WorldWideScience

Sample records for ground gps stations

  1. The application of GPS time information in the telemetry ground station

    International Nuclear Information System (INIS)

    Zhang Songtao; Zhang Yusong; Sun Xiurui

    2001-01-01

    GPS time information is a kind of practicable information resource that can be shared all over the world. Now it is the most accurate wireless time information. The major of this paper is the application information of GPS time information in telemetry. The main point introduces how to make use of the GPS time information to produce GPS-IRIG-B time code for proving ground and how to send time information to related equipment in telemetry ground station

  2. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  3. A New Technique to Observe ENSO Activity via Ground-Based GPS Receivers

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit

    In an attempt to study the effects of global climate change in the tropics for improving global climate model, this paper aims to detect the ENSO events, especially El Nino phase by using ground-based GPS receivers. Precipitable water vapor (PWV) obtained from the Global Positioning System (GPS) Meteorology measurements in line with the sea surface temperature anomaly (SSTa) are used to connect their response to El Niño activity. The data gathered from four selected stations over the Southeast Asia, namely PIMO (Philippines), KUAL (Malaysia), NTUS (Singapore) and BAKO (Indonesia) for the year of 2009/2010 were processed. A strong correlation was observed for PIMO station with a correlation coefficient of -0.90, significantly at the 99 % confidence level. In general, the relationship between GPS PWV and SSTa at all stations on a weekly basis showed with a negative correlation. The negative correlation indicates that during the El Niño event, the PWV variation was in decreased trend. Decreased trend of PWV value is caused by a dry season that affected the GPS signals in the ocean-atmospheric coupling. Based on these promising results, we can propose that the ground-based GPS receiver is capable used to monitor ENSO activity and this is a new prospective method that previously unexplored.

  4. Current Land Subsidence in Tianjin, China Recorded by Three Continuous GPS stations (2010-2014)

    Science.gov (United States)

    Jia, X.; Jing, Q.; Yan, B.; Yu, J.; Gan, W.; Wang, G.

    2014-12-01

    In the past two decades, Global Positioning System (GPS) technologies have been frequently applied to urban subsidence studies, both as a complement, and an alternative to conventional surveying methods. These studies have demonstrated that high-accuracy GPS techniques are an efficient tool in tracking long-term land subsidence. A great number of Continuously Operating Reference GPS Stations (CORS) have been installed in China during the past five years. Considerable land subsidence has been observed from CORS stations installed in several large cities. This study investigated GPS time series observed at three CORS in Tianjin: TJBD (2010-2014), TJBH (2010-2014), and TJWQ (2010-2014). Tianjin is one of the largest cities that is experiencing severe land subsidence problems in China. The observations at the three GPS sites indicate different subsidence rates. The average subsidence rate over four years are 0.2 cm/year at TJBD, 2 cm/year at TJBH, and 4.4 cm/year at TJWQ. The GPS station TJBD is located at Baodi, Tianjin. This area is the least economically developed and have the smallest population compared to the other two areas. Over 80% of water usage in Baodi is for agriculture and only less than 15% is from groundwater. The rapid subsidence at TJBH and TJWQ were caused by huge groundwater withdrawals associate with rapid urban and industrial developments in Binhai and Wuqing. Wuqing district, with a unique location advantage called "Corridor of Beijing and Tianjin", has been experiencing major urbanization. The population has reached 1,053,300 and the water usage has reached 350 million cubic meters in 2012. Over 25% of water usage is from groundwater. Significant annual and half-annual seasonal ground surface fluctuation has been observed from all three GPS stations. The peak-to-peak amplitude of the annual signal is 1.5 cm.

  5. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  6. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  7. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  8. GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions

    Science.gov (United States)

    Axelrad, Penina; Reeh, Lisa

    2002-01-01

    This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.

  9. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    Science.gov (United States)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  10. WGS 84 Coordinate Validation and Improvement for the NIMA and Air Force GPS Tracking Stations

    National Research Council Canada - National Science Library

    Cunningham, James

    1996-01-01

    Using 10 days of Global Positioning System (GPS) pseudorange and carrier phase data collected in 1995 from 31 stations and 24 Block II/IIA satellites, estimates of GPS clocks, orbits, and tracking station coordinates were generated...

  11. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    International Nuclear Information System (INIS)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit; Ali, Mohd Alauddin Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-01-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between −0.30 and −0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  12. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-04-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  13. Software Defined GPS Receiver for International Space Station

    Science.gov (United States)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  14. Progress in SLR-GPS co-location at San Juan (Argentina) station

    Science.gov (United States)

    Luis, Hernan; Rojas, Alvis; Adarvez, Sonia; Quinteros, Johana; Cobos, Pablo; Aracena, Andrés; Pacheco, Ana M.; Podestá, Ricardo; Actis, Eloy V.; Li, Jinzeng; Yin, Zhiqiang; Wang, Rui; Huang, Dongping; Márquez, Raúl

    2012-08-01

    From February, 2006, performing a Cooperation Agreement with National Astronomical Observatories of China (NAOC) of the Chinese Academy of Sciences (CAS), Observatorio Astronómico Félix Aguilar (OAFA) of Universidad Nacional de San Juan (UNSJ) is operating a SLR System (ILRS 7406 Station). From the beginning of 2012 a GPS Aztech - Micro Z CGRS is operative at the same place, which made the SLR - GPS co - location possible. The prior objective is to reach co - location between both techniques, so the Station became of 1st order in ITRF net. For that we study and adopt an appropriate strategy to select and place Survey Control Points that ensures higher precision in determination of 3D vectors between the selected reference point s. Afterwards we perform translocation tasks of receptor and antenna checking that the GPS verifies builder standards. Then we design and compensate survey control network, by means of software of our own draught. We expect to obtain definitive local ties with precision better than 3 mm, as suggested by IERS for co - located stations. There are very few stations with co - located spatial techniques in the Southern Hemisphere, so it is of great importance to have one in Argentina for improve our participation in IERS on the new realizations of ITRF from now on.

  15. Deployment of Autonomous GPS Stations in Marie Byrd Land, Antartica

    Science.gov (United States)

    Donnellan, A.; Luyendyk, B.; Smith, M.; Dace, G.

    1999-01-01

    During the 1998-1999 Antarctic field season, we installed three autonomous GPS stations in Marie Byrd Land, West Antarctica to measure glacio-isostatic rebound and rates of spreading across the West Antartic Rift System.

  16. A System to Produce Precise Global GPS Network Solutions for all Geodetic GPS Stations in the World

    Science.gov (United States)

    Blewitt, G.; Kreemer, C. W.

    2010-12-01

    We have developed an end-to-end system that automatically seeks and routinely retrieves geodetic GPS data from ~5000 stations (currently) around the globe, reduces the data into unique, daily global network solutions, and produces high precision time series for station coordinates ready for time-series analysis, geophysical modeling and interpretation. Moreover, “carrier range” data are produced for all stations, enabling epoch-by-epoch tracking of individual station motions by precise point positioning for investigation of sub-daily processes, such as post-seismic after-slip and ocean tidal loading. Solutions are computed in a global reference frame aligned to ITRF, and optionally in user-specified continental-scale reference frames that can filter out common-mode signals to enhance regional strain anomalies. We describe the elements of this system, the underlying signal processing theory, the products, operational statistics, and scientific applications of our system. The system is fundamentally based on precise point positioning using JPL's GIPSY OASIS II software, coupled with ambiguity resolution and a global network adjustment of ~300,000 parameters per day using our newly developed Ambizap3 software. The system is designed to easily and efficiently absorb stations that deliver data very late, by recycling prior computations in the network adjustment, such that the resulting network solution is identical to starting from scratch. Thus, it becomes possible to trawl continuously the Internet for late arriving data, or for newly discovered data, and seamlessly update all GPS station time series using the new information content. As new stations are added to the processing archive, automated e-mail requests are made to H.-G. Scherneck's server at Chalmers University to compute ocean loading coefficients used by the station motion model. Rinex file headers are parsed and compared with alias tables in order to infer the correct receiver type and antenna

  17. Tightly-coupled real-time analysis of GPS and accelerometer data for translational and rotational ground motions and application to earthquake and tsunami early warning

    Science.gov (United States)

    Geng, J.; Bock, Y.; Melgar, D.; Hasse, J.; Crowell, B. W.

    2013-12-01

    High-rate GPS can play an important role in earthquake early warning (EEW) systems for large (>M6) events by providing permanent displacements immediately as they are achieved, to be used in source inversions that can be repeatedly updated as more information becomes available. This is most valuable to implement at a site very near the potential source rupture, where broadband seismometers are likely to clip, and accelerometer data cannot be objectively integrated to produce reliable displacements in real time. At present, more than 525 real-time GPS stations have been established in western North America, which are being integrated into EEW systems. Our analysis technique relies on a tightly-coupled combination of GPS and accelerometer data, an extension of precise point positioning with ambiguity resolution (PPP-AR). We operate a PPP service based on North American stations available through the IGS and UNAVCO/PBO. The service provides real-time satellite clock and fractional-cycle bias products that allow us to position individual client stations in the zone of deformation. The service reference stations are chosen to be further than 200 km from the primary zones of tectonic deformation in the western U.S. to avoid contamination of the satellite products during a large seismic event. At client stations, accelerometer data are applied as tight constraints on the positions between epochs in PPP-AR, which improves cycle-slip repair and rapid ambiguity resolution after GPS outages. Furthermore, we estimate site displacements, seismic velocities, and coseismic ground tilts to facilitate the analysis of ground motion characteristics and the inversion for source mechanisms. The seismogeodetic displacement and velocity waveforms preserves the detection of P wave arrivals, and provides P-wave arrival displacement that is key new information for EEW. Our innovative solution method for coseismic tilts mitigates an error source that has continually plagued strong motion

  18. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  19. Features of High-Latitude Ionospheric Irregularities Development as Revealed by Ground-Based GPS Observations, Satellite-Borne GPS Observations and Satellite In Situ Measurements over the Territory of Russia during the Geomagnetic Storm on March 17-18, 2015

    Science.gov (United States)

    Zakharenkova, I. E.; Cherniak, Iu. V.; Shagimuratov, I. I.; Klimenko, M. V.

    2018-01-01

    The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17-18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russia are shown for the first time. The results of analysis of ground-based and space-borne GPS observations, as well as satellite, in situ measurements, revealed large-scale ionospheric plasma irregularities observed over the territory of Russia in the latitude range of 50°-85° N during the main phase of the geomagnetic storm. The most intense ionospheric irregularities were detected in the auroral zone and in the region of the main ionospheric trough (MIT). It has been found that sharp changes in the phase of the carrier frequency of the navigation signal from all tracked satellites were recorded at all GPS stations located to the North from 55° MLAT. The development of a deep MIT was related to dynamic processes in the subauroral ionosphere, in particular, with electric fields of the intense subauroral polarization stream. Analysis of the electron and ion density values obtained by instruments on board of the Swarm and DMSP satellites showed that the zone of highly structured auroral ionosphere extended at least to heights of 850-900 km.

  20. Realistic Noise Assessment and Strain Analysis of Iranian Permanent GPS Stations

    Science.gov (United States)

    Razeghi, S. M.; Amiri Simkooei, A. A.; Sharifi, M. A.

    2012-04-01

    To assess noise characteristics of Iranian Permanent GPS Stations (IPGS), northwestern part of this network namely Azerbaijan Continuous GPS Station (ACGS), was selected. For a realistic noise assessment it is required to model all deterministic signals of the GPS time series by means of least squares harmonic estimation (LS-HE) and derive all periodic behavior of the series. After taking all deterministic signals into account, the least squares variance component estimation (LS-VCE) is used to obtain a realistic noise model (white noise plus flicker noise) of the ACGS. For this purpose, one needs simultaneous GPS time series for which a multivariate noise assessment is applied. Having determined realistic noise model, a realistic strain analysis of the network is obtained for which one relies on the finite element methods. Finite element is now considered to be a new functional model and the new stochastic model is given based on the multivariate noise assessment using LS-VCE. The deformation rates of the components along with their full covariance matries are input to the strain analysis. Further, the results are also provided using a pure white noise model. The normalized strains for these two models show that the strain parameters derived from a realistic noise model are less significant than those derived from the white model. This could be either due to the short time span of the time series used or due to the intrinsic behavior of the strain parameters in the ACGS. Longer time series are required to further elaborate this issue.

  1. GPS Tomography: Water Vapour Monitoring for Germany

    Science.gov (United States)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent

  2. Using GPS to Detect Imminent Tsunamis

    Science.gov (United States)

    Song, Y. Tony

    2009-01-01

    A promising method of detecting imminent tsunamis and estimating their destructive potential involves the use of Global Positioning System (GPS) data in addition to seismic data. Application of the method is expected to increase the reliability of global tsunami-warning systems, making it possible to save lives while reducing the incidence of false alarms. Tsunamis kill people every year. The 2004 Indian Ocean tsunami killed about 230,000 people. The magnitude of an earthquake is not always a reliable indication of the destructive potential of a tsunami. The 2004 Indian Ocean quake generated a huge tsunami, while the 2005 Nias (Indonesia) quake did not, even though both were initially estimated to be of the similar magnitude. Between 2005 and 2007, five false tsunami alarms were issued worldwide. Such alarms result in negative societal and economic effects. GPS stations can detect ground motions of earthquakes in real time, as frequently as every few seconds. In the present method, the epicenter of an earthquake is located by use of data from seismometers, then data from coastal GPS stations near the epicenter are used to infer sea-floor displacements that precede a tsunami. The displacement data are used in conjunction with local topographical data and an advanced theory to quantify the destructive potential of a tsunami on a new tsunami scale, based on the GPS-derived tsunami energy, much like the Richter Scale used for earthquakes. An important element of the derivation of the advanced theory was recognition that horizontal sea-floor motions contribute much more to generation of tsunamis than previously believed. The method produces a reliable estimate of the destructive potential of a tsunami within minutes typically, well before the tsunami reaches coastal areas. The viability of the method was demonstrated in computational tests in which the method yielded accurate representations of three historical tsunamis for which well-documented ground

  3. Comparison of equatorial GPS-TEC observations over an African station and an American station during the minimum and ascending phases of solar cycle 24

    Directory of Open Access Journals (Sweden)

    A. O. Akala

    2013-11-01

    Full Text Available GPS-TEC data were observed at the same local time at two equatorial stations on both longitudes: Lagos (6.52° N, 3.4° E, 3.04° S magnetic latitude, Nigeria; and Pucallpa (8.38° S, 74.57° W, 4.25° N magnetic latitude, Peru during the minimum (2009, 2010 and ascending (2011 phases of solar cycle 24. These data were grouped into daily, seasonal and solar activity sets. The day-to-day variations in vertical TEC (VTEC recorded the maximum during 14:00–16:00 LT and minimum during 04:00–06:00 LT at both longitudes. Seasonally, during solar minimum, maximum VTEC values were observed during March equinox and minimum during solstices. However, during the ascending phase of the solar activity, the maximum values were recorded during the December solstice and minimum during the June solstice. VTEC also increased with solar activity at both longitudes. On longitude by longitude comparison, the African GPS station generally recorded higher VTEC values than the American GPS station. Furthermore, harmonic analysis technique was used to extract the annual and semi-annual components of the amplitudes of the TEC series at both stations. The semi-annual variations dominated the TEC series over the African equatorial station, while the annual variations dominated those over the American equatorial station. The GPS-TEC-derived averages for non-storm days were compared with the corresponding values derived by the IRI-2007 with the NeQuick topside option. The NeQuick option of IRI-2007 showed better performance at the American sector than the African sector, but generally underestimating TEC during the early morning hours at both longitudes.

  4. Analysis of the altitudinal structure of Storm-enhanced density using Total Electron Content data of space-borne and ground-based GPS receivers

    Directory of Open Access Journals (Sweden)

    Yukari Goi

    2013-11-01

    Full Text Available The altitudinal structure of Storm-enhanced density (SED was studied using the Total Electron Content (TEC data of the GPS receiver on the Gravity Recovery and Climate Experiment (GRACE satellite and the ground-based GPS receivers. The GRACETEC-data are derived from the GPS receiver on the GRACE satellite. A SED is a high-electron density phenomenon that extends from the Equatorial Ionization Anomaly (EIA toward the north-west in the northern hemisphere during geomagnetic disturbed time. TwoSEDs were observed as TEC variations in the GRACE-TEC data and in the ground-GPS TEC data. The ground-GPS TEC data is the TEC data between the ground GPS receiver and the GPS satellites. The SED observed in the GRACE-TEC data appeared at higher latitudes than that in the ground-GPS TEC data. We concluded detected that the altitudinal structure of the SED would be different between at lower than at higher latitudes due to the effects of the eastward E×B drift.

  5. Integrating stations from the North America Gravity Database into a local GPS-based land gravity survey

    Science.gov (United States)

    Shoberg, Thomas G.; Stoddard, Paul R.

    2013-01-01

    The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.

  6. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    Science.gov (United States)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  7. GPS deformation measurements at Olkiluoto in 2013

    International Nuclear Information System (INIS)

    Nyberg, S.; Kallio, U.; Koivula, H.

    2014-08-01

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  8. GPS deformation measurements at Olkiluoto in 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, S.; Kallio, U.; Koivula, H. [Finnish Geodetic Institute, Masala (Finland)

    2014-08-15

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  9. Precision GPS orbit determination strategies for an earth orbiter and geodetic tracking system

    Science.gov (United States)

    Lichten, Stephen M.; Bertiger, Willy I.; Border, James S.

    1988-01-01

    Data from two 1985 GPS field tests were processed and precise GPS orbits were determined. With a combined carrier phase and pseudorange, the 1314-km repeatability improves substantially to 5 parts in 10 to the 9th (0.6 cm) in the north and 2 parts in 10 to the 8th (2-3 cm) in the other components. To achieve these levels of repeatability and accuracy, it is necessary to fine-tune the GPS solar radiation coefficients and ground station zenith tropospheric delays.

  10. Development of GPS data remote retrieval system using wireless LAN

    Directory of Open Access Journals (Sweden)

    Koichiro Doi

    2012-11-01

    Full Text Available A remote retrieval system, using a wireless LAN, was developed to retrieve dual-frequency GPS data. The system consists of a ground observation unit (comprising a dual-frequency GPS logger and a data transmission unit and a data retrieval unit. In this system, we use the ZigBee communication protocol to transmit control commands (2.4 GHz, 250 Kbps and a wireless LAN communication to transmit GPS data (2.4 GHz, 54 Mbps. Data of every 30 seconds to transmit to the data retrieval unit are re-sampled from 1-second data at 00 UT each day. We conducted three data-transmission tests with the system: (1 a ground data retrieval test, (2 a data retrieval test from the atmosphere of a few hundred meters high using a small unmanned aircraft, and (3 actual GPS-data retrieval tests from a GPS buoy deployed on sea ice at Nisi-no-ura Cove, Syowa Station, Antarctica. In test (1, we successfully received all the data from the ground observation unit when situated at distances of less than 400 m from the data retrieval unit. In test (2, we obtained approximately 24.5 MB of data from the aircraft at heights of less than 250 m. In test (3, we obtained approximately 23.5 MB of data from the GPS buoy within 10 minutes. The proposed system has the advantage of enabling continuous measurements without aborting the measurement at the data retrievals.

  11. Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode

    Science.gov (United States)

    Shangguan, M.; Heise, S.; Bender, M.; Dick, G.; Ramatschi, M.; Wickert, J.

    2015-01-01

    Slant-integrated water vapor (SIWV) data derived from GPS STDs (slant total delays), which provide the spatial information on tropospheric water vapor, have a high potential for assimilation to weather models or for nowcasting or reconstruction of the 3-D humidity field with tomographic techniques. Therefore, the accuracy of GPS STD is important, and independent observations are needed to estimate the quality of GPS STD. In 2012 the GFZ (German Research Centre for Geosciences) started to operate a microwave radiometer in the vicinity of the Potsdam GPS station. The water vapor content along the line of sight between a ground station and a GPS satellite can be derived from GPS data and directly measured by a water vapor radiometer (WVR) at the same time. In this study we present the validation results of SIWV observed by a ground-based GPS receiver and a WVR. The validation covers 184 days of data with dry and wet humidity conditions. SIWV data from GPS and WVR generally show good agreement with a mean bias of -0.4 kg m-2 and an rms (root mean square) of 3.15 kg m-2. The differences in SIWV show an elevation dependent on an rms of 7.13 kg m-2 below 15° but of 1.76 kg m-2 above 15°. Nevertheless, this elevation dependence is not observed regarding relative deviations. The relation between the differences and possible influencing factors (elevation angles, pressure, temperature and relative humidity) are analyzed in this study. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and the differences in SIWV are found.

  12. Combining GPS measurements and IRI model predictions

    International Nuclear Information System (INIS)

    Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Bilitza, D.

    2002-01-01

    The free electrons distributed in the ionosphere (between one hundred and thousands of km in height) produce a frequency-dependent effect on Global Positioning System (GPS) signals: a delay in the pseudo-orange and an advance in the carrier phase. These effects are proportional to the columnar electron density between the satellite and receiver, i.e. the integrated electron density along the ray path. Global ionospheric TEC (total electron content) maps can be obtained with GPS data from a network of ground IGS (international GPS service) reference stations with an accuracy of few TEC units. The comparison with the TOPEX TEC, mainly measured over the oceans far from the IGS stations, shows a mean bias and standard deviation of about 2 and 5 TECUs respectively. The discrepancies between the STEC predictions and the observed values show an RMS typically below 5 TECUs (which also includes the alignment code noise). he existence of a growing database 2-hourly global TEC maps and with resolution of 5x2.5 degrees in longitude and latitude can be used to improve the IRI prediction capability of the TEC. When the IRI predictions and the GPS estimations are compared for a three month period around the Solar Maximum, they are in good agreement for middle latitudes. An over-determination of IRI TEC has been found at the extreme latitudes, the IRI predictions being, typically two times higher than the GPS estimations. Finally, local fits of the IRI model can be done by tuning the SSN from STEC GPS observations

  13. Present day geodynamics in Iceland monitored by a permanent network of continuous GPS stations

    Science.gov (United States)

    Völksen, Christof; Árnadóttir, Thóra; Geirsson, Halldór; Valsson, Guðmundur

    2009-12-01

    Iceland is located on the Mid-Atlantic Ridge and thereby offers a rare opportunity to study crustal movements at a divergent plate boundary. Iceland is not only characterized by the divergence of the Eurasian and North American Plates, as several active volcanoes are located on the island. Moderate size earthquakes occur in the transform zones, causing measurable crustal deformation. In 1999 the installation of a permanent network of continuous GPS stations (ISGPS) was initiated in order to observe deformation due to unrest in the Hengill volcanic system and at the Katla volcano. The ISGPS network has been enlarged over the years and consists today of more than 25 CGPS stations. Most of the stations are located along the plate boundary, where most of the active deformation takes place. Uplift due to post-glacial rebound due to the melting of the largest glacier in Europe, Vatnajökull, is also detected by the ISGPS network. This study presents results from analysis of 9 years of data from the ISGPS network, in the global reference frame PDR05, which has been evaluated by the Potsdam-Dresden-Reprocessing group with reprocessed GPS data only. We thus determine subsidence or land uplift in a global frame. The horizontal station velocities clearly show spreading across the plate boundary of about 20 mm/a. Stations in the vicinity of the glacier Vatnajökull indicate uplift in the range of 12 mm/a, while a station in the central part of Iceland shows uplift rates of about 25 mm/a. Tide gauge readings in Reykjavik and current subsidence rates observed with CGPS agree also quite well.

  14. CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2007-12-01

    Full Text Available The Global Navigation Satellite System (GNSS becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

  15. Quality analysis of the campaign GPS stations observation in Northeast and North China

    Directory of Open Access Journals (Sweden)

    Yaxuan Hu

    2016-03-01

    Full Text Available TEQC is used to check the observations quality of 173 GPS campaign stations in the Northeast and North China. Each station was observed with an occupation of 4 days. The quality of the 692 data files is analyzed by the ratio of overall observations to possible observations, MP1, MP2 and the ratio of observations to slips. The reasons for multipath and cycle slips can be derived from the photos taken in the field. The results show that the coverage of trees and buildings/structures, and the interference of high-voltage power lines near the stations are the main reasons. In a small area, the horizontal velocity field in the period 2011–2013 is exemplified, where the magnitudes and directions of the 4 stations' rates are clearly different with that of other stations. It seems that the error caused by the worse environment cannot be mitigated through post processing. Therefore, these conclusions can help the establishment of GNSS stations, measurements, data processing and formulating standards in future.

  16. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  17. Relative navigation and attitude determination using a GPS/INS integrated system near the International Space Station

    Science.gov (United States)

    Um, Jaeyong

    2001-08-01

    The Space Integrated GPS/INS (SIGI) sensor is the primary navigation and attitude determination source for the International Space Station (ISS). The SIGI was successfully demonstrated on-orbit for the first time in the SIGI Orbital Attitude Readiness (SOAR) demonstration on the Space Shuttle Atlantis in May 2000. Numerous proximity operations near the ISS have been and will be performed over the lifetime of the Station. The development of an autonomous relative navigation system is needed to improve the safety and efficiency of vehicle operations near the ISS. A hardware simulation study was performed for the GPS-based relative navigation using the state vector difference approach and the interferometric approach in the absence of multipath. The interferometric approach, where the relative states are estimated directly, showed comparable results for a 1 km baseline. One of the most pressing current technical issues is the design of an autonomous relative navigation system in the proximity of the ISS, where GPS signals are blocked and maneuvers happen frequently. An integrated GPS/INS system is investigated for the possibility of a fully autonomous relative navigation system. Another application of GPS measurements is determination of the vehicle's orientation in space. This study used the SOAR experiment data to characterize the SICI's on-orbit performance for attitude determination. A cold start initialization algorithm was developed for integer ambiguity resolution in any initial orientation. The original algorithm that was used in the SIGI had an operational limitation in the integer ambiguity resolution, which was developed for terrestrial applications, and limited its effectiveness in space. The new algorithm was tested using the SOAR data and has been incorporated in the current SIGI flight software. The attitude estimation performance was examined using two different GPS/INS integration algorithms. The GPS/INS attitude solution using the SOAR data was as

  18. Assimilative Modeling of Ionospheric Disturbances with FORMOSAT-3/COSMIC and Ground-Based GPS Measurements

    Directory of Open Access Journals (Sweden)

    Xiaoqing Pi

    2009-01-01

    Full Text Available The four-dimensional Global Assimilative Ionospheric Model (GAIM is applied to a study of ionospheric disturbances. The investigation is focused on disturbance features, particularly in the altitude and latitude dimensions, at low latitudes during a geomagnetic storm on 7 August 2006, under solar minimum conditions. The modeling of storm-time ionospheric state (electron density is conducted by assimilating an unprecedented volume of line-of-sight TEC data collected by the Global Positioning System (GPS occultation receivers on board six FORMOSAT-3/COSMIC satellites and geodetic-quality GPS receivers at two hundred globally-distributed ground tracking stations.With a band-limited Kalman filter technique to update the ionospheric state, the assimilative modeling reveals a pronounced enhancement in the equatorial anomaly in the East Asia sector during dusk and evening hours. The disturbance characteristics, obtained by comparing with the quiet conditions prior to the storm also modeled in this study through data assimilation, include lifted F layer and reduced electron density in the equatorial region, enhanced density at the magnetically conjugate anomaly latitudes, and tilted feature of density increase towards higher altitudes at lower latitudes. The characteristics are attributed to the enhanced plasma fountain effect driven by an enhanced eastward zonal electric field. These results enable us to distinguish the storm-time electric field perturbations clearly from other sources during the storm. The possible origins of electric field perturbations are also discussed, including penetration of the magnetospheric electric field and wind dynamo disturbances.

  19. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B [Instrument Department, College of Mechatronics Engineering and Automation, National University of Defense Technology, ChangSha, Hunan, 410073 (China)

    2006-10-15

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily.

  20. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    International Nuclear Information System (INIS)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B

    2006-01-01

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily

  1. Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California

    Science.gov (United States)

    Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye

    2018-05-01

    The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.

  2. Open System of Agile Ground Stations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is an opportunity to build the HETE-2/TESS network of ground stations into an innovative and powerful Open System of Agile Stations, by developing a low-cost...

  3. Variation of GPS-TEC in a low latitude Indian region during the year 2012 and 2013

    Science.gov (United States)

    Patel, Nilesh C.; Karia, Sheetal P.; Pathak, Kamlesh N.

    2018-05-01

    The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the period from January 2012 to December 2013 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Surat (21.16°N, 72.78°E Geog.), situated under the northern crest of the equatorial ionization anomaly region (EIA) and other three International GNSS Service (IGS) stations Bangalore (13.02°N, 77.57°E Geog.), Hyderabad (17.25°N, 78.30°E Geog.), and Lucknow (26.91°N, 80.95°E Geog.) in India. We describe the diurnal and seasonal characteristics. It was observed that GPS-TEC reaches its maximum value between 12:00 and 16:00 IST. Further, Seasonal variations of GPS-TEC is categorized into four seasons, i.e., March equinox (February, March, and April), June solstice (May, June, and July), September equinox (August, September, and October) and December solstice (November, December and January). The forenoon rate of production in Lucknow (beyond EIA crest) is faster than Bangalore, Hyderabad and Surat station. It is found that September equinox shows GPS-TEC slightly higher than the March equinox, followed by June solstice and the lowest GPS-TEC are in winter solstice at four stations. The equinoctial asymmetry clearly observed in the current study. Also GPS-TEC shows a semiannual variation.

  4. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  5. TLALOCNet continuous GPS-Met Array in Mexico supporting the 2017 NAM GPS Hydrometeorological Network.

    Science.gov (United States)

    Cabral-Cano, E.; Salazar-Tlaczani, L.; Adams, D. K.; Vivoni, E. R.; Grutter, M.; Serra, Y. L.; DeMets, C.; Galetzka, J.; Feaux, K.; Mattioli, G. S.; Miller, M. M.

    2017-12-01

    TLALOCNet is a network of continuous GPS and meteorology stations in Mexico to study atmospheric and solid earth processes. This recently completed network spans most of Mexico with a strong coverage emphasis on southern and western Mexico. This network, funded by NSF, CONACyT and UNAM, recently built 40 cGPS-Met sites to EarthScope Plate Boundary Observatory standards and upgraded 25 additional GPS stations. TLALOCNet provides open and freely available raw GPS data, and high frequency surface meteorology measurements, and time series of daily positions. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and also works as part of UNAVCO's seamless archive for discovery, sharing, and access to GPS data. The TLALOCNet data center also contains contributed data from several regional GPS networks in Mexico for a total of 100+ stations. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the scientific community has the capability of accessing data from the largest Mexican GPS network. This archive provides a fully queryable and scriptable GPS and Meteorological data retrieval point. In addition, real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP) for real-time seismic and weather forecasting applications. TLALOCNet served as a GPS-Met backbone for the binational Mexico-US North American Monsoon GPS Hydrometeorological Network 2017 campaign experiment. This innovative experiment attempts to address water vapor source regions and land-surface water vapor flux contributions to precipitation (i.e., moisture recycling) during the 2017 North American Monsoon in Baja California, Sonora, Chihuahua, and Arizona. Models suggest that moisture recycling is

  6. MIVIS image geocoding experience on merging position attitude system data and public domain GPS stream (ASI-GeoDAF

    Directory of Open Access Journals (Sweden)

    S. Pignatti

    2006-06-01

    Full Text Available The use of airborne scanners involves geo-referencing problems, which are difficult because of the need to know the exact platform position and attitude for each scan line. The errors of the onboard navigation system are normally corrected using ground control point on the image. This post-processing correction procedure is too long in case of multiple flight campaigns, and besides it implies the need to have available 1:10000 orthophotoimages or maps in digital format. To optimize the above procedure a new method to correct MIVIS navigational data in the post-processing phase has been implemented. The procedure takes into consideration the GPS stream in Rinex format of common knowledge and findable on the web, acquired at the ground stations of the Geodetic Data Archiving Facilities provided by ASI. The application of this correction entails the assumption that the environmental variables affecting both onboard and geodetic GPS equally affect the position measurements. The airborne data correction was carried out merging the two data sets (onboard and ground station GPS to achieve a more precise aircraft trajectory. The present study compares the geo-coded images obtained by means of the two post-processing methods.

  7. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  8. JERS-1 Workshop on the Ground Station for ASEAN

    Science.gov (United States)

    Peanvijarnpong, Chanchai

    1990-11-01

    Presented in viewgraph format, the present status of the ground station and future plan for utilizing earth observation satellites in Thailand is outlined. Topics addressed include: data acquisition system; operation status of LANDSAT, SPOT, and MOS-1 (Marine Observation Satellite-1); remote sensors of satellites; data output form; data correction level; data system in Thailand; ground station for MOS-1 satellite in Thailand; and future plan.

  9. Horizontal Displacement Vector Analysis in Ujong Muloh GPS Station (UMLH) Sumatra Island on March 27 – April 25, 2012

    Science.gov (United States)

    Pamungkas, S. S.; Koesuma, S.; Legowo, Budi

    2018-03-01

    Sumatra Island is an area that has high tectonic activities. This is because the island of Sumatra is located in two major plates of the world, the Indo-Australian plate and the Eurasia plate. The subduction zone causes Sumatra to deform from time to time. The deformation of Sumatra Island can be observed by continuous recording coordinates using the GPS Station. Continous-GPS (C-GPS) in Sumatra Island is named Sumatran GPS Array (SuGAr), one of them named UMLH. The UMLH GPS station used to observe the displacement in the Aceh City of Sumatra Island, is located in Ujung Muloh. The changes of GPS coordinate recording data can represent the deformation pattern that occurred in Sumatra. On April 11, 2012, according to USGS data, there had been an earthquake in the city of Aceh about 8.6 at coordinates of 2.433°N, 93.072°E. The purpose of this research is to analyze the horizontal displacement due to the occurrence of the earthquake. Data processing is carried out using software GAMIT/GLOBK. The magnitude of the displacement of Sumatra Island before the earthquake, during the earthquake, and after the quake on component X were respectively: 0.04 mm/day, 56.63 mm/day, and 8.28 mm/day; while on component Y were respectively: 0.03 mm/day, 23.78 mm/day, and 1.22 mm/day. The direction of displacement was 253.8° towards Southwest with the assumption that 0° was in the North.

  10. Ground control station software design for micro aerial vehicles

    Science.gov (United States)

    Walendziuk, Wojciech; Oldziej, Daniel; Binczyk, Dawid Przemyslaw; Slowik, Maciej

    2017-08-01

    This article describes the process of designing the equipment part and the software of a ground control station used for configuring and operating micro unmanned aerial vehicles (UAV). All the works were conducted on a quadrocopter model being a commonly accessible commercial construction. This article contains a characteristics of the research object, the basics of operating the micro aerial vehicles (MAV) and presents components of the ground control station model. It also describes the communication standards for the purpose of building a model of the station. Further part of the work concerns the software of the product - the GIMSO application (Generally Interactive Station for Mobile Objects), which enables the user to manage the actions and communication and control processes from the UAV. The process of creating the software and the field tests of a station model are also presented in the article.

  11. Techniques for predicting environment electromagnetic radiation at satellite ground station

    International Nuclear Information System (INIS)

    Xu Peiji

    1987-01-01

    The measurement theories, techniques, and calculation methods on public exposure level of electromagnetic radiation at satellite ground station are described for the purpose of enviroment protection and research of EM compatibility. According to the results of the measurement and calculation, it is possible to predict the effects of electromagnetic radiation to environment at satellite ground station

  12. Ground-Based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  13. Present day crustal deformation of the Italian peninsula observed by permanent GPS stations

    Science.gov (United States)

    Devoti, Roberto; Esposito, Alessandra; Galvani, Alessandro; Pietrantonio, Grazia; Pisani, Anna Rita; Riguzzi, Federica; Sepe, Vincenzo

    2010-05-01

    Italian penisula is a crucial area in the Mediterranean region to understand the active deformation processes along Nubia-Eurasia plate boundary. We present the velocity and strain rate fields of the Italian area derived from continuous GPS observations of more than 300 sites in the time span 1998-2009. The GPS networks were installed and managed by different institutions and for different purposes; altogether they cover the whole country with a mean inter-site distance of about 50 km and provide a valuable source of data to map the present day kinematics of the region. The data processing is performed by BERNESE software ver. 5.0, adopting a distributed session approach, with more than 10 clusters, sharing common stations, each of them consisting of about 40 stations. Daily loosely constrained solutions are routinely produced for each cluster and then combined into a network daily loose solution. Subsequently daily solutions are transformed on the chosen reference frame and the constrained time series are fitted using the complete covariance matrix, simultaneously estimating site velocities together with annual signals and sporadic offsets at epochs of instrumental changes. In this work we provide an updated detailed picture of the horizontal and vertical kinematics (velocity maps) and deformation pattern (strain rate maps) of the Italian area. The results show several crustal domains characterized by different velocity rates and styles of deformation.

  14. Thirteen years of integrated precipitable water derived by GPS at Mario Zucchelli Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Pierguido Sarti

    2013-06-01

    Full Text Available Since 1998, the Italian Antarctic Programme has been funding space geodetic activities based on the use of episodic and permanent global positioning system (GPS observations. As well as their exploitation in geodynamics, these data can be used to sense the atmosphere and to retrieve and monitor its water vapor content and variations. The surface pressure p and temperature Ts at the GPS tracking sites are necessary to compute the zenith hydrostatic delay (ZHD, and consequently, the precipitable water. At sites where no surface information is recorded, the p and Ts values can be retrieved from, e.g., global numerical weather prediction models. Alternatively, the site-specific ZHD values can be computed by interpolation of the ZHD values provided in a grid model (2.5° × 2.0°. We have processed the data series of the permanent GPS site TNB1 (Mario Zucchelli Station, Antarctica from 1998 to 2010, with the purpose of comparing the use of grid ZHD values as an alternative to the use of real surface records. With these approaches, we estimate almost 7 × 104 hourly values of precipitable water over 13 years, and we find discrepancies that vary between 1.8 (±0.2 mm in summer and 3.3 (±0.5 mm in winter. In addition, the discrepancies of the two solutions show a clear seasonal dependency. Radiosounding measurements were used to derive an independent series of precipitable water. These agree better with the GPS precipitable water derived from real surface data. However, the GPS precipitable water time series is dry biased, as it is ca. 77% of the total moisture measured by the radiosoundings. Both the GPS and radiosounding observations are processed through the most up-to-date strategies, to reduce known systematic errors.

  15. KSC ground operations planning for Space Station

    Science.gov (United States)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  16. Breadth of Scientific Activities and Network Station Specifications in the International GPS Service (IGS)

    Science.gov (United States)

    Moore, A. W.; Neilan, R. E.; Springer, T. A.; Reigber, Ch.

    2000-01-01

    A strong multipurpose aspect of the International GPS Service (IGS) is revealed by a glance at the titles of current projects and working groups within the IGS: IGS/BIPM Time Transfer Project; Ionosphere Working Group; Troposphere Working Group; International GLONASS Experiment; Working Group on Low-Earth Orbiter Missions; and Tide Gauges, CGPS, and the IGS. The IGS network infrastructure, in large part originally commissioned for geodynamical investigations, has proved to be a valuable asset in developing application-oriented subnetworks whose requirements overlap the characteristics of existing IGS stations and future station upgrades. Issues encountered thus far in the development of multipurpose or multitechnique IGS projects as well as future possibilities will be reviewed.

  17. Simultaneous ground-satellite observations of daytime traveling ionospheric disturbances over Japan using the GPS-TEC network and the CHAMP satellite

    Science.gov (United States)

    Moral, A. C.; Shiokawa, K.; Otsuka, Y.; Liu, H.; Nishioka, M.; Tsugawa, T.

    2017-12-01

    We report results of simultaneous ground-satellite measurements of daytime travelling ionospheric disturbances (TIDs) over Japan by using the GEONET GPS receiver network and the CHAMP satellite. For the two years of 2002 and 2008, we examined GPS measurements of TEC (Total Electron Content) and neutral and electron densities measured by CHAMP satellite. Total of fifteen TID events with clear southward moving structures in the GPS-TEC measurements are found by simultaneous ground-satellite measurements. On 2002, simultaneous events are only observed in January (1 event) and February (4 events). On 2008, ten events are observed around winter months (January (3 events), February (5), March (1), and October (1)). Neutral and electron densities measured by CHAMP show quasi-periodic fluctuations throughout the passages for all events. The CHAMP satellite crossed at least one clear TID phase front for all the events. We fitted a sinusoidal function to both ground and satellite data to obtain the frequencies and phase of the observed variations. We calculated the corresponding phase relationships between TEC variations and neutral and electron densities measured by CHAMP to categorize the events. In the presentations we report correspondence of these TID structures seen in the simultaneous ground-satellite observations by GPS-TEC and CHAMP, and discuss their phase relationship to identify the source of the daytime TIDs and specify how much of the observed variations are showing clear frequencies/or not in the nature at middle latitudes.

  18. Federated Ground Station Network Model and Interface Specification

    Science.gov (United States)

    2014-12-01

    of-sight of a small portion of the ground at any moment due to the geometry of a satellite in LEO above a planet of Earth’s size. The portion of the...Subnetwork 3 started out as a lone network in which there was a single CA and a number of ground stations. Then Subnetwork 3 joined with SA 1 and its

  19. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  20. Detection test of wireless network signal strength and GPS positioning signal in underground pipeline

    Science.gov (United States)

    Li, Li; Zhang, Yunwei; Chen, Ling

    2018-03-01

    In order to solve the problem of selecting positioning technology for inspection robot in underground pipeline environment, the wireless network signal strength and GPS positioning signal testing are carried out in the actual underground pipeline environment. Firstly, the strength variation of the 3G wireless network signal and Wi-Fi wireless signal provided by China Telecom and China Unicom ground base stations are tested, and the attenuation law of these wireless signals along the pipeline is analyzed quantitatively and described. Then, the receiving data of the GPS satellite signal in the pipeline are tested, and the attenuation of GPS satellite signal under underground pipeline is analyzed. The testing results may be reference for other related research which need to consider positioning in pipeline.

  1. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula

    Science.gov (United States)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E.; Costa, Maria João; Román, Roberto; Bennouna, Yasmine S.

    2017-12-01

    In this work, the water vapor product from MODIS (MODerate-resolution Imaging Spectroradiometer) instrument, on-board Aqua and Terra satellites, is compared against GPS water vapor data from 21 stations in the Iberian Peninsula as reference. GPS water vapor data is obtained from ground-based receiver stations which measure the delay caused by water vapor in the GPS microwave signals. The study period extends from 2007 until 2012. Regression analysis in every GPS station show that MODIS overestimates low integrated water vapor (IWV) data and tends to underestimate high IWV data. R2 shows a fair agreement, between 0.38 and 0.71. Inter-quartile range (IQR) in every station is around 30-45%. The dependence on several parameters was also analyzed. IWV dependence showed that low IWV are highly overestimated by MODIS, with high IQR (low precision), sharply decreasing as IWV increases. Regarding dependence on solar zenith angle (SZA), performance of MODIS IWV data decreases between 50° and 90°, while night-time MODIS data (infrared) are quite stable. The seasonal cycles of IWV and SZA cause a seasonal dependence on MODIS performance. In summer and winter, MODIS IWV tends to overestimate the reference IWV value, while in spring and autumn the tendency is to underestimate. Low IWV from coastal stations is highly overestimated (∼60%) and quite imprecise (IQR around 60%). On the contrary, high IWV data show very little dependence along seasons. Cloud-fraction (CF) dependence was also studied, showing that clouds display a negligible impact on IWV over/underestimation. However, IQR increases with CF, except in night-time satellite values, which are quite stable.

  2. Crustal deformations at permanent GPS sites in Denmark

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Knudsen, Per; Tscherning, Carl Christian

    2005-01-01

    The National Survey and Cadastre (KMS) is responsible for the geodetic definition of the reference network in Denmark. Permanent GPS stations play an important role in the monitoring and maintenance of the geodetic network. During 1998 and 1999 KMS established three permanent GPS station in Denma...

  3. New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm

    Science.gov (United States)

    Cherniak, Iurii; Zakharenkova, Irina

    2017-05-01

    Monitoring, tracking and nowcasting of the ionospheric plasma density disturbances using dual-frequency measurements of the Global Positioning System (GPS) signals are effectively carried out during several decades. Recent rapid growth and modernization of the ground-based segment gives an opportunity to establish a great database consisting of more than 6000 stations worldwide which provide GPS signals measurements with an open access. Apart of the GPS signals, at least two-third of these stations receive simultaneously signals transmitted by another Global Navigation Satellite System (GNSS)—the Russian system GLONASS. Today, GLONASS signal measurements are mainly used in navigation and geodesy only and very rarely for ionosphere research. We present the first results demonstrating advantages of using several independent but compatible GNSS systems like GPS and GLONASS for improvement of the permanent monitoring of the high-latitude ionospheric irregularities. For the first time, the high-resolution two-dimensional maps of ROTI perturbation were made using not only GPS but also GLONASS measurements. We extend the use of the ROTI maps for analyzing ionospheric irregularities distribution. We demonstrate that the meridional slices of the ROTI maps can be effectively used to study the occurrence and temporal evolution of the ionospheric irregularities. The meridional slices of the geographical sectors with a high density of the GPS and GLONASS measurements can represent spatio-temporal dynamics of the intense ionospheric plasma density irregularities with very high resolution, and they can be effectively used for detailed study of the space weather drivers on the processes of the ionospheric irregularities generation, development and their lifetimes. Using a representative database of 5800 ground-based GNSS stations located worldwide, we have investigated the occurrence of the high-latitude ionospheric plasma density irregularities during the geomagnetic storm of

  4. 76 FR 53883 - Proposed Information Collection; Comment Request; NOAA Satellite Ground Station Customer...

    Science.gov (United States)

    2011-08-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Satellite Ground Station Customer Questionnaire AGENCY: National Oceanic... asks people who operate ground receiving stations that receive data from NOAA satellites to complete a...

  5. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth

  6. Deformation analysis of Aceh April 11th 2012 earthquake using GPS observation data

    Science.gov (United States)

    Maulida, Putra; Meilano, Irwan; Sarsito, Dina A.; Susilo

    2015-04-01

    This research tries to estimate the co-seismic deformation of intraplate earthquake occurred off northern Sumatra coast which is about 100-200 km southwest of Sumatrasubduction zone. The earthquake mechanism was strike-slip with magnitude 8.6 and triggering aftershock with magnitude 8.2 two hours later. We estimated the co-seismic deformation by using the GPS (Global Positioning System) continuous data along western Sumatra coast. The GPS observation derived from Sumatran GPS Array (SuGAr) and Geospatial Information Agency (BIG). For data processing we used GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) to estimate the co-seismic deformation. From the GPS daily solution, the result shows that the earthquake caused displacement for the GPS stations in Sumatra. GPS stations in northern Sumatra showed the displacement to the northeast with the average displacement was 15 cm. The biggest displacement was found at station BSIM which is located at Simeuleu Island off north west Sumatra coast. GPS station in middle part of Sumatra, the displacement was northwest. The earthquake also caused subsidence for stations in northern Sumatra, but from the time series there was not sign of subsidence was found at middle part of Sumatra. In addition, the effect of the earthquake was worldwide and affected the other GPS Stations around Hindia oceanic.

  7. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  8. Deformation analysis of Aceh April 11{sup th} 2012 earthquake using GPS observation data

    Energy Technology Data Exchange (ETDEWEB)

    Maulida, Putra, E-mail: putra.maulida@gmail.com [Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Meilano, Irwan; Sarsito, Dina A. [Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Geodesy Research Group, geodesy and geomatic Engineering, ITB (Indonesia); Susilo [Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Geospatial Information Agency (BIG) (Indonesia)

    2015-04-24

    This research tries to estimate the co-seismic deformation of intraplate earthquake occurred off northern Sumatra coast which is about 100-200 km southwest of Sumatrasubduction zone. The earthquake mechanism was strike-slip with magnitude 8.6 and triggering aftershock with magnitude 8.2 two hours later. We estimated the co-seismic deformation by using the GPS (Global Positioning System) continuous data along western Sumatra coast. The GPS observation derived from Sumatran GPS Array (SuGAr) and Geospatial Information Agency (BIG). For data processing we used GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) to estimate the co-seismic deformation. From the GPS daily solution, the result shows that the earthquake caused displacement for the GPS stations in Sumatra. GPS stations in northern Sumatra showed the displacement to the northeast with the average displacement was 15 cm. The biggest displacement was found at station BSIM which is located at Simeuleu Island off north west Sumatra coast. GPS station in middle part of Sumatra, the displacement was northwest. The earthquake also caused subsidence for stations in northern Sumatra, but from the time series there was not sign of subsidence was found at middle part of Sumatra. In addition, the effect of the earthquake was worldwide and affected the other GPS Stations around Hindia oceanic.

  9. Very High-rate (50 Hz) GPS for Detection of Earthquake Ground Motions : How High Do We Need to Go?

    Science.gov (United States)

    Fang, R.

    2017-12-01

    The GPS variometric approach can measure displacements using broadcast ephemeris and a single receiver, with comparable precision to relative positioning and PPP within a short period of time. We evaluate the performance of the variometric approach to measure displacements using very high-rate (50 Hz) GPS data, which recorded from the 2013 Mw 6.6 Lushan earthquake and the 2011 Mw 9.0 Tohoku-Oki earthquake. To remove the nonlinear drift due to integration process, we present to apply a high-pass filter to reconstruct displacements using the variometric approach. Comparison between 50 Hz and 1 Hz coseismic displacements demonstrates that 1 Hz solutions often fail to faithfully manifest the seismic waves containing high-frequency (> 0.5 Hz) seismic signals, which is common for near-field stations during a moderate-magnitude earthquake. Therefore, in order to reconstruct near-field seismic waves caused by moderate or large earthquakes, it is helpful to equip monitoring stations with very high-rate GPS receivers. Results derived using the variometric approach are compared with PPP results. They display very good consistence within only a few millimeters both in static and seismic periods. High-frequency (above 10 Hz) noises of displacements derived using the variometric approach are smaller than PPP displacements in three components.

  10. GPS-seismograms reveal amplified shaking in California's San Joaquin Delta region

    Science.gov (United States)

    Johanson, I. A.

    2014-12-01

    The March 10, 2014, the Mw6.8 Ferndale earthquake occurred off the coast of Northern California, near the Mendocino Triple Junction. Aftershocks suggest a northeast striking fault plane for the strike-slip earthquake, oriented such that the California coast is roughly perpendicular to the rupture plane. Consequently, large amplitude Love waves were observed at seismic stations and continuous GPS stations throughout Northern California. While GPS is less sensitive then broadband instruments, in Northern California their station density is much higher, potentially providing valuable detail. A total of 269 GPS stations that have high-rate (1 sps) data available were used to generate GPS-seismograms. These include stations from the Bay Area Regional Deformation (BARD) network, the Plate Boundary Observatory (PBO, operated by UNAVCO), and the USGS, Menlo Park. The Track software package was used to generate relative displacements between pairs of stations, determined using Delaunay triangulation. This network-based approach allows for higher precision than absolute positioning, because common noise sources, in particular atmospheric noise, are cancelled out. A simple least-squares network adjustment with a stable centroid constraint is performed to transform the mesh of relative motions into absolute motions at individual GPS stations. This approach to generating GPS-seismograms is validated by the good agreement between time series records at 16 BARD stations that are co-located with broadband seismometers from the Berkeley Digital Seismic Network (BDSN). While the distribution of peak dynamic displacements is dominated in long periods by the radiation pattern, at shorter periods other patterns become visible. In particular, stations in the San Joaquin Delta (SJD) region show higher peak dynamic displacements than those in surrounding areas, as well as longer duration shaking. SJD stations also have higher dynamic displacements on the radial component than surrounding

  11. GPS operations at Olkiluoto in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J. (Finnish Geodetic Institute, Masala (Finland))

    2010-06-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than +-0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  12. GPS operations at Olkiluoto in 2009

    International Nuclear Information System (INIS)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J.

    2010-06-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ±0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  13. GPS operations at Olkiluoto in 2011

    International Nuclear Information System (INIS)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M.

    2012-06-01

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto, Kivetty and Romuvaara in co-operation with Posiva Oy since 1995. At Olkiluoto a total of 32 GPS campaigns have been carried out at inner network since 1995 and 17 campaigns at outer network since 2003. Kivetty and Romuvaara were not measured in 2011. In the Olkiluoto inner network 80 percent of the estimated change rates are smaller than 0.10 mm/a. One third of the change rates are statistically significant. They are mainly related to the Olkiluoto permanent station (GPS1) and to the pillars GPS6 and GPS13. The change rates related to GPS6 are not realistic due to the site-specific changes affecting the time series. The maximum change rate (-0.20 mm/a ± 0.05 mm/a) is related to GPS13. The time series of GPS13 is half the length of other pillars and therefore, the change rates are more uncertain. In the Olkiluoto outer network the maximum and statistically significant change rate is between GPS1-GPS11 (0.39 mm/a ± 0.06 mm/a). Pillar GPS12 was not observed this year. The change rates of baselines GPS1-GPS14 and GPS1-GPS15 are first time statistically significant. The change rates indicate a small movement of the GPS1 pillar. The baseline GPS1-GPS11 crosses an old fracture zone locating in the direction of the Eurajoensalmi, which might be a reason for the deformation. On the other hand, the Onkalo excavations in the vicinity of the Olkiluoto permanent station (GPS1) may cause some movement. Electronic distance measurements have been performed at Olkiluoto at the baseline GPS7-GPS8 using the Mekometer since 2002. The measurements have been carried out simultaneously with GPS campaigns. Based on 19 measurements in 10 years, the trends of the two time series seems to be similar. Due to unmodelled or dismodelled geometrical offsets and the scale difference between GPS measurements and EDM there is about 0.3 mm difference between distances GPS7-GPS8 derived from GPS measurements and EDM. It is

  14. GPS operations at Olkiluoto in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2012-06-15

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto, Kivetty and Romuvaara in co-operation with Posiva Oy since 1995. At Olkiluoto a total of 32 GPS campaigns have been carried out at inner network since 1995 and 17 campaigns at outer network since 2003. Kivetty and Romuvaara were not measured in 2011. In the Olkiluoto inner network 80 percent of the estimated change rates are smaller than 0.10 mm/a. One third of the change rates are statistically significant. They are mainly related to the Olkiluoto permanent station (GPS1) and to the pillars GPS6 and GPS13. The change rates related to GPS6 are not realistic due to the site-specific changes affecting the time series. The maximum change rate (-0.20 mm/a {+-} 0.05 mm/a) is related to GPS13. The time series of GPS13 is half the length of other pillars and therefore, the change rates are more uncertain. In the Olkiluoto outer network the maximum and statistically significant change rate is between GPS1-GPS11 (0.39 mm/a {+-} 0.06 mm/a). Pillar GPS12 was not observed this year. The change rates of baselines GPS1-GPS14 and GPS1-GPS15 are first time statistically significant. The change rates indicate a small movement of the GPS1 pillar. The baseline GPS1-GPS11 crosses an old fracture zone locating in the direction of the Eurajoensalmi, which might be a reason for the deformation. On the other hand, the Onkalo excavations in the vicinity of the Olkiluoto permanent station (GPS1) may cause some movement. Electronic distance measurements have been performed at Olkiluoto at the baseline GPS7-GPS8 using the Mekometer since 2002. The measurements have been carried out simultaneously with GPS campaigns. Based on 19 measurements in 10 years, the trends of the two time series seems to be similar. Due to unmodelled or dismodelled geometrical offsets and the scale difference between GPS measurements and EDM there is about 0.3 mm difference between distances GPS7-GPS8 derived from GPS measurements and EDM

  15. Physical applications of GPS geodesy: a review.

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

  16. Communication plan of GPS monitoring system based on the Internet

    Science.gov (United States)

    Xing, Xiangpeng; Liu, Zhenan; Bao, Yuanlu

    2005-11-01

    In GPS monitoring system, wireless communications network is necessary to keep base station in contact with mobile stations. Public communications network and personal communications network can't work well all the time. In this article, an economical communications network that can be competent for communication of GPS monitoring system is introduced. Personal communications network is used in this GPS monitoring system. In order to enlarge the coverage area and to expand the capacity of the personal communications network, the concept of cellular radio system is introduced. Because only the non-adjacent cells can use the same frequency channel, handoff of mobile station is extremely important when it goes in another cell. The mobile station of the system will know its own longitude and latitude by receiving data from GPS satellites all the time, so it can change its working frequency channel according to its position. Internet, instead of personal communication cable, is used to connect the base stations. So the communications network has the advantage of public communications network and personal one.

  17. Multiscale GPS tomography during COPS: validation and applications

    Science.gov (United States)

    Champollion, Cédric; Flamant, Cyrille; Masson, Frédéric; Gégout, Pascal; Boniface, Karen; Richard, Evelyne

    2010-05-01

    Accurate 3D description of the water vapour field is of interest for process studies such as convection initiation. None of the current techniques (LIDAR, satellite, radio soundings, GPS) can provide an all weather continuous 3D field of moisture. The combination of GPS tomography with radio-soundings (and/or LIDAR) has been used for such process studies using both advantages of vertically resolved soundings and high temporal density of GPS measurements. GPS tomography has been used at short scale (10 km horizontal resolution but in a 50 km² area) for process studies such as the ESCOMPTE experiment (Bastin et al., 2005) and at larger scale (50 km horizontal resolution) during IHOP_2002. But no extensive statistical validation has been done so far. The overarching goal of the COPS field experiment is to advance the quality of forecasts of orographically induced convective precipitation by four-dimensional observations and modeling of its life cycle for identifying the physical and chemical processes responsible for deficiencies in QPF over low-mountain regions. During the COPS field experiment, a GPS network of about 100 GPS stations has been continuously operating during three months in an area of 500 km² in the East of France (Vosges Mountains) and West of Germany (Black Forest). If the mean spacing between the GPS is about 50 km, an East-West GPS profile with a density of about 10 km is dedicated to high resolution tomography. One major goal of the GPS COPS experiment is to validate the GPS tomography with different spatial resolutions. Validation is based on additional radio-soundings and airborne / ground-based LIDAR measurement. The number and the high quality of vertically resolved water vapor observations give an unique data set for GPS tomography validation. Numerous tests have been done on real data to show the type water vapor structures that can be imaging by GPS tomography depending of the assimilation of additional data (radio soundings), the

  18. SCaN Network Ground Station Receiver Performance for Future Service Support

    Science.gov (United States)

    Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung

    2012-01-01

    Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.

  19. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    Science.gov (United States)

    Wermuth, Martin; Hauschild, Andre; Montenbruck, Oliver; Kahle, Ralph

    TerraSAR-X is a German Synthetic Aperture Radar (SAR) satellite, which was launched in June 2007 from Baikonour. Its task is to acquire radar images of the Earth's surface. In order to locate the radar data takes precisely, the satellite is equipped with a high-quality dual-frequency GPS receiver -the Integrated Geodetic and Occultation Receiver (IGOR) provided by the GeoForschungsZentrum Potsdam (GFZ). Using GPS observations from the IGOR instrument in a reduced dynamic precise orbit determination (POD), the German Space Operations Center (DLR/GSOC) is computing rapid and science orbit products on a routine basis. The rapid orbit products arrive with a latency of about one hour after data reception with an accuracy of 10-20 cm. Science orbit products are computed with a latency of five days achieving an accuracy of about 5cm (3D-RMS). For active and future Earth observation missions, the availability of near real-time precise orbit information is becoming more and more important. Other applications of near real-time orbit products include the processing of GNSS radio occulation measurements for atmospheric sounding as well as altimeter measurements of ocean surface heights, which are nowadays employed in global weather and ocean circulation models with short latencies. For example after natural disasters it is necessary to evaluate the damage by satellite images as soon as possible. The latency and quality of POD results is mainly driven by the availability of precise GPS ephemerides. In order to have high-quality GPS ephemerides available at real-time, GSOC has developed the real-time clock estimation system RETICLE. The system receives NTRIP-data streams with GNSS observations from the global tracking network of IGS in real-time. Using the known station position, RETICLE estimates precise GPS satellite clock offsets and drifts based on the most recent available IGU predicted orbits. The clock offset estimates have an accuracy of better than 0.3 ns and are

  20. Compaction of Aquifer at Different Depths: Observations from a Vertical GPS Array in the Coastal Center of the University of Houston, Texas

    Science.gov (United States)

    Lee, D.; Kearns, T.; Yang, L.; Wang, G.

    2014-12-01

    Houston and the surrounding Harris County have experienced the detrimental effects of subsidence even prior to World War II, to the extent that the land along Galveston Bay had sunk as much as 20 feet since 1906. One dramatic example is the Brownwood subdivision, a coastal community in Baytown where continuous flooding due to subsidence forced the area to be deemed unlivable and consequently abandoned. Thus, Houston's changes in groundwater and compaction of its aquifers are of relatively high concern to those in the public (infrastructure), private (oil & gas), and international (Port of Houston Authority) sectors. One of the key questions related to the subsidence issue in Houston area is what are the contributions of sediments at different depths, and what particularly is the contribution from shallow sediments? To address these questions, University of Houston has installed a vertical GPS array in the UH Coastal Center in March 2014. The GPS array includes four permanent GPS stations with the antenna pole foundations anchored at different depths below ground surface (-10 m, -7m, -4m, 0 m). A special, double-pipe GPS antenna monument was designed for GPS stations with the array. This project was funded by an NSF grant and a UH internal grant. Five groundwater wells with the depths ranging from 2 m to 100 m below the ground surface were also installed at the UH Coastal Center site. This study will investigate continuous GPS and groundwater level measurements (March-November, 2014) at the UHCC site. It is expected that the GPS array will provide total information on subsidence as well as compaction of aquifers within different depth ranges (0 to -4m, -4 to -7 m, -7 to -10m, and below -10 m). Correlation of land subsidence and groundwater fluctuation will also be investigated.

  1. Distributed operating system for NASA ground stations

    Science.gov (United States)

    Doyle, John F.

    1987-01-01

    NASA ground stations are characterized by ever changing support requirements, so application software is developed and modified on a continuing basis. A distributed operating system was designed to optimize the generation and maintenance of those applications. Unusual features include automatic program generation from detailed design graphs, on-line software modification in the testing phase, and the incorporation of a relational database within a real-time, distributed system.

  2. Ionospheric threats to the integrity of airborne GPS users

    Science.gov (United States)

    Datta-Barua, Seebany

    The Global Positioning System (GPS) has both revolutionized and entwined the worlds of aviation and atmospheric science. As the largest and most unpredictable source of GPS positioning error, the ionospheric layer of the atmosphere, if left unchecked, can endanger the safety, or "integrity," of the single frequency airborne user. An augmentation system is a differential-GPS-based navigation system that provides integrity through independent ionospheric monitoring by reference stations. However, the monitor stations are not in general colocated with the user's GPS receiver. The augmentation system must protect users from possible ionosphere density variations occurring between its measurements and the user's. This study analyzes observations from ionospherically active periods to identify what types of ionospheric disturbances may cause threats to user safety if left unmitigated. This work identifies when such disturbances may occur using a geomagnetic measure of activity and then considers two disturbances as case studies. The first case study indicates the need for a non-trivial threat model for the Federal Aviation Administration's Local Area Augmentation System (LAAS) that was not known prior to the work. The second case study uses ground- and space-based data to model an ionospheric disturbance of interest to the Federal Aviation Administration's Wide Area Augmentation System (WAAS). This work is a step in the justification for, and possible future refinement of, one of the WAAS integrity algorithms. For both WAAS and LAAS, integrity threats are basically caused by events that may be occurring but are unobservable. Prior to the data available in this solar cycle, events of such magnitude were not known to be possible. This work serves as evidence that the ionospheric threat models developed for WARS and LAAS are warranted and that they are sufficiently conservative to maintain user integrity even under extreme ionospheric behavior.

  3. Rapid Modeling of and Response to Large Earthquakes Using Real-Time GPS Networks (Invited)

    Science.gov (United States)

    Crowell, B. W.; Bock, Y.; Squibb, M. B.

    2010-12-01

    Real-time GPS networks have the advantage of capturing motions throughout the entire earthquake cycle (interseismic, seismic, coseismic, postseismic), and because of this, are ideal for real-time monitoring of fault slip in the region. Real-time GPS networks provide the perfect supplement to seismic networks, which operate with lower noise and higher sampling rates than GPS networks, but only measure accelerations or velocities, putting them at a supreme disadvantage for ascertaining the full extent of slip during a large earthquake in real-time. Here we report on two examples of rapid modeling of recent large earthquakes near large regional real-time GPS networks. The first utilizes Japan’s GEONET consisting of about 1200 stations during the 2003 Mw 8.3 Tokachi-Oki earthquake about 100 km offshore Hokkaido Island and the second investigates the 2010 Mw 7.2 El Mayor-Cucapah earthquake recorded by more than 100 stations in the California Real Time Network. The principal components of strain were computed throughout the networks and utilized as a trigger to initiate earthquake modeling. Total displacement waveforms were then computed in a simulated real-time fashion using a real-time network adjustment algorithm that fixes a station far away from the rupture to obtain a stable reference frame. Initial peak ground displacement measurements can then be used to obtain an initial size through scaling relationships. Finally, a full coseismic model of the event can be run minutes after the event, given predefined fault geometries, allowing emergency first responders and researchers to pinpoint the regions of highest damage. Furthermore, we are also investigating using total displacement waveforms for real-time moment tensor inversions to look at spatiotemporal variations in slip.

  4. GPS IPW as a Meteorological Parameter and Climate Global Change Indicator

    Science.gov (United States)

    Kruczyk, M.; Liwosz, T.

    2011-12-01

    Paper focuses on comprehensive investigation of the GPS derived IPW (Integrated Precipitable Water, also IWV) as a geophysical tool. GPS meteorology is now widely acknowledged indirect method of atmosphere sensing. First we demonstrate GPS IPW quality. Most thorough inter-technique comparisons of directly measured IPW are attainable only for some observatories (note modest percentage of GPS stations equipped with meteorological devices). Nonetheless we have managed to compare IPW series derived from GPS tropospheric solutions (ZTD mostly from IGS and EPN solutions) and some independent techniques. IPW values from meteorological sources we used are: radiosoundings, sun photometer and input fields of numerical weather prediction model. We can treat operational NWP models as meteorological database within which we can calculate IWV for all GPS stations independently from network of direct measurements (COSMO-LM model maintained by Polish Institute of Meteorology and Water Management was tried). Sunphotometer (CIMEL-318, Central Geophysical Observatory IGF PAS, Belsk, Poland) data seems the most genuine source - so we decided for direct collocation of GPS measurements and sunphotometer placing permanent GPS receiver on the roof of Belsk Observatory. Next we analyse IPW as geophysical parameter: IPW demonstrates some physical effects evoked by station location (height and series correlation coefficient as a function of distance) and weather patterns like dominant wind directions (in case of neighbouring stations). Deficiency of surface humidity data to model IPW is presented for different climates. This inadequacy and poor humidity data representation in NWP model extremely encourages investigating information exchange potential between Numerical Model and GPS network. The second and most important aspect of this study concerns long series of IPW (daily averaged) which can serve as climatological information indicator (water vapour role in climate system is hard to

  5. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    Science.gov (United States)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  6. Pengembangan Sistem Navigasi Otomatis Pada UAV (Unmanned Aerial Vehicle dengan GPS(Global Positioning System Waypoint

    Directory of Open Access Journals (Sweden)

    Rahmad Hidayat

    2017-01-01

    Full Text Available UAV adalah salah satu wahana tanpa awak di udara yang mana dapat terbang tanpa pilot, menggunakan gaya aerodinamik untuk menghasilkan gaya angkat (lift, dapat terbang secara autonomous atau dioperasikan dengan radio kontrol. UAV digunakan untuk berbagai keperluan baik di lingkup militer maupun sipil. Pada tugas akhir ini dirancang dan direalisasikan pengembangan sistem navigasi otomatis pada UAV dengan GPS waypoint. Sistem ini menggunakan kontrol manual dan autopilot. Pada mode manual, pengguna secara manual mengendalikan pergerakan pesawat melalui radio kontroler sedangkan pada mode autopilot pesawat dikendalikan oleh mikrokontroler Arduino Mega 2560 yang mengolah data-data sensor IMU (Inertial Measurement Unit yang didalamnya terdapat gyroscope dan accelerometer, GPS dan barometric altimeter sehingga dapat terbang secara otomatis dengan sesuai waypoint GPS yang dimasukkan. Mikrokontroler menerima dan menolah data dari sensor dan menghasilkan keluaran untuk menggerakkan servo aktuator. Pengolahan data dari sensor menggunakan kontrol PID (Proportional Integral Derivative. Pesawat akan terkoneksi dengan ground station melalui perangkat telemetri untuk mengirimkan data penerbangan ke darat. Sistem navigasi ini diharapkan dapat secara tepat mengarahkan pesawat menuju satu titik atau lebih dengan toleransi kesalahan ≤ 30 meter pada ketinggian 30-100 meter. Selain itu pesawat diharapkan dapat terbang dengan radius ± 2 km dari ground station. Hasil dari pengujian dapat dilaksanakan kontrol manual dan otomatis pada UAV melalui 5 channel (aileron, elevator, throttle, rudder dan saklar. Distorsi pada kontrol manual diminimalisir dengan memperbesar faktor pembagi sinyal PWM sebesar 50μs-100μs. Kontrol otomatis dapat menstabilkan sikap pesawat di udara (sudut roll 45° dan sudut pitch 30° Setting Kp 1,2 dan Ki 0,01, setting Kp navigasi GPS 0,2 Ki 0,01 dan Kd 4 dengan sudut roll maksimal 15°.

  7. Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities

    Science.gov (United States)

    Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun

    2014-01-01

    Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF. PMID:25237901

  8. Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities

    Directory of Open Access Journals (Sweden)

    Lin Pan

    2014-09-01

    Full Text Available Precise point positioning (PPP technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF. All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF.

  9. Standardization of GPS data processing

    International Nuclear Information System (INIS)

    Park, Pil Ho

    2001-06-01

    A nationwide GPS network has been constructed with about 60 permanent GPS stations after late 1990s in Korea. For using the GPS in variety of application area like crustal deformation, positioning, or monitoring upper atmosphere, it is necessary to have ability to process the data precisely. Now Korea Astronomy Observatory has the precise GPS data processing technique in Korea because it is difficult to understand characteristics of the parameters we want to estimate, resolve the integer ambiguity, and analyze many errors. There are three reliable GPS data processing software in the world ; Bernese(University of Berne), GIPSY-OASIS(JPL), GAMIT(MIT). These software allow us to achieve millimeter accuracy in the horizontal position and about 1 cm accuracy vertically even for regional networks with a diameter of several thousand kilometers. But we established the standard of GPS data processing using Bernese as main tool and GIPSY O ASIS as side

  10. GPS and Galileo Developments on Board the International Space Station With the Space Communications and Navigation (SCaN) Testbed

    Science.gov (United States)

    Pozzobon, Oscar; Fantinato, Samuele; Dalla Chiara, Andrea; Gamba, Giovanni; Crisci, Massimo; Giordana, Pietro; Enderle, Werner; Chelmins, David; Sands, Obed S.; Clapper, Carolyn J.; hide

    2016-01-01

    The Space Communications and Navigation (SCaN) is a facility developed by NASA and hosted on board the International Space Station (ISS) on an external truss since 2013.It has the objective of testing navigation and communication experimentations with a Software Defined Radio (SDR) approach, which permits software updates for testing new experimentations.NASA has developed the Space Telecommunications Radio System (STRS) architecture standard for SDRs used in space and ground-based platforms to provide commonality among radio developments to provide enhanced capability. The hardware is equipped with both L band front-end radios and the NASA space network communicates with it using S-band, Ku-band and Ka-band links.In May 2016 Qascom started GARISS (GPS and Galileo Receiver for the ISS), an activity of experimentation in collaboration with ESA and NASA that has the objective to develop and validate the acquisition and processing of combined GPS and Galileo signals on board the ISS SCaN testbed. This paper has the objective to present the mission, and provide preliminary details about the challenges in the design, development and verification of the waveform that will be installed on equipment with limited resources. GARISS is also the first attempt to develop a waveform for the ISS as part of an international collaboration between US and Europe. Although the final mission objective is to target dual frequency processing, initial operations will foresee a single frequency processing. Initial results and trade-off between the two options, as well as the final decision will be presented and discussed. The limited resources on board the SCaN with respect to the challenging requirements to acquire and track contemporaneously two satellite navigation systems, with different modulations and data structure, led to the need to assess the possibility of aiding from ground through the S-band. This option would allow assistance to the space receiver in order to provide

  11. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  12. Software-Defined Ground Stations - Enhancing Multi-Mission Support, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 proposal to NASA requests $99,055.69 to enhance multiple mission support in ground stations through the use of software defined radios and virtual...

  13. Determination of semi-diurnal ocean tide loading constituents using GPS in Alaska

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Tscherning, C.C.

    2001-01-01

    During the past years, the accuracy of relative positioning using differential GPS (DGPS) has been improved significantly. The present accuracy of DGPS allows us to directly estimate the differential amplitudes and Greenwich phase lags of the main semi-diurnal ocean tide loading constituents (S-2......, K-2, M-2 and N-2). For this purpose a test is carried out using two GPS stations in Alaska. One station, Chi3, is located on an island in the Gulf of Alaska, while the second station, Fair, is located far away from the coastal areas. Processing hourly GPS solutions for the baseline between Fair...

  14. 2014-2016 Mt. Etna Ground deformation imaged by SISTEM approach using GPS and SENTINEL-1A/1B TOPSAR data

    Science.gov (United States)

    Bonforte, Alessandro; Guglielmino, Francesco; Puglisi, Giuseppe

    2017-04-01

    In the frame of the EC FP7 MED-SUV project (call FP7 ENV.2012.6.4-2), and thanks to the GEO-GSNL initiative, GPS data and SENTINEL 1A/1B TOPSAR acquired on Mt. Etna between October 2014 and November 2016 were analyzed. The SENTINEL data were used in order to combine and integrate them with GPS, and detail the ground deformation recorded by GPS on Mt. Etna, during the last two-year's volcanic activity. The Sentinel data were processed by GAMMA software, using a spectral diversity method and a procedure able to co-register the SENTINEL pairs with extremely high precision (processing, a new software architecture based on the hypervisor virtualization technology for the x64 versions of Windows has been implemented. The DInSAR results are analysed and successively used as input for the time series analysis using the StaMPS package. On December 28, 2014 eruptive activity resumed at Mt. Etna with a fire fountain activity feeding two lava flows spreading on the eastern and south-western upper flanks of the volcano, producing evident deformation at the summit of the volcano. GPS displacements and Sentinel-1A ascending interferogram were calculated in order to image the ground deformation pattern accompanying the eruption. The ground deformation pattern has been perfectly depicted by the GPS network, mainly affecting the uppermost part of the volcano edifice, with a strong decay of the deformation, according to a very shallow and strong dyke intrusion. The Sentinel 1A SAR data, covering the similar time spanning, confirmed that most of displacements are related to the dike intrusion, and evidenced a local gravity-driven motion of the western wall of the Valle del Bove, probably related to the dike intrusion. To monitor the temporal successive evolution of ground deformation, we performed an A-DInSAR SENTINEL analysis using the Small BAseline Subset (SBAS) approach included with the StaMPS processing package. The April 2015-December 2015, SBAS Time series, shown a volcano

  15. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-05-01

    Full Text Available GPS has become a very effective tool to remotely sense precipitable water vapor (PWV information, which is important for weather forecasting and nowcasting. The number of geodetic GNSS stations set up in China has substantially increased over the last few decades. However, GPS PWV derivation requires surface pressure to calculate the precise zenith hydrostatic delay and weighted mean temperature to map the zenith wet delay to precipitable water vapor. GPS stations without collocated meteorological sensors can retrieve water vapor using standard atmosphere parameters, which lead to a decrease in accuracy. In this paper, a method of interpolating NWP reanalysis data to site locations for generating corresponding meteorological elements is explored over China. The NCEP FNL dataset provided by the NCEP (National Centers for Environmental Prediction and over 600 observed stations from different sources was selected to assess the quality of the results. A one-year experiment was performed in our study. The types of stations selected include meteorological sites, GPS stations, radio sounding stations, and a sun photometer station. Compared with real surface measurements, the accuracy of the interpolated surface pressure and air temperature both meet the requirements of GPS PWV derivation in most areas; however, the interpolated surface air temperature exhibits lower precision than the interpolated surface pressure. At more than 96% of selected stations, PWV differences caused by the differences between the interpolation results and real measurements were less than 1.0 mm. Our study also indicates that relief amplitude exerts great influence on the accuracy of the interpolation approach. Unsatisfactory interpolation results always occurred in areas of strong relief. GPS PWV data generated from interpolated meteorological parameters are consistent with other PWV products (radio soundings, the NWP reanalysis dataset, and sun photometer PWV data. The

  16. Topo-Iberia GPS network: installation complete

    Science.gov (United States)

    Khazaradze, G.

    2009-04-01

    As part of the project, titled "Geociencias en Iberia: Estudios integrados de topografía y evolución 4D: Topo-Iberia", we have established a network of 26 continuous GPS stations, covering the Spanish part of the Iberian Peninsula (22 stations) and Morocco (4 stations). A major objective behind the establishment of this array is to monitor millimeter level deformation of the crust due to the collision of African and Eurasian (including Iberian) tectonic plates. More specific goals of the project include the identification of the areas and/or specific seismic faults which exhibit higher deformation rates, which could imply an increased seismic hazard in these specific areas. The network has been designed as two X-shaped transects crossing the peninsula from NE to SW and NW to SE, with relatively coarse distribution of the stations, superimposed with denser coverage in the seismically active areas of the Betics, Pyrenees and Cantabrian chains. The majority of the built monuments consist of 1.5-1.8 m tall concrete pillars of 40 cm in diameter anchored to the bedrock using iron rebars. One station in Huesca was built according the UNAVCO's short drilled braced monument (SDBM) specifications. All the monuments were equipped with the SCIGN leveling mounts to ensure the precise antenna alignment and re-alignment in case of the antenna replacement, as well as, tamper resistance of the monument mark. In places were the snow accumulation was possible the antennas were covered with plastic radomes. The instrumentation used is Trimble NetRS dual-frequency receivers with choke-ring antennas. The communication is mainly via cellular telephone system. As of December 2008, the network installation has been competed and all the stations are fully operational. Here we report the milestones of the installation of the network and, as well as, present the first preliminary results of the analysis of the data. Besides the newly established Topo-Iberia CGPS stations, we have included

  17. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  18. Relation of decorrelated transionospheric GPS signal fluctuations from two stations in the northern anomaly crest region with equatorial ionospheric dynamics

    Science.gov (United States)

    Paul, K. S.; Paul, A.

    2017-05-01

    The ionosphere around the northern crest of the equatorial ionization anomaly (EIA) and beyond exhibits rapid temporal as well as spatial development of ionization density irregularities during postsunset hours. A GPS campaign was conducted during September 2012 and April 2013 from the Institute of Radio Physics and Electronics, Calcutta (22.58°N, 88.38°E geographic; magnetic dip: 32°N), and North Bengal University (NBU), Siliguri (26.72°N, 88.39°E geographic, magnetic dip: 39.49°N) in India in order to assess and quantify differences, if any, in the nature of carrier to noise ratio (C/N0) fluctuations observed on the same satellite link around the same time interval from these stations. Significant decorrelation of the received signals was found when tracking the same satellite vehicle (SV) link from these stations during periods of scintillations. Low values of correlation coefficient of C/N0 at L1 frequency recorded on the same SV link at these two stations were found to correspond with high irregularity characteristic velocities. North-south spatial displacement rates of the impact of ionospheric irregularities were calculated based on coordinated GPS observations which followed an increasing trend with irregularity characteristic velocities measured at VHF. Values of characteristic velocities in excess of 36 m/s were also found to result in large receiver position deviations 3.5-4.0 m during periods of scintillations. Information related to time lag associated with occurrence of scintillations on the same SV link observed from two stations could be useful for improving performance of transionospheric satellite-based position determination techniques.

  19. Application of GPS in a high precision engineering survey network

    International Nuclear Information System (INIS)

    Ruland, R.; Leick, A.

    1985-04-01

    A GPS satellite survey was carried out with the Macrometer to support construction at the Stanford Linear Accelerator Center (SLAC). The network consists of 16 stations of which 9 stations were part of the Macrometer network. The horizontal and vertical accuracy of the GPS survey is estimated to be 1 to 2 mm and 2 to 3 mm respectively. The horizontal accuracy of the terrestrial survey, consisting of angles and distances, equals that of the GPS survey only in the ''loop'' portion of the network. All stations are part of a precise level network. The ellipsoidal heights obtained from the GPS survey and the orthometric heights of the level network are used to compute geoid undulations. A geoid profile along the linac was computed by the National Geodetic Survey in 1963. This profile agreed with the observed geoid within the standard deviation of the GPS survey. Angles and distances were adjusted together (TERRA), and all terrestrial observations were combined with the GPS vector observations in a combination adjustment (COMB). A comparison of COMB and TERRA revealed systematic errors in the terrestrial solution. A scale factor of 1.5 ppM +- .8 ppM was estimated. This value is of the same magnitude as the over-all horizontal accuracy of both networks. 10 refs., 3 figs., 5 tabs

  20. Absolute GPS Positioning Using Genetic Algorithms

    Science.gov (United States)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  1. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  2. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-05-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  3. Application of ground-penetrating radar at McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station

  4. Research in Application of Geodetic GPS Receivers in Time Synchronization

    Science.gov (United States)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.

    2018-04-01

    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least

  5. RESEARCH IN APPLICATION OF GEODETIC GPS RECEIVERS IN TIME SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2018-04-01

    Full Text Available In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns. In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2–4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even

  6. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  7. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong

    Science.gov (United States)

    Yang, Zhe; Liu, Zhizhao

    2016-05-01

    This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.

  8. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Science.gov (United States)

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  9. IceBridge GPS L0 Raw Satellite Navigation Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge GPS L0 Raw Satellite Navigation Data (IPUTG0) data set contains GPS readings, including latitude, longitude, track, ground speed, off distance,...

  10. SLR and GPS spatial techniques in ITRF. Argentine results.

    Science.gov (United States)

    Actis, Eloy Vicente; Huang, Dongping; Márquez, Raúl; Adarvez, Sonia; Flores, Matías; Brizuela, Diego; Nievas, Jesica; Podestá, Ricardo; Pacheco, Ana M.; Rojas, Hernán Alvis; Yin, Zhiqiang; Li, Jinzeng; Han, Yanben; Liu, Weidong; Wang, Rui

    2012-08-01

    Along the late 30 years spatial geodetic techniques enable us to measure horizontal and vertical deformations of the Earth’s surface with a very high precision. Performing this task we made Satellite Laser Ranging (SLR), and Global Positioning System (GPS) observations in South America ILRS 7406 Station placed at Observatorio Astronómico Félix Aguilar (OAFA) in San Juan, Argentina, accomplishing a Cooperation Agreement between CAS - NAOC and OAFA - UNSJ. Trough LAGEOS II Satellite observations we obtain rectangular coordinates of San Juan ILRS Station in the Terrestrial Reference Frame (ITR 2000), standing out that Argentine Station data were included in the late arrangements ITRF given by International Earth Rotation and Reference System Service (IERS). Spatial and temporary variations of the epoch 2010 - 2011 were evaluated finding out remarkable displacements, of about a half meter, related with seismic events on the region. We confirm these deformations by means of GP S determinations referred to Permanent GPS Station placed nearby the SLR Station.

  11. Investigating source directivity for the 2012 Ml5.9 Emilia (Northern Italy) earthquake by jointly using High-rate GPS and Strong motion data

    Science.gov (United States)

    Avallone, A.; Herrero, A.; Latorre, D.; Rovelli, A.; D'Anastasio, E.

    2012-12-01

    On May, 20th 2012, the Ferrara and Modena provinces (Emilia Romagna, Northern Italy) were struck by a moderate magnitude earthquake (Ml 5.9). The focal mechanism is consistent with a ~E-W-striking thrust fault. The mainshock was recorded by 29 high-rate sampling (1-Hz) continuous GPS (HRGPS) stations belonging to scientific or commercial networks and by 55 strong motion (SM) stations belonging to INGV (Istituto Nazionale di Geofisica e Vulcanologia) and RAN (Rete Accelerometrica Nazionale) networks, respectively. The spatial distribution of both HRGPS and SM stations with respect to the mainshock location allows a satisfactory azimuthal coverage of the area. To investigate directivity effects during the mainshock occurrence, we analyze the spatial variation of the peak ground displacement (PGD) measured either for HRGPS or SM sites, using different methods. For each HRGPS and SM site, we rotated the horizontal time series to the azimuth direction and we estimated the GPS-related and the SM-related peak ground displacement (G-PGD and S-PGD, respectively) retrieved by transverse component. However, in contrast to GPS displacements, the double integration of the SM data can be affected by the presence of drifts and, thus, they have to be corrected by quasi-manual procedures. To more properly compare the G-PGDs to the S-PGDs, we used the response spectrum. A response spectrum is simply the response of a series of oscillators of varying natural frequency, that are forced into motion by the same input. The asymptotic value of the displacement response spectrum is the peak ground displacement. Thus, for each HRGPS and SM site, we computed the value of this asymptotic trend (G-PGDrs and S-PGDrs, respectively). This method allows simple automatic procedures. The consistency of the PGDs derived from HRGPS and SM is also evaluated for sites where the two instruments are collocated. The PGDs obtained by the two different methods and the two different data types suggest a

  12. Transition of NOAA's GPS-Met Data Acquisition and Processing System to the Commercial Sector

    Science.gov (United States)

    Jackson, M. E.; Holub, K.; Callahan, W.; Blatt, S.

    2014-12-01

    In April of 2014, NOAA/OAR/ESRL Global Systems Division (GSD) and Trimble, in collaboration with Earth Networks, Inc. (ENI) signed a Cooperative Research and Development Agreement (CRADA) to transfer the existing NOAA GPS-Met Data Acquisition and Processing System (GPS-Met DAPS) technology to a commercial Trimble/ENI partnership. NOAA's GPS-Met DAPS is currently operated in a pseudo-operational mode but has proven highly reliable and running at over 95% uptime. The DAPS uses the GAMIT software to ingest dual frequency carrier phase GPS/GNSS observations and ancillary information such as real-time satellite orbits to estimate the zenith-scaled tropospheric (ZTD) signal delays and, where surface MET data are available, retrieve integrated precipitable water vapor (PWV). The NOAA data and products are made available to end users in near real-time. The Trimble/ENI partnership will use the Trimble Pivot™ software with the Atmosphere App to calculate zenith tropospheric (ZTD), tropospheric slant delay, and integrated precipitable water vapor (PWV). Evaluation of the Trimble software is underway starting with a comparison of ZTD and PWV values determined from GPS stations located near NOAA Radiosonde Observation (Upper-Air Observation) launch sites. A success metric was established that requires Trimble's PWV estimates to match ESRL/GSD's to within 1.5 mm 95% of the time, which corresponds to a ZTD uncertainty of less than 10 mm 95% of the time. Initial results indicate that Trimble/ENI data meet and exceed the ZTD metric, but for some stations PWV estimates are out of specification. These discrepancies are primarily due to how offsets between MET and GPS stations are handled and are easily resolved. Additional test networks are proposed that include low terrain/high moisture variability stations, high terrain/low moisture variability stations, as well as high terrain/high moisture variability stations. We will present results from further testing along with a timeline

  13. Surface Temperature and Precipitation Affecting GPS Signals Before the 2009 L'Aquila Earthquake (Central Italy).

    Science.gov (United States)

    Crescentini, L.; Amoruso, A.; Chiaraluce, L.

    2017-12-01

    This work focuses on GPS time series recorded before the Mw 6.1 earthquake which struck Central Italy in April 2009. It shows how environmental noise effects may be subtle and relevant when investigating relatively small strain signals and how the availability of data from weather stations and water level sensors co-located with GPS stations may provide critical information which must be taken into consideration while dealing with deformation signals.The preparatory phase of a large earthquake may include both seismic (foreshocks) and aseismic (slow slip event, SSE) deforming episodes but, unlike afterslip, no slow event has yet been recorded before moderate earthquakes, even when they occurred close to high-sensitivity strain meters. An exception to this seems to be represented by the 2009 earthquake. The main shock was preceded by a foreshock sequence lasting 6 months; it has been claimed that an analysis of continuous GPS data shows that during the foreshock sequence a 5.9 Mw SSE occurred along a decollement located beneath the reactivated normal fault system. This hypothesized SSE, that started in the middle of February 2009 and lasted for almost two weeks, would have eventually loaded the largest foreshock and the main shock.We show that the strain signal that the SSE would have generated at two laser strainmeters operating at about 20 km NE from the SSE source was essentially undetected. On the contrary, a transient signal is present in temperature and precipitation time series recorded close to the GPS station, MTTO, that has largest signal referred to the SSE, implying that these contaminated the GPS record. This interpretation is corroborated by the strong similarity, during the coldest winter months, between the displacement data of MTTO and a linear combination of filtered temperature and precipitation data, mimicking simple heat conduction and snow accumulation/removal processes. Such a correlation between displacement and environmental data is missing

  14. Airline Operational Control (AOC)/UAS Ground Control Station (GCS) Collaboration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to form a network and a set of tools that will create a shared situation awareness with Unmanned Aircraft Systems (UAS) Ground Control Stations (GCSs) and...

  15. A pose estimation method for unmanned ground vehicles in GPS denied environments

    Science.gov (United States)

    Tamjidi, Amirhossein; Ye, Cang

    2012-06-01

    This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.

  16. Real-time GPS seismology using a single receiver: method comparison, error analysis and precision validation

    Science.gov (United States)

    Li, Xingxing

    2014-05-01

    Earthquake monitoring and early warning system for hazard assessment and mitigation has traditional been based on seismic instruments. However, for large seismic events, it is difficult for traditional seismic instruments to produce accurate and reliable displacements because of the saturation of broadband seismometers and problematic integration of strong-motion data. Compared with the traditional seismic instruments, GPS can measure arbitrarily large dynamic displacements without saturation, making them particularly valuable in case of large earthquakes and tsunamis. GPS relative positioning approach is usually adopted to estimate seismic displacements since centimeter-level accuracy can be achieved in real-time by processing double-differenced carrier-phase observables. However, relative positioning method requires a local reference station, which might itself be displaced during a large seismic event, resulting in misleading GPS analysis results. Meanwhile, the relative/network approach is time-consuming, particularly difficult for the simultaneous and real-time analysis of GPS data from hundreds or thousands of ground stations. In recent years, several single-receiver approaches for real-time GPS seismology, which can overcome the reference station problem of the relative positioning approach, have been successfully developed and applied to GPS seismology. One available method is real-time precise point positioning (PPP) relied on precise satellite orbit and clock products. However, real-time PPP needs a long (re)convergence period, of about thirty minutes, to resolve integer phase ambiguities and achieve centimeter-level accuracy. In comparison with PPP, Colosimo et al. (2011) proposed a variometric approach to determine the change of position between two adjacent epochs, and then displacements are obtained by a single integration of the delta positions. This approach does not suffer from convergence process, but the single integration from delta positions to

  17. Comparison of the precision of three commonly used GPS models

    Directory of Open Access Journals (Sweden)

    E Chavoshi

    2016-04-01

    Full Text Available Introduction: Development of science in various fields has caused change in the methods to determine geographical location. Precision farming involves new technology that provides the opportunity for farmers to change in factors such as nutrients, soil moisture available to plants, soil physical and chemical characteristics and other factors with the spatial resolution of less than a centimeter to several meters to monitor and evaluate. GPS receivers based on precision farming operations specified accuracies are used in the following areas: 1 monitoring of crop and soil sampling (less than one meter accuracy 2 use of fertilizer, pesticide and seed work (less than half a meter accuracy 3 Transplantation and row cultivation (precision of less than 4 cm (Perez et al., 2011. In one application of GPS in agriculture, route guidance precision farming tractors in the fields was designed to reduce the transmission error that deviate from the path specified in the range of 50 to 300 mm driver informed and improved way to display (Perez et al., 2011. In another study, the system automatically guidance, based on RTK-GPS technology, precision tillage operations was used between and within the rows very close to the drip irrigation pipe and without damage to their crops at a distance of 50 mm (Abidine et al., 2004. In another study, to compare the accuracy and precision of the receivers, 5 different models of Trimble Mark GPS devices from 15 stations were mapped, the results indicated that minimum error was related to Geo XT model with an accuracy of 91 cm and maximum error was related to Pharos model with an accuracy of 5.62 m (Kindra et al., 2006. Due to the increasing use of GPS receivers in agriculture as well as the lack of trust on the real accuracy and precision of receivers, this study aimed to compare the positioning accuracy and precision of three commonly used GPS receivers models used to specify receivers with the lowest error for precision

  18. Analysis of the Source and Ground Motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla Earthquakes

    Science.gov (United States)

    Melgar, D.; Sahakian, V. J.; Perez-Campos, X.; Quintanar, L.; Ramirez-Guzman, L.; Spica, Z.; Espindola, V. H.; Ruiz-Angulo, A.; Cabral-Cano, E.; Baltay, A.; Geng, J.

    2017-12-01

    The September 2017 Tehuantepec and Puebla earthquakes were intra-slab earthquakes that together caused significant damage in broad regions of Mexico, including the states of Oaxaca, Chiapas, Morelos, Puebla, Mexico, and Mexico City. Ground motions in Mexico City have approximately the same angle of incidence from both earthquakes and potentially sample similar paths close to the city. We examine site effects and source terms by analysis of residuals between Ground-Motion Prediction Equations (GMPEs) and observed ground motions for both of these events at stations from the Servicio Sismólogico Nacional, Instituto de Ingeniería, and the Instituto de Geofísica Red del Valle de Mexico networks. GMPEs are a basis for seismic design, but also provide median ground motion values to act as a basis for comparison of individual earthquakes and site responses. First, we invert for finite-fault slip inversions for Tehuantepec with high-rate GPS, static GPS, tide gauge and DART buoy data, and for Puebla with high-rate GPS and strong motion data. Using the distance from the stations with ground motion observations to the derived slip models, we use the GMPEs of Garcia et al. (2005), Zhao et al. (2006), and Abrahamson, Silva and Kamai (2014), to compute predicted values of peak ground acceleration and velocity (PGA and PGV) and response spectral accelerations (SA). Residuals between observed and predicted ground motion parameters are then computed for each recording, and are decomposed into event and site components using a mixed effects regression. We analyze these residuals as an adjustment away from median ground motions in the region to glean information about the earthquake source properties, as well as local site response in and outside of the Mexico City basin. The event and site terms are then compared with available values of stress drop for the two earthquakes, and Vs30 values for the sites, respectively. This analysis is useful in determining which GMPE is most

  19. Variations of TEC near the Indian Equatorial Ionospheric anomaly (EIA) stations by GPS measurements during descending phase of solar activity (2005 -2009)

    Science.gov (United States)

    Kumar, Sanjay; Singh, Abhay Kumar

    The dual frequency Global Positioning System (GPS) data recorded at Varanasi (geographic latitude 250, 16 N longitude 820, 59 E) and Kanpur (geographic latitude 260, 30 N longitude 800, 12 E) stations, near the equatorial ionosphere anomaly (EIA) in India, have been analyzed to retrieve total electron content (TEC). The daily peak value of vertical total electron content (VTEC) has been utilized to study the variability of EIA. Present paper studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on EIA. It has been found that EIA yield their maximum values during the equinox months and minimum during summer and winter. The correlations of EIA with solar as well as geomagnetic indices have been also discussed. Key words: Total electron contents (TECs), EIA, GPS.

  20. Accuracy of Single Frequency GPS Observations Processing In Near Real-time With Use of Code Predicted Products

    Science.gov (United States)

    Wielgosz, P. A.

    In this year, the system of active geodetic GPS permanent stations is going to be estab- lished in Poland. This system should provide GPS observations for a wide spectrum of users, especially it will be a great opportunity for surveyors. Many of surveyors still use cheaper, single frequency receivers. This paper focuses on processing of single frequency GPS observations only. During processing of such observations the iono- sphere plays an important role, so we concentrated on the influence of the ionosphere on the positional coordinates. Twenty consecutive days of GPS data from 2001 year were processed to analyze the accuracy of a derived three-dimensional relative vec- tor position between GPS stations. Observations from two Polish EPN/IGS stations: BOGO and JOZE were used. In addition to, a new test station - IGIK was created. In this paper, the results of single frequency GPS observations processing in near real- time are presented. Baselines of 15, 27 and 42 kilometers and sessions of 1, 2, 3, 4, and 6 hours long were processed. While processing we used CODE (Centre for Orbit De- termination in Europe, Bern, Switzerland) predicted products: orbits and ionosphere info. These products are available in real-time and enable near real-time processing. Software Bernese v. 4.2 for Linux and BPE (Bernese Processing Engine) mode were used. These results are shown with a reference to dual frequency weekly solution (the best solution). Obtained GPS positional time and GPS baseline length dependency accuracy is presented for single frequency GPS observations.

  1. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

    Science.gov (United States)

    Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian

    2017-11-01

    The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

  2. Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network

    Directory of Open Access Journals (Sweden)

    L. A. Leonovich

    Full Text Available This paper proposes a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare, based on data from the international network of two-frequency multichannel receivers of the navigation GPS system. The method uses the effect of partial "shadowing" of the atmosphere by the terrestrial globe. The study of the solar flare influence on the atmosphere uses GPS stations located near the boundary of the shadow on the ground in the nightside hemisphere. The beams between the satellite-borne transmitter and the receiver on the ground for these stations pass partially through the atmosphere lying in the region of total shadow, and partially through the illuminated atmosphere. The analysis of the ionospheric effect of a powerful solar flare of class X5.7/3B that was recorded on 14 July 2000 (10:24 UT, N22 W07 in quiet geomagnetic conditions (Dst = -10 nT has shown that about 75% of the TEC increase corresponds to the ionospheric region lying below 300 km and about 25% to regions lying above 300 km.

    Key words. Ionosphere (solar radiation and cosmic ray effects; instruments and techniques – Solar physics, astrophysics and astronomy (ultraviolet emissions

  3. USGS Menlo Park GPS Data Processing Techniques and Derived North America Velocity Field (Invited)

    Science.gov (United States)

    Svarc, J. L.; Murray-Moraleda, J. R.; Langbein, J. O.

    2010-12-01

    The U.S. Geological Survey in Menlo Park routinely conducts repeated GPS surveys of geodetic markers throughout the western United States using dual-frequency geodetic GPS receivers. We combine campaign, continuous, and semi-permanent data to present a North America fixed velocity field for regions in the western United States. Mobile campaign-based surveys require less up-front investment than permanently monumented and telemetered GPS systems, and hence have achieved a broad and dense spatial coverage. The greater flexibility and mobility comes at the cost of greater uncertainties in individual daily position solutions. We also routinely process continuous GPS data collected at PBO stations operated by UNAVCO along with data from other continuous GPS networks such as BARD, PANGA, and CORS operated by other agencies. We have broken the Western US into several subnetworks containing approximately 150-250 stations each. The data are processed using JPL’s GIPSY-OASIS II release 5.0 software using a modified precise positioning strategy (Zumberge and others, 1997). We use the “ambizap” code provided by Geoff Blewitt (Blewitt, 2008) to fix phase ambiguities in continuous networks. To mitigate the effect of common mode noise we use the positions of stations in the network with very long, clean time series (i.e. those with no large outliers or offsets) to transform all position estimates into “regionally filtered” results following the approach of Hammond and Thatcher (2007). Velocity uncertainties from continuously operated GPS stations tend to be about 3 times smaller than those from campaign data. Langbein (2004) presents a maximum likelihood method for fitting a time series employing a variety of temporal noise models. We assume that GPS observations are contaminated by a combination of white, flicker, and random walk noise. For continuous and semi-permanent time series longer than 2 years we estimate these values, otherwise we fix the amplitudes of these

  4. A GPS measurement system for precise satellite tracking and geodesy

    Science.gov (United States)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  5. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  6. GPS Operations at Olkiluoto, Kivetty and Romuvaara in 2005

    International Nuclear Information System (INIS)

    Ahola, J.; Ollikainen, M.; Koivula, H.; Jokela, J.

    2006-07-01

    The GPS based deformation studies has been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. Twenty GPS measurement campaigns have been carried out at Olkiluoto since 1995, and fourteen campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.22 mm/a. There are no statistically signicant movements at Kivetty and Romuvaara expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. The local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliable (maximum velocity is - 0.25 mm/a ± 0.025 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results to show a possible scale error of the GPS. The GPS network at Olkiluoto was enlarged in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari, both north from Olkiluoto. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed five times since 2003, but the time series are still too short for reliable deformation studies. Including the new pillars the local

  7. Review of current GPS methodologies for producing accurate time series and their error sources

    Science.gov (United States)

    He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping

    2017-05-01

    The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e

  8. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2010

    International Nuclear Information System (INIS)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.

    2011-11-01

    The Finnish Geodetic Institute (FGI) has studied crustal deformations in co-operation with the Posiva Oy since 1994, when a network of ten pillars for GPS observations was established at Olkiluoto. In 2010 the local GPS network at Olkiluoto consisted of 14 concrete pillars. The whole network has been measured twice a year in the static GPS campaigns with 24 h sessions. The four new pillars were established in 2010 and the permanent measurements on them will start in 2011. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 18 campaigns at Kivetty and Romuvaara. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured in connection to the GPS observations using the EDM instrument Kern ME5000 Mekometer. The GPS operations in 2010 included the two GPS campaigns at Olkiluoto, GPS campaigns at Kivetty and Romuvaara, EDM baseline measurements at Olkiluoto, and the control marker measurements with the tachymeter at Olkiluoto. All GPS data history was reprocessed with Bernese GPS software using the new processing strategy tested in 2009. The results were analysed by computing the change rates of the baselines and estimating horizontal velocities for the pillars using the barycenter of the velocities as a reference. In the Olkiluoto inner network 80 percent of the change rates were smaller than 0.10 mm/a. Roughly one fourth of the change rates could be considered as statistically significant (change rate larger than 3 σ. The statistically significant change rates were mainly related to the Olkiluoto permanent station (GPS1) and to the pillar GPS5, which had also the maximum change rate (0.21 ± 0.03 mm/a). In Olkiluoto outer network the maximum and statistically significant change rates are

  9. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2011-11-15

    The Finnish Geodetic Institute (FGI) has studied crustal deformations in co-operation with the Posiva Oy since 1994, when a network of ten pillars for GPS observations was established at Olkiluoto. In 2010 the local GPS network at Olkiluoto consisted of 14 concrete pillars. The whole network has been measured twice a year in the static GPS campaigns with 24 h sessions. The four new pillars were established in 2010 and the permanent measurements on them will start in 2011. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 18 campaigns at Kivetty and Romuvaara. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured in connection to the GPS observations using the EDM instrument Kern ME5000 Mekometer. The GPS operations in 2010 included the two GPS campaigns at Olkiluoto, GPS campaigns at Kivetty and Romuvaara, EDM baseline measurements at Olkiluoto, and the control marker measurements with the tachymeter at Olkiluoto. All GPS data history was reprocessed with Bernese GPS software using the new processing strategy tested in 2009. The results were analysed by computing the change rates of the baselines and estimating horizontal velocities for the pillars using the barycenter of the velocities as a reference. In the Olkiluoto inner network 80 percent of the change rates were smaller than 0.10 mm/a. Roughly one fourth of the change rates could be considered as statistically significant (change rate larger than 3 {sigma}. The statistically significant change rates were mainly related to the Olkiluoto permanent station (GPS1) and to the pillar GPS5, which had also the maximum change rate (0.21 {+-} 0.03 mm/a). In Olkiluoto outer network the maximum and statistically significant change rates

  10. Joint Inversion of 1-Hz GPS Data and Strong Motion Records for the Rupture Process of the 2008 Iwate-Miyagi Nairiku Earthquake: Objectively Determining Relative Weighting

    Science.gov (United States)

    Wang, Z.; Kato, T.; Wang, Y.

    2015-12-01

    The spatiotemporal fault slip history of the 2008 Iwate-Miyagi Nairiku earthquake, Japan, is obtained by the joint inversion of 1-Hz GPS waveforms and near-field strong motion records. 1-Hz GPS data from GEONET is processed by GAMIT/GLOBK and then a low-pass filter of 0.05 Hz is applied. The ground surface strong motion records from stations of K-NET and Kik-Net are band-pass filtered for the range of 0.05 ~ 0.3 Hz and integrated once to obtain velocity. The joint inversion exploits a broader frequency band for near-field ground motions, which provides excellent constraints for both the detailed slip history and slip distribution. A fully Bayesian inversion method is performed to simultaneously and objectively determine the rupture model, the unknown relative weighting of multiple data sets and the unknown smoothing hyperparameters. The preferred rupture model is stable for different choices of velocity structure model and station distribution, with maximum slip of ~ 8.0 m and seismic moment of 2.9 × 1019 Nm (Mw 6.9). By comparison with the single inversion of strong motion records, the cumulative slip distribution of joint inversion shows sparser slip distribution with two slip asperities. One common slip asperity extends from the hypocenter southeastward to the ground surface of breakage; another slip asperity, which is unique for joint inversion contributed by 1-Hz GPS waveforms, appears in the deep part of fault where very few aftershocks are occurring. The differential moment rate function of joint and single inversions obviously indicates that rich high frequency waves are radiated in the first three seconds but few low frequency waves.

  11. Application of Seasonal Trend Loess to GPS data in Cascadia

    Science.gov (United States)

    Bal, A.; Bartlow, N. M.

    2016-12-01

    Plate Boundary Observatory GPS stations provide crucial data for the study of slow slip events and volcanic hazards in the Cascadia region. However, these GPS stations also record seasonal changes in deformation caused by hydrologic, atmospheric, and other seasonal loading. Removing these signals is necessary for accurately modeling the tectonic sources of deformation. Traditionally, seasonal trends in data been accounted for by fitting and removing sine curves from the data. However, not all seasonal trends follow a sinusoidal shape. Seasonal Trend Loess, or STL, is a filtering procedure for a decomposing a time series into trend, seasonal, and remainder components (Cleveland et. al, Journal of Official Statistics, 1990). STL has a simple design that consists of a sequence of applications of the loess smoother which allows for fast computation of large amounts of trend and seasonal smoothing. STL allows for non-sinusoidal shapes in seasonal deformation signals, and allows for evolution of seasonal signals over time. We applied Seasonal Trend Loess to GPS data from the Cascadia region. We compared our results to a traditional sine wave fit for seasonal removal at selected stations, including stations with slow slip event and volcanic signals. We hope that the STL method may be able to more accurately differentiate seasonal and tectonic deformation signals.

  12. Geoscience Australia Continuous Global Positioning System (CGPS) Station Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruddick, R. [Geoscience Australia, Symonston (Australia); Twilley, B. [Geoscience Australia, Symonston (Australia)

    2016-03-01

    This station formed part of the Australian Regional GPS Network (ARGN) and South Pacific Regional GPS Network (SPRGN), which is a network of continuous GPS stations operating within Australia and its Territories (including Antarctica) and the Pacific. These networks support a number of different science applications including maintenance of the Geospatial Reference Frame, both national and international, continental and tectonic plate motions, sea level rise, and global warming.

  13. Investigation of Noises in GPS Time Series: Case Study on Epn Weekly Solutions

    Science.gov (United States)

    Klos, Anna; Bogusz, Janusz; Figurski, Mariusz; Kosek, Wieslaw; Gruszczynski, Maciej

    2014-05-01

    The noises in GPS time series are stated to be described the best by the combination of white (Gaussian) and power-law processes. They are mainly the effect of mismodelled satellite orbits, Earth orientation parameters, atmospheric effects, antennae phase centre effects, or of monument instability. Due to the fact, that velocities of permanent stations define the kinematic reference frame, they have to fulfil the requirement of being stable at 0.1 mm/yr. The previously performed researches showed, that the wrong assumption of noise model leads to the underestimation of velocities and their uncertainties from 2 up to even 11, especially in the Up direction. This presentation focuses on more than 200 EPN (EUREF Permanent Network) stations from the area of Europe with various monument types (concrete pillars, buildings, metal masts, with or without domes, placed on the ground or on the rock) and coordinates of weekly changes (GPS weeks 0834-1459). The topocentric components (North, East, Up) in ITRF2005 which come from the EPN Re-Processing made by the Military University of Technology Local Analysis Centre (MUT LAC) were processed with Maximum Likelihood Estimation (MLE) using CATS software. We have assumed the existence of few combinations of noise models (these are: white, flicker and random walk noise with integer spectral indices and power-law noise models with fractional spectral indices) and investigated which of them EPN weekly time series are likely to follow. The results show, that noises in GPS time series are described the best by the combination of white and flicker noise model. It is strictly related to the so-called common mode error (CME) that is spatially correlated error being one of the dominant error source in GPS solutions. We have assumed CME as spatially uniform, what was a good approximation for stations located hundreds of kilometres one to another. Its removal with spatial filtering reduces the amplitudes of white and flicker noise by a

  14. Comparison of GPS derived TEC with the TEC predicted by IRI 2012 model in the southern Equatorial Ionization Anomaly crest within the Eastern Africa region

    Science.gov (United States)

    Sulungu, Emmanuel D.; Uiso, Christian B. S.; Sibanda, Patrick

    2018-04-01

    We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 - 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.

  15. Near real-time GPS applications for tsunami early warning systems

    Directory of Open Access Journals (Sweden)

    C. Falck

    2010-02-01

    Full Text Available GPS (Global Positioning System technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009 are to support the determination of sea levels (measured onshore and offshore and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min. The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006. This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007.

    This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication

  16. IceBridge GPS L0 Raw Satellite Navigation Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge GPS L0 Raw Satellite Navigation Data (IPUTG0) data set contains GPS readings, including latitude, longitude, track, ground speed, off distance,...

  17. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    Science.gov (United States)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  18. Study of movement of the western and central belts of Peninsular Malaysia using GPS data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Siti Hafizah; Samsudin, Abdul Rahim [Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Since the large earthquakes in Sumatera and Nias, there were some tremors incidents at Bukit Tinggi. Therefore, a study on the earth’s crust movement and the effects of the earthquake in Indonesia on the tectonic blocks of Peninsular Malaysia have been carried out using GPS data analysis. GPS data from five MyRTKnet stations within Peninsular Malaysia have been analyzed to monitor the movement of two major tectonic blocks of Peninsular Malaysia which are the western belt represented by the Behrang (BEHR) and UPM Serdang (UPMS) stations and the central belt represented by Bentong (BENT), Jerantut (JRNT) and Temerloh (TLOH) stations. GPS data recorded from 2005 to 2010 were analysed based on horizontal and vertical displacements of the respective stations by using Trimble Business Centre (TBC) software. Based on the results of accumulated displacements of recorded GPS data from January 2006 to December 2013, it shows that the western belt which represented by UPMS has shifted 0.096m towards northwest with changes of ellipsoidal height of +0.030m while the central belt which represented by TLOH has shifted 0.080m towards northwest with changes of ellipsoidal height of −0.015m. Meanwhile, BENT station which is located on the Bentong-Raub suture zone turns to its original position as well as JRNT station. However, BEHR station which are located in western belt do not show any movements. All of these movements may be due to the influence of reactive faults in the stations area stimulated by several large earthquakes that occurred in 2005 to 2010. Study on using the GPS data analysis and combine with integrated geophysical methods are necessary to understand in detail about the tectonic evolution of Peninsular Malaysia.

  19. Characterization of Personal Privacy Devices (PPD) radiation pattern impact on the ground and airborne segments of the local area augmentation system (LAAS) at GPS L1 frequency

    Science.gov (United States)

    Alkhateeb, Abualkair M. Khair

    Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on

  20. Global (50°S–50°N) distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data sets

    CSIR Research Space (South Africa)

    Kishore, P

    2011-08-01

    Full Text Available In this study, global (50°S–50°N) distribution of water vapor is investigated using COSMIC GPS RO measurements. Detailed comparisons have been made between COSMIC and high resolution GPS radiosonde measurements across 13 tropical stations and model...

  1. GPS test range mission planning

    Science.gov (United States)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  2. New method of GPS orbit determination from GCPS network for the purpose of DOP calculations

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2012-06-01

    Full Text Available The accuracy of GPS measurement satisfies the requirements of some applications, but many applications require an improvement of GPS measurement accuracy. For precise positioning by GPS, it is necessary to perform GPS mission planning. The GPS mission planning is a pre-survey task in which the values of Dilution Of Precision (DOP should be predicted for the observation points, this task should determine the best observation periods which meet the project requirements. The main purpose of this work is to study a rather simple but still fairly accurate algorithm to determine the artificial satellite orbits for the purpose of DOP calculation. The orbit determination algorithm proposed in this paper is implemented by using several reference stations and calculated the orbits by new algorithm; inverse GPS. Inverse GPS means that reference stations are considered as satellites and satellite as receiver. This new algorithm used to calculate the satellite orbit which is mainly used to calculate the DOP. A comparison is done between the estimated PDOP by using satellite coordinates from new method and from the SP3 (Standard Product # 3 file.

  3. Analysis of Seasonal Signal in GPS Short-Baseline Time Series

    Science.gov (United States)

    Wang, Kaihua; Jiang, Weiping; Chen, Hua; An, Xiangdong; Zhou, Xiaohui; Yuan, Peng; Chen, Qusen

    2018-04-01

    Proper modeling of seasonal signals and their quantitative analysis are of interest in geoscience applications, which are based on position time series of permanent GPS stations. Seasonal signals in GPS short-baseline (paper, to better understand the seasonal signal in GPS short-baseline time series, we adopted and processed six different short-baselines with data span that varies from 2 to 14 years and baseline length that varies from 6 to 1100 m. To avoid seasonal signals that are overwhelmed by noise, each of the station pairs is chosen with significant differences in their height (> 5 m) or type of the monument. For comparison, we also processed an approximately zero baseline with a distance of pass-filtered (BP) noise is valid for approximately 40% of the baseline components, and another 20% of the components can be best modeled by a combination of the first-order Gauss-Markov (FOGM) process plus white noise (WN). The TEM displacements are then modeled by considering the monument height of the building structure beneath the GPS antenna. The median contributions of TEM to the annual amplitude in the vertical direction are 84% and 46% with and without additional parts of the monument, respectively. Obvious annual signals with amplitude > 0.4 mm in the horizontal direction are observed in five short-baselines, and the amplitudes exceed 1 mm in four of them. These horizontal seasonal signals are likely related to the propagation of daily/sub-daily TEM displacement or other signals related to the site environment. Mismodeling of the tropospheric delay may also introduce spurious seasonal signals with annual amplitudes of 5 and 2 mm, respectively, for two short-baselines with elevation differences greater than 100 m. The results suggest that the monument height of the additional part of a typical GPS station should be considered when estimating the TEM displacement and that the tropospheric delay should be modeled cautiously, especially with station pairs with

  4. Precise Positioning of BDS, BDS/GPS: Implications for Tsunami Early Warning in South China Sea

    Directory of Open Access Journals (Sweden)

    Kejie Chen

    2015-11-01

    Full Text Available Global Positioning System (GPS has been proved to be a powerful tool for measuring co-seismic ground displacements with an application to seismic source inversion. Whereas most of the tsunamis are triggered by large earthquakes, GPS can contribute to the tsunami early warning system (TEWS by helping to obtain tsunami source parameters in near real-time. Toward the end of 2012, the second phase of the BeiDou Navigation Satellite System (BDS constellation was accomplished, and BDS has been providing regional positioning service since then. Numerical results indicate that precision of BDS nowadays is equivalent to that of the GPS. Compared with a single Global Satellite Navigation System (GNSS, combined BDS/GPS real-time processing can improve accuracy and especially reliability of retrieved co-seismic displacements. In the present study, we investigate the potential of BDS to serve for the early warning system of tsunamis in the South China Sea region. To facilitate early warnings of tsunamis and forecasting capabilities in this region, we propose to distribute an array of BDS-stations along the Luzon Island (Philippines. By simulating an earthquake with Mw = 8 at the Manila trench as an example, we demonstrate that such an array will be able to detect earthquake parameters in real time with a high degree of accuracy and, hence, contribute to the fast and reliable tsunami early warning system in this region.

  5. Mapping the Coastline Limits of the Mexican State Sinaloa Using GPS

    Science.gov (United States)

    Vazquez, G. E.

    2007-12-01

    This research work presents the delimitation of the coastline limits of Sinaloa (one of the richest states of northwestern Mexico). In order to achieve this big task, it was required to use GPS (Global Positioning System) together with leveling spirit measurements. Based on the appropriate selection of the cited measurement techniques, the objective was to map the Sinaloa's state coastline to have the cartography of approximate 1600 km of littoral. The GPS measurements were performed and referred with respect to a GPS network located across the state. This GPS network consists of at least one first-order-site at each of the sixteen counties that constitute the state, and three to four second-order-sites of the ten counties of the state surrounded by sea. The leveling spirit measurements were referred to local benchmarks pre-established by the Mexican agency SEMARNAT (SEcretaría Del Medio Ambiente y Recursos NATurales). Within the main specifications of the GPS measurements and equipment, we used geodetic-dual-frequency GPS receivers in kinematic mode for both base stations (first and second order sites of the GPS state network) and rover stations (points forming the state littoral) with 5-sec log-rate interval and 10 deg cut-off angle. The GPS data processing was performed using the commercial software Trimble Geomatics Office (TGO) with Double Differences (DD) in post-processing mode. To this point, the field measurements had been totally covered including the cartography (scale 1:1000) and this includes the specifications and appropriate labeling according to the Mexican norm NOM-146-SEMARNAT-2005.

  6. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    Science.gov (United States)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  7. Analysis of Regional GPS Networks in Eastern Ontario

    Science.gov (United States)

    Samadi Alinia, H.; Tiampo, K. F.

    2014-12-01

    Although stable, intraplate region of eastern Canada is considered low rate deformation area in the North American plate, the retreat of large ice sheets during deglaciation in the last 20 ka has resulted in horizontal and vertical deformation of the Earth's in eastern Ontario. Present-day glacial isostatic adjustment (GIA) uplift rates approach 10 mm/yr or more at Hudson Bay and decrease with distance southeastward. Current GIA models forecast that the hinge line between uplift to the northwest and subsidence to the southeast lies somewhere near the Saint Lawrence valley in eastern Canada [Tushingham and Peltier, 1991; Peltier, 2002]. Employing continuous Global Positioning System (cGPS) observations and high precision tools for processing and then analyzing each component of derived time series are important tools to monitor the associated regional crustal deformation with good accuracies. Here we describe the analysis of coordinate time series of cGPS stations scattered sparsely throughout southeastern Ontario and between Ottawa and the east coast of Hudson Bay. Here, the two most reliable local networks, each including 4 to 6 reference stations, were selected for analysis. Data for period of approximately five years, 2008-2012.9, was processed with Bernese 5.0 over several campaigns. Individual cGPS coordinate time series were generated for each station and basic parameters, such as mean, variance and repeatability, were estimated. The time series are corrected with respect to the rigid plate motion and seasonal variations and advanced time series analysis techniques, including spectral analysis and principal component analysis were implemented. Post-processing of the time series reproduces the general GIA spatial pattern. Results also show that the vertical velocities of all stations in the solution are consistent with the GIA model uplift rate and are consistent with other cGPS sites in eastern Canada and increases from north of lake of Ontario (approximately

  8. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    Science.gov (United States)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  9. Ground deformation effects from the M6 earthquakes (2014-2015) on Cephalonia-Ithaca Islands (Western Greece) deduced by GPS observations

    Science.gov (United States)

    Sakkas, Vassilis; Lagios, Evangelos

    2017-03-01

    The implications of the earthquakes that took place in the central Ionian Islands in 2014 (Cephalonia, M w6.1, M w5.9) and 2015 (Lefkas, M w6.4) are described based on repeat measurements of the local GPS networks in Cephalonia and Ithaca, and the available continuous GPS stations in the broader area. The Lefkas earthquake occurred on a branch of the Cephalonia Transform Fault, affecting Cephalonia with SE displacements gradually decreasing from north ( 100 mm) to south ( 10 mm). This earthquake revealed a near N-S dislocation boundary separating Paliki Peninsula in western Cephalonia from the rest of the island, as well as another NW-SE trending fault that separates kinematically the northern and southern parts of Paliki. Strain field calculations during the interseismic period (2014-2015) indicate compression between Ithaca and Cephalonia, while extension appears during the following co-seismic period (2015-2016) including the 2015 Lefkas earthquake. Additional tectonically active zones with differential kinematic characteristics were also identified locally.

  10. Precise Orbit Determination of GPS Satellites Using Phase Observables

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee

    1997-12-01

    Full Text Available The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3 x 10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Geodynamics.

  11. GPS coordinate time series measurements in Ontario and Quebec, Canada

    Science.gov (United States)

    Samadi Alinia, Hadis; Tiampo, Kristy F.; James, Thomas S.

    2017-06-01

    New precise network solutions for continuous GPS (cGPS) stations distributed in eastern Ontario and western Québec provide constraints on the regional three-dimensional crustal velocity field. Five years of continuous observations at fourteen cGPS sites were analyzed using Bernese GPS processing software. Several different sub-networks were chosen from these stations, and the data were processed and compared to in order to select the optimal configuration to accurately estimate the vertical and horizontal station velocities and minimize the associated errors. The coordinate time series were then compared to the crustal motions from global solutions and the optimized solution is presented here. A noise analysis model with power-law and white noise, which best describes the noise characteristics of all three components, was employed for the GPS time series analysis. The linear trend, associated uncertainties, and the spectral index of the power-law noise were calculated using a maximum likelihood estimation approach. The residual horizontal velocities, after removal of rigid plate motion, have a magnitude consistent with expected glacial isostatic adjustment (GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 mm/year. The residual horizontal velocities range from approximately 0.5 mm/year, oriented south-southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward the interior of Hudson Bay at stations adjacent to its shoreline. Here, the velocity uncertainties are estimated at less than 0.6 mm/year for the horizontal component and 1.1 mm/year for the vertical component. A comparison between the observed velocities and GIA model predictions, for a limited range of Earth models, shows a better fit to the observations for the Earth model with the smallest upper mantle viscosity and the largest lower mantle viscosity. However, the

  12. An Introduction to the Tibet cGPS pilot project: TigiCAS

    Science.gov (United States)

    Zhang, Z.; Liu, J.; Galetzka, J.; Avouac, J.; Tapponnier, P.; Zeng, L.; Gan, W.; Shen, Z.; Wang, M.

    2007-12-01

    The convergence between India and Eurasia is the¡¡prototype of continental collision in action. Compared¡¡to geological history and fault kinematics studies, the present-day, regional pattern of strain-partitioning¡¡is still inadequately known. Among limited geodetic¡¡efforts in the past decade or two, most have been focused¡¡on refining measurements of the current crustal¡¡shortening rate across the Himalaya. The vast region¡¡immediately to the north is sparsely instrumented, with only one continuous GPS station (Lhasa) within¡¡the plateau proper. Campaign stations are few and¡¡ill-positioned, mostly along major roads, providing¡¡poor constraints on present-day slip-rates on individual¡¡active faults. The extant GPS network configuration is thus still insufficient to discriminate between block vs continuum deformation. In November 2006, the¡¡Chinese Academy of Sciences led a pilot program and¡¡installed 6 continuous GPS stations in southern Tibet, crossing the NS-trending normal fault systems and¡¡complementing the Nepal cGPS profiles. We present¡¡here the new sites, preliminary data processing results, and the spatial relationship with ongoing or planned¡¡continuous GPS sites from a couple of other projects. Together with such projects, TigiCAS will provide¡¡a substantial increase in geodetic data in the¡¡Himalayan-Tibet convergent belt in the next few¡¡years, and lead to a better understanding of¡¡contemporary deformation of the region.

  13. GPS crustal deformation of the Eastern Betics and its relationship with the Lorca earthquake; Deformacion cortical de las Beticas Orientales observada mediante GPS y su relacion con el terremoto de Lorca

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, A.; Khazaradze, G.; Asensio, E.; Garate, J.; Surinach, E.

    2012-07-01

    On May 11{sup t}h of 2011, a seismic series occurred near the city of Lorca (Murcia). The main earthquake of magnitude Mw 5.2 has been attributed to the Alhama de Murcia Fault, one of the most active faults in the SE Iberian Peninsula. We analyzed data from 5 GPS campaigns of the CuaTeNeo network conducted between 1997 and 2011. The velocities of the stations closest to the Alhama de Murcia Fault show the reverse and strike-slip direction of motion. Stations located on the southeastern side of the fault have the maximum velocities in the area (between 1.4 and 1.8 mm/yr), oriented towards NNW direction, obliquely to the trace of the fault. The kinematics of the fault and the strain rate directions obtained from the CuaTeNeo network GPS measurements matches the calculated focal mechanism of Lorca earthquake. Detailed analysis of the time-series from the continuous GPS station at the Lorca city allows the detection of co-seismic offset of {approx}6 mm to the North. Keywords: crustal deformation, GPS, Betics, Lorca earthquake. (Author) 20 refs.

  14. GPS Time Series Analysis of Southern California Associated with the 2010 M7.2 El Mayor/Cucapah Earthquake

    Science.gov (United States)

    Granat, Robert; Donnellan, Andrea

    2011-01-01

    The Magnitude 7.2 El-Mayor/Cucapah earthquake the occurred in Mexico on April 4, 2012 was well instrumented with continuous GPS stations in California. Large Offsets were observed at the GPS stations as a result of deformation from the earthquake providing information about the co-seismic fault slip as well as fault slip from large aftershocks. Information can also be obtained from the position time series at each station.

  15. Geophysics and Texas History: Teachers Utilize GPS and GPR Technology to Help Restore an Abandoned Cemetery

    Science.gov (United States)

    Henning, A. T.; Sawyer, D. S.; Wallace, D.; Kahera, A.

    2009-12-01

    In July 2009, a group of twenty-six K-12 teachers investigated an abandoned cemetery in Prairie View, Texas, utilizing ground-penetrating radar (GPR) to image the subsurface and handheld global positioning system (GPS) units and a total station to record surface positions. The teachers were participants in a summer course at Rice University, ESCI 515: Geophysical Field Work for Educators. The course met for 8 full days over a two week period. During this time, the group acquired and interpreted 53 GPR profiles and over 700 GPS positions. The results of the study were presented to the Prairie View community at the end of the two weeks, and our data will be used in their effort to obtain a historical site designation for the cemetery. Wyatt Chapel Cemetery is located adjacent to the campus of Prairie View A&M University in Prairie View, TX, and is thought to have originated as a slave burial ground in the 1850’s. There are very few markers remaining, but a previous ESCI 515 course (in summer 2007) discovered multiple unmarked burials using GPR, which were confirmed by subsequent excavations. This past summer, ESCI 515 participants acquired GPR profiles in previously unexplored areas, used a total station to accurately record the positions of surface features such as headstones, and used handheld GPS units to map the location of a nearby stream bed. Participants were in-service K-12 teachers from urban Houston school districts where the majority of students are members of historically underrepresented minority groups. Recruitment efforts targeted educators who are currently teaching science without a science degree. Participants included elementary, middle and high school teachers. This summer experience is followed by a content-intensive academic year course in Physical Geology. Participants experienced the process of science first-hand and used science for community service (i.e. restoring an abandoned cemetery). Through background research, they derived a rich

  16. Where on Earth am I? Don't Worry,. GPS Satellites will Guide you ...

    Indian Academy of Sciences (India)

    ordinate frame shown is the reference frame used by GPS, it is called earth .... the satellite clock offsets five monitoring stations are spread over the earth ..... (P 2) GPS receiver for armoured vehicles (on the right is auxiliary display). ( P 3) GPS ...

  17. Evaluation of Early Ground Control Station Configurations for Interacting with a UAS Traffic Management (UTM) System

    Science.gov (United States)

    Dao, Arik-Quang V.; Martin, Lynne; Mohlenbrink, Christoph; Bienert, Nancy; Wolte, Cynthia; Gomez, Ashley; Claudatos, Lauren; Mercer, Joey

    2017-01-01

    The purpose of this paper is to report on a human factors evaluation of ground control station design concepts for interacting with an unmanned traffic management system. The data collected for this paper comes from recent field tests for NASA's Unmanned Traffic Management (UTM) project, and covers the following topics; workload, situation awareness, as well as flight crew communication, coordination, and procedures. The goal of this evaluation was to determine if the various software implementations for interacting with the UTM system can be described and classified into design concepts to provide guidance for the development of future UTM interfaces. We begin with a brief description of NASA's UTM project, followed by a description of the test range configuration related to a second development phase. We identified (post hoc) two classes in which the ground control stations could be grouped. This grouping was based on level of display integration. The analysis was exploratory and informal. It was conducted to compare ground stations across those two classes and against the aforementioned topics. Herein, we discuss the results.

  18. Inferring Large-Scale Terrestrial Water Storage Through GRACE and GPS Data Fusion in Cloud Computing Environments

    Science.gov (United States)

    Rude, C. M.; Li, J. D.; Gowanlock, M.; Herring, T.; Pankratius, V.

    2016-12-01

    Surface subsidence due to depletion of groundwater can lead to permanent compaction of aquifers and damaged infrastructure. However, studies of such effects on a large scale are challenging and compute intensive because they involve fusing a variety of data sets beyond direct measurements from groundwater wells, such as gravity change measurements from the Gravity Recovery and Climate Experiment (GRACE) or surface displacements measured by GPS receivers. Our work therefore leverages Amazon cloud computing to enable these types of analyses spanning the entire continental US. Changes in groundwater storage are inferred from surface displacements measured by GPS receivers stationed throughout the country. Receivers located on bedrock are anti-correlated with changes in water levels from elastic deformation due to loading, while stations on aquifers correlate with groundwater changes due to poroelastic expansion and compaction. Correlating linearly detrended equivalent water thickness measurements from GRACE with linearly detrended and Kalman filtered vertical displacements of GPS stations located throughout the United States helps compensate for the spatial and temporal limitations of GRACE. Our results show that the majority of GPS stations are negatively correlated with GRACE in a statistically relevant way, as most GPS stations are located on bedrock in order to provide stable reference locations and measure geophysical processes such as tectonic deformations. Additionally, stations located on the Central Valley California aquifer show statistically significant positive correlations. Through the identification of positive and negative correlations, deformation phenomena can be classified as loading or poroelastic expansion due to changes in groundwater. This method facilitates further studies of terrestrial water storage on a global scale. This work is supported by NASA AIST-NNX15AG84G (PI: V. Pankratius) and Amazon.

  19. Rail inspection system based on iGPS

    Science.gov (United States)

    Fu, Xiaoyan; Wang, Mulan; Wen, Xiuping

    2018-05-01

    Track parameters include gauge, super elevation, cross level and so on, which could be calculated through the three-dimensional coordinates of the track. The rail inspection system based on iGPS (indoor/infrared GPS) was composed of base station, receiver, rail inspection frame, wireless communication unit, display and control unit and data processing unit. With the continuous movement of the inspection frame, the system could accurately inspect the coordinates of rail; realize the intelligent detection and precision measurement. According to principle of angle intersection measurement, the inspection model was structured, and detection process was given.

  20. Earth tide effects on kinematic/static GPS positioning in Denmark and Greenland

    DEFF Research Database (Denmark)

    Xu, G.C.; Knudsen, Per

    2000-01-01

    A detailed Study of the Earth tide effects on the GPS kinematic/static positioning is presented in this paper by using theoretical Earth tide computation and practical GPS data processing. Tidal effects could reach up to 30 cm in Denmark and Greenland depending on the measuring time...... and the position of reference station. With a baseline less than 80 km, the difference of the Earth tide effects could reach more than 5 mm. So, in precise applications of GPS positioning, the Earth tide effect has to be taken into account even for a relative small local GPS network. Several examples are given...... for demonstrating that the Earth tide effects can be viewed by GPS surveying. They are given through static GPS data static processing, static GPS data kinematic processing, and airborne kinematic GPS data processing. In these cases, the Earth tide effects can be subtracted from the GPS results. The determination...

  1. Study of the GPS inter-frequency calibration of timing receivers

    Science.gov (United States)

    Defraigne, P.; Huang, W.; Bertrand, B.; Rovera, D.

    2018-02-01

    When calibrating Global Positioning System (GPS) stations dedicated to timing, the hardware delays of P1 and P2, the P(Y)-codes on frequencies L1 and L2, are determined separately. In the international atomic time (TAI) network the GPS stations of the time laboratories are calibrated relatively against reference stations. This paper aims at determining the consistency between the P1 and P2 hardware delays (called dP1 and dP2) of these reference stations, and to look at the stability of the inter-signal hardware delays dP1-dP2 of all the stations in the network. The method consists of determining the dP1-dP2 directly from the GPS pseudorange measurements corrected for the frequency-dependent antenna phase center and the frequency-dependent ionosphere corrections, and then to compare these computed dP1-dP2 to the calibrated values. Our results show that the differences between the computed and calibrated dP1-dP2 are well inside the expected combined uncertainty of the two quantities. Furthermore, the consistency between the calibrated time transfer solution obtained from either single-frequency P1 or dual-frequency P3 for reference laboratories is shown to be about 1.0 ns, well inside the 2.1 ns uB uncertainty of a time transfer link based on GPS P3 or Precise Point Positioning. This demonstrates the good consistency between the P1 and P2 hardware delays of the reference stations used for calibration in the TAI network. The long-term stability of the inter-signal hardware delays is also analysed from the computed dP1-dP2. It is shown that only variations larger than 2 ns can be detected for a particular station, while variations of 200 ps can be detected when differentiating the results between two stations. Finally, we also show that in the differential calibration process as used in the TAI network, using the same antenna phase center or using different positions for L1 and L2 signals gives maximum differences of 200 ps on the hardware delays of the separate

  2. Easy-to-Use UAV Ground Station Software for Low-Altitude Civil Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and develop easy-to-use Ground Control Station (GCS) software for low-altitude civil Unmanned Aerial Vehicle (UAV) operations. The GCS software...

  3. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2008

    International Nuclear Information System (INIS)

    Kallio, U.; Ahola, J.; Koivula, H.; Jokela, J.; Poutanen, M.

    2009-09-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 26 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 17 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stable expect one pillar at Romuvaara. There are seven pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. The comparison between the GPS and EDM results can help to fix a possible scale error of the GPS measurements. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is

  4. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2007

    International Nuclear Information System (INIS)

    Ahola, J.; Koivula, H.; Jokela, J.

    2008-05-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 24 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 16 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.22 mm/a ± 0.02 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  5. Influence de l'état d'ameublissement et de la rugosité du sol des parcelles agricoles sur l'exactitude de l'altitude des points de contrôle positionnés au GPS

    Directory of Open Access Journals (Sweden)

    Ouédraogo, MM.

    2012-01-01

    Full Text Available Agricultural soil tilth and roughness impact on the exactness of ground control points elevation surveyed by GPS. Our goal in this study is to estimate through ranges of variation, the impact of agricultural parcels soil's tilth and roughness, due to cultivation techniques, on the exactness of ground control points elevation surveyed by RTK (Real Time Kinematic GPS (Global Positioning System. So, 16 point's elevations which were located each 100 mm on a transect have been surveyed first by using a Total Station (TS, and then a RTK GPS in 2 parcels (3 transects per parcel. Cultivation techniques on those parcels were different. The parcel 1 was tilled, and the soil of parcel 2 was prepared for cereal cropping. Then, the analysis of variance has been applied on the differences of TS and RTK GPS elevations data to estimate the confidence interval of ground control points elevation due to soil tilth, whereas the times series statistical method has been applied on elevation data to estimate the confidence interval due to soil roughness. The confidence intervals of points elevation are estimated being [51 mm; 57 mm], [-4 mm; 4 mm] for parcel 1, and [97 mm; 113 mm], [-35 mm; 23 mm], for parcel 2. Results show that ground control point's elevations exactness is influenced by soil tilth and soil roughness. In conclusion, we can admit that soil tilth and soil roughness have significant impact on the exactness of ground control points located on agricultural parcels. This impact must be considered in Digital Elevation Model (DEM errors evaluation of agricultural watershed.

  6. Accuracy assessment of high-rate GPS measurements for seismology

    Science.gov (United States)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  7. Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations

    Directory of Open Access Journals (Sweden)

    Nevin B. Avsar

    2016-01-01

    Full Text Available Sea level change affects human living conditions, particularly ocean coasts. However, sea level change is still unclear along the Black Sea coast due to lack of in-situ measurements and low resolution satellite data. In this paper, sea level change along the Black Sea coast is investigated from joint satellite altimetry, tide gauge (TG and Global Positioning System (GPS observations. The linear trend and seasonal components of sea level change are estimated at 8 TG stations (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Tuapse, and Batumi located along the Black Sea coast, which are compared with Satellite Altimetry and GPS. At the tide gauge stations with long-term records such as Poti (about 21 years and Tuapse (about 19 years, the results obtained from the satellite altimetry and tide gauge observations show a remarkably good agreement. While some big differences are existed between Satellite Altimetry and TG at other stations, after adding vertical motion from GPS, correlation coefficients of the trend have been greatly improved from 0.37 to 0.99 at 3 co-located GPS and TG stations (Trabzon-II, Sinop and Sile.

  8. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2006

    International Nuclear Information System (INIS)

    Ahola, J.; Koivula, H.; Poutanen, M.; Jokela, J.

    2007-05-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 22 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 15 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.22 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.23 mm/a ± 0.023 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  9. Ground receiving station (GRS) of UMS - receiving and processing the electromagnetic wave data from satellite

    International Nuclear Information System (INIS)

    Mohammad Syahmi Nordin; Fauziah Abdul Aziz

    2007-01-01

    The low resolution Automatic Picture Transmission (APT) data from the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites Advanced Very High Resolution Radiometer (AVHRR) is being received and recorded in real-time mode at ground receiving station in School of Science and Technology, Universiti Malaysia Sabah. The system is suitable for the developing and undeveloped countries in south and Southeast Asia and is said to be acceptable for engineering, agricultural, climatological and environmental applications. The system comprises a personal computer attached with a small APT receiver. The data transmission between the ground receiving station and NOAA satellites is using the electromagnetic wave. The relation for receiving and processing the electromagnetic wave in the transmission will be discussed. (Author)

  10. Forsmark site investigation. A deformation analysis of the Forsmark GPS monitoring network from 2005 to 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Lars; Ljungberg, Annika (Caliterra AB (Sweden))

    2010-10-15

    The objective of the study is to identify possible movements in the bedrock within and outside the candidate area at Forsmark. Seven physically stable stations were built in the Forsmark area in the autumn of 2005. Stations were established within a ten-kilometer radius. The stations were placed in three different areas separated by regional deformation zones: NE of the Singoe zone, within the candidate area, and SW of the Forsmark zone. Data have been collected in eighteen campaigns, each with a duration of about five days, from November 2005 to December 2009. Stations consist of a stainless steel rod fixed in the bedrock on which the GPS antenna mounts. Each station has dedicated GPS equipment only used at the specific site. Sets consist of a GPS receiver collecting raw GPS data and a choke ring antenna linked to the receiver using a coaxial cable. The receivers and antennas are dual frequency high precision geodetic grade. During each campaign the GPS receiver saves a reading every second for the duration of the five days campaign. The antennas remain mounted on the stations during the entire project, whereas all other equipment is in place at the station only during the campaigns. The measurements were related to the SWEPOS network stations Lovoe, Uppsala and Maartsbo that are defined as stations with stable fundaments by the National Land Survey of Sweden (Lantmaeteriet). This report deals with altogether 18 campaigns. The first 13 campaigns were performed during the period November 2005 to August 2008. However, the number of campaigns has been extended by adding a fourth year to the project. Optimization of the data processing depends on the properties of the entire data set comprising a period of four years. We divided the data into periods of 24 hours with each period processed as a separate session in the Bernese post processing software, after which we analyzed the residuals to conclude that data are of the expected quality. The entire data set from four

  11. GPS-based satellite tracking system for precise positioning

    Science.gov (United States)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  12. GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters

    Science.gov (United States)

    Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.

    2003-12-01

    The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.

  13. Environmental radiation monitoring system with GPS (global positioning system)

    International Nuclear Information System (INIS)

    Komoto, Itsuro

    2000-01-01

    This system combines a radiation monitoring car with GPS and a data processor (personal computer). It distributes the position information acquired through GPS to the data such as measured environmental radiation dose rate and energy spectrum. It also displays and edits the data for each measuring position on a map. Transmitting the data to the power station through mobile phone enables plan managers to easily monitor the environmental radiation dose rate nearby and proper emergency monitoring. (author)

  14. A low-cost transportable ground station for capture and processing of direct broadcast EOS satellite data

    Science.gov (United States)

    Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.

    1994-01-01

    The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.

  15. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    The Klobuchar model was used to compute ionospheric delays for the dlft station, and .... dual-frequency GPS receivers; therefore, the iono- ... The mapping function is defined as the ratio of .... eter in the processing of an extended set of single.

  16. GPS time series at Campi Flegrei caldera (2000-2013

    Directory of Open Access Journals (Sweden)

    Prospero De Martino

    2014-05-01

    Full Text Available The Campi Flegrei caldera is an active volcanic system associated to a high volcanic risk, and represents a well known and peculiar example of ground deformations (bradyseism, characterized by intense uplift periods, followed by subsidence phases with some episodic superimposed mini-uplifts. Ground deformation is an important volcanic precursor, and, its continuous monitoring, is one of the main tool for short time forecast of eruptive activity. This paper provides an overview of the continuous GPS monitoring of the Campi Flegrei caldera from January 2000 to July 2013, including network operations, data recording and processing, and data products. In this period the GPS time series allowed continuous and accurate tracking of ground deformation of the area. Seven main uplift episodes were detected, and during each uplift period, the recurrent horizontal displacement pattern, radial from the “caldera center”, suggests no significant change in deformation source geometry and location occurs. The complete archive of GPS time series at Campi Flegrei area is reported in the Supplementary materials. These data can be usefull for the scientific community in improving the research on Campi Flegrei caldera dynamic and hazard assessment.

  17. Elimination of Coptotermes lacteus (Froggatt) (Blattodea: Rhinotemitidae) Colonies Using Bistrifluron Bait Applied through In-Ground Bait Stations Surrounding Mounds.

    Science.gov (United States)

    Webb, Garry

    2017-09-12

    The efficacy of bistrifluron termite bait was evaluated using in-ground bait stations placed around Coptotermes lacteus mounds in south-eastern Australia during late summer and autumn (late February to late May 2012). Four in-ground bait stations containing timber billets were placed around each of twenty mounds. Once sufficient numbers of in-ground stations were infested by termites, mounds were assigned to one of four groups (one, two, three or four 120 g bait canisters or 120 to 480 g bait in total per mound) and bait canisters installed. One mound, nominally assigned treatment with two canisters ultimately had no termite interception in any of the four in-ground stations and not treated. Eighteen of the remaining 19 colonies were eliminated by 12 weeks after bait placement, irrespective of bait quantity removed (range 43 to 480 g). Measures of colony decline-mound repair capability and internal core temperature-did not accurately reflect the colony decline, as untreated colonies showed a similar pattern of decline in both repair capability and internal mound core temperature. However, during the ensuing spring-summer period, capacity to repair the mound was restored in untreated colonies and the internal core temperature profile was similar to the previous spring-summer period which indicated that these untreated colonies remained healthy.

  18. Vertical Displacements Driven by Groundwater Storage Changes in the North China Plain Detected by GPS Observations

    Directory of Open Access Journals (Sweden)

    Renli Liu

    2018-02-01

    Full Text Available The North China Plain (NCP has been experiencing the most severe groundwater depletion in China, leading to a broad region of vertical motions of the Earth’s surface. This paper explores the seasonal and linear trend variations of surface vertical displacements caused by the groundwater changes in NCP from 2009 to 2013 using Global Positioning System (GPS and Gravity Recovery and Climate Experiment (GRACE techniques. Results show that the peak-to-peak amplitude of GPS-derived annual variation is about 3.7~6.0 mm and is highly correlated (R > 0.6 for most selected GPS stations with results from GRACE, which would confirm that the vertical displacements of continuous GPS (CGPS stations are mainly caused by groundwater storage (GWS changes in NCP, since GWS is the dominant component of total water storage (TWS anomalies in this area. The linear trends of selected bedrock-located IGS CGPS stations reveal the distinct GWS changes in period of 2009–2010 (decrease and 2011–2013 (rebound, which are consistent with results from GRACE-derived GWS anomalies and in situ GWS observations. This result implies that the rate of groundwater depletion in NCP has slowed in recent years. The impacts of geological condition (bedrock or sediment of CGPS stations to their results are also investigated in this study. Contrasted with the slight linear rates (−0.69~1.5 mm/a of bedrock-located CGPS stations, the linear rates of sediment-located CGPS stations are between −44 mm/a and −17 mm/a. It is due to the opposite vertical displacements induced by the Earth surface’s porous and elastic response to groundwater depletion. Besides, the distinct renewal characteristics of shallow and deep groundwater in NCP are discussed. The GPS-based vertical displacement time series, to some extent, can reflect the quicker recovery of shallow unconfined groundwater than the deep confined groundwater in NCP; through one month earlier to attain the maximum height for CGPS

  19. Application of GPS systems on a mobile robot

    Science.gov (United States)

    Cao, Peter; Saxena, Mayank; Tedder, Maurice; Mischalske, Steve; Hall, Ernest L.

    2001-10-01

    The purpose of this paper is to describe the use of Global Positioning Systems (GPS) as geographic information and navigational system for a ground based mobile robot. Several low cost wireless systems are now available for a variety of innovative automobile applications including location, messaging and tracking and security. Experiments were conducted with a test bed mobile robot, Bearcat II, for point-to-point motion using a Motorola GPS in June 2001. The Motorola M12 Oncore GPS system is connected to the Bearcat II main control computer through a RS232 interface. A mapping program is used to define a desired route. Then GPS information may be displayed for verification. However, the GPS information is also used to update the control points of the mobile robot using a reinforcement learning method. Local position updates are also used when found in the environment. The significance of the method is in extending the use of GPS to local vehicle control that requires more resolution that is available from the raw data using the adaptive control method.

  20. Ionospheric Tomography from a Reference GPS/MET Experiment Through the IRI Model

    Directory of Open Access Journals (Sweden)

    Lung-Chih Tsai

    2006-01-01

    Full Text Available In earlier studies, we implemented the Multiplicative Algebraic Reconstruction Technique (MART to reconstruct two-dimensional ionospheric structures from measured TECs through the receptions of the GPS-to-LEO signals and/or the NNSS-to-ground beacon signals. To examine the accuracy of the reconstructed image we need ground-based validation systems which are difficult to obtain. However, such comparative investigation is needed if one aims to improve tomography inverse techniques and algorithms. In this study, we propose a simulation scheme to carry out this task. We first simulate the GPS-to-LEO TEC measurements through the IRI model by integrating electron densities along the ¡§straight¡¨ ray occultation paths between the GPS and LEO satellite obtained from the real GPS/MET experiment. Contiguous tomographic images are then derived by the MART algorithm within the ¡§reference¡¨ GPS/MET experiment. They are verified by comparison with the ¡§true¡¨ IRI-modelled ionosphere. We show that simulation/reference results can be used to find the optimal reconstruction strategy in space-based ionospheric tomography.

  1. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  2. Study on Vibration Reduction Method for a Subway Station in Soft Ground

    Directory of Open Access Journals (Sweden)

    Xian-Feng Ma

    2017-01-01

    Full Text Available With the rapid development of metro system in urban areas, vibration and its impact on adjacent structures caused by metro operation have drawn much attention of researches and worries relating to it have risen. This paper analyzed the vibration attenuation and the environment impact by a case study of a subway station in soft ground with adjacent laboratory building. A method of setting a compound separation barrier surrounding the station is checked and different materials used in the barrier have been tried and tested through numerical analysis. Key parameters of the material and the effects of vibration reduction are studied with the purpose that similar methodology and findings can be referenced in future practices.

  3. Enabling UAV Navigation with Sensor and Environmental Uncertainty in Cluttered and GPS-Denied Environments

    Directory of Open Access Journals (Sweden)

    Fernando Vanegas

    2016-05-01

    Full Text Available Unmanned Aerial Vehicles (UAV can navigate with low risk in obstacle-free environments using ground control stations that plan a series of GPS waypoints as a path to follow. This GPS waypoint navigation does however become dangerous in environments where the GPS signal is faulty or is only present in some places and when the airspace is filled with obstacles. UAV navigation then becomes challenging because the UAV uses other sensors, which in turn generate uncertainty about its localisation and motion systems, especially if the UAV is a low cost platform. Additional uncertainty affects the mission when the UAV goal location is only partially known and can only be discovered by exploring and detecting a target. This navigation problem is established in this research as a Partially-Observable Markov Decision Process (POMDP, so as to produce a policy that maps a set of motion commands to belief states and observations. The policy is calculated and updated on-line while flying with a newly-developed system for UAV Uncertainty-Based Navigation (UBNAV, to navigate in cluttered and GPS-denied environments using observations and executing motion commands instead of waypoints. Experimental results in both simulation and real flight tests show that the UAV finds a path on-line to a region where it can explore and detect a target without colliding with obstacles. UBNAV provides a new method and an enabling technology for scientists to implement and test UAV navigation missions with uncertainty where targets must be detected using on-line POMDP in real flight scenarios.

  4. Enabling UAV Navigation with Sensor and Environmental Uncertainty in Cluttered and GPS-Denied Environments.

    Science.gov (United States)

    Vanegas, Fernando; Gonzalez, Felipe

    2016-05-10

    Unmanned Aerial Vehicles (UAV) can navigate with low risk in obstacle-free environments using ground control stations that plan a series of GPS waypoints as a path to follow. This GPS waypoint navigation does however become dangerous in environments where the GPS signal is faulty or is only present in some places and when the airspace is filled with obstacles. UAV navigation then becomes challenging because the UAV uses other sensors, which in turn generate uncertainty about its localisation and motion systems, especially if the UAV is a low cost platform. Additional uncertainty affects the mission when the UAV goal location is only partially known and can only be discovered by exploring and detecting a target. This navigation problem is established in this research as a Partially-Observable Markov Decision Process (POMDP), so as to produce a policy that maps a set of motion commands to belief states and observations. The policy is calculated and updated on-line while flying with a newly-developed system for UAV Uncertainty-Based Navigation (UBNAV), to navigate in cluttered and GPS-denied environments using observations and executing motion commands instead of waypoints. Experimental results in both simulation and real flight tests show that the UAV finds a path on-line to a region where it can explore and detect a target without colliding with obstacles. UBNAV provides a new method and an enabling technology for scientists to implement and test UAV navigation missions with uncertainty where targets must be detected using on-line POMDP in real flight scenarios.

  5. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    Science.gov (United States)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  6. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  7. An accurate Kriging-based regional ionospheric model using combined GPS/BeiDou observations

    Science.gov (United States)

    Abdelazeem, Mohamed; Çelik, Rahmi N.; El-Rabbany, Ahmed

    2018-01-01

    In this study, we propose a regional ionospheric model (RIM) based on both of the GPS-only and the combined GPS/BeiDou observations for single-frequency precise point positioning (SF-PPP) users in Europe. GPS/BeiDou observations from 16 reference stations are processed in the zero-difference mode. A least-squares algorithm is developed to determine the vertical total electron content (VTEC) bi-linear function parameters for a 15-minute time interval. The Kriging interpolation method is used to estimate the VTEC values at a 1 ° × 1 ° grid. The resulting RIMs are validated for PPP applications using GNSS observations from another set of stations. The SF-PPP accuracy and convergence time obtained through the proposed RIMs are computed and compared with those obtained through the international GNSS service global ionospheric maps (IGS-GIM). The results show that the RIMs speed up the convergence time and enhance the overall positioning accuracy in comparison with the IGS-GIM model, particularly the combined GPS/BeiDou-based model.

  8. Evaluating the Correctness of Airborne Laser Scanning Data Heights Using Vehicle-Based RTK and VRS GPS Observations

    Directory of Open Access Journals (Sweden)

    Martin Vermeer

    2011-08-01

    Full Text Available In this study, we describe a system in which a GPS receiver mounted on the roof of a car is used to provide reference information to evaluate the elevation accuracy and georeferencing of airborne laser scanning (ALS point clouds. The concept was evaluated in the Klaukkala test area where a number of roads were traversed to collect real-time kinematic data. Two test cases were evaluated, including one case using the real-time kinematic (RTK method with a dedicated GPS base station at a known benchmark in the area and another case using the GNSSnet virtual reference station service (VRS. The utility of both GPS methods was confirmed. When all test data were included, the mean difference between ALS data and GPS-based observations was −2.4 cm for both RTK and VRS GPS cases. The corresponding dispersions were ±4.5 cm and ±5.9 cm, respectively. In addition, our examination did not reveal the presence of any significant rotation between ALS and GPS data.

  9. Elimination of Coptotermes lacteus (Froggatt (Blattodea: Rhinotemitidae Colonies Using Bistrifluron Bait Applied through In-Ground Bait Stations Surrounding Mounds

    Directory of Open Access Journals (Sweden)

    Garry Webb

    2017-09-01

    Full Text Available The efficacy of bistrifluron termite bait was evaluated using in-ground bait stations placed around Coptotermes lacteus mounds in south-eastern Australia during late summer and autumn (late February to late May 2012. Four in-ground bait stations containing timber billets were placed around each of twenty mounds. Once sufficient numbers of in-ground stations were infested by termites, mounds were assigned to one of four groups (one, two, three or four 120 g bait canisters or 120 to 480 g bait in total per mound and bait canisters installed. One mound, nominally assigned treatment with two canisters ultimately had no termite interception in any of the four in-ground stations and not treated. Eighteen of the remaining 19 colonies were eliminated by 12 weeks after bait placement, irrespective of bait quantity removed (range 43 to 480 g. Measures of colony decline—mound repair capability and internal core temperature—did not accurately reflect the colony decline, as untreated colonies showed a similar pattern of decline in both repair capability and internal mound core temperature. However, during the ensuing spring–summer period, capacity to repair the mound was restored in untreated colonies and the internal core temperature profile was similar to the previous spring–summer period which indicated that these untreated colonies remained healthy.

  10. Ionospheric irregularities at Antarctic using GPS measurements

    Indian Academy of Sciences (India)

    Scintillation is a major problem in navigation application using GPS and in satellite ... ground ionization which leads to phase as well as amplitude scintillation as reported by ..... in satellite sig- nals which arise from the scattering of radio waves.

  11. Study of the crater deformation of the CODELCO/Andina mine using the satellite and ground data

    Science.gov (United States)

    Caverlotti-Silva, M. A.; Arellano-Baeza, A. A.

    2011-12-01

    The correct monitoring of the subsidence of the craters related to the underground mine exploitation is one of the most important endeavors of the satellite remote sensing. The ASTER and LANDSAT satellite images have been used to study the deformation of the crater of the CODELCO/Andina mine, Valparaiso Region, Chile. The high-resolution satellite images were used to detect changes in the lineament patterns related to the subsidence. These results were compared with the ground deformation extracted from the GPS and topography station networks. It was found that sudden changes in the lineament patterns appear when the ground deformation overcomes a definite threshold.

  12. Co-location satellite GPS and SLR geodetic techniques at the Felix Aguilar Astronomical Observatory of San Juan, Argentina

    Science.gov (United States)

    Podestá, R.; Pacheco, A. M.; Alvis Rojas, H.; Quinteros, J.; Podestá, F.; Albornoz, E.; Navarro, A.; Luna, M.

    2018-01-01

    This work shows the strategy followed for the co-location of the Satellite Laser Ranging (SLR) ILRS 7406 telescope and the antenna of the permanent Global Positioning System (GPS) station, located at the Félix Aguilar Astronomical Observatory (OAFA) in San Juan, Argentina. The accomplishment of the co-location consisted in the design, construction, measurement, adjustment and compensation of a geodesic net between the stations SLR and GPS, securing support points solidly built in the soil. The co-location allows the coordinates of the station to be obtained by combining the data of both SLR and GPS techniques, achieving a greater degree of accuracy than individually. The International Earth Rotation and Reference Systems Service (IERS) considers the co-located stations as the most valuable and important points for the maintenance of terrestrial reference systems and their connection with the celestial ones. The 3 mm precision required by the IERS has been successfully achieved.

  13. Real-time clock and orbit calculation of the GPS satellite constellation based on observation data of RTIGS-station network

    International Nuclear Information System (INIS)

    Thaler, G.

    2011-01-01

    Due to the development of faster communication networks and improving computer technology beside postprocessing techniques real-time applications and services are more and more created and used in the eld of precise positioning and navigation using global navigation satellite systems (GNSS) like GPS. Data formats like RTCM (NTRIP) or RTIGS serve in this manner as basic tool to transmit real-time GNSS observation data to a eld of users. To handle this trend to real-time, the International GNSS Service (IGS) or more precisely the Real-Time Working Group (RTWG) of the IGS started to establish a global GNSS station network several years ago. These reference stations (RTIGS stations) transmit their observation data in real-time via the open internet to registerd users to support the development of potential new real-time products and services. One example for such a new real-time application based on the observations of the RTIGS network is the software RTIGU-Control developed within this PHD thesis. RTIGU-Control fulls 2 main tasks. The rst task is the monitoring (integrity) of the predicted IGS orbit and clock products (IGU products) using real-time observations from the station network. The second task deals with calculating more precise satellite and station clock corrections compared to the predicted values of the IGU solutions based on the already very precise IGU orbit solutions. In a rst step RTIGU-Control calculates based on the IGU orbit predictions together with code-smoothed station observations precise values for the satellite and station clock corrections.The code-smoothed observations are additionally corrected for several corrections eecting the GNSS observations (for example the delay of the signal propagation time due to the atmosphere, relativistic eects, etc.). The second calculation step deals with monitoring the IGU predicted orbits using the calculated clock solution in the calculation step before and again the corrected real-time observations

  14. A Forward GPS Multipath Simulator Based on the Vegetation Radiative Transfer Equation Model.

    Science.gov (United States)

    Wu, Xuerui; Jin, Shuanggen; Xia, Junming

    2017-06-05

    Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR.

  15. Mw 8.5 BENGKULU EARTHQUAKES FROM CONTINUOUS GPS DATA

    Directory of Open Access Journals (Sweden)

    W. A. W. Aris

    2016-09-01

    Full Text Available The Mw 8.5 Bengkulu earthquake of 30 September 2007 and the Mw8.6 28 March 2005 are considered amongst large earthquake ever recorded in Southeast Asia. The impact into tectonic deformation was recorded by a network of Global Positioning System (GPS Continuously Operating Reference Station (CORS within southern of Sumatra and west-coast of Peninsular Malaysia. The GPS data from the GPS CORS network has been deployed to investigate the characteristic of postseismic deformation due to the earthquakes. Analytical logarithmic and exponential function was applied to investigate the deformation decay period of postseismic deformation. This investigation provides a preliminary insight into postseismic cycle along the Sumatra subduction zone in particular and on the dynamics Peninsular Malaysia in general.

  16. Comprehensive seismic monitoring of the Cascadia megathrust with real-time GPS

    Science.gov (United States)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.; Webb, F.

    2013-12-01

    We have developed a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone based on 1- and 5-second point position estimates computed within the ITRF08 reference frame. A Kalman filter stream editor that uses a geometry-free combination of phase and range observables to speed convergence while also producing independent estimation of carrier phase biases and ionosphere delay pre-cleans raw satellite measurements. These are then analyzed with GIPSY-OASIS using satellite clock and orbit corrections streamed continuously from the International GNSS Service (IGS) and the German Aerospace Center (DLR). The resulting RMS position scatter is less than 3 cm, and typical latencies are under 2 seconds. Currently 31 coastal Washington, Oregon, and northern California stations from the combined PANGA and PBO networks are analyzed. We are now ramping up to include all of the remaining 400+ stations currently operating throughout the Cascadia subduction zone, all of which are high-rate and telemetered in real-time to CWU. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources. To use the point position streams for seismic monitoring, we have developed an inter-process client communication package that captures, buffers and re-broadcasts real-time positions and covariances to a variety of seismic estimation routines running on distributed hardware. An aggregator ingests, re-streams and can rebroadcast up to 24 hours of point-positions and resultant seismic estimates derived from the point positions to application clients distributed across web. A suite of seismic monitoring applications has also been written, which includes position time series analysis, instantaneous displacement vectors, and peak ground displacement contouring and mapping. We have also implemented a continuous estimation of finite-fault slip along the Cascadia megathrust

  17. Timing Comparisons for GLEs and High-energy Proton Events using GPS Proton Measurements

    Science.gov (United States)

    Bernstein, V.; Winter, L. M.; Carver, M.; Morley, S.

    2017-12-01

    The newly released LANL GPS particle sensor data offers a unique snapshot of access of relativistic particles into the geomagnetic field. Currently, 23 of the 31 operational GPS satellites host energetic particle detectors which can detect the arrival of high-energy solar protons associated with Ground Level Enhancements (GLEs). We compare the timing profiles of solar energetic proton detections from GPS satellites as well as from ground-based Neutron Monitors and GOES spacecraft at geostationary orbit in order to understand how high-energy protons from the Sun enter the geomagnetic field and investigate potential differences in arrival time of energetic protons at GPS satellites as a function of location. Previous studies could only use one or two spacecraft at a similar altitude to track the arrival of energetic particles. With GPS data, we can now test whether the particles arrive isotropically, as assumed, or whether there exist differences in the timing and energetics viewed by each of the individual satellites. Extensions of this work could lead to improvements in space weather forecasting that predict more localized risk estimates for space-based technology.

  18. Surface deformation analysis over Vrancea seismogenic area through radar and GPS geospatial data

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Serban, Florin S.; Teleaga, Delia M.; Mateciuc, Doru N.

    2017-10-01

    Time series analysis of GPS (Global Positioning Systems) and InSAR (Interferometric Synthetic Aperture Radar) data are important tools for Earth's surface deformation assessment, which can result from a wide range of geological phenomena like as earthquakes, landslides or ground water level changes. The aim of this paper was to identify several types of earthquake precursors that might be observed from geospatial data in Vrancea seismogenic region in Romania. Continuous GPS Romanian network stations and few field campaigns data recorded between 2005-2012 years revealed a displacement of about 5 or 6 millimeters per year in horizontal direction relative motion, and a few millimeters per year in vertical direction. In order to assess possible deformations due to earthquakes and respectively for possible slow deformations, have been used also time series Sentinel 1 satellite data available for Vrancea zone during October 2014 till October 2016 to generate two types of interferograms (short-term and medium- term). During investigated period were not recorded medium or strong earthquakes, so interferograms over test area revealed small displacements on vertical direction (subsidence or uplifts) of 5-10 millimeters per year. Based on GPS continuous network data and satellite Sentinel 1 results, different possible tectonic scenarios were developed. The localization of horizontal and vertical motions, fault slip, and surface deformation of the continental blocks provides new information, in support of different geodynamic models for Vrancea tectonic active region in Romania and Europe.

  19. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    Science.gov (United States)

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  20. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    Science.gov (United States)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  1. Transition of NOAA's GPS-Met Data Acquisition and Processing System to the Commercial Sector: Inital Results

    Science.gov (United States)

    Jackson, Michael; Blatt, Stephan; Holub, Kirk

    2015-04-01

    In April of 2014, NOAA/OAR/ESRL Global Systems Division (GSD) and Trimble, in collaboration with Earth Networks, Inc. (ENI) signed a Cooperative Research and Development Agreement (CRADA) to transfer the existing NOAA GPS-Met Data Acquisition and Processing System (GPS-Met DAPS) technology to a commercial Trimble/ENI partnership. NOAA's GPS-Met DAPS is currently operated in a pseudo-operational mode but has proven highly reliable and running at over 95% uptime. The DAPS uses the GAMIT software to ingest dual frequency carrier phase GPS/GNSS observations and ancillary information such as real-time satellite orbits to estimate the zenith-scaled tropospheric (ZTD) signal delays and, where surface MET data are available, retrieve integrated precipitable water vapor (PWV). The NOAA data and products are made available to end users in near real-time. The Trimble/ENI partnership will use the Trimble Pivot™ software with the Atmosphere App to calculate zenith tropospheric (ZTD), tropospheric slant delay, and integrated precipitable water vapor (PWV). Evaluation of the Trimble software is underway starting with a comparison of ZTD and PWV values determined from four sub networks of GPS stations located 1. near NOAA Radiosonde Observation (Upper-Air Observation) launch sites; 2. Stations with low terrain/high moisture variability (Gulf Coast); 3. Stations with high terrain/low moisture variability (Southern California); and 4. Stations with high terrain/high moisture variability (high terrain variability elev. > 1000m). For each network GSD and T/ENI run the same stations for 30 days, compare results, and perform an evaluation of the long-term solution accuracy, precision and reliability. Metrics for success include T/ENI PWV estimates within 1.5 mm of ESRL/GSD's estimates 95% of the time (ZTD uncertainty of less than 10 mm 95% of the time). The threshold for allowable variations in ZTD between NOAA GPS-Met and T/ENI processing are 10mm. The CRADA 1&2 Trimble processing

  2. GPS/MEMS IMU/Microprocessor Board for Navigation

    Science.gov (United States)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  3. Clustering of GPS velocities in the Mojave Block, southeastern California

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  4. Deformation-strain field in Sichuan and its surrounding areas based on GPS data

    Directory of Open Access Journals (Sweden)

    Fuchao Chen

    2015-05-01

    Full Text Available The strain rate in Sichuan and its surrounding areas, and the activity rate and strain rate in two block boundary fault zones were calculated according to the block movement parameters estimated using the station speed obtained from regional GPS station observation data in these areas for 2009–2011 and GPS continuous station data for 2011–2013. The movement field characteristics in these areas were analyzed with the Sichuan Basin as the reference. Results show that the principal strain rate and maximum shear strain rate of the Bayan Har block were the largest, followed by those of the Sichuan–Yunnan block and Sichuan Basin. The deep normal strain rate in the Longmenshan fault zone was compressive and large over the study period. The normal strain rate in the Xianshuihe fault zone was tensile.

  5. Comparison of a low and a middle latitude GPS-TEC in Africa during ...

    African Journals Online (AJOL)

    In this work, we compared TEC values at Libreville (a low latitude station) with Sutherland (a middle latitude station) over Africa using Global Positioning System (GPS) receivers during high solar activity (HSA), moderate solar activity (MSA) and low solar activity (LSA). Apart from our confirmation that high, moderate and low ...

  6. GPS measurements in Satakunta area

    International Nuclear Information System (INIS)

    Poutanen, M.; Nyberg, S.; Ahola, J.

    2010-10-01

    The Finnish Geodetic Institute, the Geological Survey of Finland, Posiva Ltd and municipalities in the district of Satakunta launched the GeoSatakunta research program in 2002 to carry out interdisciplinary studies on regional bedrock stress field and to apply the results e.g. in land use planning in the Satakunta area. The area was chosen for many reasons. Its geological diversity, extensive multi-disciplinary data coverage, and various interests of participants made the area suitable for the project. The purpose of the GPS observations is to get detailed information on recent crustal deformations in the area. The Finnish Geodetic Institute maintains e.g. national GPS network, FinnRef, and since 1995 a local research network in the Olkiluoto area. The Satakunta network differs from these, and this is the first time to obtain such detailed information of a regional network in Finland. The Satakunta GPS network consists of 13 concrete pillars for episodic GPS campaigns and the Olkiluoto permanent GPS station in the FinnRef network. The distances between the concrete pillars are 10-15 km, and the sites were chosen in a co-operation with the Geological Survey of Finland taking into account the geological structures in the area. The City of Pori made the final reconnaissance in the field and constructed eight pillars in 2003. The original network was expanded in 2005-2006 in Eurajoki and Rauma, and at the City of Rauma joined the co-operation. The five new pillars join the previous Olkiluoto network into the Satakunta network. There have been three annual GPS campaigns in 2003-2008. Time series of the Satakunta network are shorter than in the Olkiluoto network, and also the distances are longer. Therefore, the same accuracy than in Olkiluoto has not yet achieved. However, mm-sized movements can be excluded. Estimated velocities were small (0.2 mm/a) and mostly statistically insignificant because of relatively short time series. In this publication we describe the

  7. GPS horizontal deformation model in the southern region of the Iberian Peninsula and northern Africa (SPINA)

    International Nuclear Information System (INIS)

    Rosado Moscoso, B.; Fernández-Ros, A.; Jiménez Jiménez, A.; Berrocoso Domínguez, M.

    2017-01-01

    Global Navigation Satellite System (GNSS), and in particular Global Positioning System (GPS) technology provides a powerful tool for studying geodynamic processes. As a consequence of GPS studies, it is now possible to analyze the interaction between tectonic plates in order to evaluate and establish the characteristics of their boundaries. In this study, our main interest is to focus on the time series analysis obtained from observations of GNSS-GPS satellites. Each GPS observation session provides topocentric geodetic coordinates (east, north, elevation) of the permanent stations that constitute the geodetic network established for this purpose. This paper shows a detailed topocentric coordinate time-series study for sites belonging to what we call the SPINA network, which stands for south of the Iberian Peninsula, north of Africa region. The series under study are processed by techniques of relative positioning with respect to the IGS (International GNSS Service) reference station located in Villafranca. These times series have been analyzed using filter processes, harmonic adjustments and wavelets. A surface velocity field is derived from the time series of daily solutions for each station, whose observations span 8 years or longer. This allows us to obtain a horizontal displacement model to show the regional geodynamic main characteristics. [es

  8. Development of the Plate Boundary Observatory GPS Low Latency Salton Trough Radio Network

    Science.gov (United States)

    Walls, C.; Miller, S.; Wilson, B.; Lawrence, S.; Arnitz, E.

    2008-05-01

    UNAVCO is developing a 20 GPS station low latency radio network that spans the San Andreas and San Jacinto faults in the region of highest strain in southern California and the narrowest part of the North America-Pacific plate boundary. The Salton Trough Radio Network (STRN) is instrumented with Ethernet bridge Intuicom EB6+ (900 MHz) radios to transmit a high rate low latency data stream from each permanent GPS site for the purpose of the following: 1) telemeter 15 second data (1 MB/day/station) to the Plate Boundary Observatory archive, 2) accommodate the timely download of 1 and 5 sample per second data following large earthquakes (4 MB/hour/station), and 3) test the UStream of 1Hz BINEX and RTCM data. Three of four phases have been completed. Office radio testing yielded transfer rates of 30-50 KB/s with subsecond latency while streaming 1 Hz data. Latency climbed to ~1.8 seconds while simultaneously streaming 1 Hz and downloading hourly 1 and 5 sample per second data files. Field testing demonstrated rates on the order of 30 KB/s. At present the radios are installed and have transfer rates of 10-40 KB/s between sites that span 10-32 km. The final phase will be the installation of the main telemetry relay where master radios will be connected to a high speed ISP near the town of Brawley. The high-rate low latency UStream data will be available to researchers who are developing prototype earthquake early warning systems in Southern California. A goal of the STRN is to make the data available rapidly enough for GPS-derived coseismic and dynamic displacements to be integrated into early warning system earthquake models. The improved earthquake models will better assist emergency response. UStream data will also aid surveyors who wish to use PBO GPS stations as permanent, high-quality base stations in real-time kinematic surveys.

  9. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    Science.gov (United States)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  10. Ground-Fault Characteristic Analysis of Grid-Connected Photovoltaic Stations with Neutral Grounding Resistance

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2017-11-01

    Full Text Available A centralized grid-connected photovoltaic (PV station is a widely adopted method of neutral grounding using resistance, which can potentially make pre-existing protection systems invalid and threaten the safety of power grids. Therefore, studying the fault characteristics of grid-connected PV systems and their impact on power-grid protection is of great importance. Based on an analysis of the grid structure of a grid-connected PV system and of the low-voltage ride-through control characteristics of a photovoltaic power supply, this paper proposes a short-circuit calculation model and a fault-calculation method for this kind of system. With respect to the change of system parameters, particularly the resistance connected to the neutral point, and the possible impact on protective actions, this paper achieves the general rule of short-circuit current characteristics through a simulation, which provides a reference for devising protection configurations.

  11. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  12. Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach

    Directory of Open Access Journals (Sweden)

    Byung-Kyu Choi

    2010-12-01

    Full Text Available In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS. The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.

  13. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    Science.gov (United States)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  14. Combining Real-Time Seismic and GPS Data for Earthquake Early Warning (Invited)

    Science.gov (United States)

    Boese, M.; Heaton, T. H.; Hudnut, K. W.

    2013-12-01

    Scientists at Caltech, UC Berkeley, the Univ. of SoCal, the Univ. of Washington, the US Geological Survey, and ETH Zurich have developed an earthquake early warning (EEW) demonstration system for California and the Pacific Northwest. To quickly determine the earthquake magnitude and location, 'ShakeAlert' currently processes and interprets real-time data-streams from ~400 seismic broadband and strong-motion stations within the California Integrated Seismic Network (CISN). Based on these parameters, the 'UserDisplay' software predicts and displays the arrival and intensity of shaking at a given user site. Real-time ShakeAlert feeds are currently shared with around 160 individuals, companies, and emergency response organizations to educate potential users about EEW and to identify needs and applications of EEW in a future operational warning system. Recently, scientists at the contributing institutions have started to develop algorithms for ShakeAlert that make use of high-rate real-time GPS data to improve the magnitude estimates for large earthquakes (M>6.5) and to determine slip distributions. Knowing the fault slip in (near) real-time is crucial for users relying on or operating distributed systems, such as for power, water or transportation, especially if these networks run close to or across large faults. As shown in an earlier study, slip information is also useful to predict (in a probabilistic sense) how far a fault rupture will propagate, thus enabling more robust probabilistic ground-motion predictions at distant locations. Finally, fault slip information is needed for tsunami warning, such as in the Cascadia subduction-zone. To handle extended fault-ruptures of large earthquakes in real-time, Caltech and USGS Pasadena are currently developing and testing a two-step procedure that combines seismic and geodetic data; in the first step, high-frequency strong-motion amplitudes are used to rapidly classify near-and far-source stations. Then, the location and

  15. An investigation of airborne GPS/INS for high accuracy position and velocity determination

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H.; Cannon, M.E. [Calgary Univ., AB (Canada). Dept. of Geomatics Engineering; Owen, T.E.; Meindl, M.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31

    An airborne test using a differential GPS-INS system in a Twin Otter was conducted by Sandia National Laboratories to assess the feasibility of using the integrated system for cm-level position and cm/s velocity. The INS is a miniaturized ring-laser gyro IMU jointly developed by Sandia and Honeywell while the GPS system consists of the NovAtel GPSCard{trademark}. INS position, velocity and attitude data were computed using Sandia`s SANDAC flight computer system and logged at 4 Hz and GPS data was acquired at a 1 Hz rate. The mission was approximately 2.5 hours in duration and the aircraft reached separations of up to 19 km from the base station. The data was post-processed using a centralized Kalman filter approach in which the double differenced carrier phase measurements are used to update the INS data. The INS position is in turn used to detect and correct GPS carrier phase cycle slips and also to bridge GPS outages. Results are presented for the GPS-only case and also for integrated GPS/INS.

  16. Ground deformation monitoring using RADARSAT-2 DInSAR-MSBAS at the Aquistore CO2 storage site in Saskatchewan (Canada)

    Science.gov (United States)

    Czarnogorska, M.; Samsonov, S.; White, D.

    2014-11-01

    The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in southeastern Saskatchewan, Canada. Several monitoring techniques were employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) technique, GPS, tiltmeters and piezometers. The targeted CO2 injection zones are within the Winnipeg and Deadwood formations located at > 3000 m depth. An array of monitoring techniques was employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) with established corner reflectors, GPS, tiltmeters and piezometers stations. We used airborne LIDAR data for topographic phase estimation, and DInSAR product geocoding. Ground deformation maps have been calculated using Multidimensional Small Baseline Subset (MSBAS) methodology from 134 RADARSAT-2 images, from five different beams, acquired during 20120612-20140706. We computed and interpreted nine time series for selected places. MSBAS results indicate slow ground deformation up to 1 cm/year not related to CO2 injection but caused by various natural and anthropogenic causes.

  17. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series

    Science.gov (United States)

    Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng

    2018-04-01

    There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.

  18. A new local GPS water vapor tomography imaging technique using spectral functions w.r.t space and time: initial tests and results for the Tahiti Island case (French Polynesia)

    Science.gov (United States)

    Sichoix, L.; Barriot, J.; Fadil, A.; Ortega, P.

    2009-12-01

    In this study, we present the initial tests and validation results performed on a newly-developed GPS water vapor tomography inversion code based on a spectral approach tailored to coarse networks of GPS stations. Our work is mainly motivated by the lack of dense GPS coverage in Tahiti Island. Firstly, we use the GAMIT software to estimate the tropospheric slant wet delays (SWD) from a single GPS ground-based receiver to each visible satellite. SWD values are our model input. Secondly, the refractivity along ray paths is written as 3D Zernike radial and spherical harmonic series as well as sinusoidal time series and then inserted into the Radon transform linking slant delays and refractivity. This approach is in contrast with usual previous approaches where the atmosphere is divided into voxels (3D pixels). These approaches may exhibit instabilities as a voxel is crossed by more than one ray. Thirdly, we overcome the ill-posedness of the Radon transform by adding a priori constraints in the form of a full covariance matrix of the atmospheric refractivity taking into account the transport and mixing processes in the atmosphere.

  19. Remote reference processing in MT survey using GPS clock; MT ho ni okeru GPS wo mochiita jikoku doki system

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K; Inoue, J; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Kosuge, S [DRICO Co. Ltd., Tokyo (Japan)

    1996-05-01

    A report is given about the application of a synchronizing system using clock signals from GPS satellites to a remote reference method which is a technique to reject noise from the MT method. This system uses the C/A code out of the L1 band waves from NAVSTAR/GPS satellites. The new system was operated in MT method-using investigations conducted at China Peninsula, Aichi Prefecture, and Izu Peninsula, Shizuoka Prefecture, with the reference points placed several 100km away in Iwate Prefecture on both occasions. It was found as the result that it is basically possible to catch signals from the GPS at any place, that the signals are accurate enough to be applied to time synchronization for the MT method, and that the signals assure a far remote reference method with a separation of several 100km between the sites involved. The referencing process at high frequencies whose feasibility had been doubted proved a success when highly correlated signals were exchanged between two stations over a distance of several 100km. 5 refs., 9 figs.

  20. 75 FR 8928 - Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800 Interface Control Working Group (ICWG...

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force Announcement of IS-GPS-200, IS-GPS-705, IS-GPS... document/s IS-GPS-200E (NAVSTAR GPS Space Segment/Navigation User Interfaces), IS-GPS-705A (NAVSTAR GPS Space Segment/User Segment L5 Interfaces), and IS-GPS-800A (NAVSTAR GPS Space Segment/User Segment L1C...

  1. GPS Time Synchronization in School-Network Cosmic Ray Detectors

    Science.gov (United States)

    Berns, H.-G.; Burnett, T. H.; Gran, R.; Wilkes, R. J.

    2004-06-01

    The QuarkNet DAQ card for school-network cosmic ray detectors provides a low-cost alternative to using standard particle and nuclear physics fast pulse electronics modules. The board, which can be produced at a cost of less than $500.00 (USD), produces trigger time and pulse edge time data for 2- to 4-fold coincidence levels via a universal RS232 serial port interface, usable with any PC. Individual detector stations, each consisting of four scintillation counter modules, front-end electronics, and a GPS receiver, produce a stream of data in form of ASCII text strings in identifiable set of formats for different functions. The card includes a low-cost GPS receiver module, which permits time-stamping event triggers to about 50 nanosecond accuracy in UTC between widely separated sites. The technique used for obtaining precise GPS time employs the 1PPS signal, which is not normally available to users of the commercial GPS module. We had the stock model slightly custom-modified to access this signal. The method for deriving time values was adapted from methods developed for the K2K long-baseline neutrino experiment. Performance of the low-cost GPS module used is compared to that of a more expensive unit with known quality.

  2. GPS tomography. Validation of reconstructed 3-D humidity fields with radiosonde profiles

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, M.; Bender, M.; Ramatschi, M.; Dick, G.; Wickert, J. [Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Potsdam (Germany); Raabe, A. [Leipzig Institute for Meteorology (LIM), Leipzig (Germany); Galas, R. [Technische Univ. Berlin (Germany). Dept. for Geodesy and Geoinformation Sciences

    2013-11-01

    Water vapor plays an important role in meteorological applications; GeoForschungsZentrum (GFZ) therefore developed a tomographic system to derive 3-D distributions of the tropospheric water vapor above Germany using GPS data from about 300 ground stations. Input data for the tomographic reconstructions are generated by the Earth Parameter and Orbit determination System (EPOS) software of the GFZ, which provides zenith total delay (ZTD), integrated water vapor (IWV) and slant total delay (STD) data operationally with a temporal resolution of 2.5 min (STD) and 15 min (ZTD, IWV). The water vapor distribution in the atmosphere is derived by tomographic reconstruction techniques. The quality of the solution is dependent on many factors such as the spatial coverage of the atmosphere with slant paths, the spatial distribution of their intersections and the accuracy of the input observations. Independent observations are required to validate the tomographic reconstructions and to get precise information on the accuracy of the derived 3-D water vapor fields. To determine the quality of the GPS tomography, more than 8000 vertical water vapor profiles at 13 German radiosonde stations were used for the comparison. The radiosondes were launched twice a day (at 00:00 UTC and 12:00 UTC) in 2007. In this paper, parameters of the entire profiles such as the wet refractivity, and the zenith wet delay have been compared. Before the validation the temporal and spatial distribution of the slant paths, serving as a basis for tomographic reconstruction, as well as their angular distribution were studied. The mean wet refractivity differences between tomography and radiosonde data for all points vary from -1.3 to 0.3, and the root mean square is within the range of 6.5-9. About 32% of 6803 profiles match well, 23% match badly and 45% are difficult to classify as they match only in parts.

  3. GPS-based tracking system for TOPEX orbit determination

    Science.gov (United States)

    Melbourne, W. G.

    1984-01-01

    A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.

  4. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  5. Continuous GPS observations in Tohoku University and recovery effort after the 2011 off the Pacific coast of Tohoku Earthquake

    Science.gov (United States)

    Demachi, T.; Miura, S.; Ohta, Y.; Tachibana, K.; Ueki, S.; Sato, T.; Ohzono, M.; Umino, N.

    2012-04-01

    The nation-wide GPS observation network which is named GPS Earth Observation Network System (GEONET) has been established by the Geospatial Information Authority of Japan (GSI) (Miyazaki et al., 1997). The network composed more than 1,200 stations with baseline length is about 20-25 km. Tohoku University has also conducted continuous GPS observations since 1987 in the Tohoku district, Northeastern Japan (Miura et al., 1993). Recently, to investigate short-length crustal deformations such as volcanic deformation, co- and post-seismic deformation of M6-7 class earthquakes and inter-seismic deformations, we have deployed continuous GPS observation stations to complement the location of GEONET stations (Miura et al. 2000, 2002, and 2004). We installed GPS receiver, PC for data logging (ALIX series, PC Engines GmbH) and re-booter (e.g., WATCH BOOT nino, Meikyo Electric Co., Ltd.) in each station. We have secure and stable online access to each station from our university (Sendai city, Japan) using IP-VPN over fixed telephone lines (FLET'S Office service, Nippon Telegraph and Telephone East Corp.). Through this network, the data are transferred to our university and we can restart the devices if the devices hang up. Since 2010, we have tried to use on-line system through internet by prepaid mobile data-communication (b-mobile3G and b-mobileSIM U300, Japan Communications Inc.) in eight observation stations. Compared with the FLET'S Office service, we can conveniently and inexpensively establish wherever the mobile phone service is provided. The two stations are located in volcanoes, we activate the network system for an hour in every day using motor time switch, because of these devices are operated by limited DC power supplies through solar cell. In other six stations, we can use commercial AC power supplies, so that data connections are always available. On March 11, 2011, the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) occurred and a huge tsunami caused

  6. Ionospheric Response to the Total Solar Eclipse of 22 July 2009 as Deduced from VLBI and GPS Data

    Science.gov (United States)

    Guo, L.; Shu, F. C.; Zheng, W. M.; Kondo, T.; Ichikawa, R.; Hasegawa, S.; Sekido, M.

    2010-01-01

    A total solar eclipse occurred over China at latitudes of about 30 N on the morning of 22 July 2009, providing a unique opportunity to investigate the influence of the sun on the earth's upper ionosphere. GPS observations from Shanghai GPS Local Network and VLBI observations from stations Shanghai, Urumqi, and Kashima were used to observe the response of TEC to the total solar eclipse. From the GPS data reduction, the sudden decrease of TEC at the time of the eclipse, amounting to 2.8 TECU, and gradual increase of TEC after the eclipse were found by analyzing the diurnal variations. More distinctly, the variations of TEC were studied along individual satellite passes. The delay in reaching the minimum level of TEC with the maximum phase of eclipse was 5-10 min. Besides, we also compared the ionospheric activity derived from different VLBI stations with the GPS results and found a strong correlation between them.

  7. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    Science.gov (United States)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  8. Hacking GPS

    CERN Document Server

    Kingsley-Hughes, Kathie

    2005-01-01

    * This is the "user manual" that didn't come with any of the 30 million GPS receivers currently in use, showing readers how to modify, tweak, and hack their GPS to take it to new levels!* Crazy-cool modifications include exploiting secret keycodes, revealing hidden features, building power cords and cables, hacking the battery and antenna, protecting a GPS from impact and falls, making a screen protector, and solar-powering a GPS* Potential power users will take the function and performance of their GPS to a whole new level by hacking into the firmware and hacking into a PC connection with a GPS* Fear not! Any potentially dangerous mod (to the device) is clearly labeled, with precautions listed that should be taken* Game time! Readers can check out GPS games, check into hacking geocaching, and even use a GPS as a metal detector

  9. Hook whistlers observed at low latitude ground station Varanasi

    International Nuclear Information System (INIS)

    Khosa, P.N.; Lalmani; Ahmed, M.M.; Singh, B.D.

    1983-01-01

    Employing the Haselgrove ray tracing equations and a diffusive equilibrium model of the ionosphere, the propagation characteristics of hook whistlers recorded at low-latitude ground station Varanasi (geomag. lat., 16 0 6'N) are discussed. It is shown that the two traces of the hook whistlers are caused by the VLF waves radiated from the return stroke of a lightning discharge which after penetrating the ionosphere at two different entry points, propagated to the opposite hemisphere in the whistler mode and were received at 16 geomagnetic latitude. Further the crossing of ray paths for the same frequency leads to the explanation of the hook whistler. The lower and higher cut-off frequencies are explained in terms of their deviating away from the bunch of the recorded whistler waves and crossing of ray paths for the same frequency. (Auth.)

  10. Nonstandard usage of ASS-500 station filters for determination of ground-level air contamination

    International Nuclear Information System (INIS)

    Kozak, K.; Jasinska, M.; Kwiatek, W.; Mietelski, J.W.; Dutkiewicz, E.

    1998-01-01

    The work describes nonstandard application of filters from ASS-500 station for the determination of the element content in the samples collected by PIXE method. Determination of gamma radioactive isotopes and alpha radioactive plutonium is also reviewed. Authors conclude that ASS-500 workstation allows collection of representative samples from the ground level air. These samples are suitable for the complex analysis of industrial pollution

  11. Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO

    Science.gov (United States)

    Dai, Xiaolei

    2014-05-01

    In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi

  12. SEXTANT - Station Explorer for X-ray Timing and Navigation Technology

    Science.gov (United States)

    Mitchell, Jason W.; Hasouneh, Munther Abdel Hamid; Winternitz, Luke M. B.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Arzoumanian, Zaven; Ray, Paul S.; Wood, Kent S.; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission, which is scheduled to launch in late 2016 and will be hosted as an externally attached payload on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). During NICER's 18-month baseline science mission to understand ultra-dense matter though observations of neutron stars in the soft X-ray band, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar navigation, which is a significant milestone in the quest to establish a GPS-like navigation capability that will be available throughout our Solar System and beyond. Along with NICER, SEXTANT has proceeded through Phase B, Mission Definition, and received numerous refinements in concept of operation, algorithms, flight software, ground system, and ground test capability. NICER/SEXTANT's Phase B work culminated in NASA's confirmation of NICER to Phase C, Design and Development, in March 2014. Recently, NICER/SEXTANT successfully passed its Critical Design Review and SEXTANT received continuation approval in September 2014. In this paper, we describe the X-ray pulsar navigation concept and provide a brief history of previous work, and then summarize the SEXTANT technology demonstration objective, hardware and software components, and development to date.

  13. Central and South America GPS geodesy - CASA Uno

    Science.gov (United States)

    Kellogg, James N.; Dixon, Timothy H.

    1990-01-01

    In January 1988, scientists from over 25 organizations in 13 countries and territories cooperated in the largest GPS campaign in the world to date. A total of 43 GPS receivers collected approximately 590 station-days of data in American Samoa, Australia, Canada, Colombia, Costa Rica, Ecuador, New Zealand, Norway, Panama, Sweden, United States, West Germany, and Venezuela. The experiment was entitled CASA Uno. Scientific goals of the project include measurements of strain in the northern Andes, subduction rates for the Cocos and Nazca plates beneath Central and South America, and relative motion between the Caribbean plate and South America. A second set of measurements are planned in 1991 and should provide preliminary estimates of crustal deformation and plate motion rates in the region.

  14. A different approach to the analysis of GPS scintillations data

    International Nuclear Information System (INIS)

    Forte, B.; Radicella, S.M.; Ezquer, R.G.

    2001-09-01

    Amplitude scintillations data from GPS have been analyzed. The objective is to estimate the impact of ionospheric scintillations at Satellite-Based Augmentation System (SBAS) Ranging and Integrity Monitoring Station (RIMS) level and at GPS user level. For this purpose a new approach to the problem has been considered. Data have been studied from the point of view of the impact of scintillations on the calculation of VTEC at pierce points and ionospheric grid points. An ionospheric grid of 5 deg. by 5 deg. surface squares has been assumed. From geometrical considerations and taking into account the basic principle to compute VTEC at grid points, with the data analyzed it is shown that very seldom scintillations can affect the calculation of a grid point VTEC. Data from all the RIMS and for the entire GPS satellites network must be analyzed simultaneously to describe a realistic scenario for the impact of scintillations on SBAS. Finally, GPS scintillation data have been analyzed at user level: service availability problems have been encountered. (author)

  15. Experimenting Galileo on Board the International Space Station

    Science.gov (United States)

    Fantinato, Samuele; Pozzobon, Oscar; Sands, Obed S.; Welch, Bryan W.; Clapper, Carolyn J.; Miller, James J.; Gamba, Giovanni; Chiara, Andrea; Montagner, Stefano; Giordano, Pietro; hide

    2016-01-01

    The SCaN Testbed is an advanced integrated communications system and laboratory facility installed on the International Space Station (ISS) in 2012. The testbed incorporates a set of new generation of Software Defined Radio (SDR) technologies intended to allow researchers to develop, test, and demonstrate new communications, networking, and navigation capabilities in the actual environment of space. Qascom, in cooperation with ESA and NASA, is designing a Software Defined Radio GalileoGPS Receiver capable to provide accurate positioning and timing to be installed on the ISS SCaN Testbed. The GalileoGPS waveform will be operated in the JPL SDR that is constituted by several hardware components that can be used for experimentations in L-Band and S-Band. The JPL SDR includes an L-Band Dorne Margolin antenna mounted onto a choke ring. The antenna is connected to a radio front end capable to provide one bit samples for the three GNSS frequencies (L1, L2 and L5) at 38 MHz, exploiting the subharmonic sampling. The baseband processing is then performed by an ATMEL AT697 processor (100 MIPS) and two Virtex 2 FPGAs. The JPL SDR supports the STRS (Space Telecommunications Radio System) that provides common waveform software interfaces, methods of instantiation, operation, and testing among different compliant hardware and software products. The standard foresees the development of applications that are modular, portable, reconfigurable, and reusable. The developed waveform uses the STRS infrastructure-provided application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload an application. The project is divided in three main phases. 1)Design and Development of the GalileoGPS waveform for the SCaN Testbed starting from Qascom existing GNSS SDR receiver. The baseline design is limited to the implementation of the single frequency Galileo and GPS L1E1 receiver even if as part of the activity it will be to assess the

  16. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  17. Relationships between GPS-signal propagation errors and EISCAT observations

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    1996-12-01

    Full Text Available When travelling through the ionosphere the signals of space-based radio navigation systems such as the Global Positioning System (GPS are subject to modifications in amplitude, phase and polarization. In particular, phase changes due to refraction lead to propagation errors of up to 50 m for single-frequency GPS users. If both the L1 and the L2 frequencies transmitted by the GPS satellites are measured, first-order range error contributions of the ionosphere can be determined and removed by difference methods. The ionospheric contribution is proportional to the total electron content (TEC along the ray path between satellite and receiver. Using about ten European GPS receiving stations of the International GPS Service for Geodynamics (IGS, the TEC over Europe is estimated within the geographic ranges -20°≤ λ ≤40°E and 32.5°≤ Φ ≤70°N in longitude and latitude, respectively. The derived TEC maps over Europe contribute to the study of horizontal coupling and transport proces- ses during significant ionospheric events. Due to their comprehensive information about the high-latitude ionosphere, EISCAT observations may help to study the influence of ionospheric phenomena upon propagation errors in GPS navigation systems. Since there are still some accuracy limiting problems to be solved in TEC determination using GPS, data comparison of TEC with vertical electron density profiles derived from EISCAT observations is valuable to enhance the accuracy of propagation-error estimations. This is evident both for absolute TEC calibration as well as for the conversion of ray-path-related observations to vertical TEC. The combination of EISCAT data and GPS-derived TEC data enables a better understanding of large-scale ionospheric processes.

  18. Crustal deformation pattern of the Morocco-Iberian area: constraints from 14 years of GPS measurements

    Science.gov (United States)

    Palano, Mimmo; González, Pablo; Fernandez, Josè

    2014-05-01

    We present an improved rendition of crustal motion field of the Morocco-Iberian area, based on an extensive GPS dataset covering about 14 years of observations from 1999.00 up to 2013.79 in order to provide a detailed spatial resolution of geodetic velocity and strain-rate fields. In particular, we included all available data from public continuous GPS stations, considering also data coming from networks developed mainly for mapping, engineering and cadastre purposes. In addition to continuous GPS sites, we included data from 31 episodic GPS sites located in Morocco with surveys spanning the 1999-2006 time interval, whose data are available through the UNAVCO archive (www.unavco.org). All GPS data were processed by using the GAMIT/GLOBK software, taking into account precise ephemerides from the IGS (International GNSS Service; http://igscb.jpl.nasa.gov) and Earth orientation parameters from the International Earth Rotation Service (http://www.iers.org). To improve the overall configuration of the network and tie the regional measurements to an external global reference frame, data coming from more than 25 continuously operating global tracking stations, largely from the IGS and EUREF permanent networks, were introduced in the processing. All stations were organized (and processed) into seven sub-networks of about 40-50 sites each, on average, sharing a few common sites to provide ties between them. Finally, by using the GLORG module of GLOBK, the GAMIT-solutions and their full covariance matrices were combined to estimated a consistent set of positions and velocities in the ITRF2008 reference frame by minimizing the horizontal velocity of the continuously operating global tracking stations mentioned above. To adequately investigate the crustal deformation pattern over the study area, we aligned our estimated GPS velocities to an Eurasian and a Nubian fixed reference frames. In addition, by taking into account the observed GPS horizontal velocity field and

  19. Directional Networking in GPS Denied Environments - Time Synchronization

    Science.gov (United States)

    2016-03-14

    RF-based measurements to synchronize time and measure node range.  Satellite Doppler: Using Doppler measurements from multiple satellites along...with satellite catalog data to determine time and position.  LTE : Use existing LTE base-stations for time and position.  Differential GPS: A...Opportunistic Signals: Opportunistically take advantage of existing RF signals (i.e., FM radio, DTV, LTE , etc.) transmitted from known locations

  20. Ground Motion Uncertainty and Variability (single-station sigma): Insights from Euroseistest, Greece

    Science.gov (United States)

    Ktenidou, O. J.; Roumelioti, Z.; Abrahamson, N. A.; Cotton, F.; Pitilakis, K.

    2014-12-01

    Despite recent improvements in networks and data, the global aleatory uncertainty (sigma) in GMPEs is still large. One reason is the ergodic approach, where we combine data in space to make up for lack of data in time. By estimating the systematic site response, we can make site-specific GMPEs and use a lower, site-specific uncertainty: single-station sigma. In this study we use the EUROSEISTEST database (http://euroseisdb.civil.auth.gr), which has two distinct advantages: good existing knowledge of site conditions at all stations, and careful relocation of the recorded events. Constraining the site and source parameters as best we can, we minimise the within- and between-events components of the global, ergodic sigma. Following that, knowledge of the site response from empirical and theoretical approaches permits us to move on to single-station sigma. The variability per site is not clearly correlated to the site class. We show that in some cases knowledge of Vs30 is not sufficient, and that site-specific data are needed to capture the response, possibly due to 2D/3D effects from complex geometry. Our values of single-station sigma are low compared to the literature. This may be due to the good ray coverage we have in all directions for small, nearby records. Indeed, our single-station sigma values are similar to published single-path values, which means that they may correspond to a fully -rather than partially- non-ergodic approach. We find larger ground motion variability for short distances and small magnitudes. This may be related to the uncertainty in the depth affecting nearby records more, or to stress drop and causing trade-offs between the source and site terms for small magnitudes.

  1. Demonstration of coherent Doppler lidar for navigation in GPS-denied environments

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Pierrottet, Diego F.; Barnes, Bruce W.; Petway, Larry B.; Carson, John M.

    2017-05-01

    A coherent Doppler lidar has been developed to address NASA's need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to solar system bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar (NDL), meets the required performance of the landing missions while complying with vehicle size, mass, and power constraints. Operating from up to four kilometers altitude, the NDL obtains velocity and range precision measurements reaching 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. Terrestrial aerial vehicles will also benefit from NDL data products as enhancement or replacement to GPS systems when GPS is unavailable or redundancy is needed. The NDL offers a viable option to aircraft navigation in areas where the GPS signal can be blocked or jammed by intentional or unintentional interference. The NDL transmits three laser beams at different pointing angles toward the ground to measure range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. The three line-of-sight measurements are then combined in order to determine the three components of the vehicle velocity vector and its altitude relative to the ground. This paper describes the performance and capabilities that the NDL demonstrated through extensive ground tests, helicopter flight tests, and onboard an autonomous rocket-powered test vehicle while operating in closedloop with a guidance, navigation, and control (GN and C) system.

  2. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    OpenAIRE

    Jong-Kyun Chung; Young-In Won; Bang Yong Lee; Jhoon Kim

    1998-01-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both sola...

  3. A method for optical ground station reduce alignment error in satellite-ground quantum experiments

    Science.gov (United States)

    He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei

    2018-03-01

    A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.

  4. Re-investigation of slip rate along the southern part of the Sumatran Fault Zone using SuMo GPS network

    Science.gov (United States)

    Hermawan, I.; Lubis, A. M.; Sahputra, R.; Hill, E.; Sieh, K.; Feng, L.; Salman, R.; Hananto, N.

    2015-12-01

    The Sumatran Fault Zone (SFZ) accommodates a significant component of the strike-slip motion of oblique convergence along the Sumatra subduction zone. Previous studies have suggested that the slip rates of the SFZ increase from south to north. However, recent work shows that the slip rates may not vary along the SFZ [Bradley et al., 2015]. New data are needed to help confirm these results, and to assess slip-rate variability and fault segmentation in more detail. This information is vital for seismic hazard assessment for the region. We have therefore installed and operated the SuMo (Sumatran Fault Monitoring) network, a dense GPS campaign network focused around the SFZ. From 2013-2015 we selected and installed 32 GPS monuments over the southern part of the SFZ. The network comprises of three transects. The first transect is around the location of the great 1900 earthquake, at the Musi segment. Two transects cover the Manna segment, which saw its last great earthquake in 1893, and the Kumering segment, which saw two great earthquakes in 1933 (M 7.5) and 1994 (M 7.0). We have now conducted three GPS campaign surveys for these stations (3-4 days of measurement for each occupation site), and established 5 semi-permanent cGPS stations in the area. The processed data show that the campaigns sites are still too premature to be used for estimating slip rates, but from the preliminary results for the semi-permanent stations we may see our first signal of deformation. More data from future survey campaigns will help us to estimated revised slip rates. In addition to the science goals for our project, we are this year starting a project called "SuMo Goes to School," which will aim to disseminate information on our science to the schools that house the SuMo GPS stations. The SuMo project also achieves capacity building by training students from Bengkulu University in geodesy and campaign GPS survey techniques.

  5. Inertial and GPS data integration for positioning and tracking of GPR

    Science.gov (United States)

    Chicarella, Simone; D'Alvano, Alessandro; Ferrara, Vincenzo; Frezza, Fabrizio; Pajewski, Lara

    2015-04-01

    Nowadays many applications and studies use a Global Positioning System (GPS) to integrate Ground-Penetrating Radar (GPR) data [1-2]. The aim is the production of detailed detection maps that are geo-referenced and superimposable on geographic maps themes. GPS provides data to determine static positioning, and to track the mobile detection system path on the land. A low-cost standard GPS, like GPS-622R by RF Solutions Ltd, allows accuracy around 2.5 m CEP (Circular Error Probability), and a maximum update rate of 10 Hz. These accuracy and update rate are satisfying values when we evaluate positioning datum, but they are unsuitable for precision tracking of a speedy-mobile GPR system. In order to determine the relative displacements with respect to an initial position on the territory, an Inertial Measurement Unit (IMU) can be used. Some inertial-system applications for GPR tracking have been presented in recent studies [3-4]. The integration of both GPS and IMU systems is the aim of our work, in order to increase GPR applicability, e.g. the case of a GPR mounted on an unmanned aerial vehicle for the detection of people buried under avalanches [5]. In this work, we will present the design, realization and experimental characterization of our electronic board that includes GPS-622R and AltIMU-10 v3 by Pololu. The latter comprises an inertial-measurement unit and an altimeter. In particular, the IMU adopts L3GD20 gyro and LSM303D accelerometer and magnetometer; the digital barometer LPS331AP provides data for altitude evaluation. The prototype of our system for GPR positioning and tracking is based on an Arduino microcontroller board. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar. ' References [1] M. Solla, X. Núñez-Nieto, M. Varela-González, J. Martínez-Sánchez, and P. Arias, 'GPR for Road Inspection: georeferencing and efficient

  6. Positioning performance of the NTCM model driven by GPS Klobuchar model parameters

    Science.gov (United States)

    Hoque, Mohammed Mainul; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Users of the Global Positioning System (GPS) utilize the Ionospheric Correction Algorithm (ICA) also known as Klobuchar model for correcting ionospheric signal delay or range error. Recently, we developed an ionosphere correction algorithm called NTCM-Klobpar model for single frequency GNSS applications. The model is driven by a parameter computed from GPS Klobuchar model and consecutively can be used instead of the GPS Klobuchar model for ionospheric corrections. In the presented work we compare the positioning solutions obtained using NTCM-Klobpar with those using the Klobuchar model. Our investigation using worldwide ground GPS data from a quiet and a perturbed ionospheric and geomagnetic activity period of 17 days each shows that the 24-hour prediction performance of the NTCM-Klobpar is better than the GPS Klobuchar model in global average. The root mean squared deviation of the 3D position errors are found to be about 0.24 and 0.45 m less for the NTCM-Klobpar compared to the GPS Klobuchar model during quiet and perturbed condition, respectively. The presented algorithm has the potential to continuously improve the accuracy of GPS single frequency mass market devices with only little software modification.

  7. UNAVCO GPS High-Rate and Real-Time Products and Services: Building a next generation geodetic network.

    Science.gov (United States)

    Mencin, David; Meertens, Charles; Mattioli, Glen; Feaux, Karl; Looney, Sara; Sievers, Charles; Austin, Ken

    2013-04-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1-5 Hz) and low latency (transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in the UNAVCO data center. Further, through the UNAVCO core proposal (GAGE), currently under review at NSF, UNAVCO has proposed upgrading a significant portion of the ~1100 GPS stations that PBO currently operates to real-time high-rate capability to address community science and operational needs. In addition, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. In preparation for this increased emphasis on high-rate GPS data, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, 2012, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time, high-rate GPS data over the next decade.

  8. Soil moisture characterization of the Valencia anchor station. Ground, aircraft measurements and simulations

    DEFF Research Database (Denmark)

    Lopez-Baeza, E; Antolin, M C; Balling, Jan E.

    2009-01-01

    In the framework of ESA SMOS Mission, the Valencia Anchor Station (VAS) has been selected as a core validation site. Its reasonable homogeneous characteristics make it appropriate to undertake the validation of SMOS Level 2 land products before attempting other more complex areas. Close to SMOS...... launch (2nd Nov. 2009), ESA defined the SMOS Validation Rehearsal Campaign Plan with the aim of testing the readiness, ensemble coordination and speed of operations, to be able to avoid as far as possible any unexpected deficiencies of the plan and procedure during the real Commissioning Phase campaigns......). Together with the ground SM measurements, other ground and meteorological measurements from the VAS area, kindly provided by other institutions, are currently been used to simulate passive microwave brightness temperature to obtain satellite "match ups" for validation purposes and to test the retrieval...

  9. Preliminary PANSAT ground station software design and use of an expert system to analyze telemetry

    Science.gov (United States)

    Lawrence, Gregory W.

    1994-03-01

    The Petite Amateur Navy Satellite (PANSAT) is a communications satellite designed to be used by civilian amateur radio operators. A master ground station is being built at the Naval Postgraduate School. This computer system performs satellite commands, displays telemetry, trouble-shoots problems, and passes messages. The system also controls an open loop tracking antenna. This paper concentrates on the telemetry display, decoding, and interpretation through artificial intelligence (AI). The telemetry is displayed in an easily interpretable format, so that any user can understand the current health of the satellite and be cued as to any problems and possible solutions. Only the master ground station has the ability to receive all telemetry and send commands to the spacecraft; civilian ham users do not have access to this information. The telemetry data is decommutated and analyzed before it is displayed to the user, so that the raw data will not have to be interpreted by ground users. The analysis will use CLIPS imbedded in the code, and derive its inputs from telemetry decommutation. The program is an expert system using a forward chaining set of rules based on the expected operation and parameters of the satellite. By building the rules during the construction and design of the satellite, the telemetry can be well understood and interpreted after the satellite is launched and the designers may no longer be available to provide input to the problem.

  10. Feasibility study and technical proposal for long-term observations of bedrock stability with gps

    International Nuclear Information System (INIS)

    Ruizhi Chen; Kakkuri, J.

    1994-01-01

    In order to study the regional crustal deformation pattern in the territory of Finland, the Finnish Geodetic Institute is establishing the Finnish Permanent GPS Network, which is part of the Fennoscandian Permanent GPS Network. The Finnish GPS Network consists of a 12 stations located in different geological structures. The operation procedure of the network is described in the report. Feasibility study for monitoring the bedrock stability at local scale was performed. The study was carried out on the basis of an experiment on a baseline of 1041 metres. Twelve artificial movements ranging from 1 mm to 22 mm were generated with a precision-manufactured screw drive (with an accuracy of better than +-0.05 mm). The artificial movements were then detected with the GPS measurements. A preliminary analysis of the GPS data shows that the maximum difference between the GPS detected movements and the artificial movements is 0.9 mm with a standard deviation of +-0.46 mm. The observation time for reaching such accuracy is about 55 minutes. Three GPS networks were preliminarily designed for the radioactive waste disposal investigation sites of Olkiluoto, Kivetty and Romuvaara. Detailed research plan for achieving the best possible result from GPS measurements was proposed. (58 refs., 25 figs., 1 tab.)

  11. Integrated navigation of aerial robot for GPS and GPS-denied environment

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Min, Hongkyu; Nonami, Kenzo; Wada, Tetsuya

    2016-01-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment. (paper)

  12. Characterisation of ground motion recording stations in the Groningen gas field

    Science.gov (United States)

    Noorlandt, Rik; Kruiver, Pauline P.; de Kleine, Marco P. E.; Karaoulis, Marios; de Lange, Ger; Di Matteo, Antonio; von Ketelhodt, Julius; Ruigrok, Elmer; Edwards, Benjamin; Rodriguez-Marek, Adrian; Bommer, Julian J.; van Elk, Jan; Doornhof, Dirk

    2018-05-01

    The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity ( V S). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ V S values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed V S profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent V S information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative V S profiles at the accelerograph station sites. The measured V S profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the V S profile and the observed amplification from vertical array stations is also excellent.

  13. Ground-Truthing of Airborne LiDAR Using RTK-GPS Surveyed Data in Coastal Louisiana's Wetlands

    Science.gov (United States)

    Lauve, R. M.; Alizad, K.; Hagen, S. C.

    2017-12-01

    Airborne LiDAR (Light Detection and Ranging) data are used by engineers and scientists to create bare earth digital elevation models (DEM), which are essential to modeling complex coastal, ecological, and hydrological systems. However, acquiring accurate bare earth elevations in coastal wetlands is difficult due to the density of marsh grasses that prevent the sensors reflection off the true ground surface. Previous work by Medeiros et al. [2015] developed a technique to assess LiDAR error and adjust elevations according to marsh vegetation density and index. The aim of this study is the collection of ground truth points and the investigation on the range of potential errors found in existing LiDAR datasets within coastal Louisiana's wetlands. Survey grids were mapped out in an area dominated by Spartina alterniflora and a survey-grade Trimble Real Time Kinematic (RTK) GPS device was employed to measure bare earth ground elevations in the marsh system adjacent to Terrebonne Bay, LA. Elevations were obtained for 20 meter-spaced surveyed grid points and were used to generate a DEM. The comparison between LiDAR derived and surveyed data DEMs yield an average difference of 23 cm with a maximum difference of 68 cm. Considering the local tidal range of 45 cm, these differences can introduce substantial error when the DEM is used for ecological modeling [Alizad et al., 2016]. Results from this study will be further analyzed and implemented in order to adjust LiDAR-derived DEMs closer to their true elevation across Louisiana's coastal wetlands. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497, 10.1002/2016EF000385. Medeiros, S., S. Hagen, J. Weishampel, and J. Angelo (2015), Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sensing, 7

  14. Assessing the Performance of GPS Precise Point Positioning Under Different Geomagnetic Storm Conditions during Solar Cycle 24

    Directory of Open Access Journals (Sweden)

    Xiaomin Luo

    2018-06-01

    Full Text Available The geomagnetic storm, which is an abnormal space weather phenomenon, can sometimes severely affect GPS signal propagation, thereby impacting the performance of GPS precise point positioning (PPP. However, the investigation of GPS PPP accuracy over the global scale under different geomagnetic storm conditions is very limited. This paper for the first time presents the performance of GPS dual-frequency (DF and single-frequency (SF PPP under moderate, intense, and super storms conditions during solar cycle 24 using a large data set collected from about 500 international GNSS services (IGS stations. The global root mean square (RMS maps of GPS PPP results show that stations with degraded performance are mainly distributed at high-latitude, and the degradation level generally depends on the storm intensity. The three-dimensional (3D RMS of GPS DF PPP for high-latitude during moderate, intense, and super storms are 0.393 m, 0.680 m and 1.051 m, respectively, with respect to only 0.163 m on quiet day. RMS errors of mid- and low-latitudes show less dependence on the storm intensities, with values less than 0.320 m, compared to 0.153 m on quiet day. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless of quiet or disturbed conditions. The degraded performance of GPS positioning during geomagnetic storms is attributed to the increased ionospheric disturbances, which have been confirmed by our global rate of TEC index (ROTI maps. Ionospheric disturbances not only lead to the deteriorated ionospheric correction but also to the frequent cycle-slip occurrence. Statistical results show that, compared with that on quiet day, the increased cycle-slip occurrence are 13.04%, 56.52%, and 69.57% under moderate, intense, and super storms conditions, respectively.

  15. Study of Alternative GPS Network Meteorological Sensors in Taiwan: Case Studies of the Plum Rains and Typhoon Sinlaku

    Directory of Open Access Journals (Sweden)

    Kwo-Hwa Chen

    2009-06-01

    Full Text Available Plum rains and typhoons are important weather systems in the Taiwan region. They can cause huge economic losses, but they are also considered as important water resources as they strike Taiwan annually and fill the reservoirs around the island. There are many meteorological sensors available for investigating the characteristics of weather and climate systems. Recently, the use of GPS as an alternative meteorological sensor has become popular due to the catastrophic impact of global climate change. GPS provides meteorological parameters mainly from the atmosphere. Precise Point Positioning (PPP is a proven algorithm that has attracted attention in GPS related studies. This study uses GPS measurements collected at more than fifty reference stations of the e-GPS network in Taiwan. The first data set was collected from June 1st 2008 to June 7th 2008, which corresponds to the middle of the plum rain season in Taiwan. The second data set was collected from September 11th to September 17th 2008 during the landfall of typhoon Sinlaku. The data processing strategy is to process the measurements collected at the reference stations of the e-GPS network using the PPP technique to estimate the zenith tropospheric delay (ZTD values of the sites; thus, the correlations between the ZTD values and the variation of rainfall during the plum rains and typhoon are analyzed. In addition, several characteristics of the meteorological events are identified using spatial and temporal analyses of the ZTD values estimated with the GPS network PPP technique.

  16. Phase and amplitude Variation of Weddell Sea Anomaly at King Sejong Station in Antarctic between 2005 and 2009

    Science.gov (United States)

    Chung, J.; Lee, C.; Jee, G.

    2011-12-01

    The Weddell Sea Anomaly (WSA) in ionosphere has been defined by higher electron density at nighttime than during the daytime on summer season near the region of the Weddell Sea.Recent studies show the WSA is an extreme case of longitudinal variation and occurrs all of season except for winter when F10.7 is high. We examine the temporal variation of the WSA using the ground-based GPS TEC measured King Sejong station (geographic latitude 62.2°S, longitude 58.5°W, corrected geomagnetic latitude 48°S) in Antarctic between 2005 and 2009 in condition of solar minimum. We analyze the characteristics of diurnal and semi-diurnal variation for all of years and examine the yearly and seasonal variation of phase and amplitude of the WSA. Our results of local time GPS TEC variation show the amplitudes of the WSA are significant in the summer and its phases appear to be changed according to the season.

  17. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  18. Comparison of observed and modeled seasonal crustal vertical displacements derived from multi-institution GPS and GRACE solutions

    Science.gov (United States)

    Gu, Yanchao; Fan, Dongming; You, Wei

    2017-07-01

    Eleven GPS crustal vertical displacement (CVD) solutions for 110 IGS08/IGS14 core stations provided by the International Global Navigation Satellite Systems Service Analysis Centers are compared with seven Gravity Recovery and Climate Experiment (GRACE)-modeled CVD solutions. The results of the internal comparison of the GPS solutions from multiple institutions imply large uncertainty in the GPS postprocessing. There is also evidence that GRACE solutions from both different institutions and different processing approaches (mascon and traditional spherical harmonic coefficients) show similar results, suggesting that GRACE can provide CVD results of good internal consistency. When the uncertainty of the GPS data is accounted for, the GRACE data can explain as much as 50% of the actual signals and more than 80% of the GPS annual signals. Our study strongly indicates that GRACE data have great potential to correct the nontidal loading in GPS time series.

  19. Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach.

    Directory of Open Access Journals (Sweden)

    Mariano R Recio

    Full Text Available Recent technological improvements have made possible the development of lightweight GPS-tagging devices suitable to track medium-to-small sized animals. However, current inferences concerning GPS performance are based on heavier designs, suitable only for large mammals. Lightweight GPS-units are deployed close to the ground, on species selecting micro-topographical features and with different behavioural patterns in comparison to larger mammal species. We assessed the effects of vegetation, topography, motion, and behaviour on the fix success rate for lightweight GPS-collar across a range of natural environments, and at the scale of perception of feral cats (Felis catus. Units deployed at 20 cm above the ground in sites of varied vegetation and topography showed that trees (native forest and shrub cover had the largest influence on fix success rate (89% on average; whereas tree cover, sky availability, number of satellites and horizontal dilution of position (HDOP were the main variables affecting location error (±39.5 m and ±27.6 m before and after filtering outlier fixes. Tests on HDOP or number of satellites-based screening methods to remove inaccurate locations achieved only a small reduction of error and discarded many accurate locations. Mobility tests were used to simulate cats' motion, revealing a slightly lower performance as compared to the fixed sites. GPS-collars deployed on 43 cats showed no difference in fix success rate by sex or season. Overall, fix success rate and location error values were within the range of previous tests carried out with collars designed for larger species. Lightweight GPS-tags are a suitable method to track medium to small size species, hence increasing the range of opportunities for spatial ecology research. However, the effects of vegetation, topography and behaviour on location error and fix success rate need to be evaluated prior to deployment, for the particular study species and their habitats.

  20. Cryospheric monitoring with new low power RTK dGPS systems

    Science.gov (United States)

    Martinez, K.; Hart, J. K.; Bragg, G. M.; Curry, J. S.

    2017-12-01

    Differential GPS is often used to measure the movement of glaciers. It requires data to be recorded at a fixed base station as well as the moving rover unit, followed by post-processing in order to compute the rover's positions. The typical dGPS units used consume considerable power and the recording times are often around one hour per reading. While this provides very precise (typically millimetre) precision it comes at a cost of power used and the data is rather large to send offsite regularly. Real-time kinematic modes of dGPS are typically used for rapid mapping and autonomous vehicles. New devices are lower cost and smaller size. They also provide a fix within a few minutes, which can be transmitted home. We describe the design, deployment and preliminary results of two tracking systems to monitor ice movement. The first used a normal GPS and Iridium satellite messaging to track the movement of a Greenland iceberg which calved from the Nattivit Apusiiat glacier (south west Greenland). This system followed the iceberg as it flowed 660 km south along the coast of Greenland. The second system was installed in Iceland to track the movement of glaciers using 2 different dGPS systems. A low power ARM Cortex M4-based controller ran Python code to schedule dGPS activity periodically and gather fixes. An Iridium short messaging unit (Rockblock) was used to transmit RTK location fixes. The aim was to experiment with the use of RTK dGPS as an alternative to recordings to measure how the glaciers responded to small scale changes in temperature and precipitation throughout the year.

  1. Processing horizontal networks measured by integrated terrestrial and GPS technologies

    Directory of Open Access Journals (Sweden)

    Vincent Jakub

    2003-09-01

    Full Text Available Local horizontal networks in which GPS and terrestrial measurements (TER are done are often established at present. Iin other networks, the previous terrestrial measurements can be completed with quantities from contemporary GPS observations (tunnel nets, mining nets with surface and underground parts and other long-shaped nets.The processing of such heterobeneous (GPS, TER networks whose terrestrial measurements are performed as point coordinate measurements (∆X, ∆Y using (geodetic total stationIn is presented in this paper. In such network structures it is then available:- the values ∆X, ∆Y from TER observations which are transformed in the plane of S-JTSK for adjustement,- the values ∆X, ∆Y in the plane S-JTSK that can be obtained by 3D transformation of WGS84 netpoint coordinates from GPS observations to corresponding coordinates S-JTSK.For common adjusting all the ∆X, ∆Y, some elements of the network geometry (e.g. distances should be measured by both methods (GPS, TER. This approach makes possible an effective homogenisation of both network parts what is equivalent to saying that an expressive influence reduction on local frame realizations of S-JTSK in the whole network can be made.Results of network processing obtained in proposed manner are acceptable in general and they are equivalent (accuracy, reliability to results of another processing methods.

  2. VLBI and GPS-based Time-Transfer Using CONT08 Data

    Science.gov (United States)

    Rieck, Carsten; Haas, Ruediger; Jaldehag, Kenneth; Jahansson, Jan

    2010-01-01

    One important prerequisite for geodetic Very Long Baseline Interferometry (VLBI) is the use of frequency standards with excellent short term stability. This makes VLBI stations, which are often co-located with Global Navigation Satellite System (GNSS) receiving stations, interesting for studies of time- and frequency-transfer techniques. We present an assessment of VLBI time-transfer based on the data of the two week long consecutive IVS CONT08 VLBI campaign by using GPS Carrier Phase (GPSCP). CONT08 was a 15 day long campaign in August 2008 that involved eleven VLBI stations on five continents. For CONT08 we estimated the worst case VLBI frequency link stability between the stations of Onsala and Wettzell to 1e-15 at one day. Comparisons with GPSCP confirm the VLBI results. We also identify time-transfer related challenges of the VLBI technique as used today.

  3. GPR and GPS data integration: examples of application in Antarctica

    Directory of Open Access Journals (Sweden)

    S. Gandolfi

    2001-06-01

    Full Text Available Ground Penetrating Radar (GPR and Global Positioning System (GPS techniques were employed in snow accumulation studies during the Italian leg of the International Trans-Antarctic Scientific Expedition (ITASE. The acquired data were useful both for glaciological and climatological studies. This paper presents some results obtained by GPR and GPS data integration employed to determine accumulation/ablation processes along the profile of the traverse that show how the snow-sublayer thickness can vary quickly in just a few kilometres. Some examples of data integration employed in detection and characterisation of buried crevasses are also presented.

  4. Geomagnetic Storm Impact On GPS Code Positioning

    Science.gov (United States)

    Uray, Fırat; Varlık, Abdullah; Kalaycı, İbrahim; Öǧütcü, Sermet

    2017-04-01

    This paper deals with the geomagnetic storm impact on GPS code processing with using GIPSY/OASIS research software. 12 IGS stations in mid-latitude were chosen to conduct the experiment. These IGS stations were classified as non-cross correlation receiver reporting P1 and P2 (NONCC-P1P2), non-cross correlation receiver reporting C1 and P2 (NONCC-C1P2) and cross-correlation (CC-C1P2) receiver. In order to keep the code processing consistency between the classified receivers, only P2 code observations from the GPS satellites were processed. Four extreme geomagnetic storms October 2003, day of the year (DOY), 29, 30 Halloween Storm, November 2003, DOY 20, November 2004, DOY 08 and four geomagnetic quiet days in 2005 (DOY 92, 98, 99, 100) were chosen for this study. 24-hour rinex data of the IGS stations were processed epoch-by-epoch basis. In this way, receiver clock and Earth Centered Earth Fixed (ECEF) Cartesian Coordinates were solved for a per-epoch basis for each day. IGS combined broadcast ephemeris file (brdc) were used to partly compensate the ionospheric effect on the P2 code observations. There is no tropospheric model was used for the processing. Jet Propulsion Laboratory Application Technology Satellites (JPL ATS) computed coordinates of the stations were taken as true coordinates. The differences of the computed ECEF coordinates and assumed true coordinates were resolved to topocentric coordinates (north, east, up). Root mean square (RMS) errors for each component were calculated for each day. The results show that two-dimensional and vertical accuracy decreases significantly during the geomagnetic storm days comparing with the geomagnetic quiet days. It is observed that vertical accuracy is much more affected than the horizontal accuracy by geomagnetic storm. Up to 50 meters error in vertical component has been observed in geomagnetic storm day. It is also observed that performance of Klobuchar ionospheric correction parameters during geomagnetic storm

  5. Episodic inflation of Akutan volcano, Alaska revealed from GPS and InSAR time series

    Science.gov (United States)

    DeGrandpre, K.; Lu, Z.; Wang, T.

    2016-12-01

    Akutan volcano is one of the most active volcanoes located long the Aleutian arc. At least 27 eruptions have been noted since 1790 and an intense swarm of volcano-tectonic earthquakes occurred in 1996. Surface deformation after the 1996 earthquake sequence has been studied using GPS and Interferometric Synthetic Aperture Radar (InSAR) separately, yet models created from these datasets require different mechanisms to produce the observed surface deformation: an inflating Mogi source results in the best approximation of displacement observed from GPS data, whereas an opening dyke is the best fit to deformation measured from InSAR. A recent study using seismic data revealed complex magmatic structures beneath the caldera, suggesting that the surface deformation may reflect more complicated mechanisms that cannot be estimated using one type of data alone. Here we integrate the surface deformation measured from GPS and InSAR to better understand the magma plumbing system beneath Akutan volcano. GPS time-series at 12 stations from 2006 to 2016 were analyzed, and two transient episodes of inflation in 2008 and 2014 were detected. These GPS stations are, however, too sparse to reveal the spatial distribution of the surface deformation. In order to better define the spatial extent of this inflation four tracks of Envisat data acquired during 2003-2010 and one track of TerraSAR-X data acquired from 2010 to 2016 were processed to produce high-resolution maps of surface deformation. These deformation maps show a consistently uplifting area on the northwestern flank of the volcano. We inverted for the source parameters required to produce the inflation using GPS, InSAR, and a dataset of GPS and InSAR measurements combined, to find that a deep Mogi source below a shallow dyke fit these datasets best. From the TerraSAR-X data, we were also able to measure the subsidence inside the summit caldera due to fumarole activity to be as high as 10 mm/yr. The complex spatial and temporal

  6. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  7. Detection of plumes at Redoubt and Etna volcanoes using the GPS SNR method

    Science.gov (United States)

    Larson, Kristine M.; Palo, Scott; Roesler, Carolyn; Mattia, Mario; Bruno, Valentina; Coltelli, Mauro; Fee, David

    2017-09-01

    Detection and characterization of volcanic eruptions is important both for public health and aircraft safety. A variety of ground sensors are used to monitor volcanic eruptions. Data from these ground sensors are subsequently incorporated into models that predict the movement of ash. Here a method to detect volcanic plumes using GPS signals is described. Rather than carrier phase data used by geodesists, the method takes advantage of attenuations in signal to noise ratio (SNR) data. Two datasets are evaluated: the 2009 Redoubt Volcano eruptions and the 2013/2015 eruptions at Mt. Etna. SNR-based eruption durations are compared with previously published seismic, infrasonic, and radar studies at Redoubt Volcano. SNR-based plume detections from Mt. Etna are compared with L-band radar and tremor observations. To place these SNR observations from Redoubt and Etna in context, a model of the propagation of GPS signals through both water/water vapor and tephra is developed. Neither water nor fine ash particles will produce the observed attenuation of GPS signals, while scattering caused by particles > 1 cm in diameter potentially could.

  8. Vertical land motion along the coast of Louisiana: Integrating satellite altimetry, tide gauge and GPS

    Science.gov (United States)

    Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.

    2017-12-01

    Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.

  9. Saved by Iridium? An Alternative to GPS

    Science.gov (United States)

    2012-05-17

    know this. The enemy presents itself at any time, at any place, in many shapes and forms, often for no apparent reason. As Ecclesiastes 9:18 states...These physical architectures correspond to ground operations in scenarios ranging from complete air superiority to completely denied airspace.”86 A...not interfere with today’s GPS architectures .88 The second developed alternative from Dr. Asher’s group is the Rapidly Deployable Satellite

  10. Autonomous microsystems for ground observation (AMIGO)

    Science.gov (United States)

    Laou, Philips

    2005-05-01

    This paper reports the development of a prototype autonomous surveillance microsystem AMIGO that can be used for remote surveillance. Each AMIGO unit is equipped with various sensors and electronics. These include passive infrared motion sensor, acoustic sensor, uncooled IR camera, electronic compass, global positioning system (GPS), and spread spectrum wireless transceiver. The AMIGO unit was configured to multipoint (AMIGO units) to point (base station) communication mode. In addition, field trials were conducted with AMIGO in various scenarios. These scenarios include personnel and vehicle intrusion detection (motion or sound) and target imaging; determination of target GPS position by triangulation; GPS position real time tracking; entrance event counting; indoor surveillance; and aerial surveillance on a radio controlled model plane. The architecture and test results of AMIGO will be presented.

  11. GPS tomography: validation of reconstructed 3-D humidity fields with radiosonde profiles

    Directory of Open Access Journals (Sweden)

    M. Shangguan

    2013-09-01

    Full Text Available Water vapor plays an important role in meteorological applications; GeoForschungsZentrum (GFZ therefore developed a tomographic system to derive 3-D distributions of the tropospheric water vapor above Germany using GPS data from about 300 ground stations. Input data for the tomographic reconstructions are generated by the Earth Parameter and Orbit determination System (EPOS software of the GFZ, which provides zenith total delay (ZTD, integrated water vapor (IWV and slant total delay (STD data operationally with a temporal resolution of 2.5 min (STD and 15 min (ZTD, IWV. The water vapor distribution in the atmosphere is derived by tomographic reconstruction techniques. The quality of the solution is dependent on many factors such as the spatial coverage of the atmosphere with slant paths, the spatial distribution of their intersections and the accuracy of the input observations. Independent observations are required to validate the tomographic reconstructions and to get precise information on the accuracy of the derived 3-D water vapor fields. To determine the quality of the GPS tomography, more than 8000 vertical water vapor profiles at 13 German radiosonde stations were used for the comparison. The radiosondes were launched twice a day (at 00:00 UTC and 12:00 UTC in 2007. In this paper, parameters of the entire profiles such as the wet refractivity, and the zenith wet delay have been compared. Before the validation the temporal and spatial distribution of the slant paths, serving as a basis for tomographic reconstruction, as well as their angular distribution were studied. The mean wet refractivity differences between tomography and radiosonde data for all points vary from −1.3 to 0.3, and the root mean square is within the range of 6.5–9. About 32% of 6803 profiles match well, 23% match badly and 45% are difficult to classify as they match only in parts.

  12. Feasibility of Construction of the Continuously Operating Geodetic GPS Network of Sinaloa, Mexico

    Science.gov (United States)

    Vazquez, G. E.; Jacobo, C.

    2011-12-01

    geometric distribution appropriate to ensure the state coverage, so the radius of coverage is found in the 10 to 15 Km. station. Likewise INEGI recommends the implementation of GPS measurements a priori in the vertices where at the end of such measurements generate a report by station containing details of the conditions of visibility, the GPS equipment used, the methodology of measurement and field data processing mode and is intended to build the RGOCSIN. Based on the results of the final report for each one of the measures beforehand, it will be or not feasible to determine if it meets these specifications to be finally considered as part of the RGOCSIN. It should be noted that the selection of the potential places where is intended to carry out the study and analysis of feasibility for the construction of the RGOCSIN will be some of the weather stations of the Centro de Investigación en Alimentación y Desarrollo (CIAD) Culiacán (http://www.ciad.edu.mx/clima/pc.asp). These weather stations have some technical infrastructure which would be used in the future; In addition to providing meteorological information which will ensure success in the solution of scientific and technological problems in various sectors requiring our state.

  13. Monitoreo de la calidad de datos GPS continuo: la estacion UNSJ (San Juan, Argentina

    Directory of Open Access Journals (Sweden)

    Alfredo Herrada

    2010-06-01

    Full Text Available Como parte de la red de referencia de operación continua de Argentina, la estación GPS (Global Positioning System denominada UNSJ (Universidad Nacional de San Juan fue establecida en la ciudad de San Juan el 6 de Marzo de 2007. Los datos registrados de UNSJ son ampliamente utilizados en aplicaciones catastrales, y sirven como base para la definición de los marcos de referencia geodésicos nacional y regional. Como una componente fundamental de la infraestructura geodésica, resulta conveniente un eficiente control de calidad de los datos crudos y el monitoreo de la estabilidad de una estación GPS de referencia. En este trabajo se presentan los resultados del control de calidad de las observaciones UNSJ luego de dos anos de operación. Para contro l ar y caracterizar el desempeno del receptor GPS y además el medio ambiente de la estación, se eligieron cuatro índices. Ellos son el número de observaciones, multicamino en L1, multicamino en L2 y ocurrencia de saltos de ciclos. También, se evaluó la estabilidad de largo término de la estación UNSJ a través del análisis de las series temporales de las coordenadas semanales provistas por los centros de cálculo SIRGAS (Sistema de Referencia Geocéntrico para las Américas. Completa este estudio el análisis de las coordenadas calculadas por distintos servicios de procesamiento disponibles en Internet. Nuestros resultados indican que durante el período analizado, el funcionamiento de la estación UNSJ fue satisfactorio, produciendo índices de calidad que son aceptables para estándares internacionales.As a part of the Argentine continuously operating reference station network, a GPS (Global Positioning System station named UNSJ (Universidad Nacional de San Juan was established in San Juan city on 6th March 2007. The recorded data of UNSJ are widely applied to cadastral surveys and serve as the basis for defining national and regional geodetic reference frames. As a key component of the

  14. Multichannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations

    Science.gov (United States)

    Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz

    2018-03-01

    We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.

  15. Monitoring the bedrock stability in Olkiluoto. Summary of campaign based GPS measurements in 1996-2011

    International Nuclear Information System (INIS)

    Nyberg, S.; Kallio, U.; Haekli, P.; Jokela, J.; Koivula, H.; Saaranen, V.; Rouhiainen, P.

    2013-12-01

    The Finnish Geodetic Institute has monitored crustal deformations in Olkiluoto since mid-1990s. This is a final report of campaign based GPS measurements carried out in 1996-2011. The aim of the research has been monitoring the bedrock stability in the Olkiluoto area. The research were started in 1995, when a local GPS network of ten pillars, called inner network, was established on Olkiluoto Island. The research area was expanded in 2003- 2005 with four new pillars (outer network) established at 5-10 km distances from the inner network. One of the pillar points is the Olkiluoto permanent GPS station. Regular biannual measurement campaigns have been carried out on other pillar points

  16. 3-D Spatial Analysis of Deformation at Ikpoba Dam From GPS Data ...

    African Journals Online (AJOL)

    In this study, analysis of the measurement data obtained by differential GPS at the Ikpoba River Dam was carried out. The measurement system consisted of 19 control and reference stations. DGPS data were collected during two measurement campaigns carried out in 2008 and 2009 respectively using five dual frequency ...

  17. Attitude determination for small satellites using GPS signal-to-noise ratio

    Science.gov (United States)

    Peters, Daniel

    An embedded system for GPS-based attitude determination (AD) using signal-to-noise (SNR) measurements was developed for CubeSat applications. The design serves as an evaluation testbed for conducting ground based experiments using various computational methods and antenna types to determine the optimum AD accuracy. Raw GPS data is also stored to non-volatile memory for downloading and post analysis. Two low-power microcontrollers are used for processing and to display information on a graphic screen for real-time performance evaluations. A new parallel inter-processor communication protocol was developed that is faster and uses less power than existing standard protocols. A shorted annular patch (SAP) antenna was fabricated for the initial ground-based AD experiments with the testbed. Static AD estimations with RMS errors in the range of 2.5° to 4.8° were achieved over a range of off-zenith attitudes.

  18. Coseismic deformation of the 2001 El Salvador and 2002 Denali fault earthquakes from GPS geodetic measurements

    Science.gov (United States)

    Hreinsdottir, Sigrun

    2005-07-01

    GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali

  19. Jason-1 and Jason-2 POD Using GPS

    Science.gov (United States)

    Melachroinos, Stavros; Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Beckley, Brian D.

    2012-01-01

    The Jason-2 satellite, launched in June 2008, is the latest follow-on to the successful Jason-1 altimetry satellite mission launched in December 7, 2001. Both, Jason-2 and Jason-1 are equipped with a GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). A series of dynamic and reduced-dynamic Jason-2 orbits computed at NASA GSFC, based on GPS-only data and the std0905 standards, have been completed till cy74through cycle 74 using the IGS05 framework. These orbits, now publicly available, have been shown to agree radially at 1 cm RMS with the GSFC std0905 SLR/DORIS orbits and in comparison with orbits produced by JPL, ESA and CNES. In this paper, we describe the implementation of the IGS08 and repro1 framework for the Jason-2 and Jason-1 GPS POD processing with the NASA GSFC GEODYN software. . In our updated GPS POD, ambiguity fixing and updated time variable and static gravity fields. We also evaluate the implementation of non-tidal and degree-1 loading displacement as forward modeling to the tracking stations. Reduced-dynamic versus dynamic orbit differences are used to characterize the remaining force model errors and TRF instability. In particular, we assess their consistency radially and the stability of the altimeter satellite reference frame in the North/South direction as a proxy to assess the consistency of the reference frame.

  20. Investigation of the seismo-ionospheric effects on the base of GPS/GLONASS measurements

    Science.gov (United States)

    Zakharenkova, I.; Cherniak, Iu.; Shagimuratov, I.; Suslova, O.

    2012-04-01

    During last years the monitoring of the ionospheric effects of different origin is carried out mainly with use of Global Navigating Satellite Systems (GPS / GLONASS). By means of measurements of the signals temporal delays it is possible to do the mapping of total electron content (TEC) in a column of unit cross section through the Earth's ionosphere and investigate its temporal evolution depended on the variations of electron concentration (NmF2) in the F2 ionospheric region. In the given report we present results of analysis of spatial-temporal variability of the ionosphere during the earthquake preparation phase for several major earthquakes which took place in Japan. It was revealed that for considered events mainly positive TEC anomalies appeared 1-5 days prior to the earthquake. The enhancement of electron concentration reached the value of 30-70% relative to the quiet geomagnetic conditions. In order to analyze the revealed effects in more details it was additionally involved data of GPS TEC values over GPS stations located at different distances from earthquake epicenters and data of vertical sounding of the ionosphere (NICT database). The hourly values of critical frequency of ionospheric F2 and Es layers were obtained from manually scaled ionograms recorded at Japanese ionospheric sounding stations Wakkanai, Kokubunji and Yamagawa. Acknowledgments. We acknowledge the IGS community for providing GPS permanent data and WDC for Ionosphere, Tokyo, National Institute of Information and Communications Technology (NICT) for providing ionosonde data. This work was supported by Russian Federation President grant MK-2058.2011.5.

  1. [Comfort and discomfort: the role of emotions in GPs' prescription practices].

    Science.gov (United States)

    Henriksen, Kristin; Hansen, Ebba Holme

    2005-12-05

    The role of emotions in GPs' prescribing has been ignored. The present article describes 20 GPs' reflections about what precedes comfort and discomfort in prescribing situations. In-depth interviews were done with 20 GPs who contributed with examples on an open comfort-discomfort scale. Analysis of the data was inspired by grounded theory. The GPs experienced a broad spectrum of emotions when prescribing. In every prescribing situation, conditions could pull towards both comfort and discomfort. Comfort appeared when the indication was correct and the patient's condition was serious, when the patient experienced the problem as serious, when the situation was acute and the medicine effective, and when the GP experienced himself as competent. Medicines were placed between comfort and discomfort when prescribing was perceived as indifferent, unproblematic and easy, when the GP was concerned about inflicting a sick role on the patients, and when patients were not convinced about the appropriateness of the medication. Discomfort appeared when there was a great risk of dependence, when GPs experienced and gave in to pressure, when they had to convince patients, and when they prescribed addictive medicine regularly. The totality of conditions in the situation determined the emotional state in the prescribing situation. The GPs' emotions reflected how they evaluated the appropriateness of their prescribing. This should be taken advantage of in rational pharmacotherapy. Future interventions should address both the rationality of GPs and their emotions.

  2. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe

    2011-06-01

    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  3. GPS phase scintillation and auroral electrojet currents during geomagnetic storms of March 17, 2013 and 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Viljanen, A.

    2017-01-01

    in the context of solar wind coupling to the magnetosphere-ionosphere system. Phase scintillation is observed at high latitudes by arrays of high-rate GNSS Ionospheric Scintillation and TEC Monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. The high-rate GPS receivers are distributed...... in the northern and in the southern high latitudes with sparser coverage. In addition to GPS receivers, the high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including HF radars, ionosondes, riometers, magnetometers, optical imagers as well as particle detectors and ultraviolet...

  4. Ionospheric earthquake effects detection based on Total Electron Content (TEC) GPS Correlation

    Science.gov (United States)

    Sunardi, Bambang; Muslim, Buldan; Eka Sakya, Andi; Rohadi, Supriyanto; Sulastri; Murjaya, Jaya

    2018-03-01

    Advances in science and technology showed that ground-based GPS receiver was able to detect ionospheric Total Electron Content (TEC) disturbances caused by various natural phenomena such as earthquakes. One study of Tohoku (Japan) earthquake, March 11, 2011, magnitude M 9.0 showed TEC fluctuations observed from GPS observation network spread around the disaster area. This paper discussed the ionospheric earthquake effects detection using TEC GPS data. The case studies taken were Kebumen earthquake, January 25, 2014, magnitude M 6.2, Sumba earthquake, February 12, 2016, M 6.2 and Halmahera earthquake, February 17, 2016, M 6.1. TEC-GIM (Global Ionosphere Map) correlation methods for 31 days were used to monitor TEC anomaly in ionosphere. To ensure the geomagnetic disturbances due to solar activity, we also compare with Dst index in the same time window. The results showed anomalous ratio of correlation coefficient deviation to its standard deviation upon occurrences of Kebumen and Sumba earthquake, but not detected a similar anomaly for the Halmahera earthquake. It was needed a continous monitoring of TEC GPS data to detect the earthquake effects in ionosphere. This study giving hope in strengthening the earthquake effect early warning system using TEC GPS data. The method development of continuous TEC GPS observation derived from GPS observation network that already exists in Indonesia is needed to support earthquake effects early warning systems.

  5. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    Science.gov (United States)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  6. GPS-derived crustal deformation in Azerbaijan

    Science.gov (United States)

    Safarov, Rafig; Mammadov, Samir; Kadirov, Fakhraddin

    2017-04-01

    Crustal deformations of the Earth's crust in Azerbaijan were studied based on GPS measurements. The GPS velocity vectors for Azerbaijan, Iran, Georgia, and Armenia were used in order to estimate the deformation rates. It is found that compression is observable along the Greater Caucasus, in Gobustan, the Kura depression, Nakhchyvan Autonomous Republic, and adjacent areas of Iran. The axes of compression/contraction of the crust in the Greater Caucasus region are oriented in the S-NE direction. The maximum strain rate is observed in the zone of mud volcanism at the SHIK site (Shykhlar), which is marked by a sharp change in the direction of the compression axes (SW-NE). It is revealed that the deformation field also includes the zones where strain rates are very low. These zones include the Caspian-Guba and northern Gobustan areas, characterized by extensive development of mud volcanism. The extension zones are confined to the Lesser Caucasus and are revealed in the Gyadabei (GEDA) and Shusha (SHOU) areas. The analysis of GPS data for the territory of Azerbaijan and neighboring countries reveals the heterogeneous patterns of strain field in the region. This fact suggests that the block model is most adequate for describing the structure of the studied region. The increase in the number of GPS stations would promote increasing the degree of detail in the reconstructions of the deformation field and identifying the microplate boundaries.It is concluded that the predominant factor responsible for the eruption of mud volcanoes is the intensity of gasgeneration processes in the earth's interior, while deformation processes play the role of a trigger. The zone of the epicenters of strong earthquakes is correlated to the gradient zone in the crustal strain rates.

  7. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  8. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  9. Analysis of GPS Satellite Allocation for the United States Nuclear Detonation Detection System (USNDS)

    National Research Council Canada - National Science Library

    Bell, Aaron

    2002-01-01

    ...) satellites to detect atmospheric nuclear detonations. Though there are currently over 24 operational GPS satellites, USNDS ground based antennas are only capable of actively monitoring 24 satellites at a time...

  10. New Applications for Detecting Natural Hazards Using Ground and Space-Based GNSS-Derived Ionospheric Measurements

    Science.gov (United States)

    Komjathy, A.; Butala, M.; Verkhoglyadova, O. P.; Wilson, B. D.; Iijima, B.; Akopian, V.; Mannucci, A.

    2012-12-01

    The NASA Jet Propulsion Laboratory (JPL) and University of Southern California (USC) have jointly developed the Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for various customers including NASA flight projects. JPL/USC GAIM is a physics-based 3D data assimilation model using 4DVAR and Kalman filter approaches to solve for ion and electron density states and other key ionospheric drivers. The JPL/USC GAIM technologies, now operating in real-time and post-processing modes, can routinely accept as input ground GPS TEC data from 1200+ sites including streaming and hourly GPS stations, occultation links from CHAMP, SAC-C, COSMIC and C/NOFS satellites, UV limb and nadir scans. In the presentation, first we will discuss recent advances in our assimilating ground-based GPS, C/NOFS and COSMIC occultation measurements using our GAIM system characterizing the ionosphere in 3D. We will elaborate on our improved space-based bias estimation techniques to generate high precision calibrated TEC measurements to be assimilated into GAIM. We will discuss the benefits of adding GLONASS measurements to our GIM and GAIM processing technologies. New and upcoming applications and first results will be shown for estimating very high precision TEC perturbations using real-time and post-processed GNSS observations from GEONET and IGS networks. We will demonstrate initial steps on how to integrate this GNSS ionosphere-based technology into a global tsunami warning system. Additional potential applications might include the remote sensing of ionospheric TEC perturbations generated by other natural hazards such as earthquakes and volcanic eruptions and human-made events such as nuclear tests.

  11. Spatial scale of deformation constrained by combinations of InSAR and GPS observations in Southern California

    Science.gov (United States)

    Lohman, R. B.; Scott, C. P.

    2014-12-01

    Efforts to understand the buildup and release of strain within the Earth's crust often rely on well-characterized observations of ground deformation, over time scales that include interseismic periods, earthquakes, and transient deformation episodes. Constraints on current rates of surface deformation in 1-, 2- or 3-dimensions can be obtained by examining sets of GPS and Interferometric Synthetic Aperture Radar (InSAR) observations, both alone and in combination. Contributions to the observed signal often include motion along faults, seasonal cycles of subsidence and recharge associated with aquifers, anthropogenic extraction of hydrocarbons, and variations in atmospheric water vapor and ionospheric properties. Here we examine methods for extracting time-varying ground deformation signals from combinations of InSAR and GPS data, real and synthetic, applied to Southern California. We show that two methods for combining the data through removal of a GPS-constrained function (a plane, and filtering) from the InSAR result in a clear tradeoff between the contribution from the two datatypes at diffferent spatial scales. We also show that the contribution to the secular rates at GPS sites from seasonal signals is large enough to be a significant error in this estimation process, and should be accounted for.

  12. Utilization of GPS Tropospheric Delays for Climate Research

    International Nuclear Information System (INIS)

    Suparta, Wayan

    2017-01-01

    The tropospheric delay is one of the main error sources in Global Positioning Systems (GPS) and its impact plays a crucial role in near real-time weather forecasting. Accessibility and accurate estimation of this parameter are essential for weather and climate research. Advances in GPS application has allowed the measurements of zenith tropospheric delay (ZTD) in all weather conditions and on a global scale with fine temporal and spatial resolution. In addition to the rapid advancement of GPS technology and informatics and the development of research in the field of Earth and Planetary Sciences, the GPS data has been available free of charge. Now only required sophisticated processing techniques but user friendly. On the other hand, the ZTD parameter obtained from the models or measurements needs to be converted into precipitable water vapor (PWV) to make it more useful as a component of weather forecasting and analysis atmospheric hazards such as tropical storms, flash floods, landslide, pollution, and earthquake as well as for climate change studies. This paper addresses the determination of ZTD as a signal error or delay source during the propagation from the satellite to a receiver on the ground and is a key driving force behind the atmospheric events. Some results in terms of ZTD and PWV will be highlighted in this paper. (paper)

  13. The Inversion of Ionospheric/plasmaspheric Electron Density From GPS Beacon Observations

    Science.gov (United States)

    Zou, Y. H.; Xu, J. S.; Ma, S. Y.

    It is a space-time 4-D tomography to reconstruct ionospheric/ plasmaspheric elec- tron density, Ne, from ground-based GPS beacon measurements. The mathematical foundation of such inversion is studied in this paper and some simulation results of reconstruction for GPS network observation are presented. Assuming reasonably a power law dependence of NE on time with an index number of 1-3 during one ob- servational time of GPS (60-90min.), 4-D inversion in consideration is reduced to a 3-D cone-beam tomography with incomplete projections. To see clearly the effects of the incompleteness on the quality of reconstruction for 3-D condition, we deduced theoretically the formulae of 3-D parallel-beam tomography. After establishing the mathematical basis, we adopt linear temporal dependence of NE and voxel elemental functions to perform simulation of NE reconstruction with the help of IRI90 model. Reasonable time-dependent 3-D images of ionosphere/ plasmasphere electron density distributions are obtained when taking proper layout of the GPS network and allowing variable resolutions in vertical.

  14. Advanced Software Ground Station and UAV Development for NLoS Control Using Mobile Communications

    Directory of Open Access Journals (Sweden)

    Amr AbdElHamid

    2015-01-01

    Full Text Available Over the last decades, Unmanned Aerial Systems (UASs have gained much attention due to their various applications in different sections. However, their communication range is limited to utilized communication equipment. Therefore, utilization of GSM channels opens a new prospect towards long distance UAV missions and mobile command and control centers. This paper demonstrates new design and development of a small-scale UAV and a Ground Control Station (GCS using GSM bidirectional communications for Non-Line of Sight (NLoS long range control. GCSs are considered the front end node in UAV guidance process. Therefore, the proposed GCS employs a two-layer framework to consider all ground pilot requirements. Moreover, a new exploitation of global weather forecast data is added to the GCS. On the other hand, the proposed airborne system utilizes a new integration of different Commercial off-the-Shelf (COTS components and excludes short range receivers. The ground and flight tests show that stable bidirectional GSM communication is established, reliable hardware integration is accomplished, real time performance is achieved, GCS functional fidelity is obtained, and low cost is maintained. Finally, some qualitative aspects of the proposed platform are presented to address the detailed features.

  15. Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS

    Directory of Open Access Journals (Sweden)

    L. Wang

    2017-06-01

    inconsistent in different GPS stations at the −0.40–0.51 mm yr−1 level from 2010 to 2013. Then we removed the vertical rates, which are induced by TWS from GPS-derived data, to obtain the corrected vertical velocities caused by tectonic movement and human activities. The results show that there are uplift areas and subsidence areas in NCP. Almost the whole central and eastern region of NCP suffers serious ground subsidence caused by the anthropogenic-induced groundwater exploitation in the deep confined aquifers. In addition, the slight ground uplifts in the western region of NCP are mainly controlled by tectonic movement (e.g. Moho uplifting or mantle upwelling.

  16. Optimalisasi Kinerja (Internet Protocol) Ip Clock Pada Jaringan Base Transceiver Station (Bts)

    OpenAIRE

    Budiyanto, Setiyo; Saputra, Apipi

    2016-01-01

    Pada sistem komunikasi GSM (Global System for Mobile), BTS (Base Transceiver Station) merupakan jantung dari sebuah cell site layanan telekomunikasi. BTS merupakan perangkat pemancar dan penerima yang menangani akses radio dan berinteraksi langsung dengan Mobile Station (MS) melalui air interface. Sebuah optimasi kinerja ip clock pada base transceiver station (BTS) metode untuk sinkronisasi jaringan untuk jam global yang berasal dari jam GPS diakuisisi oleh sejumlah BTS. IP clock didistribusi...

  17. Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning

    Science.gov (United States)

    Macalalad, E.; Tsai, L. C.; Wu, J.

    2012-04-01

    Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.

  18. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    Directory of Open Access Journals (Sweden)

    Yuanjin Pan

    2016-08-01

    Full Text Available Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs, in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

  19. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    Science.gov (United States)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the

  20. Study of the active deformation of Mitidja (Tell Atlas, Algeria) by GPS

    Science.gov (United States)

    Bacha, Wahab; Masson, Frederic; Yelles-Chaouche, Abdelkrim; Lammali, Kamel; Bellik, Amar; Hamai, Lamine

    2013-04-01

    A network was created in the Mitidja region around the capital Algiers (Algeria). It has been established to study the deformation of the region and the slow operation of flaws in it. The network was installed by a distribution of GPS stations according to structural domains existing in the region. Twelve bases spread across the study area, have been installed. The measurements were acquired by performing four measurement campaigns in 2006, 2007, 2009 and 2010, with sessions over a month of action. This work allowed the installation of a geodetic network of regional monitoring by methodology GPS in the zone of Mitidja (Tellian Atlas, Algeria). Four observation campaigns were carried out on this area with session's superiors in one month of measurements. The treatment was carried out with software GAMIT-GLOBK, the network is attached to several world stations IGS treated between 2000-2010, indexed in a precise frame of reference ITRF05. The results presented in this memory show a deformation in shortening ≤ 0.5 mm/an in the plain of Mitidja and the surrounding Solid masses.

  1. Estimation of Slip Distribution of the 2007 Bengkulu Earthquake from GPS Observation Using Least Squares Inversion Method

    Directory of Open Access Journals (Sweden)

    Moehammad Awaluddin

    2012-07-01

    Full Text Available Continuous Global Positioning System (GPS observations showed significant crustal displacements as a result of the Bengkulu earthquake occurring on September 12, 2007. A maximum horizontal displacement of 2.11 m was observed at PRKB station, while the vertical component at BSAT station was uplifted with a maximum of 0.73 m, and the vertical component at LAIS station was subsided by -0.97 m. The method of adding more constraint on the inversion for the Bengkulu earthquake slip distribution from GPS observations can help solve a least squares inversion with an under-determined condition. Checkerboard tests were performed to help conduct the weighting for constraining the inversion. The inversion calculation of the Bengkulu earthquake slip distribution yielded in an optimum value of slip distribution by giving a weight of smoothing constraint of 0.001 and a weight of slip value constraint = 0 at the edge of the earthquake rupture area. A maximum coseismic slip of the optimal inversion calculation was 5.12 m at the lower area of PRKB and BSAT stations. The seismic moment calculated from the optimal slip distribution was 7.14 x 1021 Nm, which is equivalent to a magnitude of 8.5.

  2. GPS measurements along the North Anatolian fault zone ont he Mid-Anatolia segment

    Science.gov (United States)

    Yavasoglu, H.; Team

    2003-04-01

    features of the NAF is seen in the central part. Here NAF consists of southward spliting concave branches. These splines have generally right-lateral slip compared these splays with the Riedel fractures. One of the biggest splays is known as Sungurlu fault. The other important splays are Merzifon and Lacin faults. Recent palaeomagnetic data indicated that the main Anatolian Block to the south of the Sungurlu fault rotated anticlockwise and the other blocks rotated clockwise and anticlockwise according to the orientation and the geometry of the faults bounding the blocks. In contrast to the other parts of the NAF, central part has not been studied in detail yet. The data, which will be produced in this project, are expected to add an important contribution to the present knowledge on the NAF. 3. THE GPS MEASUREMENTS 3.1 The Design of The Mid-NAF GPS Network The estimated lateral movement on the LVKI segment of NAF is approximately 2-3cm per year. In order to determine approximately 2-3 centimeters of movements, point marks in the network should be built with forced centering instruments (pillars or steel rods etc.). At first a study in advance is carried out in the study area to find out convenient old pillars. At the end of the study, useful already established 25 pillar points are determined on the region. However, it is decided that the network can consist of 16 station points, because of the reasons such as financial limitations and the number of GPS receivers. The network consists of 16 point. The points are given name with the four letter abbreviations of the nearest settlement. The GPS sites mainly were chosen as representative of the fault-bounded continental blocks. Although there are lots of faults in the area, active and recently earthquake produced faults and continental blocks that are bounded by these faults were taken into consideration. 3.2 GPS Measurements The number and features of receivers are Measurements were performed in six days at two stages. For

  3. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    DEFF Research Database (Denmark)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún

    2017-01-01

    As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak-to...

  4. Smos Land Product Validation Activities at the Valencia Anchor Station

    Science.gov (United States)

    Lopez-Baeza, Ernesto

    to study the correlation between soil moisture and the Temperature-Vegetation Dryness Index (TVDI), obtained from remote sensing data, which will allow us to produce soil moisture maps for the whole control area. These soil moisture fields will then be compared to those obtained from HIRLAM (HIgh Resolution Limited Area Model ). Complementary to the ground measurements, flight operations will also be performed over the control area using the Helsinki University of Technology TKK Short Skyvan research aircraft. The payload for the SMOS Validation Rehearsal Campaign will consist of the following instruments: (i) L-band radiometer EMIRAD provided by the Technical University of Denmark (TUD), (ii) HUT-2D L-band imaging interferometric radiometer provided by TKK, (iii) PARIS GPS reflectrometry system provided by Institute for Space Studies of Catalonia (IEEC), (iv) IR sensor provided by the Finnish Institute of Maritime Research (FIMR), (v) a low resolution digital video camera Together with the ground soil moisture measurements, other ground and meteorological measurements obtained from the Valencia Anchor Station site will be used to simulate passive microwave brightness temperature so as to have satellite "match ups" for validation purposes and to test retrieval algorithms. The spatialization of the ground measurements up to a SMOS pixel will be carried out by using a Soil-Vegetation-Atmosphere-Transfer (SVAT) model (SUR- FEX) from Mátéo France. Output data, particularly soil moisture, will then used to simulate ee the L-band surface emission through the use of the L-MEB (L-band Microwave Emission of the Biosphere) model. This paper will present an overview of the whole Valencia Anchor Station Experimental Plan making more emphasis on the development of the ground activities which are considered a key element for the performance of the different validation components.

  5. A GPS and modelling study of deformation in northern Central America

    Science.gov (United States)

    Rodriguez, M.; DeMets, C.; Rogers, R.; Tenorio, C.; Hernandez, D.

    2009-09-01

    We use GPS measurements at 37 stations in Honduras and El Salvador to describe active deformation of the western end of the Caribbean Plate between the Motagua fault and Central American volcanic arc. All GPS sites located in eastern Honduras move with the Caribbean Plate, in accord with geologic evidence for an absence of neotectonic deformation in this region. Relative to the Caribbean Plate, the other stations in the study area move west to west-northwest at rates that increase gradually from 3.3 +/- 0.6 mm yr-1 in central Honduras to 4.1 +/- 0.6 mm yr-1 in western Honduras to as high as 11-12 mm yr-1 in southern Guatemala. The site motions are consistent with slow westward extension that has been inferred by previous authors from the north-striking grabens and earthquake focal mechanisms in this region. We examine the factors that influence the regional deformation by comparing the new GPS velocity field to velocity fields predicted by finite element models (FEMs) that incorporate the regional plate boundary faults and known plate motions. Our modelling suggests that the obliquely convergent (~20°) direction of Caribbean-North American Plate motion relative to the Motagua fault west of 90°W impedes the ENE-directed motion of the Caribbean Plate in southern Guatemala, giving rise to extension in southern Guatemala and western Honduras. The FEM predictions agree even better with the measured velocities if the plate motion west of the Central American volcanic arc is forced to occur over a broad zone rather than along a single throughgoing plate boundary fault. Our analysis confirms key predictions of a previous numerical model for deformation in this region, and also indicates that the curvature of the Motagua fault causes significant along-strike changes in the orientations of the principal strain-rate axes in the fault borderlands, in accord with earthquake focal mechanisms and conclusions reached in a recent synthesis of the structural and morphologic data

  6. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen

    2015-02-06

    © 2015 The Authors. Earth\\'s present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  7. GPS Time Series and Geodynamic Implications for the Hellenic Arc Area, Greece

    Science.gov (United States)

    Hollenstein, Ch.; Heller, O.; Geiger, A.; Kahle, H.-G.; Veis, G.

    The quantification of crustal deformation and its temporal behavior is an important contribution to earthquake hazard assessment. With GPS measurements, especially from continuous operating stations, pre-, co-, post- and interseismic movements can be recorded and monitored. We present results of a continuous GPS network which has been operated in the Hellenic Arc area, Greece, since 1995. In order to obtain coordinate time series of high precision which are representative for crustal deformation, a main goal was to eliminate effects which are not of tectonic origin. By applying different steps of improvement, non-tectonic irregularities were reduced significantly, and the precision could be improved by an average of 40%. The improved time series are used to study the crustal movements in space and time. They serve as a base for the estimation of velocities and for the visualization of the movements in terms of trajectories. Special attention is given to large earthquakes (M>6), which occurred near GPS sites during the measuring time span.

  8. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen; Bennett, Richard A.; Hreinsdó ttir, Sigrú n

    2015-01-01

    © 2015 The Authors. Earth's present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  9. Using GPS Imaging to Unravel Vertical Land Motions in the Interior Pacific Northwest

    Science.gov (United States)

    Overacker, J.; Hammond, W. C.; Kraner, M.; Blewitt, G.

    2017-12-01

    result of vertical velocity field plotted over topographic relief map. Red is up, blue is down. GPS station locations are shown in green. Greatest amount of subsidence shown by GPS Imaging appear uncorrelated with topographic features.

  10. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    Science.gov (United States)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  11. Near real-time PPP-based monitoring of the ionosphere using dual-frequency GPS/BDS/Galileo data

    Science.gov (United States)

    Liu, Zhinmin; Li, Yangyang; Li, Fei; Guo, Jinyun

    2018-03-01

    Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.

  12. Comparison of two-way satellite time transfer and GPS common-view time transfer between OCA and TUG

    Science.gov (United States)

    Kirchner, Dieter; Thyr, U.; Ressler, H.; Robnik, R.; Grudler, P.; Baumont, Francoise S.; Veillet, Christian; Lewandowski, Wlodzimierz W.; Hanson, W.; Clements, A.

    1992-01-01

    For about one year the time scales UTC(OCA) and UTC(TUG) were compared by means of GPS and two-way satellite time transfer. At the end of the experiment both links were independently 'calibrated' by measuring the differential delays of the GPS receivers and of the satellite earth stations by transportation of a GPS receiver and of one of the satellite terminals. The results obtained by both methods differ by about 3 ns, but reveal a seasonal variation of about 8 ns peak-to-peak which is likely the result of a temperature-dependence of the delays of the GPS receivers used. For the comparison of both methods the stabilities of the timescales are of great importance. Unfortunately, during the last three months of the experiment a less stable clock had to be used for the generation of UTC(TUG).

  13. Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry

    DEFF Research Database (Denmark)

    Zhang, X.H.; Forsberg, René

    2007-01-01

    Long-range airborne laser altimetry and laser scanning (LIDAR) or airborne gravity surveys in, for example, polar or oceanic areas require airborne kinematic GPS baselines of many hundreds of kilometers in length. In such instances, with the complications of ionospheric biases, it can be a real...... challenge for traditional differential kinematic GPS software to obtain reasonable solutions. In this paper, we will describe attempts to validate an implementation of the precise point positioning (PPP) technique on an aircraft without the use of a local GPS reference station. We will compare PPP solutions...... of the Arctic Ocean north of Greenland, near-coincident in time and space with the ICESat satellite laser altimeter. Both of these flights were more than 800 km long. Comparisons between different GPS methods and four different software packages do not suggest a clear preference for any one, with the heights...

  14. Convergence Time and Positioning Accuracy Comparison between BDS and GPS Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    ZHANG Xiaohong

    2015-03-01

    Full Text Available BDS/GPS data from MGEX were processed by TriP 2.0 software developed at Wuhan University. Both static and kinematic float PPP are tested by adopting precise satellite orbits and clocks provided by Research Center of GNSS, Wuhan University. The results show that the convergence time of BDS static PPP is about 80min while kinematic PPP is about 100min. For 3h observations, static positioning accuracy of 5 cm and kinematic positioning accuracy of 8 cm in horizontal, about 12 cm in vertical can be achieved. Similar to GPS PPP, precision in east component is worse than north. At present, BDS PPP needs longer convergence time than GPS PPP to reach an absolute positioning accuracy of cm~dm due to the lack of global tracking stations and the limited accuracy of orbit and clock products.

  15. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    International Nuclear Information System (INIS)

    Ekman, Lennart; Ekman, Mats

    2013-03-01

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower

  16. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, Lennart; Ekman, Mats [LE Geokonsult AB, Baelinge (Sweden)

    2013-03-15

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower

  17. Single-Station Sigma for the Iranian Strong Motion Stations

    Science.gov (United States)

    Zafarani, H.; Soghrat, M. R.

    2017-11-01

    In development of ground motion prediction equations (GMPEs), the residuals are assumed to have a log-normal distribution with a zero mean and a standard deviation, designated as sigma. Sigma has significant effect on evaluation of seismic hazard for designing important infrastructures such as nuclear power plants and dams. Both aleatory and epistemic uncertainties are involved in the sigma parameter. However, ground-motion observations over long time periods are not available at specific sites and the GMPEs have been derived using observed data from multiple sites for a small number of well-recorded earthquakes. Therefore, sigma is dominantly related to the statistics of the spatial variability of ground motion instead of temporal variability at a single point (ergodic assumption). The main purpose of this study is to reduce the variability of the residuals so as to handle it as epistemic uncertainty. In this regard, it is tried to partially apply the non-ergodic assumption by removing repeatable site effects from total variability of six GMPEs driven from the local, Europe-Middle East and worldwide data. For this purpose, we used 1837 acceleration time histories from 374 shallow earthquakes with moment magnitudes ranging from M w 4.0 to 7.3 recorded at 370 stations with at least two recordings per station. According to estimated single-station sigma for the Iranian strong motion stations, the ratio of event-corrected single-station standard deviation ( Φ ss) to within-event standard deviation ( Φ) is about 0.75. In other words, removing the ergodic assumption on site response resulted in 25% reduction of the within-event standard deviation that reduced the total standard deviation by about 15%.

  18. Fortaleza Station Report for 2012

    Science.gov (United States)

    Kaufmann, Pierre; Pereira de Lucena, A. Macilio; Sombra da Silva, Adeildo

    2013-01-01

    This is a brief report about the activities carried out at the Fortaleza geodetic VLBI station (ROEN: R´adio Observat´orio Espacial do Nordeste), located in Eus´ebio, CE, Brazil, during the period from January until December 2012. The observing activities were resumed in May after the major maintenance that comprised the azimuth bearing replacement. The total observational experiments consisted of 103 VLBI sessions and continuous GPS monitoring recordings.

  19. A statistical study of GPS loss of lock caused by ionospheric disturbances

    Science.gov (United States)

    Tsugawa, T.; Nishioka, M.; Otsuka, Y.; Saito, A.; Kato, H.; Kubota, M.; Nagatsuma, T.; Murata, K. T.

    2010-12-01

    Two-dimensional total electron content (TEC) maps have been derived from ground-based GPS receiver networks and applied to studies of various ionospheric disturbances since mid-1990s. For the purpose of monitoring and researching ionospheric disturbances which can degrade GNSS navigations and cause loss-of-lock on GNSS signals, National Institute of Information and Communications Technology (NICT), Japan has developed TEC maps over Japan using the dense GPS network, GEONET, which consists of more than 1,200 GPS receivers and is operated by Geophysical Survey Institute, Japan. Currently, we are providing two-dimensional maps of absolute TEC, detrended TEC with 60, 30, 15-minute window, rate of TEC change index (ROTI), and loss-of-lock (LOL) on GPS signal over Japan. These data and quick-look maps since 1997 are archived and available in the website of NICT (http://wdc.nict.go.jp/IONO/). Recently developed GPS receiver networks in North America and Europe make it possible to obtain regional TEC maps with higher spatial and temporal resolution than the global weighted mean TEC maps in the IONEX format provided by several institutes such as International GNSS Service (IGS) and another global TEC map provided by MIT Haystack observatory. Recently, we have also developed the regional TEC maps over North America and Europe. These data and quick-look maps are also available in the NICT website. In this presentation, we will show some severe ionospheric events such as high latitude storm-time plasma bubbles and storm enhanced density events observed over Japan using the GPS-TEC database. These events cause loss-of-lock of GPS signals and large GPS positioning errors. We also discuss about the statistical characteristics of LOL on the GPS signal caused by ionospheric disturbances.

  20. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    Science.gov (United States)

    The Pierre Auger Collaboration

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

  1. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    International Nuclear Information System (INIS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ''beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA

  2. A Terrestrial Reference Frame realised on the observation level using a GPS-LEO satellite constellation

    Science.gov (United States)

    Koenig, Daniel

    2018-02-01

    Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level

  3. Uncertainty estimation of the velocity model for stations of the TrigNet GPS network

    Science.gov (United States)

    Hackl, M.; Malservisi, R.; Hugentobler, U.

    2010-12-01

    Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that error models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is computationally expensive and is usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies, which allows for a reliable estimation of the velocity error. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Small differences may originate from non-normal distribution of the noise.

  4. GP and pharmacist inter-professional learning - a grounded theory study.

    Science.gov (United States)

    Cunningham, David E; Ferguson, Julie; Wakeling, Judy; Zlotos, Leon; Power, Ailsa

    2016-05-01

    Practice Based Small Group Learning (PBSGL) is an established learning resource for primary care clinicians in Scotland and is used by one-third of general practitioners (GPs). Scottish Government and UK professional bodies have called for GPs and pharmacists to work more closely together to improve care. To gain GPs' and pharmacists' perceptions and experiences of learning together in an inter-professional PBSGL pilot. Qualitative research methods involving established GP PBSGL groups in NHS Scotland recruiting one or two pharmacists to join them. A grounded theory method was used. GPs were interviewed in focus groups by a fellow GP, and pharmacists were interviewed individually by two researchers, neither being a GP or a pharmacist. Interviews were audio-recorded, transcribed and analysed using grounded theory methods. Data saturation was achieved and confirmed. Three themes were identified: GPs' and pharmacists' perceptions and experiences of inter-professional learning; Inter-professional relationships and team-working; Group identity and purpose of existing GP groups. Pharmacists were welcomed into GP groups and both professions valued inter-professional PBSGL learning. Participants learned from each other and both professions gained a wider perspective of the NHS and of each others' roles in the organisation. Inter-professional relationships, communication and team-working were strengthened and professionals regarded each other as peers and friends.

  5. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    DEFF Research Database (Denmark)

    Yuan, Y.; Tscherning, C.C.; Knudsen, Per

    2006-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) lambda of the ionospheric pierce point (IPP....... The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM...

  6. The evolution of OPUS: A set of web-based GPS processing tools offered by the National Geodetic Survey

    Science.gov (United States)

    Weston, Dr.; Mader, Dr.; Schenewerk, Dr.

    2012-04-01

    The Online Positioning User Service (OPUS) is a suite of web-based GPS processing tools that were initially developed by the National Geodetic Survey approximately eleven years ago. The first version, known as OPUS static (OPUS-S), processes L1 and L2 carrier-phase data in native receiver and RINEX formats. Datasets submitted to OPUS-S must be between two and 48 hours in duration and pass several quality control steps before being passed onto the positioning algorithm. OPUS-S was designed to select five nearby CORS to form baselines that are processed independently. The best three solutions are averaged to produce a final set of coordinates. The current version of OPUS-S has been optimized to accept and process GPS data from any location in the continental United States, Alaska, Hawaii and the Caribbean. OPUS Networks (OPUS-Net), one of the most recently developed versions and currently in beta testing, has many of the same processing characteristics and dataset requirements as OPUS-S but with one significant difference. OPUS-Net selects up to 10 IGS reference sites and three regional CORS to perform a simultaneous least squares adjustment with the user-submitted data. The CORS stations are primarily used to better estimate the troposphere while the position of the unknown station and the three CORS reference stations are determined from the more precisely known and monitored IGS reference stations. Additional enhancements to OPUS-Net are the implementation of absolute antenna patterns and ocean tides (FES2004), using reference station coordinates in IGS08 reference frame, as well as using improved phase ambiguity integer fixing and troposphere modeling (GPT and GMF a priori models). OPUS Projects, the final version of OPUS to be reviewed in this paper, is a complete web-based, GPS data processing and analysis environment. The main idea behind OPUS Projects is that one or more managers can define numerous, independent GPS projects. Each newly defined project is

  7. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor

    Science.gov (United States)

    Huang, Liangke; Jiang, Weiping; Liu, Lilong; Chen, Hua; Ye, Shirong

    2018-05-01

    In ground-based global positioning system (GPS) meteorology, atmospheric weighted mean temperature, T_m , plays a very important role in the progress of retrieving precipitable water vapor (PWV) from the zenith wet delay of the GPS. Generally, most of the existing T_m models only take either latitude or altitude into account in modeling. However, a great number of studies have shown that T_m is highly correlated with both latitude and altitude. In this study, a new global grid empirical T_m model, named as GGTm, was established by a sliding window algorithm using global gridded T_m data over an 8-year period from 2007 to 2014 provided by TU Vienna, where both latitude and altitude variations are considered in modeling. And the performance of GGTm was assessed by comparing with the Bevis formula and the GPT2w model, where the high-precision global gridded T_m data as provided by TU Vienna and the radiosonde data from 2015 are used as reference values. The results show the significant performance of the new GGTm model against other models when compared with gridded T_m data and radiosonde data, especially in the areas with great undulating terrain. Additionally, GGTm has the global mean RMS_{PWV} and RMS_{PWV} /PWV values of 0.26 mm and 1.28%, respectively. The GGTm model, fed only by the day of the year and the station coordinates, could provide a reliable and accurate T_m value, which shows the possible potential application in real-time GPS meteorology, especially for the application of low-latitude areas and western China.

  8. Studies on Anthropogenic Impact on Water Quality in Hilo (Hawaii) Bay and Mapping the Study Stations Using Geospatial Technologies

    Science.gov (United States)

    Cartier, A. J.; Williams, M. S.; Adolf, J.; Sriharan, S.

    2015-12-01

    Hilo Bay has uncharacteristically brown waters compared to other waters found in Hawai'i. The majority of the freshwater entering Hilo Bay is from storm and surface water runoff. The anthropogenic impact on water quality at Hilo Bay is due to sediment entrance, cesspools (Bacteria), and invasive species (Albizia). This poster presentation will focus on the water quality and phytoplankton collected on a weekly basis at a buoy positioned one meter from the shore of Hilo Bay, preserving the phytoplankton intact, concentrating and dehydrating the sample with ethanol, and viewing the phytoplankton with a scanning electron microscope (Hitachi S-3400NII). The GPS (Global Positioning System) points were collected at the sampling stations. Three transects on three separate dates were performed in Hilo Bay with salinity, percent dissolved oxygen, turbidity, secchi depth, temperature, and chlorophyll fluorescence data collected at each sampling station. A consistent trend observed in all transects was as distance from the river increased turbidity decreased and salinity increased. The GPS data on June 30, 2015 showed a major correlation between stations and their distance from shore. There is a decrease in the turbidity but not the temperature for these stations. The GPS points collected on July 7, 2015 at thirteen stations starting with station one being at the shore to the water, showed that the salinity concentration fluctuate noticeably at the first 6 stations. As we proceed further away from the shore, the salinity concentration increases from stations seven through thirteen. The water temperature shows little variation throughout the thirteen stations. The turbidity level was high at the shore and shows a noticeable drop at station thirteen.

  9. Present kinematics of the Tjornes Fracture Zone, North Iceland, from campaign and continuous GPS measurements

    KAUST Repository

    Metzger, S.; Jonsson, Sigurjon; Danielsen, G.; Hreinsdottir, S.; Jouanne, F.; Giardini, D.; Villemin, T.

    2012-01-01

    The improved velocity field based on 58 GPS stations confirms the robustness of our previous model and allows to better constrain the free model parameters. For the HFF we find a slightly shallower locking depth of ∼6.2 km and a slightly higher slip-rate of ∼6.8 mm yr−1 that again result in the same seismic potential equivalent to a Mw6.8 earthquake. The much larger number of GPS velocities improves the statistically estimated model parameter uncertainties by a factor of two, when compared to our previous study, a result that we validate using Bayesian estimation.

  10. Supporting EarthScope Cyber-Infrastructure with a Modern GPS Science Data System

    Science.gov (United States)

    Webb, F. H.; Bock, Y.; Kedar, S.; Jamason, P.; Fang, P.; Dong, D.; Owen, S. E.; Prawirodirjo, L.; Squibb, M.

    2008-12-01

    Building on NASA's investment in the measurement of crustal deformation from continuous GPS, we are developing and implementing a Science Data System (SDS) that will provide mature, long-term Earth Science Data Records (ESDR's). This effort supports NASA's Earth Surface and Interiors (ESI) focus area and provide NASA's component to the EarthScope PBO. This multi-year development is sponsored by NASA's Making Earth System data records for Use in Research Environments (MEaSUREs) program. The SDS integrates the generation of ESDRs with data analysis and exploration, product generation, and modeling tools based on daily GPS data that include GPS networks in western North America and a component of NASA's Global GPS Network (GGN) for terrestrial reference frame definition. The system is expandable to multiple regional and global networks. The SDS builds upon mature data production, exploration, and analysis algorithms developed under NASA's REASoN, ACCESS, and SENH programs. This SDS provides access to positions, time series, velocity fields, and strain measurements derived from continuous GPS data obtained at tracking stations in both the Plate Boundary Observatory and other regional Western North America GPS networks, dating back to 1995. The SDS leverages the IT and Web Services developments carried out under the SCIGN/REASoN and ACCESS projects, which have streamlined access to data products for researchers and modelers, and which have created a prototype an on-the-fly interactive research environment through a modern data portal, GPS Explorer. This IT system has been designed using modern IT tools and principles in order to be extensible to any geographic location, scale, natural hazard, and combination of geophysical sensor and related data. We have built upon open GIS standards, particularly those of the OGC, and have used the principles of Web Service-based Service Oriented Architectures to provide scalability and extensibility to new services and capabilities.

  11. A transportation security system applying RFID and GPS

    Directory of Open Access Journals (Sweden)

    Ruijian Zhang

    2013-03-01

    Full Text Available Purpose: This paper is about developing a centralized, internet based security tool which utilizes RFID and GPS technology to identify drivers and track the load integrity. Design/methodology/approach: The system will accomplish the security testing in real-time using the internet and the U.S. Customs’ database (ACE. A central database and the interfaces and communication between the database and ACE will be established. After the vehicle is loaded, all openings of the tanker are sealed with disposable RFID tag seals. Findings/value: An RFID reader and GPS tracker wirelessly connected with the databases will serve as testing grounds for the implementation of security measures that can help prevent future terrorist attacks and help in ensuring that the goods and products are not compromised while in transit. The system will also reduce the labor work of security check to its minimum. 

  12. Geophysical monitoring of a complex geologic framework: the multi-disciplinary sensor networks in Sicily (Italy)

    Science.gov (United States)

    Cantarero, M.; Di Prima, S.; Mattia, M.; Patanè, D.; Rossi, M.

    2012-04-01

    Since 2004 the Osservatorio Etneo INGV has begun a new approach to the geophysical monitoring of volcanic and seismic areas of Sicily (Italy) where the core is a new type of remote infrastructure able to efficiently accommodate different kinds of sensor. In particular our multi-parametric network is mainly focused on the monitoring of different geophysical parameters (seismic ground velocity and acceleration, infrasound and ground deformation GPS).The whole seismic network consists of 66 broad band digital stations, 19 analog stations, 13 accelerometric stations and 12 infrasonic stations, for a total of 110 stations while the Continuous GPS network consist of 80 stations. Every station is equipped with solar panels in order to satisfy the power requirements of the instruments and with satellite-based communication systems. In this work we show both the technical solutions of this integrated network and its main advantages, if compared with older kinds of remote stations. Moreover we show some examples of the more interesting scientific results achieved thank to this technologically advanced network.

  13. Subsidence and Fault Displacement Along the Long Point Fault Derived from Continuous GPS Observations (2012-2017)

    Science.gov (United States)

    Tsibanos, V.; Wang, G.

    2017-12-01

    The Long Point Fault located in Houston Texas is a complex system of normal faults which causes significant damage to urban infrastructure on both private and public property. This case study focuses on the 20-km long fault using high accuracy continuously operating global positioning satellite (GPS) stations to delineate fault movement over five years (2012 - 2017). The Long Point Fault is the longest active fault in the greater Houston area that damages roads, buried pipes, concrete structures and buildings and creates a financial burden for the city of Houston and the residents who live in close vicinity to the fault trace. In order to monitor fault displacement along the surface 11 permanent and continuously operating GPS stations were installed 6 on the hanging wall and 5 on the footwall. This study is an overview of the GPS observations from 2013 to 2017. GPS positions were processed with both relative (double differencing) and absolute Precise Point Positioning (PPP) techniques. The PPP solutions that are referred to IGS08 reference frame were transformed to the Stable Houston Reference Frame (SHRF16). Our results show no considerable horizontal displacements across the fault, but do show uneven vertical displacement attributed to regional subsidence in the range of (5 - 10 mm/yr). This subsidence can be associated to compaction of silty clays in the Chicot and Evangeline aquifers whose water depths are approximately 50m and 80m below the land surface (bls). These levels are below the regional pre-consolidation head that is about 30 to 40m bls. Recent research indicates subsidence will continue to occur until the aquifer levels reach the pre-consolidation head. With further GPS observations both the Long Point Fault and regional land subsidence can be monitored providing important geological data to the Houston community.

  14. Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results

    Science.gov (United States)

    Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.

    The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.

  15. Assessment of infrasound signals recorded on seismic stations and infrasound arrays in the western United States using ground truth sources

    Science.gov (United States)

    Park, Junghyun; Hayward, Chris; Stump, Brian W.

    2018-06-01

    Ground truth sources in Utah during 2003-2013 are used to assess the contribution of temporal atmospheric conditions to infrasound detection and the predictive capabilities of atmospheric models. Ground truth sources consist of 28 long duration static rocket motor burn tests and 28 impulsive rocket body demolitions. Automated infrasound detections from a hybrid of regional seismometers and infrasound arrays use a combination of short-term time average/long-term time average ratios and spectral analyses. These detections are grouped into station triads using a Delaunay triangulation network and then associated to estimate phase velocity and azimuth to filter signals associated with a particular source location. The resulting range and azimuth distribution from sources to detecting stations varies seasonally and is consistent with predictions based on seasonal atmospheric models. Impulsive signals from rocket body detonations are observed at greater distances (>700 km) than the extended duration signals generated by the rocket burn test (up to 600 km). Infrasound energy attenuation associated with the two source types is quantified as a function of range and azimuth from infrasound amplitude measurements. Ray-tracing results using Ground-to-Space atmospheric specifications are compared to these observations and illustrate the degree to which the time variations in characteristics of the observations can be predicted over a multiple year time period.

  16. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.

    2016-01-01

    The geomagnetic storm of 17–18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers......, and magnetometers. The phase scintillation index is computed for signals sampled at a rate of up to 100 Hz by specialized GPS scintillation receivers supplemented by the phase scintillation proxy index obtained from geodetic-quality GPS data sampled at 1 Hz. In the context of solar wind coupling...... to the magnetosphere-ionosphere system, it is shown that GPS phase scintillation is primarily enhanced in the cusp, the tongue of ionization that is broken into patches drawn into the polar cap from the dayside storm-enhanced plasma density, and in the auroral oval. In this paper we examine the relation between...

  17. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  18. GPS phase scintillation during the geomagnetic storm of March 17, 2015: The relation to auroral electrojet currents

    DEFF Research Database (Denmark)

    Prikryl, Paul; Ghoddousi-Fard, Reza; Connors, Martin

    and magnetometers. GPS phase scintillation index is computed for L1 signal sampled at the rate of 50 Hz by specialized GPS scintillation receivers of the Expanded Canadian High Arctic Ionospheric Network (ECHAIN). To further extend the geographic coverage, the phasescintillation proxy index is obtained from......Ionospheric irregularities cause rapid fluctuations of radio wave amplitude and phase that candegrade GPS positional accuracy and affect performance of radio communication and navigation systems. The ionosphere becomes particularly disturbed during geomagnetic storms caused by impacts of coronal...... mass ejections compounded by high-speed plasma streams from coronal holes. Geomagnetic storm of March 17, 2015 was the largest in the current solar cycle. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers...

  19. Estimation of sea level variations with GPS/GLONASS-reflectometry technique

    Science.gov (United States)

    Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.

    2017-11-01

    In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.

  20. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  1. GPS Water Vapor Tomography: First results from the ESCOMPTE Field Experiment

    Science.gov (United States)

    Masson, F.; Champollion, C.; Bouin, M.-N.; Walpersdorf, A.; van Baelen, J.; Doerflinger, E.; Bock, O.

    2003-04-01

    We develop a tomographic software to model the spatial distribution of the tropospheric water vapor from GPS data. First we present simulations based on a real GPS station distribution and simple tropospheric models, which prove the potentiality of the method. Second we apply the software to the ESCOMPTE data. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers has been operated for two weeks within a 20 km x 20 km area around Marseille (Southern France). The network extends from the sea level to the top of the Etoile chain (~700 m high). The input data are the slant delay values obtained by combining the estimated zenith delay values with the horizontal gradients. The effect of the initial tropospheric water vapor model, the number and thickness of the layers of the model, the a priori model and data covariance and some other parameters will be discussed. Simultaneously water vapor radiometer, solar spectrometer, Raman lidar and radiosondes have been deployed to get a data set usable for comparison with the tomographic inversion results and validation of the method. Comparison with meteorological models (MesoNH - Meteo-France) will be shown.

  2. Development of Soil Compaction Analysis Software (SCAN Integrating a Low Cost GPS Receiver and Compactometer

    Directory of Open Access Journals (Sweden)

    Dongha Lee

    2012-02-01

    Full Text Available A software for soil compaction analysis (SCAN has been developed for evaluating the compaction states using the data from the GPS as well as a compactometer attached on the roller. The SCAN is distinguished from other previous software for intelligent compaction (IC in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers. For this, several methods were developed: (1 improving the accuracy of low cost GPS receiver’s positioning results; (2 modeling the trajectory of a moving roller using a GPS receiver’s results and linking it with the data from the compactometer; and (3 extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods. The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states.

  3. Prototype Environmental Assessment of the impacts of siting and construction of an SPS ground receiving station

    Science.gov (United States)

    Hill, J.

    1980-01-01

    A prototype assessment of the environmental impacts of siting and constructing a Satellite Power System (SPS) Ground Receiving Station (GRS) is reported. The objectives of the study were: (1) to develop an assessment of the nonmicrowave related impacts of the reference system SPS GRS on the natural environment; (2) to assess the impacts of GRS construction and operations in the context of actual baseline data for a site in the California desert; and (3) to identify critical GRS characteristics or parameters that are most significant in terms of the natural environment.

  4. Application of GPS and Near-Surface Geophysical Methods to Evaluate Agricultural Test Plot Difference

    Science.gov (United States)

    Real-time kinematic (RTK) GPS, ground penetrating radar, resistivity surveying, cone penetrometer probing, and soil sampling were used to measure soil properties that may influence future soil and water management research inherent to a selected set of research fields. A topographic map generated fr...

  5. Ionospheric Remote Sensing using GPS Radio Occultation and Ultraviolet Photometry aboard the ISS

    Science.gov (United States)

    Budzien, S. A.; Powell, S. P.; O'Hanlon, B.; Humphreys, T.; Bishop, R. L.; Stephan, A. W.; Gross, J.; Chakrabarti, S.

    2017-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiment launched to the International Space Station (ISS) on February 19, 2017 as part of the Space Test Program Houston #5 payload (STP-H5). After early orbit testing, GROUP-C began routine science operations in late April. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal nighttime ionospheric gradients and an advanced software-defined GPS receiver providing ionospheric electron density profiles, scintillation measurements, and lower atmosphere profiles. GROUP-C and a companion experiment, the Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES), offer a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor approaches, including ionospheric tomography. Data are collected continuously across low- and mid-latitudes as the ISS orbit precesses through all local times every 60 days. The GROUP-C GPS sensor routinely collects dual-frequency GPS occultations, makes targeted raw signal captures of GPS and Galileo occultations, and includes multiple antennas to characterize multipath in the ISS environment. The UV photometer measures the 135.6 nm ionospheric recombination airglow emision along the nightside orbital track. We present the first analysis of ionospheric observations, discuss the challenges and opportunities of remote sensing from the ISS platform, and explore how these new data help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere relevant to the upcoming GOLD and ICON missions.

  6. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.

    Science.gov (United States)

    Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing

    2016-09-15

    The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas.

  7. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Directory of Open Access Journals (Sweden)

    Kazancı Selma Zengin

    2017-12-01

    Full Text Available In recent years, Global Navigation Satellite Systems (GNSS have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK. With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  8. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Science.gov (United States)

    Kazancı, Selma Zengin; Kayıkçı, Emine Tanır

    2017-12-01

    In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled "Using Regional GNSS Networks to Strengthen Severe Weather Prediction" was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  9. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    Science.gov (United States)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  10. Grounding line processes on the Totten Glacier

    Science.gov (United States)

    Cook, S.; Watson, C. S.; Galton-Fenzi, B.; Peters, L. E.; Coleman, R.

    2017-12-01

    The Totten Glacier has been an area of recent interest due to its large drainage basin, much of which is grounded below sea level and has a history of large scale grounding line movement. Reports that warm water reaches the sub-ice shelf cavity have led to speculation that it could be vulnerable to future grounding line retreat. Over the Antarctic summer 2016/17 an array of 6 GPS and autonomous phase-sensitive radar (ApRES) units were deployed in the grounding zone of the Totten Glacier. These instruments measure changes in ice velocity and thickness which can be used to investigate both ice dynamics across the grounding line, and the interaction between ice and ocean in the subglacial cavity. Basal melt rates calculated from the ApRES units on floating ice range from 1 to 17 m/a. These values are significantly lower than previous estimates of basal melt rate produced by ocean modelling of the subglacial cavity. Meanwhile, GPS-derived velocity and elevation on the surface of the ice show a strong tidal signal, as does the vertical strain rate within the ice derived from internal layering from the ApRES instruments. These results demonstrate the significance of the complex grounding pattern of the Totten Glacier. The presence of re-grounding points has significant implications for the dynamics of the glacier and the ocean circulation within the subglacial cavity. We discuss what can be learned from our in situ measurements, and how they can be used to improve models of the glacier's future behaviour.

  11. Norwegian GPs' participation in multidisciplinary meetings: A register-based study from 2007

    Directory of Open Access Journals (Sweden)

    Gjesdal Sturla

    2010-11-01

    Full Text Available Abstract Background An increasing number of patients with chronic disorders and a more complex health service demand greater interdisciplinary collaboration in Primary Health Care. The aim of this study was therefore to identify factors related to general practitioners (GPs, their list populations and practice municipalities associated with a high rate of GP participation in multidisciplinary meetings (MDMs. Methods A national cross-sectional register-based study of Norwegian general practice was conducted, including data on all GPs in the Regular GP Scheme in 2007 (N = 3179. GPs were grouped into quartiles based on the annual number of MDMs per patient on their list, and the groups were compared using one-way analysis of variance. Binary logistic regression was used to analyse associations between high rates of participation and characteristics of the GP, their list population and practice municipality. Results On average, GPs attended 30 MDMs per year. The majority of the meetings concerned patients in the age groups 20-59 years. Psychological disorders were the motivation for 53% of the meetings. In a multivariate logistic regression model, the following characteristics predicted a high rate of MDM attendance: younger age of the GP, with an OR of 1.6 (95% CI 1.2-2.1 for GPs Conclusions Psychological problems including substance addiction gave grounds for the majority of MDMs. GPs with a high proportion of consultations with such problems also participated more frequently in MDMs. List size was negatively associated with the rate of MDMs, while a more disadvantaged list population was positively associated. Working in smaller organisational units seemed to facilitate cooperation between different professionals. There may be a generation shift towards more frequent participation in interdisciplinary work among younger GPs.

  12. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    Science.gov (United States)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  13. Modeling environmental bias and computing velocity field from data of Terra Nova Bay GPS network in Antarctica by means of a quasi-observation processing approach

    Science.gov (United States)

    Casula, Giuseppe; Dubbini, Marco; Galeandro, Angelo

    2007-01-01

    A semi-permanent GPS network of about 30 vertices has been installed at Terra Nova Bay (TNB) near Ross Sea in Antarctica. A permanent GPS station TNB1 based on an Ashtech Z-XII dual frequency P-code GPS receiver with ASH700936D_M Choke Ring Antenna has been mounted on a reinforced concrete pillar built on bedrock since October 1998 and has recorded continuously up to the present. The semi-permanent network has been routinely surveyed every summer using high quality dual frequency GPS receivers with 24 hour sessions at 15 sec rate; data, metadata and solutions will be available to the scientific community at (http://www.geodant.unimore.it). We present the results of a distributed session approach applied to processing GPS data of the TNB GPS network, and based on Gamit/Globk 10.2-3 GPS analysis software. The results are in good agreement with other authors' computations and with many of the theoretical models.

  14. Comparison of GPS and GRACE hydrological loading signatures in Myanmar, India, Bangladesh, and Bhutan

    Science.gov (United States)

    Materna, K.; Feng, L.; Lindsey, E. O.; Hill, E.; Burgmann, R.

    2017-12-01

    The elastic response of the lithosphere to surface mass redistributions produces significant deformation that can be observed in geodetic time series. This deformation is especially pronounced in Southeast Asia, where the annual monsoon produces large-amplitude hydrological loads. The MIBB network of 20 continuous GPS stations in Myanmar, India, Bangladesh, and Bhutan, operational since 2012, provides an opportunity to study the earth's response to these loads. In this study, we use GRACE gravity products as an estimate of surface water distribution, and input these estimates into an elastic loading calculation. We compare the predicted deformation with that observed with GPS. We find that elastic loading from the GRACE gravity field is able to explain the phase and the peak-to-peak amplitude (typically 2-3 cm) of the vertical GPS oscillations in northeast India and central Myanmar. GRACE-based corrections reduce the RMS scatter of the GPS data by 30%-45% in these regions. However, this approach does not capture all of the variation in central Bangladesh and southern Myanmar. Local hydrological effects, non-tidal ocean loads, poroelastic deformation, or differences in elastic properties may explain discrepancies between the GPS and GRACE signals in these places. The results of our calculations have practical implications for campaign GPS measurements in Myanmar, which make up the majority of geodetic measurements at this point. We may be able to reduce errors in campaign measurements and increase the accuracy of velocity estimates by correcting for hydrologic signals with GRACE data. The results also have potential implications for crustal rheology in Southeast Asia.

  15. Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data

    Science.gov (United States)

    Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.; hide

    2013-01-01

    Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data

  16. Performance evaluation of optical channel transmission between UAVs and Ground Stations

    Directory of Open Access Journals (Sweden)

    Hatziefremidis Antonis

    2016-01-01

    Full Text Available Free space optical (FSO communications links is a promising solution for the provision of high data rate point to point communications. In particular deploying FSO technology for mobile links between Unmanned Aerial Vehicles (UAVs and fixed Ground Stations (GS introduces several interesting challenges. In this paper, we investigate the ability of a mobile FSO system to operate in different atmospheric conditions. Specifically, we characterize the quality of the optical channel with a proper model in terms of Bit Error Rate (BER and average Signal to Noise Ratio (SNR and we report a detailed optical amplification model able to support a constant Quality of Service for different distances from 1 km up to 35 km at 10 Gbps with 1550 nm wavelength. An extensive comparative analysis among different FSO configurations links considering the altitude of the UAV, the wavelength and the atmospheric conditions is provided. The results show that there is degradation at the BER over a slanted path compared to a horizontal path at the same conditions.

  17. Validation of measured poleward TEC gradient using multi-station GPS with Artificial Neural Network based TEC model in low latitude region for developing predictive capability of ionospheric scintillation

    Science.gov (United States)

    Sur, D.; Paul, A.

    2017-12-01

    The equatorial ionosphere shows sharp diurnal and latitudinal Total Electron Content (TEC) variations over a major part of the day. Equatorial ionosphere also exhibits intense post-sunset ionospheric irregularities. Accurate prediction of TEC in these low latitudes is not possible from standard ionospheric models. An Artificial Neural Network (ANN) based Vertical TEC (VTEC) model has been designed using TEC data in low latitude Indian longitude sector for accurate prediction of VTEC. GPS TEC data from the stations Calcutta (22.58°N, 88.38°E geographic, magnetic dip 32°), Baharampore (24.09°N, 88.25°E geographic, magnetic dip 35°) and Siliguri (26.72°N, 88.39°E geographic; magnetic dip 40°) are used as training dataset for the duration of January 2007-September 2011. Poleward VTEC gradients from northern EIA crest to region beyond EIA crest have been calculated from measured VTEC and compared with that obtained from ANN based VTEC model. TEC data from Calcutta and Siliguri are used to compute VTEC gradients during April 2013 and August-September 2013. It has been observed that poleward VTEC gradient computed from ANN based TEC model has shown good correlation with measured values during vernal and autumnal equinoxes of high solar activity periods of 2013. Possible correlation between measured poleward TEC gradients and post-sunset scintillations (S4 ≥ 0.4) from northern crest of EIA has been observed in this paper. From the observation, a suitable threshold poleward VTEC gradient has been proposed for possible occurrence of post-sunset scintillations at northern crest of EIA along 88°E longitude. Poleward VTEC gradients obtained from ANN based VTEC model are used to forecast possible ionospheric scintillation after post-sunset period using the threshold value. It has been observed that these predicted VTEC gradients obtained from ANN based VTEC model can forecast post-sunset L-band scintillation with an accuracy of 67% to 82% in this dynamic low latitude

  18. Indoor Positioning Using GPS Revisited

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben

    2010-01-01

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS...... low signal-to-noise ratios, multipath phenomena or bad satellite constellation geometry. We have also measured the indoor performance of embedded GPS receivers in mobile phones which provided lower availability and accuracy than state-of-the-art ones. Finally, we consider how the GPS performance...

  19. Real-time source deformation modeling through GNSS permanent stations at Merapi volcano (Indonesia

    Science.gov (United States)

    Beauducel, F.; Nurnaning, A.; Iguchi, M.; Fahmi, A. A.; Nandaka, M. A.; Sumarti, S.; Subandriyo, S.; Metaxian, J. P.

    2014-12-01

    Mt. Merapi (Java, Indonesia) is one of the most active and dangerous volcano in the world. A first GPS repetition network was setup and periodically measured since 1993, allowing detecting a deep magma reservoir, quantifying magma flux in conduit and identifying shallow discontinuities around the former crater (Beauducel and Cornet, 1999;Beauducel et al., 2000, 2006). After the 2010 centennial eruption, when this network was almost completely destroyed, Indonesian and Japanese teams installed a new continuous GPS network for monitoring purpose (Iguchi et al., 2011), consisting of 3 stations located at the volcano flanks, plus a reference station at the Yogyakarta Observatory (BPPTKG).In the framework of DOMERAPI project (2013-2016) we have completed this network with 5 additional stations, which are located on the summit area and volcano surrounding. The new stations are 1-Hz sampling, GNSS (GPS + GLONASS) receivers, and near real-time data streaming to the Observatory. An automatic processing has been developed and included in the WEBOBS system (Beauducel et al., 2010) based on GIPSY software computing precise daily moving solutions every hour, and for different time scales (2 months, 1 and 5 years), time series and velocity vectors. A real-time source modeling estimation has also been implemented. It uses the depth-varying point source solution (Mogi, 1958; Williams and Wadge, 1998) in a systematic inverse problem model exploration that displays location, volume variation and 3-D probability map.The operational system should be able to better detect and estimate the location and volume variations of possible magma sources, and to follow magma transfer towards the surface. This should help monitoring and contribute to decision making during future unrest or eruption.

  20. Different deformation patterns using GPS in the volcanic process of El Hierro (Canary Island) 2011-2013

    Science.gov (United States)

    García-Cañada, Laura; José García-Arias, María; Pereda de Pablo, Jorge; Lamolda, Héctor; López, Carmen

    2014-05-01

    Ground deformation is one of the most important parameter in volcano monitoring. The detected deformations in volcanic areas can be precursors of a volcanic activity and contribute with useful information to study the evolution of an unrest, eruption or any volcanic process. GPS is the most common technique used to measure volcano deformations. It can be used to detect slow displacement rates or much larger and faster deformations associated with any volcanic process. In volcanoes the deformation is expected to be a mixed of nature; during periods of quiescence it will be slow or not present, while increased activity slow displacement rates can be detected or much larger and faster deformations can be measure due to magma intrusion, for example in the hours to days prior a eruption beginning. In response to the anomalous seismicity detected at El Hierro in July 2011, the Instituto Geográfico Nacional (IGN) improved its volcano monitoring network in the island with continuous GPS that had been used to measure the ground deformation associated with the precursory unrest since summer 2011, submarine eruption (October 2011-March 2012) and the following unrest periods (2012-2013). The continuous GPS time series, together with other techniques, had been used to evaluate the activity and to detect changes in the process. We investigate changes in the direction and module of the deformation obtained by GPS and they show different patterns in every unrest period, very close to the seismicity locations and migrations.

  1. A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe

    Science.gov (United States)

    van Dam, T.; Wahr, J.; LavalléE, David

    2007-03-01

    We compare approximately 3 years of GPS height residuals (with respect to the International Terrestrial Reference Frame) with predictions of vertical surface displacements derived from the Gravity Recovery and Climate Experiment (GRACE) gravity fields for stations in Europe. An annual signal fit to the residual monthly heights, corrected for atmospheric pressure and barotropic ocean loading effects, should primarily represent surface displacements due to long-wavelength variations in water storage. A comparison of the annual height signal from GPS and GRACE over Europe indicates that at most sites, the annual signals do not agree in amplitude or phase. We find that unlike the annual signal predicted from GRACE, the annual signal in the GPS heights is not coherent over the region, displaying significant variability from site to site. Confidence in the GRACE data and the unlikely possibility of large-amplitude small-scale features in the load field not captured by the GRACE data leads us to conclude that some of the discrepancy between the GPS and GRACE observations is due to technique errors in the GPS data processing. This is evidenced by the fact that the disagreement between GPS and GRACE is largest at coastal sites, where mismodeling of the semidiurnal ocean tidal loading signal can result in spurious annual signals.

  2. Real-Time GPS Monitoring for Earthquake Rapid Assessment in the San Francisco Bay Area

    Science.gov (United States)

    Guillemot, C.; Langbein, J. O.; Murray, J. R.

    2012-12-01

    The U.S. Geological Survey Earthquake Science Center has deployed a network of eight real-time Global Positioning System (GPS) stations in the San Francisco Bay area and is implementing software applications to continuously evaluate the status of the deformation within the network. Real-time monitoring of the station positions is expected to provide valuable information for rapidly estimating source parameters should a large earthquake occur in the San Francisco Bay area. Because earthquake response applications require robust data access, as a first step we have developed a suite of web-based applications which are now routinely used to monitor the network's operational status and data streaming performance. The web tools provide continuously updated displays of important telemetry parameters such as data latency and receive rates, as well as source voltage and temperature information within each instrument enclosure. Automated software on the backend uses the streaming performance data to mitigate the impact of outages, radio interference and bandwidth congestion on deformation monitoring operations. A separate set of software applications manages the recovery of lost data due to faulty communication links. Displacement estimates are computed in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations. We are currently comparing results from two software packages (one commercial and one open-source) used to process 1-Hz data on the fly and produce estimates of differential positions. The continuous monitoring of telemetry makes it possible to tune the network to minimize the impact of transient interruptions of the data flow, from one or more stations, on the estimated positions. Ongoing work is focused on using data streaming performance history to optimize the quality of the position, reduce drift and outliers by switching to the best set of stations within the network, and

  3. On increasing the spectral efficiency and transmissivity in the data transmission channel on the spacecraft-ground tracking station line

    Science.gov (United States)

    Andrianov, M. N.; Kostenko, V. I.; Likhachev, S. F.

    2018-01-01

    The algorithms for achieving a practical increase in the rate of data transmission on the space-craft-ground tracking station line has been considered. This increase is achieved by applying spectral-effective modulation techniques, the technology of orthogonal frequency compression of signals using millimeterrange radio waves. The advantages and disadvantages of each of three algorithms have been revealed. A significant advantage of data transmission in the millimeter range has been indicated.

  4. Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) Integration Manager

    Science.gov (United States)

    Pham, Kim; Bialas, Thomas

    2012-01-01

    The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.

  5. GPS: Public Utility or Software Platform

    Science.gov (United States)

    2016-09-01

    train for GPS loss, encourage use of GPS signal integrity monitors , develop in- vehicle GPS backups, and evaluate the range of radio...literature prevent the full quantification of exactly how vulnerable GPS is to service interruption. This thesis used constant comparison analysis to...criticality, resilience, and vulnerability. This methodology overcomes research limitations by using GPS system design, operations, and policies as

  6. Combined GPS and seismic monitoring of a 12-story structure in a region of induced seismicity in Oklahoma

    Science.gov (United States)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.

    2017-12-01

    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS

  7. Analysis of South Atlantic Anomaly perturbations on Sentinel-3A Ultra Stable Oscillator. Impact on DORIS phase measurement and DORIS station positioning

    Science.gov (United States)

    Jalabert, Eva; Mercier, Flavien

    2018-07-01

    DORIS measurements rely on the precise knowledge of the embedded oscillator which is called the Ultra Stable Oscillator (DORIS USO). The important radiations in the South Atlantic Anomaly (SAA) perturb the USO behavior by causing rapid frequency variations when the satellite is flying through the SAA. These variations are not taken into account in standard DORIS processing, since the USO is modelled as a third degree polynomial over 7-10 days. Therefore, there are systematic measurements errors when the satellite passes through SAA. In standard GNSS processing, the clock is directly estimated at each epoch. On Sentinel-3A, the GPS receiver and the DORIS receiver use the same USO. It is thus possible to estimate the behavior of the USO using GPS measurements. This estimated USO behavior can be used in the DORIS processing, instead of the third degree polynomial, hence allowing an estimation of the orbit sensitivity to these USO anomalies. This study shows two main results. First, the SAA effect on the DORIS USO is observed well using GPS measurements. Second, the USO behavior observed with GPS can be used to mitigate the SAA effect. Indeed, when used in Sentinel-3A processing, the resulting DORIS orbit shows improved phase measurements and station positioning for stations inside the SAA (Arequipa and Cachoeira). The phase measurements residuals are improved by up to 10 cm, and station vertical positioning (i.e. on the estimated Up component in the North-East-Up station frame) is improved by up to a few centimeters. However, the orbit itself is not sensitive to the correction because only two stations (out of almost 60) are SAA-sensitive on Sentinel-3A.

  8. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  9. Efficient GPS Position Determination Algorithms

    National Research Council Canada - National Science Library

    Nguyen, Thao Q

    2007-01-01

    ... differential GPS algorithm for a network of users. The stand-alone user GPS algorithm is a direct, closed-form, and efficient new position determination algorithm that exploits the closed-form solution of the GPS trilateration equations and works...

  10. Using GPS RO L1 data for calibration of the atmospheric path delay model for data reduction of the satellite altimetery observations.

    Science.gov (United States)

    Petrov, L.

    2017-12-01

    Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.

  11. Consistency of GPS and strong-motion records: case study of the Mw9.0 Tohoku-Oki 2011 earthquake

    Science.gov (United States)

    Psimoulis, Panos; Houlié, Nicolas; Michel, Clotaire; Meindl, Michael; Rothacher, Markus

    2014-05-01

    High-rate GPS data are today commonly used to supplement seismic data for the Earth surface motions focusing on earthquake characterisation and rupture modelling. Processing of GPS records using Precise Point Positioning (PPP) can provide real-time information of seismic wave propagation, tsunami early-warning and seismic rupture. Most studies have shown differences between the GPS and seismic systems at very long periods (e.g. >100sec) and static displacements. The aim of this study is the assessment of the consistency of GPS and strong-motion records by comparing their respective displacement waveforms for several frequency bands. For this purpose, the records of the GPS (GEONET) and the strong-motion (KiK-net and K-NET) networks corresponding to the Mw9.0 Tohoku 2011 earthquake were analysed. The comparison of the displacement waveforms of collocated (distance<100m) GPS and strong-motion sites show that the consistency between the two datasets depends on the frequency of the excitation. Differences are mainly due to the GPS noise at relatively short-periods (<3-4 s) and the saturation of the strong-motion sensors for relatively long-periods (40-80 s). Furthermore the agreement between the GPS and strong-motion records also depends on the direction of the excitation signal and the distance from the epicentre. In conclusion, velocities and displacements recovered from GPS and strong-motion records are consistent for long-periods (3-100 s), proving that GPS networks can contribute to the real-time estimation of the long-period ground motion map of an earthquake.

  12. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    DEFF Research Database (Denmark)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún

    2017-01-01

    As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak-to...... insulation in response to tephra deposition following volcanic eruptions, processes that are not resolved with once or twice-yearly stake measurements....

  13. Tidal Modulation of Ice Flow on Kangerdlugssuaq and Helheim Glaciers, East Greenland, from High-Rate GPS Measurements

    DEFF Research Database (Denmark)

    Hamilton, G. S.; Stearns, L. A.; Elosegui, P.

    knowledge of ice thickness and fjord bathymetry. Here, we use high-rate GPS measurements collected at sites within a few km of the calving fronts of Kangerdlugssuaq and Helheim glaciers to examine the effect of ocean tide on ice flow. Data were collected at 5-15 s sampling rate during several campaign...... appears to have a short floating tongue, based on an analysis of GPS data collected in June-August 2006 at several stations located at increasing distances from the calving front. Glacier uplift was in phase with measured and modeled tidal height, but attenuated rapidly beyond ~~1 km from the terminus. We...

  14. Vehicle state estimation using GPS/IMU integration

    NARCIS (Netherlands)

    Wang, Y.; Mangnus, J.; Kostić, D.; Nijmeijer, H.; Jansen, S.T.H.

    2011-01-01

    New driver support systems require knowledge of the vehicle position with great accuracy and reliability. Satellite navigation (GNSS) is generally insufficiently accurate for positioning and as an alternative to using a ground station, combinations with high quality motion sensors are used in

  15. Equipamento microprocessado para geração de sinal de correção diferencial, em tempo real, para GPS Microprocessor-based equipment for real time generation of differential GPS correction signal

    Directory of Open Access Journals (Sweden)

    Thales C. B. Lima

    2006-08-01

    receiving the information generated by the GPS base. The other operates as output, sending the differential correction signal for the transmission system. The development of microprocessor-based equipment showed that it is possible the construction of a low cost private station for real time generation of differential GPS correction signal.

  16. Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo

    Science.gov (United States)

    Li, Xingxing; Li, Xin; Yuan, Yongqiang; Zhang, Keke; Zhang, Xiaohong; Wickert, Jens

    2018-06-01

    This paper focuses on the precise point positioning (PPP) ambiguity resolution (AR) using the observations acquired from four systems: GPS, BDS, GLONASS, and Galileo (GCRE). A GCRE four-system uncalibrated phase delay (UPD) estimation model and multi-GNSS undifferenced PPP AR method were developed in order to utilize the observations from all systems. For UPD estimation, the GCRE-combined PPP solutions of the globally distributed MGEX and IGS stations are performed to obtain four-system float ambiguities and then UPDs of GCRE satellites can be precisely estimated from these ambiguities. The quality of UPD products in terms of temporal stability and residual distributions is investigated for GPS, BDS, GLONASS, and Galileo satellites, respectively. The BDS satellite-induced code biases were corrected for GEO, IGSO, and MEO satellites before the UPD estimation. The UPD results of global and regional networks were also evaluated for Galileo and BDS, respectively. As a result of the frequency-division multiple-access strategy of GLONASS, the UPD estimation was performed using a network of homogeneous receivers including three commonly used GNSS receivers (TRIMBLE NETR9, JAVAD TRE_G3TH DELTA, and LEICA). Data recorded from 140 MGEX and IGS stations for a 30-day period in January in 2017 were used to validate the proposed GCRE UPD estimation and multi-GNSS dual-frequency PPP AR. Our results show that GCRE four-system PPP AR enables the fastest time to first fix (TTFF) solutions and the highest accuracy for all three coordinate components compared to the single and dual system. An average TTFF of 9.21 min with 7{°} cutoff elevation angle can be achieved for GCRE PPP AR, which is much shorter than that of GPS (18.07 min), GR (12.10 min), GE (15.36 min) and GC (13.21 min). With observations length of 10 min, the positioning accuracy of the GCRE fixed solution is 1.84, 1.11, and 1.53 cm, while the GPS-only result is 2.25, 1.29, and 9.73 cm for the east, north, and vertical

  17. Semantic Enrichment of GPS Trajectories

    NARCIS (Netherlands)

    de Graaff, V.; van Keulen, Maurice; de By, R.A.

    2012-01-01

    Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a

  18. GPS detection of ionospheric perturbation before the 13 February 2001, El Salvador earthquake

    OpenAIRE

    V. V. Plotkin

    2003-01-01

    A large earthquake of M6.6 occurred on 13 February 2001 at 14:22:05 UT in El Salvador. We detected ionospheric perturbation before this earthquake using GPS data received from CORS network. Systematic decreases of ionospheric total electron content during two days before the earthquake onset were observed at set of stations near the earthquake location and probably in region of about 1000 km from epicenter. This result is consistent with t...

  19. NRIAG's Effort to Mitigate Earthquake Disasters in Egypt Using GPS and Seismic Data

    Science.gov (United States)

    Mahmoud, Salah

    disasters. Since the year of 1994 till now, the geodetic observations by means of Global Positioning System (GPS) were applied instead of the terrestrial ones to cover some other regions of the country. These regions include Sinai, Gulf of Suez, Greater Cairo, Aswan and the Middle part on the River Nile. Data adjustment and analysis of the repeated GPS campaigns from the different networks prevailed significant movements which may help in more understanding the geodynamics of these regions. In the meantime, GPS measurements of crustal motions for 189 sites extending east-west from the Caucasus Mountains to the Adriatic Sea and north-south from the southern edge of the Eurasian plate to the northern edge of the African plate were carried out for the period from 1988 till 2005. Estimate of plate motions at stations located at different plates were determined.

  20. Monitoring Bare Soil Freeze–Thaw Process Using GPS-Interferometric Reflectometry: Simulation and Validation

    Directory of Open Access Journals (Sweden)

    Xuerui Wu

    2017-12-01

    Full Text Available Frozen soil and permafrost affect ecosystem diversity and productivity as well as global energy and water cycles. Although some space-based Radar techniques or ground-based sensors can monitor frozen soil and permafrost variations, there are some shortcomings and challenges. For the first time, we use GPS-Interferometric Reflectometry (GPS-IR to monitor and investigate the bare soil freeze–thaw process as a new remote sensing tool. The mixed-texture permittivity models are employed to calculate the frozen and thawed soil permittivities. When the soil freeze/thaw process occurs, there is an abrupt change in the soil permittivity, which will result in soil scattering variations. The corresponding theoretical simulation results from the forward GPS multipath simulator show variations of GPS multipath observables. As for the in-situ measurements, virtual bistatic radar is employed to simplify the analysis. Within the GPS-IR spatial resolution, one SNOTEL site (ID 958 and one corresponding PBO (plate boundary observatory GPS site (AB33 are used for analysis. In 2011, two representative days (frozen soil on Doy of Year (DOY 318 and thawed soil on DOY 322 show the SNR changes of phase and amplitude. The GPS site and the corresponding SNOTEL site in four different years are analyzed for comparisons. When the soil freeze/thaw process occurred and no confounding snow depth and soil moisture effects existed, it exhibited a good absolute correlation (|R| = 0.72 in 2009, |R| = 0.902 in 2012, |R| = 0.646 in 2013, and |R| = 0.7017 in 2014 with the average detrended SNR data. Our theoretical simulation and experimental results demonstrate that GPS-IR has potential for monitoring the bare soil temperature during the soil freeze–thaw process, while more test works should be done in the future. GNSS-R polarimetry is also discussed as an option for detection. More retrieval work about elevation and polarization combinations are the focus of future development.

  1. Galvanic coupling effects for module-mounting elements of ground-mounted photovoltaic power station

    Directory of Open Access Journals (Sweden)

    Pierozynski Boguslaw

    2017-12-01

    Full Text Available This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.

  2. Sensing Human Activity: GPS Tracking

    Science.gov (United States)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  3. Sensing Human Activity: GPS Tracking

    Directory of Open Access Journals (Sweden)

    Remco de Haan

    2009-04-01

    Full Text Available The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research.

  4. Aerial photography flight quality assessment with GPS/INS and DEM data

    Science.gov (United States)

    Zhao, Haitao; Zhang, Bing; Shang, Jiali; Liu, Jiangui; Li, Dong; Chen, Yanyan; Zuo, Zhengli; Chen, Zhengchao

    2018-01-01

    The flight altitude, ground coverage, photo overlap, and other acquisition specifications of an aerial photography flight mission directly affect the quality and accuracy of the subsequent mapping tasks. To ensure smooth post-flight data processing and fulfill the pre-defined mapping accuracy, flight quality assessments should be carried out in time. This paper presents a novel and rigorous approach for flight quality evaluation of frame cameras with GPS/INS data and DEM, using geometric calculation rather than image analysis as in the conventional methods. This new approach is based mainly on the collinearity equations, in which the accuracy of a set of flight quality indicators is derived through a rigorous error propagation model and validated with scenario data. Theoretical analysis and practical flight test of an aerial photography mission using an UltraCamXp camera showed that the calculated photo overlap is accurate enough for flight quality assessment of 5 cm ground sample distance image, using the SRTMGL3 DEM and the POSAV510 GPS/INS data. An even better overlap accuracy could be achieved for coarser-resolution aerial photography. With this new approach, the flight quality evaluation can be conducted on site right after landing, providing accurate and timely information for decision making.

  5. Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading

    DEFF Research Database (Denmark)

    Liu, Lin; Khan, Shfaqat Abbas; van Dam, Tonie

    2017-01-01

    variability. Here we examine the annual changes of the vertical displacements measured at two GPS stations (SRMP and UPVK) near Upernavik Isstrøm in western Greenland. We model elastic loading displacements due to various surface mass loading including three non-ice components: atmospheric pressure, ocean...

  6. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  7. Methodology for Calculating Latency of GPS Probe Data

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Zhongxiang [University of Maryland; Hamedi, Masoud [University of Maryland

    2017-10-01

    Crowdsourced GPS probe data, such as travel time on changeable-message signs and incident detection, have been gaining popularity in recent years as a source for real-time traffic information to driver operations and transportation systems management and operations. Efforts have been made to evaluate the quality of such data from different perspectives. Although such crowdsourced data are already in widespread use in many states, particularly the high traffic areas on the Eastern seaboard, concerns about latency - the time between traffic being perturbed as a result of an incident and reflection of the disturbance in the outsourced data feed - have escalated in importance. Latency is critical for the accuracy of real-time operations, emergency response, and traveler information systems. This paper offers a methodology for measuring probe data latency regarding a selected reference source. Although Bluetooth reidentification data are used as the reference source, the methodology can be applied to any other ground truth data source of choice. The core of the methodology is an algorithm for maximum pattern matching that works with three fitness objectives. To test the methodology, sample field reference data were collected on multiple freeway segments for a 2-week period by using portable Bluetooth sensors as ground truth. Equivalent GPS probe data were obtained from a private vendor, and their latency was evaluated. Latency at different times of the day, impact of road segmentation scheme on latency, and sensitivity of the latency to both speed-slowdown and recovery-from-slowdown episodes are also discussed.

  8. GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users

    Science.gov (United States)

    Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen

    2015-01-01

    GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.

  9. Phase Center Interpolation Algorithm for Airborne GPS through the Kalman Filter

    Directory of Open Access Journals (Sweden)

    Edson A. Mitishita

    2005-12-01

    Full Text Available The aerial triangulation is a fundamental step in any photogrammetric project. The surveying of the traditional control points, depending on region to be mapped, still has a high cost. The distribution of control points at the block, and its positional quality, influence directly in the resulting precisions of the aero triangulation processing. The airborne GPS technique has as key objectives cost reduction and quality improvement of the ground control in the modern photogrammetric projects. Nowadays, in Brazil, the greatest photogrammetric companies are acquiring airborne GPS systems, but those systems are usually presenting difficulties in the operation, due to the need of human resources for the operation, because of the high technology involved. Inside the airborne GPS technique, one of the fundamental steps is the interpolation of the position of the phase center of the GPS antenna, in the photo shot instant. Traditionally, low degree polynomials are used, but recent studies show that those polynomials is reduced in turbulent flights, which are quite common, mainly in great scales flights. This paper has as objective to present a solution for that problem, through an algorithm based on the Kalman Filter, which takes into account the dynamic aspect of the problem. At the end of the paper, the results of a comparison between experiments done with the proposed methodology and a common linear interpolator are shown. These results show a significant accuracy gain at the procedure of linear interpolation, when the Kalman filter is used.

  10. Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations

    Science.gov (United States)

    Ning, Yafei; Tang, Jun

    2018-01-01

    Ionospheric disturbances constitute the main restriction factor for precise positioning techniques based on global positioning system (GPS) measurements. Simultaneously, GPS observations are widely used to determine ionospheric disturbances with total electron content (TEC). In this paper, we present an analysis of ionospheric disturbances over China mid- and low-latitude area before and during the magnetic storm on 17 March 2015. The work analyses the variation of magnetic indices, the amplitude of ionospheric irregularities observed with four arrays of GPS stations and the influence of geomagnetic storm on GPS positioning. The results show that significant ionospheric TEC disturbances occurred between 10:30 and 12:00 UT during the main phase of the large storm, and the static position reliability for this period are little affected by these disturbances. It is observed that the positive and negative disturbances propagate southward along the meridian from mid-latitude to low-latitude regions. The propagation velocity is from about 200 to 700 m s-1 and the amplitude of ionospheric disturbances is from about 0.2 to 0.9 TECU min-1. Moreover, the position dilution of precession (PDOP) with static precise point positioning (PPP) on storm and quiet days is 1.8 and 0.9 cm, respectively. This study is based on the analysis of ionospheric variability with differential rate of vertical TEC (DROVT) and impact of ionospheric storm on positioning with technique of GPS PPP.

  11. The RING and Seismic Network: Data Acquisition of Co-located Stations

    Science.gov (United States)

    Falco, L.; Avallone, A.; Cattaneo, M.; Cecere, G.; Cogliano, R.; D'Agostino, N.; D'Ambrosio, C.; D'Anastasio, E.; Selvaggi, G.

    2007-12-01

    The plate boundary between Africa and Eurasia represents an interesting geodynamical region characterized by a complex pattern of deformation. First-order scientific problems regarding the existence of rigid blocks within the plate boundary, the present-day activity of the Calabrian subduction zone and the modes of release of seismic deformation are still awaiting for a better understanding. To address these issues, the INGV (Istituto Nazionale Geofisica e Vulcanlogia) deployed a permanent, integrated and real-time monitoring GPS network (RING) all over Italy. RING is now constituted by about 120 stations. The CGPS sites, acquiring at 1Hz and 30s sampling rate, are integrated either with broad band or very broad band seismometers and accelerometers for an improved definition of the seismically active regions. Most of the sites are connected to the acquisition centre (located in Rome and duplicated in Grottaminarda) through a satellite system (VSAT), while the remaining sites transmit data by Internet and classical phone connections. The satellite data transmission and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. The heterogeneity of the installed instrumentation, the transmission types and the increasing number of stations needed a central monitoring and acquisition system. A central acquisition system has been developed in Grottaminarda in southern Italy. Regarding the seismic monitoring we chose to use the open source system Earthworm, developed by USGS, with which we store waveforms and implement automatic localization of the seismic events occurring in the area. As most of the GPS sites are acquired by means of Nanometrics satellite technology, we developed a specific software (GpsView), written in Java, to monitor the state of health of those CGPS. This software receives GPS data from NaqsServer (Nanometrics acquisition system) and outputs information about the sites (i.e. approx position

  12. The SMS-GPS-Trip-Method

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner; Harder, Henrik; Weber, Michael

    2015-01-01

    This article presents a new method for collecting travel behavior data, based on a combination of GPS tracking and SMS technology, coined the SMS–GPS-Trip method. The state-of-the-art method for collecting data for activity based traffic models is a combination of travel diaries and GPS tracking...

  13. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    Science.gov (United States)

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  14. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  15. Interaction between subdaily Earth rotation parameters and GPS orbits

    Science.gov (United States)

    Panafidina, Natalia; Seitz, Manuela; Hugentobler, Urs

    2013-04-01

    In processing GPS observations the geodetic parameters like station coordinates and ERPs (Earth rotation parameters) are estimated w.r.t. the celestial reference system realized by the satellite orbits. The interactions/correlations between estimated GPS orbis and other parameters may lead to numerical problems with the solution and introduce systematic errors in the computed values: the well known correlations comprise 1) the correlation between the orbital parameters determining the orientation of the orbital plane in inertial space and the nutation and 2) in the case of estimating ERPs with subdaily resolution the correlation between retrograde diurnal polar motion and nutation (and so the respective orbital elements). In this contribution we study the interaction between the GPS orbits and subdaily model for the ERPs. Existing subdaily ERP model recommended by the IERS comprises ~100 terms in polar motion and ~70 terms in Universal Time at diurnal and semidiurnal tidal periods. We use a long time series of daily normal equation systems (NEQ) obtaine from GPS observations from 1994 till 2007 where the ERPs with 1-hour resolution are transformed into tidal terms and the influence of the tidal terms with different frequencies on the estimated orbital parameters is considered. We found that although there is no algebraic correlation in the NEQ between the individual orbital parameters and the tidal terms, the changes in the amplitudes of tidal terms with periods close to 24 hours can be better accmodated by systematic changes in the orbital parameters than for tidal terms with other periods. Since the variation in Earth rotation with the period of siderial day (23.93h, tide K1) in terrestrial frame has in inertial space the same period as the period of revolution of GPS satellites, the K1 tidal term in polar motion is seen by the satellites as a permanent shift. The tidal terms with close periods (from ~24.13h to ~23.80h) are seen as a slow rotation of the

  16. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  17. Refueling Stop Activity Detection and Gas Station Extraction Using Crowdsourcing Vehicle Trajectory Data

    Directory of Open Access Journals (Sweden)

    YANG Wei

    2017-07-01

    Full Text Available In view of the deficiencies of current surveying methods of gas station, an approach is proposed to extract gas station from vehicle traces. Firstly, the spatial-temporal characteristics of individual and collective refueling behavior of trajectory is analyzed from aspects of movement features and geometric patterns. Secondly, based on Stop/Move model, the velocity sequence linear clustering algorithm is proposed to extract refueling stop tracks. Finally, using the methods including Delaunay triangulation, Fourier shape recognition and semantic constraints to identify and extract gas station. An experiment using 7 days taxi GPS traces in Beijing verified the novel method. The experimental results of 482 gas stations are extracted and the correct rate achieves to 93.1%.

  18. Artillery localization using networked wireless ground sensors

    Science.gov (United States)

    Swanson, David C.

    2002-08-01

    This paper presents the results of an installation of four acoustic/seismic ground sensors built using COTS computers and networking gear and operating on a continuous basis at Yuma Proving Grounds, Arizona. A description of the design can be found as well, which is essentially a Windows 2000 PC with 24-bit data acquisition, GPS timing, and environmental sensors for wind and temperature. A 4-element square acoustic array 1.8m on a side can be used to detect the time and angle of arrival of the muzzle blast and the impact explosion. A 3-component geophone allows the seismic wave direction to be estimated. The 8th channel of the 24-bit data acquisition system has a 1-pulse-per-second time signal from the GPS. This allows acoustic/seismic 'snapshots' to be coherently related from multiple disconnected ground sensor nodes. COTS 2.4 GHz frequency hopping radios (802.11 standard) are used with either omni or yagi antennas depending on the location on the range. Localization of the artillery or impact can be done by using the time and angle of arrival of the waves at 2 or more ground sensor locations. However, this straightforward analysis can be significantly complicated by weather and wind noise and is also the subject of another research contract. This work will present a general description of the COTS ground sensor installation, show example data autonomously collected including agent-based atmospheric data, and share some of the lessons learned from operating a Windows 2000 based system continuously outdoors.

  19. Flexible Software Design for Korean WA-DGNSS Reference Station

    Directory of Open Access Journals (Sweden)

    Wan Sik Choi

    2013-03-01

    Full Text Available In this paper, we describe the software design results of WA-DGNSS reference station that will be constructed in Korea in the near future. Software design of the WRS (Wide area Reference Station is carried out by applying object oriented software methodology in order to provide flexibilities: easy of model change (namely ionospheric delay model etc and system addition (Galileo, GLONASS in addition to GPS etc. Software design results include the use case diagrams for the functions to be executed, the architecture diagram showing components and their relationships, the activity diagrams of behaviors and models among them, and class diagrams describing the attribute and operation.

  20. GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain

    Science.gov (United States)

    Wang, Ningbo; Li, Zishen; Li, Min; Yuan, Yunbin; Huo, Xingliang

    2018-05-01

    The performance of GPS Klobuchar (GPSKlob), BDS Klobuchar (BDSKlob) and NeQuick Galileo (NeQuickG) ionospheric correction models are evaluated in the range delay and position domains over China. The post-processed Klobuchar-style (CODKlob) coefficients provided by the Center for Orbit Determination in Europe (CODE) and our own fitted NeQuick coefficients (NeQuickC) are also included for comparison. In the range delay domain, BDS total electrons contents (TEC) derived from 20 international GNSS Monitoring and Assessment System (iGMAS) stations and GPS TEC obtained from 35 Crust Movement Observation Network of China (CMONC) stations are used as references. Compared to BDS TEC during the short period (doy 010-020, 2015), GPSKlob, BDSKlob and NeQuickG can correct 58.4, 66.7 and 54.7% of the ionospheric delay. Compared to GPS TEC for the long period (doy 001-180, 2015), the three ionospheric models can mitigate the ionospheric delay by 64.8, 65.4 and 68.1%, respectively. For the two comparison cases, CODKlob shows the worst performance, which only reduces 57.9% of the ionospheric range errors. NeQuickC exhibits the best performance, which outperforms GPSKlob, BDSKlob and NeQuickG by 6.7, 2.1 and 6.9%, respectively. In the position domain, single-frequency stand point positioning (SPP) was conducted at the selected 35 CMONC sites using GPS C/A pseudorange with and without ionospheric corrections. The vertical position error of the uncorrected case drops significantly from 10.3 m to 4.8, 4.6, 4.4 and 4.2 m for GPSKlob, CODKlob, BDSKlob and NeQuickG, however, the horizontal position error (3.2) merely decreases to 3.1, 2.7, 2.4 and 2.3 m, respectively. NeQuickG outperforms GPSKlob and BDSKlob by 5.8 and 1.9% in vertical component, and by 25.0 and 3.2% in horizontal component.

  1. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    1998-06-01

    Full Text Available We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E. It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter-86.

  2. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Science.gov (United States)

    Chung, Jong-Kyun; Won, Young-In; Lee, Bang Yong; Kim, Jhoon

    1998-06-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics) and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter)-86.

  3. GPS horizontal deformation model in the southern region of the Iberian Peninsula and northern Africa (SPINA); Modelo de deformación horizontal GPS de la región sur de la Península Ibérica y norte de África (SPINA)

    Energy Technology Data Exchange (ETDEWEB)

    Rosado Moscoso, B.; Fernández-Ros, A.; Jiménez Jiménez, A.; Berrocoso Domínguez, M.

    2017-09-01

    Global Navigation Satellite System (GNSS), and in particular Global Positioning System (GPS) technology provides a powerful tool for studying geodynamic processes. As a consequence of GPS studies, it is now possible to analyze the interaction between tectonic plates in order to evaluate and establish the characteristics of their boundaries. In this study, our main interest is to focus on the time series analysis obtained from observations of GNSS-GPS satellites. Each GPS observation session provides topocentric geodetic coordinates (east, north, elevation) of the permanent stations that constitute the geodetic network established for this purpose. This paper shows a detailed topocentric coordinate time-series study for sites belonging to what we call the SPINA network, which stands for south of the Iberian Peninsula, north of Africa region. The series under study are processed by techniques of relative positioning with respect to the IGS (International GNSS Service) reference station located in Villafranca. These times series have been analyzed using filter processes, harmonic adjustments and wavelets. A surface velocity field is derived from the time series of daily solutions for each station, whose observations span 8 years or longer. This allows us to obtain a horizontal displacement model to show the regional geodynamic main characteristics. [Spanish] El Sistema Global de Navegación por Satélite (GNSS), y, en particular, el Sistema Global de Posicionamiento (GPS) proporcionan una importante herramienta en el estudio de los procesos geodinámicos. Como consecuencia de estos estudios, es posible analizar la interacción entre las placas tectónicas con el fin de evaluar y establecer las características de sus límites. Este trabajo se centra principalmente, en el análisis de series temporales obtenidas a partir de observaciones de los satélites GNSS-GPS en estaciones geodésicas permanentes ubicadas en la región sur de la Península Ibérica y norte de

  4. Development of automatic techniques for GPS data management

    International Nuclear Information System (INIS)

    Park, Pil Ho

    2001-06-01

    It is necessary for GPS center to establish automatization as effective management of GPS network including data gathering, data transformation, data backup, data sending to IGS (International GPS Service for geodynamics), and precise ephemerides gathering. The operating program of GPS center has been adopted at KCSC (Korea Cadastral Survey Corporation), NGI (National Geography Institute), MOMAF (Ministry of Maritime Affairs and Fisheries) without self-development of core technique. The automatic management of GPS network is consists of GPS data management and data processing. It is also fundamental technique, which should be accomplished by every GPS centers. Therefore, this study carried out analyzing of Japanese GPS center, which has accomplished automatization by module considering applicability for domestic GPS centers

  5. Characteristics of Spectral Responses for a Ground Motion from Mediterranean Earthquake – ZEGHANGHANE Station (6.3Mw in Morocco, and its Influence on the Structures

    Directory of Open Access Journals (Sweden)

    Ahatri Mohamed

    2018-01-01

    In this case, we determine the spectral response of the ground motion for ZGH station, and study his influence on the structures as well as make a comparison with the requirements of the Moroccan seismic construction regulations (RPS 2000 revised in 2011.

  6. Imaging of Ground Ice with Surface-Based Geophysics

    Science.gov (United States)

    2015-10-01

    terrains. Electrical Resistivity Tomography (ERT), in particular, has been effective for imaging ground ice. ERT measures the ability of materials to...13 2.2.1 Electrical resistivity tomography (ERT...Engineer Research and Development Center ERT Electrical Resistivity Tomography GPS Global Positioning System LiDAR Light Detection and Ranging SIPRE

  7. GPS in Travel and Activity Surveys

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Hovgesen, Henrik Harder

    2004-01-01

    The use of GPS-positioning as a monitoring tool in travel and activity surveys opens up a range of possibilities. Using a personal GPS device, the locations and movements of respondents can be followed over a longer period of time. It will then be possible to analyse how the use of urban spaces...... are embedded in the wider context of activity patterns (work, school etc.). The general pattern of everyday itineraries, including route choice and time spent at different locations ?on the way? can also be analysed. If the personal GPS device is combined with an electronic questionnaire, for example...... area. The paper presents the possibilities in travel and activity surveys with GPS and electronic questionnaires. Demonstrative mapping of test data from passive GPS registration of Copenhagen respondents is presented. The different survey possibilities given a combination of GPS and PDA based...

  8. Intrasite motions and monument instabilities at Medicina ITRF co-location site

    Science.gov (United States)

    Sarti, Pierguido; Abbondanza, Claudio; Legrand, Juliette; Bruyninx, Carine; Vittuari, Luca; Ray, Jim

    2013-03-01

    We process the total-station surveys performed at the ITRF co-location site Medicina (Northern Italy) over the decade (2001-2010) with the purpose of determining the extent of local intrasite motions and relating them to local geophysical processes, the geological setting and the design of the ground pillars. In addition, continuous observations acquired by two co-located GPS stations (MEDI and MSEL separated by ≈27 m) are analysed and their relative motion is cross-checked with the total-station results. The local ground control network extends over a small area (<100 × 100 m) but the results demonstrate significant anisotropic deformations with rates up to 1.6 mm a-1, primarily horizontal, a value comparable to intraplate tectonic deformations. The results derived from GPS and total-station observations are consistent and point to the presence of horizontal intrasite motions over very short distances possibly associated with varying environmental conditions in a very unfavourable local geological setting and unsuitable monument design, these latter being crucial aspects of the realization and maintenance of global permanent geodetic networks and the global terrestrial reference frame.

  9. How does the workload and work activities of procedural GPs compare to non-procedural GPs?

    Science.gov (United States)

    Russell, Deborah J; McGrail, Matthew R

    2017-08-01

    To investigate patterns of Australian GP procedural activity and associations with: geographical remoteness and population size hours worked in hospitals and in total; and availability for on-call DESIGN AND PARTICIPANTS: National annual panel survey (Medicine in Australia: Balancing Employment and Life) of Australian GPs, 2011-2013. Self-reported geographical work location, hours worked in different settings, and on-call availability per usual week, were analysed against GP procedural activity in anaesthetics, obstetrics, surgery or emergency medicine. Analysis of 9301 survey responses from 4638 individual GPs revealed significantly increased odds of GP procedural activity in anaesthetics, obstetrics or emergency medicine as geographical remoteness increased and community population size decreased, albeit with plateauing of the effect-size from medium-sized (population 5000-15 000) rural communities. After adjusting for confounders, procedural GPs work more hospital and more total hours each week than non-procedural GPs. In 2011 this equated to GPs practising anaesthetics, obstetrics, surgery, and emergency medicine providing 8% (95%CI 0, 16), 13% (95%CI 8, 19), 8% (95%CI 2, 15) and 18% (95%CI 13, 23) more total hours each week, respectively. The extra hours are attributable to longer hours worked in hospital settings, with no reduction in private consultation hours. Procedural GPs also carry a significantly higher burden of on-call. The longer working hours and higher on-call demands experienced by rural and remote procedural GPs demand improved solutions, such as changes to service delivery models, so that long-term procedural GP careers are increasingly attractive to current and aspiring rural GPs. © 2016 National Rural Health Alliance Inc.

  10. Robust GPS autonomous signal quality monitoring

    Science.gov (United States)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and

  11. Tracking Small Satellites using Translated GPS

    OpenAIRE

    Lefevre, Don; Mulally, Daniel

    1991-01-01

    This paper discusses using translated GPS for tracking small satellites, the technical trade-offs involved, and the position and timing accuracies which are achievable using translated GPS. The Global Positioning System (GPS) uses the relative times-of-arrival of multiple spread-spectrum signals at an antenna to determine the position of the antenna. The system can also determine the time the antenna was at that position. The direct sequence spread spectrum signals are transmitted from GPS sa...

  12. Evidential recovery from GPS devices

    Directory of Open Access Journals (Sweden)

    Brian Cusack

    Full Text Available Global Positioning Systems (GPS have become more affordable, are now widely used in motor vehicles and in other frequently used applications. As a consequence GPS are increasingly becoming an important source of evidential data for digital forensic investigations. This paper acknowledges there are only disparate documents for the guidance of an investigator when extracting evidence form such systems. The focus of this paper is to provide the technical details of recovering artifacts from four GPS currently available to the New Zealand market. Navman brand GPS are used, following a forensically robust process. The steps of the process are described, results analysed and the associated risks are discussed. In addition, the paper discusses techniques related to the visual presentation of evidence suitable for Google Maps. Automation attempts to speed up the analysis to visualization steps are also included. The outcome is a road map that may assist digital forensic investigators develop GPS examination strategies for implementation in their own organizations.

  13. Applications of GPS technologies to field sports.

    Science.gov (United States)

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  14. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné

    2016-01-01

    Abstract We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5–20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011–2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane. PMID:27917328

  15. GPS Installation Progress in the Northern California Region of the Plate Boundary Observatory Coyle, B., Basset, A., Williams, T., Enders, M., Feaux, K., Jackson, M.

    Science.gov (United States)

    Coyle, B.; Basset, A.; Enders, M.; Williams, T.; Feaux, K.; Jackson, M.

    2005-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the NSF funded EarthScope Project . The final PBO GPS network will comprise 875 continuously operating GPS stations installed throughout the Western US and Alaska. There are 435 stations planned for California with 229 of these in Northern California (NCA). This poster will present the past year's progress of GPS installations in NCA. At the end of the first year of the Project, PBO NCA installed 12 stations. During the second year, another 56 were installed for a total of 68 stations including 18 SDBM, and 50 DDBM. We have sited 128 stations, submitted 112 permit applications and received 73 permits. A particularly important statistic for planning our schedules is the time lag between reconnaissance and permit accepted; our average thus far is 137 days. We have been particularly successful locating stations on Caltrans Rights of Way with 20 Stations built, 3 sites permitted and 5 permits pending. Other land use partners include: East Bay Regional Parks - 8 Stations built and 2 sites permitted, Bureau of Land Management - 5 Stations built, 3 permits pending, Water Municipalities - 4 Stations built, 3 sites permitted and 4 permits pending, and Airports - 4 Stations built and 3 permits pending. Highlights from last year: On September 28, 2004 a Mw 6.0 earthquake occurred on the San Andreas Fault seven miles southeast of the town of Parkfield, CA. Field crews from the Northern and Southern California offices of PBO began the site reconnaissance and permitting process the day after the earthquake and installation of the first Station was begun within 36 hours and completed the following day. In total, 5 Stations were installed by the first week of November. On June 14, 2045 a Mw 7.1 earthquake occurred on the Gorda Plate, approximately 100 miles NW of Eureka. PBO stations, P158, P162, P169 and P170, recorded coseismic deformation associated with this event. We plan to have 127 stations built by the end

  16. Analysis of large optical ground stations for deep-space optical communications

    Science.gov (United States)

    Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.

    2017-11-01

    Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the

  17. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Directory of Open Access Journals (Sweden)

    Jhen-Kai Liao

    2013-08-01

    Full Text Available The integration of an Inertial Navigation System (INS and the Global Positioning System (GPS is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC and tightly coupled (TC schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  18. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    Science.gov (United States)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  19. UFIR Filtering for GPS-Based Tracking over WSNs with Delayed and Missing Data

    Directory of Open Access Journals (Sweden)

    Karen Uribe-Murcia

    2018-01-01

    Full Text Available In smart cities, vehicles tracking is organized to increase safety by localizing cars using the Global Positioning System (GPS. The GPS-based system provides accurate tracking but is also required to be reliable and robust. As a main estimator, we propose using the unbiased finite impulse response (UFIR filter, which meets these needs as being more robust than the Kalman filter (KF. The UFIR filter is developed for vehicle tracking in discrete-time state-space over wireless sensor networks (WSNs with time-stamped data discretely delayed on k-step-lags and missing data. The state-space model is represented in a way such that the UFIR filter, KF, and H∞ filter can be used universally. Applications are given for measurement data, which are cooperatively transferred from a vehicle to a central station through several nodes with k-step-lags. Better tracking performance of the UFIR filter is shown experimentally.

  20. Earth Surface Deformation in the North China Plain Detected by Joint Analysis of GRACE and GPS Data

    Science.gov (United States)

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C.K.; Li, Zhao

    2014-01-01

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1–4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1–2 mm/year and a correlation of 85.0%–98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements. PMID:25340454

  1. Earth surface deformation in the North China Plain detected by joint analysis of GRACE and GPS data.

    Science.gov (United States)

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C K; Li, Zhao

    2014-10-22

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1-4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1-2 mm/year and a correlation of 85.0%-98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements.

  2. GPS Ephemeris Message Broadcast Simulation

    National Research Council Canada - National Science Library

    Browne, Nathan J; Light, James J

    2005-01-01

    The warfighter constantly needs increased accuracy from GPS and a means to increasing this accuracy to the decimeter level is a broadcast ephemeris message containing GPS satellite orbit and clock corrections...

  3. Seismic Station Installation Orientation Errors at ANSS and IRIS/USGS Stations

    Science.gov (United States)

    Ringler, Adam T.; Hutt, Charles R.; Persfield, K.; Gee, Lind S.

    2013-01-01

    Many seismological studies depend on the published orientations of sensitive axes of seismic instruments relative to north (e.g., Li et al., 2011). For example, studies of the anisotropic structure of the Earth’s mantle through SKS‐splitting measurements (Long et al., 2009), constraints on core–mantle electromagnetic coupling from torsional normal‐mode measurements (Dumberry and Mound, 2008), and models of three‐dimensional (3D) velocity variations from surface waves (Ekström et al., 1997) rely on accurate sensor orientation. Unfortunately, numerous results indicate that this critical parameter is often subject to significant error (Laske, 1995; Laske and Masters, 1996; Yoshizawa et al., 1999; Schulte‐Pelkum et al., 2001; Larson and Ekström, 2002). For the Advanced National Seismic System (ANSS; ANSS Technical Integration Committee, 2002), the Global Seismographic Network (GSN; Butler et al., 2004), and many other networks, sensor orientation is typically determined by a field engineer during installation. Successful emplacement of a seismic instrument requires identifying true north, transferring a reference line, and measuring the orientation of the instrument relative to the reference line. Such an exercise is simple in theory, but there are many complications in practice. There are four commonly used methods for determining true north at the ANSS and GSN stations operated by the USGS Albuquerque Seismological Laboratory (ASL), including gyroscopic, astronomical, Global Positioning System (GPS), and magnetic field techniques. A particular method is selected based on site conditions (above ground, below ground, availability of astronomical observations, and so on) and in the case of gyroscopic methods, export restrictions. Once a north line has been determined, it must be translated to the sensor location. For installations in mines or deep vaults, this step can include tracking angles through the one or more turns in the access tunnel leading to

  4. Improving the Quality of Satellite Imagery Based on Ground-Truth Data from Rain Gauge Stations

    Directory of Open Access Journals (Sweden)

    Ana F. Militino

    2018-03-01

    Full Text Available Multitemporal imagery is by and large geometrically and radiometrically accurate, but the residual noise arising from removal clouds and other atmospheric and electronic effects can produce outliers that must be mitigated to properly exploit the remote sensing information. In this study, we show how ground-truth data from rain gauge stations can improve the quality of satellite imagery. To this end, a simulation study is conducted wherein different sizes of outlier outbreaks are spread and randomly introduced in the normalized difference vegetation index (NDVI and the day and night land surface temperature (LST of composite images from Navarre (Spain between 2011 and 2015. To remove outliers, a new method called thin-plate splines with covariates (TpsWc is proposed. This method consists of smoothing the median anomalies with a thin-plate spline model, whereby transformed ground-truth data are the external covariates of the model. The performance of the proposed method is measured with the square root of the mean square error (RMSE, calculated as the root of the pixel-by-pixel mean square differences between the original data and the predicted data with the TpsWc model and with a state-space model with and without covariates. The study shows that the use of ground-truth data reduces the RMSE in both the TpsWc model and the state-space model used for comparison purposes. The new method successfully removes the abnormal data while preserving the phenology of the raw data. The RMSE reduction percentage varies according to the derived variables (NDVI or LST, but reductions of up to 20% are achieved with the new proposal.

  5. Crustal Deformation along San Andreas Fault System revealed by GPS and Sentinel-1 InSAR

    Science.gov (United States)

    Xu, X.; Sandwell, D. T.

    2017-12-01

    We present a crustal deformation velocity map along the San Andreas Fault System by combining measurements from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) velocity models (CGM V1). We assembled 5 tracks of descending Sentinel-1 InSAR data spanning 2014.11-2017.02, and produced 545 interferograms, each of which covers roughly 250km x 420km area ( 60 bursts). These interferograms are unwrapped using SNAPHU [Chen & Zebker, 2002], with the 2Npi unwrapping ambiguity corrected with a sparse recovery method. We used coherence-based small baseline subset (SBAS) method [Tong & Schmidt, 2016] together with atmospheric correction by common-point stacking [Tymofyeyeva and Fialko, 2015] to construct deformation time series [Xu et. al., 2017]. Then we project the horizontal GPS model and vertical GPS data into satellite line-of-sight directions separately. We first remove the horizontal GPS model from InSAR measurements and perform elevation-dependent atmospheric phase correction. Then we compute the discrepancy between the remaining InSAR measurements and vertical GPS data. We interpolate this discrepancy and remove it from the residual InSAR measurements. Finally, we restore the horizontal GPS model. Preliminary results show that fault creep over the San Jacinto fault, the Elsinore fault, and the San Andreas creeping section is clearly resolved. During the period of drought, the Central Valley of California was subsiding at a high rate (up to 40 cm/yr), while the city of San Jose is uplifting due to recharge, with a quaternary fault acting as a ground water barrier. These findings will be reported during the meeting.

  6. Chilean Antarctic Stations on King George Island

    Directory of Open Access Journals (Sweden)

    Katsutada Kaminuma

    2000-07-01

    Full Text Available The purpose of my visit to Chilean Antarctic Stations was to assess the present status of geophysical observations and research, as the South Shetland Island, West Antarctica, where the stations are located, are one of the most active tectonic regions on the Antarctic plate. The Instituto Antartico Chileno (INACH kindly gave me a chance to stay in Frei/Escudero Bases as an exchange scientist under the Antarctic Treaty for two weeks in January 2000. I stayed in Frei Base as a member of a geological survey group named "Tectonic Evolution of the Antarctic Peninsula" which was organized by Prof. F. Herve, University of Chile, from January 05 to 19,2000. All my activity in the Antarctic was organized by INACH. During my stay in Frei Base, I also visited Bellingshausen (Russian, Great Wall (China and Artigas (Uruguay stations. All these stations are located within walking distance of Frei Base. King Sejong Station (Korea, located 10km east from Frei Base, and Jubany Base (Argentine, another 6km south-east from King Sejong Station, were also visited with the aid of a zodiac boat that was kindly operated for us by King Sejong Station. All stations except Escudero Base carry out meteorological observations. The seismological observations in Frei Base are operated by Washington State University of the U. S. monitoring of earthquake activity and three-component geomagnetic observations are done at King Sejong and Great Wall stations. Earth tide is monitored at Artigas Base. Continuous monitoring of GPS and gravity change are planned at King Sejong Station in the near future. Scientific research activities of each country in the area in the 1999/2000 Antarctic summer season were studied and the logistic ability of all stations was also assessed for our future international cooperation.

  7. Effect of earthquake and tsunami. Ground motion and tsunami observed at nuclear power station

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou

    2012-01-01

    Fukushima Daiichi and Daini Nuclear Power Stations (NPSs) were struck by the earthquake off the pacific coast in the Tohoku District, which occurred at 14:46 on March 11, 2011. Afterwards, tsunamis struck the Tohoku District. In terms of the earthquake observed at the Fukushima NPSs, the acceleration response spectra of the earthquake movement observed on the basic board of reactor buildings exceeded the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss for partial periodic bands at the Fukushima Daiichi NPS. As for the Fukushima Daini NPS, the acceleration response spectra of the earthquake movement observed on the basic board of the reactor buildings was below the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss. Areas inundated by Tsunami at each NPS were investigated and tsunami inversion analysis was made to build tsunami source model to reproduce tide record, tsunami height, crustal movement and inundated area, based on tsunami observation records in the wide areas from Hokkaido to Chiba prefectures. Tsunami heights of Fukushima Daiichi and Daini NPSs were recalculated as O.P. +13m and +9m respectively and tsunami peak height difference was attributed to the extent of superposition of tsunami waves of tsunami earthquake type of wave source in the area along interplane trench off the coast in the Fukushima prefecture and interplane earthquake type of wave source in rather deep interplate area off the coast in the Miyagi prefecture. (T. Tanaka)

  8. Real Time Monitoring of GPS-IGU orbits and clocks as a tool to disseminate corrections to GPS-Broadcast Ephemerides

    Science.gov (United States)

    Thaler, G.; Opitz, M.; Weber, R.

    2009-04-01

    Nowadays RTIGS and NTRIP have become standards for real time GNSS based positioning applications. The IGS (International GNSS Service) Real-Time Working Group disseminates via Internet (RTIGS) raw observation data of a subset of stations of the IGS network. This observation data can be used to establish a real-time integrity monitoring of the IGS predicted orbits (Ultra Rapid (IGU-) Orbits) and clocks, according to the recommendations of the IGS Workshop 2004 in Bern and in a further step correction terms for improving the accuracy of the GPS broadcast ephemerides can be calculated. The Institute for "Geodesy and Geophysics" of the TU-Vienna develops in cooperation with the IGS Real-Time Working Group the software "RTR- Control", which currently provides a real-time integrity monitoring of predicted IGU Satellite Clock Corrections to GPS Time. The real-time orbit calculation and monitoring of the predicted IGU satellite orbits is currently in a testing phase and will be operable in the near future. A kinematic model and calculated ranges to the satellites are combined in a KALMAN-Filter approach. Currently the most recent GPS- Satellite Clock Corrections are published in Real Time via Internet. A 24 - hour clock RINEX file and the IGU SP3 files modified for the associated clock corrections are stored on the ftp-server of the institute. To perform the task of calculating corrections to the broadcast ephemerides three programs are used, which are BNC (BKG Ntrip Client) and BNS (BKG Ntrip State Space Server) from BKG (Bundesamt für Kartographie und Geoinformation) as well as RTR-Control. BNC receives the GPS-broadcast ephemerides from the Ntrip-Caster and forwards them to BNS. RTR-Control calculates the satellite clocks and in future also the satellite orbits and forwards them in SP3-format to BNS. BNS calculates the correction terms to the broadcast ephemerides and delivers it in RTCM 3.x format (proprietary message 4056) back to the Ntrip-caster. Subsequently

  9. Whistler-triggered chorus emissions observed during daytime at low latitude ground station Jammu

    Science.gov (United States)

    Pratap Patel, Ravindra; Singh, K. K.; Singh, A. K.; Singh, R. P.

    In this paper, we present whistler-triggered chorus emission recorded during daytime at low latitude ground station Jammu (geomag. Lat. = 22 degree 26 minute N; L = 1.17) during the period from 1996 to 2003. After analysis of the eight years collected data, we found out 29 events, which are definitely identified as chorus emission triggered by whistlers. During the observation period the magnetic activity is high. Analysis shows that the whistlers have propagated along the geomagnetic field line having L-values lying between L = 1.9 and 4.4. These waves could have propagated along the geomagnetic field lines either in ducted mode or pro-longitudinal mode. The measured relative intensity of the triggered emission and whistler wave is approximately the same and also varies from one event to another. It is proposed that these waves are generated through a process of wave-particle interaction and wave-wave interactions. Related parameters of this interaction are computed for different L-value and wave amplitude. With the help of dynamic spectra of these emissions, the proposed mechanisms are explained.

  10. Pre- and post-flight radiation performance evaluation of the space GPS receiver (SGR)

    International Nuclear Information System (INIS)

    Oldfield, M.K.; Underwood, C.I.; Unwin, M.J.; Asenek, V.; Harboe-Sorensen, R.

    1999-01-01

    SSTL (Survey Satellite Technology Ltd), in collaboration with ESA/ESTEC, recently developed a state-of-the-art low cost GPS (Global Positioning System) receiver payload for use on small satellites. The space GPS Receiver (SGR), will be flown on the TiungSAT-1 micro-satellite, UoSAT-12 mini-satellite and ESA's PROBA satellite. The SGR payload is currently flying on the TMSAT micro-satellite in low Earth orbit (LEO) and has carried out autonomous on-board positioning whilst also providing an experimental test-bed for evaluating spacecraft attitude determination algorithms. In order to reduce development time and costs, the SGR consists solely of industry standard COTS (commercial off-the-shelf) devices. This paper describes the ground-based radiation testing of several payload-critical COTS devices used in the SGR payload and describes its on-orbit performance. (authors)

  11. Comparison of EISCAT and ionosonde electron densities: application to a ground-based ionospheric segment of a space weather programme

    Directory of Open Access Journals (Sweden)

    J. Lilensten

    2005-01-01

    Full Text Available Space weather applications require real-time data and wide area observations from both ground- and space-based instrumentation. From space, the global navigation satellite system - GPS - is an important tool. From the ground the incoherent scatter (IS radar technique permits a direct measurement up to the topside region, while ionosondes give good measurements of the lower part of the ionosphere. An important issue is the intercalibration of these various instruments. In this paper, we address the intercomparison of the EISCAT IS radar and two ionosondes located at Tromsø (Norway, at times when GPS measurements were also available. We show that even EISCAT data calibrated using ionosonde data can lead to different values of total electron content (TEC when compared to that obtained from GPS.

  12. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  13. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  14. Some unusual discrete VLF emissions observed at a low-latitude ground station at Agra

    Directory of Open Access Journals (Sweden)

    B. Singh

    1997-08-01

    Full Text Available A detailed analysis of the VLF emissions data obtained during occasional whistler campaigns at the low-latitude ground station Agra (geomagnetic latitude 17°1' N, L = 1.15 has yielded some unusual discrete VLF emissions of the rising type. These include (1 emissions occurring at time intervals increasing in ge ommetrical progression, (2 emissions occuring simulta neously in different frequency ranges and (3 emissions observed during daytime. In the present study, the observed characteristics of these emissions are described and interpreted. It is shown that the increasing time delay between different components of the emissions match closely with the propagation time delays between different hops of a whistler of dispersion 19 s1/2, the unusual occurrence of the emissions in two different frequency ranges approximately at the same time may possibly be linked with their generation at two different locations, and the occurrence of emissions during daytime may be due to propagation under the influence of equatorial anomaly.

  15. A facility for training Space Station astronauts

    Science.gov (United States)

    Hajare, Ankur R.; Schmidt, James R.

    1992-01-01

    The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

  16. Developments of space station; Uchu station no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, H. [National Space Development Agency of Japan, Tokyo (Japan)

    1996-03-05

    This paper introduces the Japanese experiment module (JEM) in developing a space station. The JEM consists of systems of a pressurizing section, an exposure section, a pressurizing portion of a supply section, a manipulator and an exposure portion of the supply section. The pressurizing section circulates and controls air so that crews can perform experiments under pressurized environment. The exposure section is a part in which experiments are carried out under exposure environment. The supply section runs between a station and the ground, with required devices loaded on it. The manipulator performs attaching a payload for the exposure section and replaces experimental samples. The JEM undergoes a schedule of fabricating an engineering model, testing for a certification a prototype flight model, and putting the model on a flight. The pressurizing section, exposure section and manipulator are at the stage of system tests. Surveillance of the JEM and control of the experiments are carried out at the Tsukuba Space Center. The Center is composed of a space experiment building, a zero-gravity environment testing building, an astronaut training building, a space station operating building, and a space station testing building. 7 figs., 2 tabs.

  17. Derivation of some geometric parameters from GPS measurements

    Directory of Open Access Journals (Sweden)

    Marcel Mojzeš

    2005-11-01

    Full Text Available Combining GPS and terrestrial data requires a common coordinate system. When the original GPS vectors do not form a network, the 3D network adjustment can not be performed. In this case, in order to integrate the GPS measurements with the terrestrial observations and to perform a combined network adjustment, the GPS measurements should be transformed to this common system. The GPS measurements which are the usual output of the GPS post processing softwares are based on the WGS84 ellipsoid and the S-JTSK local datum is based on the Bessel ellipsoid. Thus, the reduction of measurements to the S-JTSK mapping plane can not be started from the measurements resulting from GPS post processing softwares because GPS and S-JTSK don’t have the same ellipsoid. Another view of this reduction will be described in this paper.

  18. Quantifying movement demands of AFL football using GPS tracking.

    Science.gov (United States)

    Wisbey, Ben; Montgomery, Paul G; Pyne, David B; Rattray, Ben

    2010-09-01

    Global positioning system (GPS) monitoring of movement patterns is widespread in elite football including the Australian Football League (AFL). However documented analysis of this activity is lacking. We quantified the movement patterns of AFL football and differences between nomadic (midfield), forward and defender playing positions, and determined whether the physical demands have increased over a four season period. Selected premiership games were monitored during the 2005 (n=80 game files), 2006 (n=244), 2007 (n=632) and 2008 (n=793) AFL seasons. Players were fitted with a shoulder harness containing a GPS unit. GPS data were downloaded after games and the following measures extracted: total distance (km), time in various speed zones, maximum speed, number of surges, accelerations, longest continuous efforts and a derived exertion index representing playing intensity. In 2008 nomadic players covered per game 3.4% more total distance (km), had 4.8% less playing time (min), a 17% higher exertion index (per min), and 23% more time running >18kmh(-1) than forwards and defenders (all p<0.05). Physical demands were substantially higher in the 2008 season compared with 2005: an 8.4% increase in mean speed, a 14% increase in intensity (exertion index) and a 9.0% decrease in playing time (all p<0.05). Nomadic players in AFL work substantially harder than forwards and defenders in covering more ground and at higher running intensities. Increases in the physical demands of AFL football were evident between 2005 and 2008. The increasing speed of the game has implications for game authorities, players and coaching staff.

  19. Confirmation test on the dynamic interaction between a model reactor-building foundation and ground in the Sendai Nuclear Power Station

    International Nuclear Information System (INIS)

    Umezu, Hideo; Kisaki, Noboru; Shiota, Mutsumi

    1982-01-01

    On the site of unit 2 (planned) in the Sendai Nuclear Power Station, a model reactor-building foundation of reinforced concrete with diameter of 12 m and height of 5 m was installed. With a vibration generator, its forced vibration tests were carried out in October to December, 1980. Valuable data were able to be obtained on the dynamic interaction between the model foundation and the ground, and also the outlook for the application of theories in hard base rock was obtained. (1) The resonance frequency of the model foundation in horizontal vibration was 35 Hz in both NS and EW directions. (2) Remarkable difference was not observed in the horizontal vibration behavior between NS and EW directions, so that there is not anisotropy in the ground. (3) The model foundation was deformed nearly as a rigid body. (J.P.N.)

  20. Strategies for high-precision Global Positioning System orbit determination

    Science.gov (United States)

    Lichten, Stephen M.; Border, James S.

    1987-01-01

    Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.

  1. The GPS Laser Retroreflector Array Project

    Science.gov (United States)

    Merkowitz, Stephen M.

    2012-01-01

    Systematic co-location in space through the precision orbit determination of GPS satellites via satellite laser ranging will contribute significantly towards improving the accuracy and stability of the international terrestrial reference frame. NASA recently formed the GPS Laser Retroreflector Array Project to develop and deliver retroreflectors for integration on the next generation of GPS satellites. These retroreflectors will be an important contributor to achieving a global accuracy of 1.0 mm and 0.1 mm/year stability in the international terrestrial reference frame. We report here the current status of the GPS Laser Retroreflector Array Project.

  2. High Classification Rates for Continuous Cow Activity Recognition using Low-cost GPS Positioning Sensors and Standard Machine Learning Techniques

    DEFF Research Database (Denmark)

    Godsk, Torben; Kjærgaard, Mikkel Baun

    2011-01-01

    activities. By preprocessing the raw cow position data, we obtain high classification rates using standard machine learning techniques to recognize cow activities. Our objectives were to (i) determine to what degree it is possible to robustly recognize cow activities from GPS positioning data, using low...... and their activities manually logged to serve as ground truth. For our dataset we managed to obtain an average classification success rate of 86.2% of the four activities: eating/seeking (90.0%), walking (100%), lying (76.5%), and standing (75.8%) by optimizing both the preprocessing of the raw GPS data...

  3. Volcanic Surface Deformation in Dominica From GPS Geodesy: Results From the 2007 NSF- REU Site

    Science.gov (United States)

    Murphy, R.; James, S.; Styron, R. H.; Turner, H. L.; Ashlock, A.; Cavness, C.; Collier, X.; Fauria, K.; Feinstein, R.; Staisch, L.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    GPS measurements have been collected on the island of Dominica in the Lesser Antilles between 2001 and 2007, with five month-long campaigns completed in June of each year supported in part by a NSF REU Site award for the past two years. All GPS data were collected using dual-frequency, code-phase receivers and geodetic-quality antenna, primarily choke rings. Three consecutive 24 hr observation days were normally obtained for each site. Precise station positions were estimated with GIPSY-OASISII using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Time series were created to determine the velocity of each station. Forward and inverse elastic half-space models with planar (i.e. dike) and Mogi (i.e. point) sources were investigated. Inverse modeling was completed using a downhill simplex method of function minimization. Selected site velocities were used to create appropriate models for specific regions of Dominica, which correspond to known centers of pre-historic volcanic or recent shallow, seismic activity. Because of the current distribution of GPS sites with robust velocity estimates, we limit our models to possible magmatic activity in the northern, proximal to the volcanic centers of Morne Diablotins and Morne aux Diables, and southern, proximal to volcanic centers of Soufriere and Morne Plat Pays, regions of the island. Surface deformation data from the northernmost sites may be fit with the development of a several km-long dike trending approximately northeast- southwest. Activity in the southern volcanic centers is best modeled by an expanding point source at approximately 1 km depth.

  4. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers

    Science.gov (United States)

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram

    2015-04-01

    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily

  5. Down and Out at Pacaya Volcano: A Glimpse of Magma Storage and Diking as Interpreted From GPS Geodesy

    Science.gov (United States)

    Lechner, H. N.; Waite, G. P.; Wauthier, D. C.; Escobar-Wolf, R. P.; Lopez-Hetland, B.

    2017-12-01

    Geodetic data from an eight-station GPS network at Pacaya volcano Guatemala allows us to produce a simple analytical model of deformation sources associated with the 2010 eruption and the eruptive period in 2013-2014. Deformation signals for both eruptive time-periods indicate downward vertical and outward horizontal motion at several stations surrounding the volcano. The objective of this research was to better understand the magmatic plumbing system and sources of this deformation. Because this down-and-out displacement is difficult to explain with a single source, we chose a model that includes a combination of a dike and spherical source. Our modelling suggests that deformation is dominated the inflation of a shallow dike seated high within the volcanic edifice and deflation of a deeper, spherical source below the SW flank of the volcano. The source parameters for the dike feature are in good agreement with the observed orientation of recent vent emplacements on the edifice as well the horizontal displacement, while the parameters for a deeper spherical source accommodate the downward vertical motion. This study presents GPS observations at Pacaya dating back to 2009 and provides a glimpse of simple models of possible deformation sources.

  6. Near Real-Time Processing and Archiving of GPS Surveys for Crustal Motion Monitoring

    Science.gov (United States)

    Crowell, B. W.; Bock, Y.

    2008-12-01

    We present an inverse instantaneous RTK method for rapidly processing and archiving GPS data for crustal motion surveys that gives positional accuracy similar to traditional post-processing methods. We first stream 1 Hz data from GPS receivers over Bluetooth to Verizon XV6700 smartphones equipped with Geodetics, Inc. RTD Rover software. The smartphone transmits raw receiver data to a real-time server at the Scripps Orbit and Permanent Array Center (SOPAC) running RTD Pro. At the server, instantaneous positions are computed every second relative to the three closest base stations in the California Real Time Network (CRTN), using ultra-rapid orbits produced by SOPAC, the NOAATrop real-time tropospheric delay model, and ITRF2005 coordinates computed by SOPAC for the CRTN stations. The raw data are converted on-the-fly to RINEX format at the server. Data in both formats are stored on the server along with a file of instantaneous positions, computed independently at each observation epoch. The single-epoch instantaneous positions are continuously transmitted back to the field surveyor's smartphone, where RTD Rover computes a median position and interquartile range for each new epoch of observation. The best-fit solution is the last median position and is available as soon as the survey is completed. We describe how we used this method to process 1 Hz data from the February, 2008 Imperial Valley GPS survey of 38 geodetic monuments established by Imperial College, London in the 1970's, and previously measured by SOPAC using rapid-static GPS methods in 1993, 1999 and 2000, as well as 14 National Geodetic Survey (NGS) monuments. For redundancy, each monument was surveyed for about 15 minutes at least twice and at staggered intervals using two survey teams operating autonomously. Archiving of data and the overall project at SOPAC is performed using the PGM software, developed by the California Spatial Reference Center (CSRC) for the National Geodetic Survey (NGS). The

  7. Elevation Change of Drangajokull, Iceland, from Cloud-Cleared ICESat Repeat Profiles and GPS Ground-Survey Data

    Science.gov (United States)

    Shuman, Christopher A.; Sigurdsson, Oddur; Williams, Richard, Jr.; Hall, Dorothy K.

    2009-01-01

    Located on the Vestfirdir Northwest Fjords), DrangaJokull is the northernmost ice map in Iceland. Currently, the ice cap exceeds 900 m in elevation and covered an area of approx.l46 sq km in August 2004. It was about 204 sq km in area during 1913-1914 and so has lost mass during the 20th century. Drangajokull's size and accessibility for GPS surveys as well as the availability of repeat satellite altimetry profiles since late 2003 make it a good subject for change-detection analysis. The ice cap was surveyed by four GPS-equipped snowmobiles on 19-20 April 2005 and has been profiled in two places by Ice, Cloud. and land Elevation Satellite (ICESat) 'repeat tracks,' fifteen times from late to early 2009. In addition, traditional mass-balance measurements have been taken seasonally at a number of locations across the ice cap and they show positive net mass balances in 2004/2005 through 2006/2007. Mean elevation differences between the temporally-closest ICESat profiles and the GPS-derived digital-elevation model (DEM)(ICESat - DEM) are about 1.1 m but have standard deviations of 3 to 4 m. Differencing all ICESat repeats from the DEM shows that the overall elevation difference trend since 2003 is negative with losses of as much as 1.5 m/a from same season to same season (and similar elevation) data subsets. However, the mass balance assessments by traditional stake re-measurement methods suggest that the elevation changes where ICESat tracks 0046 and 0307 cross Drangajokull are not representative of the whole ice cap. Specifically, the area has experienced positive mass balance years during the time frame when ICESat data indicates substantial losses. This analysis suggests that ICESat-derived elevations may be used for multi-year change detection relative to other data but suggests that large uncertainties remain. These uncertainties may be due to geolocation uncertainty on steep slopes and continuing cloud cover that limits temporal and spatial coverage across the

  8. Forest operations planning by using RTK-GPS based digital elevation model

    Directory of Open Access Journals (Sweden)

    Neşe Gülci

    2015-07-01

    Full Text Available Having large proportion of forests in mountainous terrain in Turkey, the logging methods that not only minimize operational costs but also minimize environmental damages should be determined in forest operations planning. In a case where necessary logging equipment and machines are available, ground slope is the most important factor in determining the logging method. For this reason, accurate, up to date, and precise ground slope data is very crucial in the success of forest operations planning. In recent years, high-resolution Digital Elevation Models (DEM can be generated for forested areas by using Real Time Kinematic (RTK GPS method and these DEMs can be used to develop precise slope maps. In this study, high-resolution DEM was developed by RTK-GPS method to generate precise slope map in a sample area. Then, the slope map was classified into slope classes specified by IUFRO in order to assist forest operations planning. According to the results, logging methods that are suitable for very steep and steep terrain conditions (i.e. skyline logging, cable pulling, and chute systems should be preferred in 48.1% of the study area. It was also found that logging methods that are suitable for terrain with medium slope (i.e. skidding and cable pulling and gentle slope (i.e. skidding and mobile winch should be preferred in 34.1% and 17.8% of the study area, respectively.

  9. The ESA SMOS Validation Rehearsal Campaign at the Valencia Anchor Station Area in the Framework of the SMOS Cal/Val AO Project no. 3252

    Science.gov (United States)

    Lopez-Baeza, E.

    2009-04-01

    Since 2001, the Valencia Anchor Station is currently being prepared for the validation of SMOS land products. The site has recently been selected by the Mission as a core validation site, mainly due to the reasonable homogeneous characteristics of the area which make it appropriate to undertake the validation of SMOS Level 2 land products during the Mission Commissioning Phase, before attempting more complex areas. Close to SMOS launch, ESA defined and designed the SMOS Validation Rehearsal Campaign Plan with the purpose of repeating the Commissioning Phase execution with all centers, all tools, all participants, all structures, all data available, assuming that all tools and structures are ready and trying to produce as close as possible the post-launch conditions. The aim was to test the readiness, the ensemble coordination and the speed of operations to be able to avoid as far as possible any unexpected deficiencies of the plan and procedure during the real Commissioning Phase campaigns. For the rehearsal activity which successfully took place in April 2008, a control area of 10 x 10 km2 was chosen at the Valencia Anchor Station study area where a network of ground soil moisture measuring stations is being set up based on the definition of homogeneous physio-hydrological units, attending to climatic, soil type, lithology, geology, elevation, slope and vegetation cover conditions. These stations are linked via a wireless communication system to a master post accessible via internet. Complementary to the ground measurements, flight operations were performed over the control area using the Helsinki University of Technology TKK Short Skyvan research aircraft. The payload for the campaign consisted of the following instruments: (i) L-band radiometer EMIRAD (Technical University of Denmark, TUD), (ii) HUT-2D L-band imaging interferometric radiometer (TKK), (iii) PARIS GPS reflectrometry system (Institute for Space Studies of Catalonia, IEEC), (iv) IR sensor (Finnish

  10. Precise GPS orbits for geodesy

    Science.gov (United States)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  11. Development of a Real-Time GPS/Seismic Displacement Meter: Seismic Component and Communications

    Science.gov (United States)

    Vernon, F.; Bock, Y.

    2002-12-01

    In two abstracts, we report on an ongoing effort to develop an Integrated Real-Time GPS/Seismic System for Orange and Western Riverside Counties, California, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) covering all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. This development is taking place under the umbrella of the California Spatial Reference Center, in partnership with local (The Counties, Riverside County Flood and Water Conservation District, Southern California Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCEC2/SCIGN), and the private sector (RBF Consulting). The project is leveraging considerable funding, resources, and research and development from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic

  12. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Naval Station Mayport, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    Ground-water flow through the surficial aquifer system at Naval Station Mayport near Jacksonville, Florida, was simulated with a two-layer finite-difference model as part of an investigation conducted by the U.S. Geological Survey. The model was calibrated to 229 water-level measurements from 181 wells during three synoptic surveys (July 17, 1995; July 31, 1996; and October 24, 1996). A quantifiable understanding of ground-water flow through the surficial aquifer was needed to evaluate remedial-action alternatives under consideration by the Naval Station Mayport to control the possible movement of contaminants from sites on the station. Multi-well aquifer tests, single-well tests, and slug tests were conducted to estimate the hydraulic properties of the surficial aquifer system, which was divided into three geohydrologic units?an S-zone and an I-zone separated by a marsh-muck confining unit. The recharge rate was estimated to range from 4 to 15 inches per year (95 percent confidence limits), based on a chloride-ratio method. Most of the simulations following model calibration were based on a recharge rate of 8 inches per year to unirrigated pervious areas. The advective displacement of saline pore water during the last 200 years was simulated using a particle-tracking routine, MODPATH, applied to calibrated steady-state and transient models of the Mayport peninsula. The surficial aquifer system at Naval Station Mayport has been modified greatly by natural and anthropogenic forces so that the freshwater flow system is expanding and saltwater is being flushed from the system. A new MODFLOW package (VAR1) was written to simulate the temporal variation of hydraulic properties caused by construction activities at Naval Station Mayport. The transiently simulated saltwater distribution after 200 years of displacement described the chloride distribution in the I-zone (determined from measurements made during 1993 and 1996) better than the steady-state simulation. The

  13. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  14. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  15. goGPS: open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning

    International Nuclear Information System (INIS)

    Realini, Eugenio; Reguzzoni, Mirko

    2013-01-01

    goGPS is a free and open source satellite positioning software package aiming to provide a collaborative platform for research and teaching purposes. It was first published in 2009 and since then several related projects are on-going. Its objective is the investigation of strategies for enhancing the accuracy of low-cost single-frequency GPS receivers, mainly by relative positioning with respect to a base station and by a tailored extended Kalman filter working directly on code and phase observations. In this paper, the positioning algorithms implemented in goGPS are presented, emphasizing the modularity of the software design; two specific strategies to support the navigation with low-cost receivers are also proposed and discussed, namely an empirical observation weighting function calibrated on the receiver signal-to-noise ratio and the inclusion of height information from a digital terrain model as an additional observation in the Kalman filter. The former is crucial when working with high-sensitivity receivers, while the latter can significantly improve the positioning in the vertical direction. The overall goGPS positioning accuracy is assessed by comparison with a dual-frequency receiver and with the positioning computed by a standard low-cost receiver. The benefits of the calibrated weighting function and the digital terrain model are investigated by an experiment in a dense urban environment. It comes out that the use of goGPS and low-cost receivers leads to results comparable with those obtained by higher level receivers; goGPS has good performances also in a dense urban environment, where its additional features play an important role. (paper)

  16. Multi-parameter observations in the Ibero-Moghrebian region: the Western Mediterranean seismic network (WM) and ROA GPS geodynamic network

    Science.gov (United States)

    Pazos, Antonio; Martín Davila, José; Buforn, Elisa; Gárate Pasquín, Jorge; Catalán Morollón, Manuel; Hanka, Winfried; Udías, Agustín.; Benzzeghoud, Mourad; Harnafi, Mimoun

    2010-05-01

    The plate boundary between Eurasia and Africa plates crosses the called "Ibero-Maghrebian" region from the San Vicente Cape (SW Portugal) to Tunisia including the South of Iberia, Alboran Sea, and northern Morocco and Algeria. In this area, the convergence, with a low rate, is accommodated over a wide and diffuse deformation zone, characterized by a significant and widespread moderate seismic activity [Buforn et al., 1995], and the occurrence of large earthquakes is separated by long time intervals. Since more than hundred years ago San Fernando Naval Observatory (ROA), in collaboration with other Institutes, has deployed different geophysical and geodetic equipment in the Southern Spain - North-western Africa area in order to study this broad deformation zone. Currently a Broad Band seismic net (Western Mediterranean, WM net) is deployed, in collaboration with other institutions, around the Gulf of Cádiz and the Alboran sea, with stations in the South of Iberia and in North Africa (at Spanish places and Morocco), together with the seismic stations a permanent geodetic GPS net is co-installed at the same sites. Also, other geophysical instruments have been installed: a Satellite Laser Ranging (SLR) station at San Fernando Observatory Headquarter, a Geomagnetic Observatory in Cádiz bay area and some meteorological stations. These networks have been recently improved with the deployment of a new submarine and on-land geophysical observatory in the Alboran island (ALBO Observatory), where a permanent GPS, a meteorological station were installed on land and a permanent submarine observatory in 50 meters depth was also deploy in last October (with a broad band seismic sensor, a 3 C accelerometer and a DPG). This work shows the present status and the future plans of these networks and some results.

  17. An estimation of the height system bias parameter N (0) using least squares collocation from observed gravity and GPS-levelling data

    DEFF Research Database (Denmark)

    Sadiq, Muhammad; Tscherning, Carl C.; Ahmad, Zulfiqar

    2009-01-01

    This paper deals with the analysis of gravity anomaly and precise levelling in conjunction with GPS-Levelling data for the computation of a gravimetric geoid and an estimate of the height system bias parameter N-o for the vertical datum in Pakistan by means of least squares collocation technique...... covariance parameters has facilitated to achieve gravimetric height anomalies in a global geocentric datum. Residual terrain modeling (RTM) technique has been used in combination with the EGM96 for the reduction and smoothing of the gravity data. A value for the bias parameter N-o has been estimated...... with reference to the local GPS-Levelling datum that appears to be 0.705 m with 0.07 m mean square error. The gravimetric height anomalies were compared with height anomalies obtained from GPS-Levelling stations using least square collocation with and without bias adjustment. The bias adjustment minimizes...

  18. The GPS odograph user's guide

    Science.gov (United States)

    The GPS-based Odograph Prototype (GOP or GPS Odograph) was developed in an effort sponsored by The Federal Highway Administration (FHWA). The purpose of this effort was to develop a means of using inexpensive commercial off-the-self laptop (or notebo...

  19. High Gain Advanced GPS Receiver

    National Research Council Canada - National Science Library

    Brown, Alison; Zhang, Gengsheng

    2006-01-01

    NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to 10 dBi of additional antenna gain over a conventional receiver solution...

  20. Development and Validation of a Controlled Virtual Environment for Guidance, Navigation and Control of Quadrotor UAV

    Science.gov (United States)

    2013-09-01

    Width Modulation QuarC Quanser Real-time Control RC Remote Controlled RPV Remotely Piloted Vehicles SLAM Simultaneous Localization and Mapping UAV...development of the following systems: 1. Navigation (GPS, Lidar , etc.) 2. Communication (Datalink) 3. Ground Control Station (GUI, software programming

  1. Ecological Aspects of Condition of Ground Deposits in Shershnevsky Reservoir

    Science.gov (United States)

    Arkanova, I. A.; Denisov, S. E.; Knutarev, D. Yu

    2017-11-01

    The article considers the aspects of the condition of ground deposits influencing the operating conditions of the water intake facilities in the Shershnevsky reservoir being the only source of the utility and drinking water supply in Chelyabinsk. The object of the research is a section near the Sosnovskie intake stations of the Shershnevsky reservoir. Based on the hydrometric surveys of the studied section and using the Kriging method and the Surfer suite, we calculated the volume of ground deposits. As a result of the analyses, the authors have proved that ground deposits in the studied section have a technology-related nature which is connected with the annual growth of the volume of ground deposits which is inadmissible in the operating conditions of the pump stations of water intake facilities whereas ground deposits will fully block the intake windows of pump stations. In case the bed area of the Shershnevsky reservoir is not timely treated, the ground deposits here will complicate the operation of the pump stations which will result in a technological problem of the treatment facilities operation up to a transfer of the pump station premises to other territories less exposed to the deposits. The treatment of the Shershnevsky reservoir from the ground deposits accumulated in the course of time will help to considerably increase its actual capacity, which will allow one to increase water circulation paths and to improve the water quality indices. In its turn, the water quality improvement will decrease the supply of suspended solids into the water intake facilities and cut the reagent costs in the course of the treatment water works operation.

  2. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    Science.gov (United States)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  3. Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts

    Science.gov (United States)

    Page, M.T.; Custodio, S.; Archuleta, R.J.; Carlson, J.M.

    2009-01-01

    We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0 Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which provides for a truly coseismic data set that can be used to infer the static slip field. We find that the resolution of our inverted slip model is poor at depth and near the edges of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the model resolution in the static field inversion leads to artifacts in poorly resolved areas of the fault plane. These artifacts look qualitatively similar to asperities commonly seen in the final slip models of earthquake source inversions, but in this inversion they are caused by a surplus of free parameters. The location of the artifacts depends on the station geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding of model parameters on the fault can remove these artifacts from the inversion. We generate a nonuniform grid with a grid spacing that matches the local resolution length on the fault and show that it outperforms uniform grids, which either generate spurious structure in poorly resolved regions or lose recoverable information in well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly resolved areas of the fault while recovering small-scale structure near the surface. Finally, we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze the errors in the final model. Copyright 2009 by the American Geophysical Union.

  4. Hybrid Simulations of the Broadband Ground Motions for the 2008 MS8.0 Wenchuan, China, Earthquake

    Science.gov (United States)

    Yu, X.; Zhang, W.

    2012-12-01

    The Ms8.0 Wenchuan earthquake occurred on 12 May 2008 at 14:28 Beijing Time. It is the largest event happened in the mainland of China since the 1976, Mw7.6, Tangshan earthquake. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and "quake lakes" which formed by landslide-induced reservoirs. These resulted in tremendous losses of life and property. Casualties numbered more than 80,000 people, and there were major economic losses. However, this earthquake is the first Ms 8 intraplate earthquake with good close fault strong motion coverage. Over four hundred strong motion stations of the National Strong Motion Observation Network System (NSMONS) recorded the mainshock. Twelve of them located within 20 km of the fault traces and another 33 stations located within 100 km. These observations, accompanying with the hundreds of GPS vectors and multiple ALOS INSAR images, provide an unprecedented opportunity to study the rupture process of such a great intraplate earthquake. In this study, we calculate broadband near-field ground motion synthetic waveforms of this great earthquake using a hybrid broadband ground-motion simulation methodology, which combines a deterministic approach at low frequencies (f < 1.0 Hz) with a theoretic Green's function calculation approach at high frequency ( ~ 10.0 Hz). The fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time that were obtained by an inversion kinematic source model. At the same time, based on the aftershock data, we analyze the site effects for the near-field stations. Frequency-dependent site-amplification values for each station are calculated using genetic algorithms. For the calculation of the synthetic waveforms, at first, we carry out simulations using the hybrid methodology for the frequency up to 10.0 Hz. Then, we consider for

  5. Comparing inferences of solar geolocation data against high-precision GPS data: annual movements of a double-tagged black-tailed godwit

    NARCIS (Netherlands)

    Rakhimberdiev, E.; Senner, N.R.; Verhoeven, M.A.; Winkler, D.W.; Bouten, W.; Piersma, T.

    2016-01-01

    Annualroutines of migratory birds inferred from archival solar geolocation devices have never before been confirmedusing GPS technologies. A female black-tailed godwit Limosa limosa limosa captured on the breeding grounds in theNetherlands in 2013 and recaptured in 2014 was outfitted with both an

  6. The International GPS Service (IGS) as a Continuous Reference System for Precise GPS Positioning

    Science.gov (United States)

    Neilan, Ruth; Heflin, Michael; Watkins, Michael; Zumberge, James

    1996-01-01

    The International GPS Service for Geodynamics (IGS) is an organization which operates under the auspices of the International Association of Geodesy (IAG) and has been operational since January 1994. The primary objective of the IGS is to provide precise GPS data and data products to support geodetic and geophysical research activities.

  7. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  8. Optical studies in the holographic ground station

    Science.gov (United States)

    Workman, Gary L.

    1991-01-01

    The Holographic Group System (HGS) Facility in rooms 22 & 123, Building 4708 has been developed to provide for ground based research in determining pre-flight parameters and analyzing the results from space experiments. The University of Alabama, Huntsville (UAH) has researched the analysis aspects of the HGS and reports their findings here. Some of the results presented here also occur in the Facility Operating Procedure (FOP), which contains instructions for power up, operation, and powerdown of the Fluid Experiment System (FES) Holographic Ground System (HGS) Test Facility for the purpose of optically recording fluid and/or crystal behavior in a test article during ground based testing through the construction of holograms and recording of videotape. The alignment of the optical bench components, holographic reconstruction and and microscopy alignment sections were also included in the document for continuity even though they are not used until after optical recording of the test article) setup of support subsystems and the Automated Holography System (AHS) computer. The HGS provides optical recording and monitoring during GCEL runs or development testing of potential FES flight hardware or software. This recording/monitoring can be via 70mm holographic film, standard videotape, or digitized images on computer disk. All optical bench functions necessary to construct holograms will be under the control of the AHS personal computer (PC). These include type of exposure, time intervals between exposures, exposure length, film frame identification, film advancement, film platen evacuation and repressurization, light source diffuser introduction, and control of realtime video monitoring. The completed sequence of hologram types (single exposure, diffuse double exposure, etc.) and their time of occurrence can be displayed, printed, or stored on floppy disk posttest for the user.

  9. Hastighedskort for Danmark vha. GPS

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2011-01-01

    Hastighed på vejnettet er en central metrik indenfor trafikplanlægning og trafikoptimering. I denne artikel beskrives, hvorledes et hastighedskort for hele Danmark er skabt udelukkende vha. GPS data. To tilgangsvinkler til at beregne hastigheder vha. GPS data er præsenteret. Dette er hhv. en....... Opsummeret anses den turbaseret for at beregne det mest akkurate estimat, men metoden er meget datakrævende. Det er derfor nødvendigt at have den punktbaserede at falde tilbage på. Generelt mangler metoder til beregning af hastigheder vha. GPS data at blive valideret. Hvordan en sådan validering kan...

  10. Sail GTS ground system analysis: Avionics system engineering

    Science.gov (United States)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  11. Comparing inferences of solar geolocation data against high-precision GPS data : Annual movements of a double-tagged black-tailed godwit

    NARCIS (Netherlands)

    Rakhimberdiev, Eldar; Senner, Nathan R.; Verhoeven, Mo A.; Winkler, David W.; Bouten, Willem; Piersma, Theunis

    2016-01-01

    Annual routines of migratory birds inferred from archival solar geolocation devices have never before been confirmed using GPS technologies. A female black-tailed godwit Limosa limosa limosa captured on the breeding grounds in The Netherlands in 2013 and recaptured in 2014 was outfitted with both an

  12. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    Science.gov (United States)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  13. Sensing human activity : GPS tracking

    NARCIS (Netherlands)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, P.G.; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for

  14. Low relative error in consumer-grade GPS units make them ideal for measuring small-scale animal movement patterns

    Directory of Open Access Journals (Sweden)

    Greg A. Breed

    2015-08-01

    Full Text Available Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm, this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches.

  15. GPS User Devices Parameter Control Methods

    OpenAIRE

    Klūga, A; Kuļikovs, M; Beļinska, V; Zeļenkovs, A

    2007-01-01

    In our day’s wide assortment of GPS user devices is manufacture. How to verify that parameters of the real device corresponds to parameters that manufacture shows. How to verify that parameters have not been changed during the operation time. The last one is very important for aviation GPS systems, which must be verified before the flight, but the values of parameter in time of repair works. This work analyses GPS user devices parameters control methods.

  16. The Permanent GPS Network In The Iberian Peninsula

    Science.gov (United States)

    Fernandes, R. M. S.; Bastos, L.; Ambrosius, B. A. C.; Noomen, R.

    In recent years, the number of permanent GPS sites in the Iberia Peninsula has in- creased significantly: in the beginning of 1996 there were just 2 sites with publicly available data. This number had risen to 15 by the end of 1999, and recently (end of 2001), it has reached 18. For many sites, the observation time-span is already suffi- ciently long to derive a reliable estimate of the motion of the stations. Combined with the relatively good geographical distribution of the sites, this velocity field contains unique information to study the tectonics of the Iberian Peninsula, both internally and with respect to the rest of Europe. In the framework of a combined DEOS-AOUP research project called GIN (GPS Iberian Network), the data of all available GPS sites in the region (including some in North Africa, the Azores Archipelago and France) are being processed on a daily basis since the middle of 2000 (with backward processing extending to January 1996). Following this project, DEOS became an official LAC (Local Analysis Centre) of EU- REF in the beginning of 2001. The DEOS weekly solutions are included in the official EUREF analysis chain, resulting in weekly coordinate solutions for the entire EU- REF network. The two solutions (GIN &EUREF) are computed by the DEOS-AOUP group using the same software, but applying different strategies. The differences in the solutions are analysed in order to pinpoint data problems and processing errors. Furthermore, the GIN velocity field is compared with the one derived from the offi- cial EUREF solution. Special attention is paid to the different procedures to link the solutions into a unified reference frame. Finally, this paper presents a preliminary interpretation of the contemporary tectonics of the Iberian Peninsula based on the derived velocity fields. There is evidence of significant intra-plate deformation in the Iberia region and there are indications that the Iberian block exhibits a differential motion with respect to

  17. A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin

    2010-01-01

    Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the

  18. Online Aerial Terrain Mapping for Ground Robot Navigation

    Directory of Open Access Journals (Sweden)

    John Peterson

    2018-02-01

    Full Text Available This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  19. Investigation of ground-water contamination at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used newly developed sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report uses data from a new type of pore-water sampler developed for this investigation and other methods to examine the subsurface contamination beneath the drainage ditch. Analysis of ground water from the samplers indicated that chlorobenzenes (maximum detected concentration of 160 micrograms per liter) are present in the ground water beneath the ditch. The concentrations of dissolved oxygen in the samples (less than 0.05-0.4 milligram per liter) showed that the ground water beneath and near the ditch is anaerobic, indicating that substantial chlorobenzene biodegradation in the aquifer beneath the ditch is unlikely. Probable alternative mechanisms of chlorobenzene removal in the ground water beneath the drainage ditch include sorption onto the organic-rich sediment and contaminant depletion by cattails through uptake, sorption, and localized soil aeration.

  20. Study of the active layer at the Spanish Antarctic station “Gabriel de Castilla”, Deception Island, Antarctica

    International Nuclear Information System (INIS)

    Pablo, M.A. de; Molina, A.; Recio, C.; Ramos, M.; Goyanes, G.; Ropero, M.A.

    2017-01-01

    The degradation of permanent frozen ground (permafrost) and the increase in the thickness of the active layer may be caused both by natural processes (such as global climate change) and by anthropic activity, which changes the natural environmental conditions that allow its existence, as has been widely reported to occur in the northern polar and subpolar regions. In the case of Antarctica, some scientific research stations are located in areas with permafrost, such as the Spanish Antarctic station “Gabriel de Castilla” on Deception Island. In the place where the station is located, an important increase in erosion has been observed in recent years, including the excavation of new gullies and the erosion of the coastal cliffs. In order to develop an initial analysis of the possible effects of the station on the permafrost degradation, ground temperature has been monitored since 2012 and the thickness and of the active layer and the temperature, both inside and beneath the station, have also been sporadically measured. Here we show the results and discuss how the station reduces the freezing of the ground during the winter when the station is closed and facilitates the warming of the ground during the living periods of the station in the Antarctic summer. Those initial results and conclusions make necessary to continue the study of the permafrost and the active layer in the station site by systematic monitoring of the ground temperature and the thickness of the active layer. [es

  1. Some unusual discrete VLF emissions observed at a low-latitude ground station at Agra

    Directory of Open Access Journals (Sweden)

    B. Singh

    Full Text Available A detailed analysis of the VLF emissions data obtained during occasional whistler campaigns at the low-latitude ground station Agra (geomagnetic latitude 17°1' N, L = 1.15 has yielded some unusual discrete VLF emissions of the rising type. These include (1 emissions occurring at time intervals increasing in ge ommetrical progression, (2 emissions occuring simulta neously in different frequency ranges and (3 emissions observed during daytime. In the present study, the observed characteristics of these emissions are described and interpreted. It is shown that the increasing time delay between different components of the emissions match closely with the propagation time delays between different hops of a whistler of dispersion 19 s1/2, the unusual occurrence of the emissions in two different frequency ranges approximately at the same time may possibly be linked with their generation at two different locations, and the occurrence of emissions during daytime may be due to propagation under the influence of equatorial anomaly.

  2. Scanning Raman lidar for tropospheric water vapor profiling and GPS path delay correction

    Science.gov (United States)

    Tarniewicz, Jerome; Bock, Olivier; Pelon, Jacques R.; Thom, Christian

    2002-01-01

    The design of a ground based and transportable combined Raman elastic-backscatter lidar for the remote sensing of lower tropospheric water vapor and nitrogen concentration is described. This lidar is intended to be used for an external calibration of the wet path delay of GPS signals. A description of the method used to derive water vapor and nitrogen profiles in the lower troposphere is given. The instrument has been tested during the ESCOMPTE campaign in June 2001 and first measurements are presented.

  3. Development and deployment of a Desktop and Mobile application on grid for GPS studie

    Science.gov (United States)

    Ntumba, Patient; Lotoy, Vianney; Djungu, Saint Jean; Fleury, Rolland; Petitdidier, Monique; Gemünd, André; Schwichtenberg, Horst

    2013-04-01

    GPS networks for scientific studies are developed all other the world and large databases, regularly updated, like IGS are also available. Many GPS have been installed in West and Central Africa during AMMA (African Monsoon Multiplidisciplinary Analysis), IHY (International heliophysical Year)and many other projects since 2005. African scientists have been educated to use those data especially for meteorological and ionospheric studies. The annual variations of ionospheric parameters for a given station or map of a given region are very intensive computing. Then grid or cloud computing may be a solution to obtain results in a relatively short time. Real time At the University of Kinshasa the chosen solution is a grid of several PCs. It has been deployed by using Globus Toolkit on a Condor pool in order to support the processing of GPS data for ionospheric studies. To be user-friendly, graphical user interfaces(GUI) have been developed to help the user to prepare and submit jobs. One is a java GUI for desktop client, the other is an Android GUI for mobile client. The interest of a grid is the possibility to send a bunch of jobs with an adequate agent control in order to survey the job execution and result storage. After the feasibility study the grid will be extended to a larger number of PCs. Other solutions will be in parallel explored.

  4. Observations on the Reliability of Rubidium Frequency Standards on Block 2/2A GPS Satellites

    Science.gov (United States)

    Dieter, Gary L.

    1996-01-01

    Currently, the block 2/2A Global Positioning System (GPS) satellites are equipped with two rubidium frequency standards. These frequency standards were originally intended to serve as the back-ups to two cesium frequency standards. As the constellation ages, the master Control Station is forced to initialize and increasing number or rubidium frequency standards. Unfortunately the operational use of these frequency standards has not lived up to initial expectations. Although the performance of these rubidium frequency standards has met and even exceeded GPS requirements, their reliability has not. The number of unscheduled outage times and the short operational lifetimes of the rubidium frequency standards compare poorly to the track record of the cesium frequency standards. Only a small number of rubidium frequency standards have actually been made operational. Of these, a large percentage have exhibited poor reliability. If this trend continues, it is unlikely that the rubidium frequency standards will help contribute to the navigation payload meeting program specification.

  5. Analysis of web-based online services for GPS relative and precise point positioning techniques

    Directory of Open Access Journals (Sweden)

    Taylan Ocalan

    Full Text Available Nowadays, Global Positioning System (GPS has been used effectively in several engineering applications for the survey purposes by multiple disciplines. Web-based online services developed by several organizations; which are user friendly, unlimited and most of them are free; have become a significant alternative against the high-cost scientific and commercial software on achievement of post processing and analyzing the GPS data. When centimeter (cm or decimeter (dm level accuracies are desired, that can be obtained easily regarding different quality engineering applications through these services. In this paper, a test study was conducted at ISKI-CORS network; Istanbul-Turkey in order to figure out the accuracy analysis of the most used web based online services around the world (namely OPUS, AUSPOS, SCOUT, CSRS-PPP, GAPS, APPS, magicGNSS. These services use relative and precise point positioning (PPP solution approaches. In this test study, the coordinates of eight stations were estimated by using of both online services and Bernese 5.0 scientific GPS processing software from 24-hour GPS data set and then the coordinate differences between the online services and Bernese processing software were computed. From the evaluations, it was seen that the results for each individual differences were less than 10 mm regarding relative online service, and less than 20 mm regarding precise point positioning service. The accuracy analysis was gathered from these coordinate differences and standard deviations of the obtained coordinates from different techniques and then online services were compared to each other. The results show that the position accuracies obtained by associated online services provide high accurate solutions that may be used in many engineering applications and geodetic analysis.

  6. An analysis of spatial representativeness of air temperature monitoring stations

    Science.gov (United States)

    Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen

    2018-05-01

    Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

  7. Briefing highlights space weather risks to GPS

    Science.gov (United States)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  8. Development of GPS survey data management protocols/policy.

    Science.gov (United States)

    2010-08-01

    This project developed a statewide policy and criteria for collecting, analyzing, and managing global position system (GPS) survey data. The research project determined the needs of the Department in adopting the GPS real time kinetic (GPS RTK) stake...

  9. GPS Usage in a Population of Low-Vision Drivers.

    Science.gov (United States)

    Cucuras, Maria; Chun, Robert; Lee, Patrick; Jay, Walter M; Pusateri, Gregg

    2017-01-01

    We surveyed bioptic and non-bioptic low-vision drivers in Illinois, USA, to determine their usage of global positioning system (GPS) devices. Low-vision patients completed an IRB-approved phone survey regarding driving demographics and usage of GPS while driving. Participants were required to be active drivers with an Illinois driver's license, and met one of the following criteria: best-corrected visual acuity (BCVA) less than or equal to 20/40, central or significant peripheral visual field defects, or a combination of both. Of 27 low-vision drivers, 10 (37%) used GPS while driving. The average age for GPS users was 54.3 and for non-users was 77.6. All 10 drivers who used GPS while driving reported increased comfort or safety level. Since non-GPS users were significantly older than GPS users, it is likely that older participants would benefit from GPS technology training from their low-vision eye care professionals.

  10. Real-Time Magnitude Characterization of Large Earthquakes Using the Predominant Period Derived From 1 Hz GPS Data

    Science.gov (United States)

    Psimoulis, Panos A.; Houlié, Nicolas; Behr, Yannik

    2018-01-01

    Earthquake early warning (EEW) systems' performance is driven by the trade-off between the need for a rapid alert and the accuracy of each solution. A challenge for many EEW systems has been the magnitude saturation for large events (MW > 7) and the resulting underestimation of seismic moment magnitude. In this study, we test the performance of high-rate (1 Hz) GPS, based on seven seismic events, to evaluate whether long-period ground motions can be measured well enough to infer reliably earthquake predominant periods. We show that high-rate GPS data allow the computation of a GPS-based predominant period (τg) to estimate lower bounds for the magnitude of earthquakes and distinguish between large (MW > 7) and great (MW > 8) events and thus extend the capability of EEW systems for larger events. It has also identified the impact of the different values of the smoothing factor α on the τg results and how the sampling rate and the computation process differentiate τg from the commonly used τp.

  11. Determination of Vertical Velocity Field of Southernmost Longitudinal Valley in Eastern Taiwan: A Joint Analysis of Leveling and GPS Measurements

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2012-01-01

    Full Text Available In order to provide a detailed vertical velocity field in southernmost Longitudinal Valley where shows a complex three-fault system at the plate suture between Philippine Sea plate and Eurasia, we conducted leveling and GPS measurements, compiled data from previous surveys and combined them into a single data set. We compiled precise leveling results from 1984 to 2009, include 5 E-W trending and one N-S trending routes. We calculated the GPS vertical component from 10 continuous stations and from 89 campaign-mode stations from 1995 to 2010. The interseismic vertical rates are estimated by removing the co- and post-seismic effects of major large regional and nearby earthquakes. A stable continuous station S104 in the study area was adopted as the common reference station. We finally establish a map of the interseismic vertical velocity field. The interseismic vertical deformation was mainly accommodated by creeping/thrusting along two east-dipping strands of the three-fault system: the Luyeh and Lichi faults. The most dominant uplift of 30 mm yr-1 occurs at the hanging wall of the Lichi fault on the western Coastal Range. However the rate diminishes away from the fault in the hanging wall. The Quaternary tablelands inside of the Longitudinal Valley reveals uplift with a rate of 5 - 10 mm yr-1. Outside of the tablelands, the rest of the Longitudinal Valley flat area indicates substantial subsidence of -10 to -20 mm yr-1. Finally, it appears that the west-dipping blind fault under the eastern side of the Central Range does not play a significant role on interseismic deformation with subsidence rate of -5 to -10 mm yr-1.

  12. Benefits of rotational ground motions for planetary seismology

    Science.gov (United States)

    Donner, S.; Joshi, R.; Hadziioannou, C.; Nunn, C.; van Driel, M.; Schmelzbach, C.; Wassermann, J. M.; Igel, H.

    2017-12-01

    Exploring the internal structure of planetary objects is fundamental to understand the evolution of our solar system. In contrast to Earth, planetary seismology is hampered by the limited number of stations available, often just a single one. Classic seismology is based on the measurement of three components of translational ground motion. Its methods are mainly developed for a larger number of available stations. Therefore, the application of classical seismological methods to other planets is very limited. Here, we show that the additional measurement of three components of rotational ground motion could substantially improve the situation. From sparse or single station networks measuring translational and rotational ground motions it is possible to obtain additional information on structure and source. This includes direct information on local subsurface seismic velocities, separation of seismic phases, propagation direction of seismic energy, crustal scattering properties, as well as moment tensor source parameters for regional sources. The potential of this methodology will be highlighted through synthetic forward and inverse modeling experiments.

  13. Transportation mode recognition using GPS and accelerometer data

    NARCIS (Netherlands)

    Feng, T.; Timmermans, H.J.P.

    2013-01-01

    Potential advantages of global positioning systems (GPS) in collecting travel behavior data have been discussed in several publications and evidenced in many recent studies. Most applications depend on GPS information only. However, transportation mode detection that relies only on GPS information

  14. Gestió mapes i GPS

    OpenAIRE

    Díaz Sañudo, Daniel

    2013-01-01

    El projecte denominat "Gestor de mapes i GPS" és una aplicació per a dispositius mòbils Android que utilitza l'API v.1 de Google Maps. El proyecto denominado "Gestor de mapas y GPS" es una aplicación para dispositivos móviles Android que utiliza la API v.1 de Google Maps.

  15. Nowcasting the lightning activity in Peninsular Malaysia using the GPS PWV during the 2009 inter-monsoons

    Directory of Open Access Journals (Sweden)

    Wayan Suparta

    2014-05-01

    Full Text Available The spatial and temporal radio wave delay of the Global Positioning System (GPS signal can be manipulated to estimate the precipitable water vapor (PWV which favorable for meteorological applications. A rapid change of the water vapor amount was a precondition for the unbalanced atmospheric charges, which noticeably associated with the development of convective cloud as a lightning chamber. According to this fact, GPS derived PWV will be utilized to nowcasting the lightning event for the next couple of hours. The variances of PWV of four-selected station of the Peninsular Malaysia during the past two inter-monsoons events in May and November 2009 were analyzed. To clarify the response, the changes of PWV in hourly Δ (max-min before the lightning event was investigated with minimum value 2 mm and is maintained at least three consecutive hours. There are 177 samples were extracted from this method and 69% of the sample showed the lightning occurrence with an average duration was after the six consecutive hours. The lightning day with 2 mm Δ was also higher than the fair weather of 6.3%. These findings suggest that the GPS data can be proposed further as a guide to nowcast the occurrence of lightning activity.

  16. Location - Global Positioning System (GPS) Photos

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — Digital photos tagged with GPS location information. The St. Paul District maintains a digital library of over 10,000 GPS photos. Photos are often associated with...

  17. An estimation of tropospheric corrections using GPS and synoptic data: Improving Urmia Lake water level time series from Jason-2 and SARAL/AltiKa satellite altimetry

    Science.gov (United States)

    Arabsahebi, Reza; Voosoghi, Behzad; Tourian, Mohammad J.

    2018-05-01

    Tropospheric correction is one of the most important corrections in satellite altimetry measurements. Tropospheric wet and dry path delays have strong dependence on temperature, pressure and humidity. Tropospheric layer has particularly high variability over coastal regions due to humidity, wind and temperature gradients. Depending on the extent of water body and wind conditions over an inland water, Wet Tropospheric Correction (WTC) is within the ranges from a few centimeters to tens of centimeters. Therefore, an extra care is needed to estimate tropospheric corrections on the altimetric measurements over inland waters. This study assesses the role of tropospheric correction on the altimetric measurements over the Urmia Lake in Iran. For this purpose, four types of tropospheric corrections have been used: (i) microwave radiometer (MWR) observations, (ii) tropospheric corrections computed from meteorological models, (iii) GPS observations and (iv) synoptic station data. They have been applied to Jason-2 track no. 133 and SARAL/AltiKa track no. 741 and 356 corresponding to 117-153 and the 23-34 cycles, respectively. In addition, the corresponding measurements of PISTACH and PEACHI, include new retracking method and an innovative wet tropospheric correction, have also been used. Our results show that GPS observation leads to the most accurate tropospheric correction. The results obtained from the PISTACH and PEACHI projects confirm those obtained with the standard SGDR, i.e., the role of GPS in improving the tropospheric corrections. It is inferred that the MWR data from Jason-2 mission is appropriate for the tropospheric corrections, however the SARAL/AltiKa one is not proper because Jason-2 possesses an enhanced WTC near the coast. Furthermore, virtual stations are defined for assessment of the results in terms of time series of Water Level Height (WLH). The results show that GPS tropospheric corrections lead to the most accurate WLH estimation for the selected

  18. Comparison of GLONASS and GPS Time Transfers

    Science.gov (United States)

    Daly, P.; Koshelyaevsky, N. B.; Lewandowski, W.; Petit, G.; Thomas, C.

    1993-01-01

    The Russian global space navigation system GLONASS could provide a technique similar to GPS for international time comparison. The main limitation to its use for time transfer is the lack of commercially available time receivers. The University of Leeds built a GPS/GLONASS receiver five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years the VNIIFTRI and several other Russian time laboratories have used Russian-built GLONASS navigation receivers for time comparisons. Since June 1991, the VNIIFTRI has operated a GPS time receiver which offers, for the first time, an opportunity for the direct comparison of time transfers using GPS and GLONASS. This seven-month experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.

  19. Continuing medical education and burnout among Danish GPs

    DEFF Research Database (Denmark)

    Brøndt, Anders; Sokolowski, Ineta; Olesen, Frede

    2008-01-01

    BACKGROUND: There has been minimal research into continuing medical education (CME) and its association with burnout among GPs. AIM: The aim of this study was to investigate the association between participating in CME and experiencing burnout in a sample of Danish GPs. DESIGN OF STUDY: Cross......-sectional questionnaire study. SETTING: All 458 active GPs in 2004, in the County of Aarhus, Denmark were invited to participate. METHOD: Data on CME activities were obtained for all GPs and linked to burnout which was measured using the Maslach Burnout Inventory - Human Services Survey. The relationship between CME...... activity and burnout was calculated as prevalence ratios (PR) in a generalised linear model. RESULTS: In total, 379 (83.5%) GPs returned the questionnaire. The prevalence of burnout was about 25%, and almost 3% suffered from 'high burnout'. A total of 344 (92.0%) GPs were members of a CME group...

  20. An analysis of the Aespoe crustal motion-monitoring network observed by GPS in 2000, 2001 and 2002

    International Nuclear Information System (INIS)

    Sjoeberg, Lars E.; Ming Pan; Asenjo, Erick

    2002-07-01

    A feasibility study of using GPS technology for monitoring possible crustal 'creep' motions as part of the long-term site investigations for the decision on site location of nuclear waste disposal has been carried out in an established test network near Oskarshamn in the south east of Sweden. The network, consisting of 7 points, is located in an approximate area of 15 x 15 km, and two possibly active faults in the crust cross the area. The points are realized by steel pegs, installed and cemented into boreholes in the bedrock, and the GPS antennas are mounted directly on top of the steel pegs by so-called forced centring, i.e. repeatedly without any centring bias. The GPS data were measured 3 times per year, or in total at 6 epochs, between June 2000 and February 2002. At each epoch GPS receivers occupied all 7 sites for at least 48 hours of measurement. In addition, data from the nearest SWEPOS GPS station at Oskarshamn was used as a reference for the analysis. In general the observations performed well without many problems. The Bernese GPS software version 4.2 was used to adjust the data. First, the adjustment was performed epoch by epoch to determine site coordinates and baseline lengths. The achieved coordinate standard error is of the order of 1 mm. The baseline evolutions were found to be less than 1 mm/yr, except for the long baseline to the SWEPOS station, which reached 2 mm/yr. However, as the corresponding standard errors are of the order of 0.5 and 1 mm/yr, respectively, the estimated baseline velocities are not significant, but the hypothesis of zero-velocities holds. Further data from future GPS campaigns may change or confirm this conclusion. Second, the GPS software was used to merge the epoch-wise results into final site coordinates and their temporal variations. A special theoretical investigation by linear regression was carried out to estimate a scale factor of the formal standard errors of coordinates and their temporal changes provided by the