studied by performing numerical simulation and time-history response analysis. Axial force–moment relation curves were adopted to analyze the elastic–plastic limit state of the wharf structure under different ground motions. Results showed that the consideration of the container crane increased the natural vibration period of the pile-supported wharf structure and affected the dynamic characteristics of the structure. Compared with the far-field earthquake ground motion, the nearfield earthquake exerted a more significant impact on the structural dynamic response that controlled the elastic–plastic limit state. With the presence of a crane, the moment and shear force of the pile-top decreased and the location of the extreme value moved down obviously. The findings demonstrated that considering the crane changed the failure mechanism of the wharf structure, and the eccentric effect of the crane may amplify the dynamic response as the peak ground acceleration increases. The results provide reference for the seismic design and the evaluation of the seismic response of container wharves.
Coriolis effects and motion sickness modelling.
Bles, W
1998-11-15
Coriolis effects are notorious in relation to disorientation and motion sickness in aircrew. A review is provided of experimental data on these Coriolis effects, including the modulatory effects of adding visual or somatosensory rotatory motion information. A vector analysis of the consequences of head movements during somatosensory, visual and/or vestibular rotatory motion stimulation revealed that the more the sensed angular velocity vector after the head movements is aligned with the gravitoinertial force vector, the less nauseating effects are experienced. It is demonstrated that this is a special case of the subjective vertical conflict theory on motion sickness that assumes that motion sickness may be provoked if a discrepancy is detected between the subjective vertical and the sensed vertical as determined on the basis of incoming sensory information.
Energy Technology Data Exchange (ETDEWEB)
Hutchings, L; Foxall, W; Kasameyer, P; larsen, S; Hayek, C; Tyler-Turpin, C; Aquilino, J; Long, L
2005-04-22
As a result of collaboration between the Berkeley Seismographic Station, Lawrence Livermore National Laboratory, and Caltrans, instrument packages have been placed in bedrock in six boreholes and two surface sites along the San Francisco/Oakland Bay Bridge. Since 1996 over 200 local earthquakes have been recorded. Prior to this study few seismic recording instruments existed in bed-rock in San Francisco Bay. We utilized the data to perform analysis of ground motion variability, wave passage, site response, and up-and down-hole wave propagation along the Bay Bridge. We also synthesized strong ground motion at nine locations along the Bay Bridge. Key to these studies is LLNL's effort to exploit the information available in weak ground motions (generally from earthquakes < M=4.0) to enhance predictions of seismic hazards. We found that Yerba Island has no apparent site response at the surface relative to a borehole site. The horizontal to vertical spectral ratio method best revealed no site response, while the complex signal spectral ratio method had the lowest variance for spectral ratios and best predicted surface recordings when the borehole recording was used as input. Both methods identified resonances at about the same frequencies. Regional attenuation results in a significant loss of high frequencies in both surface and borehole recordings. Records are band limited at near 3 Hz. Therefore a traditional rock outcrop site response, flat to high frequency in displacement, is not available. We applied a methodology to predict and synthesize strong ground motion along the San Francisco/Oakland Bay Bridge from a M=7.25 earthquake along the Hayward fault, about12 km distant. We synthesized for three-components and broad-band (0.0-25.0 Hz) ground motion accelerations, velocities, and displacements. We examined two different possible rupture scenarios, a ''mean'' and ''one standard deviation'' model. We combined the high
TU-F-17A-03: An Analytical Respiratory Perturbation Model for Lung Motion Prediction
Energy Technology Data Exchange (ETDEWEB)
Li, G; Yuan, A [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Wei, J [City College of New York, New York, NY (United States)
2014-06-15
Purpose: Breathing irregularity is common, causing unreliable prediction in tumor motion for correlation-based surrogates. Both tidal volume (TV) and breathing pattern (BP=ΔVthorax/TV, where TV=ΔVthorax+ΔVabdomen) affect lung motion in anterior-posterior and superior-inferior directions. We developed a novel respiratory motion perturbation (RMP) model in analytical form to account for changes in TV and BP in motion prediction from simulation to treatment. Methods: The RMP model is an analytical function of patient-specific anatomic and physiologic parameters. It contains a base-motion trajectory d(x,y,z) derived from a 4-dimensional computed tomography (4DCT) at simulation and a perturbation term Δd(ΔTV,ΔBP) accounting for deviation at treatment from simulation. The perturbation is dependent on tumor-specific location and patient-specific anatomy. Eleven patients with simulation and treatment 4DCT images were used to assess the RMP method in motion prediction from 4DCT1 to 4DCT2, and vice versa. For each patient, ten motion trajectories of corresponding points in the lower lobes were measured in both 4DCTs: one served as the base-motion trajectory and the other as the ground truth for comparison. In total, 220 motion trajectory predictions were assessed. The motion discrepancy between two 4DCTs for each patient served as a control. An established 5D motion model was used for comparison. Results: The average absolute error of RMP model prediction in superior-inferior direction is 1.6±1.8 mm, similar to 1.7±1.6 mm from the 5D model (p=0.98). Some uncertainty is associated with limited spatial resolution (2.5mm slice thickness) and temporal resolution (10-phases). Non-corrected motion discrepancy between two 4DCTs is 2.6±2.7mm, with the maximum of ±20mm, and correction is necessary (p=0.01). Conclusion: The analytical motion model predicts lung motion with accuracy similar to the 5D model. The analytical model is based on physical relationships, requires no
Tu, Rui; Wang, Rongjiang; Ge, Maorong; Walter, Thomas R.; Ramatschi, Markus; Milkereit, Claus; Bindi, Dino; Dahm, Torsten
2014-05-01
Real-time detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (micro-electro-mechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analysed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers. Reference: Tu, R., R. Wang, M. Ge, T. R. Walter, M. Ramatschi, C. Milkereit, D. Bindi, and T. Dahm (2013), Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer, Geophysical Research Letters, 40, 3825-3829, doi:10.1002/grl.50653.
Directory of Open Access Journals (Sweden)
Kotaro eKojima
2016-03-01
Full Text Available A dynamic stability criterion for elastic-plastic structures under near-fault ground motions is derived in closed-form. A negative post-yield stiffness is treated in order to consider the P-delta effect. The double impulse is used as a substitute of the fling-step near-fault ground motion. Since only the free-vibration appears under such double impulse, the energy approach plays a critical role in the derivation of the closed-form solution of a complicated elastic-plastic response of structures with the P-delta effect. It is remarkable that no iteration is needed in the derivation of the closed-form dynamic stability criterion on the critical elastic-plastic response. It is shown via the closed-form expression that several patterns of unstable behaviors exist depending on the ratio of the input level of the double impulse to the structural strength and on the ratio of the negative post-yield stiffness to the initial elastic stiffness. The validity of the proposed dynamic stability criterion is investigated by the numerical response analysis for structures under double impulses with stable or unstable parameters. Furthermore the reliability of the proposed theory is tested through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.
Modeling for Deformable Body and Motion Analysis: A Review
Directory of Open Access Journals (Sweden)
Hailang Pan
2013-01-01
Full Text Available This paper surveys the modeling methods for deformable human body and motion analysis in the recent 30 years. First, elementary knowledge of human expression and modeling is introduced. Then, typical human modeling technologies, including 2D model, 3D surface model, and geometry-based, physics-based, and anatomy-based approaches, and model-based motion analysis are summarized. Characteristics of these technologies are analyzed. The technology accumulation in the field is outlined for an overview.
Kagawa, Takao; Noguchi, Tatsuya; Yoshida, Shohei; Yamamoto, Shinji
2017-08-01
On October 21, 2016, an earthquake with Japan Meteorological Agency (JMA) magnitude 6.6 hit the central part of Tottori Prefecture, Japan. This paper demonstrates two notable effects of the surface geology on strong ground motions due to the earthquake. One is a predominant period issue observed over a large area. A seismic intensity of 6 lower on the JMA scale was registered at three sites in the disaster area. However, the peak ground acceleration ranged from 0.3 to 1.4 G at the three sites because of the varying peak periods of observed strong ground motions. The spectral properties of the observations also reflect the damage around the sites. Three-component microtremors were observed in the area; the predominant ground period distributions based on horizontal to vertical spectral ratios were provided by the authors. The peak periods of the strong motion records agree well with predominant periods estimated from microtremor observations at a rather hard site; however, the predominant periods of the microtremors are slightly shorter than those of the main shock at the other two soft sites. We checked the nonlinear effect at the sites by comparing the site responses to small events and the main shock. The peak periods of the main shock were longer than those of the weak motions at the sites. This phenomenon indicates a nonlinear site effect due to large ground motions caused by the mai