Sample records for ground hardness snow

  1. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns (United States)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael


    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation


    National Aeronautics and Space Administration — The GPM Ground Validation GCPEX Snow Microphysics Case Study characterizes the 3-D microphysical evolution and distribution of snow in context of the thermodynamic...


    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada Snow Surveys GCPEx dataset was manually collected during the GPM Cold-season Precipitation Experiment (GCPEx), which...

  4. Quantifying snow and vegetation interactions in the high arctic based on ground penetrating radar (GPR)

    DEFF Research Database (Denmark)

    Gacitúa, G.; Bay, C.; Tamstorf, M.


    Arctic in Northeast Greenland. We used ground penetrating radar (GPR) for snow thickness measurements across the Zackenberg valley. Measurements were integrated to the physical conditions that support the vegetation distribution. Descriptive statistics and correlations of the distribution of each...

  5. Optimizing placements of ground-based snow sensors for areal snow cover estimation using a machine-learning algorithm and melt-season snow-LiDAR data (United States)

    Oroza, C.; Zheng, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.


    We present a structured, analytical approach to optimize ground-sensor placements based on time-series remotely sensed (LiDAR) data and machine-learning algorithms. We focused on catchments within the Merced and Tuolumne river basins, covered by the JPL Airborne Snow Observatory LiDAR program. First, we used a Gaussian mixture model to identify representative sensor locations in the space of independent variables for each catchment. Multiple independent variables that govern the distribution of snow depth were used, including elevation, slope, and aspect. Second, we used a Gaussian process to estimate the areal distribution of snow depth from the initial set of measurements. This is a covariance-based model that also estimates the areal distribution of model uncertainty based on the independent variable weights and autocorrelation. The uncertainty raster was used to strategically add sensors to minimize model uncertainty. We assessed the temporal accuracy of the method using LiDAR-derived snow-depth rasters collected in water-year 2014. In each area, optimal sensor placements were determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys was compared to 100 configurations of sensors selected at random. We found the accuracy of the model from the proposed placements to be higher and more consistent in each remaining survey than the average random configuration. We found that a relatively small number of sensors can be used to accurately reproduce the spatial patterns of snow depth across the basins, when placed using spatial snow data. Our approach also simplifies sensor placement. At present, field surveys are required to identify representative locations for such networks, a process that is labor intensive and provides limited guarantees on the networks' representation of catchment independent variables.

  6. Blowing snow detection in Antarctica, from space borne and ground-based remote sensing (United States)

    Gossart, A.; Souverijns, N.; Lhermitte, S.; Lenaerts, J.; Gorodetskaya, I.; Schween, J. H.; Van Lipzig, N. P. M.


    Surface mass balance (SMB) strongly controls spatial and temporal variations in the Antarctic Ice Sheet (AIS) mass balance and its contribution to sea level rise. Currently, the scarcity of observational data and the challenges of climate modelling over the ice sheet limit our understanding of the processes controlling AIS SMB. Particularly, the impact of blowing snow on local SMB is not yet constrained and is subject to large uncertainties. To assess the impact of blowing snow on local SMB, we investigate the attenuated backscatter profiles from ceilometers at two East Antarctic locations in Dronning Maud Land. Ceilometers are robust ground-based remote sensing instruments that yield information on cloud base height and vertical structure, but also provide information on the particles present in the boundary layer. We developed a new algorithm to detect blowing snow (snow particles lifted by the wind from the surface to substantial height) from the ceilometer attenuated backscatter. The algorithm successfully allows to detect strong blowing snow signal from layers thicker than 15 m at the Princess Elisabeth (PE, (72°S, 23°E)) and Neumayer (70°S, 8° W) stations. Applying the algorithm to PE, we retrieve the frequency and annual cycle of blowing snow as well as discriminate between clear sky and overcast conditions during blowing snow. We further apply the blowing snow algorithm at PE to evaluate the blowing snow events detection by satellite imagery (Palm et al., 2011): the near-surface blowing snow layers are apparent in lidar backscatter profiles and enable snowdrift events detection (spatial and temporal frequency, height and optical depth). These data are processed from CALIPSO, at a high resolution (1x1 km digital elevation model). However, the remote sensing detection of blowing snow events by satellite is limited to layers of a minimal thickness of 20-30 m. In addition, thick clouds, mostly occurring during winter storms, can impede drifting snow

  7. Spatially Extensive Ground-Penetrating Radar Observations during NASA's 2017 SnowEx campaign (United States)

    McGrath, D.; Webb, R.; Marshall, H. P.; Hale, K.; Molotch, N. P.


    Quantifying snow water equivalent (SWE) from space remains a significant challenge, particularly in regions of forest cover or complex topography that result in high spatial variability and present difficulties for existing remote sensing techniques. Here we use extensive ground-penetrating radar (GPR) surveys during the NASA SnowEx 2017 campaign to characterize snow depth, density, and SWE across the Grand Mesa field site with a wide range of varying canopy and topographical conditions. GPR surveys, which are sensitive to snow density and microstructure, provide independent information that can effectively constrain leading airborne and spaceborne SWE retrieval approaches. We find good agreement between GPR observations and a suite of supporting in situ measurements, including snowpits, probe lines, and terrestrial LiDAR. Preliminary results illustrate the role of vegetation in controlling SWE variability, with the greatest variability found in dense forests and lowest variability found in open meadows.

  8. Temporal monitoring of the soil freeze-thaw cycles over snow-cover land by using off-ground GPR

    KAUST Repository

    Jadoon, Khan; Lambot, Sé bastien; Dimitrov, Marin; Weihermü ller, Lutz


    We performed off-ground ground-penetrating radar (GPR) measurements over a bare agricultural field to monitor the freeze-thaw cycles over snow-cover. The GPR system consisted of a vector network analyzer combined with an off-ground monostatic horn

  9. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest. (United States)

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi


    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.

  10. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations (United States)

    Kadlec, J.; Ames, D. P.


    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap,, ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by

  11. Blowing snow detection from ground-based ceilometers : Application to East Antarctica

    NARCIS (Netherlands)

    Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina V.; Lhermitte, S.L.M.; Lenaerts, Jan T M; Schween, Jan H.; Mangold, Alexander; Laffineur, Quentin; van Lipzig, Nicole P. M.


    Blowing snow impacts Antarctic ice sheet surface mass balance by snow redistribution and sublimation. However, numerical models poorly represent blowing snow processes, while direct observations are limited in space and time. Satellite retrieval of blowing snow is hindered by clouds and only the

  12. A novel approach for automatic snow depth estimation using UAV-taken images without ground control points (United States)

    Mizinski, Bartlomiej; Niedzielski, Tomasz


    Recent developments in snow depth reconstruction based on remote sensing techniques include the use of photographs of snow-covered terrain taken by unmanned aerial vehicles (UAVs). There are several approaches that utilize visible-light photos (RGB) or near infrared images (NIR). The majority of the methods in question are based on reconstructing the digital surface model (DSM) of the snow-covered area with the use of the Structure-from-Motion (SfM) algorithm and the stereo-vision software. Having reconstructed the above-mentioned DSM it is straightforward to calculate the snow depth map which may be produced as a difference between the DSM of snow-covered terrain and the snow-free DSM, known as the reference surface. In order to use the aforementioned procedure, the high spatial accuracy of the two DSMs must be ensured. Traditionally, this is done using the ground control points (GCPs), either artificial or natural terrain features that are visible on aerial images, the coordinates of which are measured in the field using the Global Navigation Satellite System (GNSS) receiver by qualified personnel. The field measurements may be time-taking (GCPs must be well distributed in the study area, therefore the field experts should travel over long distances) and dangerous (the field experts may be exposed to avalanche risk or cold). Thus, there is a need to elaborate methods that enable the above-mentioned automatic snow depth map production without the use of GCPs. One of such attempts is shown in this paper which aims to present the novel method which is based on real-time processing of snow-covered and snow-free dense point clouds produced by SfM. The two stage georeferencing is proposed. The initial (low accuracy) one assigns true geographic, and subsequently projected, coordinates to the two dense point clouds, while the said initially-registered dense point clouds are matched using the iterative closest point (ICP) algorithm in the final (high accuracy) stage. The

  13. Technology for meat-grinding systems to improve removal of hard particles from ground meat. (United States)

    Zhao, Y; Sebranek, J G


    With increased consumption of ground meat, especially ground beef, quality issues for these products have become more important to industry and consumers alike. Ground meats are usually obtained from relatively low-value cuts and trimmings, and may on occasion contain undesirable hard particles. Hard particles in coarse-ground meat products may include bone chips or fragments, cartilage and dense connective tissue; all of which are considered undesirable defects and which can be reduced by utilizing hard-particle removal systems during grinding operations. This review discusses the principles of hard-particle separation from ground meat, the factors which influence performance of particle separation and some commercially available particle removal systems. Product and processing parameters such as initial bone and connective tissue content, fat content, temperature, pre-grinding size and grinder knife design are considered important for removing hard particles effectively. Pressure gradient on the grinder knife/plate interface was found to play a significant role in particle separation from soft (fat and lean) tissue. Various commercial systems, which are classified as central removal and periphery removal systems, are also discussed. Finally, the authors suggest some processing considerations for meat grinding to help achieve the best quality ground meat for consumers' satisfaction.

  14. Water availability forecasting for Naryn River using ground-based and satellite snow cover data

    Directory of Open Access Journals (Sweden)

    O. Y. Kalashnikova


    Full Text Available The main source of river nourishment in arid regions of Central Asia is the melting of seasonal snow accu‑ mulated in mountains during the cold period. In this study, we analyzed data on seasonal snow cover by ground‑based observations from Kyrgyzhydromet network, as well as from MODIS satellite imagery for the period of 2000–2015. This information was used to compile the forecast methods of water availability of snow‑ice and ice‑snow fed rivers for the vegetation period. The Naryn river basin was chosen as a study area which is the main tributary of Syrdarya River and belongs to the Aral Sea basin. The representative mete‑ orological stations with ground‑based observations of snow cover were identified and regression analysis between mean discharge for the vegetation period and number of snow covered days, maximum snow depth based on in‑situ data as well as snow cover area based on MODIS images was conducted. Based on this infor‑ mation, equations are derived for seasonal water availability forecasting using multiple linear regression anal‑ ysis. Proposed equations have high correlation coefficients (R = 0.89÷0.92 and  and fore‑ casting accuracy. The methodology was implemented in Kyrgyzhydromet and is used for forecasting of water availability in Naryn basin and water inflow into Toktogul Reservoir.

  15. Strategies for cloud-top phase determination: differentiation between thin cirrus clouds and snow in manual (ground truth) analyses (United States)

    Hutchison, Keith D.; Etherton, Brian J.; Topping, Phillip C.


    Quantitative assessments on the performance of automated cloud analysis algorithms require the creation of highly accurate, manual cloud, no cloud (CNC) images from multispectral meteorological satellite data. In general, the methodology to create ground truth analyses for the evaluation of cloud detection algorithms is relatively straightforward. However, when focus shifts toward quantifying the performance of automated cloud classification algorithms, the task of creating ground truth images becomes much more complicated since these CNC analyses must differentiate between water and ice cloud tops while ensuring that inaccuracies in automated cloud detection are not propagated into the results of the cloud classification algorithm. The process of creating these ground truth CNC analyses may become particularly difficult when little or no spectral signature is evident between a cloud and its background, as appears to be the case when thin cirrus is present over snow-covered surfaces. In this paper, procedures are described that enhance the researcher's ability to manually interpret and differentiate between thin cirrus clouds and snow-covered surfaces in daytime AVHRR imagery. The methodology uses data in up to six AVHRR spectral bands, including an additional band derived from the daytime 3.7 micron channel, which has proven invaluable for the manual discrimination between thin cirrus clouds and snow. It is concluded that while the 1.6 micron channel remains essential to differentiate between thin ice clouds and snow. However, this capability that may be lost if the 3.7 micron data switches to a nighttime-only transmission with the launch of future NOAA satellites.

  16. High-resolution LIDAR and ground observations of snow cover in a complex forested terrain in the Sierra Nevada - implications for optical remote sensing of seasonal snow. (United States)

    Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.


    Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with

  17. Temporal monitoring of the soil freeze-thaw cycles over snow-cover land by using off-ground GPR

    KAUST Repository

    Jadoon, Khan


    We performed off-ground ground-penetrating radar (GPR) measurements over a bare agricultural field to monitor the freeze-thaw cycles over snow-cover. The GPR system consisted of a vector network analyzer combined with an off-ground monostatic horn antenna, thereby setting up an ultra-wideband stepped-frequency continuous-wave radar. Measurements were performed during nine days and the surface of the bare soil was exposed to snow fall, evaporation and precipitation as the GPR antenna was mounted 110 cm above the ground. Soil surface dielectric permittivity was retrieved using an inversion of time-domain GPR data focused on the surface reflection. The GPR forward model used combines a full-waveform solution of Maxwell\\'s equations for three-dimensional wave propagation in planar layered media together with global reflection and transmission functions to account for the antenna and its interactions with the medium. Temperature and permittivity sensors were installed at six depths to monitor the soil dynamics in the top 8 cm depth. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and permittivity data and in particular freeze and thaw events were clearly visible. A good agreement of the trend was observed between the temperature, permittivity and GPR time-lapse data with respect to five freeze-thaw cycles. The GPR-derived permittivity was in good agreement with sensor observations. The proposed method appears to be promising for the real-time mapping and monitoring of the frozen layer at the field scale. © 2013 IEEE.

  18. Ground Snow Measurements: Comparisons of the Hotplate, Weighing and Manual Methods (United States)

    Wettlaufer, A.; Snider, J.; Campbell, L. S.; Steenburgh, W. J.; Burkhart, M.


    The Yankee Environmental Systems (YES) Hotplate was developed to avoid some of the problems associated with weighing snowfall sensors. This work compares Hotplate, weighing sensor (ETI NOAH-II) and manual measurements of liquid-equivalent depth. The main field site was at low altitude in western New York; Hotplate and ETI comparisons were also made at two forested subalpine sites in southeastern Wyoming. The manual measurement (only conducted at the New York site) was derived by weighing snow cores sampled from a snow board. The two recording gauges (Hotplate and ETI) were located within 5 m of the snow board. Hotplate-derived accumulations were corrected using a wind-speed dependent catch efficiency and the ETI orifice was heated and alter shielded. Three important findings are evident from the comparisons: 1) The Yes-derived accumulations, recorded in a user-accessible file, were compared to accumulations derived using an in-house calibration and fundamental measurements (plate power, long and shortwave radiances, wind speed, and temperature). These accumulations are highly correlated (N=24; r2=0.99), but the YES-derived values are larger by 20%. 2) The in-house Hotplate accumulations are in good agreement with ETI-based accumulations but with larger variability (N=24; r2=0.88). 3) The comparison of in-house Hotplate accumulation versus manual accumulation, expressed as mm of liquid, exhibits a fitted linear relationship Y (in-house) versus X (manual) given by Y = -0.2 (±1.4) + 0.9 (±0.1) · X (N= 20; r2=0.89). Thus, these two methods agree within statistical uncertainty.

  19. Microwave scattering coefficient of snow in MEMLS and DMRT-ML revisited: the relevance of sticky hard spheres and tomography-based estimates of stickiness

    Directory of Open Access Journals (Sweden)

    H. Löwe


    Full Text Available The description of snow microstructure in microwave models is often simplified to facilitate electromagnetic calculations. Within dense media radiative transfer (DMRT, the microstructure is commonly described by sticky hard spheres (SHS. An objective mapping of real snow onto SHS is however missing which prevents measured input parameters from being used for DMRT. In contrast, the microwave emission model of layered snowpacks (MEMLS employs a conceptually different approach, based on the two-point correlation function which is accessible by tomography. Here we show the equivalence of both electromagnetic approaches by reformulating their microstructural models in a common framework. Using analytical results for the two-point correlation function of hard spheres, we show that the scattering coefficient in both models only differs by a factor which is close to unity, weakly dependent on ice volume fraction and independent of other microstructural details. Additionally, our analysis provides an objective retrieval method for the SHS parameters (diameter and stickiness from tomography images. For a comprehensive data set we demonstrate the variability of stickiness and compare the SHS diameter to the optical equivalent diameter. Our results confirm the necessity of a large grain-size scaling when relating both diameters in the non-sticky case, as previously suggested by several authors.

  20. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground (United States)

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.


    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  1. Ground-state properties of a dilute homogeneous Bose gas of hard disks in two dimensions

    International Nuclear Information System (INIS)

    Mazzanti, F.; Polls, A.; Fabrocini, A.


    The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x∼0.001. The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x

  2. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.


    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  3. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P D; Voss, C I [US Geological Survey, Reston, VA (United States)


    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO{sub 3} composition at shallow depth to a CaCl{sub 2}-rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E{sub H} values are generally near -300 mV, and on average are only about 50 mV lower than E{sub H} values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m{sup 2} per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the

  4. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan


    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  5. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan; Weihermller, Lutz; McCabe, Matthew; Moghadas, Davood; Vereecken, Harry; Lambot, Sbastien


    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  6. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon


    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  7. UAS applications in high alpine, snow-covered terrain (United States)

    Bühler, Y.; Stoffel, A.; Ginzler, C.


    Access to snow-covered, alpine terrain is often difficult and dangerous. Hence parameters such as snow depth or snow avalanche release and deposition zones are hard to map in situ with adequate spatial and temporal resolution and with spatial continuous coverage. These parameters are currently operationally measured at automated weather stations and by observer networks. However such isolated point measurements are not able to capture the information spatial continuous and to describe the high spatial variability present in complex mountain topography. Unmanned Aerial Systems (UAS) have the potential to fill this gap by frequently covering selected high alpine areas with high spatial resolution down to ground resolutions of even few millimeters. At the WSL Institute for Snow and Avalanche Research SLF we test different photogrammetric UAS with visual and near infrared bands. During the last three years we were able to gather experience in more than 100 flight missions in extreme terrain. By processing the imagery applying state-of-the-art structure from motion (SfM) software, we were able to accurately document several avalanche events and to photogrammetrically map snow depth with accuracies from 1 to 20 cm (dependent on the flight height above ground) compare to manual snow probe measurements. This was even possible on homogenous snow surfaces with very little texture. A key issue in alpine terrain is flight planning. We need to cover regions at high elevations with large altitude differences (up to 1 km) with high wind speeds (up to 20 m/s) and cold temperatures (down to - 25°C). Only a few UAS are able to cope with these environmental conditions. We will give an overview on our applications of UAS in high alpine terrain that demonstrate the big potential of such systems to acquire frequent, accurate and high spatial resolution geodata in high alpine, snow covered terrain that could be essential to answer longstanding questions in avalanche and snow hydrology

  8. NOAA's National Snow Analyses (United States)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.


    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  9. Snow Matters

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia; Jensen, Martin Trandberg


    attribute of high altitude mountain destinations. Hitherto, researchers mostly engaged with snowclad landscapes as a backstage; trying to deconstruct the complex symbolism and representational qualities of this elusive substance. Despite snow being a strategically crucial condition for tourism in the Alps......This chapter explores the performative potential of snow for Alpine tourism, by drawing attention to its material and nonrepresentational significance for tourism practices. European imagination has been preoccupied with snow since medieval times and even today, snow features as the sine que non...

  10. Attenuation characteristics of seismic motion based on earthquake observation records. Identification of damping factor at hard rock sites and its influences on ground stability evaluation

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Kanatani, Mamoru; Ohtori, Yasuki


    In this report, we examined validity of currently available ground stability evaluation method by applying commonly used damping factor which was invariant for frequency. First, we conducted a survey of the actual conditions of damping factors, which were used in ground stability evaluation, on 10 existing nuclear power plants. As a result, we found that damping factor of 0.03(3%) was used in of 80 percent investigated plants. Next, a spectral inversion method using very fast simulated annealing was proposed for identifying damping factor and its lower limit. Here, the lower limit of damping factor means intrinsic damping factor. The developed inversion method was applied to borehole array data recorded at hard rock ground. From the inversion, it was found that intrinsic damping factor of hard rock ground distributed between about 0.03(3%) and 0.06(3%) at a depth of less than 100m, and between about 0.003(0.3%) and 0.01(1%) at a depth of more than 100m. Furthermore, we indicated that scattering damping factor with in a depth of less than 100m was in proportion to the almost -1.0 power of the frequency, and the factor in a depth of more than 100m had a peak in a frequency range from about 1.0 to 5.0 Hz. Therefore, it was recognized that commonly used damping of 0.03(3%) expressed intrinsic damping factor of shallower hard rock ground. Finally, we estimated the influences of damping factor on ground stability evaluation by 2D dynamic FEM analyses of hard rock foundation ground considering 8 slipping lines using 6 combinations of damping factor. It was demonstrated that the variation of damping factor was not so decisive on the results of ground stability evaluation. This suggests present ground stability evaluation method by applying commonly used damping factor is reasonable for hard rock sites. (author)

  11. Snow Leopard

    Indian Academy of Sciences (India)

    adult females (dimorphic); a male on average weighing between. 45–55 kg, while a .... performance of wild prey, eventually leading to a decline in their population. Research .... working towards enhancing knowledge on snow leopard ecology.

  12. The value of snow cover (United States)

    Sokratov, S. A.


    Snow is the natural resource, like soil and water. It has specific properties which allow its use not just for skiing but also for houses cooling in summer (Swedish experience), for air fields construction (Arctic and Antarctic), for dams (north of Russia), for buildings (not only snow-houses of some Polar peoples but artistic hotel attracting tourists in Sweden), and as art material (Sapporo snow festival, Finnish events), etc. "Adjustment" of snow distribution and amount is not only rather common practice (avalanche-protection constructions keeping snow on slopes) but also the practice with long history. So-called "snow irrigation" was used in Russia since XIX century to protect winter crop. What is now named "artificial snow production", is part of much larger pattern. What makes it special—it is unavoidable in present climate and economy situation. 5% of national income in Austria is winter tourism. 50% of the economy in Savoy relay on winter tourism. In terms of money this can be less, but in terms of jobs and income involved this would be even more considerable in Switzerland. As an example—the population of Davos is 14000 in Summer and 50000 in Winter. Skiing is growing business. In present time you can find ski slopes in Turkey and Lebanon. To keep a cite suitable for attracting tourists you need certain amount of sunny days and certain amount of snow. The snow cannons are often the only way to keep a place running. On the other hand, more artificial snow does not necessary attract more tourists, while heavy natural snowfall does attract them. Artificial snow making is costly and requires infrastructure (ponds and electric lines) with very narrow range of weather conditions. Related companies are searching for alternatives and one of them can be "weather regulation" by distribution of some chemical components in clouds. It did not happen yet, but can happen soon. The consequences of such interference in Nature is hardly known. The ski tourism is not the

  13. Assimilation of ground and satellite snow observations in a distributed hydrologic model to improve water supply forecasts in the Upper Colorado River Basin (United States)

    Micheletty, P. D.; Day, G. N.; Quebbeman, J.; Carney, S.; Park, G. H.


    The Upper Colorado River Basin above Lake Powell is a major source of water supply for 25 million people and provides irrigation water for 3.5 million acres. Approximately 85% of the annual runoff is produced from snowmelt. Water supply forecasts of the April-July runoff produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC), are critical to basin water management. This project leverages advanced distributed models, datasets, and snow data assimilation techniques to improve operational water supply forecasts made by CBRFC in the Upper Colorado River Basin. The current work will specifically focus on improving water supply forecasts through the implementation of a snow data assimilation process coupled with the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Three types of observations will be used in the snow data assimilation system: satellite Snow Covered Area (MODSCAG), satellite Dust Radiative Forcing in Snow (MODDRFS), and SNOTEL Snow Water Equivalent (SWE). SNOTEL SWE provides the main source of high elevation snowpack information during the snow season, however, these point measurement sites are carefully selected to provide consistent indices of snowpack, and may not be representative of the surrounding watershed. We address this problem by transforming the SWE observations to standardized deviates and interpolating the standardized deviates using a spatial regression model. The interpolation process will also take advantage of the MODIS Snow Covered Area and Grainsize (MODSCAG) product to inform the model on the spatial distribution of snow. The interpolated standardized deviates are back-transformed and used in an Ensemble Kalman Filter (EnKF) to update the model simulated SWE. The MODIS Dust Radiative Forcing in Snow (MODDRFS) product will be used more directly through temporary adjustments to model snowmelt parameters, which should improve melt estimates in areas affected by dust on snow. In

  14. Using environmental niche modeling to find suitable habitats for the Hard-ground Barasingha in Madhya Pradesh, India

    Directory of Open Access Journals (Sweden)

    C. P. Singh


    Full Text Available The subspecies of Swamp Deer, the Hard-ground Barasingha (Rucervus duvaucelii branderi Pocock, is presently found only in Kanha Tiger Reserve (KTR in Madhya Pradesh, India. This subspecies is highly vulnerable to extinction, and reintroduction in suitable sites is the need of the hour.  Environmental niche models (GARP, SVM, ED, CSM aimed at providing a detailed prediction of species distribution by relating presence of species to 19 bioclimatic indices were developed, using swamp deer occurrence records in KTR. The predictions were appropriately weighted with the prevailing LU/LC classes to identify suitable habitats in Madhya Pradesh, India. The result shows that the southern region of Madhya Pradesh is suitable for the sustenance of Barasingha with varying degrees of habitability. Vicarious validation shows that most of these forest areas were the same as that of historical records dating back to 50 years. However, land use maps can help identify areas where this subspecies can be reintroduced. 

  15. Snow clearance

    CERN Multimedia

    Mauro Nonis


    In reply to the numerous questions received, we should like to inform you of the actions and measures taken in an effort to maintain the movements of vehicles and pedestrians since the heavy snow fall on Sunday 23 January. Our contractor's employees began clearing the snow during the morning of Sunday 23 January on the main CERN sites (Meyrin, Prévessin), but an accident prevented them from continuing. The vehicle in question was repaired by Monday morning when two other vehicles joined it to resume snow clearing; priority was given to access points to the main sites and the LHC sites, as well as to the main roads inside the sites. The salt sprinklers were also brought into action that same day; the very low temperature during the night from Monday to Tuesday prevented the snow from melting and compacted the ice; the continuing cold during the day on Tuesday (-6°C at 10:00 on the Meyrin site) meant that all efforts to remove the ice were doomed to failure. In order to ensure more efficie...

  16. Storing snow for the next winter: Two case studies on the application of snow farming. (United States)

    Grünewald, Thomas; Wolfsperger, Fabian


    Snow farming is the conservation of snow during the warm half-year. This means that large piles of snow are formed in spring in order to be conserved over the summer season. Well-insulating materials such as chipped wood are added as surface cover to reduce melting. The aim of snow farming is to provide a "snow guaranty" for autumn or early winter - this means that a specific amount of snow will definitively be available, independent of the weather conditions. The conserved snow can then be used as basis for the preparation of winter sports grounds such as cross-country tracks or ski runs. This helps in the organization of early winter season sport events such as World Cup races or to provide appropriate training conditions for athletes. We present a study on two snow farming projects, one in Davos (Switzerland) and one in the Martell valley of South Tyrol. At both places snow farming has been used for several years. For the summer season 2015, we monitored both snow piles in order to assess the amount of snow conserved. High resolution terrestrial laser scanning was performed to measure snow volumes of the piles at the beginning and at the end of the summer period. Results showed that only 20% to 30 % of the snow mass was lost due to ablation. This mass loss was surprisingly low considering the extremely warm and dry summer. In order to identify the most relevant drivers of snow melt we also present simulations with the sophisticated snow cover models SNOWPACK and Alpine3D. The simulations are driven by meteorological input data recorded in the vicinity of the piles and enable a detailed analysis of the relevant processes controlling the energy balance. The models can be applied to optimize settings for snow farming and to examine the suitability of new locations, configurations or cover material for future snow farming projects.

  17. Brilliant Colours from a White Snow Cover (United States)

    Vollmer, Michael; Shaw, Joseph A


    Surprisingly colourful views are possible from sparkling white snow. It is well known that similarly colourful features can exist in the sky whenever appropriate ice crystals are around. However, the transition of light reflection and refraction from ice crystals in the air to reflection and refraction from those in snow on the ground is not…

  18. Water losses during technical snow production (United States)

    Grünewald, Thomas; Wolfsperger, Fabian


    These days, the production of technical snow can be seen as a prerequisite for winter tourism. Huge amounts of water are used for technical snow production by ski resorts, especially in the beginning of the winter season. The aim is to guarantee an appropriate amount of snow to reliably provide optimal ski runs until the date of season opening in early December. Technical snow is generated by pumping pressurized water through the nozzles of a snow machine and dispersing the resulting spray of small water droplets which freeze during their travel to the ground. Cooling and freezing of the droplets can only happen if energy is emitted to the air mass surrounding the droplets. This heat transfer is happening through convective cooling and though evaporation and sublimation of water droplets and ice particles. This means that also mass is lost from the droplets and added in form of vapor to the air. It is important to note that not all water that is pumped through the snow machine is converted to snow distributed on the ground. Significant amounts of water are lost due to wind drift, sublimation and evaporation while droplets are traveling through the air or to draining of water which is not fully frozen when arriving at the ground. Studies addressing this question are sparse and the quantity of the water losses is still unclear. In order to assess this question in more detail, we obtained several systematic field observations at a test site near Davos, Switzerland. About a dozen of snow making tests had been performed during the last winter seasons. We compare the amount of water measured at the intake of the snow machine with the amount of snow accumulating at the ground during a night of snow production. The snow mass was calculated from highly detailed repeated terrestrial laser scanning measurements in combination with manually gathered snow densities. In addition a meteorological station had been set up in the vicinity observing all relevant meteorological

  19. Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

    International Nuclear Information System (INIS)

    Stanzel, Ph; Haberl, U; Nachtnebel, H P


    Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.

  20. Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, Ph; Haberl, U; Nachtnebel, H P [Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna (Austria)], E-mail:


    Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.

  1. Improving snow density estimation for mapping SWE with Lidar snow depth: assessment of uncertainty in modeled density and field sampling strategies in NASA SnowEx (United States)

    Raleigh, M. S.; Smyth, E.; Small, E. E.


    The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.

  2. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin (United States)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.


    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average

  3. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface (United States)

    Omiya, S.; Sato, A.


    Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under

  4. New nitrogen uptake strategy: specialized snow roots. (United States)

    Onipchenko, Vladimir G; Makarov, Mikhail I; van Logtestijn, Richard S P; Ivanov, Viktor B; Akhmetzhanova, Assem A; Tekeev, Dzhamal K; Ermak, Anton A; Salpagarova, Fatima S; Kozhevnikova, Anna D; Cornelissen, Johannes H C


    The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.

  5. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    Directory of Open Access Journals (Sweden)

    G. Bisht


    Full Text Available Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0. Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively. The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ∼ 10 cm shallower and  ∼ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ∼ 3 cm. Our integration of three-dimensional subsurface hydrologic and

  6. Statistical analysis of fast hard X-ray bursts by SMM observations and microwave bursts by ground-based observations (United States)

    Li, Chun-Sheng; Jiang, Shu-Ying


    In order to understand the relationship between fast hard X-ray bursts (HXRB) and microwave bursts (MWB), data were used from the following publications: NASA Technical Memorandum 84998; Solar Geological Data (1980 to 1983); monthly report of Solar Radio Emission; and NASA and NSF: Solar Geophysical Data (1980 to 1983). For analyzing individual events, the criterion of the same event for HXRB and MWB is determined by peak time difference. There is a good linear correlation between the physical parameter of HXRB and MWB.

  7. Work Hard / Play Hard


    Burrows, J.; Johnson, V.; Henckel, D.


    Work Hard / Play Hard was a participatory performance/workshop or CPD experience hosted by interdisciplinary arts atelier WeAreCodeX, in association with As a socially/economically engaged arts practice, Work Hard / Play Hard challenged employees/players to get playful, or go to work. 'The game changes you, you never change the game'. Employee PLAYER A 'The faster the better.' Employer PLAYER B

  8. ESA GlobSnow Snow Water Equivalent (SWE) (United States)

    National Aeronautics and Space Administration — The European Space Agency (ESA) Global Snow Monitoring for Climate Research (GlobSnow) snow water equivalent (SWE) v2.0 data record contains snow information derived...

  9. Estimating Snow Cover from Publicly Available Images


    Fedorov, Roman; Camerada, Alessandro; Fraternali, Piero; Tagliasacchi, Marco


    In this paper we study the problem of estimating snow cover in mountainous regions, that is, the spatial extent of the earth surface covered by snow. We argue that publicly available visual content, in the form of user generated photographs and image feeds from outdoor webcams, can both be leveraged as additional measurement sources, complementing existing ground, satellite and airborne sensor data. To this end, we describe two content acquisition and processing pipelines that are tailored to...

  10. A distributed snow-evolution modeling system (SnowModel) (United States)

    Glen E. Liston; Kelly. Elder


    SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...

  11. Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx (United States)

    Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.


    SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.

  12. Snowscape Ecology: Linking Snow Properties to Wildlife Movements and Demography (United States)

    Prugh, L.; Verbyla, D.; van de Kerk, M.; Mahoney, P.; Sivy, K. J.; Liston, G. E.; Nolin, A. W.


    Snow enshrouds up to one third of the global land mass annually and exerts a major influence on animals that reside in these "snowscapes," (landscapes covered in snow). Dynamic snowscapes may have especially strong effects in arctic and boreal regions where dry snow persists for much of the year. Changes in temperature and hydrology are transforming northern regions, with profound implications for wildlife that are not well understood. We report initial findings from a NASA ABoVE project examining effects of snow properties on Dall sheep (Ovis dalli dalli). We used the MODSCAG snow fraction product to map spring snowline elevations and snow-off dates from 2000-2015 throughout the global range of Dall sheep in Alaska and northwestern Canada. We found a negative effect of spring snow cover on Dall sheep recruitment that increased with latitude. Using meteorological data and a daily freeze/thaw status product derived from passive microwave remote sensing from 1983-2012, we found that sheep survival rates increased in years with higher temperatures, less winter precipitation, fewer spring freeze-thaw events, and more winter freeze-thaw events. To examine the effects of snow depth and density on sheep movements, we used location data from GPS-collared sheep and a snowpack evolution model (SnowModel). We found that sheep selected for shallow, fluffy snow at high elevations, but they selected for denser snow as depth increased. Our field measurements identified a critical snow density threshold of 329 (± 18 SE) kg/m3 to support the weight of Dall sheep. Thus, sheep may require areas of shallow, fluffy snow for foraging, while relying on hard-packed snow for winter travel. These findings highlight the importance of multiple snowscape properties on wildlife movements and demography. The integrated study of snow properties and ecological processes, which we call snowscape ecology, will greatly improve global change forecasting.

  13. Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing

    Directory of Open Access Journals (Sweden)

    L. Dai


    Full Text Available Snow cover on the Qinghai–Tibetan Plateau (QTP plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow

  14. Aespoe Hard Rock Laboratory. Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Haakan (GeoVista AB (Sweden))


    This report presents survey description and results of ground magnetic measurements carried out by GeoVista AB at Aespoe in December, 2011. The purpose of the ground magnetic measurement was to measure variations in the earth magnetic field and to gain knowledge of the magnetization of the bedrock in an area where SKB plan to build a facility for calibration of equipment for measurements of borehole orientation. A total of 312 data points were collected along three survey lines, 104 points/profile. The data show nice and smooth variations that appear to be natural. There is a clear consistency of the magnetic field variations between the three survey lines, which indicates that the variations in the magnetic field reflect geological variations related to lithology and content of magnetic minerals. There are no indications of artifacts or erroneous data. The anomaly field averages at -32 nT with peak values of Min = -1,016 nT and Max = +572 nT. The strongest anomalies occur at profile length c. 130-140 m. Adding the background field of 50,823 nT, measured at a base station located close to the survey area, the total magnetic field averages at 50,791+-226 nT. The ground magnetic measurement gives background information before the construction of the calibration facility. The magnetic anomaly at c. 130-140 m give possibilities to control disturbances of magnetic-accelerometer based instruments. The magnetic measurements show that it is possible to construct the facility at the site

  15. Aespoe Hard Rock Laboratory. Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan


    This report presents survey description and results of ground magnetic measurements carried out by GeoVista AB at Aespoe in December, 2011. The purpose of the ground magnetic measurement was to measure variations in the earth magnetic field and to gain knowledge of the magnetization of the bedrock in an area where SKB plan to build a facility for calibration of equipment for measurements of borehole orientation. A total of 312 data points were collected along three survey lines, 104 points/profile. The data show nice and smooth variations that appear to be natural. There is a clear consistency of the magnetic field variations between the three survey lines, which indicates that the variations in the magnetic field reflect geological variations related to lithology and content of magnetic minerals. There are no indications of artifacts or erroneous data. The anomaly field averages at -32 nT with peak values of Min = -1,016 nT and Max = +572 nT. The strongest anomalies occur at profile length c. 130-140 m. Adding the background field of 50,823 nT, measured at a base station located close to the survey area, the total magnetic field averages at 50,791±226 nT. The ground magnetic measurement gives background information before the construction of the calibration facility. The magnetic anomaly at c. 130-140 m give possibilities to control disturbances of magnetic-accelerometer based instruments. The magnetic measurements show that it is possible to construct the facility at the site

  16. Snow snake performance monitoring. (United States)


    A recent study, Three-Dimensional Roughness Elements for Snow Retention (FHWA-WY-06/04F) (Tabler 2006), demonstrated : positive evidence for the effectiveness of Snow Snakes, a new type of snow fence suitable for use within the highway right-of...

  17. Modelling of snow exceedances (United States)

    Jordanova, Pavlina K.; Sadovský, Zoltán; Stehlík, Milan


    Modelling of snow exceedances is of great importance and interest for ecology, civil engineering and general public. We suggest the favorable fit for exceedances related to the exceptional snow loads from Slovakia, assuming that the data is driven by Generalised Pareto Distribution or Generalized Extreme Value Distribution. Further, the statistical dependence between the maximal snow loads and the corresponding altitudes is studied.

  18. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. (United States)

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel


    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.


    Directory of Open Access Journals (Sweden)

    Rafael Martínez-Gallego


    Full Text Available Previous studies of movement characteristics in tennis have considered the effect of playing surface but have assumed that playing strategies are simply determined by the surface as opposed to being under an individual's control. This study considered the selection of cross court or down the line ground strokes as being indicative of playing strategy and measured the outcome of playing these shots in terms of the opponent's movements. Matches (N = 8 at the 2011 ATP tournament 500 Valencia were recorded and analysed using SAGIT, a computer vision tracking system that allowed both players' movements to be tracked automatically, albeit with operator supervision. The data was split into (N = 188 games for analysis purposes and these lasted a median 174.24 seconds with active time (ball in play a median proportion of 34.89% (IQR = 10.64% of total time. During the active time losers of games tended to cover less distance (median = 80.17 m, move quicker (median = 1.38 m·s-1, spend more time in the defensive zones (median = 14.24 s and less in the offensive zones (median = 44.74 s. These results suggested that game winners tended to dominate game losers, forcing them to exhibit behaviors typically associated with a defensive strategy. Defensive and offensive strategy are not well defined currently and future investigations should consider movements in relation to individual shots, in particular their velocities, at the rally level and by different individuals to better understand successful performance

  20. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA (United States)

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey


    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  1. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau (United States)

    Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing


    This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.

  2. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)



    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  3. Hard probes 2006 Asilomar

    CERN Multimedia


    "The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

  4. Scales of snow depth variability in high elevation rangeland sagebrush (United States)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.


    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  5. Digging of 'Snow White' Begins (United States)


    NASA's Phoenix Mars Lander began excavating a new trench, dubbed 'Snow White,' in a patch of Martian soil located near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The trench is about 2 centimeters (.8 inches) deep and 30 centimeters (about 12 inches) long. The 'dump pile' is located at the top of the trench, the side farthest away from the lander, and has been dubbed 'Croquet Ground.' The digging site has been named 'Wonderland.' At this early stage of digging, the Phoenix team did not expect to find any of the white material seen in the first trench, now called 'Dodo-Goldilocks.' That trench showed white material at a depth of about 5 centimeters (2 inches). More digging of Snow White is planned for coming sols, or Martian days. The dark portion of this image is the shadow of the lander's solar panel; the bright areas within this region are not in shadow. Snow White was dug on Sol 22 (June 17, 2008) with Phoenix's Robotic Arm. This picture was acquired on the same day by the lander's Surface Stereo Imager. This image has been enhanced to brighten shaded areas. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. A snow cover climatology for the Pyrenees from MODIS snow products (United States)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.


    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the

  7. A Distributed Snow Evolution Modeling System (SnowModel) (United States)

    Liston, G. E.; Elder, K.


    A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.

  8. Observations of distributed snow depth and snow duration within diverse forest structures in a maritime mountain watershed (United States)

    Dickerson-Lange, Susan E.; Lutz, James A.; Gersonde, Rolf; Martin, Kael A.; Forsyth, Jenna E.; Lundquist, Jessica D.


    Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011-2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, situated on the western slope of the Cascade Range, include unthinned second-growth coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-growth forest. Together, this publicly available data set includes snow depth and density observations from manual snow surveys, distributed snow duration observations from ground temperature sensors and time-lapse cameras, meteorological data collected at two open locations and three forested locations, and forest canopy data from airborne light detection and ranging (LiDAR) data and hemispherical photographs. These colocated snow, meteorological, and forest data have the potential to improve understanding of forest influences on snow processes, and provide a unique model-testing data set for hydrological analyses in a forested, maritime watershed. We present empirical snow depletion curves within forests to illustrate an application of these data to improve subgrid representation of snow cover in distributed modeling.

  9. Loropetalum chinense 'Snow Panda' (United States)

    A new Loropetalum chinense, ‘Snow Panda’, developed at the U.S. National Arboretum is described. ‘Snow Panda’ (NA75507, PI660659) originated from seeds collected near Yan Chi He, Hubei, China in 1994 by the North America-China Plant Exploration Consortium (NACPEC). Several seedlings from this trip w...

  10. Satellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches

    Directory of Open Access Journals (Sweden)

    Stefan Kern


    Full Text Available Snow on Antarctic sea ice plays a key role for sea ice physical processes and complicates retrieval of sea ice thickness using altimetry. Current methods of snow depth retrieval are based on satellite microwave radiometry, which perform best for dry, homogeneous snow packs on level sea ice. We introduce an alternative approach based on in-situ measurements of total (sea ice plus snow freeboard and snow depth, which we use to compute snow depth on sea ice from Ice, Cloud, and land Elevation Satellite (ICESat total freeboard observations. We compare ICESat snow depth for early winter and spring of the years 2004 through 2006 with the Advanced Scanning Microwave Radiometer aboard EOS (AMSR-E snow depth product. We find ICESat snow depths agree more closely with ship-based visual and air-borne snow radar observations than AMSR-E snow depths. We obtain average modal and mean ICESat snow depths, which exceed AMSR-E snow depths by 5–10 cm in winter and 10–15 cm in spring. We observe an increase in ICESat snow depth from winter to spring for most Antarctic regions in accordance with ground-based observations, in contrast to AMSR-E snow depths, which we find to stay constant or to decrease. We suggest satellite laser altimetry as an alternative method to derive snow depth on Antarctic sea ice, which is independent of snow physical properties.

  11. Snow hydrology in Mediterranean mountain regions: A review (United States)

    Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard


    Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that

  12. Learn Mac OS X Snow Leopard

    CERN Document Server

    Meyers, Scott


    You're smart and savvy, but also busy. This comprehensive guide to Apple's Mac OS X 10.6, Snow Leopard, gives you everything you need to know to live a happy, productive Mac life. Learn Mac OS X Snow Leopard will have you up and connected lickity split. With a minimum of overhead and a maximum of useful information, you'll cover a lot of ground in the time it takes other books to get you plugged in. If this isn't your first experience with Mac OS X, skip right to the "What's New in Snow Leopard" sections. You may also find yourself using this book as a quick refresher course or a way

  13. Snow model analysis. (United States)


    This study developed a new snow model and a database which warehouses geometric, weather and traffic : data on New Jersey highways. The complexity of the model development lies in considering variable road : width, different spreading/plowing pattern...

  14. Anoxia in the snow (United States)

    Bristow, Laura A.


    Substantial amounts of denitrification and other anaerobic metabolisms can occur in anoxic microenvironments within marine snow particles, according to model simulations. This microbial activity may have a global impact on nitrogen cycling.

  15. Sentinels for snow science (United States)

    Gascoin, S.; Grizonnet, M.; Baba, W. M.; Hagolle, O.; Fayad, A.; Mermoz, S.; Kinnard, C.; Fatima, K.; Jarlan, L.; Hanich, L.


    Current spaceborne sensors do not allow retrieving the snow water equivalent in mountain regions, "the most important unsolved problem in snow hydrology" (Dozier, 2016). While the NASA is operating an airborne mission to survey the SWE in the western USA, elsewhere, however, snow scientists and water managers do not have access to routine SWE measurements at the scale of a mountain range. In this presentation we suggest that the advent of the Copernicus Earth Observation programme opens new perspectives to address this issue in mountain regions worldwide. The Sentinel-2 mission will provide global-scale multispectral observations at 20 m resolution every 5-days (cloud permitting). The Sentinel-1 mission is already imaging the global land surface with a C-band radar at 10 m resolution every 6 days. These observations are unprecedented in terms of spatial and temporal resolution. However, the nature of the observation (radiometry, wavelength) is in the continuity of previous and ongoing missions. As a result, it is relatively straightforward to re-use algorithms that were developed by the remote sensing community over the last decades. For instance, Sentinel-2 data can be used to derive maps of the snow cover extent from the normalized difference snow index, which was initially proposed for Landsat. In addition, the 5-days repeat cycle allows the application of gap-filling algorithms, which were developed for MODIS based on the temporal dimension. The Sentinel-1 data can be used to detect the wet snow cover and track melting areas as proposed for ERS in the early 1990's. Eventually, we show an example where Sentinel-2-like data improved the simulation of the SWE in the data-scarce region of the High Atlas in Morocco through assimilation in a distributed snowpack model. We encourage snow scientists to embrace Sentinel-1 and Sentinel-2 data to enhance our knowledge on the snow cover dynamics in mountain regions.

  16. On the impact of snow cover on daytime pollution dispersion (United States)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Hildebrand, P.; Rogers, F. A.; Cramer, J.; Schanot, A.

    A preliminary evaluation of the impact of snow cover on daytime pollutant dispersion conditions is made by using conceptual, scaling, and observational analyses. For uniform snow cover and synoptically unperturbed sunny conditions, observations indicate a considerate suppression of the surface sensible heat flux, the turbulence, and the development of the daytime atmospheric boundary layer (ABL) when compared to snow-free conditions. However, under conditions of non-uniform snow cover, as in urban areas, or associated with vegetated areas or bare ground patches, a milder effect on pollutant dispersion conditions would be expected. Observed concentrations of atmospheric particles within the ABL, and surface pollutant concentrations in urban areas, reflect the impact of snow cover on the modification of ABL characteristics.

  17. Application of radar polarimetry techniques for retrieval snow and rain characteristics in remote sensing

    Directory of Open Access Journals (Sweden)

    M. Darvishi


    Full Text Available The presence of snow cover has significant impacts on the both global and regional climate and water balance on earth. The accurate estimation of snow cover area can be used for forecasting runoff due to snow melt and output of hydroelectric power. With development of remote sensing techniques at different scopes in earth science, enormous algorithms for retrieval hydrometeor parameters have been developed. Some of these algorithms are used to provide snow cover map such as NLR with AVHRR/MODIS sensor for Norway, Finnish with AVHRR sensor for Finland and NASA with MODIS sensor for global maps. Monitoring snow cover at different parts of spectral electromagnetic is detectable (visible, near and thermal infrared, passive and active microwave. Recently, specific capabilities of active microwave remote sensing such as snow extent map, snow depth, snow water equivalent (SWE, snow state (wet/dry and discrimination between rain and snow region were given a strong impetus for using this technology in snow monitoring, hydrology, climatology, avalanche research and etc. This paper evaluates the potentials and feasibility of polarimetric ground microwave measurements of snow in active remote sensing field. We will consider the behavior co- and cross-polarized backscattering coefficients of snowpack response with polarimetric scatterometer in Ku and L band at the different incident angles. Then we will show how to retrieve snow cover depth, snow permittivity and density parameters at the local scale with ground-based SAR (GB-SAR. Finally, for the sake of remarkable significant the transition region between rain and snow; the variables role of horizontal reflectivity (ZHH and differential reflectivity (ZDR in delineation boundary between snow and rain and some others important variables at polarimetric weather radar are presented.

  18. COSMO-SkyMed Image Investigation of Snow Features in Alpine Environment

    Directory of Open Access Journals (Sweden)

    Simonetta Paloscia


    Full Text Available In this work, X band images acquired by COSMO-SkyMed (CSK on alpine environment have been analyzed for investigating snow characteristics and their effect on backscattering variations. Preliminary results confirmed the capability of simultaneous optical and Synthetic Aperture Radar (SAR images (Landsat-8 and CSK in separating snow/no-snow areas and in detecting wet snow. The sensitivity of backscattering to snow depth has not always been confirmed, depending on snow characteristics related to the season. A model based on Dense Media Radiative Transfer theory (DMRT-QMS was applied for simulating the backscattering response on the X band from snow cover in different conditions of grain size, snow density and depth. By using DMRT-QMS and snow in-situ data collected on Cordevole basin in Italian Alps, the effect of grain size and snow density, beside snow depth and snow water equivalent, was pointed out, showing that the snow features affect the backscatter in different and sometimes opposite ways. Experimental values of backscattering were correctly simulated by using this model and selected intervals of ground parameters. The relationship between simulated and measured backscattering for the entire dataset shows slope >0.9, determination coefficient, R2 = 0.77, and root mean square error, RMSE = 1.1 dB, with p-value <0.05.

  19. Early results from NASA's SnowEx campaign (United States)

    Kim, Edward; Gatebe, Charles; Hall, Dorothy; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Hiemstra, Chris; Brucker, Ludovic; Crawford, Chris; Kang, Do Hyuk; De Marco, Eugenia; Beckley, Matt; Entin, Jared


    SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earth's terrestrial snow-covered regions? Year 1 (2016-17) focuses on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site is Grand Mesa and the secondary site is the Senator Beck Basin, both in western, Colorado, USA. Ten core sensors on four core aircraft will make observations using a broad suite of airborne sensors including active and passive microwave, and active and passive optical/infrared sensing techniques to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also includes an extensive range of ground truth measurements—in-situ samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some early results will be presented. Seasonal snow cover is the largest single component of the cryosphere in areal extent (covering an average of 46M km2 of Earth's surface (31 % of land areas) each year). This seasonal snow has major societal impacts in the areas of water resources, natural hazards (floods and droughts), water security, and weather and climate. The only practical way to estimate the quantity of snow on a consistent global basis is through satellites. Yet, current space-based techniques underestimate storage of snow water equivalent (SWE) by as much as 50%, and model-based estimates can differ greatly vs. estimates based on remotely-sensed observations. At peak coverage, as much as half of snow-covered terrestrial areas involve forested areas, so quantifying the challenge represented by forests is important to plan any future snow mission. Single-sensor approaches may work for certain snow types and certain conditions, but not for others

  20. Field observations of the electrostatic charges of blowing snow in Hokkaido, Japan (United States)

    Omiya, S.; Sato, A.


    An electrostatic charge of blowing snow may be a contributing factor in the formation of a snow drift and a snow cornice, and changing of the trajectory of own motion. However, detailed electrification characteristics of blowing snow are not known as there are few reports of charge measurements. We carried out field observations of the electrostatic charges of blowing snow in Tobetsu, Hokkaido, Japan in the mid winter of 2011. An anemovane and a thermohygrometer were used for the meteorological observation. Charge-to-mass ratios of blowing snow were obtained by a Faraday-cage, an electrometer and an electric balance. In this observation period, the air temperature during the blowing snow event was -6.5 to -0.5 degree Celsius. The measured charges in this observation were consistent with the previous studies in sign, which is negative, but they were smaller than the previous one. In most cases, the measured values increased with the temperature decrease, which corresponds with previous studies. However, some results contradicted the tendency, and the maximum value was obtained on the day of the highest air temperature of -0.5 degree Celsius. This discrepancy may be explained from the difference of the snow surface condition on observation day. The day when the maximum value was obtained, the snow surface was covered with old snow, and hard. On the other hand, in many other cases, the snow surface was covered with the fresh snow, and soft. Blowing snow particles on the hard surface can travel longer distance than on the soft one. Therefore, it can be surmised that the hard surface makes the blowing snow particles accumulate a lot of negative charges due to a large number of collisions to the surface. This can be supported by the results of the wind tunnel experiments by Omiya and Sato (2011). By this field observation, it was newly suggested that the electrostatic charge of blowing snow are influenced greatly by the difference of the snow surface condition. REFERENCE

  1. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.


    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  2. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.


    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  3. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.


    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  4. Towards Improved Snow Water Equivalent Estimation via GRACE Assimilation (United States)

    Forman, Bart; Reichle, Rofl; Rodell, Matt


    Passive microwave (e.g. AMSR-E) and visible spectrum (e.g. MODIS) measurements of snow states have been used in conjunction with land surface models to better characterize snow pack states, most notably snow water equivalent (SWE). However, both types of measurements have limitations. AMSR-E, for example, suffers a loss of information in deep/wet snow packs. Similarly, MODIS suffers a loss of temporal correlation information beyond the initial accumulation and final ablation phases of the snow season. Gravimetric measurements, on the other hand, do not suffer from these limitations. In this study, gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission are used in a land surface model data assimilation (DA) framework to better characterize SWE in the Mackenzie River basin located in northern Canada. Comparisons are made against independent, ground-based SWE observations, state-of-the-art modeled SWE estimates, and independent, ground-based river discharge observations. Preliminary results suggest improved SWE estimates, including improved timing of the subsequent ablation and runoff of the snow pack. Additionally, use of the DA procedure can add vertical and horizontal resolution to the coarse-scale GRACE measurements as well as effectively downscale the measurements in time. Such findings offer the potential for better understanding of the hydrologic cycle in snow-dominated basins located in remote regions of the globe where ground-based observation collection if difficult, if not impossible. This information could ultimately lead to improved freshwater resource management in communities dependent on snow melt as well as a reduction in the uncertainty of river discharge into the Arctic Ocean.

  5. Snow-clearing operations

    CERN Multimedia

    EN Department


    To facilitate snow clearing operations, which commence at 4.30 in the morning, all drivers of CERN cars are kindly requested to park them together in groups. This will help us greatly assist us in our work. Thank-you for your help. Transport Group / EN-HE Tel. 72202

  6. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  7. Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014 (United States)

    Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Jesús Esteban-Parra, María; Essery, Richard


    We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 km × 10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 10 km × 10 km grid cell in the Iberian Peninsula. The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism, and risk management. The data presented here are freely available for download from Zenodo ( This paper fully describes the work flow, data validation, uncertainty assessment, and possible applications and limitations of the database.

  8. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers (United States)

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram


    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily

  9. Snow deposition and melt under different vegetative covers in central New York (United States)

    A. R. Eschner; D. R. Satterlund


    Two-thirds of the annual runoff from watersheds in the Allegheny Plateau of central New York comes from the snow-or snow and rain that falls in December through April. Although the amounts of precipitation in this period are fairly uniform from year to year, the proportion that falls as snow varies; so does the amount that accumulates on the ground, and its duration...

  10. The distribution of snow accumulation across the Austfonna ice cap, Svalbard: direct measurements and modelling


    Taurisano, Andrea; Schuler, Thomas V.; Hagen, Jon Ove; Eiken, Trond; Loe, Even; Melvold, Kjetil; Kohler, Jack


    We present an analysis of the spatial variability in the snow accumulation on the Austfonna ice cap in Svalbard, Norway, based on the results of field investigations conducted in the spring of 1999, 2004 and 2005. During the campaigns ground penetrating radar measurements at 500 and 800 MHz were collected along profiles, along with additional manual snow sounding and pit stratigraphy work. The analysis of the data reveals a consistent pattern in the spatial distribution of the snow accumulati...

  11. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review (United States)

    Dong, Chunyu


    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  12. Application of the MODIS “snow cover” product for identification of the snow cover pattern in Gis-Baikal region

    Directory of Open Access Journals (Sweden)

    E. A. Istomina


    Full Text Available Validation of remote sensing data MODIS «snow cover» in the period from September to May 2000/01, 2007/08, 2008/09 is realized on the base of weather stations data. Good repeatability of weather stations data and snow cover data is shown (more than 80% when snow depth is exceeds 2 cm. The minimum accuracy is in May and October for the variety of snowfall winters. Remote sensing data give possibility to extend the dot information of hydrometeorological stations network on the spatial snow distribution to the mountainous area of Predbajkalje where ground-based observations are absent. According to remote sensing earlier appearance and later melting of snow in mountain areas were identified. The plains and basins areas are characterized by later appearance and earlier melting of snow.

  13. A Particle Batch Smoother Approach to Snow Water Equivalent Estimation (United States)

    Margulis, Steven A.; Girotto, Manuela; Cortes, Gonzalo; Durand, Michael


    This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%-82% and 60%-68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBSRMSE was approx.54%of that seen in the EnBS, while for snow courses the PBSRMSE was approx.79%of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.

  14. Introduction to snow rheology

    International Nuclear Information System (INIS)

    Montmollin, Vincent de


    The tests described in the thesis are rotating shearing tests, with rotational constant speed ranging between 0.00075 rpm and 0.75 rpm. The results obtained are similar to those observed with compression tests at constant speed, except that shearing tests are carried out with densities nearly constant. So, we show three different domains when the rotation speed increases: 1) viscous (without failure) 2) brittle of first type (cycles of brittle failures) and 3) brittle of second type (only one brittle failure and solid friction). These results show clearly that the fundamental mechanism that rules the mechanisms of snow, is fast metamorphosis of bonds, binding ice grains: this metamorphosis is important when solicitation speeds are low (permanent rate of shearing in viscous domain, regeneration of the failure surfaces in the brittle domain of the first type) and this metamorphosis does not exist when speed increases (only one failure and solid friction in the brittle domain of second type). It is also included an important bibliographic analysis of the snow mechanics, and an experimental and theoretical study about shock wave propagation in natural snow covers. (author) [fr

  15. Snow accretion on overhead wires

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y. [Meteorological Research Inst. for Technology Co. Ltd., Tokyo (Japan); Tachizaki, S.; Sudo, N. [Tohoku Electric Power Co. Ltd., Miyagi (Japan)


    Wet snow accretion can cause extensive damage to transmission systems. This paper reviewed some of the difficulties faced by researchers in the study of wet snow accretion on overhead lines in Japan. The study of snow accretion phenomena is complicated by the range of phase changes in water. Snowflakes produced in an upper atmospheric layer with a temperature below freezing do not melt when they go through a lower atmospheric layer with a temperature above freezing, but are in a mixed state of solid and liquid due to the latent heat of melting. The complicated properties of water make studies of snow accretion difficult, as well as the fact that snow changes its physical properties rapidly, due to the effects of ambient temperature, rainfall, and solar radiation. The adhesive forces that cause snow accretion include freezing; bonding through freezing; sintering; condensation and freezing of vapor in the air; mechanical intertwining of snowflakes; capillary action due to liquids; coherent forces between ice particles and water formed through the metamorphosis of snowflakes. In addition to these complexities, differences in laboratory room environments and natural snow environments can also pose difficulties for researchers. Equations describing the relationship between the density of accreted snow and the meteorological parameters involved were presented, as well as empirical equations which suggested that snow accretion efficiency has a dependency on air temperature. An empirical model for estimating snow loads in Japan was outlined, as well as various experiments observing show shedding. Correlations for wet snow accretion included precipitation intensity; duration of precipitation; air temperature; wind speed and wind direction in relation to the overhead line. Issues concerning topography and wet snow accretion were reviewed. It was concluded that studies of snow accretion will benefit by the collection of data in each matrix of the relevant parameters. 12 refs

  16. Assessment of dynamic probabilistic methods for mapping snow cover in Québec Canada (United States)

    De Seve, D.; Perreault, L.; Vachon, F.; Guay, F.; choquette, Y.


    Hydro-Quebec is the leader in electricity production in North America and uses hydraulic resources to generate 97% of its overall production where snow represents 30% of its annual energy reserve. Information on snow cover extent (SC) and snow water equivalent (SWE) is crucial for hydrological forecasting, particularly in Nordic regions where a majority of total precipitations falls as snow. Accurate estimation of the spatial distribution of snow cover variables is required to measure the extent of this resource but snow surveys are expensive due to inaccessibility factors and to the large extent nature of the Quebec geography. Consequently, the follow-up of snowmelt is particularly challenging for operational forecasting resulting in the need to develop a new approach to assist forecasters. For improved understanding of the dynamics of snow melting over watersheds and to generate optimized power production, Hydro-Québec's Research Institute (IREQ) has developed expertise in in-situ, remote sensing monitoring and statistical treatment of such data. The main goal of this Hydro-Quebec project is to develop an automatic and dynamic snow mapping system providing a daily snow map by merging remote sensing (AVHRR and SSMI) and in situ data. This paper focuses on the work accomplished on passive microwave SSM/I data to follow up snow cover. In our problematic, it is highly useful to classify snow, more specifically during the snowmelt period. The challenge is to be able to discriminate ground from wet snow as it will react as a black body, therefore, adding noise to global brightness temperature. Two dynamic snow classifiers were developed and tested. For this purpose, channels at 19 and 37 GHz in vertical polarization have been used to feed each model. SWE values from gamma ray in situ stations (GMON) and data snow depth from ultrasonic sensor (SR50) were used to validate the output models. The first algorithm is based on a standard K-mean clustering approach, combined

  17. Antarctic snow and global climate

    International Nuclear Information System (INIS)

    Granberg, H.B.


    Global circulation models (GCM) indicate that global warming will be most pronounced at polar regions and high latitudes, causing concern about the stability of the Antarctic ice cap. A project entitled the Seasonal Snow in Antarctica examined the properties of the near surface snow to determine the current conditions that influence snow cover development. The goal was to assess the response of the snow cover in Queen Maud Land (QML) to an increased atmospheric carbon dioxide content. The Antarctic snow cover in QML was examined as part of the FINNARP expeditions in 1999 and 2000 which examined the processes that influence the snow cover. Its energy and mass balance were also assessed by examining the near surface snow strata in shallow (1-2 m) pits and by taking measurements of environmental variables. This made it possible to determine if the glacier is in danger of melting at this northerly location in the Antarctic. The study also made it possible to determine which variables need to change and by how much, for significant melting to occur. It was shown that the Antarctic anticyclone creates particular conditions that protect the snow cover from melting. The anticyclone brings dry air from the stratosphere during most of the year and is exempt from the water vapour feedback. It was concluded that even a doubling of atmospheric carbon dioxide will not produce major snow melt runoff. 8 refs

  18. A Vision for an International Multi-Sensor Snow Observing Mission (United States)

    Kim, Edward


    Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.

  19. Modelling the snowmelt and the snow water equivalent by creating a simplified energy balance conceptual snow model (United States)

    Riboust, Philippe; Thirel, Guillaume; Le Moine, Nicolas; Ribstein, Pierre


    A better knowledge of the accumulated snow on the watersheds will help flood forecasting centres and hydro-power companies to predict the amount of water released during spring snowmelt. Since precipitations gauges are sparse at high elevations and integrative measurements of the snow accumulated on watershed surface are hard to obtain, using snow models is an adequate way to estimate snow water equivalent (SWE) on watersheds. In addition to short term prediction, simulating accurately SWE with snow models should have many advantages. Validating the snow module on both SWE and snowmelt should give a more reliable model for climate change studies or regionalization for ungauged watersheds. The aim of this study is to create a new snow module, which has a structure that allows the use of measured snow data for calibration or assimilation. Energy balance modelling seems to be the logical choice for designing a model in which internal variables, such as SWE, could be compared to observations. Physical models are complex, needing high computational resources and many different types of inputs that are not widely measured at meteorological stations. At the opposite, simple conceptual degree-day models offer to simulate snowmelt using only temperature and precipitation as inputs with fast computing. Its major drawback is to be empirical, i.e. not taking into account all of the processes of the energy balance, which makes this kind of model more difficult to use when willing to compare SWE to observed measurements. In order to reach our objectives, we created a snow model structured by a simplified energy balance where each of the processes is empirically parameterized in order to be calculated using only temperature, precipitation and cloud cover variables. This model's structure is similar to the one created by M.T. Walter (2005), where parameterizations from the literature were used to compute all of the processes of the energy balance. The conductive fluxes into the

  20. No Snow? No Problem! Ski Statutes Still Provide Legal Protection (United States)

    Buckmaster, Melanie E.; Young, Sarah J.


    In August 2012, Barbara Fakhouri visited Ober Gatlinburg, a ski resort located in eastern Tennessee to vacation with her family. Ms. Fakhouri used a wheelchair to ambulate. Despite the absence of snow on the ground, the resort operated year-round with many amenities such as an amusement park, restaurant, lounge, and shopping center to captivate…

  1. Aerosol optical depth retrieval over snow using AATSR data

    NARCIS (Netherlands)

    Mei, L.; Xue, Y.; Kokhanovsky, A.A.; Hoyningen-Huene, W. von; Istomina, L.; Leeuw, G. de; Burrows, J.P.; Guang, J.; Jing, Y.


    Aerosol observations over the Arctic are important because of the effects of aerosols on Arctic climate, such as their direct and indirect effects on the Earth's radiation balance and on snow albedo. Although information on aerosol properties is available from ground-based measurements, passive

  2. Snow and SMOW

    International Nuclear Information System (INIS)


    In the midst of Vienna's hottest weather spell this year, members of the Agency's headquarters laboratory staff found themselves unpacking a consignment of fresh snow from the Antarctic. It had been sent by air through Los Angeles, not for cooling purposes, but to assist in making more accurate measurements as part of the study of the world's water distribution and movement. The same research also involves SMOW (Standard Mean Ocean Water) and samples of water from the mid-Pacific will also soon arrive for scientific examination

  3. J-SEx : The Jollie Snow Experiment, New Zealand (United States)

    Kerr, T.; Singh, S.; Kees, L.; Webster, C.; Clark, M.; Hendrikx, J.; Woods, R.


    Intensive snow observations have been collected in a steep alpine catchment (the Jollie Valley) in the Southern Alps of New Zealand for four years at the time of maximum snow storage. The campaign, called the Jollie Snow Experiment (J-SEx), was undertaken to improve understanding of snow variability in a steep alpine landscape. Observation methods included manual depth-probing at hundreds of locations with associated snowpit-digging, and surface and air-borne ground penetrating radar. In addition, repeat (daily) oblique photography was carried out on a subcatchment for two of the years. Analysis of the observations, in conjunction with similar observations from around the world has enabled direction to be given for selecting optimal modelling scales, and an indication of what processes need to be resolved at the different scales. For instance, if models are to operate at sub-100 m horizontal scales, they need to resolve drifting, sloughing and avalanching processes. Binary regression tree methods have been applied to identify terrain variables which explain the observed snow mass variability. This has enabled an assessment of total catchment snow storage to be established for each year. This assessment showed that the controlling variables change from year to year, so that no single terrain-based interpolation method may be generally applied. The change in the terrain relationships each year has been taken as an indication that the different frequencies of snowfall-related climate types from one year to the next affects which terrain characteristics have the greatest impact on snow variability. Assessment of terrain effects at the slope scale indicates that slope angle has the potential to be a strong influence on snow variability in that steep slopes do not build up large accumulations, and that low-angled regions below steep areas become areas of large snow build-up. This "slope" effect is clearly evident from the repeat photography, with the last areas to melt

  4. A probabilistic model for snow avalanche occurrence (United States)

    Perona, P.; Miescher, A.; Porporato, A.


    Avalanche hazard forecasting is an important issue in relation to the protection of urbanized environments, ski resorts and of ski-touring alpinists. A critical point is to predict the conditions that trigger the snow mass instability determining the onset and the size of avalanches. On steep terrains the risk of avalanches is known to be related to preceding consistent snowfall events and to subsequent changes in the local climatic conditions. Regression analysis has shown that avalanche occurrence indeed correlates to the amount of snow fallen in consecutive three snowing days and to the state of the settled snow at the ground. Moreover, since different type of avalanches may occur as a result of the interactions of different factors, the process of snow avalanche formation is inherently complex and with some degree of unpredictability. For this reason, although several models assess the risk of avalanche by accounting for all the involved processes with a great detail, a high margin of uncertainty invariably remains. In this work, we explicitly describe such an unpredictable behaviour with an intrinsic noise affecting the processes leading snow instability. Eventually, this sets the basis for a minimalist stochastic model, which allows us to investigate the avalanche dynamics and its statistical properties. We employ a continuous time process with stochastic jumps (snowfalls), deterministic decay (snowmelt and compaction) and state dependent avalanche occurrence (renewals) as a minimalist model for the determination of avalanche size and related intertime occurrence. The physics leading to avalanches is simplified to the extent where only meteorological data and terrain data are necessary to estimate avalanche danger. We explore the analytical formulation of the process and the properties of the probability density function of the avalanche process variables. We also discuss what is the probabilistic link between avalanche size and preceding snowfall event and

  5. Cold, Ice, and Snow Safety (For Parents) (United States)

    ... to mention a few. Plus, someone has to shovel the snow, right? Once outdoors, however, take precautions ... re going to get the family outside to shovel the snow? Fine, but take care. Snow shoveling ...

  6. The assessment of EUMETSAT HSAF Snow Products for mountainuos areas in the eastern part of Turkey (United States)

    Akyurek, Z.; Surer, S.; Beser, O.; Bolat, K.; Erturk, A. G.


    Monitoring the snow parameters (e.g. snow cover area, snow water equivalent) is a challenging work. Because of its natural physical properties, snow highly affects the evolution of weather from daily basis to climate on a longer time scale. The derivation of snow products over mountainous regions has been considered very challenging. This can be done by periodic and precise mapping of the snow cover. However inaccessibility and scarcity of the ground observations limit the snow cover mapping in the mountainous areas. Today, it is carried out operationally by means of optical satellite imagery and microwave radiometry. In retrieving the snow cover area from satellite images bring the problem of topographical variations within the footprint of satellite sensors and spatial and temporal variation of snow characteristics in the mountainous areas. Most of the global and regional operational snow products use generic algorithms for flat and mountainous areas. However the non-uniformity of the snow characteristics can only be modeled with different algorithms for mountain and flat areas. In this study the early findings of Satellite Application Facilities on Hydrology (H-SAF) project, which is financially supported by EUMETSAT, will be presented. Turkey is a part of the H-SAF project, both in product generation (eg. snow recognition, fractional snow cover and snow water equivalent) for mountainous regions for whole Europe, cal/val of satellite-derived snow products with ground observations and cal/val studies with hydrological modeling in the mountainous terrain of Europe. All the snow products are operational on a daily basis. For the snow recognition product (H10) for mountainous areas, spectral thresholding methods were applied on sub pixel scale of MSG-SEVIRI images. The different spectral characteristics of cloud, snow and land determined the structure of the algorithm and these characteristics were obtained from subjective classification of known snow cover features

  7. Ground calibration of the spatial response and quantum efficiency of the CdZnTe hard x-ray detectors for NuSTAR (United States)

    Grefenstette, Brian W.; Bhalerao, Varun; Cook, W. Rick; Harrison, Fiona A.; Kitaguchi, Takao; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa; Rana, Vikram


    Pixelated Cadmium Zinc Telluride (CdZnTe) detectors are currently flying on the Nuclear Spectroscopic Telescope ARray (NuSTAR) NASA Astrophysics Small Explorer. While the pixel pitch of the detectors is ≍ 605 μm, we can leverage the detector readout architecture to determine the interaction location of an individual photon to much higher spatial accuracy. The sub-pixel spatial location allows us to finely oversample the point spread function of the optics and reduces imaging artifacts due to pixelation. In this paper we demonstrate how the sub-pixel information is obtained, how the detectors were calibrated, and provide ground verification of the quantum efficiency of our Monte Carlo model of the detector response.

  8. Between a rock and a hard place: habitat selection in female-calf humpback whale (Megaptera novaeangliae Pairs on the Hawaiian breeding grounds.

    Directory of Open Access Journals (Sweden)

    Rachel Cartwright

    Full Text Available The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40-60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap.

  9. Snow farming: conserving snow over the summer season (United States)

    Grünewald, Thomas; Wolfsperger, Fabian; Lehning, Michael


    Summer storage of snow for tourism has seen an increasing interest in the last years. Covering large snow piles with materials such as sawdust enables more than two-thirds of the initial snow volume to be conserved. We present detailed mass balance measurements of two sawdust-covered snow piles obtained by terrestrial laser scanning during summer 2015. Results indicate that 74 and 63 % of the snow volume remained over the summer for piles in Davos, Switzerland and Martell, Italy. If snow mass is considered instead of volume, the values increase to 83 and 72 %. The difference is attributed to settling and densification of the snow. Additionally, we adapted the one-dimensional, physically based snow cover model SNOWPACK to perform simulations of the sawdust-covered snow piles. Model results and measurements agreed extremely well at the point scale. Moreover, we analysed the contribution of the different terms of the surface energy balance to snow ablation for a pile covered with a 40 cm thick sawdust layer and a pile without insulation. Short-wave radiation was the dominant source of energy for both scenarios, but the moist sawdust caused strong cooling by long-wave emission and negative sensible and latent heat fluxes. This cooling effect reduces the energy available for melt by up to a factor of 12. As a result only 9 % of the net short-wave energy remained available for melt. Finally, sensitivity studies of the parameters thickness of the sawdust layer, air temperature, precipitation and wind speed were performed. We show that sawdust thickness has a tremendous effect on snow loss. Higher air temperatures and wind speeds increase snow ablation but less significantly. No significant effect of additional precipitation could be found as the sawdust remained wet during the entire summer with the measured quantity of rain. Setting precipitation amounts to zero, however, strongly increased melt. Overall, the 40 cm sawdust provides sufficient protection for mid

  10. Shielding effect of snow cover on indoor exposure due to terrestrial gamma radiation

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo; Kobayashi, Sadayoshi


    Many people in the world live in high latitude region where it snows frequently in winter. When snow covers the ground, it considerably reduces the external exposure from the radiation sources in the ground. Therefore, the evaluation of snow effect on exposure due to terrestrial gamma radiation is necessary to obtain the population dose as well as the absorbed dose in air in snowy regions. Especially the shielding effect on indoor exposure is essentially important in the assessment of population dose since most individuals spend a large portion of their time indoors. The snow effect, however, has been rather neglected or assumed to be the same both indoors and outdoors in the population dose calculation. Snow has been recognized only as a cause of temporal variation of outdoor exposure rate due firstly to radon daughters deposition with snow fall and secondly to the shielding effect of snow cover. This paper describes an approach to the evaluation of shielding effect of snow cover on exposure and introduces population dose calculation as numerical example for the people who live in wooden houses in Japan

  11. Snow multivariable data assimilation for hydrological predictions in mountain areas (United States)

    Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria


    The seasonal presence of snow on alpine catchments strongly impacts both surface energy balance and water resource. Thus, the knowledge of the snowpack dynamics is of critical importance for several applications, such as water resource management, floods prediction and hydroelectric power production. Several independent data sources provide information about snowpack state: ground-based measurements, satellite data and physical models. Although all these data types are reliable, each of them is affected by specific flaws and errors (respectively dependency on local conditions, sensor biases and limitations, initialization and poor quality forcing data). Moreover, there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine observational and modeled information to obtain the most likely estimate of snowpack state. Indeed, by combining all the available sources of information, the implementation of DA schemes can quantify and reduce the uncertainties of the estimations. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model, strengthened by a robust multivariable data assimilation algorithm. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of an Ensemble Kalman Filter (EnKF) scheme enables to assimilate simultaneously ground

  12. Development and testing of a snow interceptometer to quantify canopy water storage and interception processes in the rain/snow transition zone of the North Cascades, Washington, USA (United States)

    Martin, Kael A.; Van Stan, John T.; Dickerson-Lange, Susan E.; Lutz, James A.; Berman, Jeffrey W.; Gersonde, Rolf; Lundquist, Jessica D.


    Tree canopy snow interception is a significant hydrological process, capable of removing up to 60% of snow from the ground snowpack. Our understanding of canopy interception has been limited by our ability to measure whole canopy water storage in an undisturbed forest setting. This study presents a relatively inexpensive technique for directly measuring snow canopy water storage using an interceptometer, adapted from Friesen et al. (2008). The interceptometer is composed of four linear motion position sensors distributed evenly around the tree trunk. We incorporate a trunk laser-mapping installation method for precise sensor placement to reduce signal error due to sensor misalignment. Through calibration techniques, the amount of canopy snow required to produce the measured displacements can be calculated. We demonstrate instrument performance on a western hemlock (Tsuga heterophylla) for a snow interception event in November 2011. We find a snow capture efficiency of 83 ± 15% of accumulated ground snowfall with a maximum storage capacity of 50 ± 8 mm snow water equivalent (SWE). The observed interception event is compared to simulated interception, represented by the variable infiltration capacity (VIC) hydrologic model. The model generally underreported interception magnitude by 33% using a leaf area index (LAI) of 5 and 16% using an LAI of 10. The interceptometer captured intrastorm accumulation and melt rates up to 3 and 0.75 mm SWE h-1, respectively, which the model failed to represent. While further implementation and validation is necessary, our preliminary results indicate that forest interception magnitude may be underestimated in maritime areas.

  13. Quantifying small-scale spatio-temporal variability of snow stratigraphy in forests based on high-resolution snow penetrometry (United States)

    Teich, M.; Hagenmuller, P.; Bebi, P.; Jenkins, M. J.; Giunta, A. D.; Schneebeli, M.


    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception, wind speed reduction, and changes to the energy balance. The lack of snowpack observations in forests limits our ability to understand the evolution of snow stratigraphy and its spatio-temporal variability as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack under canopies of a spruce forest in the central Rocky Mountains, USA, using the SnowMicroPen (SMP), a high resolution digital penetrometer. Weekly-repeated penetration force measurements were recorded along 10 m transects every 0.3 m in winter 2015 and bi-weekly along 20 m transects every 0.5 m in 2016 in three study plots beneath canopies of undisturbed, bark beetle-disturbed and harvested forest stands, and an open meadow. To disentangle information about layer hardness and depth variabilities, and to quantitatively compare the different SMP profiles, we applied a matching algorithm to our dataset, which combines several profiles by automatically adjusting their layer thicknesses. We linked spatial and temporal variabilities of penetration force and depth, and thus snow stratigraphy to forest and meteorological conditions. Throughout the season, snow stratigraphy was more heterogeneous in undisturbed but also beneath bark beetle-disturbed forests. In contrast, and despite remaining small diameter trees and woody debris, snow stratigraphy was rather homogenous at the harvested plot. As expected, layering at the non-forested plot varied only slightly over the small spatial extent sampled. At the open and harvested plots, persistent crusts and ice lenses were clearly present in the snowpack, while such hard layers barely occurred beneath undisturbed and disturbed canopies. Due to settling, hardness significantly increased with depth at

  14. Multitemporal Snow Cover Mapping in Mountainous Terrain for Landsat Climate Data Record Development (United States)

    Crawford, Christopher J.; Manson, Steven M.; Bauer, Marvin E.; Hall, Dorothy K.


    A multitemporal method to map snow cover in mountainous terrain is proposed to guide Landsat climate data record (CDR) development. The Landsat image archive including MSS, TM, and ETM+ imagery was used to construct a prototype Landsat snow cover CDR for the interior northwestern United States. Landsat snow cover CDRs are designed to capture snow-covered area (SCA) variability at discrete bi-monthly intervals that correspond to ground-based snow telemetry (SNOTEL) snow-water-equivalent (SWE) measurements. The June 1 bi-monthly interval was selected for initial CDR development, and was based on peak snowmelt timing for this mountainous region. Fifty-four Landsat images from 1975 to 2011 were preprocessed that included image registration, top-of-the-atmosphere (TOA) reflectance conversion, cloud and shadow masking, and topographic normalization. Snow covered pixels were retrieved using the normalized difference snow index (NDSI) and unsupervised classification, and pixels having greater (less) than 50% snow cover were classified presence (absence). A normalized SCA equation was derived to independently estimate SCA given missing image coverage and cloud-shadow contamination. Relative frequency maps of missing pixels were assembled to assess whether systematic biases were embedded within this Landsat CDR. Our results suggest that it is possible to confidently estimate historical bi-monthly SCA from partially cloudy Landsat images. This multitemporal method is intended to guide Landsat CDR development for freshwaterscarce regions of the western US to monitor climate-driven changes in mountain snowpack extent.

  15. Observational evidence of changes in global snow and ice cover

    International Nuclear Information System (INIS)

    Barry, R.G.


    Sources of observational data on recent variations in the seasonal extent of snow cover and sea ice, of the terminal position and volume of alpine glaciers, and of ground temperature profiles in areas of permafrost are briefly reviewed. Recent evidence of changes in these variables is then examined. The extent of seasonal snow cover in the Northern hemisphere and of sea ice in both hemispheres has fluctuated irregularly over the last 15-20 years with a range of about 10-15% in each case. There is no clear evidence of any recent trends, despite general global warming. In contrast, most glaciers retreated and thinned from before the turn of the century until the 1960s and alaskan permafrost temperatures have risen 2-4 C per century. Recently, glacier advances have been noted, perhaps in response to increased accumulation. Problems of linking climate forcing and snow/ice responses are discussed

  16. Unexpected Patterns in Snow and Dirt (United States)

    Ackerson, Bruce J.


    For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This…

  17. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    NARCIS (Netherlands)

    Stigter, Emmy E.; Wanders, Niko; Saloranta, Tuomo M.; Shea, Joseph M.; Bierkens, M.F.P.; Immerzeel, W.W.


    Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water

  18. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range (United States)

    Hill, R.; Calvin, W. M.; Harpold, A. A.


    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  19. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada

    Directory of Open Access Journals (Sweden)

    Frédérique C. Pivot


    Full Text Available RADARSAT and ERS-2 data collected at multiple incidence angles are used to characterize the seasonal variations in the backscatter of snow-covered landscapes in the northern Hudson Bay Lowlands during the winters of 1997/98 and 1998/99. The study evaluates the usefulness of C-band SAR systems for retrieving the snow water equivalent under dry snow conditions in the forest–tundra ecotone. The backscatter values are compared against ground measurements at six sampling sites, which are taken to be representative of the land-cover types found in the region. The contribution of dry snow to the radar return is evident when frost penetrates the first 20 cm of soil. Only then does the backscatter respond positively to changes in snow water equivalent, at least in the open and forested areas near the coast, where 1-dB increases in backscatter for each approximate 5–10 mm of accumulated water equivalent are observed at 20–31° incidence angles. Further inland, the backscatter shows either no change or a negative change with snow accumulation, which suggests that the radar signal there is dominated by ground surface scattering (e.g., fen when not attenuated by vegetation (e.g., forested and transition. With high-frequency ground-penetrating radar, we demonstrate the presence of a 10–20-cm layer of black ice underneath the snow cover, which causes the reduced radar returns (−15 dB and less observed in the inland fen. A correlation between the backscattering and the snow water equivalent cannot be determined due to insufficient observations at similar incidence angles. To establish a relationship between the snow water equivalent and the backscatter, only images acquired with similar incidence angles should be used, and they must be corrected for both vegetation and ground effects.

  20. SAR Tomography for Terrestrial Snow Stratigraphy (United States)

    Lei, Y.; Xu, X.; Baldi, C.; Bleser, J. W. D.; Yueh, S. H.; Elder, K.


    Traditional microwave observation of snowpack includes brightness temperature and backscatter. The single baseline configuration and loss of phase information hinders the retrieval of snow stratigraphy information from microwave observations. In this paper, we are investigating the tomography of polarimetric SAR to measure snow stratigraphy. In the past two years, we have developed a homodyne frequency modulated continuous wave radar (FMCW), operation at three earth exploration satellite bands within the X-band and Ku-band spectrums (centered at 9.6 GHz, 13.5 GHz, and 17.2 GHz) at Jet Propulsion Laboratory. The transceiver is mounted to a dual-axis planar scanner (60cm in each direction), which translates the antenna beams across the target area creating a tomographic baseline in two directions. Dual-antenna architecture was implemented to improve the isolation between the transmitter and receiver. This technique offers a 50 dB improvement in signal-to-noise ratio versus conventional single-antenna FMCW radar systems. With current setting, we could have around 30cm vertical resolution. The system was deployed on a ground based tower at the Fraser Experimental Forest (FEF) Headquarters, near Fraser, CO, USA (39.847°N, 105.912°W) from February 1 to April 30, 2017 and run continuously with some gaps for required optional supports. FEF is a 93-km2 research watershed in the heart of the central Rocky Mountains approximately 80-km West of Denver. During the campaign, in situ measurements of snow depth and other snowpack properties were performed every week for comparison with the remotely sensed data. A network of soil moisture sensors, time-lapse cameras, acoustic depth sensors, laser depth sensor and meteorological instruments was installed next to the site to collect in situ measurements of snow, weather, and soil conditions. Preliminary tomographic processing of ground based SAR data of snowpack at X- and Ku- band has revealed the presence of multiple layers within

  1. Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields (United States)

    Ernesto Trujillo; Jorge A. Ramirez; Kelly J. Elder


    In this study, LIDAR snow depths, bare ground elevations (topography), and elevations filtered to the top of vegetation (topography + vegetation) in five 1-km2 areas are used to determine whether the spatial distribution of snow depth exhibits scale invariance, and the control that vegetation, topography, and winds exert on such behavior. The one-dimensional and mean...

  2. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination (United States)

    Riggs, George A.; Hall, Dorothy K.


    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  3. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  4. Snow Dunes: A Controlling Factor of Melt Pond Distribution on Arctic Sea Ice (United States)

    Petrich, Chris; Eicken, Hajo; Polashenski, Christopher M.; Sturm, Matthew; Harbeck, Jeremy P.; Perovich, Donald K.; Finnegan, David C.


    The location of snow dunes over the course of the ice-growth season 2007/08 was mapped on level landfast first-year sea ice near Barrow, Alaska. Landfast ice formed in mid-December and exhibited essentially homogeneous snow depths of 4-6 cm in mid-January; by early February distinct snow dunes were observed. Despite additional snowfall and wind redistribution throughout the season, the location of the dunes was fixed by March, and these locations were highly correlated with the distribution of meltwater ponds at the beginning of June. Our observations, including ground-based light detection and ranging system (lidar) measurements, show that melt ponds initially form in the interstices between snow dunes, and that the outline of the melt ponds is controlled by snow depth contours. The resulting preferential surface ablation of ponded ice creates the surface topography that later determines the melt pond evolution.

  5. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.


    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  6. Snow and Ice Crust Changes over Northern Eurasia since 1966 (United States)

    Bulygina, O.; Groisman, P. Y.; Razuvaev, V.; Radionov, V.


    When temperature of snow cover reaches zero Celsius first time since its establishment, snowmelt starts. In many parts of the world this process can be lengthy. The initial amount of heat that “arrives” to the snowpack might be insufficient for complete snowmelt, during the colder nights re-freeze of the melted snow may occur (thus creating the ice crust layers), and a new cold front (or the departure of the warm front that initiated melt) can decrease temperatures below the freezing point again and stop the snowmelt completely. It well can be that first such snowmelt occurs in winter (thaw day) and for several months thereafter snowpack stays on the ground. However, even the first such melt initiates a process of snow metamorphosis on its surface changing snow albedo and generating snow crust as well as on its bottom generating ice crust. Once emerged, the crusts will not disappear until the complete snowmelt. Furthermore, these crusts have numerous pathways of impact on the wild birds and animals in the Arctic environment as well as on domesticated reindeers. In extreme cases, the crusts may kill some wild species and prevent reindeers’ migration and feeding. Ongoing warming in high latitudes created situations when in the western half of Eurasian continent days with thaw became more frequent. Keeping in mind potential detrimental impacts of winter thaws and associated with them snow/ice crust development, it is worthwhile to study directly what are the major features of snow and ice crust over Eurasia and what is their dynamics. For the purpose of this study, we employed the national snow survey data set archived at the Russian Institute for Hydrometeorological Information. The dataset has routine snow surveys run throughout the cold season each decade (during the intense snowmelt, each 5 days) at all meteorological stations of the former USSR, thereafter, in Russia since 1966. Prior to 1966 snow surveys are also available but the methodology of

  7. Improving snow fraction spatio-temporal continuity using a combination of MODIS and Fengyun-2 satellites over China (United States)

    Jiang, L.; Wang, G.


    Snow cover is one of key elements in the investigations of weather, climatic change, water resource, and snow hazard. Satellites observations from on-board optical sensors provides the ability to snow cover mapping through the discrimination of snow from other surface features and cloud. MODIS provides maximum of snow cover data using 8-day composition data in order to reduce the cloud obscuration impacts. However, snow cover mapping is often required to obtain at the temporal scale of less than one day, especially in the case of disasters. Geostationary satellites provide much higher temporal resolution measurements (typically at 15 min or half or one hour), which has a great potential to reduce cloud cover problem and observe ground surface for identifying snow. The proposed method in this work is that how to take the advantages of polar-orbiting and geostationary optical sensors to accurately map snow cover without data gaps due to cloud. FY-2 geostationary satellites have high temporal resolution observations, however, they are lacking enough spectral bands essential for snow cover monitoring, such as the 1.6 μm band. Based on our recent work (Wang et al., 2017), we improved FY-2/VISSR fractional snow cover estimation with a linear spectral unmixing analysis method. The linear approach is applied then using the reflectance observed at the certain hourly image of FY-2 to calculate pixel-wise snow cover fraction. The composition of daily factional snow cover employs the sun zenith angle, where the snow fraction under lowest sun zenith angle is considered as the most confident result. FY-2/VISSR fractional snow cover map has less cloud due to the composition of multi-temporal snow maps in a single day. In order to get an accurate and cloud-reduced fractional snow cover map, both of MODIS and FY-2/VISSR daily snow fraction maps are blended together. With the combination of FY-2E/VISSR and MODIS, there are still some cloud existing in the daily snow fraction map

  8. Drones application on snow and ice surveys in alpine areas (United States)

    La Rocca, Leonardo; Bonetti, Luigi; Fioletti, Matteo; Peretti, Giovanni


    scientific point of view. All flight was performed by remote controlled aero models with high resolution camera. Aero models were able to take off and to ground on snow covered or icy surfaces since the specific aerodynamic configuration and specific engine used to. All winter surveys were executed flying low to obtain a tridimensional reconstruction of an High resolution Digital Elevation Model (DEM) of snow cover and ice cover and on summer as been developed the DEM were snow amass in the maximum avalanche risk period. The difference between winter and summer DEM (difference between two point clouds) let to individuate the snow depth, and it was used as input data for the snow avalanche model for the Aprica site (Bergamo - Italy).

  9. Effects of Planting of Calluna Vulgaris for Stable Snow Accumulation in Winter (United States)

    Ibuki, R.; Harada, K.


    Recent year climate of the winter season is changing and the period of snow accumulation is reduced compared with before. It affects the management of the ski resort. Snowfall had occurred in December 2016, but the snow accumulated after January 2017 at the ski resort located in the Pacific Ocean side of the Northeast region of Japan. This situation is thought to be originated from two reasons, one is snow thawing, another is to be blown away by the strong monsoon wind. We are considering utilizing planting to stabilize snow accumulation. Currently building rock gardens with shrubs, mainly Calluna Vulgaris in the ski resort for attracting customers in the summer. These are difficult to raise in the lowlands of Japan because they are too hot, but because of their good growth in relatively low-temperature highlands, it is rare for local residents to appreciate the value of these. In addition, it is excellent in low temperature resistance, and it will not die even under the snow. We investigated the pressure resistance performance due to snowfall and the appropriateness of growth under the weather conditions of the area. Regarding Calluna Vulgaris, Firefly, the plants were not damaged even under snow more than 1 m. In addition, three years have passed since planting, relatively good growth is shown, and the stock has been growing every year. Based on these results, we plan to stabilize the snow accumulation by carrying out planting of Calluna vulgaris inside the slope. The growth of the Calluna species is gentle and the tree height grows only about 50 cm even if 15 years have passed since planting. Therefore, it is considered that the plant body is hard to put out their head on the snow surface during the ski season. Next season will monitor the snow accumulation around the planting area through the snow season.

  10. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    Directory of Open Access Journals (Sweden)

    E. E. Stigter


    Full Text Available Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE. Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF. Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May and decreases during the late melt season (June to September as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.

  11. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012 (United States)

    Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Kang; Zheng, Lei; Hu, Yuantao; Wang, Huijuan


    Snow depth is one of the key physical parameters for understanding land surface energy balance, soil thermal regime, water cycle, and assessing water resources from local community to regional industrial water supply. Previous studies by using in situ data are mostly site specific; data from satellite remote sensing may cover a large area or global scale, but uncertainties remain large. The primary objective of this study is to investigate spatial variability and temporal change in snow depth across the Eurasian continent. Data used include long-term (1966-2012) ground-based measurements from 1814 stations. Spatially, long-term (1971-2000) mean annual snow depths of >20 cm were recorded in northeastern European Russia, the Yenisei River basin, Kamchatka Peninsula, and Sakhalin. Annual mean and maximum snow depth increased by 0.2 and 0.6 cm decade-1 from 1966 through 2012. Seasonally, monthly mean snow depth decreased in autumn and increased in winter and spring over the study period. Regionally, snow depth significantly increased in areas north of 50° N. Compared with air temperature, snowfall had greater influence on snow depth during November through March across the former Soviet Union. This study provides a baseline for snow depth climatology and changes across the Eurasian continent, which would significantly help to better understanding climate system and climate changes on regional, hemispheric, or even global scales.

  12. Scaling and Numerical Model Evaluation of Snow-Cover Effects on the Generation and Modification of Daytime Mesoscale Circulations. (United States)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.


    Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.

  13. Unexpected Patterns in Snow and Dirt (United States)

    Ackerson, Bruce J.


    For more than 30 years, Albert A. Bartlett published "Thermal patterns in the snow" in this journal. These are patterns produced by heat sources underneath the snow. Bartlett's articles encouraged me to pay attention to patterns in snow and to understanding them. At winter's end the last snow becomes dirty and is heaped into piles. This snow comes from the final clearing of sidewalks and driveways. The patterns observed in these piles defied my intuition. This melting snow develops edges where dirt accumulates, in contrast to ice cubes, which lose sharp edges and become more spherical upon melting. Furthermore, dirt absorbs more radiation than snow and yet doesn't melt and round the sharp edges of snow, where dirt accumulates.

  14. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm (United States)

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.


    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  15. [Snow cover pollution monitoring in Ufa]. (United States)

    Daukaev, R A; Suleĭmanov, R A


    The paper presents the results of examining the snow cover polluted with heavy metals in the large industrial town of Ufa. The level of man-caused burden on the snow cover of the conventional parts of the town was estimated and compared upon exposure to a wide range of snow cover pollutants. The priority snow cover pollutants were identified among the test heavy metals.

  16. Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign

    Directory of Open Access Journals (Sweden)

    A. Lyapustin


    Full Text Available The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR jointly with airborne Ames Airborne Tracking Sunphotometer (AATS and ground-based Aerosol Robotic Network (AERONET sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1° angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS, Modified Rahman-Pinty-Verstraete (MRPV and Asymptotic Analytical Radiative Transfer (AART BRF models. Except for the glint region (azimuthal angles φ<40°, the best fit MRPV and RTLS models fit snow BRF to within ±0.05. The plane-parallel radiative transfer (PPRT solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the

  17. Analysis of Snow Bidirectional Reflectance from ARCTAS Spring-2008 Campaign (United States)

    Lyapustin, A.; Gatebe, C. K.; Redemann, J.; Kahn, R.; Brandt, R.; Russell, P.; King, M. D.; Pedersen, C. A.; Gerland, S.; Poudyal, R.; hide


    The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1 degree angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles phi less than 40 degrees), the best fit MRPV and RTLS models fit snow BRF to within 0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution

  18. Quantifying forest mortality with the remote sensing of snow (United States)

    Baker, Emily Hewitt

    Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and

  19. Snow measurement Using P-Band Signals of Opportunity Reflectometry (United States)

    Shah, R.; Yueh, S. H.; Xu, X.; Elder, K.


    Snow water storage in land is a critical parameter of the water cycle. In this study, we develop methods for estimating reflectance from bistatic scattering of digital communication Signals of Opportunity (SoOp) across the available microwave spectrum from VHF to Ka band and show results from proof-of-concept experiments at the Fraser Experimental Forest, Colorado to acquire measurements to relate the SoOp phase and reflectivity to a snow-covered soil surface. The forward modeling of this scenario will be presented and multiple sensitivities were conducted. Available SoOp receiver data along with a network of in situ sensor measurements collected since January 2016 will be used to validate theoretical modeling results. In the winter season of 2016 and 2017, we conducted a field experiment using VHF/UHF-band illuminating sources to detect SWE and surface reflectivity. The amplitude of the reflectivity showed sensitivity to the wetness of snow pack and ground reflectivity while the phase showed sensitivity to SWE. This use of this concept can be helpful to measure the snow water storage in land globally.

  20. Performance evaluation of snow and ice plows. (United States)


    Removal of ice and snow from road surfaces is a critical task in the northern tier of the United States, : including Illinois. Highways with high levels of traffic are expected to be cleared of snow and ice quickly : after each snow storm. This is ne...

  1. Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps (United States)

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan


    In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.

  2. Velocity distribution in snow avalanches (United States)

    Nishimura, K.; Ito, Y.


    In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.

  3. Photopolarimetric Retrievals of Snow Properties (United States)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.


    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  4. Changes in Snow Albedo Resulting from Snow Darkening Caused by Black Carbon (United States)

    Engels, J.; Kloster, S.; Bourgeois, Q.


    We investigate the potential impact of snow darkening caused by pre-industrial and present-day black carbon (BC) emissions on snow albedo and subsequently climate. To assess this impact, we implemented the effect of snow darkening caused by BC emitted from natural as well as anthropogenic sources into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM). Considerable amounts of BC are emitted e.g. from fires and are transported through the atmosphere for several days before being removed by rain or snow precipitation in snow covered regions. Already very small quantities of BC reduce the snow reflectance significantly, with consequences for snow melting and snow spatial coverage. We implemented the snow albedo reduction caused by BC contamination and snow aging in the one layer land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at MPI-M. For this we used the single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online (Flanner et al., 2007); model to derive snow albedo values for BC in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) for different snow grain sizes for the visible (0.3 - 0.7 μm) and near infrared range (0.7 - 1.5 μm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 μm). Here, a radius of 50 μm corresponds to new snow, whereas a radius of 1000 μm corresponds to old snow. The deposition rates of BC on snow are prescribed from previous ECHAM6-HAM simulations for two time periods, pre-industrial (1880-1889) and present-day (2000-2009), respectively. We perform a sensitivity study regarding the scavenging of BC by snow melt. To evaluate the newly implemented albedo scheme we will compare the modeled black carbon in snow concentrations to observed ones. Moreover, we will show the impact of the BC contamination and snow aging on the simulated snow albedo. The

  5. Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin

    Directory of Open Access Journals (Sweden)

    H. S. Negi


    Full Text Available In the present paper, spectral reflectance measurements of Himalayan seasonal snow were carried out and analysed to retrieve the snow albedo and effective grain size. The asymptotic radiative transfer (ART theory was applied to retrieve the plane and spherical albedo. The retrieved plane albedo was compared with the measured spectral albedo and a good agreement was observed with ±10% differences. Retrieved integrated albedo was found within ±6% difference with ground observed broadband albedo. The retrieved snow grain sizes using different models based on the ART theory were compared for various snow types and it was observed that the grain size model using two channel method (one in visible and another in NIR region can work well for the Himalayan seasonal snow and it was found consistent with temporal changes in grain size. This method can work very well for clean, dry snow as in the upper Himalaya, but sometimes, due to the low reflectances (<20% using wavelength 1.24 μm, the ART theory cannot be applied, which is common in lower and middle Himalayan old snow. This study is important for monitoring the Himalayan cryosphere using air-borne or space-borne sensors.

  6. Measuring snow water equivalent from common-offset GPR records through migration velocity analysis (United States)

    St. Clair, James; Holbrook, W. Steven


    Many mountainous regions depend on seasonal snowfall for their water resources. Current methods of predicting the availability of water resources rely on long-term relationships between stream discharge and snowpack monitoring at isolated locations, which are less reliable during abnormal snow years. Ground-penetrating radar (GPR) has been shown to be an effective tool for measuring snow water equivalent (SWE) because of the close relationship between snow density and radar velocity. However, the standard methods of measuring radar velocity can be time-consuming. Here we apply a migration focusing method originally developed for extracting velocity information from diffracted energy observed in zero-offset seismic sections to the problem of estimating radar velocities in seasonal snow from common-offset GPR data. Diffractions are isolated by plane-wave-destruction (PWD) filtering and the optimal migration velocity is chosen based on the varimax norm of the migrated image. We then use the radar velocity to estimate snow density, depth, and SWE. The GPR-derived SWE estimates are within 6 % of manual SWE measurements when the GPR antenna is coupled to the snow surface and 3-21 % of the manual measurements when the antenna is mounted on the front of a snowmobile ˜ 0.5 m above the snow surface.

  7. Measuring snow water equivalent from common-offset GPR records through migration velocity analysis

    Directory of Open Access Journals (Sweden)

    J. St. Clair


    Full Text Available Many mountainous regions depend on seasonal snowfall for their water resources. Current methods of predicting the availability of water resources rely on long-term relationships between stream discharge and snowpack monitoring at isolated locations, which are less reliable during abnormal snow years. Ground-penetrating radar (GPR has been shown to be an effective tool for measuring snow water equivalent (SWE because of the close relationship between snow density and radar velocity. However, the standard methods of measuring radar velocity can be time-consuming. Here we apply a migration focusing method originally developed for extracting velocity information from diffracted energy observed in zero-offset seismic sections to the problem of estimating radar velocities in seasonal snow from common-offset GPR data. Diffractions are isolated by plane-wave-destruction (PWD filtering and the optimal migration velocity is chosen based on the varimax norm of the migrated image. We then use the radar velocity to estimate snow density, depth, and SWE. The GPR-derived SWE estimates are within 6 % of manual SWE measurements when the GPR antenna is coupled to the snow surface and 3–21 % of the manual measurements when the antenna is mounted on the front of a snowmobile  ∼  0.5 m above the snow surface.

  8. Review of ice and snow runway pavements

    Directory of Open Access Journals (Sweden)

    Greg White


    Full Text Available Antarctica is the highest, driest, coldest, windiest, most remote and most pristine place on Earth. Polar operations depend heavily on air transportation and support for personnel and equipment. It follows that improvement in snow and ice runway design, construction and maintenance will directly benefit polar exploration and research. Current technologies and design methods for snow and ice runways remain largely reliant on work performed in the 1950s and 1960s. This paper reviews the design and construction of polar runways using snow and ice as geomaterials. The inability to change existing snow and ice thickness or temperature creates a challenge for polar runway design and construction, as does the highly complex mechanical behaviour of snow, including the phenomena known as sintering. It is recommended that a modern approach be developed for ice and snow runway design, based on conventional rigid and flexible pavement design principles. This requires the development on an analytical model for the prediction of snow strength, based on snow age, temperature history and density. It is also recommended that the feasibility of constructing a snow runway at the South Pole be revisited, in light of contemporary snow sintering methods. Such a runway would represent a revolutionary advance for the logistical support of Antarctic research efforts. Keywords: Runway, Pavement, Snow, Ice, Antarctic

  9. MODIS Snow and Sea Ice Products (United States)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.


    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  10. Investigation of snow cover dust pollution by contact and satellite observations (United States)

    Raputa, Vladimir F.; Yaroslavtseva, Tatyana V.


    The problems of reconstructing the snow cover pollution fields from dusting, point, linear and area sources according to ground and satellite observations are considered. Using reconstruction models, the methods of the combined analysis of the characteristic images of snow cover pollution haloes in the vicinity of sources of dust and contact data observations have been developed. On the basis of the numerical data analysis of ground monitoring and satellite imagery, the stable quantitative regularities between the fields of dust fallouts and the intensity of a change of tones of gray in the radial directions relative to the main sources are identified.

  11. Physiochemical characterization of insoluble residues in California Sierra Nevada snow (United States)

    Creamean, Jessie; Axson, Jessica; Bondy, Amy; Craig, Rebecca; May, Nathaniel; Shen, Hongru; Weber, Michael; Warner, Katy; Pratt, Kerri; Ault, Andrew


    The effects atmospheric aerosols have on cloud particle formation are dependent on both the aerosol physical and chemical characteristics. For instance, larger, irregular-shaped mineral dusts efficiently form cloud ice crystals, enhancing precipitation, whereas small, spherical pollution aerosols have the potential to form small cloud droplets that delay the autoconversion of cloudwater to precipitation. Thus, it is important to understand the physiochemical properties and sources of aerosols that influence cloud and precipitation formation. We present an in-depth analysis of the size, chemistry, and sources of soluble and insoluble residues found in snow collected at three locations in the California Sierra Nevada Mountains during the 2012/2013 winter season. For all sites, February snow samples contained high concentrations of regional pollutants such as ammonium nitrate and biomass burning species, while March snow samples were influenced by mineral dust. The snow at the lower elevation sites in closer proximity to the Central Valley of California were heavily influenced by agricultural and industrial emissions, whereas the highest elevation site was exposed to a mixture of Central Valley pollutants in addition to long-range transported dust from Asia and Africa. Further, air masses likely containing transported dust typically traveled over cloud top heights at the low elevation sites, but were incorporated into the cold (-28°C, on average) cloud tops more often at the highest elevation site, particularly in March, which we hypothesize led to enhanced ice crystal formation and thus the observation of dust in the snow collected at the ground. Overall, understanding the spatial and temporal dependence of aerosol sources is important for remote mountainous regions such as the Sierra Nevada where snowpack provides a steady, vital supply of water.

  12. Operational aerial snow surveying in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Peck, E L; Carroll, T R; Vandemark, S C


    An airborne gamma radiation detector and data acquisition system has been designed for rapid measurement of the snow cover water equivalent over large open areas. Research and field tests conducted prior to the implementation of an operational snow measurement system in the United States are reviewed. Extensive research test flights were conducted over large river basins of the north-central plains and in the high mountain valleys of the inter-mountain West. Problems encountered during development include: (1) error in the gross gamma flux produced by atmospheric radon gas daughters; (2) spatial and temporal variability in soil moisture; and (3) errors in gamma radiation count rate introduced by aircraft and cosmic background radiation. Network design of operational flight line and ground observation data used in a river forecasting system are discussed. 22 references, 4 figures, 2 tables.

  13. CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Khanbilvardi, R.; Munoz Barreto, J.; Yu, Y.


    CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development The Field Snow Research Station (also referred to as Snow Analysis and Field Experiment, SAFE) is operated by the NOAA Center for Earth System Sciences and Remote Sensing Technologies (CREST) in the City University of New York (CUNY). The field station is located within the premises of the Caribou Municipal Airport (46°52'59'' N, 68°01'07'' W) and in close proximity to the National Weather Service (NWS) Regional Forecast Office. The station was established in 2010 to support studies in snow physics and snow remote sensing. The Visible Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) and Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (provided by the Terra and Aqua Earth Observing System satellites) were validated using in situ LST (T-skin) and near-surface air temperature (T-air) observations recorded at CREST-SAFE for the winters of 2013 and 2014. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and night-time values. Results indicate that, although all the data sets showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C). Additionally, we created a liquid water content (LWC)-profiling instrument using time-domain reflectometry (TDR) at CREST-SAFE and tested it during the snow melt period (February-April) immediately after installation in 2014. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Lastly, to improve on global snow cover mapping, a snow product capable of estimating snow depth and snow water

  14. Snow and ice: Chapter 3 (United States)

    Littell, Jeremy; McAfee, Stephanie A.; O'Neel, Shad; Sass, Louis; Burgess, Evan; Colt, Steve; Clark, Paul; Hayward, Gregory D.; Colt, Steve; McTeague, Monica L.; Hollingsworth, Teresa N.


    Temperature and precipitation are key determinants of snowpack levels. Therefore, climate change is likely to affect the role of snow and ice in the landscapes and hydrology of the Chugach National Forest region.Downscaled climate projections developed by Scenarios Network for Alaska and Arctic Planning (SNAP) are useful for examining projected changes in snow at relatively fine resolution using a variable called “snowday fraction (SDF),” the percentage of days with precipitation falling as snow.We summarized SNAP monthly SDF from five different global climate models for the Chugach region by 500 m elevation bands, and compared historical (1971–2000) and future (2030–2059) SDF. We found that:Snow-day fraction and snow-water equivalent (SWE) are projected to decline most in late autumn (October to November) and at lower elevations.Snow-day fraction is projected to decrease 23 percent (averaged across five climate models) from October to March, between sea level and 500 m. Between sea level and 1000 m, SDF is projected to decrease by 17 percent between October and March.Snow-water equivalent is projected to decrease most in autumn (October and November) and at lower elevations (below 1500 m), an average of -26 percent for the 2030–2059 period compared to 1971– 2000. Averaged across the cool season and the entire domain, SWE is projected to decrease at elevations below 1000 m because of increased temperature, but increase at higher elevations because of increased precipitation.Compared to 1971–2000, the percentage of the landscape that is snowdominant in 2030–2059 is projected to decrease, and the percentage in which rain and snow are co-dominant (transient hydrology) is projected to increase from 27 to 37 percent. Most of this change is at lower elevations.Glaciers on the Chugach National Forest are currently losing about 6 km3 of ice per year; half of this loss comes from Columbia Glacier (Berthier et al. 2010).Over the past decade, almost all

  15. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 2: Validation

    Directory of Open Access Journals (Sweden)

    Marc Zebisch


    Full Text Available The performance of a new algorithm for binary snow cover monitoring based on Moderate Resolution Imaging Spectroradiometer (MODIS satellite images at 250 m resolution is validated using snow cover maps (SCA based on Landsat 7 ETM+ images and in situ snow depth measurements from ground stations in selected test sites in Central Europe. The advantages of the proposed algorithm are the improved ground resolution of 250 m and the near real-time availability with respect to the 500 m standard National Aeronautics and Space Administration (NASA MODIS snow products (MOD10 and MYD10. It allows a more accurate snow cover monitoring at a local scale, especially in mountainous areas characterized by large landscape heterogeneity. The near real-time delivery makes the product valuable as input for hydrological models, e.g., for flood forecast. A comparison to sixteen snow cover maps derived from Landsat ETM/ETM+ showed an overall accuracy of 88.1%, which increases to 93.6% in areas outside of forests. A comparison of the SCA derived from the proposed algorithm with standard MODIS products, MYD10 and MOD10, indicates an agreement of around 85.4% with major discrepancies in forested areas. The validation of MODIS snow cover maps with 148 in situ snow depth measurements shows an accuracy ranging from 94% to around 82%, where the lowest accuracies is found in very rugged terrain restricted to in situ stations along north facing slopes, which lie in shadow in winter during the early morning acquisition.

  16. Independent evaluation of the SNODAS snow depth product using regional scale LiDAR-derived measurements (United States)

    Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.


    Repeated Light Detection and Ranging (LiDAR) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 LiDAR-derived dataset of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically-based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the coterminous United States. Independent validation data is scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation dataset with substantial geographic coverage. Within twelve distinctive 500 m × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 LiDAR acquisitions. This supplied a dataset for constraining the uncertainty of upscaled LiDAR estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled LiDAR snow depths were then compared to the SNODAS-estimates over the entire study area for the dates of the LiDAR flights. The remotely-sensed snow depths provided a more spatially continuous comparison dataset and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between LiDAR observations and SNODAS estimates were most drastic, suggesting natural processes specific to these regions as causal influences on model uncertainty.

  17. Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements (United States)

    Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.


    Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.

  18. Machine Learning on Images: Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent (United States)

    Dozier, J.; Tolle, K.; Bair, N.


    We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?

  19. Nitrate photolysis in salty snow (United States)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.


    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  20. Everywhere and nowhere: snow and its linkages (United States)

    Hiemstra, C. A.


    Interest has grown in quantifying higher latitude precipitation change and snow-related ecosystem and economic impacts. There is a high demand for creating and using snow-related datasets, yet available datasets contain limitations, aren't scale appropriate, or lack thorough validation. Much of the uncertainty in snow estimates relates to ongoing snow measurement problems that are chronic and pervasive in windy, Arctic environments. This, coupled with diminishing support for long-term snow field observations, creates formidable hydrologic gaps in snow dominated landscapes. Snow touches most aspects of high latitude landscapes and spans albedo, ecosystems, soils, permafrost, and sea ice. In turn, snow can be impacted by disturbances, landscape change, ecosystem, structure, and later arrival of sea or lake ice. Snow, and its changes touch infrastructure, housing, and transportation. Advances in snow measurements, modeling, and data assimilation are under way, but more attention and a concerted effort is needed in a time of dwindling resources to make required advances during a time of rapid change.

  1. Mapping of colored-snow area on glaciers by using spectral reflectance of algae (United States)

    Yamaga, D.; Yasumoto, A.; Hatakeyama, S.; Hasegawa, K.; Imai, M.; Bilesan, A.; Takeuchi, N.; Sugiyama, S.; Terashima, M.; Kawamata, H.; Naruse, N.; Takahashi, Y.


    One of the reasons for accelerating recent glacier retreat is reported that algae generated on glaciers gives color to snow; Red snow algae on the Harding icefield in Alaska, and cryoconite, a black colored substance formed by algae tangling with mineral particles. The distribution of algae on the glacier can vary widely from year to year, depending on the season. Remote sensing will play an important role to know the area of colored snow. In previous studies, however, since the satellite images of low gradation were used, the brightness in the specific area was saturated due to the high reflectance of snow. In addition, it is difficult to distinguish the colored snow area from that of water and shadows. We aim to map using Landsat8 data and quantitatively evaluate the distribution of colored snow area on glaciers by newly creating a colored-snow-sensitive index from spectral reflectance of algae. Cryoconite has low (high) reflectance in the range of 450-500nm (850-900nm) corresponding to Band2 (Band5) in Landsat8.On the other hand, the reflectance of glacier ice exhibits the opposite tendency. Focusing on the difference in reflectance between the two wavelength ranges, we can create indices sensitive to cryoconite area. The image, mapped as the cryoconite region with large difference in brightness between band 2 and 5, was different from the water and shadow areas. The cryoconite area is also consistent with the results obtained in the filed survey of qaanaaq Glacier in Greenland. Using the similar analytical method, we will also present the map of red snow observed on the glacier.

  2. Snow water equivalent monitoring retrieved by assimilating passive microwave observations in a coupled snowpack evolution and microwave emission models over North-Eastern Canada (United States)

    Royer, A.; Larue, F.; De Sève, D.; Roy, A.; Vionnet, V.; Picard, G.; Cosme, E.


    Over northern snow-dominated basins, the snow water equivalent (SWE) is of primary interest for spring streamflow forecasting. SWE retrievals from satellite data are still not well resolved, in particular from microwave (MW) measurements, the only type of data sensible to snow mass. Also, the use of snowpack models is challenging due to the large uncertainties in meteorological input forcings. This project aims to improve SWE prediction by assimilation of satellite brightness temperature (TB), without any ground-based observations. The proposed approach is the coupling of a detailed multilayer snowpack model (Crocus) with a MW snow emission model (DMRT-ML). The assimilation scheme is a Sequential Importance Resampling Particle filter, through ensembles of perturbed meteorological forcings according to their respective uncertainties. Crocus simulations driven by operational meteorological forecasts from the Canadian Global Environmental Multiscale model at 10 km spatial resolution were compared to continuous daily SWE measurements over Québec, North-Eastern Canada (56° - 45°N). The results show a mean bias of the maximum SWE overestimated by 16% with variations up to +32%. This observed large variability could lead to dramatic consequences on spring flood forecasts. Results of Crocus-DMRT-ML coupling compared to surface-based TB measurements (at 11, 19 and 37 GHz) show that the Crocus snowpack microstructure described by sticky hard spheres within DMRT has to be scaled by a snow stickiness of 0.18, significantly reducing the overall RMSE of simulated TBs. The ability of assimilation of daily TBs to correct the simulated SWE is first presented through twin experiments with synthetic data, and then with AMSR-2 satellite time series of TBs along the winter taking into account atmospheric and forest canopy interferences (absorption and emission). The differences between TBs at 19-37 GHz and at 11-19 GHz, in vertical polarization, were assimilated. This assimilation

  3. Evaluation of North Eurasian snow-off dates in the ECHAM5.4 atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    P. Räisänen


    Full Text Available The timing of springtime end of snowmelt (snow-off date in northern Eurasia in version 5.4 of the ECHAM5 atmospheric general circulation model (GCM is evaluated through comparison with a snow-off date data set based on space-borne microwave radiometer measurements and with Russian snow course data. ECHAM5 reproduces well the observed gross geographical pattern of snow-off dates, with earliest snow-off (in March in the Baltic region and latest snow-off (in June in the Taymyr Peninsula and in northeastern parts of the Russian Far East. The primary biases are (1 a delayed snow-off in southeastern Siberia (associated with too low springtime temperature and too high surface albedo, in part due to insufficient shielding by canopy; and (2 an early bias in the western and northern parts of northern Eurasia. Several sensitivity experiments were conducted, where biases in simulated atmospheric circulation were corrected through nudging and/or the treatment of surface albedo was modified. While this alleviated some of the model biases in snow-off dates, 2 m temperature and surface albedo, especially the early bias in snow-off in the western parts of northern Eurasia proved very robust and was actually larger in the nudged runs. A key issue underlying the snow-off biases in ECHAM5 is that snowmelt occurs at too low temperatures. Very likely, this is related to the treatment of the surface energy budget. On one hand, the surface temperature Ts is not computed separately for the snow-covered and snow-free parts of the grid cells, which prevents Ts from rising above 0 °C before all snow has vanished. Consequently, too much of the surface net radiation is consumed in melting snow and too little in heating the air. On the other hand, ECHAM5 does not include a canopy layer. Thus, while the albedo reduction due to canopy is accounted for, the shielding of snow on ground by the overlying canopy is not considered, which leaves too much solar radiation available for

  4. Snow cover as a source of technogenic pollution of surface water during the snow melting period


    Labuzova Olga; Noskova Tatyana; Lysenko Maria; Ovcharenko Elena; Papina Tatyana


    The study of pollutants in melt water of snow cover and snow disposal sites in the city of Barnaul showed that during the snow melting period the surface water is not subjected to significant technogenic impact according to a number of studied indices. The oils content is an exception: it can exceed MAC more than 20 times in river- water due to the melting of city disposal sites. Environmental damage due to an oils input into water resources during the snow melting period...

  5. Snow Water Equivalent SAR and Radiometer (United States)

    National Aeronautics and Space Administration — After nearly four decades of international effort developing remote sensing techniques, measurement of land surface snow remains a significant challenge. Developing...

  6. Surface energy balance of seasonal snow cover for snow-melt ...

    Indian Academy of Sciences (India)

    This study describes time series analysis of snow-melt, radiation data and energy balance for a seasonal snow cover at Dhundi field station of SASE, which lies in Pir Panjal range of the. N–W Himalaya, for a winter season from 13 January to 12 April 2005. The analysis shows that mean snow surface temperature remains ...

  7. Design, Development and Testing of Web Services for Multi-Sensor Snow Cover Mapping (United States)

    Kadlec, Jiri

    This dissertation presents the design, development and validation of new data integration methods for mapping the extent of snow cover based on open access ground station measurements, remote sensing images, volunteer observer snow reports, and cross country ski track recordings from location-enabled mobile devices. The first step of the data integration procedure includes data discovery, data retrieval, and data quality control of snow observations at ground stations. The WaterML R package developed in this work enables hydrologists to retrieve and analyze data from multiple organizations that are listed in the Consortium of Universities for the Advancement of Hydrologic Sciences Inc (CUAHSI) Water Data Center catalog directly within the R statistical software environment. Using the WaterML R package is demonstrated by running an energy balance snowpack model in R with data inputs from CUAHSI, and by automating uploads of real time sensor observations to CUAHSI HydroServer. The second step of the procedure requires efficient access to multi-temporal remote sensing snow images. The Snow Inspector web application developed in this research enables the users to retrieve a time series of fractional snow cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) for any point on Earth. The time series retrieval method is based on automated data extraction from tile images provided by a Web Map Tile Service (WMTS). The average required time for retrieving 100 days of data using this technique is 5.4 seconds, which is significantly faster than other methods that require the download of large satellite image files. The presented data extraction technique and space-time visualization user interface can be used as a model for working with other multi-temporal hydrologic or climate data WMTS services. The third, final step of the data integration procedure is generating continuous daily snow cover maps. A custom inverse distance weighting method has been developed

  8. Run-off of strontium with melting snow in spring

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.


    When assessing the consequences of atmospheric releases caused by a large reactor accident, one usually finds that the major contributions to the dose are via nutrition and from exposure to radiation from radioactive materials deposited on ground. The experiment described is concerned with run-off from agricultural surface which has been contaminated with strontiom while covered with snow. Migration experiments show a significant difference between summer and winter conditions. Roughly 54% of the strontium with which the experimental area was contaminated, ran off with the melt-water. Under winter conditions, portions of the contaminant will flow with the melt-water without coming in contact with the soil

  9. Snow mechanics and avalanche formation: field experiments on the dynamic response of the snow cover (United States)

    Schweizer, Jürg; Schneebeli, Martin; Fierz, Charles; Föhn, Paul M. B.


    Knowledge about snow mechanics and snow avalanche formation forms the basis of any hazard mitigation measures. The crucial point is the snow stability. The most relevant mechanical properties - the compressive, tensile and shear strength of the individual snow layers within the snow cover - vary substantially in space and time. Among other things the strength of the snow layers depends strongly on the state of stress and the strain rate. The evaluation of the stability of the snow cover is hence a difficult task involving many extrapolations. To gain insight in the release mechanism of slab avalanches triggered by skiers, the skier's impact is measured with a load cell at different depths within the snow cover and for different snow conditions. The study focused on the effects of the dynamic loading and of the damping by snow compaction. In accordance with earlier finite-element (FE) calculations the results show the importance of the depth of the weak layer or interface and the snow conditions, especially the sublayering. In order to directly measure the impact force and to study the snow properties in more detail, a new instrument, called rammrutsch was developed. It combines the properties of the rutschblock with the defined impact properties of the rammsonde. The mechanical properties are determined using (i) the impact energy of the rammrutsch and (ii) the deformations of the snow cover measured with accelerometers and digital image processing of video sequences. The new method is well suited to detect and to measure the mechanical processes and properties of the fracturing layers. The duration of one test is around 10 minutes and the method seems appropriate for determining the spatial variability of the snow cover. A series of experiments in a forest opening showed a clear difference in the snow stability between sites below trees and ones in the free field of the opening.

  10. Experimental and model based investigation of the links between snow bidirectional reflectance and snow microstructure (United States)

    Dumont, M.; Flin, F.; Malinka, A.; Brissaud, O.; Hagenmuller, P.; Dufour, A.; Lapalus, P.; Lesaffre, B.; Calonne, N.; Rolland du Roscoat, S.; Ando, E.


    Snow optical properties are unique among Earth surface and crucial for a wide range of applications. The bi-directional reflectance, hereafter BRDF, of snow is sensible to snow microstructure. However the complex interplays between different parameters of snow microstructure namely size parameters and shape parameters on reflectance are challenging to disentangle both theoretically and experimentally. An accurate understanding and modelling of snow BRDF is required to correctly process satellite data. BRDF measurements might also provide means of characterizing snow morphology. This study presents one of the very few dataset that combined bi-directional reflectance measurements over 500-2500 nm and X-ray tomography of the snow microstructure for three different snow samples and two snow types. The dataset is used to evaluate the approach from Malinka, 2014 that relates snow optical properties to the chord length distribution in the snow microstructure. For low and medium absorption, the model accurately reproduces the measurements but tends to slightly overestimate the anisotropy of the reflectance. The model indicates that the deviation of the ice chord length distribution from an exponential distribution, that can be understood as a characterization of snow types, does not impact the reflectance for such absorptions. The simulations are also impacted by the uncertainties in the ice refractive index values. At high absorption and high viewing/incident zenith angle, the simulations and the measurements disagree indicating that some of the assumptions made in the model are not met anymore. The study also indicates that crystal habits might play a significant role for the reflectance under such geometries and wavelengths. However quantitative relationship between crystal habits and reflectance alongside with potential optical methodologies to classify snow morphology would require an extended dataset over more snow types. This extended dataset can likely be obtained

  11. Estimation of snow cover distribution in Beas basin, Indian Himalaya ...

    Indian Academy of Sciences (India)

    In the present paper, a methodology has been developed for the mapping of snow cover in Beas ... Different snow cover mapping methods using snow indices are compared to find the suitable ... cover are important factors for human activities,.

  12. (NDSI) and Normalised Difference Principal Component Snow Index

    African Journals Online (AJOL)

    Phila Sibandze

    According to Bonan (2002), snow plays a significant role in influencing heat regimes and local, regional ... sensitive indicator to climate change. In South Africa, snow is .... This image was captured on the earliest cloud free day after a snow fall.

  13. Daily snow depth measurements from 195 stations in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center


    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  14. Modeling the Observed Microwave Emission from Shallow Multi-Layer Tundra Snow Using DMRT-ML

    Directory of Open Access Journals (Sweden)

    Nastaran Saberi


    Full Text Available The observed brightness temperatures (Tb at 37 GHz from typical moderate density dry snow in mid-latitudes decreases with increasing snow water equivalent (SWE due to volume scattering of the ground emissions by the overlying snow. At a certain point, however, as SWE increases, the emission from the snowpack offsets the scattering of the sub-nivean emission. In tundra snow, the Tb slope reversal occurs at shallower snow thicknesses. While it has been postulated that the inflection point in the seasonal time series of observed Tb V 37 GHz of tundra snow is controlled by the formation of a thick wind slab layer, the simulation of this effect has yet to be confirmed. Therefore, the Dense Media Radiative Transfer Theory for Multi Layered (DMRT-ML snowpack is used to predict the passive microwave response from airborne observations over shallow, dense, slab-layered tundra snow. Airborne radiometer observations coordinated with ground-based in situ snow measurements were acquired in the Canadian high Arctic near Eureka, NT, in April 2011. The DMRT-ML was parameterized with the in situ snow measurements using a two-layer snowpack and run in two configurations: a depth hoar and a wind slab dominated pack. With these two configurations, the calibrated DMRT-ML successfully predicted the Tb V 37 GHz response (R correlation of 0.83 when compared with the observed airborne Tb footprints containing snow pits measurements. Using this calibrated model, the DMRT-ML was applied to the whole study region. At the satellite observation scale, observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E over the study area reflected seasonal differences between Tb V 37 GHz and Tb V 19 GHz that supports the hypothesis of the development of an early season volume scattering depth hoar layer, followed by the growth of the late season emission-dominated wind slab layer. This research highlights the necessity to consider the two

  15. Livestock Husbandry and Snow Leopard Conservation

    NARCIS (Netherlands)

    Mohammad, Ghulam; Mostafawi, Sayed Naqibullah; Dadul, Jigmet; Rosen, Tatjana; Mishra, Charudutt; Bhatnagar, Yash Veer; Trivedi, Pranav; Timbadia, Radhika; Bijoor, Ajay; Murali, Ranjini; Sonam, Karma; Thinley, Tanzin; Namgail, Tsewang; Prins, Herbert H.T.; Nawaz, Muhammad Ali; Ud Din, Jaffar; Buzdar, Hafeez


    Livestock depredation is a key source of snow leopard mortality across much of the species' range. Snow leopards break into livestock corrals, killing many domestic animals and thereby inflicting substantial economic damage. Locals may retaliate by killing the cat and selling its parts.

  16. Prevent Snow from Blocking your Tailpipe

    Centers for Disease Control (CDC) Podcasts


    If it's snowing, make sure your vehicle’s tailpipe is clear of snow before starting the engine to prevent carbon monoxide poisoning.  Created: 12/11/2014 by National Center for Environmental Health (NCEH).   Date Released: 12/11/2014.

  17. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.


    Thesis entitled:

    Modelling Stable Atmospheric Boundary Layers over Snow

    H.A.M. Sterk

    Wageningen, 29th of April, 2015


    The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs

  18. Sublimation From Snow in Northern Environments (United States)

    Pomeroy, J. W.


    Sublimation from snow is an often neglected component of water and energy balances. Research under the Mackenzie GEWEX Study has attempted to understand the snow and atmospheric processes controlling sublimation and to estimate the magnitude of sublimation in high latitude catchments. Eddy correlation units were used to measure vertical water vapour fluxes from a high latitude boreal forest, snow-covered tundra and shrub-covered tundra in Wolf Creek Research Basin, near Whitehorse Yukon, Territory Canada. Over Jan-Apr. water vapour fluxes from the forest canopy amounted to 18.3 mm, a significant loss from winter snowfall of 54 mm. Most of this loss occurred when the canopy was snow-covered. The weight of snow measured on a suspended, weighed tree indicates that this flux is dominated by sublimation of intercepted snow. In the melt period (April), water vapour fluxes were uniformly small ranging from 0.21 mm/day on the tundra slope, 0.23 mm/day for the forest and 0.27 mm/day for the shrub-tundra. During the melt period the forest and shrub canopies was snow-free and roots were frozen, so the primary source of water vapour from all sites was the surface snow.

  19. Major ions in spitsbergen snow samples

    International Nuclear Information System (INIS)

    Semb, A.; Braekkan, R.; Joranger, E.


    Chemical analysis of Spitsbergen snow cores sampled in spring 1983, reveals a spatial pattern consistent with orographic deposition of major anthropogenic pollutants with air movements from southeast towards northwest. The highest concentrations of pollutant species were found at an altitude of 700 metres above sea level, and are higher than for any other recorded snow samples from the Arctic

  20. Comments on Nancy Snow, "Generativity and Flourishing" (United States)

    Kamtekar, Rachana


    In her rich and wide-ranging paper, Nancy Snow argues that there is a virtue of generativity--an other-regarding desire to invest one's substance in forms of life and work that will outlive the self (p. 10). By "virtue" Snow means not just a desirable or praiseworthy quality of a person, but more precisely, as Aristotle defined it, a…

  1. Surface decontamination using dry ice snow

    International Nuclear Information System (INIS)

    Ryu, Jungdong; Park, Kwangheon; Lee, Bumsik; Kim Yangeun


    An adjustable nozzle for controlling the size of dry ice snow was developed. The converging/diverging nozzle can control the size of snows from sub-microns to 10 micron size. Using the nozzle, a surface decontamination device was made. The removal mechanisms of surface contaminants are mechanical impact, partial dissolving and evaporation process, and viscous flow. A heat supply system is added for the prevention of surface ice layer formation. The cleaning power is slightly dependent on the size of snow. Small snows are the better in viscous flow cleaning, while large snows are slightly better in dissolving and sublimation process. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution. (author)

  2. Regime shift of snow days in Switzerland (United States)

    Marty, Christoph


    The number of days with a snow depth above a certain threshold is the key factor for winter tourism in an Alpine country like Switzerland. An investigation of 34 long-term stations between 200 and 1800 m asl (above sea level) going back for at least the last 60 years (1948-2007) shows an unprecedented series of low snow winters in the last 20 years. The signal is uniform despite high regional differences. A shift detection analysis revealed a significant step-like decrease in snow days at the end of the 1980's with no clear trend since then. This abrupt change resulted in a loss of 20% to 60% of the total snow days. The stepwise increase of the mean winter temperature at the end of the 1980's and its close correlation with the snow day anomalies corroborate the sensitivity of the mid-latitude winter to the climate change induced temperature increase.

  3. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona (United States)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.


    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how

  4. An Inexpensive, Implantable Electronic Sensor for Autonomous Measurement of Snow Pack Parameters (United States)

    De Roo, R. D.; Haengel, E.; Rogacki, S.


    Snow accumulations on the ground are an important source of water in many parts of the world. Mapping the accumulation, usually represented as the snow water equivalent (SWE), is valuable for water resource management. The longest record of regional and global maps of SWE are from orbiting microwave radiometers, which do not directly measure SWE but rather measure the scatter darkening from the snow pack. Robustly linking the scatter darkening to SWE eludes us to this day, in part because the snow pack is highly variable in both time and space. The data needed is currently collected by hand in "snow pits," and the labor-intensive process limits the size of the data sets that can be obtained. In particular, time series measurements are only a one or two samples per day at best, and come at the expense of spatial sampling. We report on the development of a low-power wireless device that can be embedded within a snow pack to report on some of the critical parameters needed to understand scatter darkening. The device autonomously logs temperature, the microwave dielectric constant and infrared backscatter local to the device. The microwave dielectric constant reveals the snow density and the presence of liquid water, while the infrared backscatter measurement, together with the density measurement, reveals a characteristic grain size of the snow pack. The devices are made to be inexpensive (less than $200 in parts each) and easily replicated, so that many can be deployed to monitor variations vertically and horizontally in the snow pack. The low-power operation is important both for longevity of observations as well as insuring minimal anomalous metamorphism of the snow pack. The hardware required for the microwave measurement is intended for wireless communications, and this feature will soon be implemented for near real-time monitoring of snow conditions. We will report on the design, construction and initial deployment of about 30 of these devices in northern lower

  5. Quantifying spatial distribution of snow depth errors from LiDAR using Random Forests (United States)

    Tinkham, W.; Smith, A. M.; Marshall, H.; Link, T. E.; Falkowski, M. J.; Winstral, A. H.


    There is increasing need to characterize the distribution of snow in complex terrain using remote sensing approaches, especially in isolated mountainous regions that are often water-limited, the principal source of terrestrial freshwater, and sensitive to climatic shifts and variations. We apply intensive topographic surveys, multi-temporal LiDAR, and Random Forest modeling to quantify snow volume and characterize associated errors across seven land cover types in a semi-arid mountainous catchment at a 1 and 4 m spatial resolution. The LiDAR-based estimates of both snow-off surface topology and snow depths were validated against ground-based measurements across the catchment. Comparison of LiDAR-derived snow depths to manual snow depth surveys revealed that LiDAR based estimates were more accurate in areas of low lying vegetation such as shrubs (RMSE = 0.14 m) as compared to areas consisting of tree cover (RMSE = 0.20-0.35 m). The highest errors were found along the edge of conifer forests (RMSE = 0.35 m), however a second conifer transect outside the catchment had much lower errors (RMSE = 0.21 m). This difference is attributed to the wind exposure of the first site that led to highly variable snow depths at short spatial distances. The Random Forest modeled errors deviated from the field measured errors with a RMSE of 0.09-0.34 m across the different cover types. Results show that snow drifts, which are important for maintaining spring and summer stream flows and establishing and sustaining water-limited plant species, contained 30 × 5-6% of the snow volume while only occupying 10% of the catchment area similar to findings by prior physically-based modeling approaches. This study demonstrates the potential utility of combining multi-temporal LiDAR with Random Forest modeling to quantify the distribution of snow depth with a reasonable degree of accuracy. Future work could explore the utility of Terrestrial LiDAR Scanners to produce validation of snow-on surface

  6. Past and future of the Austrian snow cover - results from the CC-Snow project (United States)

    Strasser, Ulrich; Marke, Thomas; Hanzer, Florian; Ragg, Hansjörg; Kleindienst, Hannes; Wilcke, Renate; Gobiet, Andreas


    This study has the goal to simulate the evolution of the Austrian snow cover from 1971 to 2050 by means of a coupled modelling scheme, and to estimate the effect of climate change on the evolution of the natural snow cover. The model outcomes are interepreted with focus on both the future natural snow conditions, and the effects on winter skiing tourism. Therefore the regional temperature-index snow model SNOWREG is applied, providing snow maps with a spatial resolution of 250 m. The model is trained by means of assimilating local measurements and observed natural snow cover patterns. Meteorological forcing consists of the output of four realizations of the ENSEMBLES project for the A1B emission scenario. The meteorological variables are downscaled and error corrected with a quantile based empirical-statistical method on a daily time basis. The control simulation is 1971-2000, and the scenario simulation 2021-2050. Spatial interpolation is performed on the basis of parameter-elevation relations. We compare the four different global/regional climate model combinations and their effect on the snow modelling, and we explain the patterns of the resulting snow cover by means of regional climatological characteristics. The provinces Tirol and Styria serve as test regions, being typical examples for the two climatic subregions of Austria. To support the interpretation of the simulation results we apply indicators which enable to define meaningful measures for the comparison of the different periods and regions. Results show that the mean duration of the snow cover will decrease by 15 to 30 days per winter season, mostly in elevations between 2000 and 2500 m. Above 3000 m the higher winter precipitation can compensate this effect, and mean snow cover duration may even slightly increase. We also investigate the local scale by application of the physically based mountain snow model AMUNDSEN. This model is capable of producing 50 m resolution output maps for indicators

  7. From drones to ASO: Using 'Structure-From-Motion' photogrammetry to quantify variations in snow depth at multiple scales (United States)

    Skiles, M.


    The ability to accurately measure and manage the natural snow water reservoir in mountainous regions has its challenges, namely mapping of snowpack depth and snow water equivalent (SWE). Presented here is a scalable method that differentially maps snow depth using Structure from Motion (SfM); a photogrammetric technique that uses 2d images to create a 3D model/Digital Surface Model (DSM). There are challenges with applying SfM to snow, namely, relatively uniform snow brightness can make it difficult to produce quality images needed for processing, and vegetation can limit the ability to `see' through the canopy to map both the ground and snow beneath. New techniques implemented in the method to adapt to these challenges will be demonstrated. Results include a time series at (1) the plot scale, imaged with an unmanned areal vehicle (DJI Phantom 2 adapted with Sony A5100) over the Utah Department of Transportation Atwater Study Plot in Little Cottonwood Canyon, UT, and at (2) the mountain watershed scale, imaged from the RGB camera aboard the Airborne Snow Observatory (ASO), over the headwaters of the Uncompahgre River in the San Juan Mountains, CO. At the plot scale we present comparisons to measured snow depth, and at the watershed scale we present comparisons to the ASO lidar DSM. This method is of interest due to its low cost relative to lidar, making it an accessible tool for snow research and the management of water resources. With advancing unmanned aerial vehicle technology there are implications for scalability to map snow depth, and SWE, across large basins.

  8. Improvement of a snow albedo parameterization in the Snow-Atmosphere-Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover (United States)

    Zhong, Efang; Li, Qian; Sun, Shufen; Chen, Wen; Chen, Shangfeng; Nath, Debashis


    The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow-Atmosphere-Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m-2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.

  9. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup


    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bott...

  10. PERSPECTIVE: Snow matters in the polar regions (United States)

    Sodeau, John


    to 30 times greater than those found in ice-free areas. The main question to ask is: how might the bromine have become released to the atmosphere? Many ideas have, in fact, been put forward over the last few years as to how such polar ocean-troposphere exchanges can take place. Much of the interest was driven by the so-called 'sudden' ozone depletion episodes first detected in Arctic air during the 1990s alongside simultaneous bromine 'explosions' which were monitored by ground-based instrumentation and satellite (as the radical BrO) over sea-ice covered by snowpack (Hausmann and Platt 1994, Schonhardt et al 2008). The likely precursors suggested, to date, have been sea-salt, frost-flowers and anthropogenic contents rather than organo- bromine matter (Simpson et al 2007). Associated processing routes including the formation of HOBr, the need for acidity, the involvement of trihalide ions and the potential role of freezing processes and the quasi-liquid layer have all been discussed in this context (Abbatt 1994, Neshyba et al 2009, O'Driscoll et al 2006). Computational work has also led to suggestions that preferential surface dispersion of the more highly polarizable halides (iodide and bromide ions) may lead to their direct interfacial reaction with atmospheric ozone leading to BrO or IO formation (Jungwirth and Winter 2008). The involvement of snow micro-algae in the production of halo-compounds such as CHBr3 and CH2Br2 in Antarctica cannot, of course, be ignored following the measurement of these compounds by Sturges and co-workers over 15 years ago (Sturges et al 1993). And the measurement of high levels of nutrient discussed in the recent work by Antony et al (2010) in the ice-cap areas do provide a basis for understanding why micro- algae growth in snow might be promoted. However the question still comes back to: how are these halo-compounds processed to produce 'active' species like BrO radicals, HOBr, Br atoms, Br2 gas or interhalogens such as BrCl? The

  11. Calculation of new snow densities from sub-daily automated snow measurements (United States)

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Lehning, Michael; Olefs, Marc


    In mountain regions there is an increasing demand for high-quality analysis, nowcasting and short-range forecasts of the spatial distribution of snowfall. Operational services, such as for avalanche warning, road maintenance and hydrology, as well as hydropower companies and ski resorts need reliable information on the depth of new snow (HN) and the corresponding water equivalent (HNW). However, the ratio of HNW to HN can vary from 1:3 to 1:30 because of the high variability of new snow density with respect to meteorological conditions. In the past, attempts were made to calculate new snow densities from meteorological parameters mainly using daily values of temperature and wind. Further complex statistical relationships have been used to calculate new snow densities on hourly to sub-hourly time intervals to drive multi-layer snow cover models. However, only a few long-term in-situ measurements of new snow density exist for sub-daily time intervals. Settling processes within the new snow due to loading and metamorphism need to be considered when computing new snow density. As the effect of these processes is more pronounced for long time intervals, a high temporal resolution of measurements is desirable. Within the pluSnow project data of several automatic weather stations with simultaneous measurements of precipitation (pluviometers), snow water equivalent (SWE) using snow pillows and snow depth (HS) measurements using ultrasonic rangers were analysed. New snow densities were calculated for a set of data filtered on the basis of meteorological thresholds. The calculated new snow densities were compared to results from existing new snow density parameterizations. To account for effects of settling of the snow cover, a case study based on a multi-year data set using the snow cover model SNOWPACK at Weissfluhjoch was performed. Measured median values of hourly new snow densities at the different stations range from 54 to 83 kgm-3. This is considerably lower than a 1

  12. Spatial and temporal variability in seasonal snow density

    KAUST Repository

    Bormann, Kathryn J.


    Snow density is a fundamental physical property of snowpacks used in many aspects of snow research. As an integral component in the remote sensing of snow water equivalent and parameterisation of snow models, snow density may be used to describe many important features of snowpack behaviour. The present study draws on a significant dataset of snow density and climate observations from the United States, Australia and the former Soviet Union and uses regression-based techniques to identify the dominant climatological drivers for snow densification rates, characterise densification rate variability and estimate spring snow densities from more readily available climate data. Total winter precipitation was shown to be the most prominent driver of snow densification rates, with mean air temperature and melt-refreeze events also found to be locally significant. Densification rate variance is very high at Australian sites, very low throughout the former Soviet Union and between these extremes throughout much of the US. Spring snow densities were estimated using a statistical model with climate variable inputs and best results were achieved when snow types were treated differently. Given the importance of snow density information in many snow-related research disciplines, this work has implications for current methods of converting snow depths to snow water equivalent, the representation of snow dynamics in snow models and remote sensing applications globally. © 2013 Elsevier B.V.

  13. Spatial and temporal variability in seasonal snow density

    KAUST Repository

    Bormann, Kathryn J.; Westra, Seth; Evans, Jason P.; McCabe, Matthew


    Snow density is a fundamental physical property of snowpacks used in many aspects of snow research. As an integral component in the remote sensing of snow water equivalent and parameterisation of snow models, snow density may be used to describe many important features of snowpack behaviour. The present study draws on a significant dataset of snow density and climate observations from the United States, Australia and the former Soviet Union and uses regression-based techniques to identify the dominant climatological drivers for snow densification rates, characterise densification rate variability and estimate spring snow densities from more readily available climate data. Total winter precipitation was shown to be the most prominent driver of snow densification rates, with mean air temperature and melt-refreeze events also found to be locally significant. Densification rate variance is very high at Australian sites, very low throughout the former Soviet Union and between these extremes throughout much of the US. Spring snow densities were estimated using a statistical model with climate variable inputs and best results were achieved when snow types were treated differently. Given the importance of snow density information in many snow-related research disciplines, this work has implications for current methods of converting snow depths to snow water equivalent, the representation of snow dynamics in snow models and remote sensing applications globally. © 2013 Elsevier B.V.

  14. The Snowcloud System: Architecture and Algorithms for Snow Hydrology Studies (United States)

    Skalka, C.; Brown, I.; Frolik, J.


    Snowcloud is an embedded data collection system for snow hydrology field research campaigns conducted in harsh climates and remote areas. The system combines distributed wireless sensor network technology and computational techniques to provide data at lower cost and higher spatio-temporal resolution than ground-based systems using traditional methods. Snowcloud has seen multiple Winter deployments in settings ranging from high desert to arctic, resulting in over a dozen node-years of practical experience. The Snowcloud system architecture consists of multiple TinyOS mesh-networked sensor stations collecting environmental data above and, in some deployments, below the snowpack. Monitored data modalities include snow depth, ground and air temperature, PAR and leaf-area index (LAI), and soil moisture. To enable power cycling and control of multiple sensors a custom power and sensor conditioning board was developed. The electronics and structural systems for individual stations have been designed and tested (in the lab and in situ) for ease of assembly and robustness to harsh winter conditions. Battery systems and solar chargers enable seasonal operation even under low/no light arctic conditions. Station costs range between 500 and 1000 depending on the instrumentation suite. For remote field locations, a custom designed hand-held device and data retrieval protocol serves as the primary data collection method. We are also developing and testing a Gateway device that will report data in near-real-time (NRT) over a cellular connection. Data is made available to users via web interfaces that also provide basic data analysis and visualization tools. For applications to snow hydrology studies, the better spatiotemporal resolution of snowpack data provided by Snowcloud is beneficial in several aspects. It provides insight into snowpack evolution, and allows us to investigate differences across different spatial and temporal scales in deployment areas. It enables the

  15. Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP (United States)

    Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.


    The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.

  16. Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation (United States)

    Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew


    This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.

  17. Mac OS X Snow Leopard pocket guide

    CERN Document Server

    Seiblod, Chris


    Whether you're new to the Mac or a longtime user, this handy book is the quickest way to get up to speed on Snow Leopard. Packed with concise information in an easy-to-read format, Mac OS X Snow Leopard Pocket Guide covers what you need to know and is an ideal resource for problem-solving on the fly. This book goes right to the heart of Snow Leopard, with details on system preferences, built-in applications, and utilities. You'll also find configuration tips, keyboard shortcuts, guides for troubleshooting, lots of step-by-step instructions, and more. Learn about new features and changes s

  18. Distribution of Snow and Maximum Snow Water Equivalent Obtained by LANDSAT Data and Degree Day Method (United States)

    Takeda, K.; Ochiai, H.; Takeuchi, S.


    Maximum snow water equivalence and snowcover distribution are estimated using several LANDSAT data taken in snowmelting season over a four year period. The test site is Okutadami-gawa Basin located in the central position of Tohoku-Kanto-Chubu District. The year to year normalization for snowmelt volume computation on the snow line is conducted by year to year correction of degree days using the snowcover percentage within the test basin obtained from LANDSAT data. The maximum snow water equivalent map in the test basin is generated based on the normalized snowmelt volume on the snow line extracted from four LANDSAT data taken in a different year. The snowcover distribution on an arbitrary day in snowmelting of 1982 is estimated from the maximum snow water equivalent map. The estimated snowcover is compared with the snowcover area extracted from NOAA-AVHRR data taken on the same day. The applicability of the snow estimation using LANDSAT data is discussed.

  19. Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies. (United States)

    Cockell, Charles S; Rettberg, Petra; Horneck, Gerda; Wynn-Williams, David D; Scherer, Kerstin; Gugg-Helminger, Anton


    Bacillus subtilis spore biological dosimeters and electronic dosimeters were used to investigate the exposure of terrestrial microbial communities in micro-habitats covered by snow and ice in Antarctica. The melting of snow covers of between 5- and 15-cm thickness, depending on age and heterogeneity, could increase B. subtilis spore inactivation by up to an order of magnitude, a relative increase twice that caused by a 50% ozone depletion. Within the snow-pack at depths of less than approximately 3 cm snow algae could receive two to three times the DNA-weighted irradiance they would receive on bare ground. At the edge of the snow-pack, warming of low albedo soils resulted in the formation of overhangs that provided transient UV protection to thawed and growing microbial communities on the soils underneath. In shallow aquatic habitats, thin layers of heterogeneous ice of a few millimetres thickness were found to reduce DNA-weighted irradiances by up to 55% compared to full-sky values with equivalent DNA-weighted diffuse attenuation coefficients (K(DNA)) of >200 m(-1). A 2-mm snow-encrusted ice cover on a pond was equivalent to 10 cm of ice on a perennially ice covered lake. Ice covers also had the effect of stabilizing the UV exposure, which was often subject to rapid variations of up to 33% of the mean value caused by wind-rippling of the water surface. These data show that changing ice and snow covers cause relative changes in microbial UV exposure at least as great as those caused by changing ozone column abundance. Copyright 2002 Elsevier Science B.V.

  20. Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model

    Directory of Open Access Journals (Sweden)

    T. M. Saloranta


    Full Text Available Daily maps of snow conditions have been produced in Norway with the seNorge snow model since 2004. The seNorge snow model operates with 1 × 1 km resolution, uses gridded observations of daily temperature and precipitation as its input forcing, and simulates, among others, snow water equivalent (SWE, snow depth (SD, and the snow bulk density (ρ. In this paper the set of equations contained in the seNorge model code is described and a thorough spatiotemporal statistical evaluation of the model performance from 1957–2011 is made using the two major sets of extensive in situ snow measurements that exist for Norway. The evaluation results show that the seNorge model generally overestimates both SWE and ρ, and that the overestimation of SWE increases with elevation throughout the snow season. However, the R2-values for model fit are 0.60 for (log-transformed SWE and 0.45 for ρ, indicating that after removal of the detected systematic model biases (e.g. by recalibrating the model or expressing snow conditions in relative units the model performs rather well. The seNorge model provides a relatively simple, not very data-demanding, yet nonetheless process-based method to construct snow maps of high spatiotemporal resolution. It is an especially well suited alternative for operational snow mapping in regions with rugged topography and large spatiotemporal variability in snow conditions, as is the case in the mountainous Norway.

  1. Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia (United States)

    Zhang, Yinsheng; Ma, Ning


    Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of the continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972-2006 and the Global Monthly EASE-Grid SWE data for 1979-2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972-2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as partial area of Central Asia and northwestern Russia, but varied little in other parts of Eurasia. "Snow-free breaks" (SFBs) with intermittent snow cover in the cold season were principally observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1-14 weeks during the study period and the maximum intermittence could even reach 25 weeks in certain years. At a seasonal scale, SWE usually peaked in February or March, but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979-2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China. The possible cross-platform inconsistencies between two passive microwave radiometers may cause uncertainties in the detected trends of SWE here, suggesting an urgent need of producing a long-term, more homogeneous SWE

  2. Establishing Winter Origins of Migrating Lesser Snow Geese Using Stable Isotopes

    Directory of Open Access Journals (Sweden)

    Viviane Hénaux


    Full Text Available Increases in Snow Goose (Chen caerulescens populations and large-scale habitat changes in North America have contributed to the concentration of migratory waterfowl on fewer wetlands, reducing resource availability, and enhancing risks of disease transmission. Predicting wintering locations of migratory individuals is critical to guide wildlife population management and habitat restoration. We used stable carbon (δ13C, nitrogen (δ15N, and hydrogen (δ2H isotope ratios in muscle tissue of wintering Snow Geese to discriminate four major wintering areas, the Playa Lake Region, Texas Gulf Coast, Louisiana Gulf Coast, and Arkansas, and infer the wintering locations of individuals collected later during the 2007 and 2008 spring migrations in the Rainwater Basin (RWB of Nebraska. We predicted the wintering ground derivation of migrating Snow Geese using a likelihood-based approach. Our three-isotope analysis provided an efficient discrimination of the four wintering areas. The assignment model predicted that 53% [95% CI: 37-69] of our sample of Snow Geese from the RWB in 2007 had most likely originated in Louisiana, 38% [23-54] had wintered on Texas Gulf Coast, and 9% [0-20] in Arkansas; the assessment suggested that 89% [73-100] of our 2008 sample had most likely come from Texas Gulf Coast, 9% [0-27] from Louisiana Gulf Coast, and 2% [0-9] from Arkansas. Further segregation of wintering grounds and additional sampling of spring migrating Snow Geese would refine overall assignment and help explain interannual variations in migratory connectivity. The ability to distinguish origins of northbound geese can support the development of spatially-adaptive management strategies for the midcontinent Snow Goose population. Establishing migratory connectivity using isotope assignment techniques can be extended to other waterfowl species to determine critical habitat, evaluate population energy requirements, and inform waterfowl conservation and management

  3. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    Directory of Open Access Journals (Sweden)

    C. Vera Valero


    Full Text Available Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  4. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.


    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  5. Snow cover as a source of technogenic pollution of surface water during the snow melting period

    Directory of Open Access Journals (Sweden)

    Labuzova Olga


    Full Text Available The study of pollutants in melt water of snow cover and snow disposal sites in the city of Barnaul showed that during the snow melting period the surface water is not subjected to significant technogenic impact according to a number of studied indices. The oils content is an exception: it can exceed MAC more than 20 times in river- water due to the melting of city disposal sites. Environmental damage due to an oils input into water resources during the snow melting period can be more than 300000 thousand rubles.

  6. Is Eurasian October snow cover extent increasing?

    International Nuclear Information System (INIS)

    Brown, R D; Derksen, C


    A number of recent studies present evidence of an increasing trend in Eurasian snow cover extent (SCE) in the October snow onset period based on analysis of the National Oceanic and Atmospheric Administration (NOAA) historical satellite record. These increases are inconsistent with fall season surface temperature warming trends across the region. Using four independent snow cover data sources (surface observations, two reanalyses, satellite passive microwave retrievals) we show that the increasing SCE is attributable to an internal trend in the NOAA CDR dataset to chart relatively more October snow cover extent over the dataset overlap period (1982–2005). Adjusting the series for this shift results in closer agreement with other independent datasets, stronger correlation with continentally-averaged air temperature anomalies, and a decrease in SCE over 1982–2011 consistent with surface air temperature warming trends over the same period. (letter)

  7. Central Asian Snow Cover from Hydrometeorological Surveys (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Asian Snow Cover from Hydrometeorological Surveys data are based on observations made by personnel for three river basins: Amu Darya, Sir Darya, and...


    CERN Multimedia

    ST-HM Group; Tel. 72202


    As usual at this time of the year, the snowing clearing service, which comes under the control of the Transport Group (ST-HM), is preparing for the start of snow-clearing operations (timetable, stand-by service, personnel responsible for driving vehicles and machines, preparation of useful and necessary equipment, work instructions, etc.) in collaboration with the Cleaning Service (ST-TFM) and the Fire Brigade (TIS-FB). The main difficulty for the snow-clearing service is the car parks, which cannot be properly cleared because of the presence of CERN and private vehicles parked there overnight in different parts of the parking areas. The ST-HM Transport Group would therefore like to invite you to park vehicles together in order to facilitate the access of the snow ploughs, thus allowing the car parks to be cleared more efficiently before the personnel arrives for work in the mornings.

  9. Rand Corporation Mean Monthly Global Snow Depth (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — All available monthly snow depth climatologies were integrated by the Rand Corporation, in the early 1980s, into one global (excluding Africa and South America)...

  10. Photochemical degradation of PCBs in snow. (United States)

    Matykiewiczová, Nina; Klánová, Jana; Klán, Petr


    This work represents the first laboratory study known to the authors describing photochemical behavior of persistent organic pollutants in snow at environmentally relevant concentrations. The snow samples were prepared by shock freezing of the corresponding aqueous solutions in liquid nitrogen and were UV-irradiated in a photochemical cold chamber reactor at -25 degrees C, in which simultaneous monitoring of snow-air exchange processeswas also possible. The main photodegradation pathway of two model snow contaminants, PCB-7 and PCB-153 (c approximately 100 ng kg(-1)), was found to be reductive dehalogenation. Possible involvement of the water molecules of snow in this reaction has been excluded by performing the photolyses in D2O snow. Instead, trace amounts of volatile organic compounds have been proposed to be the major source of hydrogen atom in the reduction, and this hypothesis was confirmed by the experiments with deuterated organic cocontaminants, such as d6-ethanol or d8-tetrahydrofuran. It is argued that bimolecular photoreduction of PCBs was more efficient or feasible than any other phototransformations under the experimental conditions used, including the coupling reactions. The photodegradation of PCBs, however, competed with a desorption process responsible for the pollutant loss from the snow samples, especially in case of lower molecular-mass congeners. Organic compounds, apparently largely located or photoproduced on the surface of snow crystals, had a predisposition to be released to the air but, at the same time, to react with other species in the gas phase. It is concluded that physicochemical properties of the contaminants and trace co-contaminants, their location and local concentrations in the matrix, and the wavelength and intensity of radiation are the most important factors in the evaluation of organic contaminants' lifetime in snow. Based on the results, it has been estimated that the average lifetime of PCBs in surface snow, connected

  11. Snow management practices in French ski resorts (United States)

    Spandre, Pierre; Francois, Hugues; George-Marcelpoil, Emmanuelle; Morin, Samuel


    Winter tourism plays a fundamental role in the economy of French mountain regions but also in other countries such as Austria, USA or Canada. Ski operators originally developed grooming methods to provide comfortable and safe skiing conditions. The interannual variability of snow conditions and the competition with international destinations and alternative tourism activities encouraged ski resorts to mitigate their dependency to weather conditions through snowmaking facilities. However some regions may not be able to produce machine made snow due to inadequate conditions and low altitude resorts are still negatively impacted by low snow seasons. In the meantime, even though the operations of high altitude resorts do not show any dependency to the snow conditions they invest in snowmaking facilities. Such developments of snowmaking facilities may be related to a confused and contradictory perception of climate change resulting in individualistic evolutions of snowmaking facilities, also depending on ski resorts main features such as their altitude and size. Concurrently with the expansion of snowmaking facilities, a large range of indicators have been used to discuss the vulnerability of ski resorts such as the so-called "100 days rule" which was widely used with specific thresholds (i.e. minimum snow depth, dates) and constraints (i.e. snowmaking capacity). The present study aims to provide a detailed description of snow management practices and major priorities in French ski resorts with respect to their characteristics. We set up a survey in autumn 2014, collecting data from 56 French ski operators. We identify the priorities of ski operators and describe their snowmaking and grooming practices and facilities. The operators also provided their perception of the ski resort vulnerability to snow and economic challenges which we could compare with the actual snow conditions and ski lift tickets sales during the period from 2001 to 2012.

  12. Snow Drift Management: Summit Station Greenland (United States)


    management Snow surveys Transport analysis Winds -- Speed 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...that about 25% of the estimated snow that the wind transports to Summit each winter is deposited and forms drifts, mostly in close proxim- ity to...the structures. This analysis demonstrates that weather data ( wind speed and direction) and a transport analysis can aid in estimating the vol- ume of

  13. Acid Rain and Snow in Kashiwazaki City.


    小野寺, 正幸; 富永, 禎秀; 竹園, 恵; 大金, 一二; Onodera, Masayuki; Tominaga, Yoshihide; Takesono, Satoshi; Oogane, Katsuji


    This paper described the actual condition of acid rain and snow and their influence of a winter monsoon in Kashiwazaki city. For 7 months from September in 2001 to March in 2002, the pH value was measured in rain or snow. The minimum of pH value observed was 3.9 for the 7 months. The day which observed pH

  14. Bike2Work: Rolling in the SNOW

    CERN Document Server


    This team is obviously cycling around the year! Unless the association to snow is purely linked to the fact that the team works in Service Management providing support for the ServiceNow, which computer platform is known as SNOW. The team members are from left to right Iban Eguia Moraza, Petar Tonkovic and Africa Santos. David Martin Clavo, the forth member, was absent on the day of the photo.

  15. Snow darkening caused by black carbon emitted from fires (United States)

    Engels, Jessica; Kloster, Silvia; Bourgeois, Quentin


    We implemented the effect of snow darkening caused by black carbon (BC) emitted from forest fires into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM) to estimate its potential climate impact of present day fire occurrence. Considerable amounts of black carbon emitted from fires are transported into snow covered regions. Already very small quantities of black carbon reduce the snow reflectance, with consequences for snow melting and snow spatial coverage. Therefore, the SNICAR (SNow And Ice Radiation) model (Flanner and Zender (2005)) is implemented in the land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at the MPI-M. The SNICAR model includes amongst other processes a complex calculation of the snow albedo depending on black carbon in snow and snow grain growth depending on water vapor fluxes for a five layer snow scheme. For the implementation of the SNICAR model into the one layer scheme of ECHAM6-JSBACH, we used the SNICAR-online version ( This single-layer simulator provides the albedo of snow for selectable combinations of impurity content (e.g. black carbon), snow grain size, and incident solar flux characteristics. From this scheme we derived snow albedo values for black carbon in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) and for different snow grain sizes for the visible (0.3 - 0.7 µm) and near infrared range (0.7 - 1.5 µm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 µm). Here, a radius of 50 µm corresponds to new snow, whereas a radius of 1000 µm corresponds to old snow. The required snow age is taken from the BATS (Biosphere Atmosphere Transfer Scheme, Dickinson et al. (1986)) snow albedo implementation in ECHAM6-JSBACH. Here, we will present an extended evaluation of the model including a comparison of modeled black carbon in snow concentrations to observed

  16. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  17. Snow as a habitat for microorganisms (United States)

    Hoham, Ronald W.


    There are three major habitats involving ice and snow, and the microorganisms studied from these habitats are most eukaryotic. Sea ice is inhabited by algae called diatoms, glacial ice has sparse populations of green algai cal desmids, and the temporary and permanent snows in mountainous regions and high latitudes are inhabited mostly by green algal flagellates. The life cycle of green algal flagellates is summarized by discussing the effects of light, temperature, nutrients, and snow melts. Specific examples of optimal conditions and environmental effects for various snow algae are given. It is not likely that the eukaryotic snow algae presented are candidated for life on the planet Mars. Evolutionally, eukaryotic cells as know on Earth may not have had the opportunity to develop on Mars (if life evolved at all on Mars) since eukaryotes did not appear on Earth until almost two billion years after the first prokaryotic organisms. However, the snow/ice ecosystems on Earth present themselves as extreme habitats were there is evidence of prokaryotic life (eubacteria and cyanbacteria) of which literally nothing is known. Any future surveillances of extant and/or extinct life on Mars should include probes (if not landing sites) to investigate sites of concentrations of ice water. The possibility of signs of life in Martian polar regions should not be overlooked.

  18. Snow model design for operational purposes (United States)

    Kolberg, Sjur


    A parsimonious distributed energy balance snow model intended for operational use is evaluated using discharge, snow covered area and grain size; the latter two as observed from the MODIS sensor. The snow model is an improvement of the existing GamSnow model, which is a part of the Enki modelling framework. Core requirements for the new version have been: 1. Reduction of calibration freedom, motivated by previous experience of non-identifiable parameters in the existing version 2. Improvement of process representation based on recent advances in physically based snow modelling 3. Limiting the sensitivity to forcing data which are poorly known over the spatial domain of interest (often in mountainous areas) 4. Preference for observable states, and the ability to improve from updates. The albedo calculation is completely revised, now based on grain size through an emulation of the SNICAR model (Flanner and Zender, 2006; Gardener and Sharp, 2010). The number of calibration parameters in the albedo model is reduced from 6 to 2. The wind function governing turbulent energy fluxes has been reduced from 2 to 1 parameter. Following Raleigh et al (2011), snow surface radiant temperature is split from the top layer thermodynamic temperature, using bias-corrected wet-bulb temperature to model the former. Analyses are ongoing, and the poster will bring evaluation results from 16 years of MODIS observations and more than 25 catchments in southern Norway.

  19. [Was Snow White a transsexual?]. (United States)

    Michel, A; Mormont, C


    modalities in the transsexual dynamics. Nevertheless, one can ask oneself about the possibility of a request based on a desire rather than on a defense, or even on the existence of a defensive process diametrically opposed to the counter-phobic attitude and which, instead of actively provoking the dreaded reality, would privilege its avoidance and the search of passivity. This latter hypothesis has the advantage of being rather easy to explore with the Rorschach because, according to Exner, the predominance of passive compared to active human movement responses (which he terms the Snow White Syndrome) indicates the propensity to escape into passive fantasies and the tendency to avoid the initiative for behaviour or decision-making, if other people can do it in the subject's place (12). Our results largely confirmed the hypothesis of the existence of an opposite mechanism, as a third of subjects (n = 26) presented Snow White Syndrome. According to Exner, these transsexuals are typically characterized by hiding into a world of make believe, avoiding all responsibility, as well as any decision-making. This passivity in our Snow White Syndrome group was all the more remarkable in that, on the whole, it infiltrated into all the movement responses and seemed to define a rigid style of thinking and mental elaboration, in addition to a suggestive content of passivity. However, this condition cannot be associated with a general lack of dynamism or energy. In fact, the treatment of information, which provides data concerning the motivation to treat a stimulus field of the stimulus--whether this concerns the capture (L) of the stimulus or the elaboration (DQ+) of the response--displayed a sufficient amount of motivation. Furthermore, internal resources (EA) were considerable and were brought into play whenever it was necessary to adopt a behaviour or make a decision. Furthermore, based on these Rorschach findings, we note that in transsexuals with Snow White Syndrome, there is a

  20. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica

    Directory of Open Access Journals (Sweden)

    T. Carlsen


    Full Text Available The optical-equivalent snow grain size affects the reflectivity of snow surfaces and, thus, the local surface energy budget in particular in polar regions. Therefore, the specific surface area (SSA, from which the optical snow grain size is derived, was observed for a 2-month period in central Antarctica (Kohnen research station during austral summer 2013/14. The data were retrieved on the basis of ground-based spectral surface albedo measurements collected by the COmpact RAdiation measurement System (CORAS and airborne observations with the Spectral Modular Airborne Radiation measurement sysTem (SMART. The snow grain size and pollution amount (SGSP algorithm, originally developed to analyze spaceborne reflectance measurements by the MODerate Resolution Imaging Spectroradiometer (MODIS, was modified in order to reduce the impact of the solar zenith angle on the retrieval results and to cover measurements in overcast conditions. Spectral ratios of surface albedo at 1280 and 1100 nm wavelength were used to reduce the retrieval uncertainty. The retrieval was applied to the ground-based and airborne observations and validated against optical in situ observations of SSA utilizing an IceCube device. The SSA retrieved from CORAS observations varied between 27 and 89 m2 kg−1. Snowfall events caused distinct relative maxima of the SSA which were followed by a gradual decrease in SSA due to snow metamorphism and wind-induced transport of freshly fallen ice crystals. The ability of the modified algorithm to include measurements in overcast conditions improved the data coverage, in particular at times when precipitation events occurred and the SSA changed quickly. SSA retrieved from measurements with CORAS and MODIS agree with the in situ observations within the ranges given by the measurement uncertainties. However, SSA retrieved from the airborne SMART data slightly underestimated the ground-based results.

  1. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica (United States)

    Carlsen, Tim; Birnbaum, Gerit; Ehrlich, André; Freitag, Johannes; Heygster, Georg; Istomina, Larysa; Kipfstuhl, Sepp; Orsi, Anaïs; Schäfer, Michael; Wendisch, Manfred


    The optical-equivalent snow grain size affects the reflectivity of snow surfaces and, thus, the local surface energy budget in particular in polar regions. Therefore, the specific surface area (SSA), from which the optical snow grain size is derived, was observed for a 2-month period in central Antarctica (Kohnen research station) during austral summer 2013/14. The data were retrieved on the basis of ground-based spectral surface albedo measurements collected by the COmpact RAdiation measurement System (CORAS) and airborne observations with the Spectral Modular Airborne Radiation measurement sysTem (SMART). The snow grain size and pollution amount (SGSP) algorithm, originally developed to analyze spaceborne reflectance measurements by the MODerate Resolution Imaging Spectroradiometer (MODIS), was modified in order to reduce the impact of the solar zenith angle on the retrieval results and to cover measurements in overcast conditions. Spectral ratios of surface albedo at 1280 and 1100 nm wavelength were used to reduce the retrieval uncertainty. The retrieval was applied to the ground-based and airborne observations and validated against optical in situ observations of SSA utilizing an IceCube device. The SSA retrieved from CORAS observations varied between 27 and 89 m2 kg-1. Snowfall events caused distinct relative maxima of the SSA which were followed by a gradual decrease in SSA due to snow metamorphism and wind-induced transport of freshly fallen ice crystals. The ability of the modified algorithm to include measurements in overcast conditions improved the data coverage, in particular at times when precipitation events occurred and the SSA changed quickly. SSA retrieved from measurements with CORAS and MODIS agree with the in situ observations within the ranges given by the measurement uncertainties. However, SSA retrieved from the airborne SMART data slightly underestimated the ground-based results.

  2. Understanding snow-transport processes shaping the mountain snow-cover

    Directory of Open Access Journals (Sweden)

    R. Mott


    Full Text Available Mountain snow-cover is normally heterogeneously distributed due to wind and precipitation interacting with the snow cover on various scales. The aim of this study was to investigate snow deposition and wind-induced snow-transport processes on different scales and to analyze some major drift events caused by north-west storms during two consecutive accumulation periods. In particular, we distinguish between the individual processes that cause specific drifts using a physically based model approach. Very high resolution wind fields (5 m were computed with the atmospheric model Advanced Regional Prediction System (ARPS and used as input for a model of snow-surface processes (Alpine3D to calculate saltation, suspension and preferential deposition of precipitation. Several flow features during north-west storms were identified with input from a high-density network of permanent and mobile weather stations and indirect estimations of wind directions from snow-surface structures, such as snow dunes and sastrugis. We also used Terrestrial and Airborne Laser Scanning measurements to investigate snow-deposition patterns and to validate the model. The model results suggest that the in-slope deposition patterns, particularly two huge cross-slope cornice-like drifts, developed only when the prevailing wind direction was northwesterly and were formed mainly due to snow redistribution processes (saltation-driven. In contrast, more homogeneous deposition patterns on a ridge scale were formed during the same periods mainly due to preferential deposition of precipitation. The numerical analysis showed that snow-transport processes were sensitive to the changing topography due to the smoothing effect of the snow cover.

  3. Validation and Algorithms Comparative Study for Microwave Remote Sensing of Snow Depth over China

    International Nuclear Information System (INIS)

    Bin, C J; Qiu, Y B; Shi, L J


    In this study, five different snow algorithms (Chang algorithm, GSFC 96 algorithm, AMSR-E SWE algorithm, Improved Tibetan Plateau algorithm and Savoie algorithm) were selected to validate the accuracy of snow algorithms over China. These algorithms were compared for the accuracy of snow depth algorithms with AMSR-E brightness temperature data and ground measurements on February 10-12, 2010. Results showed that the GSFC 96 algorithm was more suitable in Xinjiang with the RMSE range from 6.85cm to 7.48 cm; in Inner Mongolia and Northeast China. Improved Tibetan Plateau algorithm is superior to the other four algorithms with the RMSE of 5.46cm∼6.11cm and 6.21cm∼7.83cm respectively; due to the lack of ground measurements, we couldn't get valid statistical results over the Tibetan Plateau. However, the mean relative error (MRE) of the selected algorithms was ranging from 37.95% to 189.13% in four study areas, which showed that the accuracy of the five snow depth algorithms is limited over China

  4. Testing a blowing snow model against distributed snow measurements at Upper Sheep Creek, Idaho, United States of America (United States)

    Rajiv Prasad; David G. Tarboton; Glen E. Liston; Charles H. Luce; Mark S. Seyfried


    In this paper a physically based snow transport model (SnowTran-3D) was used to simulate snow drifting over a 30 m grid and was compared to detailed snow water equivalence (SWE) surveys on three dates within a small 0.25 km2 subwatershed, Upper Sheep Creek. Two precipitation scenarios and two vegetation scenarios were used to carry out four snow transport model runs in...

  5. Snow Monitoring Using Remote Sensing Data: Modification of Normalized Difference Snow Index (United States)

    Kaplan, G.; Avdan, U.


    Snow cover is an important part of the Earth`s climate system so its continuous monitoring is necessary to map snow cover in high resolution. Satellite remote sensing can successfully fetch land cover and land cover changes. Although normalized difference snow index NDSI has quite good accuracy, topography shadow, water bodies and clouds can be easily misplaced as snow. Using Landsat TM, +ETM and TIRS/OLI satellite images, the NDSI was modified for more accurate snow mapping. In this paper, elimination of the misplaced water bodies was made using the high reflectance of the snow in the blue band. Afterwards, the modified NDSI (MNDSI) was used for estimating snow cover through the years on the highest mountains in Republic of Macedonia. The results from this study show that the MNDSI accuracy is bigger than the NDSI`s, totally eliminating the misplaced water bodies, and partly the one caused from topography and clouds. Also, it was noticed that the snow cover in the study area has been lowered through the years. For future studies, the MNDSI should be validated on different study areas with different characteristics.

  6. Satellite Based Probabilistic Snow Cover Extent Mapping (SCE) at Hydro-Québec (United States)

    Teasdale, Mylène; De Sève, Danielle; Angers, Jean-François; Perreault, Luc


    Over 40% of Canada's water resources are in Quebec and Hydro-Quebec has developed potential to become one of the largest producers of hydroelectricity in the world, with a total installed capacity of 36,643 MW. The Hydro-Québec fleet park includes 27 large reservoirs with a combined storage capacity of 176 TWh, and 668 dams and 98 controls. Thus, over 98% of all electricity used to supply the domestic market comes from water resources and the excess output is sold on the wholesale markets. In this perspective the efficient management of water resources is needed and it is based primarily on a good river flow estimation including appropriate hydrological data. Snow on ground is one of the significant variables representing 30% to 40% of its annual energy reserve. More specifically, information on snow cover extent (SCE) and snow water equivalent (SWE) is crucial for hydrological forecasting, particularly in northern regions since the snowmelt provides the water that fills the reservoirs and is subsequently used for hydropower generation. For several years Hydro Quebec's research institute ( IREQ) developed several algorithms to map SCE and SWE. So far all the methods were deterministic. However, given the need to maximize the efficient use of all resources while ensuring reliability, the electrical systems must now be managed taking into account all risks. Since snow cover estimation is based on limited spatial information, it is important to quantify and handle its uncertainty in the hydrological forecasting system. This paper presents the first results of a probabilistic algorithm for mapping SCE by combining Bayesian mixture of probability distributions and multiple logistic regression models applied to passive microwave data. This approach allows assigning for each grid point, probabilities to the set of the mutually exclusive discrete outcomes: "snow" and "no snow". Its performance was evaluated using the Brier score since it is particularly appropriate to

  7. Iron snow in the Martian core? (United States)

    Davies, Christopher J.; Pommier, Anne


    The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe-S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the "iron snow" regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, ξ0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have ξ0 ≈ 10% and snow zones that occupy approximately the top 100 km of the present-day Martian core.

  8. Comprehensive hard materials

    CERN Document Server


    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  9. Comparison of Commonly-Used Microwave Radiative Transfer Models for Snow Remote Sensing (United States)

    Royer, Alain; Roy, Alexandre; Montpetit, Benoit; Saint-Jean-Rondeau, Olivier; Picard, Ghislain; Brucker, Ludovic; Langlois, Alexandre


    This paper reviews four commonly-used microwave radiative transfer models that take different electromagnetic approaches to simulate snow brightness temperature (T(sub B)): the Dense Media Radiative Transfer - Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack properties, we compared the simulated T(sub B) at 11, 19 and 37 GHz from these four models. The analysis focuses on the impact of using different types of measured snow microstructure metrics in the simulations. In addition to density, snow microstructure is defined for each snow layer by grain optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical maximum extent (D(sub max)) for HUT n-layers and the exponential correlation length for MEMLS. These metrics were derived from either in-situ measurements of snow specific surface area (SSA) or macrophotos of grain sizes (D(sub max)), assuming non-sticky spheres for the DMRT models. Simulated T(sub B) sensitivity analysis using the same inputs shows relatively consistent T(sub B) behavior as a function of Do and density variations for the vertical polarization (maximum deviation of 18 K and 27 K, respectively), while some divergences appear in simulated variations for the polarization ratio (PR). Comparisons with ground based radiometric measurements show that the simulations based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to minimize the root mean square error (RMSE) between measured and simulated T(sub B). Results using in-situ grain size measurements (SSA or D(sub max), depending on the model) give a mean T(sub B) RMSE (19 and 37 GHz) of the order of 16-26 K, which is similar for all models when the snow

  10. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    International Nuclear Information System (INIS)

    Wass, Eva


    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  11. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva (Geosigma AB (Sweden))


    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  12. Crossing physical simulations of snow conditions and a geographic model of ski area to assess ski resorts vulnerability (United States)

    François, Hugues; Spandre, Pierre; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu; Lejeune, Yves


    In order to face climate change, meteorological variability and the recurrent lack of natural snow on the ground, ski resorts adaptation often rely on technical responses. Indeed, since the occurrence of episodes with insufficient snowfalls in the early 1990's, snowmaking has become an ordinary practice of snow management, comparable to grooming, and contributes to optimise the operation of ski resorts. It also participates to the growth of investments and is associated with significant operating costs, and thus represents a new source of vulnerability. The assessment of the actual effects of snowmaking and of snow management practices in general is a real concern for the future of the ski industry. The principal model use to simulate snow conditions in resorts, Ski Sim, has also been moving this way. Its developers introduced an artificial input of snow on ski area to complete natural snowfalls and considered different organisations of ski lifts (lower and upper zones). However the use of a degree-day model prevents them to consider the specific properties of artificial snow and the impact of grooming on the snowpack. A first proof of concept in the French Alps has shown the feasibility and the interest to cross the geographic model of ski areas and the output of the physically-based reanalysis of snow conditions SAFRAN - Crocus (François et al., CRST 2014). Since these initial developments, several ways have been explored to refine our model. A new model of ski areas has been developed. Our representation is now based on gravity derived from a DEM and ski lift localisation. A survey about snow management practices also allowed us to define criteria in order to model snowmaking areas given ski areas properties and tourism infrastructures localisation. We also suggest to revisit the assessment of ski resort viability based on the "one hundred days rule" based on natural snow depth only. Indeed, the impact of snow management must be considered so as to propose

  13. Mapping snow depth in complex alpine terrain with close range aerial imagery - estimating the spatial uncertainties of repeat autonomous aerial surveys over an active rock glacier (United States)

    Goetz, Jason; Marcer, Marco; Bodin, Xavier; Brenning, Alexander


    Snow depth mapping in open areas using close range aerial imagery is just one of the many cases where developments in structure-from-motion and multi-view-stereo (SfM-MVS) 3D reconstruction techniques have been applied for geosciences - and with good reason. Our ability to increase the spatial resolution and frequency of observations may allow us to improve our understanding of how snow depth distribution varies through space and time. However, to ensure accurate snow depth observations from close range sensing we must adequately characterize the uncertainty related to our measurement techniques. In this study, we explore the spatial uncertainties of snow elevation models for estimation of snow depth in a complex alpine terrain from close range aerial imagery. We accomplish this by conducting repeat autonomous aerial surveys over a snow-covered active-rock glacier located in the French Alps. The imagery obtained from each flight of an unmanned aerial vehicle (UAV) is used to create an individual digital elevation model (DEM) of the snow surface. As result, we obtain multiple DEMs of the snow surface for the same site. These DEMs are obtained from processing the imagery with the photogrammetry software Agisoft Photoscan. The elevation models are also georeferenced within Photoscan using the geotagged imagery from an onboard GNSS in combination with ground targets placed around the rock glacier, which have been surveyed with highly accurate RTK-GNSS equipment. The random error associated with multi-temporal DEMs of the snow surface is estimated from the repeat aerial survey data. The multiple flights are designed to follow the same flight path and altitude above the ground to simulate the optimal conditions of repeat survey of the site, and thus try to estimate the maximum precision associated with our snow-elevation measurement technique. The bias of the DEMs is assessed with RTK-GNSS survey observations of the snow surface elevation of the area on and surrounding

  14. Robot Towed Shortwave Infrared Camera for Specific Surface Area Retrieval of Surface Snow (United States)

    Elliott, J.; Lines, A.; Ray, L.; Albert, M. R.


    Optical grain size and specific surface area are key parameters for measuring the atmospheric interactions of snow, as well as tracking metamorphosis and allowing for the ground truthing of remote sensing data. We describe a device using a shortwave infrared camera with changeable optical bandpass filters (centered at 1300 nm and 1550 nm) that can be used to quickly measure the average SSA over an area of 0.25 m^2. The device and method are compared with calculations made from measurements taken with a field spectral radiometer. The instrument is designed to be towed by a small autonomous ground vehicle, and therefore rides above the snow surface on ultra high molecular weight polyethylene (UHMW) skis.

  15. Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand (United States)

    Cole, S. E.; Cronin, S. J.; Sherburn, S.; Manville, V.


    Detection of ground shaking forms the basis of many lahar-warning systems. Seismic records of two lahar types at Ruapehu, New Zealand, in 2007 are used to examine their nature and internal dynamics. Upstream detection of a flow depends upon flow type and coupling with the ground. 3-D characteristics of seismic signals can be used to distinguish the dominant rheology and gross physical composition. Water-rich hyperconcentrated flows are turbulent; common inter-particle and particle-substrate collisions engender higher energy in cross-channel vibrations relative to channel-parallel. Plug-like snow-slurry lahars show greater energy in channel-parallel signals, due to lateral deposition insulating channel margins, and low turbulence. Direct comparison of flow size must account for flow rheology; a water-rich lahar will generate signals of greater amplitude than a similar-sized snow-slurry flow.

  16. Eco-geochemical peculiarities of mercury content in solid residue of snow in the industrial enterprises impacted areas of Tomsk (United States)

    Filimonenko, E. A.; Lyapina, E. E.; Talovskaya, A. V.; Parygina, I. A.


    Snow, as short-term consignation Wednesday, has several properties that lead to its widespread use in ecologicalgeochemical and geological research. By studying the chemical composition of the dust fallout you can indirectly assess the condition of atmospheric air.1-2. Determining the content of mercury in snow cover, you can define its contribution for the longest period of the year in our region, with the most intensive use of various types of fuel (coal, gas, firewood), that puts a strain on urban ecosystems in terms of ecology.3-4. In addition, snow cleans the atmosphere of mercury, but it accumulates in the snow, and during the spring melting of snow hits the ground and rivers, polluting them. Part of the mercury back into the atmosphere. It should also be note the special nature of the circulation of air masses over the city in winter, creating a heat CAP, which contributes to air pollution of the city. 5-6-7. The high load areas of industrial impact were detected during the eco-geochemical investigations of mercury load index in the impacted areas of enterprises of Tomsk. It was found out, that aerosol particles of industrial emissions in Tomsk contain mercury. The contamination transfer character of mercury sources and occurrence modes of pollutants in snow solid residue were detected during the researches of industrial impact.

  17. Combining MOD10A1 and MYD10A1 Images For Snow Cover Area Monitoring (United States)

    Tekeli, A. E.


    MOD10A1 and MYD10A1 daily snow cover maps at 500 m resolution are available from MODIS sensors on Terra and Aqua satellites. Aqua obtains the image of same region approximately three hours after Terra over Turkey region. MODIS is an optic sensor and cloud cover degrades the usability of derived snow cover maps. Moreover, spectral similarity between clouds and snow complicates their separability in visible imagery. Fortunately, dynamic behavior of clouds enables their discrimination from snow stationary on the surface. Combined use of MOD10A1 and MYD10A1 images mostly reduces the cloud cover present in one image alone and provides better representation of surface snow cover. Comparison of merged images with in situ data indicated higher hit ratios. The individual comparison of MOD10A1 and MYD10A1 images with ground data each yielded 31% hit ratio whereas, the merged images provided 38%. One-day shifts in comparisons increased hit ratios to 52 % and 46% whereas and two-day shifts gave 77 % and 79 % for MOD10A1 and MYD10A1 respectively. Merged maps yielded 54% and 83% for one and two day shifts. The improvement provided by the merging technique is found to be 7% for the present day, 7 % for one- day and 5% for two-day shifts for the whole season. Monthly decomposition resulted 25% improvement as the maximum. The snow cover product obtained by merging Terra and Aqua satellites provided higher hit ratios, as expected.

  18. Deriving Snow Cover Metrics for Alaska from MODIS

    Directory of Open Access Journals (Sweden)

    Chuck Lindsay


    Full Text Available Moderate Resolution Imaging Spectroradiometer (MODIS daily snow cover products provide an opportunity for determining snow onset and melt dates across broad geographic regions; however, cloud cover and polar darkness are limiting factors at higher latitudes. This study presents snow onset and melt dates for Alaska, portions of western Canada and the Russian Far East derived from Terra MODIS snow cover daily 500 m grid data (MOD10A1 and evaluates our method for filling data gaps caused by clouds or polar darkness. Pixels classified as cloud or no data were reclassified by: spatial filtering using neighboring pixel values; temporal filtering using pixel values for days before/after cloud cover; and snow-cycle filtering based on a time series assessment of a pixel’s position within snow accumulation, cover or melt periods. During the 2012 snow year, these gap-filling methods reduced cloud pixels from 27.7% to 3.1%. A total of 12 metrics (e.g., date of first and last snow, date of persistent snow cover and periods of intermittence for each pixel were calculated by snow year. A comparison of MODIS-derived snow onset and melt dates with in situ observations from 244 weather stations generally showed an early bias in MODIS-derived dates and an effect of increasing cloudiness exacerbating bias. Our results show that mean regional duration of seasonal snow cover is 179–311 days/year and that snow cover is often intermittent, with 41% of the area experiencing ≥2 snow-covered periods during a snow season. Other regional-scale patterns in the timing of snow onset and melt are evident in the yearly 500 m gridded products publically available at

  19. Snow Precipitation and Snow Cover Climatic Variability for the Period 1971–2009 in the Southwestern Italian Alps: The 2008–2009 Snow Season Case Study

    Directory of Open Access Journals (Sweden)

    Simona Fratianni


    Full Text Available Snow cover greatly influences the climate in the Alpine region and is one of the most relevant parameters for the climate change analysis. Nevertheless, snow precipitation variability is a relatively underexplored field of research because of the lack of long-term, continuous and homogeneous time series. After a historical research aiming to recover continuous records, three high quality time series of snow precipitation and snow depth recorded in the southwestern Italian Alps were analyzed. The comparison between the climatological indices over the 30 years reference period 1971–2000 and the decade 2000–2009 outlined a general decrease in the amount of snow precipitation, and a shift in the seasonal distribution of the snow precipitation in the most recent period. In the analysis of the last decade snow seasons characteristics, the attention was focused on the heavy snowfalls that occurred in Piedmont during the 2008–2009 snow season: MODerate resolution Imager Spectroradiometer (MODIS snow cover products were used to evaluate snow cover extension at different times during the snow season, and the results were set in relation to the temperatures.

  20. Peeking Below the Snow Surface to Explore Amundsen Sea Climate Variability and Locate Optimal Ice-Core Sites (United States)

    Neff, P. D.; Fudge, T. J.; Medley, B.


    Observations over recent decades reveal rapid changes in ice shelves and fast-flowing grounded ice along the Amundsen Sea coast of the West Antarctic Ice Sheet (WAIS). Long-term perspectives on this ongoing ice loss are needed to address a central question of Antarctic research: how much and how fast will Antarctic ice-loss raise sea level? Ice cores can provide insight into past variability of the atmospheric (wind) forcing of regional ocean dynamics affecting ice loss. Interannual variability of snow accumulation on coastal ice domes grounded near or within ice shelves reflects local to regional atmospheric circulation near the ice-ocean interface. Records of snow accumulation inferred from shallow ice cores strongly correlate with reanalysis precipitation and pressure fields, but ice cores have not yet been retrieved along the Amundsen Sea coast. High-frequency airborne radar data (NASA Operation IceBridge), however, have been collected over this region and we demonstrate that these data accurately reflect annual stratigraphy in shallow snow and firn (1 to 2 decades of accumulation). This further validates the agreement between radar snow accumulation records and climate reanalysis products. We then explore regional climate controls on local snow accumulation through comparison with gridded reanalysis products, providing a preview of what information longer coastal ice core records may provide with respect to past atmospheric forcing of ocean circulation and WAIS ice loss.

  1. Snow occurrence time on the Russia’s territory in the early 21st century (from satellite data

    Directory of Open Access Journals (Sweden)

    T. B. Titkova


    Full Text Available Time of the snow cover appearance, existence and disappearance on the Russia’s territory in the early 21st century (2000–2015 was corrected using the MODIS/Terra satellite data (the 8-day discreteness, and the 0.5×0.5° resolution. The satellite data errors were estimated from data of the ground stations observations. The errors were found to be maximal in autumn and minimal in spring. The relationship between the snow cover characteristics and the climate ones was investigated using data obtained at the ground-based stations together with correlation between dates of snow appearance and loss and the climate parameters. The dependences obtained were tested by means of correlation and regression analysis over the longitudinal sectors. Significant coefficients of correlation (the Student criterion of probability was equal to 0.95 were found between time of the snow cover presence and dates of the temperature drop below 0 °С and the amount of days with negative temperatures. Changes in the climate characteristics result in that due to decreasing of the solid precipitation in winter time the snow presence duration becomes shorter over the European part of Russia and in the Western Siberia. The shortening in the Middle Siberia is caused by the spring warming. Durations of the snow occurrence in the Far East area are different. On the Chukotka peninsula the duration is longer because of the autumn fall in temperature while in the Kamchatka region the snow occurrence time is shorter due to significant decrease of a period with negative temperatures in both the autumn and spring seasons.

  2. Energy expenditure and clearing snow: a comparison of shovel and snow pusher. (United States)

    Smolander, J; Louhevaara, V; Ahonen, E; Polari, J; Klen, T


    In order to assess the energy demands of manual clearing of snow, nine men did snow clearing work for 15 min with a shovel and a snow pusher. The depth of the snowcover was 400-600 mm representing a very heavy snowfall. Heart rate (HR), oxygen consumption (VO2), pulmonary ventilation (VE), respiratory exchange ratio (R), and rating of perceived exertion (RPE) were determined during the work tasks. HR, VE, R, and RPE were not significantly different between the shovel and snow pusher. HR averaged (+/- SD) 141 +/- 20 b min-1 with the shovel, and 142 +/- 19 beats.min-1 with the snow pusher. VO2 was 2.1 +/- 0.41.min-1 (63 +/- 12%VO2 max) in shovelling and 2.6 +/- 0.51.min-1 (75 +/- 14%VO2max) in snow pushing (p < 0.001). In conclusion manual clearing of snow in conditions representing heavy snowfalls was found to be strenuous physical work, not suitable for persons with cardiac risk factors, but which may serve as a mode of physical training in healthy adults.

  3. A new strategy for snow-cover mapping using remote sensing data and ensemble based systems techniques (United States)

    Roberge, S.; Chokmani, K.; De Sève, D.


    The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological

  4. Snow and ice blocking of tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Leif


    Hydroelectric power development in cold regions causes much concern about operational reliability and dam safety. This thesis studies the temperature distribution in tunnels by means of air temperature measurements in six tunnel spillways and five diversion tunnels. The measurements lasted for two consecutive winters. The air through flow tunnel is used as it causes cooling of both rock and water. In open spillway tunnels, frost reaches the entire tunnel. In spillway tunnels with walls, the frost zones reach about 100 m from the downstream end. In mildly-inclined diversion tunnels, a frost free zone is located in the middle of the tunnel and snow and ice problems were only observed in the inlet and outlet. Severe aufeis is accumulation is observed in the frost zones. The heat transfer from rock to air, water and ice is calculated and used in a prediction model for the calculation of aufeis build-up together with local field observation data. The water penetration of snow plugs is also calculated, based on the heat balance. It takes 20 to 50 days for water to enter the blocked tunnel. The empirical values are 30 to 60 days, but only 1 day if the temperature of the snow pack is 0{sup o}C. Sensitivity analyses are carried out for temperature variations in rock, snow, water and ice. Systematic field observation shows that it is important for hydropower companies to know about the effects of snow and ice blocking in an area. A risk analysis of dam safety is presented for a real case. Finally, the thesis proposes solutions which can reduce the snow and ice problems. 79 refs., 63 figs., 11 tabs.

  5. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.


    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  6. Designing, developing and implementing a living snow fence program for New York state. (United States)


    Living snow fences (LSF) are a form of passive snow control designed to mitigate blowing and drifting snow problems : on roadways. Blowing and drifting snow can increase the cost of highway maintenance and create hazardous driving : conditions when s...

  7. Can GRACE detect winter snows in Japan? (United States)

    Heki, Kosuke


    Current spatial resolution of the GRACE (Gravity Recovery and Climate Experiment) satellites is 300-400 km, and so its hydrological applications have been limited to continents and large islands. The Japanese Islands have width slightly smaller than this spatial resolution, but are known to show large amplitude seasonal changes in surface masses due mainly to winter snow. Such loads are responsible for seasonal crustal deformation observed with GEONET, a dense array of GPS (Global Positioning System) receivers in Japan (Heki, 2001). There is also a dense network of surface meteorological sensors for, e.g. snow depths, atmospheric pressures, etc. Heki (2004) showed that combined effects of surface loads, i.e. snow (predominant), atmosphere, soil moisture, dam impoundment, can explain seasonal crustal deformation observed by GPS to a large extent. The total weight of the winter snow in the Japanese Islands in its peak season may reach ~50 Gt. This is comparable to the annual loss of mountain glaciers in the Asian high mountains (Matsuo & Heki, 2010), and is above the detection level of GRACE. In this study, I use GRACE Level-2 Release-4 data from CSR, Univ. Texas, up to 2009 November, and evaluated seasonal changes in surface loads in and around the Japanese Islands. After applying a 350 km Gaussian filter and a de-striping filter, the peak-to-peak change of the water depth becomes ~4 cm in northern Japan. The maximum value is achieved in February-March. The region of large winter load spans from Hokkaido, Japan, to northeastern Honshu, which roughly coincides with the region of deep snow in Japan. Next I compiled snow depth data from surface meteorological observations, and converted them to loads using time-dependent snow density due to compaction. By applying the same spatial filter as the GRACE data, its spatial pattern becomes similar to the GRACE results. The present study suggests that GRACE is capable of detecting seasonal mass changes in an island arc not

  8. Merging datasets from NASA SnowEx to better understand how snow falls and moves. (United States)

    Gongora, J. A.; Marshall, H. P.; Glenn, N. F.


    A modelers ability to estimated snow depth and snow water equivalent (SWE) for mountain snow depends strongly on their understanding of snowpack spatial distribution and the soundness of the models initial conditions. This work focuses on the application of data science and efficient algorithms to find optimal locations in mountainous terrain to act as initital conditions for machine driven interpolation methods. By using graphs, collections of pairwise relationships between objects, to describe our data we were able to efficiently search, partition, and understand snowpack from the persepetive of this data structure.

  9. Moving sidewalk for snow board gelande; Snow board gerendemuke ugoku hodo

    Energy Technology Data Exchange (ETDEWEB)



    This is a moving sidewalk installed on the indoor type artificial snow board gelande at Shigenobu-cho, Ehime prefecture, constructed for the first time in Shikoku. It carries snow boarders in gelande. The main specifications are as follows. Type: 800 type. Sidewalk width: 600mm. Length: 76.0m. Speed: 30m/min. Inclination angle: 13 degrees (inclination type). The features are as follows. (1) The tread is rubber-belt made and skid-resistant if it gets wet. (2) It is equipped with the each-part antifreezer, considering the snow quality and the environment where it is used at low temperature. (translated by NEDO)

  10. Integration of snow management practices into a detailed snow pack model (United States)

    Spandre, Pierre; Morin, Samuel; Lafaysse, Matthieu; Lejeune, Yves; François, Hugues; George-Marcelpoil, Emmanuelle


    The management of snow on ski slopes is a key socio-economic and environmental issue in mountain regions. Indeed the winter sports industry has become a very competitive global market although this economy remains particularly sensitive to weather and snow conditions. The understanding and implementation of snow management in detailed snowpack models is a major step towards a more realistic assessment of the evolution of snow conditions in ski resorts concerning past, present and future climate conditions. Here we describe in a detailed manner the integration of snow management processes (grooming, snowmaking) into the snowpack model Crocus (Spandre et al., Cold Reg. Sci. Technol., in press). The effect of the tiller is explicitly taken into account and its effects on snow properties (density, snow microstructure) are simulated in addition to the compaction induced by the weight of the grooming machine. The production of snow in Crocus is carried out with respect to specific rules and current meteorological conditions. Model configurations and results are described in detail through sensitivity tests of the model of all parameters related to snow management processes. In-situ observations were carried out in four resorts in the French Alps during the 2014-2015 winter season considering for each resort natural, groomed only and groomed plus snowmaking conditions. The model provides realistic simulations of the snowpack properties with respect to these observations. The main uncertainty pertains to the efficiency of the snowmaking process. The observed ratio between the mass of machine-made snow on ski slopes and the water mass used for production was found to be lower than was expected from the literature, in every resort. The model now referred to as "Crocus-Resort" has been proven to provide realistic simulations of snow conditions on ski slopes and may be used for further investigations. Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George

  11. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)


    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  12. Estonian Mean Snow Depth and Duration (1891-1994) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the number of days of snow cover in days per year, and three 10-day snow depth means per month in centimeters from stations across Estonia....

  13. Heavy metals in the snow pack of Semey town

    International Nuclear Information System (INIS)

    Panin, M.S.; Esenzholova, A.Zh.; Toropov, A.S.


    The data about the maintenance of heavy metals in the snow pack in various zones of Semey and biogeochemical operation factors of snow pack in Semey are presented in this work. Also the correlation connection between elements is calculated.

  14. Russian Federation Snow Depth and Ice Crust Surveys (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Russian Federation Snow Depth and Ice Crust Surveys, dataset DSI-9808, contains routine snow surveys that run throughout the cold season every 10 days (every five...

  15. [Characteristics of chemical pollution of snow cover in Aktobe areas]. (United States)

    Iskakov, A Zh


    The paper gives data on the nature of snow cover pollution in the urbanized areas in relation to the remoteness from the basic sources of ambient air pollution. The total snow content of carcinogens has been estimated.

  16. Western Italian Alps Monthly Snowfall and Snow Cover Duration (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of snow observations for 18 stations in the western Italian Alps. Two types of data are included: monthly snowfall amounts and monthly snow...


    Directory of Open Access Journals (Sweden)

    I. I. Lavrentiev


    Full Text Available Summary Comparison of two methods of measurements of snow cover thickness on the glacier Austre Grønfjordbreen, Svalbard was performed in the spring of 2014. These methods were the radar (500 MHz observations and standard snow surveys. Measurements were conducted in 77 different points on the surface of the glacier. A good correlation (R2 = 0.98 was revealed. In comparison with the data of snow surveys, the radar measurements show a similar but more detailed pattern of the distribution of the snow cover depth. The discrepancy between the depths of snow cover on maps plotted from data of both methods did not exceed 30 cm in most parts of the glacier. The standard error of interpolation of the radar data onto the entire glacier surface amounts, on average, to 18 cm. This corresponds to the error of radar measurements of 18.8% when an average snow depth is about 160 cm and 9.4% at its maximum thickness of 320 cm. The distance between the measurement points at which the spatial covariance of the snow depth disappears falls between 236 and 283 m along the glacier, and between 117 and 165 m across its position. We compared the results of radar measurements of the pulse-delay time of reflections from the base of the snow cover with the data of manual probe measurements at 10 points and direct measurements of snow depth and average density in 12 snow pits. The average speed of radio waves propagation in the snow was determined as Vcr = 23.4±0.2 cm ns−1. This magnitude and the Looyenga and Kovacs formulas allowed estimating the average density of snow cover ρL = 353.1±13.1 kg m−3 and ρK = 337.4±12.9 kg m−3. The difference from average density measured in 12 pits ρav.meas = 387.4±12.9 kg m−3 amounts to −10.8% and −14.8%. In 2014, according to snow and radar measurements, altitudinal gradient of snow accumulation on the glacier Austre Grønfjordbreen was equal to 0.21 m/100 m, which is smaller than the

  18. Analysis of the spatial and temporal variation of seasonal snow accumulation in alpine catchments using airborne laser scanning : basic research for the adaptation of spatially distributed hydrological models to mountain regions

    International Nuclear Information System (INIS)

    Helfricht, K.


    Information about the spatial distribution of snow accumulation is a prerequisitefor adaptating hydro-meteorological models to achieve realistic simulations of therunoff from mountain catchments. Therefore, the spatial snow depthdistribution in complex topography of ice-free terrain and glaciers was investigatedusing airborne laser scanning (ALS) data. This thesis presents for the first time an analysis of the persistence and the variability of the snow patterns at the end of five accumulation seasons in a comparatively large catchment. ALS derived seasonal surface elevation changes on glaciers were compared to the actual snow depths calculated from ground penetrating radar (GPR) measurements. Areas of increased deviations. In the investigated region, the ALS-derived snow depths on most of the glacier surface do not deviate markedly from actual snow depths. 75% of a the total area showed low inter-annual variability of standardized snow depths at the end of the five accumulation seasons. The high inter-annual variability of snow depths could be attributed to changes in the ice cover within the investigated 10-yearperiod for much of the remaining area. Avalanches and snow sloughs continuously contribute to the accumulation on glaciers, but their share of the total snow covervolume is small. The assimilation of SWE maps calculated from ALS data in the adaptation of snow-hydrological models to mountain catchments improved the results not only for the but also for the simulated snow cover distribution and for the mass balance of the glaciers. The results demonstrate that ALS data are a beneficial source for extensive analysis of snow patterns and for modeling the runoff from high Alpine catchments.(author) [de

  19. Three-dimensional structural image analysis and mechanics of snow


    Theile, Thiemo


    Summary This work deals with the problem of predicting the mechanical behaviour of dry snow based on the geometries and properties of its constituents. This approach is known as homogenisation. The main constituents of dry snow are ice and air. Their geometry, i.e. the microstructure, varies widely depending on the type of snow. The shape of individual, sintered snow grains varies and may take the form of stellar crystals, rounded and facetted grains or depth hoar crystals. ...

  20. How much runoff originates as snow in the western United States and what its future changes tell us? (United States)

    Li, D.; Wrzesien, M.; Durand, M. T.; Adam, J. C.; Lettenmaier, D. P.


    Snow is a vital hydrologic cycle component in the western United States. The seasonal phase of snowmelt bridges between winter-dominant precipitation and summer-dominant human and ecosystem water demand. Current estimates of the fraction of total annual runoff generated by snowmelt (f_Q,snow) are not based on defensible, systematic analyses. Here, based on hydrological model simulations, we describe a new algorithm that explicitly quantifies the contribution of snow to runoff in the Western U.S. Specifically, the algorithm tracks the fate of the snowmelt runoff in the modeled hydrological fluxes in the soil, surface water, and the atmosphere, and accounts for the exchanges among the three. The hydrological fluxes are simulated by the Variable Infiltration Capacity (VIC) model using an ensemble of ten general circulation model (GCM) outputs trained by ground observations. We conducted the tracking to the VIC modeling ensemble and reported the mean of the ten tracking results. We computed the historical f_Q,snow with the modeling estimates from 1960 to 2005, and predicted the future f_Q,snow using the modeling estimates from 2006 to 2100 in the RCP4.5 and RCP8.5 scenarios. Our tracking results show that from 1960 to 2005, slightly over one-half of the total runoff in the western United States originated as snowmelt, despite only 37% of the region's total precipitation falling as snow; snowfall is more efficient than rainfall in runoff generation. Snow's importance varies physiographically: snowmelt from the mountains is responsible for over 70% of the total runoff in the West. Snowmelt-derived runoff currently makes up about 2/3 of the inflow to the region's major reservoirs; for Lake Mead and Lake Powell, which are the two largest reservoirs of the nation, snow contributes over 70% of their storage. The contribution of snowmelt to the total runoff will decrease in a warmer climate, by about 1/3 over the West by 2100. Snow will melt earlier and the snowmelt

  1. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode


    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  2. Remember Hard but Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions

    Directory of Open Access Journals (Sweden)

    Jiushu Xie


    Full Text Available Previous studies have found that bodily stimulation, such as hardness, biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between hard and rigid and between soft and flexible in Chinese, to investigate whether the experience of hardness affected cognitive functions requiring either rigidity (memory or flexibility (creativity. In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition than a cushioned one (the soft condition. In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity and flexibility. They support the embodiment proposition that cognitive functions and representations could be grounded via metaphorical association in bodily states.

  3. [Analysis of influencing factors of snow hyperspectral polarized reflections]. (United States)

    Sun, Zhong-Qiu; Zhao, Yun-Sheng; Yan, Guo-Qian; Ning, Yan-Ling; Zhong, Gui-Xin


    Due to the need of snow monitoring and the impact of the global change on the snow, on the basis of the traditional research on snow, starting from the perspective of multi-angle polarized reflectance, we analyzed the influencing factors of snow from the incidence zenith angles, the detection zenith angles, the detection azimuth angles, polarized angles, the density of snow, the degree of pollution, and the background of the undersurface. It was found that these factors affected the spectral reflectance values of the snow, and the effect of some factors on the polarization hyperspectral reflectance observation is more evident than in the vertical observation. Among these influencing factors, the pollution of snow leads to an obvious change in the snow reflectance spectrum curve, while other factors have little effect on the shape of the snow reflectance spectrum curve and mainly impact the reflection ratio of the snow. Snow reflectance polarization information has not only important theoretical significance, but also wide application prospect, and provides new ideas and methods for the quantitative research on snow using the remote sensing technology.

  4. Collaborative Research: Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest, Version 1 (United States)

    National Aeronautics and Space Administration — This data set contains snow depth, Snow Water Equivalent (SWE), and forest cover characteristics for sites at the Hubbard Brook Experimental Forest in northern New...

  5. Assessment and placement of living snow fences to reduce highway maintenance costs and improve safety (living snow fences). (United States)


    Living snow fences (LSF) are designed plantings of trees and/or shrubs and native grasses along highways, roads : and ditches that create a vegetative buffer that traps and controls blowing and drifting snow. These strategically : placed fences have ...

  6. "Snow Soup" Students Take on Animation Creation (United States)

    Nikirk, Martin


    This article describes the process of producing "Snow Soup"--the 2009 Adobe Flash animation produced by the Computer Game Development and Animation seniors of Washington County Technical High School in Hagerstown, Maryland, for libraries in their area. In addition to the Flash product, the students produced two related Game Maker games, a printed…

  7. Evaluation of alternative snow plow cutting edges. (United States)


    With approximately 450 snow plow trucks, the Maine Department of Transportation (MaineDOT) uses in : excess of 10,000 linear feet of plow cutting edges each winter season. Using the 2008-2009 cost per linear : foot of $48.32, the Departments total co...

  8. Snow as an accumulator of air pollutants (United States)

    Robert T. Brown


    Using simple analytical techniques, the amounts of air pollutants accumulated in winter snow were determined and the results correlated with lichen survival on trees. Pollutants measured were particulate matter, sulfate, and chloride. An inverse relationship was found between amounts of each of these pollutants and the abundance of various lichens.

  9. Combining snow depth and innovative skier flow measurements in order to improve snow grooming techniques (United States)

    Carmagnola, Carlo Maria; Albrecht, Stéphane; Hargoaa, Olivier


    In the last decades, ski resort managers have massively improved their snow management practices, in order to adapt their strategies to the inter-annual variability in snow conditions and to the effects of climate change. New real-time informations, such as snow depth measurements carried out on the ski slopes by grooming machines during their daily operations, have become available, allowing high saving, efficiency and optimization gains (reducing for instance the groomer fuel consumption and operation time and the need for machine-made snow production). In order to take a step forward in improving the grooming techniques, it would be necessary to keep into account also the snow erosion by skiers, which depends mostly on the snow surface properties and on the skier attendance. Today, however, most ski resort managers have only a vague idea of the evolution of the skier flows on each slope during the winter season. In this context, we have developed a new sensor (named Skiflux) able to measure the skier attendance using an infrared beam crossing the slopes. Ten Skiflux sensors have been deployed during the 2016/17 winter season at Val Thorens ski area (French Alps), covering a whole sector of the resort. A dedicated software showing the number of skier passages in real time as been developed as well. Combining this new Skiflux dataset with the snow depth measurements from grooming machines (Snowsat System) and the snow and meteorological conditions measured in-situ (Liberty System from Technoalpin), we were able to create a "real-time skiability index" accounting for the quality of the surface snow and its evolution during the day. Moreover, this new framework allowed us to improve the preparation of ski slopes, suggesting new strategies for adapting the grooming working schedule to the snow quality and the skier attendance. In the near future, this work will benefit from the advances made within the H2020 PROSNOW project ("Provision of a prediction system allowing

  10. Planetesimal formation starts at the snow line (United States)

    Drążkowska, J.; Alibert, Y.


    Context. The formation stage of planetesimals represents a major gap in our understanding of the planet formation process. Late-stage planet accretion models typically make arbitrary assumptions about planetesimal and pebble distribution, while dust evolution models predict that planetesimal formation is only possible at some orbital distances. Aims: We wish to test the importance of the water snow line in triggering the formation of the first planetesimals during the gas-rich phase of a protoplanetary disk, when cores of giant planets have to form. Methods: We connected prescriptions for gas disk evolution, dust growth and fragmentation, water ice evaporation and recondensation, the transport of both solids and water vapor, and planetesimal formation via streaming instability into a single one-dimensional model for protoplanetary disk evolution. Results: We find that processes taking place around the snow line facilitate planetesimal formation in two ways. First, because the sticking properties between wet and dry aggregates change, a "traffic jam" inside of the snow line slows the fall of solids onto the star. Second, ice evaporation and outward diffusion of water followed by its recondensation increases the abundance of icy pebbles that trigger planetesimal formation via streaming instability just outside of the snow line. Conclusions: Planetesimal formation is hindered by growth barriers and radial drift and thus requires particular conditions to take place. The snow line is a favorable location where planetesimal formation is possible for a wide range of conditions, but not in every protoplanetary disk model, however. This process is particularly promoted in large cool disks with low intrinsic turbulence and an increased initial dust-to-gas ratio. The movie attached to Fig. 3 is only available at

  11. MODIS Snow Cover Recovery Using Variational Interpolation (United States)

    Tran, H.; Nguyen, P.; Hsu, K. L.; Sorooshian, S.


    Cloud obscuration is one of the major problems that limit the usages of satellite images in general and in NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) global Snow-Covered Area (SCA) products in particular. Among the approaches to resolve the problem, the Variational Interpolation (VI) algorithm method, proposed by Xia et al., 2012, obtains cloud-free dynamic SCA images from MODIS. This method is automatic and robust. However, computational deficiency is a main drawback that degrades applying the method for larger scales (i.e., spatial and temporal scales). To overcome this difficulty, this study introduces an improved version of the original VI. The modified VI algorithm integrates the MINimum RESidual (MINRES) iteration (Paige and Saunders., 1975) to prevent the system from breaking up when applied to much broader scales. An experiment was done to demonstrate the crash-proof ability of the new algorithm in comparison with the original VI method, an ability that is obtained when maintaining the distribution of the weights set after solving the linear system. After that, the new VI algorithm was applied to the whole Contiguous United States (CONUS) over four winter months of 2016 and 2017, and validated using the snow station network (SNOTEL). The resulting cloud free images have high accuracy in capturing the dynamical changes of snow in contrast with the MODIS snow cover maps. Lastly, the algorithm was applied to create a Cloud free images dataset from March 10, 2000 to February 28, 2017, which is able to provide an overview of snow trends over CONUS for nearly two decades. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institute for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.

  12. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling (United States)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.


    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  13. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel


    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  14. Estimation of the condition of snow cover in Voronezh according to the chemical analysis of water from melted snow


    Prozhorina Tatyana Ivanovna; Bespalova Elena Vladimirovna; Yakunina Nadezhda


    Snow cover possesses high sorption ability and represents informative object to identify technogenic pollution of an urban environment. In this article the investigation data of a chemical composition of snow fallen in Voronezh during the winter period of 2014 are given. Relationships between existence of pollutants in snow and the level of technogenic effect are analyzed.

  15. Impacts of light-absorbing impurities on snow and their quantification with bidirectional reflectance measurements (United States)

    Gritsevich, Maria; Peltoniemi, Jouni; Meinander, Outi; Dagsson-Waldhauserová, Pavla; Zubko, Nataliya; Hakala, Teemu; Virkkula, Aki; Svensson, Jonas; de Leeuw, Gerrit


    In order to quantify the effects of absorbing impurities on snow and define their contribution to the climate change, we have conducted a series of dedicated bidirectional reflectance measurements. Chimney soot, volcanic sand, and glaciogenic silt have been deposited on the snow in the controlled way. The bidirectional reflectance factors of these targets and untouched snow have been measured using the Finnish Geodetic Institute's field goniospectrometer FIGIFIGO, see, e.g., [1, 2] and references therein. It has been found that the contaminants darken the snow, and modify its appearance mostly as expected, with clear directional signal and modest spectral signal. A remarkable feature is the fact that any absorbing contaminant on snow enhances the metamorphosis under strong sunlight [3, 4]. Immediately after deposition, the contaminated snow surface appears darker than the pure snow in all viewing directions, but the heated soot particles start sinking down deeply into the snow in minutes. The nadir measurement remains darkest, but at larger zenith angles the surface of the soot-contaminated snow changes back to almost as white as clean snow. Thus, for on ground observer the darkening by impurities can be completely invisible, overestimating the albedo, but a nadir looking satellite sees the darkest points, now underestimating the albedo. After more time, also the nadir view brightens, and the remaining impurities may be biased towards more shadowed locations or less absorbing orientations by natural selection. This suggests that at noon the albedo should be lower than in the morning or afternoon. When sunlight stimulates more sinking than melting, albedo should be higher in the afternoon than in the morning, and vice versa when melting is dominating. Thus to estimate the effects caused by black carbon (BC) deposited on snow on climate changes may one need to take into account possible rapid diffusion of the BC inside the snow from its surface. When the snow melt

  16. Water and life from snow: A trillion dollar science question (United States)

    Sturm, Matthew; Goldstein, Michael A.; Parr, Charles


    Snow provides essential resources/services in the form of water for human use, and climate regulation in the form of enhanced cooling of the Earth. In addition, it supports a thriving winter outdoor recreation industry. To date, the financial evaluation of the importance of snow is incomplete and hence the need for accelerated snow research is not as clear as it could be. With snow cover changing worldwide in several worrisome ways, there is pressing need to determine global, regional, and local rates of snow cover change, and to link these to financial analyses that allow for rational decision making, as risks related to those decisions involve trillions of dollars.

  17. Snow observations in Mount Lebanon (2011-2016) (United States)

    Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; Fanise, Pascal; Drapeau, Laurent; Somma, Janine; Fadel, Ali; Bitar, Ahmad Al; Escadafal, Richard


    We present a unique meteorological and snow observational dataset in Mount Lebanon, a mountainous region with a Mediterranean climate, where snowmelt is an essential water resource. The study region covers the recharge area of three karstic river basins (total area of 1092 km2 and an elevation up to 3088 m). The dataset consists of (1) continuous meteorological and snow height observations, (2) snowpack field measurements, and (3) medium-resolution satellite snow cover data. The continuous meteorological measurements at three automatic weather stations (MZA, 2296 m; LAQ, 1840 m; and CED, 2834 m a.s.l.) include surface air temperature and humidity, precipitation, wind speed and direction, incoming and reflected shortwave irradiance, and snow height, at 30 min intervals for the snow seasons (November-June) between 2011 and 2016 for MZA and between 2014 and 2016 for CED and LAQ. Precipitation data were filtered and corrected for Geonor undercatch. Observations of snow height (HS), snow water equivalent, and snow density were collected at 30 snow courses located at elevations between 1300 and 2900 m a.s.l. during the two snow seasons of 2014-2016 with an average revisit time of 11 days. Daily gap-free snow cover extent (SCA) and snow cover duration (SCD) maps derived from MODIS snow products are provided for the same period (2011-2016). We used the dataset to characterize mean snow height, snow water equivalent (SWE), and density for the first time in Mount Lebanon. Snow seasonal variability was characterized with high HS and SWE variance and a relatively high snow density mean equal to 467 kg m-3. We find that the relationship between snow depth and snow density is specific to the Mediterranean climate. The current model explained 34 % of the variability in the entire dataset (all regions between 1300 and 2900 m a.s.l.) and 62 % for high mountain regions (elevation 2200-2900 m a.s.l.). The dataset is suitable for the investigation of snow dynamics and for the forcing

  18. Soft and hard pomerons

    International Nuclear Information System (INIS)

    Maor, Uri; Tel Aviv Univ.


    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for soft Pomeron exchange responsible for elastic and diffractive hadron scattering in the high energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Regge model with no such corrections. It is shown that screening saturation is attained at different scales for different channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron diffractive channels and discuss the relationship between the soft and hard Pomerons and the relevance of our analysis to this problem. (author). 18 refs, 9 figs, 1 tab

  19. Hard exclusive QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, W.


    Hard exclusive processes in high energy electron proton scattering offer the opportunity to get access to a new generation of parton distributions, the so-called generalized parton distributions (GPDs). This functions provide more detailed informations about the structure of the nucleon than the usual PDFs obtained from DIS. In this work we present a detailed analysis of exclusive processes, especially of hard exclusive meson production. We investigated the influence of exclusive produced mesons on the semi-inclusive production of mesons at fixed target experiments like HERMES. Further we give a detailed analysis of higher order corrections (NLO) for the exclusive production of mesons in a very broad range of kinematics. (orig.)

  20. Hard-hat day

    CERN Multimedia


    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  1. Soot in the atmosphere and snow surface of Antarctica

    International Nuclear Information System (INIS)

    Warren, S.G.; Clarke, A.D.


    Samples of snow collected near the south pole during January and February 1986 were analyzed for the presence of light-absorbing particles by passing the melted snow through a nuclepore filter. Transmission of light through the filter showed that snow far from the station contains the equivalent of 0.1-0.3 ng of carbon per gram of snow (ng/g). Samples of ambient air were filtered and found to contain about 1-2 ng of carbon per kilogram of air, giving a scavenging ratio of about 150. The snow downwind of the station exhibited a well-defined plume of soot due to the burning of diesel fuel, but even in the center of the plume 1 km downwind, the soot concentration was only 3 ng/g, too small to affect snow albedo significantly. Measurements of snow albedo near large inland stations are therefore probably representative of their surrounding regions

  2. Objective Characterization of Snow Microstructure for Microwave Emission Modeling (United States)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian


    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  3. Role of Tibetan Buddhist monasteries in snow leopard conservation. (United States)

    Li, Juan; Wang, Dajun; Yin, Hang; Zhaxi, Duojie; Jiagong, Zhala; Schaller, George B; Mishra, Charudutt; McCarthy, Thomas M; Wang, Hao; Wu, Lan; Xiao, Lingyun; Basang, Lamao; Zhang, Yuguang; Zhou, Yunyun; Lu, Zhi


    The snow leopard (Panthera uncia) inhabits the rugged mountains in 12 countries of Central Asia, including the Tibetan Plateau. Due to poaching, decreased abundance of prey, and habitat degradation, it was listed as endangered by the International Union for Conservation of Nature in 1972. Current conservation strategies, including nature reserves and incentive programs, have limited capacities to protect snow leopards. We investigated the role of Tibetan Buddhist monasteries in snow leopard conservation in the Sanjiangyuan region in China's Qinghai Province on the Tibetan Plateau. From 2009 to 2011, we systematically surveyed snow leopards in the Sanjiangyuan region. We used the MaxEnt model to determine the relation of their presence to environmental variables (e.g., elevation, ruggedness) and to predict snow leopard distribution. Model results showed 89,602 km(2) of snow leopard habitat in the Sanjiangyuan region, of which 7674 km(2) lay within Sanjiangyuan Nature Reserve's core zones. We analyzed the spatial relation between snow leopard habitat and Buddhist monasteries and found that 46% of monasteries were located in snow leopard habitat and 90% were within 5 km of snow leopard habitat. The 336 monasteries in the Sanjiangyuan region could protect more snow leopard habitat (8342 km(2) ) through social norms and active patrols than the nature reserve's core zones. We conducted 144 household interviews to identify local herders' attitudes and behavior toward snow leopards and other wildlife. Most local herders claimed that they did not kill wildlife, and 42% said they did not kill wildlife because it was a sin in Buddhism. Our results indicate monasteries play an important role in snow leopard conservation. Monastery-based snow leopard conservation could be extended to other Tibetan Buddhist regions that in total would encompass about 80% of the global range of snow leopards. © 2013 Society for Conservation Biology.

  4. Winter survival of Scots pine seedlings under different snow conditions. (United States)

    Domisch, Timo; Martz, Françoise; Repo, Tapani; Rautio, Pasi


    Future climate scenarios predict increased air temperatures and precipitation, particularly at high latitudes, and especially so during winter. Soil temperatures, however, are more difficult to predict, since they depend strongly on the fate of the insulating snow cover. 'Rain-on-snow' events and warm spells during winter can lead to thaw-freeze cycles, compacted snow and ice encasement, as well as local flooding. These adverse conditions could counteract the otherwise positive effects of climatic changes on forest seedling growth. In order to study the effects of different winter and snow conditions on young Scots pine (Pinus sylvestris L.) seedlings, we conducted a laboratory experiment in which 80 1-year-old Scots pine seedlings were distributed between four winter treatments in dasotrons: ambient snow cover (SNOW), compressed snow and ice encasement (ICE), flooded and frozen soil (FLOOD) and no snow (NO SNOW). During the winter treatment period and a 1.5-month simulated spring/early summer phase, we monitored the needle, stem and root biomass of the seedlings, and determined their starch and soluble sugar concentrations. In addition, we assessed the stress experienced by the seedlings by measuring chlorophyll fluorescence, electric impedance and photosynthesis of the previous-year needles. Compared with the SNOW treatment, carbohydrate concentrations were lower in the FLOOD and NO SNOW treatments where the seedlings had almost died before the end of the experiment, presumably due to frost desiccation of aboveground parts during the winter treatments. The seedlings of the ICE treatment showed dead needles and stems only above the snow and ice cover. The results emphasize the importance of an insulating and protecting snow cover for small forest tree seedlings, and that future winters with changed snow patterns might affect the survival of tree seedlings and thus forest productivity.

  5. Multitemporal Accuracy and Precision Assessment of Unmanned Aerial System Photogrammetry for Slope-Scale Snow Depth Maps in Alpine Terrain (United States)

    Adams, Marc S.; Bühler, Yves; Fromm, Reinhard


    Reliable and timely information on the spatio-temporal distribution of snow in alpine terrain plays an important role for a wide range of applications. Unmanned aerial system (UAS) photogrammetry is increasingly applied to cost-efficiently map the snow depth at very high resolution with flexible applicability. However, crucial questions regarding quality and repeatability of this technique are still under discussion. Here we present a multitemporal accuracy and precision assessment of UAS photogrammetry for snow depth mapping on the slope-scale. We mapped a 0.12 km2 large snow-covered study site, located in a high-alpine valley in Western Austria. 12 UAS flights were performed to acquire imagery at 0.05 m ground sampling distance in visible (VIS) and near-infrared (NIR) wavelengths with a modified commercial, off-the-shelf sensor mounted on a custom-built fixed-wing UAS. The imagery was processed with structure-from-motion photogrammetry software to generate orthophotos, digital surface models (DSMs) and snow depth maps (SDMs). Accuracy of DSMs and SDMs were assessed with terrestrial laser scanning and manual snow depth probing, respectively. The results show that under good illumination conditions (study site in full sunlight), the DSMs and SDMs were acquired with an accuracy of ≤ 0.25 and ≤ 0.29 m (both at 1σ), respectively. In case of poorly illuminated snow surfaces (study site shadowed), the NIR imagery provided higher accuracy (0.19 m; 0.23 m) than VIS imagery (0.49 m; 0.37 m). The precision of the UASSDMs was 0.04 m for a small, stable area and below 0.33 m for the whole study site (both at 1σ).

  6. Thin Sea Ice, Thick Snow, and Widespread Negative Freeboard Observed During N-ICE2015 North of Svalbard (United States)

    Rösel, Anja; Itkin, Polona; King, Jennifer; Divine, Dmitry; Wang, Caixin; Granskog, Mats A.; Krumpen, Thomas; Gerland, Sebastian


    In recent years, sea-ice conditions in the Arctic Ocean changed substantially toward a younger and thinner sea-ice cover. To capture the scope of these changes and identify the differences between individual regions, in situ observations from expeditions are a valuable data source. We present a continuous time series of in situ measurements from the N-ICE2015 expedition from January to June 2015 in the Arctic Basin north of Svalbard, comprising snow buoy and ice mass balance buoy data and local and regional data gained from electromagnetic induction (EM) surveys and snow probe measurements from four distinct drifts. The observed mean snow depth of 0.53 m for April to early June is 73% above the average value of 0.30 m from historical and recent observations in this region, covering the years 1955-2017. The modal total ice and snow thicknesses, of 1.6 and 1.7 m measured with ground-based EM and airborne EM measurements in April, May, and June 2015, respectively, lie below the values ranging from 1.8 to 2.7 m, reported in historical observations from the same region and time of year. The thick snow cover slows thermodynamic growth of the underlying sea ice. In combination with a thin sea-ice cover this leads to an imbalance between snow and ice thickness, which causes widespread negative freeboard with subsequent flooding and a potential for snow-ice formation. With certainty, 29% of randomly located drill holes on level ice had negative freeboard.

  7. Hard times; Schwere Zeiten

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Markus


    The prices of silicon and solar wafers keep dropping. According to market research specialist IMS research, this is the result of weak traditional solar markets and global overcapacities. While many manufacturers are facing hard times, big producers of silicon are continuing to expand.

  8. Hardness of Clustering

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Hardness of Clustering. Both k-means and k-medians intractable (when n and d are both inputs even for k =2). The best known deterministic algorithms. are based on Voronoi partitioning that. takes about time. Need for approximation – “close” to optimal.

  9. Rock-hard coatings


    Muller, M.


    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  10. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.


    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  11. Effects of multilayer snow scheme on the simulation of snow: Offline Noah and coupled with NCEP CFSv2 (United States)

    Saha, Subodh Kumar; Sujith, K.; Pokhrel, Samir; Chaudhari, Hemantkumar S.; Hazra, Anupam


    The Noah version 2.7.1 is a moderately complex land surface model (LSM), with a single layer snowpack, combined with vegetation and underlying soil layer. Many previous studies have pointed out biases in the simulation of snow, which may hinder the skill of a forecasting system coupled with the Noah. In order to improve the simulation of snow by the Noah, a multilayer snow scheme (up to a maximum of six layers) is introduced. As Noah is the land surface component of the Climate Forecast System version 2 (CFSv2) of the National Centers for Environmental Prediction (NCEP), the modified Noah is also coupled with the CFSv2. The offline LSM shows large improvements in the simulation of snow depth, snow water equivalent (SWE), and snow cover area during snow season (October to June). CFSv2 with the modified Noah reveals a dramatic improvements in the simulation of snow depth and 2 m air temperature and moderate improvements in SWE. As suggested in the previous diagnostic and sensitivity study, improvements in the simulation of snow by CFSv2 have lead to the reduction in dry bias over the Indian subcontinent (by a maximum of 2 mm d-1). The multilayer snow scheme shows promising results in the simulation of snow as well as Indian summer monsoon rainfall and hence this development may be the part of the future version of the CFS.

  12. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. (United States)

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D


    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Remember Hard But Think Softly: Metaphorical Effects of Hardness/Softness on Cognitive Functions (United States)

    Xie, Jiushu; Lu, Zhi; Wang, Ruiming; Cai, Zhenguang G.


    Previous studies have found that bodily stimulation, such as hardness biases social judgment and evaluation via metaphorical association; however, it remains unclear whether bodily stimulation also affects cognitive functions, such as memory and creativity. The current study used metaphorical associations between “hard” and “rigid” and between “soft” and “flexible” in Chinese, to investigate whether the experience of hardness affects cognitive functions whose performance depends prospectively on rigidity (memory) and flexibility (creativity). In Experiment 1, we found that Chinese-speaking participants performed better at recalling previously memorized words while sitting on a hard-surface stool (the hard condition) than a cushioned one (the soft condition). In Experiment 2, participants sitting on a cushioned stool outperformed those sitting on a hard-surface stool on a Chinese riddle task, which required creative/flexible thinking, but not on an analogical reasoning task, which required both rigid and flexible thinking. The results suggest the hardness experience affects cognitive functions that are metaphorically associated with rigidity or flexibility. They support the embodiment proposition that cognitive functions and representations can be grounded in bodily states via metaphorical associations. PMID:27672373

  14. Grounded theory. (United States)

    Harris, Tina


    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  15. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent (United States)

    Kelly, R. E. J.; Saberi, N.; Li, Q.


    With moderate to high spatial resolution (observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real

  16. Global warming: Sea ice and snow cover

    International Nuclear Information System (INIS)

    Walsh, J.E.


    In spite of differences among global climate simulations under scenarios where atmospheric CO 2 is doubled, all models indicate at least some amplification of greenouse warming at the polar regions. Several decades of recent data on air temperature, sea ice, and snow cover of the high latitudes of the Northern Hemisphere are summarized to illustrate the general compatibility of recent variations in those parameters. Despite a data void over the Arctic Ocean, some noteworthy patterns emerge. Warming dominates in winter and spring, as projected by global climate models, with the warming strongest over subpolar land areas of Alaska, northwestern Canada, and northern Eurasia. A time-longitude summary of Arctic sea ice variations indicates that timescales of most anomalies range from several months to several years. Wintertime maxima of total sea ice extent contain no apparent secular trends. The statistical significance of trends in recent sea ice variations was evaluated by a Monte Carlo procedure, showing a statistically significant negative trend in the summer. Snow cover data over the 20-y period of record show a noticeable decrease of Arctic snow cover in the late 1980s. This is of potential climatic significance since the accompanying decrease of surface albedo leads to a rapid increase of solar heating. 21 refs., 3 figs., 1 tab

  17. Hard Copy Market Overview (United States)

    Testan, Peter R.


    A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected

  18. Effects of dirty snow in nuclear winter simulations

    International Nuclear Information System (INIS)

    Vogelmann, A.M.; Robock, A.; Ellingson, R.G.


    A large-scale nuclear war would inject smoke into the atmosphere from burning forests, cities, and industries in targeted areas. This smoke could fall out onto snow and ice and would lower cryospheric albedos by as much as 50%. A global energy balance climate model is used to investigate the maximum effect these ''dirty snow'' albedos have on the surface temperature in nuclear winter simulations which span several years. These effects are investigated for different nuclear winter scenarios, snow precipitation rates, latitudinal distributions of smoke, and seasonal timings. We find that dirty snow, in general, would have a small temperature effect at mid- and low latitudes but could have a large temperature effect at polar latitudes, particularly if the soot is able to reappear significantly in later summers. Factors which limit the climatic importance of the dirty snow are (1) the dirty snow albedo is lowest when the atmosphere still contains a large amount of light-absorbing smoke; (2) even with dirty snow, sea ice areas can still increase, which helps maintain colder temperatures through the sea ice thermal inertial feedback; (3) the snow and ice areas affected by the dirty snow albedos are largest when there is little seasonal solar insolation; and (4) the area affected by the dirty snow is relatively small under all circumstances. copyright American Geophysical Union 1988

  19. Snow cover distribution over elevation zones in a mountainous catchment (United States)

    Panagoulia, D.; Panagopoulos, Y.


    A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.

  20. Small scale variability of snow properties on Antarctic sea ice (United States)

    Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael


    Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.

  1. Monitoring Areal Snow Cover Using NASA Satellite Imagery (United States)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon


    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data

  2. Does trampoline or hard surface jumping influence lower extremity alignment? (United States)

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby


    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  3. Hard Electromagnetic Processes

    International Nuclear Information System (INIS)

    Richard, F.


    Among hard electromagnetic processes, I will use the most recent data and focus on quantitative test of QCD. More specifically, I will retain two items: - hadroproduction of direct photons, - Drell-Yan. In addition, I will briefly discuss a recent analysis of ISR data obtained with AFS (Axial Field Spectrometer) which sheds a new light on the e/π puzzle at low P T

  4. The Airborne Snow Observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo (United States)

    Snow cover and its melt dominate regional climate and water resources in many of the world’s mountainous regions. Snowmelt timing and magnitude in mountains tend to be controlled by absorption of solar radiation and snow water equivalent, respectively, and yet both of these are very poorly known ev...

  5. Deriving Snow-Cover Depletion Curves for Different Spatial Scales from Remote Sensing and Snow Telemetry Data (United States)

    Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.


    During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.

  6. A novel linear physical model for remote sensing of snow wetness and snow density using the visible and infrared bands (United States)

    Varade, D. M.; Dikshit, O.


    Modeling and forecasting of snowmelt runoff are significant for understanding the hydrological processes in the cryosphere which requires timely information regarding snow physical properties such as liquid water content and density of snow in the topmost layer of the snowpack. Both the seasonal runoffs and avalanche forecasting are vastly dependent on the inherent physical characteristics of the snowpack which are conventionally measured by field surveys in difficult terrains at larger impending costs and manpower. With advances in remote sensing technology and the increase in the availability of satellite data, the frequency and extent of these surveys could see a declining trend in future. In this study, we present a novel approach for estimating snow wetness and snow density using visible and infrared bands that are available with most multi-spectral sensors. We define a trapezoidal feature space based on the spectral reflectance in the near infrared band and the Normalized Differenced Snow Index (NDSI), referred to as NIR-NDSI space, where dry snow and wet snow are observed in the left diagonal upper and lower right corners, respectively. The corresponding pixels are extracted by approximating the dry and wet edges which are used to develop a linear physical model to estimate snow wetness. Snow density is then estimated using the modeled snow wetness. Although the proposed approach has used Sentinel-2 data, it can be extended to incorporate data from other multi-spectral sensors. The estimated values for snow wetness and snow density show a high correlation with respect to in-situ measurements. The proposed model opens a new avenue for remote sensing of snow physical properties using multi-spectral data, which were limited in the literature.

  7. Sierra Nevada, California, U.S.A., Snow Algae: Snow albedo changes, algal-bacterial interrelationships and ultraviolet radiation effects

    International Nuclear Information System (INIS)

    Thomas, W.H.; Duval, B.


    In the Tioga Pass area (upper LeeVining Creek watershed) of the Sierra Nevada (California), snow algae were prevalent in the early summers of 1993 and 1994. Significant negative correlations were found between snow water content. However, red snow caused by algal blooms did not decrease mean albedos in representative snowfields. This was due to algal patchiness; mean albedos would not decrease over the whole water catchment basin; and water supplies would not be affected by the presence of algae. Albedo was also reduced by dirt on the snow, and wind-blown dirt may provide a source of allochthonous organic matter for snow bacteria. However, several observations emphasize the importance of an autochthonous source for bacterial nutrition. Bacterial abundances and production rates were higher in red snow containing algae than in noncolored snow. Bacterial production was about two orders-of-magnitude lower than photosynthetic algal production. Bacteria were also sometimes attached to algal cells. In experiments where snow algae were contained in UV-transmitting quartz tubes, ultraviolet radiation inhibited red snow (collected form open, sunlit areas) photosynthesis about 25%, while green snow (collected from forested, shady locations) photosynthesis was inhibited by 85%. Methanol extracts of red snow algae had greater absorbances in blue and UV spectral regions than did algae from green snow. These differences in UV responses and spectra may be due to habitat (sun vs shade) differences, or may be genetic, since different species were found in the two snow types. However, both habitat and genetic mechanisms may be operating together to cause these differences. 53 refs., 5 figs., 5 tabs

  8. A Bayesian spatial assimilation scheme for snow coverage observations in a gridded snow model

    Directory of Open Access Journals (Sweden)

    S. Kolberg


    Full Text Available A method for assimilating remotely sensed snow covered area (SCA into the snow subroutine of a grid distributed precipitation-runoff model (PRM is presented. The PRM is assumed to simulate the snow state in each grid cell by a snow depletion curve (SDC, which relates that cell's SCA to its snow cover mass balance. The assimilation is based on Bayes' theorem, which requires a joint prior distribution of the SDC variables in all the grid cells. In this paper we propose a spatial model for this prior distribution, and include similarities and dependencies among the grid cells. Used to represent the PRM simulated snow cover state, our joint prior model regards two elevation gradients and a degree-day factor as global variables, rather than describing their effect separately for each cell. This transformation results in smooth normalised surfaces for the two related mass balance variables, supporting a strong inter-cell dependency in their joint prior model. The global features and spatial interdependency in the prior model cause each SCA observation to provide information for many grid cells. The spatial approach similarly facilitates the utilisation of observed discharge. Assimilation of SCA data using the proposed spatial model is evaluated in a 2400 km2 mountainous region in central Norway (61° N, 9° E, based on two Landsat 7 ETM+ images generalized to 1 km2 resolution. An image acquired on 11 May, a week before the peak flood, removes 78% of the variance in the remaining snow storage. Even an image from 4 May, less than a week after the melt onset, reduces this variance by 53%. These results are largely improved compared to a cell-by-cell independent assimilation routine previously reported. Including observed discharge in the updating information improves the 4 May results, but has weak effect on 11 May. Estimated elevation gradients are shown to be sensitive to informational deficits occurring at high altitude, where snowmelt has not started

  9. Validation of MODIS snow cover images over Austria

    Directory of Open Access Journals (Sweden)

    J. Parajka


    Full Text Available This study evaluates the Moderate Resolution Imaging Spectroradiometer (MODIS snow cover product over the territory of Austria. The aims are (a to analyse the spatial and temporal variability of the MODIS snow product classes, (b to examine the accuracy of the MODIS snow product against in situ snow depth data, and (c to identify the main factors that may influence the MODIS classification accuracy. We use daily MODIS grid maps (version 4 and daily snow depth measurements at 754 climate stations in the period from February 2000 to December 2005. The results indicate that, on average, clouds obscured 63% of Austria, which may significantly restrict the applicability of the MODIS snow cover images to hydrological modelling. On cloud-free days, however, the classification accuracy is very good with an average of 95%. There is no consistent relationship between the classification errors and dominant land cover type and local topographical variability but there are clear seasonal patterns to the errors. In December and January the errors are around 15% while in summer they are less than 1%. This seasonal pattern is related to the overall percentage of snow cover in Austria, although in spring, when there is a well developed snow pack, errors tend to be smaller than they are in early winter for the same overall percent snow cover. Overestimation and underestimation errors balance during most of the year which indicates little bias. In November and December, however, there appears to exist a tendency for overestimation. Part of the errors may be related to the temporal shift between the in situ snow depth measurements (07:00 a.m. and the MODIS acquisition time (early afternoon. The comparison of daily air temperature maps with MODIS snow cover images indicates that almost all MODIS overestimation errors are caused by the misclassification of cirrus clouds as snow.

  10. Extraordinary blowing snow transport events in East Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Scarchilli, Claudio; Agnoletto, Lucia [ENEA, Rome (Italy); Universita di Siena, Dipartimento di Scienze della Terra, Siena (Italy); Frezzotti, Massimo; Grigioni, Paolo; Silvestri, Lorenzo de [ENEA, Rome (Italy); Dolci, Stefano [CNR, Rome (Italy); Consorzio P.N.R.A. S.C.r.l., Rome (Italy)


    In the convergence slope/coastal areas of Antarctica, a large fraction of snow is continuously eroded and exported by wind to the atmosphere and into the ocean. Snow transport observations from instruments and satellite images were acquired at the wind convergence zone of Terra Nova Bay (East Antarctica) throughout 2006 and 2007. Snow transport features are well-distinguished in satellite images and can extend vertically up to 200 m as first-order quantitatively estimated by driftometer sensor FlowCapt trademark. Maximum snow transportation occurs in the fall and winter seasons. Snow transportation (drift/blowing) was recorded for {proportional_to}80% of the time, and 20% of time recorded, the flux is >10{sup -2} kg m{sup -2} s{sup -1} with particle density increasing with height. Cumulative snow transportation is {proportional_to}4 orders of magnitude higher than snow precipitation at the site. An increase in wind speed and transportation ({proportional_to}30%) was observed in 2007, which is in agreement with a reduction in observed snow accumulation. Extensive presence of ablation surface (blue ice and wind crust) upwind and downwind of the measurement site suggest that the combine processes of blowing snow sublimation and snow transport remove up to 50% of the precipitation in the coastal and slope convergence area. These phenomena represent a major negative effect on the snow accumulation, and they are not sufficiently taken into account in studies of surface mass balance. The observed wind-driven ablation explains the inconsistency between atmospheric model precipitation and measured snow accumulation value. (orig.)

  11. Small scale variability of snow density on Antarctic sea ice (United States)

    Wever, N.; Leonard, K. C.; Paul, S.; Jacobi, H. W.; Proksch, M.; Lehning, M.


    Snow on sea ice plays an important role in air-ice-sea interactions. For example, snow may smooth the ice surface when snow drift is occurring, while at the same time it may also generate roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. We present data from an in-situ measurement campaign in the Weddell Sea during two subsequent cruises of RV Polarstern. By comparing snow density from snow pits and snow micro penetrometer (SMP) measurements, augmented by terrestrial laser scanning (TLS) on an area of 50x50 m2, highly resolved density profiles and surface topology were acquired at a horizontal resolution of approximately 30 cm. Average snow densities are about 280 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 170 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters, which disappear over larger distances. A comparison with TLS data indicates that the spatial variability is related to deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density profiles. The fundamental relationship between density variations, surface roughness and changes therein as investigated in this study are interpreted with respect to larger-scale ice-movement and the ice mass balance.

  12. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing (United States)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred


    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff

  13. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Directory of Open Access Journals (Sweden)

    A. Ehrlich


    Full Text Available The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow. Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C.In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S, λ2 = 1650 nm (sensitive to τ, and λ3 = 2100 nm (sensitive to reff, C are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012 were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice

  14. Development of a hard microcontroller

    International Nuclear Information System (INIS)

    Measel, P.R.; Sivo, L.L.; Quilitz, W.E.; Davidson, T.K.


    The applicability of commercially available microprocessors to certain systems requiring radiation survival was assessed. A microcontroller was designed and built to perform a monitor and control function of military operational ground equipment, and demonstrated to exceed the radiation hardness goal. The preparation of the microcontroller module required hardware and software design, selection of LSI and other piece part types, development of piece part and module electrical and radiation test techniques, and the performance of radiation tests on the LSI piece parts and the completed module. The microcontroller has a 16-bit central processor unit, a 4096 word read only memory, and a 256 word read-write memory. The module has circumvention circuitry, including a PIN diode radiation detector. The processor device used was the MMI 6701 T 2 L Schottky bipolar 4-bit slice. Electrical exerciser circuits were developed for in-situ electrical testing of microprocessors and memories during irradiation. A test program was developed for a Terradyne J283 microcircuit tester for more complete electrical characterization of the MMI 6701 microprocessor. A simple self-test algorithm was used in the microcontroller for performance testing during irradiation. For the operational demonstration of the microcontroller a TI 960A minicomputer was used to provide the required complex inputs to the module and verify the module outputs

  15. Snow reliability in ski resorts considering artificial snowmaking (United States)

    Hofstätter, M.; Formayer, H.; Haas, P.


    Snow reliability is the key factor to make skiing on slopes possible and to ensure added value in winter tourism. In this context snow reliability is defined by the duration of a snowpack on the ski runs of at least 50 mm snow water equivalent (SWE), within the main season (Dec-Mar). Furthermore the snowpack should form every winter and be existent early enough in season. In our work we investigate the snow reliability of six Austrian ski resorts. Because nearly all Austrian resorts rely on artificial snowmaking it is of big importance to consider man made snow in the snowpack accumulation and ablation in addition to natural snow. For each study region observed weather data including temperature, precipitation and snow height are used. In addition we differentiate up to three elevations on each site (valley, intermediate, mountain top), being aware of the typical local winter inversion height. Time periods suitable for artificial snow production, for several temperature threshold (-6,-4 or -1 degree Celsius) are calculated on an hourly base. Depending on the actual snowpack height, man made snow can be added in the model with different defined capacities, considering different technologies or the usage of additives. To simulate natural snowpack accumulation and ablation we a simple snow model, based on daily precipitation and temperature. This snow model is optimized at each site separately through certain parameterization factors. Based on the local observations and the monthly climate change signals from the climate model REMO-UBA, we generate long term time series of temperature and precipitation, using the weather generator LARS. Thereby we are not only able to simulate the snow reliability under current, but also under future climate conditions. Our results show significant changes in snow reliability, like an increase of days with insufficient snow heights, especially at mid and low altitudes under natural snow conditions. Artificial snowmaking can partly

  16. Effect of snow cover on soil frost penetration (United States)

    Rožnovský, Jaroslav; Brzezina, Jáchym


    Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.

  17. Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths (United States)

    Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.


    This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.

  18. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.


    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  19. Geochemical response of a calcareous fen to road salt contamination during snow melt and precipitation events: Kampoosa Bog, Stockbridge, MA (United States)

    Rhodes, A. L.; Guswa, A. J.


    Kampoosa Bog is the largest and most diverse calcareous lake-basin fen remaining in Massachusetts, and it is one of the state's elite Areas of Critical Environmental Concern (ACEC). The ground water chemistry of the fen has been greatly altered by road salt runoff (NaCl) from the Massachusetts Turnpike, which crosses the northern margin of the wetland complex. Ground water samples collected at different depths within the wetland, measurements of exchangeable Na from an eight-meter core, and hydraulic conductivity measurements suggest that ground water flow and contamination is largely a near- surface phenomenon. Detailed sampling of surface and ground waters during three spring snow melt events and one precipitation event characterizes the geochemical response of the wetland to hydrologic events. Overall, Na:Cl ratios for surface and ground water samples are less than one, and sodium and chloride imbalances suggest that 20-30% of sodium from rock salt is stored on cation exchange sites on organic material. Na:Cl ratios greater than one for fen ground water sampled during Snow Melt 2007 suggest that sodium can be released from cation exchange sites back to ground water under dilute conditions. The total mass of Na and Cl exported from the wetland is greatest under conditions of high discharge. The flux of dissolved salts at the outlet of the fen during Snow Melt 2005 accounts for ~ 24% Na and ~ 32% Cl of rock salt added to the Massachusetts Turnpike during 2004-2005. Estimates of annual fluxes of Na and Cl are on par with the amount of road salt applied, and sodium and chloride concentrations in shallow groundwater have decreased since 2002. The months of March, April and May are the primary months for salt export, accounting for more than half of the annual salt flux in 2005. Concerning the annual net export of sodium and chloride, large rain events may be more important with removing dissolved salts from the fen than snow melt because snow melt also is a time when

  20. Modelling technical snow production for skiing areas in the Austrian Alps with the physically based snow model AMUNDSEN (United States)

    Hanzer, F.; Marke, T.; Steiger, R.; Strasser, U.


    Tourism and particularly winter tourism is a key factor for the Austrian economy. Judging from currently available climate simulations, the Austrian Alps show a particularly high vulnerability to climatic changes. To reduce the exposure of ski areas towards changes in natural snow conditions as well as to generally enhance snow conditions at skiing sites, technical snowmaking is widely utilized across Austrian ski areas. While such measures result in better snow conditions at the skiing sites and are important for the local skiing industry, its economic efficiency has also to be taken into account. The current work emerges from the project CC-Snow II, where improved future climate scenario simulations are used to determine future natural and artificial snow conditions and their effects on tourism and economy in the Austrian Alps. In a first step, a simple technical snowmaking approach is incorporated into the process based snow model AMUNDSEN, which operates at a spatial resolution of 10-50 m and a temporal resolution of 1-3 hours. Locations of skiing slopes within a ski area in Styria, Austria, were digitized and imported into the model environment. During a predefined time frame in the beginning of the ski season, the model produces a maximum possible amount of technical snow and distributes the associated snow on the slopes, whereas afterwards, until to the end of the ski season, the model tries to maintain a certain snow depth threshold value on the slopes. Due to only few required input parameters, this approach is easily transferable to other ski areas. In our poster contribution, we present first results of this snowmaking approach and give an overview of the data and methodology applied. In a further step in CC-Snow, this simple bulk approach will be extended to consider actual snow cannon locations and technical specifications, which will allow a more detailed description of technical snow production as well as cannon-based recordings of water and energy

  1. Silvering substrates after CO2 snow cleaning (United States)

    Zito, Richard R.


    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  2. Modeling the isotopic composition of Antarctic snow using backward trajectories: simulation of snow pit records

    NARCIS (Netherlands)

    Helsen, M.M.; van de Wal, R.S.W.; van den Broeke, M.R.; Masson-Delmotte, V.; Meijer, H.A.J.; Scheele, M.P.; Werner, M.


    The quantitative interpretation of isotope records (d18O, dD, and d excess) in ice cores can benefit from a comparison of observed meteorology with associated isotope variability. For this reason we studied four isotope records from snow pits in western Dronning Maud Land (DML), Antarctica, covering

  3. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods (United States)

    Zhuosen Wang; Crystal B. Schaaf; Alan H. Strahler; Mark J. Chopping; Miguel O. Román; Yanmin Shuai; Curtis E. Woodcock; David Y. Hollinger; David R. Fitzjarrald


    This study assesses the Moderate-resolution Imaging Spectroradiometer (MODIS) BRDF/albedo 8 day standard product and products from the daily Direct Broadcast BRDF/albedo algorithm, and shows that these products agree well with ground-based albedo measurements during the more difficult periods of vegetation dormancy and snow cover. Cropland, grassland, deciduous and...

  4. Take control of upgrading to Snow Leopard

    CERN Document Server

    Kissell, Joe


    Installing a major new version of Mac OS X should be exciting and fun, but without proper guidance you may find it nerve-wracking or even risk losing valuable files. Fortunately, many thousands of people have upgraded Mac OS X calmly and successfully with Joe Kissell's previous best-selling Take Control of Upgrading... titles. Joe's friendly, expert steps-developed over innumerable test installations-help you to avoid trouble, understand what's going on when you install Snow Leopard, and easily recover from problem

  5. Translating Chicana Rap: Snow Tha Product

    Directory of Open Access Journals (Sweden)

    Adriana Onita


    Full Text Available This project examines rap lyrics, interviews, and music videos by Chicana artist Snow Tha Product to show how rap has been culturally translated, performed, and appropriated by females in order to “flip the script,” or subvert the dichotomous model of female sexuality that has been imposed upon them. Weaving insights from three academic fields (cultural translation, Chican@ studies, and hip-hop feminism, this paper also aims to creatively expand the definition of translation by positioning rap music as a performative language in its own right, capable of encoding and translating complex cultural issues related to race, gender, and sexuality.

  6. Effects of spring conditions on breeding propensity of Greater Snow Goose females

    Directory of Open Access Journals (Sweden)

    Reed, E. T.


    Full Text Available Breeding propensity, defined as the probability that a sexually mature adult will breed in a given year, is an important determinant of annual productivity. It is also one of the least known demographic parameters in vertebrates. We studied the relationship between breeding propensity and conditions on spring staging areas (a spring conservation hunt and the breeding grounds (spring snow cover in Greater Snow Geese (Chen caerulescens atlantica, a long distance migrant that breeds in the High Arctic. We combined information from mark–recapture, telemetry, and nest survey data to estimate breeding propensity over a 7– year period. True temporal variation in breeding propensity was considerable (mean: 0.574 [95% CI considering only process variation: 0.13 to 1.0]. Spring snow cover was negatively related to breeding propensity (bsnow=-2,05 ± 0,96 SE and tended to be reduced in years with a spring hunt (b = -0,78 ± 0,35. Nest densities on the breeding colony and fall ratios of young:adults were good indices of annual variation in breeding propensity, with nest densities being slightly more precise. These results suggest that conditions encountered during the pre-breeding period can have a significant impact on productivity of Arctic-nesting birds

  7. Snow loads in a changing climate: new risks?

    Directory of Open Access Journals (Sweden)

    U. Strasser


    Full Text Available In January/February 2006, heavy snowfalls in Bavaria (Germany lead to a series of infrastructural damage of catastrophic nature. Since on many collapsed roofs the total snow load was not exceptional, serious engineering deficiencies in roof construction and a sudden rise in the total snow load were considered to be the trigger of the events. An analysis of the then meteorological conditions reveals, that the early winter of 2005/2006 was characterised by an exceptional continuous snow cover, temperatures remained around the freezing point and no significant snowmelt was evident. The frequent freezing/thawing cycles were followed by a general compaction of the snow load. This resulted in a re-distribution and a new concentration of the snow load on specific locations on roofs. With respect to climate change, the question arises as to whether the risks relating to snow loads will increase. The future probability of a continuous snow cover occurrence with frequent freezing/thawing cycles will probably decline due to predicted higher temperatures. However, where temperatures remain low, an increase in winter precipitation will result in increased snow loads. Furthermore, the variability of extremes is predicted to increase. If heavy snowfall events are more frequent, the risk of a trigger event will likely increase. Finally, an attempt will be made here in this paper to outline a concept for an operational warning system for the Bavarian region. This system envisages to predict the development and risk of critical snow loads for a 3-day time period, utilising a combination of climate and snow modelling data and using this together with a snow pillow device (located on roofs and the results of which.

  8. Airborne Surveys of Snow Depth over Arctic Sea Ice (United States)

    Kwok, R.; Panzer, B.; Leuschen, C.; Pang, S.; Markus, T.; Holt, B.; Gogineni, S.


    During the spring of 2009, an ultrawideband microwave radar was deployed as part of Operation IceBridge to provide the first cross-basin surveys of snow thickness over Arctic sea ice. In this paper, we analyze data from three approx 2000 km transects to examine detection issues, the limitations of the current instrument, and the regional variability of the retrieved snow depth. Snow depth is the vertical distance between the air \\snow and snow-ice interfaces detected in the radar echograms. Under ideal conditions, the per echogram uncertainty in snow depth retrieval is approx 4 - 5 cm. The finite range resolution of the radar (approx 5 cm) and the relative amplitude of backscatter from the two interfaces limit the direct retrieval of snow depths much below approx 8 cm. Well-defined interfaces are observed over only relatively smooth surfaces within the radar footprint of approx 6.5 m. Sampling is thus restricted to undeformed, level ice. In early April, mean snow depths are 28.5 +/- 16.6 cm and 41.0 +/- 22.2 cm over first-year and multiyear sea ice (MYI), respectively. Regionally, snow thickness is thinner and quite uniform over the large expanse of seasonal ice in the Beaufort Sea, and gets progressively thicker toward the MYI cover north of Ellesmere Island, Greenland, and the Fram Strait. Snow depth over MYI is comparable to that reported in the climatology by Warren et al. Ongoing improvements to the radar system and the utility of these snow depth measurements are discussed.

  9. Impact of climate change in Switzerland on socioeconomic snow indices (United States)

    Schmucki, Edgar; Marty, Christoph; Fierz, Charles; Weingartner, Rolf; Lehning, Michael


    Snow is a key element for many socioeconomic activities in mountainous regions. Due to the sensitivity of the snow cover to variations of temperature and precipitation, major changes caused by climate change are expected to happen. We analyze the evolution of some key snow indices under future climatic conditions. Ten downscaled and postprocessed climate scenarios from the ENSEMBLES database have been used to feed the physics-based snow model SNOWPACK. The projected snow cover has been calculated for 11 stations representing the diverse climates found in Switzerland. For the first time, such a setup is used to reveal changes in frequently applied snow indices and their implications on various socioeconomic sectors. Toward the end of the twenty-first century, a continuous snow cover is likely only guaranteed at high elevations above 2000 m a.s.l., whereas at mid elevations (1000-1700 m a.s.l.), roughly 50 % of all winters might be characterized by an ephemeral snow cover. Low elevations (below 500 m a.s.l.) are projected to experience only 2 days with snowfall per year and show the strongest relative reductions in mean winter snow depth of around 90 %. The range of the mean relative reductions of the snow indices is dominated by uncertainties from different GCM-RCM projections and amounts to approximately 30 %. Despite these uncertainties, all snow indices show a clear decrease in all scenario periods and the relative reductions increase toward lower elevations. These strong reductions can serve as a basis for policy makers in the fields of tourism, ecology, and hydropower.

  10. Why on the snow? Winter emergence strategies of snow-active Chironomidae (Diptera) in Poland. (United States)

    Soszyńska-Maj, Agnieszka; Paasivirta, Lauri; Giłka, Wojciech


    A long-term study of adult non-biting midges (Chironomidae) active in winter on the snow in mountain areas and lowlands in Poland yielded 35 species. The lowland and mountain communities differed significantly in their specific composition. The mountain assemblage was found to be more diverse and abundant, with a substantial contribution from the subfamily Diamesinae, whereas Orthocladiinae predominated in the lowlands. Orthocladius wetterensis Brundin was the most characteristic and superdominant species in the winter-active chironomid communities in both areas. Only a few specimens and species of snow-active chironomids were recorded in late autumn and early winter. The abundance of chironomids peaked in late February in the mountain and lowland areas with an additional peak in the mountain areas in early April. However, this second peak of activity consisted mainly of Orthocladiinae, as Diamesinae emerged earliest in the season. Most snow-active species emerged in mid- and late winter, but their seasonal patterns differed between the 2 regions as a result of the different species composition and the duration of snow cover in these regions. Spearman's rank correlation coefficient tests yielded positive results between each season and the number of chironomid individuals recorded in the mountain area. A positive correlation between air temperature, rising to +3.5 °C, and the number of specimens recorded on the snow in the mountain community was statistically significant. The winter emergence and mate-searching strategies of chironomids are discussed in the light of global warming, and a brief compilation of most important published data on the phenomena studied is provided. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  11. Revisiting the definition of local hardness and hardness kernel. (United States)

    Polanco-Ramírez, Carlos A; Franco-Pérez, Marco; Carmona-Espíndola, Javier; Gázquez, José L; Ayers, Paul W


    An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition.

  12. Mass balance re-analysis of Findelengletscher, Switzerland; benefits of extensive snow accumulation measurements

    Directory of Open Access Journals (Sweden)

    Leo eSold


    Full Text Available A re-analysis is presented here of a 10-year mass balance series at Findelengletscher, a temperate mountain glacier in Switzerland. Calculating glacier-wide mass balance from the set of glaciological point balance observations using conventional approaches, such as the profile or contour method, resulted in significant deviations from the reference value given by the geodetic mass change over a five-year period. This is attributed to the sparsity of observations at high elevations and to the inability of the evaluation schemes to adequately estimate accumulation in unmeasured areas. However, measurements of winter mass balance were available for large parts of the study period from snow probings and density pits. Complementary surveys by helicopter-borne ground-penetrating radar (GPR were conducted in three consecutive years. The complete set of seasonal observations was assimilated using a distributed mass balance model. This model-based extrapolation revealed a substantial mass loss at Findelengletscher of -0.43m w.e. a^-1 between 2004 and 2014, while the loss was less pronounced for its former tributary, Adlergletscher (-0.30m w.e. a^-1. For both glaciers, the resulting time series were within the uncertainty bounds of the geodetic mass change. We show that the model benefited strongly from the ability to integrate seasonal observations. If no winter mass balance measurements were available and snow cover was represented by a linear precipitation gradient, the geodetic mass balance was not matched. If winter balance measurements by snow probings and snow density pits were taken into account, the model performance was substantially improved but still showed a significant bias relative to the geodetic mass change. Thus the excellent agreement of the model-based extrapolation with the geodetic mass change was owed to an adequate representation of winter accumulation distribution by means of extensive GPR measurements.

  13. Terrestrial invasion of pomatiopsid gastropods in the heavy-snow region of the Japanese Archipelago

    Directory of Open Access Journals (Sweden)

    Kato Makoto


    Full Text Available Abstract Background Gastropod mollusks are one of the most successful animals that have diversified in the fully terrestrial habitat. They have evolved terrestrial taxa in more than nine lineages, most of which originated during the Paleozoic or Mesozoic. The rissooidean gastropod family Pomatiopsidae is one of the few groups that have evolved fully terrestrial taxa during the late Cenozoic. The pomatiopsine diversity is particularly high in the Japanese Archipelago and the terrestrial taxa occur only in this region. In this study, we conducted thorough samplings of Japanese pomatiopsid species and performed molecular phylogenetic analyses to explore the patterns of diversification and terrestrial invasion. Results Molecular phylogenetic analyses revealed that Japanese Pomatiopsinae derived from multiple colonization of the Eurasian Continent and that subsequent habitat shifts from aquatic to terrestrial life occurred at least twice within two Japanese endemic lineages. Each lineage comprises amphibious and terrestrial species, both of which are confined to the mountains in heavy-snow regions facing the Japan Sea. The estimated divergence time suggested that diversification of these terrestrial lineages started in the Late Miocene, when active orogenesis of the Japanese landmass and establishment of snowy conditions began. Conclusions The terrestrial invasion of Japanese Pomatiopsinae occurred at least twice beside the mountain streamlets of heavy-snow regions, which is considered the first case of this event in the area. Because snow coverage maintains stable temperatures and high humidity on the ground surface, heavy-snow conditions may have paved the way for these organisms from freshwater to land via mountain streamlets by preventing winter desiccation in mountain valleys. The fact that the terrestrialization of Pomatiopsidae occurred only in year-round wet environments, but not in seasonally dried regions, provides new insight into ancient

  14. Dynamic-stochastic modeling of snow cover formation on the European territory of Russia


    A. N. Gelfan; V. M. Moreido


    A dynamic-stochastic model, which combines a deterministic model of snow cover formation with a stochastic weather generator, has been developed. The deterministic snow model describes temporal change of the snow depth, content of ice and liquid water, snow density, snowmelt, sublimation, re-freezing of melt water, and snow metamorphism. The model has been calibrated and validated against the long-term data of snow measurements over the territory of the European Russia. The model showed good ...

  15. Personality assessment in snow leopards (Uncia uncia). (United States)

    Gartner, Marieke Cassia; Powell, David


    Knowledge of individual personality is a useful tool in animal husbandry and can be used effectively to improve welfare. This study assessed personality in snow leopards (Uncia uncia) by examining their reactions to six novel objects and comparing them to personality assessments based on a survey completed by zookeepers. The objectives were to determine whether these methods could detect differences in personality, including age and sex differences, and to assess whether the two methods yielded comparable results. Both keeper assessments and novel object tests identified age, sex, and individual differences in snow leopards. Five dimensions of personality were found based on keepers' ratings: Active/Vigilant, Curious/Playful, Calm/Self-Assured, Timid/Anxious, and Friendly to Humans. The dimension Active/Vigilant was significantly positively correlated with the number of visits to the object, time spent locomoting, and time spent in exploratory behaviors. Curious/Playful was significantly positively correlated with the number of visits to the object, time spent locomoting, and time spent in exploratory behaviors. However, other dimensions (Calm/Self-Assured, Friendly to Humans, and Timid/Anxious) did not correlate with novel-object test variables and possible explanations for this are discussed. Thus, some of the traits and behaviors were correlated between assessment methods, showing the novel-object test to be useful in assessing an animal's personality should a keeper be unable to, or to support a keeper's assessment. © 2011 Wiley Periodicals, Inc.

  16. The Snow Data System at NASA JPL (United States)

    Laidlaw, R.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Bormann, K.; Brodzik, M. J.; Burgess, A. B.; Rittger, K.; Goodale, C. E.; Joyce, M.; McGibbney, L. J.; Zimdars, P.


    NASA JPL's Snow Data System has a data-processing pipeline powered by Apache OODT, an open source software tool. The pipeline has been running for several years and has successfully generated a significant amount of cryosphere data, including MODIS-based products such as MODSCAG, MODDRFS and MODICE, with historical and near-real time windows and covering regions such as the Artic, Western US, Alaska, Central Europe, Asia, South America, Australia and New Zealand. The team continues to improve the pipeline, using monitoring tools such as Ganglia to give an overview of operations, and improving fault-tolerance with automated recovery scripts. Several alternative adaptations of the Snow Covered Area and Grain size (SCAG) algorithm are being investigated. These include using VIIRS and Landsat TM/ETM+ satellite data as inputs. Parallel computing techniques are being considered for core SCAG processing, such as using the PyCUDA Python API to utilize multi-core GPU architectures. An experimental version of MODSCAG is also being developed for the Google Earth Engine platform, a cloud-based service.

  17. Kinetic Friction of Sport Fabrics on Snow

    Directory of Open Access Journals (Sweden)

    Werner Nachbauer


    Full Text Available After falls, skiers or snowboarders often slide on the slope and may collide with obstacles. Thus, the skier’s friction on snow is an important factor to reduce incidence and severity of impact injuries. The purpose of this study was to measure snow friction of different fabrics of ski garments with respect to roughness, speed, and contact pressure. Three types of fabrics were investigated: a commercially available ski overall, a smooth downhill racing suit, and a dimpled downhill racing suit. Friction was measured for fabrics taped on a short ski using a linear tribometer. The fabrics’ roughness was determined by focus variation microscopy. Friction coefficients were between 0.19 and 0.48. Roughness, friction coefficient, and friction force were highest for the dimpled race suit. The friction force of the fabrics was higher for the higher contact pressure than for the lower one at all speeds. It was concluded that the main friction mechanism for the fabrics was dry friction. Only the fabric with the roughest surface showed friction coefficients, which were high enough to sufficiently decelerate a sliding skier on beginner and intermediate slopes.

  18. [An overview of snow-boarding injuries]. (United States)

    Biasca, N; Battaglia, H; Simmen, H P; Disler, P; Trentz, O


    Snowboarding is increasing dramatically in popularity in Switzerland as well as other countries. Work aimed at improving the design of the boards and of the boots and bindings has also increased rapidly during recent years. Most injured snowboarders are fit young men and boys who describe themselves as beginners and have had a minimal amount of instruction at an officially approved training centre. Appropriate snowboard training has mostly been quite inadequate, and protective devices (e.g. waterproofed support gloves). The anatomical distribution and the types of injuries sustained in snowboarding differ from those in alpine skiing. The wrist (and forearm) and the ankle are the most frequent locations of injuries (23%) as against the knee and thumb in alpine skiing. Sprains and strains were the most frequent types of injuries (46%), followed by fractures (28%) and contusions (13.5%). The snowboard injury rate was higher than in alpine skiing (1.7-8/1000 snowboard days versus 2-4/1000 ski days). Falling forward on the slope was the major mechanism of injury (80%), and torsion the next most frequent (20%). Snowboarding injuries were sustained most often on ice and hardpacked snow, compared with soft powder snow for alpine skiing injuries. Appropriate preseason conditioning, snowboarding lessons from a certified instructor, appropriate selection of rigorously tested equipment and use of protective devices are the main steps that must be taken to prevent injuries.

  19. Energy and dissipated work in snow avalanches (United States)

    Bartelt, P.; Buser, O.


    Using the results of large scale avalanche experiments at the Swiss Vallée de la Sionne test site, the energy balance of several snow avalanches is determined. Avalanches convert approximately one-seventh of their potential energy into kinetic energy. The total potential energy depends strongly on the entrained snowcover, indicating that entrainment processes cannot be ignored when predicting terminal velocities and runout distances. We find energy dissipation rates on the order of 1 GW. Fluidization of the fracture slab can be identified in the experiments as an increase in dissipation rate, thereby explaining the initial and rapid acceleration of avalanches after release. Interestingly, the dissipation rates appear to be constant along the track, although large fluctuations in internal velocity exist. Thus, we can demonstrate within the context of non-equilibrium thermodynamics that -- in space -- granular snow avalanches are irreversible, dissipative systems that minimize entropy production because they appear to reach a steady-state non-equilibrium. A thermodynamic analysis reveals that fluctuations in velocity depend on the roughness of the flow surface and viscosity of the granular system. We speculate that this property explains the transition from flowing avalanches to powder avalanches.

  20. [Characteristics of mercury exchange flux between soil and atmosphere under the snow retention and snow melting control]. (United States)

    Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi


    Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange

  1. Seasonal snow accumulation in the mid-latitude forested catchment

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav


    Roč. 69, č. 11 (2014), s. 1562-1569 ISSN 0006-3088 R&D Projects: GA TA ČR TA02021451 Institutional support: RVO:67985874 Keywords : snow depth * snow water equivalent * forested catchment Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  2. Prevent Snow from Blocking your Tailpipe PSA (:30)

    Centers for Disease Control (CDC) Podcasts


    If it's snowing, make sure your vehicle’s tailpipe is clear of snow before starting the engine to prevent carbon monoxide poisoning.  Created: 12/11/2014 by National Center for Environmental Health (NCEH).   Date Released: 12/11/2014.

  3. Student Leadership Development within Student Government at Snow College (United States)

    Wilson, Gordon Ned


    The purpose of this study was to describe the leadership development process of former student leaders at Snow College. More specifically, the study focused on understanding how, when, and where leadership development took place in their "lived experience" within the student government at Snow College (Van Manen, 1998). Examining the lived…


    DEFF Research Database (Denmark)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.


    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent...

  5. Consistent seasonal snow cover depth and duration variability over ...

    Indian Academy of Sciences (India)

    Decline in consistent seasonal snow cover depth, duration and changing snow cover build- up pattern over the WH in recent decades indicate that WH has undergone considerable climate change and winter weather patterns are changing in the WH. 1. Introduction. Mountainous regions around the globe are storehouses.

  6. Modeling Snow Regime in Cores of Small Planetary Bodies (United States)

    Boukaré, C. E.; Ricard, Y. R.; Parmentier, E.; Parman, S. W.


    Observations of present day magnetic field on small planetary bodies such as Ganymede or Mercury challenge our understanding of planetary dynamo. Several mechanisms have been proposed to explain the origin of magnetic fields. Among the proposed scenarios, one family of models relies on snow regime. Snow regime is supported by experimental studies showing that melting curves can first intersect adiabats in regions where the solidifying phase is not gravitationaly stable. First solids should thus remelt during their ascent or descent. The effect of the snow zone on magnetic field generation remains an open question. Could magnetic field be generated in the snow zone? If not, what is the depth extent of the snow zone? How remelting in the snow zone drive compositional convection in the liquid layer? Several authors have tackled this question with 1D-spherical models. Zhang and Schubert, 2012 model sinking of the dense phase as internally heated convection. However, to our knowledge, there is no study on the convection structure associated with sedimentation and phase change at planetary scale. We extend the numerical model developped in [Boukare et al., 2017] to model snow dynamics in 2D Cartesian geometry. We build a general approach for modeling double diffusive convection coupled with solid-liquid phase change and phase separation. We identify several aspects that may govern the convection structure of the solidifying system: viscosity contrast between the snow zone and the liquid layer, crystal size, rate of melting/solidification and partitioning of light components during phase change.

  7. A comparison of Normalised Difference Snow Index (NDSI) and ...

    African Journals Online (AJOL)

    As an alternative, thematic cover–types based on remotely sensed data-sets are becoming popular. In this study we hypothesise that the reduced dimensionality using Principal Components Analysis (PCA) in concert Normalized Difference Snow Index (NDSI) is valuable for improving the accuracy of snow cover maps.

  8. Spectral characterization of soil and coal contamination on snow

    Indian Academy of Sciences (India)

    Snow is a highly reflecting object found naturally on the Earth and its albedo is highly influenced by the amount and type of contamination. In the present study, two major types of contaminants (soil and coal) have been used to understand their effects on snow reflectance in the Himalayan region. These contaminants were ...

  9. Snow Leopard: Ecology and Conservation Issues in India

    Indian Academy of Sciences (India)

    Owing to their secretive nature and inaccessible habitat,little is known about its ecology and distribution. Due toits endangered status and high aesthetic value, the snow leopardis considered as an 'umbrella species' for wildlife conservationin the Indian Himalayas. This article summarizes thecurrent knowledge on snow ...

  10. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf


    of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case...

  11. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira


    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  12. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry (United States)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.


    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential

  13. What controls the isotopic composition of Greenland surface snow?

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen


    Full Text Available Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD of near-surface water vapor, precipitation and samples of the top (0.5 cm snow surface has been conducted during two summers (2011–2012 at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76 for 2012. The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near

  14. Topographic recording of the Slalom racing route in snow

    Directory of Open Access Journals (Sweden)

    V.F. Giovanis


    Full Text Available Purpose: The purpose of the present research was the study and evaluation of the theodolite’s (topographic speedometer use in tracing a path in slalom racing on snow conditions with 58 gates and also to record the optimal method of tracing a slalom route in relation to: a the "velocity" of the race track (degree of difficulty of slalom, b safety of tracing the slalom route. Methods: This research was based on methodology and measurements of a race track in giant slalom with 35 gates in the ski resort "3-5 Pigadia" of Naoussa - Greece. The topographic speedometer was fixed in place at the start of the route. From this point, measurements were taken, for the placement of all 58 gates throughout the route. The measurement was taken using the pole-prism, placed in each interior gate turn, at which the theodolite was aimed. With the help of topographic speedometer the following geometrical parameters have been registered: distance between the gates (Δs, altitude difference of points (Δh with an accuracy up to 1cm, terrain slope (θ, gate angular deviation (δ with an accuracy of up to 1 minute of the angle (°. This allows the creation of the top-view, side-view (profile and three-dimensional aspect of the track, under race conditions on snow and not on dry ground. Results: The correlation coefficient (r between the geometry factor ( and average the above geometry parameters had the following respective values: -Ms = 0,15, -Mθ = - 0,52, -Mδ = - 0,29 for 58 gates on a level of statistical significance of p < 0,05. Conclusions: The first part comprised of 10 gates was the "fastest" ( = 18 degrees of the total slalom route in Naoussa with 58 gates ( = 14 degrees. With the above criteria, slaloms will be compared to each other and will be evaluated against age and safety.

  15. Variability in snow depth time series in the Adige catchment

    Directory of Open Access Journals (Sweden)

    Giorgia Marcolini


    New hydrological insights for the region: Stations located above and below 1650 m a.s.l. show different dynamics, with the latter experiencing in the last decades a larger reduction of average snow depth and snow cover duration, than the former. Wavelet analyses show that snow dynamics change with elevation and correlate differently with climatic indices at multiple temporal scales. We also observe that starting from the late 1980s snow cover duration and mean seasonal snow depth are below the average in the study area. We also identify an elevation dependent correlation with the temperature. Moreover, correlation with the Mediterranean Oscillation Index and with the North Atlantic Oscillation Index is identified.

  16. Snow cover and temperature relationships in North America and Eurasia (United States)

    Foster, J.; Owe, M.; Rango, A.


    In this study the snow cover extent during the autumn months in both North America and Eurasia has been related to the ensuing winter temperature as measured at several locations near the center of each continent. The relationship between autumn snow cover and the ensuing winter temperatures was found to be much better for Eurasia than for North America. For Eurasia the average snow cover extent during the autumn explained as much as 52 percent of the variance in the winter (December-February) temperatures compared to only 12 percent for North America. However, when the average winter snow cover was correlated with the average winter temperature it was found that the relationship was better for North America than for Eurasia. As much as 46 percent of the variance in the winter temperature was explained by the winter snow cover in North America compared to only 12 percent in Eurasia.

  17. The performance of the new enhanced-resolution satellite passive microwave dataset applied for snow water equivalent estimation (United States)

    Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.


    The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will

  18. Resilience to Changing Snow Depth in a Shrubland Ecosystem. (United States)

    Loik, M. E.


    Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Sierra Nevada snowpack provides numerous important services for California, but is vulnerable to anthropogenic forcing of the coupled ocean-atmosphere system. GCM and RCM scenarios envision reduced snowpack and earlier melt under a warmer climate, but how will these changes affect soil and plant water relations and ecosystem processes? And, how resilient will this ecosystem be to short- and long-term forcing of snow depth and melt timing? To address these questions, our experiments utilize large- scale, long-term roadside snow fences to manipulate snow depth and melt timing in eastern California, USA. Interannual snow depth averages 1344 mm with a CV of 48% (April 1, 1928-2008). Snow fences altered snow melt timing by up to 18 days in high-snowfall years, and affected short-term soil moisture pulses less in low- than medium- or high-snowfall years. Sublimation in this arid location accounted for about 2 mol m- 2 of water loss from the snowpack in 2005. Plant water potential increased after the ENSO winter of 2005 and stayed relatively constant for the following three years, even after the low snowfall of winter 2007. Over the long-term, changes in snow depth and melt timing have impacted cover or biomass of Achnatherum thurberianum, Elymus elemoides, and Purshia tridentata. Growth of adult conifers (Pinus jeffreyi and Pi. contorta) was not equally sensitive to snow depth. Thus, complex interactions between snow depth, soil water inputs, physiological processes, and population patterns help drive the resilience of this ecosystem to changes in snow depth and melt timing.

  19. SWEAT: Snow Water Equivalent with AlTimetry (United States)

    Agten, Dries; Benninga, Harm-Jan; Diaz Schümmer, Carlos; Donnerer, Julia; Fischer, Georg; Henriksen, Marie; Hippert Ferrer, Alexandre; Jamali, Maryam; Marinaci, Stefano; Mould, Toby JD; Phelan, Liam; Rosker, Stephanie; Schrenker, Caroline; Schulze, Kerstin; Emanuel Telo Bordalo Monteiro, Jorge


    To study how the water cycle changes over time, satellite and airborne remote sensing missions are typically employed. Over the last 40 years of satellite missions, the measurement of true water inventories stored in sea and land ice within the cryosphere have been significantly hindered by uncertainties introduced by snow cover. Being able to determine the thickness of this snow cover would act to reduce such error, improving current estimations of hydrological and climate models, Earth's energy balance (albedo) calculations and flood predictions. Therefore, the target of the SWEAT (Snow Water Equivalent with AlTimetry) mission is to directly measure the surface Snow Water Equivalent (SWE) on sea and land ice within the polar regions above 60°and below -60° latitude. There are no other satellite missions currently capable of directly measuring SWE. In order to achieve this, the proposed mission will implement a novel combination of Ka- and Ku-band radioaltimeters (active microwave sensors), capable of penetrating into the snow microstructure. The Ka-band altimeter (λ ≈ 0.8 cm) provides a low maximum snow pack penetration depth of up to 20 cm for dry snow at 37 GHz, since the volume scattering of snow dominates over the scattering caused by the underlying ice surface. In contrast, the Ku-band altimeter (λ ≈ 2 cm) provides a high maximum snowpack penetration depth of up to 15 m in high latitudes regions with dry snow, as volume scattering is decreased by a factor of 55. The combined difference in Ka- and Ku-band signal penetration results will provide more accurate and direct determination of SWE. Therefore, the SWEAT mission aims to improve estimations of global SWE interpreted from passive microwave products, and improve the reliability of numerical snow and climate models.

  20. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes (United States)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.


    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  1. Assessing the controls of the snow energy balance and water available for runoff in a rain-an-snow environment (United States)

    Adam B. Mazurkiewicz; David G. Callery; Jeffrey J. McDonnell


    Rain-on-snow (ROS) melt production and its contribution to water available for runoff is poorly understood. In the Pacific Northwest (PNW) of the USA, ROS drives many runoff events with turbulent energy exchanges dominating the snow energy balance (EB). While previous experimental work in the PNW (most notably the H.J. Andrews Experimental Forest (HJA» has quantified...

  2. Janka hardness using nonstandard specimens (United States)

    David W. Green; Marshall Begel; William Nelson


    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  3. Improving snow water equivalent simulations in an alpine basin using blended gage precipitation and snow pillow measurements (United States)

    Sohrabi, M.; Safeeq, M.; Conklin, M. H.


    Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated

  4. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  5. Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon (United States)

    Dang, Cheng; Brandt, Richard E.; Warren, Stephen G.


    The reduction of snow spectral albedo by black carbon (BC) and mineral dust, both alone and in combination, is computed using radiative transfer modeling. Broadband albedo is shown for mass fractions covering the full range from pure snow to pure BC and pure dust, and for snow grain radii from 5 µm to 2500 µm, to cover the range of possible grain sizes on planetary surfaces. Parameterizations are developed for opaque homogeneous snowpacks for three broad bands used in general circulation models and several narrower bands. They are functions of snow grain radius and the mass fraction of BC and/or dust and are valid up to BC content of 10 ppm, needed for highly polluted snow. A change of solar zenith angle can be mimicked by changing grain radius. A given mass fraction of BC causes greater albedo reduction in coarse-grained snow; BC and grain radius can be combined into a single variable to compute the reduction of albedo relative to pure snow. The albedo reduction by BC is less if the snow contains dust, a common situation on mountain glaciers and in agricultural and grazing lands. Measured absorption spectra of mineral dust are critically reviewed as a basis for specifying dust properties for modeling. The effect of dust on snow albedo at visible wavelengths can be represented by an "equivalent BC" amount, scaled down by a factor of about 200. Dust has little effect on the near-IR albedo because the near-IR albedo of pure dust is similar to that of pure snow.

  6. Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model (United States)

    Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.


    Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and

  7. Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions

    Directory of Open Access Journals (Sweden)

    R. Juras


    Full Text Available The mechanisms of rainwater propagation and runoff generation during rain-on-snow (ROS events are still insufficiently known. Understanding storage and transport of liquid water in natural snowpacks is crucial, especially for forecasting of natural hazards such as floods and wet snow avalanches. In this study, propagation of rainwater through snow was investigated by sprinkling experiments with deuterium-enriched water and applying an alternative hydrograph separation technique on samples collected from the snowpack runoff. This allowed us to quantify the contribution of rainwater, snowmelt and initial liquid water released from the snowpack. Four field experiments were carried out during winter 2015 in the vicinity of Davos, Switzerland. Blocks of natural snow were isolated from the surrounding snowpack to inhibit lateral exchange of water and were exposed to artificial rainfall using deuterium-enriched water. The experiments were composed of four 30 min periods of sprinkling, separated by three 30 min breaks. The snowpack runoff was continuously gauged and sampled periodically for the deuterium signature. At the onset of each experiment antecedent liquid water was first pushed out by the sprinkling water. Hydrographs showed four pronounced peaks corresponding to the four sprinkling bursts. The contribution of rainwater to snowpack runoff consistently increased over the course of the experiment but never exceeded 86 %. An experiment conducted on a non-ripe snowpack suggested the development of preferential flow paths that allowed rainwater to efficiently propagate through the snowpack limiting the time for mass exchange processes to take effect. In contrast, experiments conducted on ripe isothermal snowpack showed a slower response behaviour and resulted in a total runoff volume which consisted of less than 50 % of the rain input.

  8. Aerial view of CERN under the snow

    CERN Multimedia

    CERN PhotoLab


    In this photograph taken in the winter of 1963, CERN still looks quite bare under its mantle of snow. The Proton Synchrotron (PS), resembling a bicycle wheel in shape, had been in operation since the summer of 1959. A proposal had just been made for the site of CERN's second large project, the Intersecting Storage Rings (ISR): France was to house the world's first proton-proton collider. In September 1965, the French authorities signed an agreement making more than 40 hectares of land available for the extension of the CERN site established in Switzerland into French territory. The ISR project received final approval from the CERN Council in December 1965. The civil engineering work on the French part began in November 196

  9. Frost seen on Snow White Trench (United States)


    The Surface Stereo Imager (SSI) on NASA's Phoenix Mars Lander took this shadow-enhanced false color image of the 'Snow White' trench, on the eastern end of Phoenix's digging area. The image was taken on Sol 144, or the 144th day of the mission, Oct. 20, 2008. Temperatures measured on Sol 151, the last day weather data were received, showed overnight lows of minus128 Fahrenheit (minus 89 Celsius) and day time highs in the minus 50 F (minus 46 C) range. The last communication from the spacecraft came on Nov. 2, 2008. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Brightness temperature simulation of snow cover based on snow grain size evolution using in situ data (United States)

    Wu, Lili; Li, Xiaofeng; Zhao, Kai; Zheng, Xingming; Jiang, Tao


    Snow depth parameter inversion from passive microwave remote sensing is of great significance to hydrological process and climate systems. The Helsinki University of Technology (HUT) model is a commonly used snow emission model. Snow grain size (SGS) is one of the important input parameters, but SGS is difficult to obtain in broad areas. The time series of SGS are first evolved by an SGS evolution model (Jordan 91) using in situ data. A good linear relationship between the effective SGS in HUT and the evolution SGS was found. Then brightness temperature simulations are performed based on the effective SGS and evolution SGS. The results showed that the biases of the simulated brightness temperatures based on the effective SGS and evolution SGS were -6.5 and -3.6 K, respectively, for 18.7 GHz and -4.2 and -4.0 K for 36.5 GHz. Furthermore, the model is performed in six pixels with different land use/cover type in other areas. The results showed that the simulated brightness temperatures based on the evolution SGS were consistent with those from the satellite. Consequently, evolution SGS appears to be a simple method to obtain an appropriate SGS for the HUT model.

  11. Hard processes. Vol. 1

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Khoze, V.A.; Lipatov, L.N.


    Deep inelastic (hard) processes are now at the epicenter of modern high-energy physics. These processes are governed by short-distance dynamics, which reveals the intrinsic structure of elementary particles. The theory of deep inelastic processes is now sufficiently well settled. The authors' aim was to give an effective tool to theoreticians and experimentalists who are engaged in high-energy physics. This book is intended primarily for physicists who are only beginning to study the field. To read the book, one should be acquainted with the Feynman diagram technique and with some particular topics from elementary particle theory (symmetries, dispersion relations, Regge pole theory, etc.). Theoretical consideration of deep inelastic processes is now based on quantum chromodynamics (QCD). At the same time, analysis of relevant physical phenomena demands a synthesis of QCD notions (quarks, gluons) with certain empirical characteristics. Therefore, the phenomenological approaches presented are a necessary stage in a study of this range of phenomena which should undoubtedly be followed by a detailed description based on QCD and electroweak theory. The authors were naturally unable to dwell on experimental data accumulated during the past decade of intensive investigations. Priority was given to results which allow a direct comparison with theoretical predictions. (Auth.)

  12. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)


    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  13. Use of machine learning techniques for modeling of snow depth

    Directory of Open Access Journals (Sweden)

    G. V. Ayzel


    Full Text Available Snow exerts significant regulating effect on the land hydrological cycle since it controls intensity of heat and water exchange between the soil-vegetative cover and the atmosphere. Estimating of a spring flood runoff or a rain-flood on mountainous rivers requires understanding of the snow cover dynamics on a watershed. In our work, solving a problem of the snow cover depth modeling is based on both available databases of hydro-meteorological observations and easily accessible scientific software that allows complete reproduction of investigation results and further development of this theme by scientific community. In this research we used the daily observational data on the snow cover and surface meteorological parameters, obtained at three stations situated in different geographical regions: Col de Porte (France, Sodankyla (Finland, and Snoquamie Pass (USA.Statistical modeling of the snow cover depth is based on a complex of freely distributed the present-day machine learning models: Decision Trees, Adaptive Boosting, Gradient Boosting. It is demonstrated that use of combination of modern machine learning methods with available meteorological data provides the good accuracy of the snow cover modeling. The best results of snow cover depth modeling for every investigated site were obtained by the ensemble method of gradient boosting above decision trees – this model reproduces well both, the periods of snow cover accumulation and its melting. The purposeful character of learning process for models of the gradient boosting type, their ensemble character, and use of combined redundancy of a test sample in learning procedure makes this type of models a good and sustainable research tool. The results obtained can be used for estimating the snow cover characteristics for river basins where hydro-meteorological information is absent or insufficient.

  14. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.


    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  15. Heat pipes for ground heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L


    Different versions of heat pipe ground heating and cooling devices are considered. Solar energy, biomass, ground stored energy, recovered heat of industrial enterprises and ambient cold air are used as energy and cold sources. Heat pipe utilization of air in winter makes it possible to design accumulators of cold and ensures deep freezing of ground in order to increase its mechanical strength when building roadways through the swamps and ponds in Siberia. Long-term underground heat storage systems are considered, in which the solar and biomass energy is accumulated and then transferred to heat dwellings and greenhouses, as well as to remove snow from roadways with the help of heat pipes and solar collectors.

  16. Mac OS X Snow Leopard Server For Dummies

    CERN Document Server

    Rizzo, John


    Making Everything Easier!. Mac OS® X Snow Leopard Server for Dummies. Learn to::;. Set up and configure a Mac network with Snow Leopard Server;. Administer, secure, and troubleshoot the network;. Incorporate a Mac subnet into a Windows Active Directory® domain;. Take advantage of Unix® power and security. John Rizzo. Want to set up and administer a network even if you don't have an IT department? Read on!. Like everything Mac, Snow Leopard Server was designed to be easy to set up and use. Still, there are so many options and features that this book will save you heaps of time and effort. It wa

  17. Snow chemistry of high altitude glaciers in the French Alps




    Snow samples were collected as snowcores in the accumulation zone of four high altitude glaciers (2980–3540 m.a.s.l.) from each of the 4 highest mountain areas of the French Alps, during 3 consecutive years: 1989, 1990 and 1991. Sampling was performed in spring (∼ May), before the onset of late spring–summer percolation. The accumulated snow therefore reflects winter and spring conditions. A complementary sampling of fresh-snow was performed on an event basis, on one of the studied glaciers, ...

  18. Use of urine in snow to indicate condition of wolves (United States)

    Mech, L.D.; Seal, U.S.; DelGiudice, G.D.


    Urine deposited in snow by wild gray wolves (Canis lupus) and by fed and fasted captive wolves was analyzed for urea nitrogen, calcium, sodium, potassium, and creatinine. Ratios of the elements with creatinine were considerably higher for fed than for fasted animals, and ratios for fed wolves compared favorably with ratios from wolf urine in snow along trails leading from kills. Thus, wolf urine in the snow can indicate whether wolves have fed recently, and a series of such urine collections from any given pack can indicate relative nutritional state.

  19. Dynamics of actual aggregation of petroleum products in snow cover (United States)

    Begunova, L. A.; Kuznetsova, O. V.; Begunov, D. A.; Kuznetsova, A. N.


    The paper presents issues of snow cover pollution by petroleum products. Petroleum products content was determined using the fluorimetric method of analysis. The samples of snow were selected on the territory of Angarsk and Irkutsk cities. According to the obtained data, the content of petroleum products in the analyzed samples exceeds the background value up to 6 times. Analysis of the reference data for similar research confirms need for creation of an environmental monitoring centralized system to monitor atmospheric precipitation and, particularly, snow cover.

  20. Changes in agriculture and abundance of snow geese affect carrying capacity of sandhill cranes in Nebraska (United States)

    Pearse, A.T.; Krapu, G.L.; Brandt, D.A.; Kinzel, P.J.


    The central Platte River valley (CPRV) in Nebraska, USA, is a key spring-staging area for approximately 80 of the midcontinent population of sandhill cranes (Grus canadensis; hereafter cranes). Evidence that staging cranes acquired less lipid reserves during the 1990s compared to the late 1970s and increases in use of the CPRV by snow geese (Chen caerulescens) prompted us to investigate availability of waste corn and quantify spatial and temporal patterns of crane and waterfowl use of the region. We developed a predictive model to assess impacts of changes in availability of corn and snow goose abundance under past, present, and potential future conditions. Over a hypothetical 60-day staging period, predicted energy demand of cranes and waterfowl increased 87 between the late 1970s and 19982007, primarily because peak abundances of snow geese increased by 650,000 and cranes by 110,000. Compared to spring 1979, corn available when cranes arrived was 20 less in 1998 and 68 less in 1999; consequently, the area of cornfields required to meet crane needs increased from 14,464 ha in 1979 to 32,751 ha in 1998 and 90,559 ha in 1999. Using a pooled estimate of 88 kg/ha from springs 19981999 and 20052007, the area of cornfields needed to supply food requirements of cranes and waterfowl increased to 65,587 ha and was greatest in the eastern region of the CPRV, where an estimated 54 of cranes, 47 of Canada geese (Branta canadensis), 45 of greater white-fronted geese (Anser albifrons), and 46 of snow geese occurred during ground surveys. We estimated that a future reduction of 25 in available corn or cornfields would increase daily foraging flight distances of cranes by 2738. Crane use and ability of cranes to store lipid reserves in the CPRV could be reduced substantially if flight distance required to locate adequate corn exceeded a physiological maximum distance cranes could fly in search of food. Options to increase carrying capacity for cranes include increasing

  1. Using snow data assimilation to improve ensemble streamflow forecasting for the Upper Colorado River Basin (United States)

    Micheletty, P. D.; Perrot, D.; Day, G. N.; Lhotak, J.; Quebbeman, J.; Park, G. H.; Carney, S.


    Water supply forecasting in the western United States is inextricably linked to snowmelt processes, as approximately 70-85% of total annual runoff comes from water stored in seasonal mountain snowpacks. Snowmelt-generated streamflow is vital to a variety of downstream uses; the Upper Colorado River Basin (UCRB) alone provides water supply for 25 million people, irrigation water for 3.5 million acres, and drives hydropower generation at Lake Powell. April-July water supply forecasts produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC) are critical to basin water management. The primary objective of this project as part of the NASA Water Resources Applied Science Program, is to improve water supply forecasting for the UCRB by assimilating satellite and ground snowpack observations into a distributed hydrologic model at various times during the snow accumulation and melt seasons. To do this, we have built a framework that uses an Ensemble Kalman Filter (EnKF) to update modeled snow water equivalent (SWE) states in the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) with spatially interpolated SNOTEL snow water equivalent (SWE) observations and products from the MODIS Snow Covered-Area and Grain size retrieval algorithm (when available). We have generated April-July water supply reforecasts for a 20-year period (1991-2010) for several headwater catchments in the UCRB using HL-RDHM and snow data assimilation in the Ensemble Streamflow Prediction (ESP) framework. The existing CBRFC ESP reforecasts will provide a baseline for comparison to determine whether the data assimilation process adds skill to the water supply forecasts. Preliminary results from one headwater basin show improved skill in water supply forecasting when HL-RDHM is run with the data assimilation step compared to HL-RDHM run without the data assimilation step, particularly in years when MODSCAG data were available (2000-2010). The final

  2. Quantifying the performance of two conceptual models for snow dominated catchments in Austria and Turkey (United States)

    Sensoy, Aynur; Parajka, Juraj; Coskun, Cihan; Sorman, Arda; Ertas, Cansaran


    In many mountainous regions, snowmelt makes significant contribution to streamflow, particularly during spring and summer months. Understanding the magnitude and timing of this contribution and hydrological forecasts are essential for a range of purposes concerning the implications with water resources management. Conceptual hydrological models have been widely applied for mountain catchments both for operational and scientific applications. Hydrologiska Byran Vattenbalansavdelning (HBV) and Snowmelt Runoff Model (SRM) are selected in this study as the commonly used conceptual models in hydrological modeling forecasting for a number of basins in several countries. Moreover, this selection is also supported by the experiences on the improvement and application in remote sensing techniques in snow dominated regions. The greatest similarity between the two models is that each uses a temperature index method to predict melt rate whereas the greatest difference lies in the way snow cover is handled. In mountainous regions, data limitations prevent detailed understanding of the variability of snow cover and melt. In situ snowpack measurements are sparsely distributed relative to snowpack heterogeneity therefore, to supplement ground measurements; remotely sensed images of snow covered area (SCA) provide useful information for runoff prediction during the snowmelt season. SCA has been used as a direct input to SRM and as a means of checking the internal validity for HBV model. Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover products with 500 m spatial resolution are used to derive SCA data in this study. A number of studies have been reported in the literature indicated that the model performance can vary depending on several factors, including the scale and characteristics of the catchment, availability of the data required and runoff producing mechanism. Therefore, five different catchments including data scare and rich basins, areas and reliefs

  3. Winter fidelity and apparent survival of lesser snow goose populations in the Pacific flyway (United States)

    Williams, C.K.; Samuel, M.D.; Baranyuk, Vasily V.; Cooch, E.G.; Kraege, Donald K.


    The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (exchange between the Banks and northern Wrangel Island populations. Face staining was an unreliable indicator of wintering area. Our findings suggest that northern and southern

  4. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.


    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  5. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.


    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  6. Canopy, snow, and lichens on woodland caribou range in southeastern Manitoba

    Directory of Open Access Journals (Sweden)

    James A. Schaefer


    Full Text Available I examined the relationships among snow cover (api, lichen abundance, and canopy composition on the range of the Aikens Lake population of woodland caribou (Rangifer tarandus caribou in southeastern Manitoba. Percent cover of forage lichens (Cladina spp. was positively correlated with maximum total thickness and with maximum vertical hardness of api. Mixed communities of trembling aspen (Populus tremuloides, spruce (Picea spp., and balsam fir (Abies balsamea showed the most favourable nival conditions for caribou but had low lichen abundance; those dominated by jack pine (Pinus banksiana were the converse. The results suggest an energetic compromise for woodland caribou when foraging for terrestrial lichens. During winter, caribou exhibited significant selection for jack pine communities whereas mixed communities were avoided.


    Energy Technology Data Exchange (ETDEWEB)

    Wang, P; W Liu, D B; Johnston, K D; Rausch, S J; Schmidt, M E; Tumbleson, V Singh


    Granular starch hydrolyzing enzymes (GSHE) can hydrolyze starch at low temperature (32°C). The dry grind process using GSHE (GSH process) has fewer unit operations and no changes in process conditions (pH 4.0 and 32°C) compared to the conventional process because it dispenses with the cooking and liquefaction step. In this study, the effects of endosperm hardness, protease, urea, and GSHE levels on GSH process were evaluated. Ground corn, soft endosperm, and hard endosperm were processed using two GSHE levels (0.1 and 0.4 mL per 100 g ground material) and four treatments of protease and urea addition. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from a dry milling pilot plant; classifications were confirmed using scanning electron microscopy. During 72 h of simultaneous granular starch hydrolysis and fermentation (GSHF), ethanol and glucose profiles were determined using HPLC. Soft endosperm resulted in higher final ethanol concentrations compared to ground corn or hard endosperm. Addition of urea increased final ethanol concentrations for soft and hard endosperm. Protease addition increased ethanol concentrations and fermentation rates for soft endosperm, hard endosperm, and ground corn. The effect of protease addition on ethanol concentrations and fermentation rates was most predominant for soft endosperm, less for hard endosperm, and least for ground corn. Samples (soft endosperm, hard endosperm, or corn) with protease resulted in higher (1.0% to 10.5% v/v) ethanol concentration compared to samples with urea. The GSH process with protease requires little or no urea addition. For fermentation of soft endosperm, GSHE dose can be reduced. Due to nutrients (lipids, minerals, and soluble proteins) present in corn that enhance yeast growth, ground corn fermented faster at the beginning than hard and soft endosperm.

  8. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States (United States)

    Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.


    The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.

  9. Application of snow models to snow removal operations on the Going-to-the-Sun Road, Glacier National Park (United States)

    Fagre, Daniel B.; Klasner, Frederick L.


    Snow removal, and the attendant avalanche risk for road crews, is a major issue on mountain highways worldwide. The Going-to-the-Sun Road is the only road that crosses Glacier National Park, Montana. This 80-km highway ascends over 1200m along the wall of a glaciated basin and crosses the continental divide. The annual opening of the road is critical to the regional economy and there is public pressure to open the road as early as possible. Despite the 67-year history of snow removal activities, few stat on snow conditions at upper elevations were available to guide annual planning for the raod opening. We examined statistical relationships between the opening date and nearby SNOTEL data on snow water equivalence (WE) for 30 years. Early spring SWE (first Monday in April) accounted for only 33% of the variance in road opening dates. Because avalanche spotters, used to warn heavy equipment operators of danger, are ineffective during spring storms or low-visibility conditions, we incorporated the percentage of days with precipitation during plowing as a proxy for visibility. This improved the model's predictive power to 69%/ A mountain snow simulator (MTSNOW) was used to calculate the depth and density of snow at various points along the road and field data were collected for comparison. MTSNOW underestimated the observed snow conditions, in part because it does not yet account for wind redistribution of snow. The severe topography of the upper reaches of the road are subjected to extensive wind redistribution of snow as evidence by the formation of "The Big Drift" on the lee side of Logan Pass.

  10. Analysis of the snow-atmosphere energy balance during wet-snow instabilities and implications for avalanche prediction

    Directory of Open Access Journals (Sweden)

    C. Mitterer


    Full Text Available Wet-snow avalanches are notoriously difficult to predict; their formation mechanism is poorly understood since in situ measurements representing the thermal and mechanical evolution are difficult to perform. Instead, air temperature is commonly used as a predictor variable for days with high wet-snow avalanche danger – often with limited success. As melt water is a major driver of wet-snow instability and snow melt depends on the energy input into the snow cover, we computed the energy balance for predicting periods with high wet-snow avalanche activity. The energy balance was partly measured and partly modelled for virtual slopes at different elevations for the aspects south and north using the 1-D snow cover model SNOWPACK. We used measured meteorological variables and computed energy balance and its components to compare wet-snow avalanche days to non-avalanche days for four consecutive winter seasons in the surroundings of Davos, Switzerland. Air temperature, the net shortwave radiation and the energy input integrated over 3 or 5 days showed best results in discriminating event from non-event days. Multivariate statistics, however, revealed that for better predicting avalanche days, information on the cold content of the snowpack is necessary. Wet-snow avalanche activity was closely related to periods when large parts of the snowpack reached an isothermal state (0 °C and energy input exceeded a maximum value of 200 kJ m−2 in one day, or the 3-day sum of positive energy input was larger than 1.2 MJ m−2. Prediction accuracy with measured meteorological variables was as good as with computed energy balance parameters, but simulated energy balance variables accounted better for different aspects, slopes and elevations than meteorological data.

  11. Evaluation and Application of Gridded Snow Water Equivalent Products for Improving Snowmelt Flood Predictions in the Red River Basin of the North (United States)

    Schroeder, R.; Jacobs, J. M.; Vuyovich, C.; Cho, E.; Tuttle, S. E.


    Each spring the Red River basin (RRB) of the North, located between the states of Minnesota and North Dakota and southern Manitoba, is vulnerable to dangerous spring snowmelt floods. Flat terrain, low permeability soils and a lack of satisfactory ground observations of snow pack conditions make accurate predictions of the onset and magnitude of major spring flood events in the RRB very challenging. This study investigated the potential benefit of using gridded snow water equivalent (SWE) products from passive microwave satellite missions and model output simulations to improve snowmelt flood predictions in the RRB using NOAA's operational Community Hydrologic Prediction System (CHPS). Level-3 satellite SWE products from AMSR-E, AMSR2 and SSM/I, as well as SWE computed from Level-2 brightness temperatures (Tb) measurements, including model output simulations of SWE from SNODAS and GlobSnow-2 were chosen to support the snowmelt modeling exercises. SWE observations were aggregated spatially (i.e. to the NOAA North Central River Forecast Center forecast basins) and temporally (i.e. by obtaining daily screened and weekly unscreened maximum SWE composites) to assess the value of daily satellite SWE observations relative to weekly maximums. Data screening methods removed the impacts of snow melt and cloud contamination on SWE and consisted of diurnal SWE differences and a temperature-insensitive polarization difference ratio, respectively. We examined the ability of the satellite and model output simulations to capture peak SWE and investigated temporal accuracies of screened and unscreened satellite and model output SWE. The resulting SWE observations were employed to update the SNOW-17 snow accumulation and ablation model of CHPS to assess the benefit of using temporally and spatially consistent SWE observations for snow melt predictions in two test basins in the RRB.

  12. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography

    Directory of Open Access Journals (Sweden)

    B. R. Pinzer


    Full Text Available Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM under a constant gradient of 50 K m−1, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow.

  13. On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales (United States)

    Härer, Stefan; Bernhardt, Matthias; Siebers, Matthias; Schulz, Karsten


    Knowledge of current snow cover extent is essential for characterizing energy and moisture fluxes at the Earth's surface. The snow-covered area (SCA) is often estimated by using optical satellite information in combination with the normalized-difference snow index (NDSI). The NDSI thereby uses a threshold for the definition if a satellite pixel is assumed to be snow covered or snow free. The spatiotemporal representativeness of the standard threshold of 0.4 is however questionable at the local scale. Here, we use local snow cover maps derived from ground-based photography to continuously calibrate the NDSI threshold values (NDSIthr) of Landsat satellite images at two European mountain sites of the period from 2010 to 2015. The Research Catchment Zugspitzplatt (RCZ, Germany) and Vernagtferner area (VF, Austria) are both located within a single Landsat scene. Nevertheless, the long-term analysis of the NDSIthr demonstrated that the NDSIthr at these sites are not correlated (r = 0.17) and different than the standard threshold of 0.4. For further comparison, a dynamic and locally optimized NDSI threshold was used as well as another locally optimized literature threshold value (0.7). It was shown that large uncertainties in the prediction of the SCA of up to 24.1 % exist in satellite snow cover maps in cases where the standard threshold of 0.4 is used, but a newly developed calibrated quadratic polynomial model which accounts for seasonal threshold dynamics can reduce this error. The model minimizes the SCA uncertainties at the calibration site VF by 50 % in the evaluation period and was also able to improve the results at RCZ in a significant way. Additionally, a scaling experiment shows that the positive effect of a locally adapted threshold diminishes using a pixel size of 500 m or larger, underlining the general applicability of the standard threshold at larger scales.

  14. Application of a Snow Growth Model to Radar Remote Sensing (United States)

    Erfani, E.; Mitchell, D. L.


    Microphysical growth processes of diffusion, aggregation and riming are incorporated analytically in a steady-state snow growth model (SGM) to solve the zeroth- and second- moment conservation equations with respect to mass. The SGM is initiated by radar reflectivity (Zw), supersaturation, temperature, and a vertical profile of the liquid water content (LWC), and it uses a gamma size distribution (SD) to predict the vertical evolution of size spectra. Aggregation seems to play an important role in the evolution of snowfall rates and the snowfall rates produced by aggregation, diffusion and riming are considerably greater than those produced by diffusion and riming alone, demonstrating the strong interaction between aggregation and riming. The impact of ice particle shape on particle growth rates and fall speeds is represented in the SGM in terms of ice particle mass-dimension (m-D) power laws (m = αDβ). These growth rates are qualitatively consistent with empirical growth rates, with slower (faster) growth rates predicted for higher (lower) β values. In most models, β is treated constant for a given ice particle habit, but it is well known that β is larger for the smaller crystals. Our recent work quantitatively calculates β and α for cirrus clouds as a function of D where the m-D expression is a second-order polynomial in log-log space. By adapting this method to the SGM, the ice particle growth rates and fall speeds are predicted more accurately. Moreover, the size spectra predicted by the SGM are in good agreement with those from aircraft measurements during Lagrangian spiral descents through frontal clouds, indicating the successful modeling of microphysical processes. Since the lowest Zw over complex topography is often significantly above cloud base, the precipitation is often underestimated by radar quantitative precipitation estimates (QPE). Our SGM is capable of being initialized with Zw at the lowest reliable radar echo and consequently improves

  15. Snow noise disturbance in Antarctic radio communications and development of mobile antenna for snow vehicle in Antarctica

    Directory of Open Access Journals (Sweden)

    Isao Fukushima


    Full Text Available Radio operators of the Japanese Antarctic Research Expedition (JARE have encountered critical radio noise disturbances caused by blizzards during oversnow travel. This noise appears to be caused by corona discharge at the edges of the vertical whip antenna. This paper describes several examples of snow noise experienced in Antarctica by JARE, the mechanism of generation of the noise, and a method of reducing the intensity of the noise. It also describes a High Effeciency Transmission Line Antenna which is small enough to mount on a snow vehicle and reduces the intensity of the snow noise.

  16. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.


    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock

  17. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes (United States)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.


    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete

  18. Hardness variability in commercial technologies

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.


    The radiation hardness of commercial Floating Gate 256K E 2 PROMs from a single diffusion lot was observed to vary between 5 to 25 krad(Si) when irradiated at a low dose rate of 64 mrad(Si)/s. Additional variations in E 2 PROM hardness were found to depend on bias condition and failure mode (i.e., inability to read or write the memory), as well as the foundry at which the part was manufactured. This variability is related to system requirements, and it is shown that hardness level and variability affect the allowable mode of operation for E 2 PROMs in space applications. The radiation hardness of commercial 1-Mbit CMOS SRAMs from Micron, Hitachi, and Sony irradiated at 147 rad(Si)/s was approximately 12, 13, and 19 krad(Si), respectively. These failure levels appear to be related to increases in leakage current during irradiation. Hardness of SRAMs from each manufacturer varied by less than 20%, but differences between manufacturers are significant. The Qualified Manufacturer's List approach to radiation hardness assurance is suggested as a way to reduce variability and to improve the hardness level of commercial technologies

  19. Reconstructed North American Snow Extent, 1900-1993 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains reconstructed monthly North American snow extent values for November through March, 1900-1993. Investigators used a combination of satellite...

  20. Some attributes of snow occurrence and snowmelt/sublimation rates ...

    African Journals Online (AJOL)


    Apr 2, 2017 ... regions may be strongly influenced by seasonal fluctuations in ... accurate snow mapping and modelling of snowmelt/runoff are ... regional climate and hydrology, earth surface processes, and rural livelihoods .... from clouds.

  1. Operational Bright-Band Snow Level Detection Using Doppler Radar (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  2. Former Soviet Union Hydrological Snow Surveys, 1966-1996 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Former Soviet Union Hydrological Snow Surveys are based on observations made by personnel at 1,345 sites throughout the Former Soviet Union between 1966 and...

  3. Allegheny County Snow Route Centerlines (2017-2018) (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows snow route responsibilities of Allegheny County-owned roads.Category: TransportationOrganization: Allegheny CountyDepartment: Geographic...

  4. Snowfall and Snow Depth for Canada 1943-1982 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data include monthly snowfall and end-of-month snow depth for 140 stations across Canada. Stations that maintained at least 20 years of data were chosen. The...

  5. Some attributes of snow occurrence and snowmelt/sublimation rates ...

    African Journals Online (AJOL)

    Some attributes of snow occurrence and snowmelt/sublimation rates in the Lesotho ... and trimmed MODIS SNOMAP image using the ArcGIS Spatial Analyst tool. ... and hydrology, earth surface processes, and rural livelihoods in the Lesotho ...

  6. SnowEx17 Cloud Absorption Radiometer BRDF V001 (United States)

    National Aeronautics and Space Administration — This data set contains measurements of the bidirectional reflectance distribution function (BRDF) for two locations in Colorado, USA: Grand Mesa, a snow-covered,...

  7. Laboratory study of nitrate photolysis in Antarctic snow

    DEFF Research Database (Denmark)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph


    in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide...... additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters....... The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ 15N, δ 18O, and Δ 17O). From these measurements an average photolytic isotopic fractionation of 15ε = (- 15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation...

  8. Analysis of the Lake Superior Watershed Seasonal Snow Cover

    National Research Council Canada - National Science Library

    Daly, Steven F; Baldwin, Timothy B; Weyrick, Patricia


    Daily estimates of the snow water equivalent (SWE) distribution for the period from 1 December through 30 April for each winter season from 1979 80 through 2002 03 were calculated for the entire Lake Superior watershed...

  9. [Research on hyperspectral remote sensing in monitoring snow contamination concentration]. (United States)

    Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan


    Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.

  10. Historical Soviet Daily Snow Depth (HSDSD), Version 2 (United States)

    National Aeronautics and Space Administration — The Historical Soviet Daily Snow Depth (HSDSD) product is based on observations from 284 World Meteorological Organization (WMO) stations throughout Russia and the...

  11. PROSNOW - Provision of a prediction system allowing for management and optimization of snow in Alpine ski resorts (United States)

    Morin, Samuel; Ghislain, Dubois


    Snow on the ground is a critical resource for mountain regions to sustain river flow, to provide freshwater input to ecosystems and to support winter tourism, in particular in ski resorts. The level of activity, employment, turnover and profit of hundreds of ski resorts in the European Alps primarily depends on meteorological conditions, in particular natural snowfall but also increasingly conditions favourable for snowmaking (production of machine made snow, also referred to as technical snow). Ski resorts highly depend on appropriate conditions for snowmaking (mainly the availability of cold water, as well as sub-freezing temperature with sufficiently low humidity conditions). However, beyond the time scale of weather forecasts (a few days), managers of ski resorts have to rely on various and scattered sources of information, hampering their ability to cope with highly variable meteorological conditions. Improved anticipation capabilities at all time scales, spanning from "weather forecast" (up to 5 days typically) to "climate prediction" at the seasonal scale (up to several months) holds significant potential to increase the resilience of socio-economic stakeholders and supports their real-time adaptation potential. To address this issue, the recently funded (2017-2020) H2020 PROSNOW project will build a demonstrator of a meteorological and climate prediction and snow management system from one week to several months ahead, specifically tailored to the needs of the ski industry. PROSNOW will apply state-of-the-art knowledge relevant to the predictability of atmospheric and snow conditions, and investigate and document the added value of such services. The project proposes an Alpine-wide system (including ski resorts located in France, Switzerland, Germany, Austria and Italy). It will join and link providers of weather forecasts and climate predictions at the seasonal scale, research institutions specializing in snowpack modelling, a relevant ensemble of at least

  12. Springtime warming and reduced snow cover from carbonaceous particles

    Directory of Open Access Journals (Sweden)

    M. G. Flanner


    Full Text Available Boreal spring climate is uniquely susceptible to solar warming mechanisms because it has expansive snow cover and receives relatively strong insolation. Carbonaceous particles can influence snow coverage by warming the atmosphere, reducing surface-incident solar energy (dimming, and reducing snow reflectance after deposition (darkening. We apply a range of models and observations to explore impacts of these processes on springtime climate, drawing several conclusions: 1 Nearly all atmospheric particles (those with visible-band single-scatter albedo less than 0.999, including all mixtures of black carbon (BC and organic matter (OM, increase net solar heating of the atmosphere-snow column. 2 Darkening caused by small concentrations of particles within snow exceeds the loss of absorbed energy from concurrent dimming, thus increasing solar heating of snowpack as well (positive net surface forcing. Over global snow, we estimate 6-fold greater surface forcing from darkening than dimming, caused by BC+OM. 3 Equilibrium climate experiments suggest that fossil fuel and biofuel emissions of BC+OM induce 95% as much springtime snow cover loss over Eurasia as anthropogenic carbon dioxide, a consequence of strong snow-albedo feedback and large BC+OM emissions from Asia. 4 Of 22 climate models contributing to the IPCC Fourth Assessment Report, 21 underpredict the rapid warming (0.64°C decade−1 observed over springtime Eurasia since 1979. Darkening from natural and anthropogenic sources of BC and mineral dust exerts 3-fold greater forcing on springtime snow over Eurasia (3.9 W m−2 than North America (1.2 W m−2. Inclusion of this forcing significantly improves simulated continental warming trends, but does not reconcile the low bias in rate of Eurasian spring snow cover decline exhibited by all models, likely because BC deposition trends are negative or near-neutral over much of Eurasia. Improved Eurasian

  13. Spectral reflectance of solar light from dirty snow: a simple theoretical model and its validation


    A. Kokhanovsky


    A simple analytical equation for the snow albedo as the function of snow grain size, soot concentration, and soot mass absorption coefficient is presented. This simple equation can be used in climate models to assess the influence of snow pollution on snow albedo. It is shown that the squared logarithm of the albedo (in the visible) is directly proportional to the soot concentration. A new method of the determination of the soot mass absorption coefficient in snow is proposed. The equations d...

  14. On scale dependence of hardness

    International Nuclear Information System (INIS)

    Shorshorov, M.Kh.; Alekhin, V.P.; Bulychev, S.I.


    The concept of hardness as a structure-sensitive characteristic of a material is considered. It is shown that in conditions of a decreasing stress field under the inventor the hardness function is determined by the average distance, Lsub(a), between the stops (fixed and sessile dislocations, segregation particles, etc.). In the general case, Lsub(a) depends on the size of the impression and explains the great diversity of hardness functions. The concept of average true deformation rate on depression is introduced

  15. Prediction of Backscatter and Emissivity of Snow at Millimeter Wavelengths. (United States)


    AD-AI16 9A MASSACHUISETTS IMST OF TECH CAMBRIDGE RESEARCH LAB OF-ETC F/6 17/9 PREDICTION OF BACKSCATTER AND EMISSIVITY OF SNOW AT MILLETER --ETC(U...emitting media such as snow. The emissivity in the Ray- leigh- Jeans approximation is then the microwave brightness tempera- ture T divided by an effective...resistivity, and thermal tempera- ture. Jean et al. (Reference 125) compared a theoretical expression for the total apparent temperature of a smooth surface

  16. SWANN: The Snow Water Artificial Neural Network Modelling System (United States)

    Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.


    Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.

  17. Snow Roads at McMurdo Station, Antarctica (United States)


    is minimized distribution of low strength areas (also called “ holidays ”). Holidays are actually areas of pulverized snow that are missed or inade...quately processed. Though holidays usually occur sporadically, any single flaw may extend through the entire thickness of an unelevated road. The...Pegasus Road and the LDB pad. A few additional sites were chosen for comparison (Williams Field, virgin snow, etc.). Williams Field Road densities

  18. Inorganic carbon addition stimulates snow algae primary productivity (United States)

    Hamilton, T. L.; Havig, J. R.


    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  19. Global Precipitation Measurement (GPM) Core Observatory Falling Snow Estimates (United States)

    Skofronick Jackson, G.; Kulie, M.; Milani, L.; Munchak, S. J.; Wood, N.; Levizzani, V.


    Retrievals of falling snow from space represent an important data set for understanding and linking the Earth's atmospheric, hydrological, and energy cycles. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. This work focuses on comparing the first stable falling snow retrieval products (released May 2017) for the Global Precipitation Measurement (GPM) Core Observatory (GPM-CO), which was launched February 2014, and carries both an active dual frequency (Ku- and Ka-band) precipitation radar (DPR) and a passive microwave radiometer (GPM Microwave Imager-GMI). Five separate GPM-CO falling snow retrieval algorithm products are analyzed including those from DPR Matched (Ka+Ku) Scan, DPR Normal Scan (Ku), DPR High Sensitivity Scan (Ka), combined DPR+GMI, and GMI. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new, the different on-orbit instruments don't capture all snow rates equally, and retrieval algorithms differ. Thus a detailed comparison among the GPM-CO products elucidates advantages and disadvantages of the retrievals. GPM and CloudSat global snowfall evaluation exercises are natural investigative pathways to explore, but caution must be undertaken when analyzing these datasets for comparative purposes. This work includes outlining the challenges associated with comparing GPM-CO to CloudSat satellite snow estimates due to the different sampling, algorithms, and instrument capabilities. We will highlight some factors and assumptions that can be altered or statistically normalized and applied in an effort to make comparisons between GPM and CloudSat global satellite falling snow products as equitable as possible.

  20. The effects of changes in snow depth on winter recreation

    Czech Academy of Sciences Publication Activity Database

    Zahradníček, Pavel; Rožnovský, J.; Štěpánek, Petr; Farda, Aleš; Brzezina, J.


    Roč. 7, č. 1 (2016), s. 44-54 ISSN 1804-2821 R&D Projects: GA MŠk(CZ) LO1415; GA ČR GA13-04291S; GA ČR(CZ) GA14-12262S Institutional support: RVO:67179843 Keywords : new snow * total snow depth * climate change * climate models * winter recreations Subject RIV: EH - Ecology, Behaviour

  1. Diurnal variations in the UV albedo of arctic snow

    Directory of Open Access Journals (Sweden)

    O. Meinander


    Full Text Available The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67°22'N, 26°39'E, 179 m a.s.l. during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period, and from 0.5 to 0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again.

  2. Ground Pollution Science

    International Nuclear Information System (INIS)

    Oh, Jong Min; Bae, Jae Geun


    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  3. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)



    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  4. Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance

    International Nuclear Information System (INIS)

    Smith, Stephen; Melkote, Shreyes N.; Lara-Curzio, Edgar; Watkins, Thomas R.; Allard, Larry; Riester, Laura


    This paper addresses the relationship between surface integrity and fatigue life of hard turned AISI 52100 steel (60-62 HRC), with grinding as a benchmark. The impact of superfinishing on the fatigue performance of hard turned and ground surfaces is also discussed. Specifically, the surface integrity and fatigue life of the following five distinct surface conditions are examined: hard turned with continuous white layer, hard turned with no white layer, ground, and superfinished hard turned and ground specimens. Surface integrity of the specimens is characterized via surface topography measurement, metallography, residual stress measurements, transmission electron microscopy (TEM), and nano-indentation tests. High cycle tension-tension fatigue tests show that the presence of white layer does not adversely affect fatigue life and that, on average, the hard turned surface performs as well or better than the ground surface. The effect of superfinishing is to exaggerate these differences in performance. The results obtained from this study suggest that the effect of residual stress on fatigue life is more significant than the effect of white layer. For the hard turned surfaces, the fatigue life is found to be directly proportional to both the surface compressive residual stress and the maximum compressive residual stress. Possible explanations for the observed effects are discussed

  5. Modeling snow accumulation and ablation processes in forested environments (United States)

    Andreadis, Konstantinos M.; Storck, Pascal; Lettenmaier, Dennis P.


    The effects of forest canopies on snow accumulation and ablation processes can be very important for the hydrology of midlatitude and high-latitude areas. A mass and energy balance model for snow accumulation and ablation processes in forested environments was developed utilizing extensive measurements of snow interception and release in a maritime mountainous site in Oregon. The model was evaluated using 2 years of weighing lysimeter data and was able to reproduce the snow water equivalent (SWE) evolution throughout winters both beneath the canopy and in the nearby clearing, with correlations to observations ranging from 0.81 to 0.99. Additionally, the model was evaluated using measurements from a Boreal Ecosystem-Atmosphere Study (BOREAS) field site in Canada to test the robustness of the canopy snow interception algorithm in a much different climate. Simulated SWE was relatively close to the observations for the forested sites, with discrepancies evident in some cases. Although the model formulation appeared robust for both types of climates, sensitivity to parameters such as snow roughness length and maximum interception capacity suggested the magnitude of improvements of SWE simulations that might be achieved by calibration.

  6. Color Image of Snow White Trenches and Scraping (United States)


    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 31st Martian day of the mission, or Sol 31 (June 26, 2008), after the May 25, 2008 landing. This image shows the trenches informally called 'Snow White 1' (left), 'Snow White 2' (right), and within the Snow White 2 trench, the smaller scraping area called 'Snow White 3.' The Snow White 3 scraped area is about 5 centimeters (2 inches) deep. The dug and scraped areas are within the diggiing site called 'Wonderland.' The Snow White trenches and scraping prove that scientists can take surface soil samples, subsurface soil samples, and icy samples all from one unit. Scientists want to test samples to determine if some ice in the soil may have been liquid in the past during warmer climate cycles. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver

  7. A Method for Snow Reanalysis: The Sierra Nevada (USA) Example (United States)

    Girotto, Manuela; Margulis, Steven; Cortes, Gonzalo; Durand, Michael


    This work presents a state-of-the art methodology for constructing snow water equivalent (SWE) reanalysis. The method is comprised of two main components: (1) a coupled land surface model and snow depletion curve model, which is used to generate an ensemble of predictions of SWE and snow cover area for a given set of (uncertain) inputs, and (2) a reanalysis step, which updates estimation variables to be consistent with the satellite observed depletion of the fractional snow cover time series. This method was applied over the Sierra Nevada (USA) based on the assimilation of remotely sensed fractional snow covered area data from the Landsat 5-8 record (1985-2016). The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The method (fully Bayesian), resolution (daily, 90-meter), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. This presentation illustrates how the reanalysis dataset was used to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years and ultimately improve real-time streamflow predictions.

  8. Factors Controlling Black Carbon Deposition in Snow in the Arctic (United States)

    Qi, L.; Li, Q.; He, C.; Li, Y.


    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  9. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong


    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  10. Merging a Terrain-Based Parameter and Snow Particle Counter Data for the Assessment of Snow Redistribution in the Col du Lac Blanc Area (United States)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi


    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development

  11. Snow cover dynamics in Andean watersheds of Chile (32.0–39.5° S during the years 2000–2016

    Directory of Open Access Journals (Sweden)

    A. Stehr


    Full Text Available Andean watersheds present important snowfall accumulation mainly during the winter, which melts during the spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, hydropower generation, urban water supplies and wildlife. In Chile, 25 % of the territory between the region of Valparaiso and Araucanía comprises areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, there is a lack of hydrological data of the Chilean Andes related to discharge, snow courses, and snow depths, which complicates the analysis of important hydrological processes (e.g. water availability. Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, such as the snow cover area (SCA and snow cover dynamic (SCD. With regards to the foregoing questions, the objective of the study is to evaluate the spatiotemporal dynamics of the SCA at five watersheds (Aconcagua, Rapel, Maule, Biobío and Toltén located in the Chilean Andes, between latitude 32.0 and 39.5° S, and to analyse its relationship with the precipitation regime/pattern and El Niño–Southern Oscillation (ENSO events. Those watersheds were chosen because of their importance in terms of their number of inhabitants, and economic activities depending on water resources. The SCA area was obtained from MOD10A2 for the period 2000–2016, and the SCD was analysed through a number of statistical tests to explore observed trends. In order to verify the SCA for trend analysis, a validation of the MOD10A2 product was done, consisting of the comparison of snow presence predicted by MODIS with ground observations. Results indicate that there is an overall agreement of 81 to 98 % between SCA determined from ground observations and MOD10A2, showing that the MODIS snow product can be taken as a feasible remote sensing

  12. Snow cover dynamics in Andean watersheds of Chile (32.0-39.5° S) during the years 2000-2016 (United States)

    Stehr, Alejandra; Aguayo, Mauricio


    Andean watersheds present important snowfall accumulation mainly during the winter, which melts during the spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, hydropower generation, urban water supplies and wildlife. In Chile, 25 % of the territory between the region of Valparaiso and Araucanía comprises areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, there is a lack of hydrological data of the Chilean Andes related to discharge, snow courses, and snow depths, which complicates the analysis of important hydrological processes (e.g. water availability). Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, such as the snow cover area (SCA) and snow cover dynamic (SCD). With regards to the foregoing questions, the objective of the study is to evaluate the spatiotemporal dynamics of the SCA at five watersheds (Aconcagua, Rapel, Maule, Biobío and Toltén) located in the Chilean Andes, between latitude 32.0 and 39.5° S, and to analyse its relationship with the precipitation regime/pattern and El Niño-Southern Oscillation (ENSO) events. Those watersheds were chosen because of their importance in terms of their number of inhabitants, and economic activities depending on water resources. The SCA area was obtained from MOD10A2 for the period 2000-2016, and the SCD was analysed through a number of statistical tests to explore observed trends. In order to verify the SCA for trend analysis, a validation of the MOD10A2 product was done, consisting of the comparison of snow presence predicted by MODIS with ground observations. Results indicate that there is an overall agreement of 81 to 98 % between SCA determined from ground observations and MOD10A2, showing that the MODIS snow product can be taken as a feasible remote sensing tool for SCA estimation in

  13. SMRT: A new, modular snow microwave radiative transfer model (United States)

    Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas


    Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the

  14. Canadian snow and sea ice: historical trends and projections (United States)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross


    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  15. Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event

    Directory of Open Access Journals (Sweden)

    Christian Gabriel Sommer


    Full Text Available Terrestrial laser scanning was used to measure snow thickness changes (perpendicular to the surface in a rock face. The aim was to investigate the accumulation and redistribution of snow in extremely steep terrain (>60°. The north-east face of the Chlein Schiahorn in the region of Davos in eastern Switzerland was scanned before and several times after a snowfall event. A summer scan without snow was acquired to calculate the total snow thickness. An improved postprocessing procedure is introduced. The data quality could be increased by using snow thickness instead of snow depth (measured vertically and by consistently applying Multi Station Adjustment to improve the registration.More snow was deposited in the flatter, smoother areas of the rock face. The spatial variability of the snow thickness change was high. The spatial patterns of the total snow thickness were similar to those of the snow thickness change. The correlation coefficient between them was 0.86. The fresh snow was partly redistributed from extremely steep to flatter terrain, presumably mostly through avalanching. The redistribution started during the snowfall and ended several days later. Snow was able to accumulate permanently at every slope angle. The amount of snow in extremely steep terrain was limited but not negligible. Areas steeper than 60° received 15% of the snowfall and contained 10% of the total amount of snow.

  16. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada? (United States)

    Hill, R.; Calvin, W. M.; Harpold, A.


    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  17. Environmental aspects of hard coal mines closure in Poland

    International Nuclear Information System (INIS)

    Chaber, M.; Krogulski, K.; Gawlik, L.


    The environmental problems that arise during the closure processes of hard coal mines in Poland are undertaken in the paper. The problems of changes in water balance in rock mass are described with a stress put on underground water management. Regulation concerning ground reclamation and utilisation and removal of existing heat and power plants which after the mines closure will continue to supply surrounding consumers are stressed and the possible solutions are shown. 13 refs

  18. Determination of moisture content in hard coals using microwave meter

    International Nuclear Information System (INIS)

    Chrusciel, E.; Kopec, M.; Turek, B.


    The results of hard-coal moisture-content measurements, performed with the aid of the ZAM-WILMER microwave meter are presented. Over 80 ground coal samples, weighing 1.5 kg (approx.) each, were examined. The moisture content values ranged from 0 to 15 wt%, with the mean standard error being equal to 0.8 wt%. 5 refs., 2 figs., 1 tab. (author)

  19. Impacts of snow on soil temperature observed across the circumpolar north (United States)

    Zhang, Yu; Sherstiukov, Artem B.; Qian, Budong; Kokelj, Steven V.; Lantz, Trevor C.


    Climate warming has significant impacts on permafrost, infrastructure and soil organic carbon at the northern high latitudes. These impacts are mainly driven by changes in soil temperature (TS). Snow insulation can cause significant differences between TS and air temperature (TA), and our understanding about this effect through space and time is currently limited. In this study, we compiled soil and air temperature observations (measured at about 0.2 m depth and 2 m height, respectively) at 588 sites from climate stations and boreholes across the northern high latitudes. Analysis of this circumpolar dataset demonstrates the large offset between mean TS and TA in the low arctic and northern boreal regions. The offset decreases both northward and southward due to changes in snow conditions. Correlation analysis shows that the coupling between annual TS and TA is weaker, and the response of annual TS to changes in TA is smaller in boreal regions than in the arctic and the northern temperate regions. Consequently, the inter-annual variation and the increasing trends of annual TS are smaller than that of TA in boreal regions. The systematic and significant differences in the relationship between TS and TA across the circumpolar north is important for understanding and assessing the impacts of climate change and for reconstruction of historical climate based on ground temperature profiles for the northern high latitudes.

  20. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden

    International Nuclear Information System (INIS)

    Johansson, Margareta; Bosiö, Julia; Akerman, H Jonas; Jackowicz-Korczynski, Marcin; Christensen, Torben R; Callaghan, Terry V


    Increased snow depth already observed, and that predicted for the future are of critical importance to many geophysical and biological processes as well as human activities. The future characteristics of sub-arctic landscapes where permafrost is particularly vulnerable will depend on complex interactions between snow cover, vegetation and permafrost. An experimental manipulation was, therefore, set up on a lowland peat plateau with permafrost, in northernmost Sweden, to simulate projected future increases in winter precipitation and to study their effects on permafrost and vegetation. After seven years of treatment, statistically significant differences between manipulated and control plots were found in mean winter ground temperatures, which were 1.5 ° C higher in manipulated plots. During the winter, a difference in minimum temperatures of up to 9 ° C higher could be found in individual manipulated plots compared with control plots. Active layer thicknesses increased at the manipulated plots by almost 20% compared with the control plots and a mean surface subsidence of 24 cm was recorded in the manipulated plots compared to 5 cm in the control plots. The graminoid Eriophorum vaginatum has expanded in the manipulated plots and the vegetation remained green longer in the season. (letter)

  1. EXTASE - An Experimental Thermal Probe for Applications in Snow Research and Earth Sciences (United States)

    Schroeer, K.; Seiferlin, K.; Marczewski, W.; Gadomski, S.; Spohn, T.


    EXTASE is a spin-off project from the Rosetta Lander (MUPUS) thermal probe, funded by DLR. The application of this probe is to be tested in different fields, e.g. in snow research, agriculture, permafrost etc. The system consists of the probe itself with a portable field electronic and a computer for control of the system and storage of the data. The probe penetrates the surface ca. 32 cm deep and provides a temperature profile (16 sensors) and thermal conductivity profile of the penetrated layer. The main advantages of the probe in comparison to common temperature profile measurement methods are: - no need to excavate material - minimized influence of the probe on the temperature field - minimized modification of the microstructure of the studied medium. Presently we are concentrating on agriculture (soil humidity) and snow research. Further applications could be e.g.: monitoring waste deposits and the heat released by decomposition, volcanology and ground truth for remote sensing. We present the general concept of the probe and also data obtained during different field measurement campaigns with prototypes of the probe.

  2. Improving snow cover mapping in forests through the use of a canopy reflectance model

    International Nuclear Information System (INIS)

    Klein, A.G.; Hall, D.K.; Riggs, G.A.


    MODIS, the moderate resolution imaging spectro radiometer, will be launched in 1998 as part of the first earth observing system (EOS) platform. Global maps of land surface properties, including snow cover, will be created from MODIS imagery. The MODIS snow-cover mapping algorithm that will be used to produce daily maps of global snow cover extent at 500 m resolution is currently under development. With the exception of cloud cover, the largest limitation to producing a global daily snow cover product using MODIS is the presence of a forest canopy. A Landsat Thematic Mapper (TM) time-series of the southern Boreal Ecosystem–Atmosphere Study (BOREAS) study area in Prince Albert National Park, Saskatchewan, was used to evaluate the performance of the current MODIS snow-cover mapping algorithm in varying forest types. A snow reflectance model was used in conjunction with a canopy reflectance model (GeoSAIL) to model the reflectance of a snow-covered forest stand. Using these coupled models, the effects of varying forest type, canopy density, snow grain size and solar illumination geometry on the performance of the MODIS snow-cover mapping algorithm were investigated. Using both the TM images and the reflectance models, two changes to the current MODIS snow-cover mapping algorithm are proposed that will improve the algorithm's classification accuracy in forested areas. The improvements include using the normalized difference snow index and normalized difference vegetation index in combination to discriminate better between snow-covered and snow-free forests. A minimum albedo threshold of 10% in the visible wavelengths is also proposed. This will prevent dense forests with very low visible albedos from being classified incorrectly as snow. These two changes increase the amount of snow mapped in forests on snow-covered TM scenes, and decrease the area incorrectly identified as snow on non-snow-covered TM scenes. (author)

  3. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi


    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...... ethnic and religious diversity of the neighbourhood and, further, to frame what they see as the deterioration of genuine Danish identity....

  4. Towards Mountains without Permanent Snow and Ice - Impacts and Challenges for Adaptation (United States)

    Vuille, M. F.; Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R. S.; Clague, J. J.; Buytaert, W.; Carey, M.; Rabatel, A.; Cayan, D. R.; Greenwood, G. B.; Milner, A.; Mark, B. G.; Weingartner, R.; Winder, M.


    Mountain glaciers throughout the world are retreating; a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. In some places glaciers are projected to completely disappear, while the area of frozen ground will diminish and the ratio of snow to rainfall will decrease. These changes will also affect the surrounding lowlands in a cascade of effects, with ramifications for human livelihoods that include ecosystem services, natural hazards, tourism and recreation, energy production, agriculture, local economies and many other sectors. Glacier shrinkage and changes in snow cover will affect timing and magnitude of both maximum and minimum streamflow. In glacier-dominated catchments a temporary increase in dry season water supply will give way to a long-term reduction in river discharge. Populations living downstream of glacier- and snow-dominated catchments who depend on meltwater for drinking water supplies, sanitation, irrigation, mining, hydropower and recreation will therefore need to adapt to changes in runoff seasonality. Social and political problems surrounding water allocation may be exacerbated in regions where adequate water governance is lacking. These changes in runoff characteristics will also affect erosion rates, sediment, and nutrient flux, temperature and biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat and biotic communities. In some mountain regions slope failures due to thawing alpine permafrost, and outburst floods from glacier- and moraine-dammed lakes will pose an increased threat to downstream populations and will require enhanced monitoring or preventive measures. Comprehensive adaptation strategies, that aim to address all these challenges, will need to focus not only on the scientific aspects, but also consider cultural and societal needs of affected populations as well as the local economic and political agendas. Here we will review the

  5. The seasonal cycle of snow cover, sea ice and surface albedo (United States)

    Robock, A.


    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  6. Spectral reflectance of solar light from dirty snow: a simple theoretical model and its validation

    Directory of Open Access Journals (Sweden)

    A. Kokhanovsky


    Full Text Available A simple analytical equation for the snow albedo as the function of snow grain size, soot concentration, and soot mass absorption coefficient is presented. This simple equation can be used in climate models to assess the influence of snow pollution on snow albedo. It is shown that the squared logarithm of the albedo (in the visible is directly proportional to the soot concentration. A new method of the determination of the soot mass absorption coefficient in snow is proposed. The equations derived are applied to a dusty snow layer as well.

  7. Food, energy, and water in an era of disappearing snow (United States)

    Mote, P.; Lettenmaier, D. P.; Li, S.; Xiao, M.


    Mountain snowpack stores a significant quantity of water in the western US, accumulating during the wet season and melting during the dry summers and supplying more than 65% of the water used for irrigated agriculture, energy production (both hydropower and thermal), and municipal and industrial uses. The importance of snow to western agriculture is demonstrated by the fact that most snow monitoring is performed by the US Department of Agriculture. In a paper published in 2005, we showed that roughly 70% of monitoring sites showed decreasing trends through 2002. Now, with 14 additional years of data, over 90% of snow monitoring sites with long records across the western US show declines through 2016, of which 33% are significant (vs 5% expected by chance) and 2% are significant and positive (vs 5% expected by chance). Declining trends are observed across all months, states, and climates, but are largest in spring, in the Pacific states, and in locations with mild winter climate. We corroborate and extend these observations using a gridded hydrology model, which also allows a robust estimate of total western snowpack and its decline. Averaged across the western US, the decline in total April 1 snow water equivalent since mid-century is roughly 15-30% or 25-50 km3, comparable in volume to the West's largest man-made reservoir, Lake Mead. In the absence of rapid reductions in emissions of greenhouse gases, these losses will accelerate; snow losses on this scale demonstrate the necessity of rethinking water storage, policy, and usage.

  8. Granulation of snow: From tumbler experiments to discrete element simulations (United States)

    Steinkogler, Walter; Gaume, Johan; Löwe, Henning; Sovilla, Betty; Lehning, Michael


    It is well known that snow avalanches exhibit granulation phenomena, i.e., the formation of large and apparently stable snow granules during the flow. The size distribution of the granules has an influence on flow behavior which, in turn, affects runout distances and avalanche velocities. The underlying mechanisms of granule formation are notoriously difficult to investigate within large-scale field experiments, due to limitations in the scope for measuring temperatures, velocities, and size distributions. To address this issue we present experiments with a concrete tumbler, which provide an appropriate means to investigate granule formation of snow. In a set of experiments at constant rotation velocity with varying temperatures and water content, we demonstrate that temperature has a major impact on the formation of granules. The experiments showed that granules only formed when the snow temperature exceeded -1∘C. No evolution in the granule size was observed at colder temperatures. Depending on the conditions, different granulation regimes are obtained, which are qualitatively classified according to their persistence and size distribution. The potential of granulation of snow in a tumbler is further demonstrated by showing that generic features of the experiments can be reproduced by cohesive discrete element simulations. The proposed discrete element model mimics the competition between cohesive forces, which promote aggregation, and impact forces, which induce fragmentation, and supports the interpretation of the granule regime classification obtained from the tumbler experiments. Generalizations, implications for flow dynamics, and experimental and model limitations as well as suggestions for future work are discussed.

  9. Role of Marine Snows in Microplastic Fate and Bioavailability. (United States)

    Porter, Adam; Lyons, Brett P; Galloway, Tamara S; Lewis, Ceri


    Microplastics contaminate global oceans and are accumulating in sediments at levels thought sufficient to leave a permanent layer in the fossil record. Despite this, the processes that vertically transport buoyant polymers from surface waters to the benthos are poorly understood. Here we demonstrate that laboratory generated marine snows can transport microplastics of different shapes, sizes, and polymers away from the water surface and enhance their bioavailability to benthic organisms. Sinking rates of all tested microplastics increased when incorporated into snows, with large changes observed for the buoyant polymer polyethylene with an increase in sinking rate of 818 m day -1 and for denser polyamide fragments of 916 m day -1 . Incorporation into snows increased microplastic bioavailability for mussels, where uptake increased from zero to 340 microplastics individual -1 for free microplastics to up to 1.6 × 10 5 microplastics individual -1 when incorporated into snows. We therefore propose that marine snow formation and fate has the potential to play a key role in the biogeochemical processing of microplastic pollution.

  10. First Gridded Spatial Field Reconstructions of Snow from Tree Rings (United States)

    Coulthard, B. L.; Anchukaitis, K. J.; Pederson, G. T.; Alder, J. R.; Hostetler, S. W.; Gray, S. T.


    Western North America's mountain snowpacks provide critical water resources for human populations and ecosystems. Warmer temperatures and changing precipitation patterns will increasingly alter the quantity, extent, and persistence of snow in coming decades. A comprehensive understanding of the causes and range of long-term variability in this system is required for forecasting future anomalies, but snowpack observations are limited and sparse. While individual tree ring-based annual snowpack reconstructions have been developed for specific regions and mountain ranges, we present here the first collection of spatially-explicit gridded field reconstructions of seasonal snowpack within the American Rocky Mountains. Capitalizing on a new western North American snow-sensitive network of over 700 tree-ring chronologies, as well as recent advances in PRISM-based snow modeling, our gridded reconstructions offer a full space-time characterization of snow and associated water resource fluctuations over several centuries. The quality of reconstructions is evaluated against existing observations, proxy-records, and an independently-developed first-order monthly snow model.

  11. Snow and Ice Products from the Moderate Resolution Imaging Spectroradiometer (United States)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Klein, Andrew G.


    Snow and sea ice products, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, flown on the Terra and Aqua satellites, are or will be available through the National Snow and Ice Data Center Distributed Active Archive Center (DAAC). The algorithms that produce the products are automated, thus providing a consistent global data set that is suitable for climate studies. The suite of MODIS snow products begins with a 500-m resolution, 2330-km swath snow-cover map that is then projected onto a sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to daily and 8-day composite climate-modeling grid (CMG) products at 0.05 resolution. A daily snow albedo product will be available in early 2003 as a beta test product. The sequence of sea ice products begins with a swath product at 1-km resolution that provides sea ice extent and ice-surface temperature (IST). The sea ice swath products are then mapped onto the Lambert azimuthal equal area or EASE-Grid projection to create a daily and 8-day composite sea ice tile product, also at 1 -km resolution. Climate-Modeling Grid (CMG) sea ice products in the EASE-Grid projection at 4-km resolution are planned for early 2003.


    Directory of Open Access Journals (Sweden)

    M. Matsumoto


    Full Text Available Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  13. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data (United States)

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.


    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  14. Long-term analyses of snow dynamics within the french Alps on the 1900-2100 period. Analyses of historical snow water equivalent observations, modelisations and projections of a hundred of snow courses. (United States)

    Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.


    The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south

  15. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.


    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  16. Initiative hard coal; Initiative Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.


    In order to decrease the import dependence of hard coal in the European Union, the author has submitted suggestions to the director of conventional sources of energy (directorate general for energy and transport) of the European community, which found a positive resonance. These suggestions are summarized in an elaboration 'Initiative Hard Coal'. After clarifying the starting situation and defining the target the presupposition for a better use of hard coal deposits as raw material in the European Union are pointed out. On that basis concrete suggestions for measures are made. Apart from the conditions of the deposits it concerns thereby also new mining techniques and mining-economical developments, connected with tasks for the mining-machine industry. (orig.)


    Directory of Open Access Journals (Sweden)

    R. Boesch


    Full Text Available Photogrammetric workflows for aerial images have improved over the last years in a typically black-box fashion. Most parameters for building dense point cloud are either excessive or not explained and often the progress between software releases is poorly documented. On the other hand, development of better camera sensors and positional accuracy of image acquisition is significant by comparing product specifications. This study shows, that hardware evolutions over the last years have a much stronger impact on height measurements than photogrammetric software releases. Snow height measurements with airborne sensors like the ADS100 and UAV-based DSLR cameras can achieve accuracies close to GSD * 2 in comparison with ground-based GNSS reference measurements. Using a custom notch filter on the UAV camera sensor during image acquisition does not yield better height accuracies. UAV based digital surface models are very robust. Different workflow parameter variations for ADS100 and UAV camera workflows seem to have only random effects.

  18. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)



    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  19. Evaluation of hard fossil fuel

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.


    Because of its inexhaustible supplies hard fossil fuel will represent the pillar of the power systems of the 21st century. Only high-calorie fossil fuels have the market value and participate in the world trade. Low-calorie fossil fuels ((brown coal and lignite) are fuels spent on the spot and their value is indirectly expressed through manufactured kWh. For the purpose of determining the real value of a tonne of low-calorie coal, the criteria that help in establishing the value of a tonne of hard coal have to be corrected and thus evaluated and assessed at the market. (author)

  20. Calorimeter triggers for hard collisions

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.


    We discuss the use of a forward calorimeter to trigger on hard hadron-hadron collisions. We give a derivation in the covariant parton model of the Ochs-Stodolsky scaling law for single-hard-scattering processes, and investigate the conditions when instead a multiple- scattering mechanism might dominate. With a proton beam, this mechanism results in six transverse jets, with a total average multiplicity about twice that seen in ordinary events. We estimate that its cross section is likely to be experimentally accessible at avalues of the beam energy in the region of 100 GeV/c

  1. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.


    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  2. Chemical hardness and density functional theory

    Indian Academy of Sciences (India)


    RALPH G PEARSON. Chemistry Department, University of California, Santa Barbara, CA 93106, USA. Abstract. The concept of chemical hardness is reviewed from a personal point of view. Keywords. Hardness; softness; hard & soft acids bases (HSAB); principle of maximum hardness. (PMH) density functional theory (DFT) ...

  3. Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming (United States)

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.


    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  4. Estimating water equivalent snow depth from related meteorological variables

    International Nuclear Information System (INIS)

    Steyaert, L.T.; LeDuc, S.K.; Strommen, N.D.; Nicodemus, M.L.; Guttman, N.B.


    Engineering design must take into consideration natural loads and stresses caused by meteorological elements, such as, wind, snow, precipitation and temperature. The purpose of this study was to determine a relationship of water equivalent snow depth measurements to meteorological variables. Several predictor models were evaluated for use in estimating water equivalent values. These models include linear regression, principal component regression, and non-linear regression models. Linear, non-linear and Scandanavian models are used to generate annual water equivalent estimates for approximately 1100 cooperative data stations where predictor variables are available, but which have no water equivalent measurements. These estimates are used to develop probability estimates of snow load for each station. Map analyses for 3 probability levels are presented

  5. Fukushima Nuclear Accident Recorded in Tibetan Plateau Snow Pits (United States)

    Wang, Ninglian; Wu, Xiaobo; Kehrwald, Natalie; Li, Zhen; Li, Quanlian; Jiang, Xi; Pu, Jianchen


    The β radioactivity of snow-pit samples collected in the spring of 2011 on four Tibetan Plateau glaciers demonstrate a remarkable peak in each snow pit profile, with peaks about ten to tens of times higher than background levels. The timing of these peaks suggests that the high radioactivity resulted from the Fukushima nuclear accident that occurred on March 11, 2011 in eastern Japan. Fallout monitoring studies demonstrate that this radioactive material was transported by the westerlies across the middle latitudes of the Northern Hemisphere. The depth of the peak β radioactivity in each snow pit compared with observational precipitation records, suggests that the radioactive fallout reached the Tibetan Plateau and was deposited on glacier surfaces in late March 2011, or approximately 20 days after the nuclear accident. The radioactive fallout existed in the atmosphere over the Tibetan Plateau for about one month. PMID:25658094

  6. Estimation of Snow Parameters from Dual-Wavelength Airborne Radar (United States)

    Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew


    Estimation of snow characteristics from airborne radar measurements would complement In-situ measurements. While In-situ data provide more detailed information than radar, they are limited in their space-time sampling. In the absence of significant cloud water contents, dual-wavelength radar data can be used to estimate 2 parameters of a drop size distribution if the snow density is assumed. To estimate, rather than assume, a snow density is difficult, however, and represents a major limitation in the radar retrieval. There are a number of ways that this problem can be investigated: direct comparisons with in-situ measurements, examination of the large scale characteristics of the retrievals and their comparison to cloud model outputs, use of LDR measurements, and comparisons to the theoretical results of Passarelli(1978) and others. In this paper we address the first approach and, in part, the second.

  7. Quasi-steady temperature gradient metamorphism in idealized, dry snow

    International Nuclear Information System (INIS)

    Christon, M.


    A three-dimensional model for heat and mass transport in microscale ice lattices of dry snow is formulated consistent with conservation laws and solid-vapor interface constraints. A finite element model that employs continuous mesh deformation is developed, and calculation of the effective diffusion rates in snow, metamorphosing under a temperature gradient, is performed. Results of the research provide basic insight into the movement of heat and water vapor in seasonal snowcovers. Agreement between the numerical results and measured data of effective thermal conductivity is excellent. The enhancement to the water vapor diffusion rate in snow is bracketed in the range of 1.05--2.0 times that of water vapor in dry air

  8. Operational satellites and the global monitoring of snow and ice (United States)

    Walsh, John E.


    The altitudinal dependence of the global warming projected by global climate models is at least partially attributable to the albedo-temperature feedback involving snow and ice, which must be regarded as key variables in the monitoring for global change. Statistical analyses of data from IR and microwave sensors monitoring the areal coverage and extent of sea ice have led to mixed conclusions about recent trends of hemisphere sea ice coverage. Seasonal snow cover has been mapped for over 20 years by NOAA/NESDIS on the basis of imagery from a variety of satellite sensors. Multichannel passive microwave data show some promise for the routine monitoring of snow depth over unforested land areas.

  9. Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo (United States)

    Cook, Joseph M.; Hodson, Andrew J.; Gardner, Alex S.; Flanner, Mark; Tedstone, Andrew J.; Williamson, Christopher; Irvine-Fynn, Tristram D. L.; Nilsson, Johan; Bryant, Robert; Tranter, Martyn


    The darkening effects of biological impurities on ice and snow have been recognised as a control on the surface energy balance of terrestrial snow, sea ice, glaciers and ice sheets. With a heightened interest in understanding the impacts of a changing climate on snow and ice processes, quantifying the impact of biological impurities on ice and snow albedo (bioalbedo) and its evolution through time is a rapidly growing field of research. However, rigorous quantification of bioalbedo has remained elusive because of difficulties in isolating the biological contribution to ice albedo from that of inorganic impurities and the variable optical properties of the ice itself. For this reason, isolation of the biological signature in reflectance data obtained from aerial/orbital platforms has not been achieved, even when ground-based biological measurements have been available. This paper provides the cell-specific optical properties that are required to model the spectral signatures and broadband darkening of ice. Applying radiative transfer theory, these properties provide the physical basis needed to link biological and glaciological ground measurements with remotely sensed reflectance data. Using these new capabilities we confirm that biological impurities can influence ice albedo, then we identify 10 challenges to the measurement of bioalbedo in the field with the aim of improving future experimental designs to better quantify bioalbedo feedbacks. These challenges are (1) ambiguity in terminology, (2) characterising snow or ice optical properties, (3) characterising solar irradiance, (4) determining optical properties of cells, (5) measuring biomass, (6) characterising vertical distribution of cells, (7) characterising abiotic impurities, (8) surface anisotropy, (9) measuring indirect albedo feedbacks, and (10) measurement and instrument configurations. This paper aims to provide a broad audience of glaciologists and biologists with an overview of radiative transfer and

  10. Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo

    Directory of Open Access Journals (Sweden)

    J. M. Cook


    Full Text Available The darkening effects of biological impurities on ice and snow have been recognised as a control on the surface energy balance of terrestrial snow, sea ice, glaciers and ice sheets. With a heightened interest in understanding the impacts of a changing climate on snow and ice processes, quantifying the impact of biological impurities on ice and snow albedo (bioalbedo and its evolution through time is a rapidly growing field of research. However, rigorous quantification of bioalbedo has remained elusive because of difficulties in isolating the biological contribution to ice albedo from that of inorganic impurities and the variable optical properties of the ice itself. For this reason, isolation of the biological signature in reflectance data obtained from aerial/orbital platforms has not been achieved, even when ground-based biological measurements have been available. This paper provides the cell-specific optical properties that are required to model the spectral signatures and broadband darkening of ice. Applying radiative transfer theory, these properties provide the physical basis needed to link biological and glaciological ground measurements with remotely sensed reflectance data. Using these new capabilities we confirm that biological impurities can influence ice albedo, then we identify 10 challenges to the measurement of bioalbedo in the field with the aim of improving future experimental designs to better quantify bioalbedo feedbacks. These challenges are (1 ambiguity in terminology, (2 characterising snow or ice optical properties, (3 characterising solar irradiance, (4 determining optical properties of cells, (5 measuring biomass, (6 characterising vertical distribution of cells, (7 characterising abiotic impurities, (8 surface anisotropy, (9 measuring indirect albedo feedbacks, and (10 measurement and instrument configurations. This paper aims to provide a broad audience of glaciologists and biologists with an overview of

  11. Active remote sensing of snow using NMM3D/DMRT and comparison with CLPX II airborne data (United States)

    Xu, X.; Liang, D.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.; Lettenmaier, D.P.; Cline, D.W.; Yueh, S.H.


    We applied the Numerical Maxwell Model of three-dimensional simulations (NMM3D) in the Dense Media Radiative Theory (DMRT) to calculate backscattering coefficients. The particles' positions are computer-generated and the subsequent Foldy-Lax equations solved numerically. The phase matrix in NMM3D has significant cross-polarization, particularly when the particles are densely packed. The NMM3D model is combined with DMRT in calculating the microwave scattering by dry snow. The NMM3D/DMRT equations are solved by an iterative solution up to the second order in the case of small to moderate optical thickness. The numerical results of NMM3D/DMRT are illustrated and compared with QCA/DMRT. The QCA/DMRT and NMM3D/DMRT results are also applied to compare with data from two specific datasets from the second Cold Land Processes Experiment (CLPX II) in Alaska and Colorado. The data are obtained at the Ku-band (13.95 GHz) observations using airborne imaging polarimetric scatterometer (POLSCAT). It is shown that the model predictions agree with the field measurements for both co-polarization and cross-polarization. For the Alaska region, the average snow depth and snow density are used as the inputs for DMRT. The grain size, selected from within the range of the ground measurements, is used as a best-fit parameter within the range. For the Colorado region, we use the Variable Infiltration Capacity Model (VIC) to obtain the input snow profiles for NMM3D/DMRT. ?? 2010 IEEE.

  12. Early thawing after snow removal and no straw mulching accelerates organic carbon cycling in a paddy soil in Northeast China. (United States)

    Zhang, Hao; Tang, Jie; Liang, Shuang; Li, Zhaoyang; Wang, Jingjing; Wang, Sining


    Variations in soil organic carbon (SOC) have implications for atmospheric CO 2 concentrations and the greenhouse effect. However, the effects of snow cover and straw mulching on the variations in SOC fractions across winter remain largely unknown. In this study, soil samples were collected during different stages of winter from an in situ experiment comprising three treatments: 1) snow removal with no straw mulching (Sn-SM-); 2) snow cover with no straw mulching (SC), and; 3) snow cover with straw mulching (SC + SM+). Results showed that labile organic carbon, semi-labile organic carbon, recalcitrant organic carbon (ROC), the light fraction of organic carbon (LFOC), and easily oxidized organic carbon (EOC) contents did not vary significantly (P > .05) during the unfrozen to hard frost stages. Compared to the unfrozen stage, microbial biomass carbon (MBC) contents decreased by 519.03 mg kg -1 , 325.21 mg kg -1 , and 244.09 mg kg -1 and dissolved organic carbon (DOC) contents increased by 473.36 mg kg -1 , 348.10 mg kg -1 , and 258.89 mg kg -1  at the hard frost stage in Sn-SM-, SC, and SC + SM + treatments, respectively. Throughout all thawing stages, > 61% and 59% of SOC and ROC accumulation, respectively in the three treatments were observed in thawing stage II, indicating that higher temperatures and microbial activities in thawing stage II accelerated the inputs of SOC and ROC. ROC accumulation accounted for >65% of the SOC accumulation and the proportions of ROC in SOC increased in the three treatments during the thawing stages. SC + SM + treatment maintained lower EOC contents during thawing stages than other treatments. The observation of lowest SOC and LFOC accumulation and contents in the SC + SM + treatment during thawing stages showed that SC + SM + experienced the least inputs of SOC in the soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Polycyclic Aromatic Hydrocarbons In Aerosol and Snow Cover of Siberian Towns (east Siberia) (United States)

    Gorshkov, A.; Marinayte, I.

    Contamination of the atmosphere above Siberian towns has a few peculiarities: (i) level of pollution is presumably determined by discharges of large enterprises sur- rounded by company towns; (ii) long (up to 150 days) winter is characterized by the highest concentrations of pollutants within the near-ground atmospheric layer due to pronounced anti-cyclonic circulation of the atmosphere; (iii) polycyclic aromatic hydrocarbons (PAH) are specific minor components of the aerosols. Relatively high PAH concentrations in aerosol of Siberian towns are caused by the presence of ad- ditional intensive sources of PAH (besides those traditional: gas discharges of met- allurgy, heat-and-power engineering enterprises, and motor transport). These are the discharges of low power (produc- ing plant (50000 residents) - are presented in the report. Daily and seasonal dynamics of aerosol pollution and level of PAH accumulation in snow covers during 1996 U 2001 are estimated. The highest PAH concentrations (total concentrations of identi- fied compounds) are up to 300 ng/m3 in aerosol and up to 16 mg/m2 in snow cover. At day and night temperatures lowering up to -30 oe -40 01057;, the maximum of PAH concentration is observed in the daytime due to displacement of the tempera-ture in- version. When temperature increases, two SclassicalT maximums are observed during & cedil;the morning and the evening hours. It was shown that the effect of Scity air circula- & cedil;tionT caused by air masses transportation above a city from its center to out-skirts (within the near-ground air layer U to its center) does not contribute to efficient level- ing of PAH concentrations. The level of PAH accumulation in snow cover in different citySs sites and within one citySs region is ranging up to 10 times during a season. Calculated benz[a]pyren fluxes allow us to conclude that contamination of the atmo- sphere above Irkutsk (2.5 mkg/m2 per week) is comparable with that above large cities of Western

  14. Snow and Rain Modify Neighbourhood Walkability for Older Adults. (United States)

    Clarke, Philippa; Hirsch, Jana A; Melendez, Robert; Winters, Meghan; Sims Gould, Joanie; Ashe, Maureen; Furst, Sarah; McKay, Heather


    The literature has documented a positive relationship between walkable built environments and outdoor mobility in older adults. Yet, surprisingly absent is any consideration of how weather conditions modify the impact of neighbourhood walkability. Using archived weather data linked to survey data collected from a sample of older adults in Vancouver, Canada, we found that car-dependent neighbourhoods (featuring longer block lengths, fewer intersections, and greater distance to amenities) became inaccessible in snow. Even older adults who lived in very walkable neighbourhoods walked to 25 per cent fewer destinations in snow. It is crucial to consider the impact of weather in the relationship between neighbourhood walkability and older adult mobility.

  15. Ultratrace analysis for organolead compounds in Greenland snow

    International Nuclear Information System (INIS)

    Lobinski, R.; Szpunar-Lobinska, J.; Adams, F.C.


    The degradation products of tetraalkyllead compounds used as antiknock additives are unique indicators of automotive environmental pollution by lead. Recent dramatic improvements in species-specific ultrasensitive analytical procedures enabled the identification and quantification of organolead compounds in ancient Greenland snow which is considered as the archives of northern hemispheric pollution records. Organolead species determined in fresh and ancient polar snow demonstrate unambiguously the global range of petrol-related pollution not only with ionic Pb 2+ but also with more toxic metalloorganic compounds. (authors). 9 refs., 5 figs

  16. Seismic signals hard clipping overcoming (United States)

    Olszowa, Paula; Sokolowski, Jakub


    In signal processing the clipping is understand as the phenomenon of limiting the signal beyond certain threshold. It is often related to overloading of a sensor. Two particular types of clipping are being recognized: soft and hard. Beyond the limiting value soft clipping reduces the signal real gain while the hard clipping stiffly sets the signal values at the limit. In both cases certain amount of signal information is lost. Obviously if one possess the model which describes the considered signal and the threshold value (which might be slightly more difficult to obtain in the soft clipping case), the attempt of restoring the signal can be made. Commonly it is assumed that the seismic signals take form of an impulse response of some specific system. This may lead to belief that the sine wave may be the most appropriate to fit in the clipping period. However, this should be tested. In this paper the possibility of overcoming the hard clipping in seismic signals originating from a geoseismic station belonging to an underground mine is considered. A set of raw signals will be hard-clipped manually and then couple different functions will be fitted and compared in terms of least squares. The results will be then analysed.

  17. Hard equality constrained integer knapsacks

    NARCIS (Netherlands)

    Aardal, K.I.; Lenstra, A.K.; Cook, W.J.; Schulz, A.S.


    We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve

  18. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.


    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  19. Reconstructed North American, Eurasian, and Northern Hemisphere Snow Cover Extent, 1915-1997 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series of monthly snow cover extent (SCE) for North America, Eurasia, and the Northern Hemisphere from 1915 to 1997, based on snow cover...

  20. Measurements of Air and Snow Photochemical Species at WAIS Divide, Antarctica, Version 1 (United States)

    National Aeronautics and Space Administration — This data set contains atmospheric mixing ratios of nitric oxide, ozone, hydrogen peroxide, methylhydroperoxide, and concentrations in surface snow and in snow pits...

  1. Artificial-intelligence-based optimization of the management of snow removal assets and resources. (United States)


    Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent : snow removal asset management system (SRAMS). The system has been evaluated through a case study examining : snow removal from the ...

  2. A Snow Density Dataset for Improving Surface Boundary Conditions in Greenland Ice Sheet Firn Modeling

    DEFF Research Database (Denmark)

    S. Fausto, Robert; E. Box, Jason; Vandecrux, Baptiste Robert Marcel


    The surface snow density of glaciers and ice sheets is of fundamental importance in converting volume to mass in both altimetry and surface mass balance studies, yet it is often poorly constraine