WorldWideScience

Sample records for ground foraging birds

  1. Disproportionate Declines in Ground-Foraging Insectivorous Birds after Mistletoe Removal.

    Directory of Open Access Journals (Sweden)

    David M Watson

    Full Text Available Insectivorous birds have been recognized as disproportionately sensitive to land-use intensification and habitat loss, with those species feeding primarily on the ground exhibiting some of the most dramatic declines. Altered litter inputs and availability of epigeic arthropods have been suggested to underlie reduced abundances and shrinking distributions but direct evidence is lacking. I used a patch-scale removal experiment in southern Australia to evaluate whether ground-feeding insectivores are especially vulnerable to altered litter-fall. Building on work demonstrating the importance of mistletoe litter to nutrient dynamics, litter was reduced by removing mistletoe (Loranthaceae from one set of eucalypt woodlands, responses of birds three years after mistletoe removal compared with otherwise similar control woodlands containing mistletoe. Despite not feeding on mistletoes directly, insectivores exhibited the greatest response to mistletoe removal. Among woodland residents, ground-foraging insectivores showed the most dramatic response; treatment woodlands losing an average of 37.4% of their pre-treatment species richness. Once these 19 species of ground-foraging insectivores were excluded, remaining woodland species showed no significant effect of mistletoe removal. This response reflects greater initial losses in treatment woodlands during the study (which coincided with a severe drought and double the number of species returning to control woodlands (where mistletoe numbers and litter were not manipulated post-drought. These findings support the productivity-based explanation of declining insectivores, suggesting diminished litter-fall reduced habitat quality for these birds via decreased availability of their preferred prey. In addition to altered prey availability, interactions between litter-fall and epigeic arthropods exemplify the importance of below-ground / above-ground linkages driving ecosystem function.

  2. Supplementary feeding of wild birds indirectly affects ground beetle populations in suburban gardens.

    Science.gov (United States)

    Orros, Melanie E; Thomas, Rebecca L; Holloway, Graham J; Fellowes, Mark D E

    Supplementary feeding of wild birds by domestic garden-holders is a globally widespread and popular form of human-wildlife interaction, particularly in urban areas. Vast amounts of energy are thus being added to garden ecosystems. However, the potential indirect effects of this activity on non-avian species have been little studied to date, with the only two previous studies taking place under experimentally manipulated conditions. Here we present the first evidence of a localised depletive effect of wild bird feeding on ground beetles (Coleoptera: Carabidae) in suburban gardens under the usual feeding patterns of the garden-holders. We trapped significantly fewer ground beetles directly under bird-feeding stations than in matched areas of habitat away from feeders. Video analysis also revealed significantly higher activity by ground-foraging birds under the feeding stations than in the control areas. Small mammal trapping revealed no evidence that these species differ in abundance between gardens with and without bird feeders. We therefore suggest that local increases in ground-foraging activity by bird species whose diets encompass arthropods as well as seed material are responsible for the reduction in ground beetle numbers. Our work therefore illustrates that providing food for wild birds can have indirect negative effects on palatable prey species under typical conditions.

  3. Visual perception and social foraging in birds.

    Science.gov (United States)

    Fernández-Juricic, Esteban; Erichsen, Jonathan T; Kacelnik, Alex

    2004-01-01

    Birds gather information about their environment mainly through vision by scanning their surroundings. Many prevalent models of social foraging assume that foraging and scanning are mutually exclusive. Although this assumption is valid for birds with narrow visual fields, these models have also been applied to species with wide fields. In fact, available models do not make precise predictions for birds with large visual fields, in which the head-up, head-down dichotomy is not accurate and, moreover, do not consider the effects of detection distance and limited attention. Studies of how different types of visual information are acquired as a function of body posture and of how information flows within flocks offer new insights into the costs and benefits of living in groups.

  4. Ground-nesting marine birds and potential for human disturbance in Glacier Bay National Park

    Science.gov (United States)

    Arimitsu, Mayumi L.; Romano, Marc D.; Piatt, John F.; Piatt, John F.; Gende, S.M.

    2004-01-01

    Glacier Bay National Park and Preserve contains a diverse assemblage of marine birds that use the area for nesting, foraging and molting. The abundance and diversity of marine bird species in Glacier Bay is unmatched in the region, due in part to the geomorphic and successional characteristics that result in a wide array of habitat types (Robards and others, 2003). The opportunity for proactive management of these species is unique in Glacier Bay National Park because much of the suitable marine bird nesting habitat occurs in areas designated as wilderness. Ground-nesting marine birds are vulnerable to human disturbance wherever visitors can access nest sites during the breeding season. Human disturbance of nest sites can be significant because intense parental care is required for egg and hatchling survival, and repeated disturbance can result in reduced productivity (Leseberg and others, 2000). Temporary nest desertion by breeding birds in disturbed areas can lead to increased predation on eggs and hatchlings by conspecifics or other predators (Bolduc and Guillemette, 2003). Human disturbance of ground-nesting birds may also affect incubation time and adult foraging success, which in turn can alter breeding success (Verhulst and others, 2001). Furthermore, human activity can potentially cause colony failure when disturbance prevents the initiation of nesting (Hatch, 2002). There is management concern about the susceptibility of breeding birds to disturbance from human activities, but little historical data has been collected on the distribution of ground-nesting marine birds in Glacier Bay. This report summarizes results obtained during two years of a three-year study to determine the distribution of ground-nesting marine birds in Glacier Bay, and the potential for human disturbance of those nesting birds.

  5. Optimal Foraging by Birds: Experiments for Secondary & Postsecondary Students

    Science.gov (United States)

    Pecor, Keith W.; Lake, Ellen C.; Wund, Matthew A.

    2015-01-01

    Optimal foraging theory attempts to explain the foraging patterns observed in animals, including their choice of particular food items and foraging locations. We describe three experiments designed to test hypotheses about food choice and foraging habitat preference using bird feeders. These experiments can be used alone or in combination and can…

  6. Foraging behavior of selected insectivorous birds in Cauvery Delta region of Nagapattinam District, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    S. Asokan

    2010-02-01

    Full Text Available This paper reports the foraging behavior of five insectivorous birds, namely White-breasted Kingfisher Halcyon smyrnensis, Small Bee-eater Merops orientalis, Indian Roller Coracias benghalensis, Common Myna Acridotheres tristis and Black Drongo Dicrurus macrocercus in Nagapattinam District of Tamil Nadu, India. The birds used a variety of perch types for hunting insect prey; in general the electric power line was a common perch type used by all species except the Common Myna. The perching and foraging height used by birds were classified into 3 meter categories, up to 12m. Aerial feeding or hawking in Bee-eaters and ground feeding in Common Mynas were major feeding techniques, recorded 68% and 86% of the time respectively. The other three species used gleaning as a feeding technique. The highest niche overlap was recorded between Indian Rollers and Black Drongos and between White-breasted Kingfishers and Indian Rollers.

  7. Testing Optimal Foraging Theory Using Bird Predation on Goldenrod Galls

    Science.gov (United States)

    Yahnke, Christopher J.

    2006-01-01

    All animals must make choices regarding what foods to eat, where to eat, and how much time to spend feeding. Optimal foraging theory explains these behaviors in terms of costs and benefits. This laboratory exercise focuses on optimal foraging theory by investigating the winter feeding behavior of birds on the goldenrod gall fly by comparing…

  8. To walk or to fly? How birds choose among foraging modes

    Science.gov (United States)

    Bautista, Luis M.; Tinbergen, Joost; Kacelnik, Alejandro

    2001-01-01

    We test the predictive value of the main energetic currencies used in foraging theory using starlings that choose between two foraging modes (walking versus flying). Walking is low-cost, low-yield, whereas flying is the opposite. We fixed experimentally, at 11 different values, the amount of flight required to get one food reward, and for each flight cost value, we titrated the amount of walking until the birds showed indifference between foraging modes. We then compared the indifference points to those predicted by gross rate of gain over time, net rate of gain over time, and the ratio of gain to expenditure (efficiency). The results for the choice between modes show strong qualitative and quantitative support for net rate of gain over time over the alternatives. However, the birds foraged for only a fraction of the available time, indicating that the choice between foraging and resting could not be explained by any of these currencies. We suggest that this discrepancy could be accounted for functionally because nonenergetic factors such as predation risk may differ between resting and foraging in any mode but may not differ much between foraging modes, hence releasing the choice between foraging modes from the influence of such factors. Alternatively, the discrepancy may be attributable to the use of predictable (rather than stochastic) ratios of effort per prey in our experiment, and it may thus be better understood with mechanistic rather than functional arguments. PMID:11158599

  9. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms

    DEFF Research Database (Denmark)

    Hald, Birthe; Skov, Marianne Nielsine; Nielsen, Eva Møller

    2016-01-01

    . The farm environment provides attractive foraging and breeding habitats for some bird species reported to carry thermophilic Campylobacter spp. We investigated the Campylobacter spp. carriage rates in 52 wild bird species present on 12 Danish farms, sampled during a winter and a summer season, in order...... feeding on a diet of animal or mixed animal and vegetable origin, foraging on the ground and vegetation in close proximity to livestock stables were more likely to carry Campylobacter spp. in both summer (P birds foraging further away from the farm or in the air. Age...... food of animal or mixed animal and vegetable origin and foraging on the ground close to livestock were more likely to carry Campylobacter spp. than those foraging further away or hunting in the air. These findings suggest that wild birds may play a role in sustaining the epidemiology of Campylobacter...

  10. Use of Urban Marine Habitats by Foraging Wading Birds

    Science.gov (United States)

    Wading birds that utilize coastal habitats may be at risk from increasing urbanization near their foraging and stopover sites. However, the relative importance of human disturbance in the context of other landscape and biological factors that may be influencing their distributio...

  11. How birds direct impulse to minimize the energetic cost of foraging flight

    Science.gov (United States)

    Chin, Diana; Lentink, David

    2017-11-01

    Foraging arboreal birds frequently hop and fly between branches by extending long-jumps with a few wingbeats. Their legs transfer impulse to the branch during takeoff and landing, and their wings transfer impulse to the air to support their bodyweight during flight. To determine the mechanical energy tradeoffs of this bimodal locomotion, we studied how Pacific parrotlets transfer impulse during voluntary perch-to-perch flights. We tested five foraging flight variations by varying the inclination and distance between instrumented perches inside a novel aerodynamic force platform. This setup enables direct, time-resolved in vivo measurements of both leg and wing forces, which we combined with high-speed kinematics to develop a new bimodal long-jump and flight model. The model demonstrates how parrotlets direct their leg impulse to minimize the mechanical energy needed for each flight, and further shows how even a single proto-wingbeat would have significantly lengthened the long-jump of foraging arboreal dinosaurs. By directing jumps and flapping their wings, both extant and ancestral birds could thus improve foraging effectiveness. Similarly, bimodal robots could also employ these locomotion strategies to traverse cluttered environments more effectively.

  12. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats

    Directory of Open Access Journals (Sweden)

    Nor Atiqah Norazlimi

    2015-01-01

    Full Text Available A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus, Common redshank (Tringa totanus, Whimbrel (Numenius phaeopus, and Little heron (Butorides striata and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder. The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R=0.443, p<0.05, bill size and prey size (R=-0.052, p<0.05, bill size and probing depth (R=0.42, p=0.003, and leg length and water/mud depth (R=0.706, p<0.005. A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm and species (H=15.96, p=0.0012. Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  13. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2008-05-01

    The ability to map the relationship between ecological outcomes and hydrologic conditions in the Everglades National Park is a key building block for the restoration program, a primary goal of which is to improve habitat for wading bird species and to promote nesting. This paper reports on a model linking wading bird foraging numbers to hydrologic conditions in the Park We demonstrate that seasonal hydrologic statistics derived from a single water level recording site are a) well correlated with water depths throughout most areas of the Park, and b) are effective as predictors of Great Egret and White Ibis foraging numbers at the end of the nesting season when using a nonlinear Bayesian Hierarchical model that permits the estimation of a conditional distribution of bird populations given the seasonal statistics of stage at the index location. Model parameters are estimated using a Markov Chain Monte Carlo procedure. Parameter and model uncertainty are both assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the recession rate, and the numbers of reversals in the recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the seasonal production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of wading bird foraging numbers showing low frequency oscillations in response to decadal and multi-decadal fluctuations in hydroclimatic conditions.

  14. A simple technique to manipulate foraging costs in seed-eating birds

    NARCIS (Netherlands)

    Koetsier, Egbert; Verhulst, Simon

    Food availability is a key factor in ecology and evolution, but available techniques to manipulate the effort to acquire food in vertebrates are technically challenging and/or labour intensive. We present a simple technique to increase foraging costs in seed-eating birds that can be applied with

  15. Sexy birds are superior at solving a foraging problem.

    Science.gov (United States)

    Mateos-Gonzalez, Fernando; Quesada, Javier; Senar, Juan Carlos

    2011-10-23

    Yellow, red or orange carotenoid-based colorations in male birds are often a signal to prospecting females about body condition, health status and ability to find food. However, this general 'ability to find food' has never been defined. Here we show that more brightly ornamented individuals may also be more efficient when foraging in novel situations. The results highlight the fact that evolution may have provided females tools to evaluate cognitive abilities of the males.

  16. Predicting foraging wading bird populations in Everglades National Park from seasonal hydrologic statistics under different management scenarios

    Science.gov (United States)

    Kwon, Hyun-Han; Lall, Upmanu; Engel, Vic

    2011-09-01

    The ability to map relationships between ecological outcomes and hydrologic conditions in the Everglades National Park (ENP) is a key building block for their restoration program, a primary goal of which is to improve conditions for wading birds. This paper presents a model linking wading bird foraging numbers to hydrologic conditions in the ENP. Seasonal hydrologic statistics derived from a single water level recorder are well correlated with water depths throughout most areas of the ENP, and are effective as predictors of wading bird numbers when using a nonlinear hierarchical Bayesian model to estimate the conditional distribution of bird populations. Model parameters are estimated using a Markov chain Monte Carlo (MCMC) procedure. Parameter and model uncertainty is assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the average dry season water level, and the numbers of reversals from the dry season recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of foraging bird numbers showing low frequency oscillations in response to decadal fluctuations in hydroclimatic conditions. Simulations of water levels at the index location used in the Bayesian model under alternative water management scenarios allow the posterior probability distributions of the number of foraging birds to be compared, thus providing a mechanism for linking management schemes to seasonal rainfall forecasts.

  17. Recreational Trails Reduce the Density of Ground-Dwelling Birds in Protected Areas

    Science.gov (United States)

    Thompson, Bill

    2015-05-01

    Recreational disturbance associated with trails has been identified as one of the major factors causing a decline of native biodiversity within protected areas. However, despite the negative impacts that recreation can have on biodiversity, providing public access to nature is critical for the future of the conservation of biodiversity. As such, many protected area managers are looking for tools to help maintain a balance between public access and biodiversity conservation. The objectives of this study were to examine the impacts of recreational trails on forest-dwelling bird communities in eastern North America, identify functional guilds which are particularly sensitive to recreational trails, and derive guidelines for trail design to assist in managing the impacts of recreational trails on forest-dwelling birds. Trails within 24 publicly owned natural areas were mapped, and breeding bird communities were described with the use of point count surveys. The density of forest birds, particularly of those species which nest or forage on the ground, were significantly positively influenced by the amount of trail-free refuge habitat. Although management options to control trail use in non-staffed protected areas are limited, this study suggests that protected area managers could design and maintain a trail network that would minimize impacts on resident wildlife, while providing recreational opportunities for visitors, by designing their trail network to maximize the area of trail-free habitat.

  18. Recreational trails reduce the density of ground-dwelling birds in protected areas.

    Science.gov (United States)

    Thompson, Bill

    2015-05-01

    Recreational disturbance associated with trails has been identified as one of the major factors causing a decline of native biodiversity within protected areas. However, despite the negative impacts that recreation can have on biodiversity, providing public access to nature is critical for the future of the conservation of biodiversity. As such, many protected area managers are looking for tools to help maintain a balance between public access and biodiversity conservation. The objectives of this study were to examine the impacts of recreational trails on forest-dwelling bird communities in eastern North America, identify functional guilds which are particularly sensitive to recreational trails, and derive guidelines for trail design to assist in managing the impacts of recreational trails on forest-dwelling birds. Trails within 24 publicly owned natural areas were mapped, and breeding bird communities were described with the use of point count surveys. The density of forest birds, particularly of those species which nest or forage on the ground, were significantly positively influenced by the amount of trail-free refuge habitat. Although management options to control trail use in non-staffed protected areas are limited, this study suggests that protected area managers could design and maintain a trail network that would minimize impacts on resident wildlife, while providing recreational opportunities for visitors, by designing their trail network to maximize the area of trail-free habitat.

  19. Mercury in Forage Fish from Mexico and Central America: Implications for Fish-Eating Birds.

    Science.gov (United States)

    Elliott, John E; Kirk, David A; Elliott, Kyle H; Dorzinsky, Jessica; Lee, Sandi; Inzunza, Ernesto Ruelas; Cheng, Kimberly M T; Scheuhammer, Tony; Shaw, Patrick

    2015-11-01

    Mercury (Hg) is a global contaminant of aquatic food chains. Aquatic birds, such as the osprey (Pandion haliaetus), with migratory populations breeding in Canada and the northern United States and wintering in the Central and South America, can be exposed to mercury on both the breeding and wintering ranges. We examined Hg levels in 14 fish taxa from 24 osprey wintering sites identified from satellite telemetry. Our main goal was to determine whether fish species that feature in the diet of overwintering and resident fish-eating birds reached toxicity thresholds for Hg. Mean Hg levels in fish whole carcasses ranged from a high of 0.18 µg g(-1) (wet weight) in Scomberomorus sierra to a low of 0.009 µg g(-1) in Catostomidae. Average Hg levels were within published toxicity threshold values in forage fish for only two sites in Mexico (Puerto Vallarta and San Blas Estuary), and all were marine species, such as mackerel (Scomberomorus sierra), sea catfish (Ariopus spp.), and sardinas species (Centropomus spp.). Except for one sample from Nicaragua, sea catfish from Puerto Morazan, none of the fish from sites in Central America had Hg levels which exceeded the thresholds. Nonmetric multidimensional scaling revealed geographical differences in Hg levels with significant pairwise differences between sites along the Pacific Ocean (Mexico) versus the Bay of Campeche, partly due to differences in species composition of sampled fish (and species distributions). Hg increased with trophic level, as assessed by nitrogen stable isotope ratios (δ(15)N but not δ(13)C), in freshwater and marine, but not estuarine, environments. Hg concentrations in forage fish do not account for the elevated Hg reported for many osprey populations on the breeding grounds, thus primary sources of contamination appear to be in the north.

  20. Grain, silage and forage sorghum hybrid resistance to insect and bird damage, 2017

    Science.gov (United States)

    A total of 32 grain and 30 forage type sorghum hybrids were evaluated for resistance to insect, disease, and bird damage in Tifton, Georgia. These hybrids plus 33 silage type and 5 pearl millet hybrids also were evaluated for sugarcane aphid resistance near Griffin, Georgia. A total of 10 insect pes...

  1. Physiological effects of increased foraging effort in a small passerine.

    Science.gov (United States)

    Yap, Kang Nian; Kim, Oh Run; Harris, Karilyn C; Williams, Tony D

    2017-11-15

    Foraging to obtain food, either for self-maintenance or at presumably elevated rates to provide for offspring, is thought to be an energetically demanding activity but one that is essential for fitness (higher reproductive success and survival). Nevertheless, the physiological mechanisms that allow some individuals to support higher foraging performance, and the mechanisms underlying costs of high workload, remain poorly understood. We experimentally manipulated foraging behaviour in zebra finches ( Taeniopygia guttata ) using the technique described by Koetsier and Verhulst (2011) Birds in the 'high foraging effort' (HF) group had to obtain food either while flying/hovering or by making repeated hops or jumps from the ground up to the feeder, behaviour typical of the extremely energetically expensive foraging mode observed in many free-living small passerines. HF birds made significantly more trips to the feeder per 10 min, whereas control birds spent more time (perched) at the feeder. Despite this marked change in foraging behaviour, we documented few short- or long-term effects of 'training' (3 days and 90 days of 'training', respectively) and some of these effects were sex specific. There were no effects of treatment on basal metabolic rate, haematocrit, haemoglobin or plasma glycerol, triglyceride and glucose levels, and masses of kidney, crop, large intestine, small intestine, gizzard and liver. HF females had higher masses of flight muscle, leg muscle, heart and lung compared with controls. In contrast, HF males had lower heart mass than controls and there were no differences for other organs. When both sexes were pooled, there were no effects of treatment on body composition. Finally, birds in the HF treatment group had higher levels of reactive oxygen metabolites (dROMs) and, consequently, although treatment did not affect total anti-oxidant capacity, birds in the HF treatment group had higher oxidative stress. © 2017. Published by The Company of

  2. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2007-12-01

    A goal of the Everglades National Park (ENP) restoration project is to ensure that the ecological health of the ENP improves as a direct result of management activities. Achieving hydrologic targets through the proper timing and amount of releases from control structures is a first step in the management process. Significant climate and weather variations in the region influence the ability to make releases and also determine the ecological outcomes. An assessment of the relative impact of climate variations and water releases to ENP in determining ecological outcomes is consequently a key to the evaluation of the success or failure of any restoration plan. Seasonal water depths in ENP depend on managed surface water releases from control structures and on direct rainfall. Here we link wading bird foraging patterns - a fundamental aspect of Everglades' ecology - to hydrologic management and climate variability in the National Park. Our objective is multifold. First, we relate the water levels at P33 and Shark Slough to the synoptic hydrologic conditions. Second, we develop a statistical model relating water levels at a station in central Shark Slough (P33) to wading birds foraging patterns throughout ENP. We attempt to apply a Hierarchical Bayesian scheme to a time series of wading bird to provide an uncertainty distribution of the population over specified time periods given hydrologic condition. Third, we develop a set of hydrologic index derived by recorded water level at P33 for a use of the statistical model of wading birds as an input. Our study will focus on great egret and white ibis that are major species among wading birds in the ENP. The great egret and white ibis prediction predicted by the model using the proposed predictors exhibits strong correlation with the observed streamflow, with an correlation 0.8.

  3. Energy beyond food: foraging theory informs time spent in thermals by a large soaring bird.

    Directory of Open Access Journals (Sweden)

    Emily L C Shepard

    Full Text Available Current understanding of how animals search for and exploit food resources is based on microeconomic models. Although widely used to examine feeding, such constructs should inform other energy-harvesting situations where theoretical assumptions are met. In fact, some animals extract non-food forms of energy from the environment, such as birds that soar in updraughts. This study examined whether the gains in potential energy (altitude followed efficiency-maximising predictions in the world's heaviest soaring bird, the Andean condor (Vultur gryphus. Animal-attached technology was used to record condor flight paths in three-dimensions. Tracks showed that time spent in patchy thermals was broadly consistent with a strategy to maximise the rate of potential energy gain. However, the rate of climb just prior to leaving a thermal increased with thermal strength and exit altitude. This suggests higher rates of energetic gain may not be advantageous where the resulting gain in altitude would lead to a reduction in the ability to search the ground for food. Consequently, soaring behaviour appeared to be modulated by the need to reconcile differing potential energy and food energy distributions. We suggest that foraging constructs may provide insight into the exploitation of non-food energy forms, and that non-food energy distributions may be more important in informing patterns of movement and residency over a range of scales than previously considered.

  4. Relationship of coarse woody debris to arthropod Availability for Red-Cockaded Woodpeckers and other bark-foraging birds on loblolly pine boles.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.

    2008-04-01

    Abstract This study determined if short-term removal of coarse woody debris would reduce prey available to red-cockaded woodpeckers (Picoides borealis Vieillot) and other bark-foraging birds at the Savannah River Site in Aiken and Barnwell counties, SC. All coarse woody debris was removed from four 9-ha plots of mature loblolly pine (Pinus taeda L.) in 1997 and again in 1998. We sampled arthropods in coarse woody debris removal and control stands using crawl traps that captured arthropods crawling up tree boles, burlap bands wrapped around trees, and cardboard panels placed on the ground. We captured 27 orders and 172 families of arthropods in crawl traps whereas 20 arthropod orders were observed under burlap bands and cardboard panels. The most abundant insects collected from crawl traps were aphids (Homoptera: Aphididae) and ants (Hymenoptera: Forrnicidae). The greatest biomass was in the wood cockroaches (Blattaria: Blattellidae), caterpillars (Lepidoptera) in the Family Noctuidae, and adult weevils (Coleoptera: Curculionidae). The most common group observed underneath cardboard panels was lsoptera (termites), and the most common taxon under burlap bands was wood cockroaches. Overall, arthropod abundance and biomass captured in crawl traps was similar in control and removal plots. In contrast, we observed more arthropods under burlap bands (mean & SE; 3,021.5 k 348.6, P= 0.03) and cardboard panels (3,537.25 k 432.4, P= 0.04) in plots with coarse woody debris compared with burlap bands (2325 + 171.3) and cardboard panels (2439.75 + 288.9) in plots where coarse woody debris was removed. Regression analyses showed that abundance beneath cardboard panels was positively correlated with abundance beneath burlap bands demonstrating the link between abundance on the ground with that on trees. Our results demonstrate that short-term removal of coarse woody debris from pine forests reduced overall arthropod availability to bark-foraging birds.

  5. King eider foraging effort during the pre-breeding period in Alaska

    Science.gov (United States)

    Oppel, Steffen; Powell, Abby N.; Butler, Malcolm G.

    2011-01-01

    For reproduction, many arctic-nesting migratory birds rely on nutrients obtained on the breeding grounds, so they devote sufficient time to foraging immediately prior to nesting. However, little is known about the increase in foraging effort necessary to meet the energetic requirements of reproduction. In early June 2006 and 2008, we quantified the proportion of time spent foraging before breeding by a large sea duck, the King Eider (Somateria spectabilis), on its breeding grounds in northern Alaska. During >235 hours of behavioral observations, both male and female King Eiders spent >50% of the day loafing (resting, sleeping, comfort behavior, or being alert). Females foraged on average 30% of the time (mean 7.2 hr day-1,95% CI 6.0-8.4 hr day-1), three times as much as males (9%; 2.3 hr day-1, 95% CI 1.5–2.8 hr day-1). The most common prey in ponds where the eiders foraged were chironomid larvae and worms ranging in length from 1 to 30 mm. If the King Eider's daily energy expenditure on its breeding grounds is similar to values published for related species, it would need to ingest only 0.2–0.6 g dry mass of invertebrates per minute of foraging to meet its energetic requirements. Males did not lose body mass before breeding, and we assume that their foraging effort was sufficient for energy balance. Therefore, female King Eiders appear to triple their foraging effort over maintenance requirements to meet the energetic challenges of egg formation.

  6. Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds.

    Science.gov (United States)

    Peck, Hannah L; Pringle, Henrietta E; Marshall, Harry H; Owens, Ian P F; Lord, Alexa M

    2014-05-01

    Resource competition is one potential behavioral mechanism by which invasive species can impact native species, but detecting this competition can be difficult due to the interactions that variable environmental conditions can have on species behavior. This is particularly the case in urban habitats where the disturbed environment can alter natural behavior from that in undisturbed habitats. The rose-ringed parakeet ( Psittacula krameri ), is an increasingly common invasive species, predominantly associated with large urban centers. Using an experimental approach, we tested the behavioral responses of native garden birds in response to the presence of a rose-ringed parakeet versus the presence of a similarly sized and dominant native bird, the great spotted woodpecker ( Dendrocopos major ). Parakeet presence significantly reduced feeding rates and increased vigilance among native birds compared with our control treatments. Of visits made by native birds in the presence of a parakeet, feeding was more likely to occur in sites within the parakeet range compared with sites outside, suggesting some habituation of native birds has occurred following prior exposure to parakeets but overall foraging behavior is still disrupted. The results of our study suggest that nonnative species can have complex and subtle impacts on native fauna and show that a nonnative competitor can impact native species simply through their presence near resources.

  7. Avian Influenza Virus Surveillance in South-Central Spain Using Fecal Samples of Aquatic Birds Foraging at Landfills

    Directory of Open Access Journals (Sweden)

    Andreia Bárbara

    2017-10-01

    Full Text Available Aquatic wild birds have been intensively studied to better understand their role in avian influenza virus (AIV maintenance and spread. To date, AIV surveillance has primarily focused on natural aquatic environments where different bird species aggregate and viral survival is enhanced. However, artificial habitats such as landfills are attracting substantial numbers of wild birds, AIV reservoir species included. The use of landfills as a predictable food source has significantly influenced population size, migratory traits, and feeding behavior of white storks (Ciconia ciconia and black-headed gulls (Chroicocephalus ridibundus among others. Considering the proximity of landfills to urban settlements and frequently poultry-farms, targeted monitoring of AIV in bird species that forage at landfills but are known to also frequent urban and agricultural habitats could be a useful means for monitoring of AIV, especially during periods of bird aggregation. During the wintering season 2014–2015, the prevalence of AIV in five avian species at two landfills in South-Central Spain was explored by rRT-PCR and species related temporal variation in AIV prevalence determined. We collected and tested 1,186 fresh fecal samples from white storks (N = 689, cattle egrets (Bubulcus ibis, N = 116 and mixed flocks of gulls (N = 381 as well as cloacal and oral swabs from five birds found dead. Seven samples contained AIV, five from gulls and one each from a stork and a cattle egret. Overall, AIV prevalence was 0.60%. No significant temporal variation was observed in AIV prevalence. Prevalence differed significantly among the sampled taxonomic groups, being highest in gulls (1.31%. H16N3 subtype was detected from a cattle egret and H11N9 subtype from a white stork, whereas gulls harbored both subtypes in addition to H11N3 subtype. H16 subtype detection in a cattle egret evidences its host range may not be restricted to gulls. Our results indicate that wild

  8. The Effects of Different Forest Loggings on Forest Birds Community Composition in Shastkolateh Forest, Gorgan

    Directory of Open Access Journals (Sweden)

    F. Parsaei

    2014-06-01

    Full Text Available The species composition of a bird community is dependent upon many factors. Within any geographic area, vegetation structure may be the most important factor. The changes of bird community composition based on foraging behavior in relation to 3 different harvesting systems, including strip cutting, group selection logging, and single tree selection logging, was evaluated in a virgin area in this study. Birds and environmental variables were detected within 103 circle sampling plots with 25m radius. Based on the results, 4 groups of birds were observed in treatments based on the foraging behavior. Group 1 was ground foragers, group 2 consisted of foliage gleaning, group 3 included flycatchers, and group 4 represented bark foraging. The first group had the highest abundance in the strip treatment. The second group in group selection treatment, and the third and fourth groups had the highest abundance in the virgin area and then, in single tree selection treatment. The first group showed the highest correlation with shrub and herb or grass layer, stone cover and the number of trees 10-20m in height. The second, third and fourth groups showed the highest correlation with the number of trees>20m in height, basal areas, dead trees number, and the number of fagus trees. The results showed the single cutting treatment had a relatively minor effect on mature forest bird species and were more appropriate and sustainable methods to reduce the negative effects of forest harvesting on the birds.

  9. Four Insectivorous Birds in Search of Foraging Niche in and Around an Agricultural Ecosystem of Nalgonda District of Telangana, India

    Directory of Open Access Journals (Sweden)

    Buddi Laxmi Narayana

    2016-04-01

    Full Text Available Foraging niche of Small Green Bee-eater Merops orientalis, Indian Roller Coracias benghalensis, Common Myna Acridotheres tristis and Black Drongo Dicrurus macrocercus was studied in and around agricultural landscapes of Sherpally, Nalgonda District of Telangana, India. Data on perch types, perching height, foraging height, foraging substrates types and foraging methods were transformed into percent use. Small Green Bee-eater predominantly perched on electric power lines (67.21%, Common Myna used plants (75.44% as a substrate and gleaning was the common feeding technique used by all the birds with height of 0-3m, Indian Roller fed mostly at 3-6m (30.91%. Black Drongo and Indian Roller had the highest niche overlap (O=0.96 for perch types while the lowest overlap was observed for small Green Bee-eater and Common Myna (O=0.34 in the foraging substrate.

  10. Composition of Mix Species Foraging Flocks of Birds in Riverstan of Montane Region, Sri Lanka

    Directory of Open Access Journals (Sweden)

    W.G.D.D.M. Shermila

    2013-04-01

    Full Text Available Montane zone mixed-species bird flock system is distinct from that of low-land wet zone of SriLanka, although some species are present in both systems. The present study identified the mixed speciesflocks of birds in Riverstan at Knuckles Region, Sri Lanka. Monthly transect counts and opportunisticobservations were made between January and May, 2012. A total of 78 flocks and 27 bird species wereencountered at Riverstan during the study period. The flock size varied between 2 to 13 species and 4 to58 individuals. The mean number of species per flock was 6.03 ± 2.25 and the mean number ofindividuals in a flock was 18.41±9.87. The flock size was positively correlated with the number of speciespresent (r = 0.756, P <0.05. Grey-headed Canary Flycatcher was the most abundant species (mean2.68±1.02 birds per flocks while Sri Lanka White-eye was the most frequent species (mean 5.69±3.92birds per flocks. Grey-headed Canary Flycatcher and Sri Lanka Scimitar-babbler were the nuclear speciesin Riverstan. The leading species were Sri Lanka white-eye and Sri Lanka Yellow-eared Bulbul. Differentbird species used different heights within flocks.Keywords: Mixed-species flock, Nuclear species, Abundance, Foraging flocks

  11. Food for early succession birds: relationships among arthropods, shrub vegetation, and soil

    Science.gov (United States)

    Richard N. Conner; Daniel Saenz; D. Brent Burt

    2006-01-01

    During spring and early summer, shrub- and herbaceous-level vegetation provides nesting and foraging habitat for many shrub-habitat birds. We examined relationships among arthropod biomass and abundance, foliage leaf surface area and weight, vegetation ground cover, soil characteristics, relative humidity, and temperature to evaluate what factors may influence...

  12. Visual field shape and foraging ecology in diurnal raptors.

    Science.gov (United States)

    Potier, Simon; Duriez, Olivier; Cunningham, Gregory B; Bonhomme, Vincent; O'Rourke, Colleen; Fernández-Juricic, Esteban; Bonadonna, Francesco

    2018-05-18

    Birds, particularly raptors, are believed to forage primarily using visual cues. However, raptor foraging tactics are highly diverse - from chasing mobile prey to scavenging - which may reflect adaptations of their visual systems. To investigate this, we studied the visual field configuration of 15 species of diurnal Accipitriformes that differ in such tactics, first focusing on the binocular field and blind area by using a single traits approach, and then exploring the shape of the binocular field with morphometric approaches. While the maximum binocular field width did not differ in species of different foraging tactics, the overall shape of their binocular fields did. In particular, raptors chasing terrestrial prey (ground predators) had a more protruding binocular field and a wider blind area above the head than did raptors chasing aerial or aquatic prey and obligate scavengers. Ground predators that forage on mammals from above have a wide but short bill - which increases ingestion rate - and large suborbital ridge to avoid sun glare. This may explain the protruding binocular field and the wide blind area above the head. By contrast, species from the two other groups have long but narrow bills used to pluck, flake or tear food and may need large visual coverage (and reduced suborbital ridges) to increase their foraging efficiency ( e.g. using large visual coverage to follow the escaping prey in three dimensions or detect conspecifics). We propose that binocular field shape is associated with bill and suborbital ridge shape and, ultimately, foraging strategies. © 2018. Published by The Company of Biologists Ltd.

  13. Humpback whale song and foraging behavior on an antarctic feeding ground.

    Directory of Open Access Journals (Sweden)

    Alison K Stimpert

    Full Text Available Reports of humpback whale (Megaptera novaeangliae song chorusing occurring outside the breeding grounds are becoming more common, but song structure and underwater behavior of individual singers on feeding grounds and migration routes remain unknown. Here, ten humpback whales in the Western Antarctic Peninsula were tagged in May 2010 with non-invasive, suction-cup attached tags to study foraging ecology and acoustic behavior. Background song was identified on all ten records, but additionally, acoustic records of two whales showed intense and continuous singing, with a level of organization and structure approaching that of typical breeding ground song. The songs, produced either by the tagged animals or close associates, shared phrase types and theme structure with one another, and some song bouts lasted close to an hour. Dive behavior of tagged animals during the time of sound production showed song occurring during periods of active diving, sometimes to depths greater than 100 m. One tag record also contained song in the presence of feeding lunges identified from the behavioral sensors, indicating that mating displays occur in areas worthy of foraging. These data show behavioral flexibility as the humpbacks manage competing needs to continue to feed and to prepare for the breeding season during late fall. This may also signify an ability to engage in breeding activities outside of the traditional, warm water breeding ground locations.

  14. GPS tracking devices reveal foraging strategies of black-legged kittiwakes

    Science.gov (United States)

    Kotzerka, Jana; Garthe, Stefan; Hatch, Scott A.

    2010-01-01

    The Black-legged Kittiwake Rissa tridactyla is the most abundant gull species in the world, but some populations have declined in recent years, apparently due to food shortage. Kittiwakes are surface feeders and thus can compensate for low food availability only by increasing their foraging range and/or devoting more time to foraging. The species is widely studied in many respects, but long-distance foraging and the limitations of conventional radio telemetry have kept its foraging behavior largely out of view. The development of Global Positioning System (GPS) loggers is advancing rapidly. With devices as small as 8 g now available, it is possible to use this technology for tracking relatively small species of oceanic birds like kittiwakes. Here we present the first results of GPS telemetry applied to Black-legged Kittiwakes in 2007 in the North Pacific. All but one individual foraged in the neritic zone north of the island. Three birds performed foraging trips only close to the colony (within 13 km), while six birds had foraging ranges averaging about 40 km. The maximum foraging range was 59 km, and the maximum distance traveled was 165 km. Maximum trip duration was 17 h (mean 8 h). An apparently bimodal distribution of foraging ranges affords new insight on the variable foraging behaviour of Black-legged Kittiwakes. Our successful deployment of GPS loggers on kittiwakes holds much promise for telemetry studies on many other bird species of similar size and provides an incentive for applying this new approach in future studies.

  15. Foraging niche segregation in Malaysian babblers (Family: Timaliidae.

    Directory of Open Access Journals (Sweden)

    Mohammad Saiful Mansor

    Full Text Available Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i how these babblers forage in the wild and use vegetation to obtain food, and ii how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.

  16. Foraging niche segregation in Malaysian babblers (Family: Timaliidae).

    Science.gov (United States)

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.

  17. Foraging niche segregation in Malaysian babblers (Family: Timaliidae)

    Science.gov (United States)

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause’ law of competitive exclusion, which states two species occupying the same niche will not stably coexist. PMID:28253284

  18. Stable Isotopes Reveal Long-Term Fidelity to Foraging Grounds in the Galapagos Sea Lion (Zalophus wollebaeki.

    Directory of Open Access Journals (Sweden)

    Massimiliano Drago

    Full Text Available Most otariids have colony-specific foraging areas during the breeding season, when they behave as central place foragers. However, they may disperse over broad areas after the breeding season and individuals from different colonies may share foraging grounds at that time. Here, stable isotope ratios in the skull bone of adult Galapagos sea lions (Zalophus wollebaeki were used to assess the long-term fidelity of both sexes to foraging grounds across the different regions of the Galapagos archipelago. Results indicated that the stable isotope ratios (δ(13C and δ(15N of sea lion bone significantly differed among regions of the archipelago, without any significant difference between sexes and with a non significant interaction between sex and region. Moreover, standard ellipses, estimated by Bayesian inference and used as a measure of the isotopic resource use area at the population level, overlapped widely for the sea lions from the southern and central regions, whereas the overlap of the ellipses for sea lions from the central and western regions was small and non-existing for those from the western and southern regions. These results suggest that males and females from the same region within the archipelago use similar foraging grounds and have similar diets. Furthermore, they indicate that the exchange of adults between regions is limited, thus revealing a certain degree of foraging philopatry at a regional scale within the archipelago. The constraints imposed on males by an expanded reproductive season (~ 6 months, resulting from the weak reproductive synchrony among females, and those imposed on females by a very long lactation period (at least one year but up to three years, may explain the limited mobility of adult Galapagos sea lions of both sexes across the archipelago.

  19. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a south European estuary: improved feeding conditions for northward migrants.

    Directory of Open Access Journals (Sweden)

    Ricardo C Martins

    Full Text Available During the annual cycle, migratory waders may face strikingly different feeding conditions as they move between breeding areas and wintering grounds. Thus, it is of crucial importance that they rapidly adjust their behaviour and diet to benefit from peaks of prey abundance, in particular during migration, when they need to accumulate energy at a fast pace. In this study, we compared foraging behaviour and diet of wintering and northward migrating dunlins in the Tagus estuary, Portugal, by video-recording foraging birds and analysing their droppings. We also estimated energy intake rates and analysed variations in prey availability, including those that were active at the sediment surface. Wintering and northward migrating dunlins showed clearly different foraging behaviour and diet. In winter, birds predominantly adopted a tactile foraging technique (probing, mainly used to search for small buried bivalves, with some visual surface pecking to collect gastropods and crop bivalve siphons. Contrastingly, in spring dunlins generally used a visual foraging strategy, mostly to consume worms, but also bivalve siphons and shrimps. From winter to spring, we found a marked increase both in the biomass of invertebrate prey in the sediment and in the surface activity of worms and siphons. The combination of these two factors, together with the availability of shrimps in spring, most likely explains the changes in the diet and foraging behaviour of dunlins. Northward migrating birds took advantage from the improved feeding conditions in spring, achieving 65% higher energy intake rates as compared with wintering birds. Building on these results and on known daily activity budgets for this species, our results suggest that Tagus estuary provides high-quality feeding conditions for birds during their stopovers, enabling high fattening rates. These findings show that this large wetland plays a key role as a stopover site for migratory waders within the East

  20. Breeding limits foraging time : Evidence of interrupted foraging response from body mass variation in a tropical environment

    NARCIS (Netherlands)

    Nwaogu, Chima J.; Dietz, Maurine W.; Tieleman, B. Irene; Cresswell, Will

    Birds should store body reserves if starvation risk is anticipated; this is known as an ‘interrupted foraging response’. If foraging remains unrestricted, however, body mass should remain low to limit the predation risk that gaining and carrying body reserves entails. In temperate environments mass

  1. A Ground-Nesting Galliform's Response to Thermal Heterogeneity: Implications for Ground-Dwelling Birds.

    Science.gov (United States)

    Carroll, J Matthew; Davis, Craig A; Elmore, R Dwayne; Fuhlendorf, Samuel D

    2015-01-01

    The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.

  2. Application of ground-truth for classification and quantification of bird movements on migratory bird habitat initiative sites in southwest Louisiana: final report

    Science.gov (United States)

    Barrow, Wylie C.; Baldwin, Michael J.; Randall, Lori A.; Pitre, John; Dudley, Kyle J.

    2013-01-01

    This project was initiated to assess migrating and wintering bird use of lands enrolled in the Natural Resources Conservation Service’s (NRCS) Migratory Bird Habitat Initiative (MBHI). The MBHI program was developed in response to the Deepwater Horizon oil spill in 2010, with the goal of improving/creating habitat for waterbirds affected by the spill. In collaboration with the University of Delaware (UDEL), we used weather surveillance radar data (Sieges 2014), portable marine radar data, thermal infrared images, and visual observations to assess bird use of MBHI easements. Migrating and wintering birds routinely make synchronous flights near dusk (e.g., departure during migration, feeding flights during winter). Weather radars readily detect birds at the onset of these flights and have proven to be useful remote sensing tools for assessing bird-habitat relations during migration and determining the response of wintering waterfowl to wetland restoration (e.g., Wetlands Reserve Program lands). However, ground-truthing is required to identify radar echoes to species or species group. We designed a field study to ground-truth a larger-scale, weather radar assessment of bird use of MBHI sites in southwest Louisiana. We examined seasonal bird use of MBHI fields in fall, winter, and spring of 2011-2012. To assess diurnal use, we conducted total area surveys of MBHI sites in the afternoon, collecting data on bird species composition, abundance, behavior, and habitat use. In the evenings, we quantified bird activity at the MBHI easements and described flight behavior (i.e., birds landing in, departing from, circling, or flying over the MBHI tract). Our field sampling captured the onset of evening flights and spanned the period of collection of the weather radar data analyzed. Pre- and post-dusk surveys were conducted using a portable radar system and a thermal infrared camera. Landbirds, shorebirds, and wading birds were commonly found on MBHI fields during diurnal

  3. Does foraging performance change with age in female little penguins (Eudyptula minor?

    Directory of Open Access Journals (Sweden)

    Ilka Zimmer

    Full Text Available Age-related changes in breeding performance are likely to be mediated through changes in parental foraging performance. We investigated the relationship of foraging performance with age in female little penguins at Phillip Island, Australia, during the guard phase of the 2005 breeding season. Foraging parameters were recorded with accelerometers for birds grouped into three age-classes: (1 young, (2 middle age and (3 old females. We found the diving behaviour of middle-aged birds differed from young and old birds. The dive duration of middle age females was shorter than that of young and old birds while their dive effort (measure for dive and post-dive duration relation was lower than that of young ones, suggesting middle-aged birds were in better physical condition than other ones. There was no difference in prey pursuit frequency or duration between age classes, but in the hunting tactic. Females pursued more prey around and after reaching the maximum depth of dives the more experienced they were (old > middle age > young, an energy saving hunting tactic by probably taking advantage of up-thrust momentum. We suggest middle age penguins forage better than young or old ones because good physical condition and foraging experience could act simultaneously.

  4. Status of the GroundBIRD Telescope

    Science.gov (United States)

    Choi, J.; Génova-Santos, R.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Kanno, F.; Karatsu, K.; Kiuchi, K.; Koyano, R.; Kutsuma, H.; Lee, K.; Mima, S.; Minowa, M.; Nagai, M.; Nagasaki, T.; Naruse, M.; Oguri, S.; Okada, T.; Otani, C.; Rebolo, R.; Rubiño-Martín, J.; Sekimoto, Y.; Suzuki, J.; Taino, T.; Tajima, O.; Tomita, N.; Uchida, T.; Won, E.; Yoshida, M.

    2018-01-01

    Our understanding of physics at very early Universe, as early as 10-35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.

  5. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards.

    Directory of Open Access Journals (Sweden)

    Claire Guyot

    Full Text Available Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 -January 2015. At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels. Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of

  6. Status of the GroundBIRD Telescope

    Directory of Open Access Journals (Sweden)

    Choi J.

    2018-01-01

    Full Text Available Our understanding of physics at very early Universe, as early as 10−35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.

  7. Exploiting Scanning Behavior for Predators Can Reduce Rice Damage Caused by Birds

    Directory of Open Access Journals (Sweden)

    Takeshi Honda

    2015-01-01

    Full Text Available Rice is often damaged by birds, especially sparrows, in Asia. Bird nets are sometimes used as countermeasures; however this approach is expensive and labor intensive. For this reason, farmers generally eschew bird nets, even though no alternative countermeasures are available. This study focused on exploiting the bird behavior of scanning for predators to reduce crop damage. When birds forage for seeds on the ground they often stop pecking and briefly raise their heads, apparently to scan for predators. Low visibility habitats increase scanning behavior and increased scanning behavior reduces habitat quality from the bird’s perspective; therefore, this study tested the relationship between rice damage rate and visibility at the periphery of rice fields, where tree sparrows rest after feeding. Overall, low visibility reduced damage to rice. Because visibility was mainly affected by weeds, weed management techniques contribute to crop damage management. To reduce damage, weeding can be decreased; therefore, this technique is cost- and labor-efficient.

  8. Migrations of green turtles (Chelonia mydas between nesting and foraging grounds across the Coral Sea.

    Directory of Open Access Journals (Sweden)

    Tyffen C Read

    Full Text Available Marine megafauna tend to migrate vast distances, often crossing national borders and pose a significant challenge to managers. This challenge is particularly acute in the Pacific, which contains numerous small island nations and thousands of kilometers of continental margins. The green sea turtle, Chelonia mydas, is one such megafauna that is endangered in Pacific waters due to the overexploitation of eggs and adults for human consumption. Data from long-term tagging programs in Queensland (Australia and New Caledonia were analysed to investigate the migrations by C. mydas across the Coral Sea between their nesting site and their feeding grounds. A review of data collected over the last 50 years by different projects identified multiple migrations of C. mydas to and from New Caledonia (n = 97 and indicate that turtles foraging in New Caledonia nest in the Great Barrier Reef (Australia and vice versa. Several explanations exist for turtles exhibiting this energetically costly movement pattern from breeding to distant foraging grounds (1200-2680 km away despite viable foraging habitat being available in the local vicinity. These include hatchling drift, oceanic movements and food abundance predictability. Most of the tag recoveries in New Caledonia belonged to females from the south Great Barrier Reef genetic stock. Some females (n = 2 even showed fidelity to foraging sites located 1200 km away from the nesting site located in New Caledonia. This study also reveals previously unknown migrations pathways of turtles within the Coral Sea.

  9. Foraging traces as an indicator to monitor wild boar impact on ground nesting birds.

    OpenAIRE

    Roda , Fabrice; Roda , Jean-Marc

    2016-01-01

    The successful management of large herbivores requires the monitoring of a set of indicators of ecological change describing animal performance, relative animal abundance, and ungulate impact on habitat. Wild boar populations increases have been spectacular in many countries including France. Wild boars can have a substantial environmental impact on many ecosystem components including birds, but indicators to monitor such impact are currently lacking. In this paper, we examined the usefulness...

  10. Habitat structure and diversity influence the nesting success of an endangered large cavity-nesting bird, the Southern Ground-hornbill

    Directory of Open Access Journals (Sweden)

    Leigh Combrink

    2017-11-01

    Full Text Available Habitat features can have a profound effect on the nesting success of birds. Savannas are often managed with predators and large herbivores as priority species, with little thought to the many bird species that management decisions could affect. Using a data set spanning seven breeding seasons, we examined how nesting success of Southern Ground-hornbills (SGHs Bucorvus leadbeateri in the Kruger National Park varied as a result of various environmental and habitat factors within a radius of 3 km surrounding the nest site. Identifying which factors affect nesting success will allow for targeted management efforts to ensure the long-term survival of SGHs both within and outside of protected areas. Habitat structure and diversity of the vegetation surrounding the nest were the most influential factors on SGH nesting success. SGHs require open grassy areas for foraging and areas with large trees for nesting. Savanna habitat drivers such as elephants and fire should be managed to ensure that sufficient large trees are able to establish in the landscape and to control for bush encroachment. This is especially important in areas earmarked for SGH reintroductions. Nest sites of SGHs should be monitored to mitigate any structural changes in the habitat surrounding the nests. Nests should be modified or artificial nest sites provided, where nests have been damaged or lost, to ensure the continued presence of these birds in African savannas. Conservation implications: Habitat structure and diversity surrounding Southern Groundhornbill nests has a significant impact on their nesting success. This highlights the importance of monitoring vegetation change in savanna habitats where they occur. Management of savanna areas should take factors that influence bush encroachment, such as fire and elephants, into account to ensure the long-term persistence of these birds.

  11. Stable Isotopic Insights into the Foraging Ecology of an Endangered Marine Predator, the Hawaiian Petrel

    Science.gov (United States)

    Wiley, A. E.; Ostrom, P. H.; James, H. F.

    2010-12-01

    Seabirds play vital roles in their ecosystems, both as predators in their oceanic foraging grounds and conduits of marine nutrients to island nesting sites. Despite growing evidence that food availability limits seabird populations, characterization of the diet and even foraging locations of some seabird species remains elusive. Here, we use stable carbon (δ13C) and nitrogen (δ15N) isotopes to study the foraging ecology of an endangered and poorly known seabird, the Hawaiian petrel (Pterodroma sandwichensis). This species nests solely on the main Hawaiian Islands but forages widely across the NE Pacific, sometimes traveling over 10,000km on single foraging trips. δ13C and δ15N values vary with trophic level and at the base of food webs throughout the marine range of the Hawaiian petrel. Thus, we are able to use isotope signatures in modern and ancient petrel tissues to track spatial and temporal variation in foraging location and diet. We find strong evidence of foraging segregation between populations, with hatch-year birds from the island of Hawaii exhibiting feather δ15N and δ13C values over 3‰ and 1 ‰ higher, respectively, than those found in Maui and Kauai hatch-year birds. There is also significant variation in δ15N values between feathers from Kauai, Hawaii, and Maui adults, indicating additional foraging segregation during the winter molt. To distinguish between the effects of trophic level and foraging location, we relate our data to those from seabirds with known diet and foraging location, as well as to previous characterizations of isoscapes in the NE Pacific and at-sea observations of our study species. Finally, we track Hawaiian petrel foraging ecology back in time through examination of stable isotope values in historical feathers and ancient bone collagen. We find that, despite a species-wide decline in δ15N values (consistent with trophic level decline), populations have maintained divergent isotopic niches through at least the past 1

  12. Foraging behavior of three passerines in mature bottomland hardwood forests during summer.

    Energy Technology Data Exchange (ETDEWEB)

    Buffington, J., Matthew; Kilgo, John, C.; Sargent, Robert, A.; Miller, Karl, V.; Chapman, Brian, R.

    2001-08-01

    Attention has focused on forest management practices and the interactions between birds and their habitat, as a result of apparent declines in populations of many forest birds. Although avian diversity and abundance have been studied in various forest habitats, avian foraging behavior is less well known. Although there are published descriptions of avian foraging behaviors in the western United States descriptions from the southeastern United States are less common. This article reports on the foraging behavior of the White-eyed Vireo, Northern Parula, and Hooded Warbler in mature bottomland hardwood forests in South Carolina.

  13. Mercury bioaccumulation and risk to three waterbird foraging guilds is influenced by foraging ecology and breeding stage

    International Nuclear Information System (INIS)

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; De La Cruz, Susan E.W.; Takekawa, John Y.

    2009-01-01

    We evaluated mercury (Hg) in five waterbird species representing three foraging guilds in San Francisco Bay, CA. Fish-eating birds (Forster's and Caspian terns) had the highest Hg concentrations in thier tissues, but concentrations in an invertebrate-foraging shorebird (black-necked stilt) were also elevated. Foraging habitat was important for Hg exposure as illustrated by within-guild differences, where species more associated with marshes and salt ponds had higher concentrations than those more associated with open-bay and tidal mudflats. Importantly, Hg concentrations increased with time spent in the estuary. Surf scoter concentrations tripled over six months, whereas Forster's terns showed an up to 5-fold increase between estuary arrival and breeding. Breeding waterbirds were at elevated risk of Hg-induced reproductive impairment, particularly Forster's terns, in which 48% of breeding birds were at high risk due to their Hg levels. Our results highlight the importance of habitat and exposure timing, in addition to trophic position, on waterbird Hg bioaccumulation and risk. - The influence of foraging habitat, trophic position, and exposure timing on mercury bioaccumulation and risk to reproduction is evaluated in three waterbird guilds.

  14. Vegetation composition and structure influences bird species ...

    African Journals Online (AJOL)

    Vegetation composition and structure influences bird species community ... variables on bird species diversity and richness of respective foraging guilds, and ... of the species assessed: (1) increasing closed cover due to woody plant density, ...

  15. The Effects of Exurbanization on Bird and Macroinvertebrate Communities in Deciduous Forests on the Cumberland Plateau, Tennessee

    Directory of Open Access Journals (Sweden)

    Jordan M. Casey

    2009-01-01

    Full Text Available To investigate the potential causes of changes to bird communities in exurban areas, we examined the relationship between bird and macroinvertebrate communities in exurbanized forest. We randomly located sampling points across a gradient of exurbanization. We used point counts to quantify bird communities and sweep netting, soil cores, pitfalls, and frass collectors to quantify macroinvertebrates. Bird communities had higher richness and abundance in exurban areas compared to undeveloped forests, and lost some species of conservation concern but gained others. The macroinvertebrate community was slightly more abundant in exurban areas, with a slight shift in taxonomic composition. The abundance of macroinvertebrates in soil cores (but not pitfalls predicted the abundance of ground-foraging birds. The abundance of macroinvertebrates in sweep nets was not associated with the abundance of aerial insectivore birds. Exurbanization therefore appears to change bird and macroinvertebrate communities, but to a lesser extent than agricultural forest fragmentation or intensive urbanization.

  16. Foraging behaviour and feeding ecology of the Black-cheeked ...

    African Journals Online (AJOL)

    Foraging behaviour and feeding ecology of the Black-cheeked Lovebird Agapornis nigrigenis were studied in Zambia. The birds fed on at least 39 species, and food items included seeds, leaves, flowers (especially nectar), fruit pulp, invertebrates, bark, lichen and resin. Terrestrial foraging was dominant, whereas arboreal ...

  17. Leaders are more attractive: birds with bigger yellow breast patches are followed by more group-mates in foraging groups.

    Directory of Open Access Journals (Sweden)

    Zoltán Tóth

    Full Text Available Social network theory provides a perfect tool to better understand the population-level consequences of how individuals interact and make their decisions; however, this approach is generally overlooked among evolutionary biologists interested in social relationships. Here, we used social network analysis to examine the patterns of leader-follower interactions in relation to individual characteristics in foraging groups of free-living rock sparrows (Petronia petronia. We found that yellow feather ornamentation, a carotenoid-based trait, was the best predictor of leadership: birds with bigger ornaments exerted greater influence in the foraging groups and were followed by more group-mates than less elaborate individuals. An individual's tendency for eliciting followings was not influenced by sex, condition or the level of parental investment. None of the above individual characteristics had significant effect on the tendency of individuals to follow others. Our results indicate that a sexually selected trait can also play a significant role in group coordination and social organization of a species.

  18. The Effects of Exurbanization on Bird and Macro invertebrate Communities in Deciduous Forests on the Cumberland Plateau, Tennessee

    International Nuclear Information System (INIS)

    Casey, J.M.; Wilson, M.E.; Haskell, D.G.; Hollingshead, N.

    2009-01-01

    To investigate the potential causes of changes to bird communities in exurban areas, we examined the relationship between bird and macro invertebrate communities in exurbanized forest. We randomly located sampling points across a gradient of exurbanization. We used point counts to quantify bird communities and sweep netting, soil cores, pitfalls, and frass collectors to quantify macro invertebrates. Bird communities had higher richness and abundance in exurban areas compared to undeveloped forests, and lost some species of conservation concern but gained others. The macro invertebrate community was slightly more abundant in exurban areas, with a slight shift in taxonomic composition. The abundance of macro invertebrates in soil cores (but not pitfalls) predicted the abundance of ground-foraging birds. The abundance of macro invertebrates in sweep nets was not associated with the abundance of aerial insectivore birds. Exurbanization therefore appears to change bird and macro invertebrate communities, but to a lesser extent than agricultural forest fragmentation or intensive urbanization.

  19. Avian communities in tidal salt marshes of San Francisco Bay: a review of functional groups by foraging guild and habitat association

    Science.gov (United States)

    Takekawa, John Y.; Woo, Isa; Gardiner, Rachel J.; Casazza, Michael L.; Ackerman, Joshua T.; Nur, Nadav; Liu, Leonard; Spautz, Hildie; Palaima, Arnas

    2011-01-01

    The San Francisco Bay estuary is highly urbanized, but it supports the largest remaining extent of tidal salt marshes on the west coast of North America as well as a diverse native bird community. San Francisco Bay tidal marshes are occupied by more than 113 bird species that represent 31 families, including five subspecies from three families that we denote as tidal-marsh obligates. To better identify the niche of bird species in tidal marshes, we present a review of functional groups based on foraging guilds and habitat associations. Foraging guilds describe the method by which species obtain food from tidal marshes, while habitat associations describe broad areas within the marsh that have similar environmental conditions. For example, the ubiquitous song sparrows (Alameda Melospiza melodia pusillula, Suisun M. m. maxillaris, and San Pablo M. m. samuelis) are surface-feeding generalists that consume prey from vegetation and the ground, and they are found across the entire marsh plain into the upland–marsh transition. In contrast, surface-feeding California black rails (Laterallus jamaicensis coturniculus) are cryptic, and generally restricted in their distribution to the mid- and high-marsh plain. Although in the same family, the endangered California clapper rail (Rallus longirostris obsoletus) has become highly specialized, foraging primarily on benthic fauna within marsh channels when they are exposed at low tide. Shorebirds such as the black-necked stilt (Himantopus mexicanus) typically probe in mud flats to consume macroinvertebrate prey, and are generally restricted to foraging on salt pans within the marsh plain, in ponds, or on mud flats during transitional stages of marsh evolution. The abundance and distribution of birds varies widely with changing water depths and vegetation colonization during different stages of restoration. Thus, tidal-marsh birds represent a rich and diverse community in bay marshes, with niches that may be distinguished by the

  20. Diverse habitat use during two life stages of the critically endangered Bahama Oriole (Icterus northropi: community structure, foraging, and social interactions

    Directory of Open Access Journals (Sweden)

    Melissa R. Price

    2017-06-01

    Full Text Available Our ability to prevent extinction in declining populations often depends on effective management of habitats that are disturbed through wildfire, logging, agriculture, or development. In these disturbed landscapes, the juxtaposition of multiple habitat types can be especially important to fledglings and young birds, which may leave breeding grounds in human-altered habitat for different habitats nearby that provide increased foraging opportunities, reduced competition, and higher protection from predators. In this study, we evaluated the importance of three habitat types to two life stages of the critically endangered Bahama Oriole (Icterus northropi, a synanthropic songbird endemic to Andros, The Bahamas. First, we determined the avian species composition and relative abundance of I. northropi among three major vegetation types on Andros: Caribbean pine (Pinus caribaea forest, coppice (broadleaf dry forest, and anthropogenic areas, dominated by nonnative vegetation (farmland and developed land. We then compared the foraging strategies and social interactions of two age classes of adult Bahama Orioles in relation to differential habitat use. Bird surveys late in the Bahama Oriole’s breeding season indicated the number of avian species and Bahama Oriole density were highest in coppice. Some bird species occurring in the coppice and pine forest were never observed in agricultural or residential areas, and may be at risk if human disturbance of pine forest and coppice increases, as is occurring at a rapid pace on Andros. During the breeding season, second-year (SY adult Bahama Orioles foraged in all vegetation types, whereas after-second-year (ASY adults were observed foraging only in anthropogenic areas, where the species nested largely in introduced coconut palms (Cocos nucifera. Additionally, SY adults foraging in anthropogenic areas were often observed with an ASY adult, suggesting divergent habitat use for younger, unpaired birds. Other

  1. Influence of habitat on behavior of Towndsend's ground squirrels (Spermophilus townsendii)

    Science.gov (United States)

    Sharpe, Peter B.; Van Horne, Beatrice

    1998-01-01

    Trade-offs between foraging and predator avoidance may affect an animal's survival and reproduction. These trade-offs may be influenced by differences in vegetative cover, especially if foraging profitability and predation risk differ among habitats. We examined above-ground activity of Townsend's ground squirrels (Spermophilus townsendii) in four habitats in the Snake River Birds of Prey National Conservation Area in southwestern Idaho to determine if behavior of ground squirrels varied among habitats, and we assessed factors that might affect perceived predation risk (i. e. predator detectability, predation pressure, population density). The proportion of time spent in vigilance by ground squirrels in winterfat (Krascheninnikovia lanata) and mosaic habitats of winterfat-sagebrush (Artemisia tridentata) was more than twice that of ground squirrels in burned and unburned sagebrush habitats. We found no evidence for the 'many-eyes' hypothesis as an explanation for differences in vigilance among habitats. Instead, environmental heterogeneity, especially vegetation structure, likely influenced activity budgets of ground squirrels. Differences in vigilance may have been caused by differences in predator detectability and refuge availability, because ground squirrels in the winterfat and mosaic habitats also spent more time in upright vigilant postures than ground squirrels in burned-sagebrush or sagebrush habitats. Such postures may enhance predator detection in low-growing winterfat.

  2. The influence of fire on the assemblage structure of foraging birds in grasslands of the Serra da Canastra National Park, Brazil

    Directory of Open Access Journals (Sweden)

    Matheus G. Reis

    2016-06-01

    Full Text Available Grasslands are the most threatened physiognomies of the Cerrado biome (Brazilian savanna, a biodiversity hotspot with conservation as a priority. The Serra da Canastra National Park protects the most important remnants of the Cerrado's southern grasslands, which are under strong anthropogenic pressure. The present study describes the structure of bird assemblages that directly use food resources in burned areas, comparing areas affected by natural fire to the areas where controlled fires were set (a management strategy to combat arson. The tested null hypothesis was that different bird assemblages are structured in a similar manner, regardless of the post-fire period or assessed area. Between December/2012 and January/2015, 92 species were recorded foraging in the study areas. The results indicate that both types of burnings triggered profound and immediate changes in bird assemblages, increasing the number of species and individuals. Natural fires exhibited a more significant influence on the structure (diversity and dominance than prescribed burnings. Nevertheless, all the differences were no longer noticeable after a relatively short time interval of 2-3 months after prescribed burnings and 3-4 after natural fires. The findings may help the understanding of prescribed burnings as a management strategy for bird conservation in grasslands.

  3. Factors influencing bird foraging preferences among conspecific fruit trees

    Science.gov (United States)

    Foster, M.S.

    1990-01-01

    The rates at which birds visit fruiting individuals of Allophylus edulis (Sapindaceae) differ substantially among trees. Such avian feeding preferences are well-known, but usually involve fruits and trees of different species. Factors controlling avian preferences for particular trees in a population of conspecifics are generally undocumented. To address this issue, I attempted to correlate rates at which individual birds and species fed in trees of Allophylus with 27 fruit or plant characteristics. Birds that swallow fruits whole were considered separately from those that feed in other ways. Plant characters were selected on the basis of their potential influence on feeding efficiency or predation risk, assuming that birds would select feeding trees so as to maximize the net rate of energy or nutrient intake and to minimize predation. Correlations were found between feeding visits by some groups of birds and percent water in the pulp, milligrams of mineral ash in the pulp, and crop size. No character was correlated with feeding visits by all groups of birds in both years of the study. The correlations with water and mineral ash are unexplained and may be artifacts. The correlation with crop size may represent a tactic to minimize predation.

  4. Foraging patch selection in winter: a balance between predation risk and thermoregulation benefit.

    Directory of Open Access Journals (Sweden)

    Sara Villén-Pérez

    Full Text Available In winter, foraging activity is intended to optimize food search while minimizing both thermoregulation costs and predation risk. Here we quantify the relative importance of thermoregulation and predation in foraging patch selection of woodland birds wintering in a Mediterranean montane forest. Specifically, we account for thermoregulation benefits related to temperature, and predation risk associated with both illumination of the feeding patch and distance to the nearest refuge provided by vegetation. We measured the amount of time that 38 marked individual birds belonging to five small passerine species spent foraging at artificial feeders. Feeders were located in forest patches that vary in distance to protective cover and exposure to sun radiation; temperature and illumination were registered locally by data loggers. Our results support the influence of both thermoregulation benefits and predation costs on feeding patch choice. The influence of distance to refuge (negative relationship was nearly three times higher than that of temperature (positive relationship in determining total foraging time spent at a patch. Light intensity had a negligible and no significant effect. This pattern was generalizable among species and individuals within species, and highlights the preponderance of latent predation risk over thermoregulation benefits on foraging decisions of birds wintering in temperate Mediterranean forests.

  5. Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: associations with ecological factors, bird behavior and tick infestation.

    Science.gov (United States)

    Newman, Erica A; Eisen, Lars; Eisen, Rebecca J; Fedorova, Natalia; Hasty, Jeomhee M; Vaughn, Charles; Lane, Robert S

    2015-01-01

    Although Borrelia burgdorferi sensu lato (s.l.) are found in a great diversity of vertebrates, most studies in North America have focused on the role of mammals as spirochete reservoir hosts. We investigated the roles of birds as hosts for subadult Ixodes pacificus ticks and potential reservoirs of the Lyme disease spirochete B. burgdorferi sensu stricto (s.s.) in northwestern California. Overall, 623 birds representing 53 species yielded 284 I. pacificus larvae and nymphs. We used generalized linear models and zero-inflated negative binomial models to determine associations of bird behaviors, taxonomic relationships and infestation by I. pacificus with borrelial infection in the birds. Infection status in birds was best explained by taxonomic order, number of infesting nymphs, sampling year, and log-transformed average body weight. Presence and counts of larvae and nymphs could be predicted by ground- or bark-foraging behavior and contact with dense oak woodland. Molecular analysis yielded the first reported detection of Borrelia bissettii in birds. Moreover, our data suggest that the Golden-crowned Sparrow (Zonotrichia atricapilla), a non-resident species, could be an important reservoir for B. burgdorferi s.s. Of 12 individual birds (9 species) that carried B. burgdorferi s.l.-infected larvae, no birds carried the same genospecies of B. burgdorferi s.l. in their blood as were present in the infected larvae removed from them. Possible reasons for this discrepancy are discussed. Our study is the first to explicitly incorporate both taxonomic relationships and behaviors as predictor variables to identify putative avian reservoirs of B. burgdorferi s.l. Our findings underscore the importance of bird behavior to explain local tick infestation and Borrelia infection in these animals, and suggest the potential for bird-mediated geographic spread of vector ticks and spirochetes in the far-western United States.

  6. Multi-Season Regional Analysis of Multi-Species Occupancy: Implications for Bird Conservation in Agricultural Lands in East-Central Argentina

    Science.gov (United States)

    Goijman, Andrea Paula; Conroy, Michael. J.; Bernardos, Jaime Nicolás; Zaccagnini, María Elena

    2015-01-01

    Rapid expansion and intensification of agriculture create challenges for the conservation of biodiversity and associated ecosystem services. In Argentina, the total row crop planted area has increased in recent decades with the expansion of soybean cultivation, homogenizing the landscape. In 2003 we started the first long-term, large-scale bird monitoring program in agroecosystems of central Argentina, in portions of the Pampas and Espinal ecoregions. Using data from this program, we evaluated the effect of land use and cover extent on birds between 2003-2012, accounting for imperfect detection probabilities using a Bayesian hierarchical, multi-species and multi-season occupancy model. We tested predictions that species diversity is positively related to habitat heterogeneity, which in intensified agroecosystems is thought to be mediated by food availability; thus the extent of land use and cover is predicted to affect foraging guilds differently. We also infer about ecosystem services provisioning and inform management recommendations for conservation of birds. Overall our results support the predictions. Although many species within each guild responded differently to land use and native forest cover, we identified generalities for most trophic guilds. For example, granivorous gleaners, ground insectivores and omnivores responded negatively to high proportions of soybean, while insectivore gleaners and aerial foragers seemed more tolerant. Habitat heterogeneity would likely benefit most species in an intensified agroecosystem, and can be achieved with a diversity of crops, pastures, and natural areas within the landscape. Although most studied species are insectivores, potentially beneficial for pest control, some guilds such as ground insectivores are poorly represented, suggesting that agricultural intensification reduces ecological functions, which may be recovered through management. Continuation of the bird monitoring program will allow us to continue to

  7. Multi-Season Regional Analysis of Multi-Species Occupancy: Implications for Bird Conservation in Agricultural Lands in East-Central Argentina.

    Directory of Open Access Journals (Sweden)

    Andrea Paula Goijman

    Full Text Available Rapid expansion and intensification of agriculture create challenges for the conservation of biodiversity and associated ecosystem services. In Argentina, the total row crop planted area has increased in recent decades with the expansion of soybean cultivation, homogenizing the landscape. In 2003 we started the first long-term, large-scale bird monitoring program in agroecosystems of central Argentina, in portions of the Pampas and Espinal ecoregions. Using data from this program, we evaluated the effect of land use and cover extent on birds between 2003-2012, accounting for imperfect detection probabilities using a Bayesian hierarchical, multi-species and multi-season occupancy model. We tested predictions that species diversity is positively related to habitat heterogeneity, which in intensified agroecosystems is thought to be mediated by food availability; thus the extent of land use and cover is predicted to affect foraging guilds differently. We also infer about ecosystem services provisioning and inform management recommendations for conservation of birds. Overall our results support the predictions. Although many species within each guild responded differently to land use and native forest cover, we identified generalities for most trophic guilds. For example, granivorous gleaners, ground insectivores and omnivores responded negatively to high proportions of soybean, while insectivore gleaners and aerial foragers seemed more tolerant. Habitat heterogeneity would likely benefit most species in an intensified agroecosystem, and can be achieved with a diversity of crops, pastures, and natural areas within the landscape. Although most studied species are insectivores, potentially beneficial for pest control, some guilds such as ground insectivores are poorly represented, suggesting that agricultural intensification reduces ecological functions, which may be recovered through management. Continuation of the bird monitoring program will allow

  8. Foraging responses of black-legged kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf.

    Directory of Open Access Journals (Sweden)

    Rosana Paredes

    Full Text Available We hypothesized that changes in southeastern Bering Sea foraging conditions for black-legged kittiwakes (Rissa tridactyla have caused shifts in habitat use with direct implications for population trends. To test this, we compared at-sea distribution, breeding performance, and nutritional stress of kittiwakes in three years (2008-2010 at two sites in the Pribilof Islands, where the population has either declined (St. Paul or remained stable (St. George. Foraging conditions were assessed from changes in (1 bird diets, (2 the biomass and distribution of juvenile pollock (Theragra chalcogramma in 2008 and 2009, and (3 eddy kinetic energy (EKE; considered to be a proxy for oceanic prey availability. In years when biomass of juvenile pollock was low and patchily distributed in shelf regions, kittiwake diets included little or no neritic prey and a much higher occurrence of oceanic prey (e.g. myctophids. Birds from both islands foraged on the nearby shelves, or made substantially longer-distance trips overnight to the basin. Here, feeding was more nocturnal and crepuscular than on the shelf, and often occurred near anticyclonic, or inside cyclonic eddies. As expected from colony location, birds from St. Paul used neritic waters more frequently, whereas birds from St. George typically foraged in oceanic waters. Despite these distinctive foraging patterns, there were no significant differences between colonies in chick feeding rates or fledging success. High EKE in 2010 coincided with a 63% increase in use of the basin by birds from St. Paul compared with 2008 when EKE was low. Nonetheless, adult nutritional stress, which was relatively high across years at both colonies, peaked in birds from St. Paul in 2010. Diminishing food resources in nearby shelf habitats may have contributed to kittiwake population declines at St Paul, possibly driven by increased adult mortality or breeding desertion due to high foraging effort and nutritional stress.

  9. Human disturbance provides foraging opportunities for birds in primary subalpine forest

    DEFF Research Database (Denmark)

    DuBay, Shane G.; Hart Reeve, Andrew; Wu, Yongjie

    2017-01-01

    or Cettia major, and Heteroxenicus stellatus. This behavior is likely a modification of pre-existing interspecific foraging associations with pheasants and large mammals in the region. These larger animals disturb the earth and lower vegetation layers upon passage and while foraging, exposing previously...... opportunities. We cut and cleared small swaths of dense bamboo growth for an unrelated study. Multiple insectivorous species were recruited to the cleared areas, foraging extensively in the disturbed earth, often within 1 m of us. These species included Tarsiger chrysaeus, Tarsiger indicus, Cettia brunnifrons...

  10. Colour preferences of UK garden birds at supplementary seed feeders.

    Directory of Open Access Journals (Sweden)

    Luke Rothery

    Full Text Available Supplementary feeding of garden birds generally has benefits for both bird populations and human wellbeing. Birds have excellent colour vision, and show preferences for food items of particular colours, but research into colour preferences associated with artificial feeders is limited to hummingbirds. Here, we investigated the colour preferences of common UK garden birds foraging at seed-dispensing artificial feeders containing identical food. We presented birds simultaneously with an array of eight differently coloured feeders, and recorded the number of visits made to each colour over 370 30-minute observation periods in the winter of 2014/15. In addition, we surveyed visitors to a garden centre and science festival to determine the colour preferences of likely purchasers of seed feeders. Our results suggest that silver and green feeders were visited by higher numbers of individuals of several common garden bird species, while red and yellow feeders received fewer visits. In contrast, people preferred red, yellow, blue and green feeders. We suggest that green feeders may be simultaneously marketable and attractive to foraging birds.

  11. Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    Science.gov (United States)

    Dececchi, T. Alexander; Larsson, Hans C. E.

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding. PMID:21857918

  12. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    Directory of Open Access Journals (Sweden)

    T Alexander Dececchi

    Full Text Available The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  13. Experimental evidence of human recreational disturbance effects on bird-territory establishment.

    Science.gov (United States)

    Bötsch, Yves; Tablado, Zulima; Jenni, Lukas

    2017-07-12

    The worldwide increase in human outdoor activities raises concerns for wildlife. Human disturbances, even at low levels, are likely to impact species during sensitive periods of the annual cycle. However, experimental studies during the putative sensitive period of territory establishment of birds which not only investigate low disturbance levels, but which also exclude the effect of habitat modification (e.g. walking trails) are lacking. Here, we experimentally disturbed birds in forest plots by walking through twice a day during territory establishment. Later we compared the breeding bird community of experimentally disturbed plots with that of undisturbed control plots. We discovered that the number of territories (-15.0%) and species richness (-15.2%) in disturbed plots were substantially reduced compared with control plots. Species most affected included those sensitive to human presence (assessed by flight-initiation distances), open-cup nesters and above-ground foragers. Long-distance migrants, however, were unaffected due to their arrival after experimental disturbance took place. These findings highlight how territory establishment is a sensitive period for birds, when even low levels of human recreation may be perceived as threatening, and alter settlement decisions. This can have important implications for the conservation of species, which might go unnoticed when focusing only on already established birds. © 2017 The Author(s).

  14. Chinstrap penguin foraging area associated with a seamount in Bransfield Strait, Antarctica

    Science.gov (United States)

    Kokubun, Nobuo; Lee, Won Young; Kim, Jeong-Hoon; Takahashi, Akinori

    2015-12-01

    Identifying marine features that support high foraging performance of predators is useful to determine areas of ecological importance. This study aimed to identify marine features that are important for foraging of chinstrap penguins (Pygoscelis antarcticus), an abundant upper-trophic level predator in the Antarctic Peninsula region. We investigated the foraging locations of penguins breeding on King George Island using GPS-depth loggers. Tracking data from 18 birds (4232 dives), 11 birds (2095 dives), and 19 birds (3947 dives) were obtained in 2007, 2010, and 2015, respectively. In all three years, penguins frequently visited an area near a seamount (Orca Seamount) in Bransfield Strait. The percentage of dives (27.8% in 2007, 36.1% in 2010, and 19.1% in 2015) and depth wiggles (27.1% in 2007, 37.2% in 2010, and 22.3% in 2015) performed in this area was higher than that expected from the size of the area and distance from the colony (8.4% for 2007, 14.7% for 2010, and 6.3% for 2015). Stomach content analysis showed that the penguins fed mainly on Antarctic krill. These results suggest that the seamount provided a favorable foraging area for breeding chinstrap penguins, with high availability of Antarctic krill, possibly related to local upwelling.

  15. To walk or to fly? How birds choose among foraging modes

    NARCIS (Netherlands)

    Bautista, LM; Tinbergen, J; Kacelnik, A; Bautista, Luis M.; Southwood, Richard

    2001-01-01

    We test the predictive value of the main energetic currencies used in foraging theory using starlings that choose between two foraging modes (walking versus flying). Walking is low-cost, low-yield, whereas flying is the opposite. We fixed experimentally, at 11 different values, the amount of flight

  16. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Caroline L Poli

    Full Text Available During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra, in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level, the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance

  17. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    Science.gov (United States)

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  18. Use of created snags by cavity‐nesting birds across 25 years

    Science.gov (United States)

    Barry, Amy M.; Hagar, Joan; Rivers, James W.

    2018-01-01

    Snags are important habitat features for many forest‐dwelling species, so reductions in the number of snags can lead to the loss of biodiversity in forest ecosystems. Intentional snag creation is often used in managed forests to mitigate the long‐term declines of naturally created snags, yet information regarding the use of snags by wildlife across long timescales (>20 yr) is lacking and prevents a complete understanding of how the value of created snags change through time. We used a long‐term experiment to assess how harvest treatment (i.e., small‐patch group selection, 2‐story, and clearcut) and snag configuration (i.e., scattered and clustered) influenced nesting in and foraging on 25–27‐year‐old Douglas‐fir (Pseudotsuga menziesii) snags by cavity‐nesting birds. In addition, we compared our contemporary measures of bird use to estimates obtained from historical surveys conducted on the same group of snags to quantify how bird use changed over time. Despite observing created snags for >750 hours across 2 consecutive breeding seasons, we found limited evidence of nesting activity. Only 11% of created snags were used for breeding, with nesting attempts by 4 bird species (n = 36 nests); however, we detected 12 cavity‐nesting species present on our study sites. Furthermore, nearly all nests (94%) belonged to the chestnut‐backed chickadee (Poecile rufescens), a weak cavity‐excavating species that requires well‐decayed wood for creating nest cavities. Our surveys also recorded few observations of birds using created snags as foraging substrates, with only 1 foraging event recorded for every 20 hours of observation. We detected 82% fewer nests and recorded 7% fewer foraging observations during contemporary field work despite spending >7.5 times more effort observing created snags relative to historical surveys. We conclude that 25–27‐year‐old created Douglas‐fir snags provided limited opportunities for nesting and foraging by

  19. Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin.

    Directory of Open Access Journals (Sweden)

    Cat Horswill

    Full Text Available Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.

  20. Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin.

    Science.gov (United States)

    Horswill, Cat; Trathan, Philip N; Ratcliffe, Norman

    2017-01-01

    Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.

  1. Feeding behaviour of birds foraging on predictable resources in ...

    African Journals Online (AJOL)

    The behaviour of birds in response to time of day was affected by temperature, as there was no difference between GUDs in open and covered habitats in the mornings at lower temperatures, but lower GUDs were recorded in cover (at higher temperatures) in the afternoon when birds may — due to thermoregulatory costs ...

  2. Management effect on bird and arthropod interaction in suburban woodlands

    Science.gov (United States)

    2011-01-01

    Background Experiments from a range of ecosystems have shown that insectivorous birds are important in controlling the populations of their invertebrate prey. Here, we report on a large field experiment testing the hypothesis that management for enhancing recreational values in suburban woodlands affects the intensity of bird predation on canopy-living arthropods. Bird exclosures were used in two types of management (understory clearance and dense understory) at two foraging heights in oak Quercus robur canopies and the experiment was replicated at two sites. Results The biomass and abundance of arthropods were high on net-enclosed branches but strongly reduced on control branches in both types of management. In woods with dense understory, the effect of bird predation on arthropod abundance was about twice as high as in woods with understory clearance. The effect of bird predation on arthropod biomass was not significantly affected by management. Conclusions Our data provide experimental evidence to support the idea that bird predation on arthropods can be affected by forest management. We suggest that the mechanism is twofold: reduction of bird abundance and shift of foraging behaviour. In urban woodlands, there may be a management trade-off between enhancing recreational values and promoting bird predation rates on arthropods. PMID:21362174

  3. Does foraging behaviour affect female mate preferences and pair formation in captive zebra finches?

    Directory of Open Access Journals (Sweden)

    Neeltje J Boogert

    Full Text Available BACKGROUND: Successful foraging is essential for survival and reproductive success. In many bird species, foraging is a learned behaviour. To cope with environmental change and survive periods in which regular foods are scarce, the ability to solve novel foraging problems by learning new foraging techniques can be crucial. Although females have been shown to prefer more efficient foragers, the effect of males' foraging techniques on female mate choice has never been studied. We tested whether females would prefer males showing the same learned foraging technique as they had been exposed to as juveniles, or whether females would prefer males that showed a complementary foraging technique. METHODOLOGY/PRINCIPAL FINDINGS: We first trained juvenile male and female zebra finches (Taeniopygia guttata to obtain a significant proportion of their food by one of two foraging techniques. We then tested whether females showed a preference for males with the same or the alternative technique. We found that neither a male's foraging technique nor his foraging performance affected the time females spent in his proximity in the mate-choice apparatus. We then released flocks of these finches into an aviary to investigate whether assortative pairing would be facilitated by birds taught the same technique exploiting the same habitat. Zebra finches trained as juveniles in a specific foraging technique maintained their foraging specialisation in the aviary as adults. However, pair formation and nest location were random with regard to foraging technique. CONCLUSIONS/SIGNIFICANCE: Our findings show that zebra finches can be successfully trained to be foraging specialists. However, the robust negative results of the conditions tested here suggest that learned foraging specializations do not affect mate choice or pair formation in our experimental context.

  4. Does traditional shellfishing affect foraging by waders? The case of the Tagus estuary (Portugal)

    Science.gov (United States)

    Dias, Maria P.; Peste, Filipa; Granadeiro, José P.; Palmeirim, Jorge M.

    2008-03-01

    Estuarine intertidal flats are often exploited by humans and waders since they provide food, particularly shellfish. This raises important conservation issues. Waders can be affected by shellfishing activities in multiple ways, such as a reduction of the available shellfish, disturbance by the presence of shellfishers on their feeding areas, and changes in micro-habitat, due to sediment reworking. In this study we quantified the impact of traditional shellfishing on waders in the Tagus estuary. Particular attention was given to hand-raking of clams Scrobicularia plana, which constitutes most of the consumed food by waders. Shellfishers did not cause a relevant depletion of clams for waders; they removed less than 0.3% of its total production and focused on size classes that were usually not taken by birds. Hand-raking caused temporary changes in the vertical distribution and availability of invertebrate prey in the sediment. However, this did not affect the bird's feeding rates, presumably because prey availability remained above the threshold at which intake rates are expected to decline. The presence of shellfishers in the birds foraging areas potentially affects waders by keeping them away from foraging areas, but even the most affected species lost less than 10% of their foraging grounds due to this factor. Overall, we conclude that the current low harvesting levels of shellfishing are compatible with the preservation of the estuary as a key site for waders. Nevertheless, simulations showed that traditional shellfishing could have much greater potential to affect waders through disturbance than through prey removal. The results for the Tagus show that even small harvest rates, representing a negligible loss of food for waders and potentially considered sustainable by shellfish managers, could have a great impact on waders due to increased disturbance. This effect of disturbance likely occurs in most estuaries and should be taken into consideration when planning

  5. Activity time budget during foraging trips of emperor penguins.

    Directory of Open Access Journals (Sweden)

    Shinichi Watanabe

    Full Text Available We developed an automated method using depth and one axis of body acceleration data recorded by animal-borne data loggers to identify activities of penguins over long-term deployments. Using this technique, we evaluated the activity time budget of emperor penguins (n = 10 both in water and on sea ice during foraging trips in chick-rearing season. During the foraging trips, emperor penguins alternated dive bouts (4.8 ± 4.5 h and rest periods on sea ice (2.5 ± 2.3 h. After recorder deployment and release near the colony, the birds spent 17.9 ± 8.4% of their time traveling until they reached the ice edge. Once at the ice edge, they stayed there more than 4 hours before the first dive. After the first dive, the mean proportions of time spent on the ice and in water were 30.8 ± 7.4% and 69.2 ± 7.4%, respectively. When in the water, they spent 67.9 ± 3.1% of time making dives deeper than 5 m. Dive activity had no typical diurnal pattern for individual birds. While in the water between dives, the birds had short resting periods (1.2 ± 1.7 min and periods of swimming at depths shallower than 5 m (0.25 ± 0.38 min. When the birds were on the ice, they primarily used time for resting (90.3 ± 4.1% of time and spent only 9.7 ± 4.1% of time traveling. Thus, it appears that, during foraging trips at sea, emperor penguins traveled during dives >5 m depth, and that sea ice was primarily used for resting. Sea ice probably provides refuge from natural predators such as leopard seals. We also suggest that 24 hours of sunlight and the cycling of dive bouts with short rest periods on sea ice allow emperor penguins to dive continuously throughout the day during foraging trips to sea.

  6. The energetic importance of night foraging for waders wintering in a temperate estuary

    NARCIS (Netherlands)

    Lourenco, Pedro M.; Silva, Andreia; Santos, Carlos D.; Miranda, Ana C.; Granadeiro, Jose P.; Palmeirim, Jorge M.

    2008-01-01

    Many species of waders forage extensively at night, but there is very little information on the relevance of this behaviour for the energy budget of waders wintering in estuarine wetlands. Quantitative data on diurnal and nocturnal intake rates can indicate the extent to which birds need to forage

  7. [Recent fauna of ground-nesting birds in Transvolga steppes and its dynamics in the 20th century].

    Science.gov (United States)

    Oparin, M L

    2008-01-01

    It is shown that the structure of the ground-nesting bird fauna in Transvolga steppes has changed during the 20th century. The complex of lark species characteristic of true and dry steppe has disappeared because of climate change and impact of economic activity (the establishment of windbreak and roadside forest strips), which has provided for a sharp increase in the abundance of corvid birds.

  8. Camouflage predicts survival in ground-nesting birds.

    Science.gov (United States)

    Troscianko, Jolyon; Wilson-Aggarwal, Jared; Stevens, Martin; Spottiswoode, Claire N

    2016-01-29

    Evading detection by predators is crucial for survival. Camouflage is therefore a widespread adaptation, but despite substantial research effort our understanding of different camouflage strategies has relied predominantly on artificial systems and on experiments disregarding how camouflage is perceived by predators. Here we show for the first time in a natural system, that survival probability of wild animals is directly related to their level of camouflage as perceived by the visual systems of their main predators. Ground-nesting plovers and coursers flee as threats approach, and their clutches were more likely to survive when their egg contrast matched their surrounds. In nightjars - which remain motionless as threats approach - clutch survival depended on plumage pattern matching between the incubating bird and its surrounds. Our findings highlight the importance of pattern and luminance based camouflage properties, and the effectiveness of modern techniques in capturing the adaptive properties of visual phenotypes.

  9. Feed intake and activity level of two broiler genotypes foraging different types of vegetation in the finishing period

    DEFF Research Database (Denmark)

    de Almeida, Gustavo Fonseca; Hinrichsen, Lena Karina; Horsted, Klaus

    2012-01-01

    A study was performed with 2 broiler genotypes (slow and medium growth) restricted in supplementary feed and foraging 2 different mixed vegetations (grass/clover or chicory) to identify possible benefits of herbage on nutrition during the finishing period (80 to 113 d of age). Three hundred birds...... were included in a 2 × 2 factorial design with groups of 25 birds replicated 3 times. The use of outdoor areas, performance, and forage intake were investigated. To identify possible differences in foraging activity, the use of the range was monitored one day per week at 4 different times of the day...

  10. CEPF Western Ghats Special Series: Birds of Meghamalai Landscape, southern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    S. Babu

    2013-11-01

    Full Text Available Species composition of birds in the Meghamalai landscape with respect to threat status, foraging guild and biome-restricted assemblage were assessed based on data collected opportunistically during two research projects: first one spanned 36 months (2006-2009 the other for 18 months (June 2011-December 2012 and from literature published during mid 1940s. A total of 254 species belonging to 55 families and 18 orders were recorded, which include 11% (18 of 159 species of globally threatened birds reported from India, 88% (14 of 16 species of endemic birds of the Western Ghats and a higher proportion of biome-restricted species (56% of Indo-Malayan tropical dry zone and 80% of Indian Peninsula inhabited by tropical moist forest birds. Among the foraging guilds, insectivorous birds (51% dominated the bird composition followed by frugivores and carnivores. The present data shows that Meghamalai deserves to be recognized as an Important Bird Area of International Bird Conservation Network. This would enhance the conservation prospects of the landscape in a long run. The present study also highlights the importance of the area for conserving the birds of the Western Ghats.

  11. Improvement of individual camouflage through background choice in ground-nesting birds

    Science.gov (United States)

    Stevens, Martin; Troscianko, Jolyon; Wilson-Aggarwal, Jared K.; Spottiswoode, Claire N.

    2017-01-01

    Animal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal's own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates. Recent studies suggest that individuals from several animal taxa could select backgrounds or positions to improve concealment. Here, we test whether individual wild animals choose backgrounds in complex environments, and whether this improves camouflage against predator vision. We studied nest site selection by nine species of ground-nesting birds (nightjars, plovers and coursers) in Zambia, and used image analysis and vision modeling to quantify egg and plumage camouflage to predator vision. Individual birds chose backgrounds that enhanced their camouflage, being better matched to their chosen backgrounds than to other potential backgrounds with respect to multiple aspects of camouflage. This occurred at all three spatial scales tested (a few cm and five meters from the nest, and compared to other sites chosen by conspecifics), and was the case for the eggs of all bird groups studied, and for adult nightjar plumage. Thus, individual wild animals improve their camouflage through active background choice, with choices highly refined across multiple spatial scales. PMID:28890937

  12. Improvement of individual camouflage through background choice in ground-nesting birds.

    Science.gov (United States)

    Stevens, Martin; Troscianko, Jolyon; Wilson-Aggarwal, Jared K; Spottiswoode, Claire N

    2017-09-01

    Animal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal's own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates. Recent studies suggest that individuals from several animal taxa could select backgrounds or positions to improve concealment. Here, we test whether individual wild animals choose backgrounds in complex environments, and whether this improves camouflage against predator vision. We studied nest site selection by nine species of ground-nesting birds (nightjars, plovers and coursers) in Zambia, and used image analysis and vision modeling to quantify egg and plumage camouflage to predator vision. Individual birds chose backgrounds that enhanced their camouflage, being better matched to their chosen backgrounds than to other potential backgrounds with respect to multiple aspects of camouflage. This occurred at all three spatial scales tested (a few cm and five meters from the nest, and compared to other sites chosen by conspecifics), and was the case for the eggs of all bird groups studied, and for adult nightjar plumage. Thus, individual wild animals improve their camouflage through active background choice, with choices highly refined across multiple spatial scales.

  13. Selection on feather pecking affects response to novelty and foraging behaviour in laying hens

    NARCIS (Netherlands)

    Haas, de E.N.; Nielsen, B.; Rodenburg, T.B.; Buitenhuis, A.J.

    2010-01-01

    Feather pecking (FP) is a major welfare problem in laying hens, influenced by multiple factors. FP is thought to be redirected foraging behaviour, however fearful birds are also known to be more sensitive to develop FP. The relationship between fear-responses, foraging and FP is not well understood,

  14. Foraging modality and plasticity in foraging traits determine the strength of competitive interactions among carnivorous plants, spiders and toads.

    Science.gov (United States)

    Jennings, David E; Krupa, James J; Rohr, Jason R

    2016-07-01

    Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  15. Foraging behaviour of pink-footed geese (Anser brachyrhynchus) during spring migration

    DEFF Research Database (Denmark)

    Chudzińska, Magda Ewa

    and their energetic consequences are therefore of great importance to these birds. In this thesis, I have aimed to address some aspects of the foraging decisions and behaviour of pink-footed geese during their spring migration to the Arctic breeding area. I combined field techniques with telemetry technology as well...... as modelling tools to address questions about how geese forage and fuel during their spring migration. The first three presented manuscripts focus on changes in goose foraging behaviour and energetics over the course of the day, a stopover season and the entire migration. They also focus on variety of factors...... the question: which foraging decision do geese make at the Mid-Norway stopover site....

  16. Aspects of population dynamics and feeding by piscivorous birds in ...

    African Journals Online (AJOL)

    Breaching events were associated with a change in feeding groups from waders to pursuit feeders, and a decrease in total bird numbers, most likely due to loss of potential littoral zone foraging habitat for waders resulting from reduced water levels. The highest bird numbers were recorded in winter reflecting the migration of ...

  17. Bird species of Mouau with special emphasis on foraging behavior ...

    African Journals Online (AJOL)

    Ten different bird species were peculiar to the Umudike environment and of these eight were regular thus closely observed and identified. The other two species were scarcely available and may be regarded as visiting birds. The eight species identified were either Passerine or Non-Passerine. The northern grey-headed ...

  18. Avoiding competition? Site use, diet and foraging behaviours in two similarly sized geese wintering in China

    DEFF Research Database (Denmark)

    Zhao, Meijuan; Cao, Lei; Klaassen, Marcel

    2015-01-01

    at Shengjin Lake, China. To examine the potential for coexistence and possible avoidance strategies, we studied (1) their habitat use, (2) foraging behaviours and (3) diets of birds foraging in mixed- and single-species flocks. Both species extensively exploited sedge meadows, where they showed considerable...

  19. Non-random foraging in certain bird pests of field crops

    Indian Academy of Sciences (India)

    tribpo

    a parakeet harvests less food and invests more time on vigilance. Feeding ... avoid it, can affect the time and energy budget of a feeding bird (Bertram 1980; ... Price P W 1975 Insect ecology (New York: John Wiley). Rudebeck G 1951 The choice of prey and modes of hunting of predatory birds with special reference.

  20. Impact of wind turbines on birds

    International Nuclear Information System (INIS)

    Clausager, I.; Nohr, H.

    1996-01-01

    The paper is a review of the present knowledge on impacts of wind turbines on birds, requested by the Danish Ministry of the Environment and Energy. The main conclusions of the review are, that in nearly all the studies so far the numbers of birds recorded colliding with wind turbines have been limited. Some studies indicate that stationary (breeding) birds inside the wind turbine area in the short run habituate to wind turbines, especially the noise and visual impacts, and that the risk for collision becomes low. However, some of the few more long term studies indicate that a negative impact may occur in later generations of breeding birds. In some studies a disturbance effect on bird species, which temporarily stay inside a wind turbine area in order to forage or rest, is observed. The degree of impact is species-specific. An effect is typically recorded inside a zone of up to 250-800 m, with geese and waders as the most sensitive groups of birds. (author)

  1. Modeling the flocking propensity of passerine birds in two Neotropical habitats.

    Science.gov (United States)

    Pomara, Lars Y; Cooper, Robert J; Petit, Lisa J

    2007-08-01

    We examined the importance of mixed-species flock abundance, individual bird home range size, foraging height, and foraging patch characteristics in predicting the propensity for five Neotropical passerine bird species (Slaty Antwren, Myrmotherula schisticolor; Golden-crowned Warbler, Basileuterus culicivorus; Slate-throated Redstart, Myioborus miniatus; Wilson's Warbler, Wilsonia pusilla; and Black-and-white Warbler, Mniotilta varia) to forage within flocks, rather than solitarily. We used study plots in primary mid-elevation forest and in shade coffee fields in western Panama. We expected that all species would spend as much time as possible flocking, but that the social and environmental factors listed above would limit compatibility between flock movements and individual bird movements, explaining variability in flocking propensity both within and among species. Flocking propensity was well predicted by home range size and flock abundance together, for four of the five species. While flock abundance was uniform across plots, home range sizes varied among species and plots, so that home range size appeared to be the principle factor limiting flocking propensity. Estimates of flock abundance were still required, however, for calculating flocking propensity values. Foraging height and patch characteristics slightly improved predictive ability for the remaining species, M. miniatus. In general, individual birds tended to join flocks whenever one was available inside their home range, regardless of a flock's specific location within the home range. Flocking propensities of individual species were lower in shade coffee fields than in forests, and probably vary across landscapes with variations in habitat. This variability affects the stability and species composition of flocks, and may affect survival rates of individual species.

  2. First to Flush: The Effects of Ambient Noise on Songbird Flight Initiation Distances and Implications for Human Experiences with Nature

    Directory of Open Access Journals (Sweden)

    Alissa R. Petrelli

    2017-06-01

    Full Text Available Throughout the world, birds represent the primary type of wildlife that people experience on a daily basis. However, a growing body of evidence suggests that alterations to the acoustic environment can negatively affect birds as well as humans in a variety of ways, and altered acoustics from noise pollution has the potential to influence human interactions with wild birds. Birds respond to approaching humans in a manner analogous to approaching predators, but the context of the interaction can also greatly influence the distance at which a bird initiates flight or escape behavior (i.e., flight initiation distance or FID. Here, we hypothesized that reliance on different sensory modalities to balance foraging and threat detection can influence how birds respond to approaching threats in the presence of background noise. We surveyed 12 songbird species in California and Wyoming and categorized each species into one of three foraging guilds: ground foragers, canopy gleaners, and hawking flycatchers and predicted FIDs to decrease, remain the same and increase with noise exposure, respectively. Contrary to expectations, the canopy gleaning and flycatching guilds exhibited mixed responses, with some species exhibiting unchanged FIDs with noise while others exhibited increased FIDs with noise. However, FIDs of all ground foraging species and one canopy gleaner decreased with noise levels. Additionally, we found no evidence of phylogenetic structure among species' mean FID responses and only weak phylogenetic structure for the relationship between FIDs and noise levels. Although our results provide mixed support for foraging strategy as a predictor of bird response to noise, our finding that most of the species we surveyed have shorter FIDs with increases in noise levels suggest that human observers may be able to approach ground foraging species more closely under noisy conditions. From an ecological perspective, however, it remains unclear whether

  3. Assessment of the effect of a windmill park at Overgaard on the existence of birds in the EU bird protection area no. 15

    International Nuclear Information System (INIS)

    Clausen, P.; Kyed Larsen, J.

    1999-01-01

    As part of the plans to establish a windmill park at Overgaard, Denmark, an assessment has been performed of the consequences for the occurrence of water birds in the EU bird protection area no. 15 which will be very close to the park. The report concludes that for all assessed species, apart from whooper swan and golden plover, none of the proposed windmill parks are expected to have any negative influence on the species' future occurrence and status in the EU bird protection area no. 15. For the golden plover the same conclusion is reached regarding its use of the area as resting-place during daytime. It is not possible to assess the effects, if any, on the plover's use of the area as forage area during the nights. For the whooper swan the area they have been using at Overgaard will be lost. Depending on the type of windmill park the lost area amounts to about 1-2,5 % of the bird protection area. It is expected, however, that the swans will move to other fields in the protection area for foraging. (ln)

  4. The effects of dietary carotenoid supplementation and retinal carotenoid accumulation on vision-mediated foraging in the house finch.

    Directory of Open Access Journals (Sweden)

    Matthew B Toomey

    Full Text Available BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus, we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full and dimmer low-contrast (red-filtered lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina, but declined among birds with very high levels (>2.0 µg/retina. CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific

  5. Cavity-nesting bird abundance in thinned versus unthinned Massachusetts oak stands

    Science.gov (United States)

    Christopher J.E. Welsh; William M. Healy; Richard M. DeGraaf

    1992-01-01

    Cavity-nesting birds provide significant benefits to forest communities, but timber management techniques may negatively affect cavity-nesting species by reducing the availability of suitable nest and foraging sites. We surveyed cavity-nesting birds from transects in eight Massachusetts oak stands to examine the effect of thinning with retention of snag and wildlife...

  6. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis

    Directory of Open Access Journals (Sweden)

    Nuru Adgaba

    2017-07-01

    Full Text Available In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi, Acacia tortilis, Acacia origina, Acacia asak, Lavandula dentata, and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (<30% with low Shannon’s species diversity indices (H′ of 0.5–1.52 for different sites. Based on the eco-climatological factors and the variations in their flowering period, these major bee forage species were found to form eight distinct spatiotemporal categories which allow beekeepers to migrate their colonies to exploit the resources at different seasons and place. The Remote Sensed Satellite Image analysis confirmed the spatial

  7. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did not differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.

  8. Evaluating the impact of handling and logger attachment on foraging parameters and physiology in southern rockhopper penguins.

    Directory of Open Access Journals (Sweden)

    Katrin Ludynia

    Full Text Available Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin (Eudyptes chrysocome females during the guard stage in three consecutive breeding seasons (2008/09-2010/11 to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs, but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts. Overall, handling and short-term logger attachments (1-3 days showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their

  9. Predation risk of artificial ground nests in managed floodplain meadows

    Science.gov (United States)

    Arbeiter, Susanne; Franke, Elisabeth

    2018-01-01

    Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.

  10. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta at a foraging ground

    Directory of Open Access Journals (Sweden)

    Samir Harshad Patel

    2016-12-01

    Full Text Available Assessing sea turtle behavior at the foraging grounds has been primarily limited to the interpretation of remotely-sensed data. As a result, there is a general lack of detailed understanding regarding the habitat use of sea turtles during a phase that accounts for a majority of their lives. Thus, this study aimed to fill these data gaps by providing detailed information about the feeding habits, prey availability, buoyancy control and water column usage by 73 loggerhead turtles across 45.7 hours of video footage obtained from a remotely operated vehicle (ROV from 2008 – 2014. We developed an ethogram to account for 27 potential environmental and behavioral parameters. Turtles were filmed through the entire water column and we quantified the frequency of behaviors such as flipper beats, breaths, defecations, feedings and reactions to the ROV. We used the ROV’s depth sensor and visible cues (i.e. water surface or benthic zone in view to distinguish depth zones and assess the turtles’ use of the water column. We also quantified interactions with sympatric biota, including potential gelatinous and non-gelatinous prey species, fish (including sharks, marine mammals and other sea turtles. We discovered that turtles tended to remain within the near surface and surface zones of the water column through the majority of the footage. During benthic dives, turtles consistently exhibited negative buoyancy and some turtles exhibited a dichotomous foraging behavior, first foraging within the water column, then diving to the benthic environment. Videography allowed us to combine behavioral observations and habitat features that cannot be captured by traditional telemetry methods, resulting in a broader understanding of loggerheads’ ecological role in the U.S. Mid-Atlantic.

  11. Positive Interactions among Foraging Seabirds, Marine Mammals and Fishes and Implications for Their Conservation

    Directory of Open Access Journals (Sweden)

    Richard R. Veit

    2017-10-01

    Full Text Available There is increasing recognition of the importance of “positive interactions” among species in structuring communities. For seabirds, an important kind of positive interaction is the use of birds of the same species, birds of other species, and other marine predators such as cetaceans, seals and fishes as cues to the presence of prey. The process by which a single bird uses, say, a feeding flock of birds as a cue to the presence of prey is called “local enhancement” or “facilitation.” There are subtly different uses of each of these terms, but the issue we address here is the ubiquity of positive interactions between seabirds and other marine predators when foraging at sea, and whether as a result of their associations the feeding success, and therefore presumably the fitness, of individual seabirds is increased. If this contention is true, then it implies that conservation of any one species of seabird must take into consideration the status and possible conservation of those species that the focal species uses as a cue while foraging. For example, conservation of great shearwaters (Ardenna gravis, which often feed over tuna (e.g., Thunnus schools, should take in to consideration conservation of tuna. Ecosystem management depends on understanding the importance of such processes; the loss of biodiversity, and the consequent threat to foraging success, may be a substantial threat to the stability of marine ecosystems.

  12. Identifying effective actions to guide volunteer-based and nationwide conservation efforts for a ground-nesting farmland bird

    OpenAIRE

    Santangeli, Andrea; Arroyo, Beatriz; Millon, Alexandre; Bretagnolle, Vincent

    2015-01-01

    Modern farming practices threaten wildlife in different ways, and failure to identify the complexity of multiple threats acting in synergy may result in ineffective management. To protect ground-nesting birds in farmland, monitoring and mitigating impacts of mechanical harvesting is crucial. Here, we use 6 years of data from a nationwide volunteer-based monitoring scheme of the Montagu's harrier, a ground-nesting raptor, in French farmlands. We assess the effectiveness of alternative nest pro...

  13. Foraging dives by post-breeding northern pintails

    Science.gov (United States)

    Miller, Michael R.

    1983-01-01

    Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.

  14. Corticosterone and foraging behavior in a diving seabird: the Adélie penguin, Pygoscelis adeliae.

    Science.gov (United States)

    Angelier, Frédéric; Bost, Charles-André; Giraudeau, Mathieu; Bouteloup, Guillaume; Dano, Stéphanie; Chastel, Olivier

    2008-03-01

    Because hormones mediate physiological or behavioral responses to intrinsic or extrinsic stimuli, they can help us understand how animals adapt their foraging decisions to energetic demands of reproduction. Thus, the hormone corticosterone deserves specific attention because of its influence on metabolism, food intake and locomotor activities. We examined the relationships between baseline corticosterone levels and foraging behavior or mass gain at sea in a diving seabird, the Adélie penguin, Pygoscelis adeliae. Data were obtained from free-ranging penguins during the brooding period (Adélie Land, Antarctica) by using satellite transmitters and time-depth-recorders. The birds were weighed and blood sampled before and after a foraging trip (pre-trip and post-trip corticosterone levels, respectively). Penguins with elevated pre-trip corticosterone levels spent less time at sea and stayed closer to the colony than penguins with low pre-trip corticosterone levels. These short trips were associated with a higher foraging effort in terms of diving activity and a lower mass gain at sea than long trips. According to previous studies conducted on seabird species, these results suggest that penguins with elevated pre-trip corticosterone levels might maximize the rate of energy delivery to the chicks at the expense of their body reserves. Moreover, in all birds, corticosterone levels were lower post-foraging than pre-foraging. This decrease could result from either the restoration of body reserves during the foraging trip or from a break in activity at the end of the foraging trip. This study demonstrates for the first time in a diving predator the close relationships linking foraging behavior and baseline corticosterone levels. We suggest that slight elevations in pre-trip corticosterone levels could play a major role in breeding effort by facilitating foraging activity in breeding seabirds.

  15. Foraging behavioral of Phylloscartes ventralis (Aves, Tyrannidae in native and planted forests of southern Brazil

    Directory of Open Access Journals (Sweden)

    André de Mendonça-Lima

    2014-12-01

    Full Text Available Few studies have related the effects of silviculture practices to the behavior of bird species in the Neotropics. The present study examined the foraging behavior of Phylloscartes ventralis (Temminck, 1824 in a native forest and in silviculture areas of Pinus elliotti and Araucaria angustifolia with different structures and ages. We tested two general hypotheses: (1 areas of commercial forest plantation change the foraging behavior of P. ventralis in relation to native forest, and (2 the foraging behavior of P. ventralis in silviculture areas with understories (complex structures is different from its behavior in areas without understory. The results showed that P. ventralis changed its foraging behavior depending on the type of forest, and on the presence of an understory in silviculture areas. Main changes involved the height and angle of substrate where the prey was captured. Phylloscartes ventralis showed the same set of attack maneuvers, with more maneuvers type in young Pinus planted without understory. The frequency of use of attack maneuvers was more similar in areas of silviculture with understory and in the native forest. The results highlight the importance of an understory structure and the utilization of native plant species in silviculture practices, to the foraging behavior of native bird species.

  16. Evidence for foraging -site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the gulf of Alaska

    Science.gov (United States)

    Kotzerka, J.; Hatch, Shyla A.; Garthe, S.

    2011-01-01

    The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.

  17. Non-invasive genetics outperforms morphological methods in faecal dietary analysis, revealing wild boar as a considerable conservation concern for ground-nesting birds.

    Science.gov (United States)

    Oja, Ragne; Soe, Egle; Valdmann, Harri; Saarma, Urmas

    2017-01-01

    Capercaillie (Tetrao urogallus) and other grouse species represent conservation concerns across Europe due to their negative abundance trends. In addition to habitat deterioration, predation is considered a major factor contributing to population declines. While the role of generalist predators on grouse predation is relatively well known, the impact of the omnivorous wild boar has remained elusive. We hypothesize that wild boar is an important predator of ground-nesting birds, but has been neglected as a bird predator because traditional morphological methods underestimate the proportion of birds in wild boar diet. To distinguish between different mammalian predator species, as well as different grouse prey species, we developed a molecular method based on the analysis of mitochondrial DNA that allows accurate species identification. We collected 109 wild boar faeces at protected capercaillie leks and surrounding areas and analysed bird consumption using genetic methods and classical morphological examination. Genetic analysis revealed that the proportion of birds in wild boar faeces was significantly higher (17.3%; 4.5×) than indicated by morphological examination (3.8%). Moreover, the genetic method allowed considerably more precise taxonomic identification of consumed birds compared to morphological analysis. Our results demonstrate: (i) the value of using genetic approaches in faecal dietary analysis due to their higher sensitivity, and (ii) that wild boar is an important predator of ground-nesting birds, deserving serious consideration in conservation planning for capercaillie and other grouse.

  18. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest

    Science.gov (United States)

    John C. Kilgo

    2005-01-01

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging...

  19. Record and foraging behavior of ants (Hymenoptera, Formicidae in vertebrate carcasses

    Directory of Open Access Journals (Sweden)

    Tatiane Tagliatti Maciel

    2016-12-01

    Full Text Available Knowing the importance of participation by insects at cadaverous decomposition processes, and the limited use of the family Formicidae in criminal investigations, this study aims to record the foraging activity of four genera of ants in carcasses of birds and mammals. Observations occurred accidentally in two locations in the State of Minas Gerais, Brazil. In total, seven species of ants foraging in eight vertebrate carcasses were recorded. In addition, the study reported for the first time the presence of Wasmannia in carcasses in Brazil.

  20. Habitat structure and diversity influence the nesting success of an endangered large cavity-nesting bird, the Southern Ground-hornbill

    OpenAIRE

    Combrink, Leigh; Combrink, Hendrik J.; Botha, André J.; Downs, Colleen T.

    2017-01-01

    Habitat features can have a profound effect on the nesting success of birds. Savannas are often managed with predators and large herbivores as priority species, with little thought to the many bird species that management decisions could affect. Using a data set spanning seven breeding seasons, we examined how nesting success of Southern Ground-hornbills (SGHs) Bucorvus leadbeateri in the Kruger National Park varied as a result of various environmental and habitat factors within a radius of 3...

  1. California Least Tern Foraging Ecology in Southern California: A Review of Foraging Behavior Relative to Proposed Dredging Locations

    Science.gov (United States)

    2016-05-01

    additional data are necessary to understand the relationship among turbidity plumes, behavior of CLT prey fish , and CLT foraging behavior. KBC...activities. Fish actively seek out or avoid turbid waters for a number of reasons, including predator avoidance and food resources, and this...Birds 14:57-72. Atwood, J. L., and P. R. Kelly. 1984. Fish dropped on breeding colonies as indicators of Least Tern food habits. Wilson Bulletin 96: 34

  2. The birds of Araku, Visakhapatnam, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    T.S. Kumar

    2010-01-01

    Full Text Available Avifaunal survey carried out from December 2006 to September 2007 in Araku Valley, Visakhapatnam, Andhra Pradesh, revealed the presence of a total of 147 species of birds belonging to 43 families. One-hundred-twelve species of birds in Araku Valley were resident breeders, 23 species winter visitors, nine species local migrants, two species passage migrants and one species summer visitor. Many bird species were seen in more than one habitat for nesting, roosting and foraging. The dominant feeding guild of birds was insectivorous. Four globally threatened species, namely, the Purple Wood-Pigeon Columba punicea Blyth, 1842, the Greater Spotted Eagle Aquila clanga Pallas, 1811, the Lesser Kestrel Falco naumanni Fleischer, 1818 and the Pallid Harrier Circus macrourus (S.G. Gmelin, 1770, were recorded during the survey from the area

  3. Bird foraging on incense-cedar and incense-cedar scale during winter in California

    Science.gov (United States)

    Michael L. Morrison; Donald L. Dahlsten; Susan M. Tait; Robert C. Heald; Kathleen A. Milne; David L. Rowney

    1989-01-01

    Seasonal differences in use of food and habitat have been shown for numerous bird species. Especially during winter, when insect food is often at its lowest availability, birds may be unable to secure enough food for survival. In earlier work in the mixed-conifer zone of the western Sierra Nevada (Blodgett Forest, El Dorado County), observers found that many birds...

  4. Experimental transmission of Crimean-Congo hemorrhagic fever virus by west African wild ground-feeding birds to Hyalomma marginatum rufipes ticks.

    Science.gov (United States)

    Zeller, H G; Cornet, J P; Camicas, J L

    1994-06-01

    Hyalomma (H.) marginatum rufipes ticks commonly infest birds and are potential vectors of Crimean-Congo hemorrhagic fever (CCHF) virus in west Africa. An experimental model for investigating the role of birds in the CCHF virus transmission cycle was developed. Following CCHF virus inoculation, antibodies were detected by enzyme-linked immunosorbent assay in one red-beaked hornbill and one glossy starling, but not in two laughing doves and six domestic chickens. None of the birds showed a detectable viremia. Hyalomma marginatum rufipes larvae were placed on three red-beaked hornbills and one glossy starling. These birds were then inoculated with CCHF virus (10(1.5) 50% mouse intracerebral lethal doses). Virus transmission to larvae or nymphs was obtained and seroconversions in birds were recorded. Virus was also detected in 90% of the individually tested nymphs, as well as in adults. The virus was then successfully transmitted by adult ticks to rabbits and the engorged females were allowed to oviposit. Progeny larvae were placed on another group of birds and one of three birds showed seroconversion. The cycle of transmission of virus between ticks and aviremic ground-feeding birds represent a potential reservoir and amplification mechanism of CCHF virus in west Africa.

  5. Foraging decisions, patch use, and seasonality in egrets (Aves: ciconiiformes)

    Science.gov (United States)

    Erwin, R.M.

    1985-01-01

    Feeding snowy (Egretta thula) and great (Casmerodius albus) egrets were observed during 2 breeding seasons in coastal New Jersey and 2 brief winter periods in northeast Florida (USA). A number of tests based on assumptions of foraging models, predictions from foraging theory, and earlier empirical tests concerning time allocation and movement in foraging patches was made. Few of the expectations based on foraging theory and/or assumptions were supported by the empirical evidence. Snowy egrets fed with greater intensity and efficiency during the breeding season (when young were being fed) than during winter. They also showed some tendency to leave patches when their capture rate declined, and they spent more time foraging in patches when other birds were present nearby. Great egrets showed few of these tendencies, although they did leave patches when their intercapture intervals increased. Satiation differences had some influence on feeding rates in snowy egrets, but only at the end of feeding bouts. Some individuals of both species revisited areas in patches that had recently been exploited, and success rates were usually higher after the 2nd visit. Apparently, for predators of active prey, short-term changes in resource availability ('resource depression') may be more important than resource depletion, a common assumption in most optimal foraging theory models.

  6. Effects of Tide Stage on the Use of Salt Marshes by Wading Birds in Rhode Island

    Science.gov (United States)

    To determine how tide stage affects wading bird abundance, behavior, and foraging in three Narragansett Bay salt marshes (RI), we conducted surveys at 10-min intervals—across the full tidal range—during six days at each marsh in July/September of 2006. The wading bird community ...

  7. Barn Swallow Hirundo rustica parents work harder when foraging conditions are good

    NARCIS (Netherlands)

    Schifferli, Luc; Grueebler, Martin U.; Meijer, Harro A. J.; Visser, G. Henk; Naef-Daenzer, Beat

    2014-01-01

    In altricial birds, the great effort involved in supplying food to nestlings can create trade-offs in the allocation of resources between the current brood and parental self-maintenance. In poor foraging conditions, parents have to adjust their energy expenditure in relation to the increased

  8. Sex-dependent foraging effort and vigilance in coal-crested finches, Charitospiza eucosma (Aves: Emberizidae during the breeding season: evidence of female-biased predation?

    Directory of Open Access Journals (Sweden)

    Pedro Diniz

    2011-04-01

    Full Text Available Sexual dimorphism in birds is often attributed to sexual selection, but another interpretation suggests the evolution of this phenomenon by natural selection. Predation may be an important selective pressure, acting mainly on females. In this study, I tested the latter hypothesis on the coal-crested finch (Charitospiza eucosma Oberholser, 1905 in a neotropical savanna of the Central Brazil (Cerrado. I used capture methods for ascertaining the sex ratio in the population, and focal observations to gather behavioral data. My results show that the sex ratio is skewed toward males (1:1.39. Males were more vigilant, vocalized for longer periods of time, and used higher perches than females. Females foraged more, spent more time on parental care and remained on the ground for longer periods than males. These results support the 'foraging effort hypothesis, suggesting that females are more preyed upon because they spend more time foraging. Ultimately, this may reflect the fact that females invest more on parental care than males. The sex-dependent parental investment may favor the evolution of different antipredator strategies in males and females: the camouflage in females as a less efficient strategy than vigilance in males.

  9. Terrestrial and Marine Foraging Strategies of an Opportunistic Seabird Species Breeding in the Wadden Sea.

    Directory of Open Access Journals (Sweden)

    Stefan Garthe

    Full Text Available Lesser black-backed gulls Larus fuscus are considered to be mainly pelagic. We assessed the importance of different landscape elements (open sea, tidal flats and inland by comparing marine and terrestrial foraging behaviours in lesser black-backed gulls breeding along the coast of the southern North Sea. We attached GPS data loggers to eight incubating birds and collected information on diet and habitat use. The loggers recorded data for 10-19 days to allow flight-path reconstruction. Lesser black-backed gulls foraged in both offshore and inland areas, but rarely on tidal flats. Targets and directions were similar among all eight individuals. Foraging trips (n = 108 lasted 0.5-26.4 h (mean 8.7 h, and ranges varied from 3.0-79.9 km (mean 30.9 km. The total distance travelled per foraging trip ranged from 7.5-333.6 km (mean 97.9 km. Trips out to sea were significantly more variable in all parameters than inland trips. Presence in inland areas was closely associated with daylight, whereas trips to sea occurred at day and night, but mostly at night. The most common items in pellets were grass (48%, insects (38%, fish (28%, litter (26% and earthworms (20%. There was a significant relationship between the carbon and nitrogen isotope signals in blood and the proportional time each individual spent foraging at sea/land. On land, gulls preferentially foraged on bare ground, with significantly higher use of potato fields and significantly less use of grassland. The flight patterns of lesser black-backed gulls at sea overlapped with fishing-vessel distribution, including small beam trawlers fishing for shrimps in coastal waters close to the colony and large beam-trawlers fishing for flatfish at greater distances. Our data show that individuals made intensive use of the anthropogenic landscape and seascape, indicating that lesser black-backed gulls are not a predominantly marine species during the incubation period.

  10. Selection of foraging habitat and diet of the Hoopoe Upupa epops in the mosaic-like cultural landscape of Goričko (NE Slovenia

    Directory of Open Access Journals (Sweden)

    Podletnik Mojca

    2015-12-01

    Full Text Available In 2012 and 2013, the selection of foraging habitats and the diet of the Hoopoe Upupa epops were studied in the Goričko area, where a significant population decline of the species has been recorded in the past 15 years. Goričko is an area with a well-preserved traditional mosaic-like agricultural landscape very rich in biodiversity which, however, is disappearing. The diet was determined using automatic camera recordings of prey brought to chicks by parents. Mole crickets Gryllotalpa gryllotalpa were the most dominant prey (35.4% frequency and 81.3% biomass of prey, followed by Scarab beetles larvae Scarabaeidae, caterpillars Lepidoptera larvae and True flies Diptera. Feeding frequency was highest in the period of most intensive chick growth (between 8 and 21 days of age. Selection of foraging habitat was researched by observation of birds during foraging. Hoopoes foraged mostly in mown meadows and grassy courtyards and, to a lesser extent, on sandy cart tracks and road edges. These habitats were characterized by low vegetation and patches of bare ground that enabled Hoopoes to forage efficiently. Home range size was determined using minimum convex polygons. The maximum home range size was between 42.9 and 57.7 ha, while the percentage of foraging habitats within the home range did not exceed 18%. Based on our results, we propose the following measures for effective Hoopoe conservation in the area: maintaining the present range of existing unimproved meadows, stopping the conversion of meadows into fields, restoring fields to meadows, prohibiting the use of pesticides targeting Mole crickets.

  11. "Freshwater killer whales": beaching behavior of an alien fish to hunt land birds.

    Directory of Open Access Journals (Sweden)

    Julien Cucherousset

    Full Text Available The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis to capture birds on land (i.e. pigeons, Columbia livia. Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ(13C and δ(15N of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.

  12. Boldness predicts an individual's position along an exploration-exploitation foraging trade-off.

    Science.gov (United States)

    Patrick, Samantha C; Pinaud, David; Weimerskirch, Henri

    2017-09-01

    Individuals do not have complete information about the environment and therefore they face a trade-off between gathering information (exploration) and gathering resources (exploitation). Studies have shown individual differences in components of this trade-off but how stable these strategies are in a population and the intrinsic drivers of these differences is not well understood. Top marine predators are expected to experience a particularly strong trade-off as many species have large foraging ranges and their prey often have a patchy distribution. This environment leads these species to exhibit pronounced exploration and exploitation phases but differences between individuals are poorly resolved. Personality differences are known to be important in foraging behaviour but also in the trade-off between exploration and exploitation. Here we test whether personality predicts an individual exploration-exploitation strategy using wide ranging wandering albatrosses (Diomedea exulans) as a model system. Using GPS tracking data from 276 wandering albatrosses, we extract foraging parameters indicative of exploration (searching) and exploitation (foraging) and show that foraging effort, time in patch and size of patch are strongly correlated, demonstrating these are indicative of an exploration-exploitation (EE) strategy. Furthermore, we show these are consistent within individuals and appear stable in the population, with no reproductive advantage. The searching and foraging behaviour of bolder birds placed them towards the exploration end of the trade-off, whereas shy birds showed greater exploitation. This result provides a mechanism through which individual foraging strategies may emerge. Age and sex affected components of the trade-off, but not the trade-off itself, suggesting these factors may drive behavioural compensation to maintain resource acquisition and this was supported by the evidence that there were no fitness consequence of any EE trait nor the trade

  13. Maize stubble as foraging habitat for wintering geese and swans in northern Europe

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Madsen, Jesper; Nolet, Bart, A.

    2018-01-01

    Agricultural crops have become increasingly important foraging habitats to geese and swans in northern Europe, and a recent climate-driven expansion in the area of maize fields has led to a rapid increase in the exploitation of this habitat. However, due to the novelty of maize foraging in this r......Agricultural crops have become increasingly important foraging habitats to geese and swans in northern Europe, and a recent climate-driven expansion in the area of maize fields has led to a rapid increase in the exploitation of this habitat. However, due to the novelty of maize foraging...... in this region, little is known about the abundance and energetic value of this resource to foraging birds. In this study we quantify food availability, intake rates and energetic profitability of the maize stubble habitat, and describe the value of this increasingly cultivated crop to wintering geese and swans...... of geese and swans wintering in northern Europe....

  14. Food abundance does not determine bird use of early-successional habitat.

    Energy Technology Data Exchange (ETDEWEB)

    Champlin, Tracey B.; Kilgo, John C.; Moorman, Christopher E.

    2009-06-01

    Abstract. Few attempts have been made to experimentally address the extent to which temporal or spatial variation in food availability influences avian habitat use. We used an experimental approach to investigate whether bird use differed between treated (arthropods reduced through insecticide application) and control (untreated) forest canopy gaps within a bottomland hardwood forest in the Upper Coastal Plain of South Carolina, USA. Gaps were two- to three-year-old group selection timber harvest openings of three sizes (0.13, 0.26, and 0.50 ha). Our study was conducted during four bird use periods (spring migration, breeding, post-breeding, and fall migration) in 2002 and 2003. Arthropods were reduced in treated gaps by 68% in 2002 and 73% in 2003. We used mist-netting captures and foraging attack rates to assess the influence of arthropod abundance on avian habitat use. Evidence that birds responded to arthropod abundance was limited and inconsistent. In 2002, we generally captured more birds in treated gaps of the smallest size (0.13 ha) and fewer birds in treated gaps of the larger sizes. In 2003, we recorded few differences in the number of captures in treated and control gaps. Foraging attack rates generally were lower in treated than in control gaps, indicating that birds were able to adapt to the reduced food availability and remain in treated gaps. We conclude that arthropod abundance was not a proximate factor controlling whether forest birds used our gaps. The abundance of food resources may not be as important in determining avian habitat selection as previous research has indicated, at least for passerines in temperate subtropical regions.

  15. Primary versus secondary drivers of foraging activity in sandeel schools (Ammodytes tobianus)

    DEFF Research Database (Denmark)

    Deurs, Mikael van; Behrens, Jane; Warnar, Thomas

    2011-01-01

    to fishery biologists and has consequences for a wide range of predators ranging from birds and mammals to commercially important species. However, experimental studies that shed light on the primary drivers of foraging activity in fish are rare. In the present study, whole schools of sandeel (A. tobianus......The commercially and ecologically valuable sandeel (Ammodytes ssp.) make distinct vertical shifts between an inactive stage, during which they seek refuge in the sand, and a pelagic schooling stage, during which they forage. This characteristic discontinuous foraging pattern constitutes a challenge......) were caught in August in east Denmark (65A degrees 02'30N; 12A degrees 37'00E) and kept in large tanks in the laboratory. It was found that the amount of food ingested and memory of past days feeding history are primary drivers of foraging activity at the level of the entire school, whereas external...

  16. Ecology of Avian Influenza Virus in Wild Birds in Tropical Africa.

    Science.gov (United States)

    Gaidet, Nicolas

    2016-05-01

    Several ecologic factors have been proposed to describe the mechanisms whereby host ecology and the environment influence the transmission of avian influenza viruses (AIVs) in wild birds, including bird's foraging behavior, migratory pattern, seasonal congregation, the rate of recruitment of juvenile birds, and abiotic factors. However, these ecologic factors are derived from studies that have been conducted in temperate or boreal regions of the Northern Hemisphere. These factors cannot be directly translated to tropical regions, where differences in host ecology and seasonality may produce different ecologic interactions between wild birds and AIV. An extensive dataset of AIV detection in wildfowl and shorebirds sampled across tropical Africa was used to analyze how the distinctive ecologic features of Afrotropical regions may influence the dynamics of AIV transmission in wild birds. The strong seasonality of rainfall and surface area of wetlands allows testing of how the seasonality of wildfowl ecology (reproduction phenology and congregation) is related to AIV seasonal dynamics. The diversity of the African wildfowl community provides the opportunity to investigate the respective influence of migratory behavior, foraging behavior, and phylogeny on species variation in infection rate. Large aggregation sites of shorebirds in Africa allow testing for the existence of AIV infection hot spots. We found that the processes whereby host ecology influence AIV transmission in wild birds in the Afrotropical context operate through ecologic factors (seasonal drying of wetlands and extended and nonsynchronized breeding periods) that are different than the one described in temperate regions, hence, resulting in different patterns of AIV infection dynamics.

  17. Foraging areas, offshore habitat use, and colony overlap by incubating Leach's storm-petrels Oceanodroma leucorhoa in the Northwest Atlantic.

    Directory of Open Access Journals (Sweden)

    April Hedd

    Full Text Available Despite their importance in marine food webs, much has yet to be learned about the spatial ecology of small seabirds. This includes the Leach's storm-petrel Oceanodroma leucorhoa, a species that is declining throughout its Northwest Atlantic breeding range. In 2013 and 2014, we used global location sensors to track foraging movements of incubating storm-petrels from 7 eastern Canadian breeding colonies. We determined and compared the foraging trip and at-sea habitat characteristics, analysed spatial overlap among colonies, and determined whether colony foraging ranges intersected with offshore oil and gas operations. Individuals tracked during the incubation period made 4.0 ± 1.4 day foraging trips, travelling to highly pelagic waters over and beyond continental slopes which ranged, on average, 400 to 830 km from colonies. Cumulative travel distances ranged from ~900 to 2,100 km among colonies. While colony size did not influence foraging trip characteristics or the size of areas used at sea, foraging distances tended to be shorter for individuals breeding at the southern end of the range. Core areas did not overlap considerably among colonies, and individuals from all sites except Kent Island in the Bay of Fundy foraged over waters with median depths > 1,950 m and average chlorophyll a concentrations ≤ 0.6 mg/m3. Sea surface temperatures within colony core areas varied considerably (11-23°C, coincident with the birds' use of cold waters of the Labrador Current or warmer waters of the Gulf Stream Current. Offshore oil and gas operations intersected with the foraging ranges of 5 of 7 colonies. Three of these, including Baccalieu Island, Newfoundland, which supports the species' largest population, have experienced substantial declines in the last few decades. Future work should prioritize modelling efforts to incorporate information on relative predation risk at colonies, spatially explicit risks at-sea on the breeding and wintering grounds

  18. Influence of Riparian Tree Phenology on Lower Colorado River Spring-Migrating Birds: Implications of Flower Cueing

    Science.gov (United States)

    McGrath, Laura J.; van Riper, Charles

    2005-01-01

    Executive Summary Neotropical migrant birds make choices about which habitats are most likely to provide successful foraging locations during migration, but little is known about how these birds recognize and process environmental clues that indicate the presence of prey species. Aspects of tree phenology, notably flowering of trees along the lower Colorado River corridor, coincide with the migratory stopovers of leaf-gleaning insectivorous songbirds and may be an important indicator of arthropod prey species availability. Shifting tree flowering and leaf flush during the spring migration period presents avian insectivores with an assortment of foraging opportunities. During two field seasons at Cibola National Wildlife Refuge in southwestern Arizona, we examined riparian tree species to test whether leaf-gleaning insectivorous birds are attracted to the flowering condition of trees in choosing foraging sites. We predicted that flowering trees would host more insect prey resources, would thus show increased visit rates, length of stays and attack ratios of migrant avian insectivores, and that those arthropods would be found in the stomach contents of the birds. Paired trees of honey mesquite (Prosopis glandulosa), displaying heavy and light degrees of flowering were observed to test these predictions. To test whether birds are tracking arthropods directly or are using flowers as a proximate cue, we removed flowers from selected trees and paired these treated trees with neighboring high flowering trees, which served as controls. Avian foraging behavior, avian diets, arthropods, and phenology data were collected at the same time to control for temporal differences in insect availability, plant phenology, and differences in stopover arrivals of birds. We documented five patterns from this study: 1) Higher abundance and richness of arthropods were found on honey mesquite trees with greater numbers of flowers. 2) Arthropod abundance and richness increased as flowering

  19. Foraging ecology as related to the distribution of planktivorous auklets in the Bering Sea

    Science.gov (United States)

    Hunt, George L.; Harrison, Nancy M.; Piatt, John F.

    1993-01-01

    We review recent accounts of the foraging ecologies of  five species of small auklets found in the Bering Sea. These birds eat a wide variety of zooplankton and micronekton. Least Auklets Aethia pusilla and Whiskered Auklets A. pygmaea, as far as is known, primarily eat copepods, whereas Created Auklets A. cristatella appear to specialize on euphausiids, at least during the breeding season. The diet of Parakeet Auklets Cyclorrhynchus psittacula is much broader than that of most other Aethia species, and includes many gelatinous species and their commensals. Little is known of the diet of Cassin's Auklet Ptychoramphus aleuticus in the Bering Sea, although elsewhere they take large copepods, euphausiids, and larval fish.There are considerable differences in the at-sea distributions and foraging behaviors of these five species of auklet. Least Auklets in the norhtern Bering Sea concentrate their foraging activities over strongly stratified water and near fronts where pycnoclines may approach the surface. In the Aleutian Islands, Least Auklets forage where oceanic and tidal currents strike the shelf between the islands and rise toward the surface carrying plankton. Least Auklets and Crested Auklets are often found in large flocks, whereas Parakeet Auklets are rarely found in groups of more than three birds and are usually widely dispersed. The few at-sea observations of Whiskered Auklets have been of small flocks in turbulent waters of island passes. We relate prey types taken, foraging dispersion, and the use of hydrographic features by these auklet species.

  20. Winter predation by insectivorous birds and consequences for arthropods and plants in summer.

    Science.gov (United States)

    Barber, Nicholas A; Wouk, Jennifer

    2012-12-01

    Top-down effects of predators can have important consequences for ecosystems. Insectivorous birds frequently have strong predation effects on herbivores and other arthropods, as well as indirect effects on herbivores' host plants. Diet studies have shown that birds in temperate ecosystems consume arthropods in winter as well as in summer, but experimental studies of bird predation effects have not attempted to quantitatively separate winter predation impacts from those in summer. To understand if winter foraging by insectivorous birds has consequences for arthropods or plants, we performed a meta-analysis of published bird exclusion studies in temperate forest and shrubland habitats. We categorized 85 studies from 41 publications by whether birds were excluded year-round or only in summer, and analyzed arthropod and plant response variables. We also performed a manipulative field experiment in which we used a factorial design to exclude birds from Quercus velutina Lam. saplings in winter and summer, and censused arthropods and herbivore damage in the following growing season. In the meta-analysis, birds had stronger negative effects on herbivores in studies that included winter exclusion, and this effect was not due to study duration. However, this greater predation effect did not translate to a greater impact on plant damage or growth. In the field experiment, winter exclusion did not influence herbivore abundance or their impacts on plants. We have shown that winter feeding by temperate insectivorous birds can have important consequences for insect herbivore populations, but the strength of these effects may vary considerably among ecosystems. A full understanding of the ecological roles of insectivorous birds will require explicit consideration of their foraging in the non-growing season, and we make recommendations for how future studies can address this.

  1. Age-related variation in foraging behaviour in the wandering albatross at South Georgia: no evidence for senescence.

    Directory of Open Access Journals (Sweden)

    Hannah Froy

    Full Text Available Age-related variation in demographic rates is now widely documented in wild vertebrate systems, and has significant consequences for population and evolutionary dynamics. However, the mechanisms underpinning such variation, particularly in later life, are less well understood. Foraging efficiency is a key determinant of fitness, with implications for individual life history trade-offs. A variety of faculties known to decline in old age, such as muscular function and visual acuity, are likely to influence foraging performance. We examine age-related variation in the foraging behaviour of a long-lived, wide-ranging oceanic seabird, the wandering albatross Diomedea exulans. Using miniaturised tracking technologies, we compared foraging trip characteristics of birds breeding at Bird Island, South Georgia. Based on movement and immersion data collected during the incubation phase of a single breeding season, and from extensive tracking data collected in previous years from different stages of the breeding cycle, we found limited evidence for age-related variation in commonly reported trip parameters, and failed to detect signs of senescent decline. Our results contrast with the limited number of past studies that have examined foraging behaviour in later life, since these have documented changes in performance consistent with senescence. This highlights the importance of studies across different wild animal populations to gain a broader perspective on the processes driving variation in ageing rates.

  2. Species Diversity and Bird Feed in Residential Complex

    Science.gov (United States)

    Hadinoto; Suhesti, Eni

    2017-12-01

    Bird is one component of the ecosystem which has an important role in supporting the occurrence of an organism's life cycle. Therefore, the presence of birds in an area is important, because it can affect the existence and distribution of plant species. The purpose of this study is to calculate the diversity of bird species and identify the source of bird feed in the compound. This study was conducted by field surveys in the residential complex. In addition to the birds as a research object vegetation as habitat / foraging birds were also observed. Data were analyzed by using the bird diversity index, richenes index, bundance index, dominance analysis, analysis of bird distribution and analysis of the level of meeting types, while vegetation will be analyzed based on the type and part of what is eaten by birds. In Pandau Jaya housing complex, found as many as 12 species of birds which consists of seven families. Bird species often present is Cucak Kutilang (Pycnonotus aurigaster) of 20 individuals, Bondol Peking (Lonchura punctulata) 14 individuals and Perkutut Jawa (Geopelia striata) 10 individuals. Bird species diversity (H ‘) in Pandau Jaya housing complex is still relatively moderate with a value of 2.27, while the Evenness Index (E) of 0.91 and Richenes Index (R) of 2.45. Types of vegetation as a food source, among others: mango, guava, cherry, jackfruit, ketapang, coconut, areca, palm, banana, papaya, flowers and grasses.

  3. A Breath of Fresh Air in Foraging Theory: The Importance of Wind for Food Size Selection in a Central-Place Forager.

    Science.gov (United States)

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2017-09-01

    Empirical data about food size carried by central-place foragers do not often fit with the optimum predicted by classical foraging theory. Traditionally, biotic constraints such as predation risk and competition have been proposed to explain this inconsistency, leaving aside the possible role of abiotic factors. Here we documented how wind affects the load size of a central-place forager (leaf-cutting ants) through a mathematical model including the whole foraging process. The model showed that as wind speed at ground level increased from 0 to 2 km/h, load size decreased from 91 to 30 mm 2 , a prediction that agreed with empirical data from windy zones, highlighting the relevance of considering abiotic factors to predict foraging behavior. Furthermore, wind reduced the range of load sizes that workers should select to maintain a similar rate of food intake and decreased the foraging rate by ∼70% when wind speed increased 1 km/h. These results suggest that wind could reduce the fitness of colonies and limit the geographic distribution of leaf-cutting ants. The developed model offers a complementary explanation for why load size in central-place foragers may not fit theoretical predictions and could serve as a basis to study the effects of other abiotic factors that influence foraging.

  4. Bird or bat: comparing airframe design and flight performance

    International Nuclear Information System (INIS)

    Hedenstroem, Anders; Johansson, L Christoffer; Spedding, Geoffrey R

    2009-01-01

    Birds and bats have evolved powered flight independently, which makes a comparison of evolutionary 'design' solutions potentially interesting. In this paper we highlight similarities and differences with respect to flight characteristics, including morphology, flight kinematics, aerodynamics, energetics and flight performance. Birds' size range is 0.002-15 kg and bats' size range is 0.002-1.5 kg. The wingbeat kinematics differ between birds and bats, which is mainly due to the different flexing of the wing during the upstroke and constraints by having a wing of feathers and a skin membrane, respectively. Aerodynamically, bats appear to generate a more complex wake than birds. Bats may be more closely adapted for slow maneuvering flight than birds, as required by their aerial hawking foraging habits. The metabolic rate and power required to fly are similar among birds and bats. Both groups share many characteristics associated with flight, such as for example low amounts of DNA in cells, the ability to accumulate fat as fuel for hibernation and migration, and parallel habitat-related wing shape adaptations

  5. Factors Influencing Expanded Use of Urban Marine Habitats by Foraging Wading Birds

    Science.gov (United States)

    Urban marine habitats are often utilized by wildlife for foraging and other activities despite surrounding anthropogenic impact or disturbance. However little is known of the ecological factors that determine habitat value of these and other remnant natural habitats. We examine...

  6. Predation of artificial ground nests on white-tailed prairie dog colonies

    Science.gov (United States)

    Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.

    1999-01-01

    Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.

  7. Scaring waterfowl as a management tool: how much more do geese forage after disturbance?

    NARCIS (Netherlands)

    Nolet, B.A.; Kölzsch, A.; Elderenbosch, M.; Van Noordwijk, A.J.

    2016-01-01

    1.With increasing numbers of many herbivorous waterfowl species, often foraging on farmland, the conflict with agriculture has intensified. One popular management tool is to scare birds off the land, often in association with shooting. However, the energy costs of flying are considerably higher than

  8. Scaring waterfowl as a management tool: how much more do geese forage after disturbance?

    NARCIS (Netherlands)

    Nolet, B.A.; Kölzsch, A.; Elderenbosch, M.; van Noordwijk, A.J.

    2016-01-01

    With increasing numbers of many herbivorous waterfowl species, often foraging on farmland, the conflict with agriculture has intensified. One popular management tool is to scare birds off the land, often in association with shooting. However, the energy costs of flying are considerably higher than

  9. Information needs and priorities for assessing the sensitivity of marine birds to oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, J.A.; Ford, G.; Heinemann, D.

    1984-01-01

    Experience in developing models to predict the potential impacts of oil spills on colonially breeding marine birds has revealed some major gaps in the information available on these systems. The authors consider the availability of data for a variety of parameters of seabird biology that are required in modelling efforts, and assign provisional priorities to the information needs. In order to develop means of predicting the impacts of oil spills on seabirds, the authors suggest that colony- or site-specific information on the timing of reproduction and colony occupancy, chick growth rates and body weights, several metabolic parameters, flight speed, and food load size is of relatively low overall priority. Intermediate priority is assigned to the collection of specific data on the dynamics of oil spills, the age and breeding structure of the populations, reproductive success, foraging activity budgets and flight paths, flight costs, and the response of growing chicks to food deprivation. The authors suggest that studies of seabird biology should give highest priority to obtaining information of population sizes, the probability of adult death upon encountering a spill, age-specific fecundity and survivorship, the time required in foraging trips, the lag time in the response of birds to an oil spill, foraging rate as a function of resource density, and changes in the availability of resources to the birds as a consequence of oil spills.

  10. The effects of hurricanes on birds, with special reference to Caribbean islands

    Science.gov (United States)

    Wiley, J.W.; Wunderle, J.M.

    1993-01-01

    Cyclonic storms, variously called typhoons, cyclones, or hurricanes (henceforth, hurricanes), are common in many parts of the world, where their frequent occurrence can have both direct and indirect effects on bird populations. Direct effects of hurricanes include mortality from exposure to hurricane winds, rains, and storm surges, and geographic displacement of individuals by storm winds. Indirect effects become apparent in the storm's aftermath and include loss of food supplies or foraging substrates; loss of nests and nest or roost sites; increased vulnerability to predation; microclimate changes; and increased conflict with humans. The short-term response of bird populations to hurricane damage, before changes in plant succession, includes shifts in diet, foraging sites or habitats, and reproductive changes. Bird populations may show long-term responses to changes in plant succession as second-growth vegetation increases in storm-damaged old-growth forests. The greatest stress of a hurricane to most upland terrestrial bird populations occurs after its passage rather than during its impact. The most important effect of a hurricane is the destruction of vegetation, which secondarily affects wildlife in the storm's aftermath. The most vulnerable terrestrial wildlife populations have a diet of nectar, fruit, or seeds; nest, roost, or forage on large old trees; require a closed forest canopy; have special microclimate requirements and/or live in a habitat in which vegetation has a slow recovery rate. Small populations with these traits are at greatest risk to hurricane-induced extinction, particularly if they exist in small isolated habitat fragments. Recovery of avian populations from hurricane effects is partially dependent on the extent and degree of vegetation damage as well as its rate of recovery. Also, the reproductive rate of the remnant local population and recruitment from undisturbed habitat patches influence the rate at which wildlife populations recover

  11. Functional Traits, Flocking Propensity, and Perceived Predation Risk in an Amazonian Understory Bird Community.

    Science.gov (United States)

    Martínez, Ari E; Gomez, Juan P; Ponciano, José Miguel; Robinson, Scott K

    2016-05-01

    Within a community, different species might share similar predation risks, and, thus, the ability of species to signal and interpret heterospecific threat information may determine species' associations. We combined observational, experimental, and phylogenetic approaches to determine the extent to which evolutionary history and functional traits determined flocking propensity and perceived predation risk (response to heterospecific alarm calls) in a lowland Amazonian bird community. We predicted that small birds that feed myopically and out in the open would have higher flocking propensities and account for a higher proportion of positive responses to alarms. Using generalized linear models and the incorporation of phylogeny on data from 56 species, our results suggest that phylogenetic relationships alongside body size, foraging height, vegetation density, and response to alarm calls influence flocking propensity. Conversely, phylogenetic relationships did not influence response to heterospecific alarm calls. Among functional traits, however, foraging strategy, foraging density, and flocking propensity partially explained responses to alarm calls. Our results suggest that flocking propensity and perceived predation risk are positively related and that functional ecological traits and evolutionary history may explain certain species' associations.

  12. Habitat Requirements and Foraging Ecology of the Madagascar Fish-Eagle

    OpenAIRE

    Berkelman, James

    1997-01-01

    With a population estimate of 99 pairs, the Madagascar fish-eagle (Haliaeetus vociferoides) is one of the rarest birds of prey in the world. I investigated the ecological requirements of the Madagascar fish-eagle in 1994 and 1995 to help determine management action to prevent its extinction. I investigated fish-eagle foraging ecology in 1996 to determine its prey preference and whether fish abundance and availabi...

  13. Predictable evolution toward flightlessness in volant island birds.

    Science.gov (United States)

    Wright, Natalie A; Steadman, David W; Witt, Christopher C

    2016-04-26

    Birds are prolific colonists of islands, where they readily evolve distinct forms. Identifying predictable, directional patterns of evolutionary change in island birds, however, has proved challenging. The "island rule" predicts that island species evolve toward intermediate sizes, but its general applicability to birds is questionable. However, convergent evolution has clearly occurred in the island bird lineages that have undergone transitions to secondary flightlessness, a process involving drastic reduction of the flight muscles and enlargement of the hindlimbs. Here, we investigated whether volant island bird populations tend to change shape in a way that converges subtly on the flightless form. We found that island bird species have evolved smaller flight muscles than their continental relatives. Furthermore, in 366 populations of Caribbean and Pacific birds, smaller flight muscles and longer legs evolved in response to increasing insularity and, strikingly, the scarcity of avian and mammalian predators. On smaller islands with fewer predators, birds exhibited shifts in investment from forelimbs to hindlimbs that were qualitatively similar to anatomical rearrangements observed in flightless birds. These findings suggest that island bird populations tend to evolve on a trajectory toward flightlessness, even if most remain volant. This pattern was consistent across nine families and four orders that vary in lifestyle, foraging behavior, flight style, and body size. These predictable shifts in avian morphology may reduce the physical capacity for escape via flight and diminish the potential for small-island taxa to diversify via dispersal.

  14. Foraging Habitat Distributions Affect Territory Size and Shape in the Tuamotu Kingfisher

    Directory of Open Access Journals (Sweden)

    Dylan C. Kesler

    2012-01-01

    Full Text Available I studied factors influencing territory configuration in the Tuamotu kingfisher (Todiramphus gambieri. Radiotelemetry data were used to define territory boundaries, and I tested for effects on territory size and shape of landscape habitat composition and foraging patch configuration. Tuamotu kingfisher territories were larger in areas with reduced densities of coconut plantation foraging habitat, and territories were less circular in the study site that had a single slender patch of foraging habitat. Maximum territory length did not differ between study sites, however, which suggested that the size of Tuamotu kingfisher territories might be bounded by the combined influence of maximum travel distances and habitat configurations. Results also suggested that birds enlarge territories as they age. Together, results supported previous work indicating that territory configurations represent a balance between the costs of defending a territory and gains from territory ownership.

  15. Dynamics of sward condition and botanical composition in mixed pastures of marandugrass, forage peanut and tropical kudzu

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Soares de Andrade

    2012-03-01

    Full Text Available This study was carried out to evaluate the dynamics of sward condition and botanical composition of a mixed pasture of marandugrass (Brachiaria brizantha cv. Marandu, forage peanut (Arachis pintoi cv. Mandobi and tropical kudzu (Pueraria phaseoloides, rotationally stocked at four daily forage allowance levels (6.6, 10.3, 14.3 and 17.9% of live weight. Sward condition was characterized in each stocking cycle by measuring pre- and post-grazing sward height, forage mass and percentage of bare ground. Botanical composition (grass, forage peanut, tropical kudzu and weeds was evaluated before each stocking period. Swards under smaller forage allowances presented lower height, forage mass and ground cover. This condition favored the growth of forage peanut, which constituted 21.1, 15.2, 8.4 and 3.8% of forage mass in the last quarter of the experimental period, from the lowest to the highest forage allowance, respectively. Tropical kudzu was sensitive to all forage allowance levels and its percentage in the botanical composition was strongly reduced along the experimental period, especially during the dry season (July to September. Forage peanut cv. Mandobi and marandugrass form a more balanced mixture when pre-grazing sward height is maintained shorter than 45 cm. Tropical kudzu is intolerant to intensive grazing management systems when associated to marandugrass.

  16. Experimental Evidence that Social Relationships Determine Individual Foraging Behavior

    OpenAIRE

    Firth, Josh A.; Voelkl, Bernhard; Farine, Damien R.; Sheldon, Ben C.

    2015-01-01

    Social relationships are fundamental to animals living in complex societies [1-3]. The extent to which individuals base their decisions around their key social relationships, and the consequences this has on their behavior and broader population level processes, remains unknown. Using a novel experiment that controlled where individual wild birds (great tits, Parus major) could access food, we restricted mated pairs from being allowed to forage at the same locations. This introduced a conflic...

  17. Effect of Grazing on Forage Quality and Quantity for Ungulates of ...

    African Journals Online (AJOL)

    This study examined the effect of grazing as simulated by clipping on forage quality and quantity in terms of above ground biomass, live, total production and nutrients content of forages utilized by ungulates of Kainji Lake National Park. Three 2.5m by 2.5m plots were constructed in the three main vegetation communities in ...

  18. Corticosterone predicts foraging behavior and parental care in macaroni penguins.

    Science.gov (United States)

    Crossin, Glenn T; Trathan, Phil N; Phillips, Richard A; Gorman, Kristen B; Dawson, Alistair; Sakamoto, Kentaro Q; Williams, Tony D

    2012-07-01

    Corticosterone has received considerable attention as the principal hormonal mediator of allostasis or physiological stress in wild animals. More recently, it has also been implicated in the regulation of parental care in breeding birds, particularly with respect to individual variation in foraging behavior and provisioning effort. There is also evidence that prolactin can work either inversely or additively with corticosterone to achieve this. Here we test the hypothesis that endogenous corticosterone plays a key physiological role in the control of foraging behavior and parental care, using a combination of exogenous corticosterone treatment, time-depth telemetry, and physiological sampling of female macaroni penguins (Eudyptes chrysolophus) during the brood-guard period of chick rearing, while simultaneously monitoring patterns of prolactin secretion. Plasma corticosterone levels were significantly higher in females given exogenous implants relative to those receiving sham implants. Increased corticosterone levels were associated with significantly higher levels of foraging and diving activity and greater mass gain in implanted females. Elevated plasma corticosterone was also associated with an apparent fitness benefit in the form of increased chick mass. Plasma prolactin levels did not correlate with corticosterone levels at any time, nor was prolactin correlated with any measure of foraging behavior or parental care. Our results provide support for the corticosterone-adaptation hypothesis, which predicts that higher corticosterone levels support increased foraging activity and parental effort.

  19. Functional traits determine heterospecific use of risk-related social information in forest birds of tropical South-East Asia.

    Science.gov (United States)

    Hua, Fangyuan; Yong, Ding Li; Janra, Muhammad Nazri; Fitri, Liza M; Prawiradilaga, Dewi; Sieving, Kathryn E

    2016-12-01

    In birds and mammals, mobbing calls constitute an important form of social information that can attract numerous sympatric species to localized mobbing aggregations. While such a response is thought to reduce the future predation risk for responding species, there is surprisingly little empirical evidence to support this hypothesis. One way to test the link between predation risk reduction and mobbing attraction involves testing the relationship between species' attraction to mobbing calls and the functional traits that define their vulnerability to predation risk. Two important traits known to influence prey vulnerability include relative prey-to-predator body size ratio and the overlap in space use between predator and prey; in combination, these measures strongly influence prey accessibility, and therefore their vulnerability, to predators. Here, we combine community surveys with behavioral experiments of a diverse bird assemblage in the lowland rainforest of Sumatra to test whether the functional traits of body mass (representing body size) and foraging height (representing space use) can predict species' attraction to heterospecific mobbing calls. At four forest sites along a gradient of forest degradation, we characterized the resident bird communities using point count and mist-netting surveys, and determined the species groups attracted to standardized playbacks of mobbing calls produced by five resident bird species of roughly similar body size and foraging height. We found that (1) a large, diverse subcommunity of bird species was attracted to the mobbing calls and (2) responding species (especially the most vigorous respondents) tended to be (a) small (b) mid-storey foragers (c) with similar trait values as the species producing the mobbing calls. Our findings from the relatively lesser known bird assemblages of tropical Asia add to the growing evidence for the ubiquity of heterospecific information networks in animal communities, and provide empirical

  20. Shearwater foraging in the Southern Ocean: the roles of prey availability and winds.

    Directory of Open Access Journals (Sweden)

    Ben Raymond

    Full Text Available BACKGROUND: Sooty (Puffinus griseus and short-tailed (P. tenuirostris shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140 degrees E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. CONCLUSIONS/SIGNIFICANCE: The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.

  1. Effects of tidal cycles on shorebird distribution and foraging behaviour in a coastal tropical wetland: Insights for carrying capacity assessment

    Science.gov (United States)

    Fonseca, Juanita; Basso, Enzo; Serrano, David; Navedo, Juan G.

    2017-11-01

    Wetland loss has driven negative effects on biodiversity by a reduction in potential available habitats, directly impacting wetland-dependent species such as migratory shorebirds. At coastal areas where tidal cycles can restrict food access, the degree to which density of foraging birds is mediated by conspecific abundance or by the available areas is crucial to understanding patterns of bird distribution and wetland carrying capacity. We used the bathymetry of two sectors modeled with two numerical matrices to determine the availability of intertidal foraging areas in relation to tidal level (spring and neap tides), and this information was used to estimate shorebird density and foraging activity throughout the low-tide cycle in a tropical coastal lagoon in northwestern Mexico. Relative to spring tides, an 80% reduction in available foraging areas occurred during neap tides. Overall shorebird abundance was significantly reduced during neap tide periods, with differences between species. Densities of shorebirds increased during neap tides, particularly in one sector, and remained similar throughout the low-tide period (i.e. 4 h) either during spring or neap tides. Time spent foraging was consistently lower during neap-tides relative to spring-tides, especially for Long-billed curlew (44% reduction), Willet (37% reduction) and Black-necked stilt (29% reduction). These decreases in foraging activity when available habitats became reduced can hamper the opportunities of migratory shorebirds to reach their daily energy requirements to survive during the non-breeding season. This study shows that when intertidal habitats are severely reduced an important fraction of shorebird populations would probably be forced to find alternative areas to forage or increase foraging time during the night. Serving an essential function as top-predators, these results can have important implications on carrying capacity assessment for shorebirds at coastal wetlands.

  2. The foraging behavior of the Large-headed Flatbill, Ramphotrigon megacephalum and the Dusky-tailed Flatbill, Ramphotrigon fuscicauda (Aves: Tyrannidae

    Directory of Open Access Journals (Sweden)

    Tomaz Nascimento de Melo

    Full Text Available ABSTRACT Southwestern Amazonia has great bird diversity which includes birds specialized in bamboo forests. In this region, bamboo is considered a key element of the landscape. The objective of this study was to investigate and describe the foraging behavior of the Large-headed Flatbill, Ramphotrigon megacephalum (Swainson, 1835 and the Dusky-tailed Flatbill, Ramphotrigon fuscicauda Chapman, 1925, which occur sympatrically in the region and are considered bamboo specialists. This study was conducted between November 2013 and September 2014, within two fragments in the eastern portion of the state of Acre: Fazenda Experimental Catuaba, in the municipality of Senador Guiomard; and Reserva Florestal Humaitá, in Porto Acre. A total of 109 and 97 foraging events were registered, for the Large-headed Flatbill and the Dusky-tailed Flatbill, respectively. The two species frequently used bamboos for searching and capturing their prey. However, the large-headed Flatbill was more specialized in bamboo substrates. Both species use similar foraging techniques and the differences found between the two are minor, but when taken together, these differences may explain their ability to co-exist.

  3. Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska

    Science.gov (United States)

    Ramey, Andy M.; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D.; Schmutz, Joel A.; Atterby, Clara; Järhult, Josef D.; Bonnedahl, Jonas

    2018-01-01

    We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.

  4. Reduced flocking by birds on islands with relaxed predation.

    Science.gov (United States)

    Beauchamp, Guy

    2004-05-22

    Adaptive hypotheses for the evolution of flocking in birds have usually focused on predation avoidance or foraging enhancement. It still remains unclear to what extent each factor has contributed to the evolution of flocking. If predation avoidance were the sole factor involved, flocking should not be prevalent when predation is relaxed. I examined flocking tendencies along with mean and maximum flock size in species living on islands where predation risk is either absent or negligible and then compared these results with matched counterparts on the mainland. The dataset consisted of 46 pairs of species from 22 different islands across the world. The tendency to flock was retained on islands in most species, but in pairs with dissimilar flocking tendencies, island species were less likely to flock. Mean and maximum flock size were smaller on islands than on the mainland. Potential confounding factors such as population density, nest predation, habitat type, food type and body mass failed to account for the results. The results suggest that predation is a significant factor in the evolution of flocking in birds. Nevertheless, predation and other factors, such as foraging enhancement, probably act together to maintain the trait in most species.

  5. Foraging intention affects whether willow tits call to attract members of mixed-species flocks.

    Science.gov (United States)

    Suzuki, Toshitaka N; Kutsukake, Nobuyuki

    2017-06-01

    Understanding how individual behaviour influences the spatial and temporal distribution of other species is necessary to resolve the complex structure of species assemblages. Mixed-species bird flocks provide an ideal opportunity to investigate this issue, because members of the flocks are involved in a variety of behavioural interactions between species. Willow tits ( Poecile montanus ) often produce loud calls when visiting a new foraging patch to recruit other members of mixed-species flocks. The costs and benefits of flocking would differ with individual foraging behaviours (i.e. immediate consumption or caching); thus, willow tits may adjust the production of loud calls according to their foraging intention. In this study, we investigated the link between foraging decisions and calling behaviour in willow tits and tested its influence on the temporal cohesion with members of mixed-species flocks. Observations at experimental foraging patches showed that willow tits produced more calls when they consumed food items compared with when they cached them. Playback experiments revealed that these calls attracted flock members and helped to maintain their presence at foraging patches. Thus, willow tits adjusted calling behaviour according to their foraging intention, thereby coordinating the associations with members of mixed-species flocks. Our findings demonstrate the influence of individual decision-making on temporal cohesion with other species and highlight the importance of interspecific communication in mixed-species flocking dynamics.

  6. Natural windbreaks sustain bird diversity in a tea-dominated landscape.

    Directory of Open Access Journals (Sweden)

    Rachakonda Sreekar

    Full Text Available Windbreaks often form networks of forest habitats that improve connectivity and thus conserve biodiversity, but little is known of such effects in the tropics. We determined bird species richness and community composition in windbreaks composed of remnant native vegetation amongst tea plantations (natural windbreaks, and compared it with the surrounding primary forests. Fifty-one, ten-minute point counts were conducted in each habitat type over three days. Despite the limited sampling period, our bird inventories in both natural windbreaks and primary forests were nearly complete, as indicated by bootstrap true richness estimator. Bird species richness and abundance between primary forests and windbreaks were similar, however a difference in bird community composition was observed. Abundances of important functional groups such as frugivores and insectivores did not vary between habitat types but nectarivores were more abundant in windbreaks, potentially as a result of the use of windbreaks as traveling routes, foraging and nesting sites. This preliminary study suggests that natural windbreaks may be important habitats for the persistence of bird species in a production landscape. However, a better understanding of the required physical and compositional characteristics for windbreaks to sustain bird communities is needed for effective conservation management.

  7. The effect of group size on vigilance in Ruddy Turnstones Arenaria interpres varies with foraging habitat

    NARCIS (Netherlands)

    Fuller, Richard A.; Bearhop, Stuart; Metcalfe, Neil B.; Piersma, Theunis

    Foraging birds can manage time spent vigilant for predators by forming groups of various sizes. However, group size alone will not always reliably determine the optimal level of vigilance. For example, variation in predation risk or food quality between patches may also be influential. In a field

  8. Interference from adults forces young red knots to forage for longer and in dangerous places

    NARCIS (Netherlands)

    van den Hout, P.J.; van Gils, J.A.; Robin, F.; van der Geest, M.; Dekinga, A.; Piersma, T.

    2014-01-01

    In birds and mammals, juvenile and adult foragers are often found apart from each other. In this study, we found this is also true for red knots, Calidris canutus canutus, wintering on the intertidal flats of Banc d'Arguin, Mauritania. Not only did juveniles feed separately from adults, they also

  9. How birds weather the weather: avian migration in the mid-latitudes

    NARCIS (Netherlands)

    Kemp, M.U.

    2012-01-01

    The life cycle of many bird species involves the twice-annual movement between a breeding ground and a wintering ground that we refer to as `migration'. To complete these journeys, birds must successfully navigate many obstacles including a dynamic atmosphere. To make optimal use of this

  10. Social and spatial effects on genetic variation between foraging flocks in a wild bird population.

    Science.gov (United States)

    Radersma, Reinder; Garroway, Colin J; Santure, Anna W; de Cauwer, Isabelle; Farine, Damien R; Slate, Jon; Sheldon, Ben C

    2017-10-01

    Social interactions are rarely random. In some instances, animals exhibit homophily or heterophily, the tendency to interact with similar or dissimilar conspecifics, respectively. Genetic homophily and heterophily influence the evolutionary dynamics of populations, because they potentially affect sexual and social selection. Here, we investigate the link between social interactions and allele frequencies in foraging flocks of great tits (Parus major) over three consecutive years. We constructed co-occurrence networks which explicitly described the splitting and merging of 85,602 flocks through time (fission-fusion dynamics), at 60 feeding sites. Of the 1,711 birds in those flocks, we genotyped 962 individuals at 4,701 autosomal single nucleotide polymorphisms (SNPs). By combining genomewide genotyping with repeated field observations of the same individuals, we were able to investigate links between social structure and allele frequencies at a much finer scale than was previously possible. We explicitly accounted for potential spatial effects underlying genetic structure at the population level. We modelled social structure and spatial configuration of great tit fission-fusion dynamics with eigenvector maps. Variance partitioning revealed that allele frequencies were strongly affected by group fidelity (explaining 27%-45% of variance) as individuals tended to maintain associations with the same conspecifics. These conspecifics were genetically more dissimilar than expected, shown by genomewide heterophily for pure social (i.e., space-independent) grouping preferences. Genomewide homophily was linked to spatial configuration, indicating spatial segregation of genotypes. We did not find evidence for homophily or heterophily for putative socially relevant candidate genes or any other SNP markers. Together, these results demonstrate the importance of distinguishing social and spatial processes in determining population structure. © 2017 John Wiley & Sons Ltd.

  11. Understanding soaring bird migration through interactions and decisions at the individual level

    NARCIS (Netherlands)

    van Loon, E.E.; Shamoun-Baranes, J.; Bouten, W.; Davis, S.L.

    2011-01-01

    Many soaring bird species migrate southwards in autumn from their breeding grounds in Europe and Central Asia towards their wintering grounds. Our knowledge about interactions between migrating birds, thermal selection during migration and mechanisms that lead to flocking or convergent travel

  12. Foraging parameters influencing the detection and interpretation of area-restricted search behaviour in marine predators: a case study with the masked booby.

    Directory of Open Access Journals (Sweden)

    Julia Sommerfeld

    Full Text Available Identification of Area-restricted search (ARS behaviour is used to better understand foraging movements and strategies of marine predators. Track-based descriptive analyses are commonly used to detect ARS behaviour, but they may be biased by factors such as foraging trip duration or non-foraging behaviours (i.e. resting on the water. Using first-passage time analysis we tested if (I daylight resting at the sea surface positions falsely increase the detection of ARS behaviour and (II short foraging trips are less likely to include ARS behaviour in Masked Boobies Sula dactylatra. We further analysed whether ARS behaviour may be used as a proxy to identify important feeding areas. Depth-acceleration and GPS-loggers were simultaneously deployed on chick-rearing adults to obtain (1 location data every 4 minutes and (2 detailed foraging activity such as diving rates, time spent sitting on the water surface and in flight. In 82% of 50 foraging trips, birds adopted ARS behaviour. In 19.3% of 57 detected ARS zones, birds spent more than 70% of total ARS duration resting on the water, suggesting that these ARS zones were falsely detected. Based on generalized linear mixed models, the probability of detecting false ARS zones was 80%. False ARS zones mostly occurred during short trips in close proximity to the colony, with low or no diving activity. This demonstrates the need to account for resting on the water surface positions in marine animals when determining ARS behaviour based on foraging locations. Dive rates were positively correlated with trip duration and the probability of ARS behaviour increased with increasing number of dives, suggesting that the adoption of ARS behaviour in Masked Boobies is linked to enhanced foraging activity. We conclude that ARS behaviour may be used as a proxy to identify important feeding areas in this species.

  13. Ground-foraging ants (Hymenoptera: Formicidae and rainfall effect on pitfall trapping in a deciduous thorn woodland (Caatinga, Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Francyregis A Nunes

    2011-12-01

    Full Text Available The semi-arid Caatinga is the fourth largest biome of Brazil, which biota still remains one of the most poorly known, especially with regard to invertebrate groups. In this study, a ground-foraging ant assemblage was surveyed during one year and the effect of rainfall on pitfall trapping was assessed. The study was performed in an area located in the municipality of Pentecoste (3º48’ S - 39º20’ W, in the State of Ceará. A 200m transect with 20 equidistant sampling points was established. Transect sampling was performed once a month during 12 months, over the period August 2008-August 2009. At each sampling point, a pitfall trap partially filled with a mixture of ethanol and monoethylene glycol was placed at the beginning of each month and remained in the field for seven days. 39 species belonging to six subfamilies and 19 genera, plus two unidentified species, were collected, with Pheidole (10 spp. and Camponotus (8 spp. being the taxa with the most species. 23 species were frequent, being found in more than 50% of the 12 transect samplings. Five species had an intermediate frequency (25 to 50%, while 13 were relatively infrequent (less than 25%. Most of the species (22 showed low occurrence, being found in less than 10% of the 240 samples (20 samples each month, during 12 months. Only five species were collected in more than 50% of the samples, those species being also responsible for most of the total abundance (number of captured individuals of all species observed each month. The speciesaccumulation curves (observed and estimated indicated that sampling sufficiency was attained, and that about 92% of the estimated ground-foraging ant fauna had been collected. 40 and 29 species were collected in the dry and rainy season, respectively, with monthly species richness ranging from 13 to 28. The total ant abundance showed a drastic decrease during the rainy season, and a negative linear correlation was found between rainfall and total ant

  14. Apparent foraging success reflects habitat quality in an irruptive species, the Black-backed Woodpecker

    Science.gov (United States)

    Christopher T. Rota; Mark A. Rumble; Chad P. Lehman; Dylan C. Kesler; Joshua J. Millspaugh

    2015-01-01

    Dramatic fluctuations in food resources are a key feature of many habitats, and many species have evolved a movement strategy to exploit food resources that are unpredictable in space and time. The availability of food resources may be a particularly strong determinant of habitat quality for irruptive bird species. We studied the apparent foraging success of Black-...

  15. Resumes of the Bird mission

    Science.gov (United States)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  16. Automatic identification of bird targets with radar via patterns produced by wing flapping

    NARCIS (Netherlands)

    Zaugg, S.; Saporta, G.; van Loon, E.; Schmaljohann, H.; Liechti, F.

    2008-01-01

    Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical

  17. Nest densities of cavity-nesting birds in relation to postfire salvage logging and time since wildfire

    Science.gov (United States)

    Victoria A. Saab; Robin E. Russell; Jonathan G. Dudley

    2007-01-01

    We monitored the nest densities and nest survival of seven cavity-nesting bird species, including four open-space foragers (American Kestrel [Falco sparverius], Lewis's Woodpecker [Melanerpes lewis], Western Bluebird [Sialia mexicana], and Mountain Bluebird [S. currucoides]) and three wood...

  18. Is there an endogenous tidal foraging rhythm in marine iguanas?

    Science.gov (United States)

    Wikelski, M; Hau, M

    1995-12-01

    As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related

  19. Low ecological disparity in Early Cretaceous birds

    Science.gov (United States)

    Mitchell, Jonathan S.; Makovicky, Peter J.

    2014-01-01

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem. PMID:24870044

  20. Personality-dependent differences in problem-solving performance in a social context reflect foraging strategies.

    Science.gov (United States)

    Zandberg, Lies; Quinn, John L; Naguib, Marc; van Oers, Kees

    2017-01-01

    Individuals develop innovative behaviours to solve foraging challenges in the face of changing environmental conditions. Little is known about how individuals differ in their tendency to solve problems and in their subsequent use of this solving behaviour in social contexts. Here we investigated whether individual variation in problem-solving performance could be explained by differences in the likelihood of solving the task, or if they reflect differences in foraging strategy. We tested this by studying the use of a novel foraging skill in groups of great tits (Parus major), consisting of three naive individuals with different personality, and one knowledgeable tutor. We presented them with multiple, identical foraging devices over eight trials. Though birds of different personality type did not differ in solving latency; fast and slow explorers showed a steeper increase over time in their solving rate, compared to intermediate explorers. Despite equal solving potential, personality influenced the subsequent use of the skill, as well as the pay-off received from solving. Thus, variation in the tendency to solve the task reflected differences in foraging strategy among individuals linked to their personality. These results emphasize the importance of considering the social context to fully understand the implications of learning novel skills. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Can foraging ecology drive the evolution of body size in a diving endotherm?

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  2. Circadian flight schedules in night-migrating birds caught on migration.

    Science.gov (United States)

    Coppack, Timothy; Becker, Simon F; Becker, Philipp J J

    2008-12-23

    Many species of migratory birds migrate in a series of solitary nocturnal flights. Between flights, they stop to rest and refuel for the next segment of their journey. The mechanism controlling this behaviour has long remained elusive. Here, we show that wild-caught migratory redstarts (Phoenicurus phoenicurus) are consistent in their flight scheduling. An advanced videographic system enabled us to determine the precise timing of flight activity in redstarts caught at a northern European stopover site during their return trip from Africa. Birds were held captive for three days in the absence of photoperiodic cues (constant dim light) and under permanent food availability. Despite the absence of external temporal cues, birds showed clear bimodal activity patterns: intense nocturnal activity alternating with diurnal foraging and resting periods. The onset of their migratory activity coincided with the time of local sunset and was individually consistent on consecutive nights. The data demonstrate that night-migrating birds are driven by autonomous circadian clocks entrained by sunset cues. This timekeeping system is probably the key factor in the overall control of nocturnal songbird migration.

  3. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis.

    Science.gov (United States)

    Adgaba, Nuru; Alghamdi, Ahmed; Sammoud, Rachid; Shenkute, Awraris; Tadesse, Yilma; Ansari, Mahammad J; Sharma, Deepak; Hepburn, Colleen

    2017-07-01

    In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi , Acacia tortilis , Acacia origina , Acacia asak , Lavandula dentata , and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (GIS and satellite image processing techniques could be an important tool for characterizing and mapping the available bee forage resources leading to their efficient and sustainable utilization.

  4. Foraging ecology of least terns and piping plovers nesting on Central Platte River sandpits and sandbars

    Science.gov (United States)

    Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.

    2012-01-01

    Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.

  5. Molecular forensics in avian conservation: a DNA-based approach for identifying mammalian predators of ground-nesting birds and eggs.

    Science.gov (United States)

    Hopken, Matthew W; Orning, Elizabeth K; Young, Julie K; Piaggio, Antoinette J

    2016-01-07

    The greater sage-grouse (Centrocercus urophasianus) is a ground-nesting bird from the Northern Rocky Mountains and a species at risk of extinction in in multiple U.S. states and Canada. Herein we report results from a proof of concept that mitochondrial and nuclear DNAs from mammalian predator saliva could be non-invasively collected from depredated greater sage-grouse eggshells and carcasses and used for predator species identification. Molecular forensic approaches have been applied to identify predators from depredated remains as one strategy to better understand predator-prey dynamics and guide management strategies. This can aid conservation efforts by correctly identifying predators most likely to impact threatened and endangered species. DNA isolated from non-invasive samples around nesting sites (e.g. fecal or hair samples) is one method that can increase the success and accuracy of predator species identification when compared to relying on nest remains alone. Predator saliva DNA was collected from depredated eggshells and carcasses using swabs. We sequenced two partial fragments of two mitochondrial genes and obtained microsatellite genotypes using canid specific primers for species and individual identification, respectively. Using this multilocus approach we were able to identify predators, at least down to family, from 11 out of 14 nests (79%) and three out of seven carcasses (47%). Predators detected most frequently were canids (86%), while other taxa included rodents, a striped skunk, and cattle. We attempted to match the genotypes of individual coyotes obtained from eggshells and carcasses with those obtained from fecal samples and coyotes collected in the areas, but no genotype matches were found. Predation is a main cause of nest failure in ground-nesting birds and can impact reproduction and recruitment. To inform predator management for ground-nesting bird conservation, accurate identification of predator species is necessary. Considering

  6. Dietary compositions and their seasonal shifts in Japanese resident birds, estimated from the analysis of volunteer monitoring data.

    Directory of Open Access Journals (Sweden)

    Tetsuro Yoshikawa

    Full Text Available Determining the composition of a bird's diet and its seasonal shifts are fundamental for understanding the ecology and ecological functions of a species. Various methods have been used to estimate the dietary compositions of birds, which have their own advantages and disadvantages. In this study, we examined the possibility of using long-term volunteer monitoring data as the source of dietary information for 15 resident bird species in Kanagawa Prefecture, Japan. The data were collected from field observations reported by volunteers of regional naturalist groups. Based on these monitoring data, we calculated the monthly dietary composition of each bird species directly, and we also estimated unidentified items within the reported foraging episodes using Bayesian models that contained additional information regarding foraging locations. Next, to examine the validity of the estimated dietary compositions, we compared them with the dietary information for focal birds based on stomach analysis methods, collected from past literatures. The dietary trends estimated from the monitoring data were largely consistent with the general food habits determined from the previous studies of focal birds. Thus, the estimates based on the volunteer monitoring data successfully detected noticeable seasonal shifts in many of the birds from plant materials to animal diets during spring-summer. Comparisons with stomach analysis data supported the qualitative validity of the monitoring-based dietary information and the effectiveness of the Bayesian models for improving the estimates. This comparison suggests that one advantage of using monitoring data is its ability to detect dietary items such as fleshy fruits, flower nectar, and vertebrates. These results emphasize the potential importance of observation data collecting and mining by citizens, especially free descriptive observation data, for use in bird ecology studies.

  7. Polychlorinated biphenyls and organochlorine pesticides as intrinsic tracer tags of foraging grounds of bluefin tuna in the northwest Atlantic Ocean

    International Nuclear Information System (INIS)

    Deshpande, Ashok D.; Dickhut, Rebecca M.; Dockum, Bruce W.; Brill, Richard W.; Farrington, Cameron

    2016-01-01

    Researchers have utilized chemical fingerprints in the determination of habitat utilization and movements of the aquatic animals. In the present effort, we analyzed polychlorinated biphenyl (PCB) congeners and organochlorine pesticides in the samples of juvenile bluefin tuna caught offshore of Virginia, and in larger bluefin tuna from the Gulf of Maine and near Nova Scotia. For a given specimen, or a given location, PCB concentrations were highest, followed by DDTs, and chlordanes. Average contaminant concentrations from fish captured from the three locations were not significantly different; and PCBs, DDTs, and chlordanes correlated well with each other. Trans-nonachlor/PCB 153 ratios in bluefin tuna of eastern Atlantic (i.e., Mediterranean) origin are low compared to the corresponding ratios in fish in the western Atlantic. As the former migrate to the western Atlantic, these ratios gradually turnover due to the accumulation of biomass from forage contaminated with higher trans-nonachlor/PCB 153 ratio reflecting dissimilar use of chlordane pesticides on two sides of the Atlantic Ocean. The trans-nonachlor/PCB 153 ratio indicated that one juvenile bluefin tuna from offshore of Virginia and one large bluefin tuna from Gulf of Maine in the present study originated from foraging grounds in the Mediterranean Sea, and that they have made the trans-Atlantic migrations. The remaining individuals were determined to be either spawned in the Gulf of Mexico or the trans-nonachlor/PCB 153 ratio for the putative Mediterranean bluefin tuna was completely turned over to resemble the ratio characteristic to the western Atlantic. Based on the turnover time for trans-nonachlor/PCB 153 ratio previously determined, the residence time of juvenile bluefin tuna offshore Virginia was estimated to be at least 0.8 to 1.6 years. A discriminant function analysis (DFA) plot of total PCB normalized signatures of PCB congeners showed three separate clusters, which suggested that bluefin tuna

  8. Measuring Motivation for Appetitive Behaviour: Food-Restricted Broiler Breeder Chickens Cross a Water Barrier to Forage in an Area of Wood Shavings without Food

    Science.gov (United States)

    Dixon, Laura M.; Brocklehurst, Sarah; Sandilands, Vicky; Bateson, Melissa; Tolkamp, Bert J.; D'Eath, Rick B.

    2014-01-01

    Broiler breeders (parents of meat chickens) are selected for fast growth and become obese if fed ad libitum. To avoid this and maintain good health and reproductive ability, they are feed restricted to about 1/3 of what they would eat ad libitum. As a result, they experience chronic hunger and exhibit abnormal behaviour patterns that may indicate stress and frustration. One approach to measuring hunger is to observe how much birds will work, such as pecking a key, for access to more or different types of food. However, the sight, smell, and feedback from consumption of the feed reward changes the context and may artificially raise feeding motivation. To avoid this, we tested broiler breeders in an apparatus in which they could work for access to a wooden platform covered in wood shavings by crossing a water runway which increased in length and depth in 8 successive tests. In the wood shavings area, they could perform exploratory and foraging behaviour (the appetitive phase of feeding) but were never rewarded with feed. Sixty birds were divided into three feed quantity treatments: commercial restriction (R), and twice (2R) or three times (3R) this amount. Overall, birds fed R worked harder to reach the wood shavings area (reached it in a larger number of tests) than 2R and 3R birds (P2R>3R). This indicates that restricted-fed birds were hungry and willing to work for the opportunity to forage even though food was never provided, suggesting that their motivation to perform the appetitive component of feeding behaviour (foraging/food searching) was sufficient to sustain their response. Thus food restriction in broiler breeders is a welfare concern. However these methods could be used to test alternative feeding regimes to attempt to find ways of alleviating hunger while still maintaining healthy growth and reproduction in these birds. PMID:25068283

  9. Neospora caninum in birds: A review.

    Science.gov (United States)

    de Barros, Luiz Daniel; Miura, Ana Carolina; Minutti, Ana Flávia; Vidotto, Odilon; Garcia, João Luis

    2018-08-01

    Neospora caninum is an obligate intracellular protozoan parasite that infects domestic and wild animals. Canids are considered to be definitive hosts since they may shed oocysts into the environment through their feces. The disease is recognized as one of the major causes of bovine abortion worldwide, leading to important economic losses in the dairy and beef cattle industries. Previous studies have reported N. caninum infection in different species of birds; infection in birds has been associated with increased seroprevalence and reproductive problems in dairy cattle. Although the role of birds in the epidemiological cycle of neosporosis is unknown, birds are exposed to infection because they feed on the ground and could thus contribute to parasite dissemination. This review is focused on the current state of knowledge of neosporosis in birds. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Modeling Bird Migration under Climate Change: A Mechanistic Approach

    Science.gov (United States)

    Smith, James A.

    2009-01-01

    How will migrating birds respond to changes in the environment under climate change? What are the implications for migratory success under the various accelerated climate change scenarios as forecast by the Intergovernmental Panel on Climate Change? How will reductions or increased variability in the number or quality of wetland stop-over sites affect migratory bird species? The answers to these questions have important ramifications for conservation biology and wildlife management. Here, we describe the use of continental scale simulation modeling to explore how spatio-temporal changes along migratory flyways affect en-route migration success. We use an individually based, biophysical, mechanistic, bird migration model to simulate the movement of shorebirds in North America as a tool to study how such factors as drought and wetland loss may impact migratory success and modify migration patterns. Our model is driven by remote sensing and climate data and incorporates important landscape variables. The energy budget components of the model include resting, foraging, and flight, but presently predation is ignored. Results/Conclusions We illustrate our model by studying the spring migration of sandpipers through the Great Plains to their Arctic breeding grounds. Why many species of shorebirds have shown significant declines remains a puzzle. Shorebirds are sensitive to stop-over quality and spacing because of their need for frequent refueling stops and their opportunistic feeding patterns. We predict bird "hydrographs that is, stop-over frequency with latitude, that are in agreement with the literature. Mean stop-over durations predicted from our model for nominal cases also are consistent with the limited, but available data. For the shorebird species simulated, our model predicts that shorebirds exhibit significant plasticity and are able to shift their migration patterns in response to changing drought conditions. However, the question remains as to whether this

  11. Behavioural correlates of urbanisation in the Cape ground squirrel Xerus inauris

    Science.gov (United States)

    Chapman, Tarryn; Rymer, Tasmin; Pillay, Neville

    2012-11-01

    Urbanisation critically threatens biodiversity because of habitat destruction and novel selection pressures. Some animals can respond to these challenges by modifying their behaviour, particularly anti-predator behaviour, allowing them to persist in heavily transformed urban areas. We investigated whether the anti-predator behaviour of the Cape ground squirrel Xerus inauris differed in three localities that differed in their level of urbanisation. According to the habituation hypothesis, we predicted that ground squirrels in urban areas would: (a) be less vigilant and forage more; (b) trade-off flight/vigilance in favour of foraging; and (c) have shorter flight initiation distances (FID) when approached by a human observer. Observations were made in winter and summer at each locality. As expected, ground squirrels in urbanised areas were less vigilant and had shorter FIDs but did not trade-off between foraging and vigilance. In contrast, a population in a non-urbanised locality showed greater levels of vigilance, FID and traded-off vigilance and foraging. A population in a peri-urban locality showed mixed responses. Our results indicate that Cape ground squirrels reduce their anti-predator behaviour in urban areas and demonstrate a flexible behavioural response to urbanisation.

  12. Search paths of swans foraging on spatially autocorrelated tubers

    NARCIS (Netherlands)

    Nolet, B.A.; Mooij, W.M.

    2002-01-01

    1. Tundra swans forage on below-ground pondweed tubers that are heterogeneously distributed in space. The swans have no visual cues to delineate patches. It was tested whether swans employ an area-restricted search tactic. Theory predicts that swans should alternate between an intensive (low-speed,

  13. Model-Based Estimation of Collision Risks of Predatory Birds with Wind Turbines

    Directory of Open Access Journals (Sweden)

    Marcus Eichhorn

    2012-06-01

    Full Text Available The expansion of renewable energies, such as wind power, is a promising way of mitigating climate change. Because of the risk of collision with rotor blades, wind turbines have negative effects on local bird populations, particularly on raptors such as the Red Kite (Milvus milvus. Appropriate assessment tools for these effects have been lacking. To close this gap, we have developed an agent-based, spatially explicit model that simulates the foraging behavior of the Red Kite around its aerie in a landscape consisting of different land-use types. We determined the collision risk of the Red Kite with the turbine as a function of the distance between the wind turbine and the aerie and other parameters. The impact function comprises the synergistic effects of species-specific foraging behavior and landscape structure. The collision risk declines exponentially with increasing distance. The strength of this decline depends on the raptor's foraging behavior, its ability to avoid wind turbines, and the mean wind speed in the region. The collision risks, which are estimated by the simulation model, are in the range of values observed in the field. The derived impact function shows that the collision risk can be described as an aggregated function of distance between the wind turbine and the raptor's aerie. This allows an easy and rapid assessment of the ecological impacts of (existing or planned wind turbines in relation to their spatial location. Furthermore, it implies that minimum buffer zones for different landscapes can be determined in a defensible way. This modeling approach can be extended to other bird species with central-place foraging behavior. It provides a helpful tool for landscape planning aimed at minimizing the impacts of wind power on biodiversity.

  14. Avian binocular vision: It's not just about what birds can see, it's also about what they can't.

    Directory of Open Access Journals (Sweden)

    Luke P Tyrrell

    Full Text Available With the exception of primates, most vertebrates have laterally placed eyes. Binocular vision in vertebrates has been implicated in several functions, including depth perception, contrast discrimination, etc. However, the blind area in front of the head that is proximal to the binocular visual field is often neglected. This anterior blind area is important when discussing the evolution of binocular vision because its relative length is inversely correlated with the width of the binocular field. Therefore, species with wider binocular fields also have shorter anterior blind areas and objects along the mid-sagittal plane can be imaged at closer distances. Additionally, the anterior blind area is of functional significance for birds because the beak falls within this blind area. We tested for the first time some specific predictions about the functional role of the anterior blind area in birds controlling for phylogenetic effects. We used published data on visual field configuration in 40 species of birds and measured beak and skull parameters from museum specimens. We found that birds with proportionally longer beaks have longer anterior blind areas and thus narrower binocular fields. This result suggests that the anterior blind area and beak visibility do play a role in shaping binocular fields, and that binocular field width is not solely determined by the need for stereoscopic vision. In visually guided foragers, the ability to see the beak-and how much of the beak can be seen-varies predictably with foraging habits. For example, fish- and insect-eating specialists can see more of their own beak than birds eating immobile food can. But in non-visually guided foragers, there is no consistent relationship between the beak and anterior blind area. We discuss different strategies-wide binocular fields, large eye movements, and long beaks-that minimize the potential negative effects of the anterior blind area. Overall, we argue that there is more to

  15. Legumes and forage species sole or intercropped with corn in soybean-corn succession in midwestern Brazil

    Directory of Open Access Journals (Sweden)

    Gessí Ceccon

    2013-02-01

    Full Text Available The feasibility of no-tillage in the Cerrado (Savanna-like vegetation of Brazil depends on the production of sufficient above-ground crop residue, which can be increased by corn-forage intercropping. This study evaluated how above-ground crop residue production and yields of soybean and late-season corn in a soybean-corn rotation were influenced by the following crops in the year before soybean: corn (Zea mays L. intercropped with Brachiaria (Urochloa brizantha cv. Marandu, B. decumbens cv. Basilisk, B. ruziziensis, cv. comum., Panicummaximum cv. Tanzânia, sunn hemp (Crotalaria juncea L., pigeon pea [Cajanus cajan (L. Millsp]; sole corn, forage sorghum [Sorghum bicolor (L. Moench (cv. Santa Elisa], and ruzi grass. In March 2005, corn and forage species were planted in alternate rows spaced 0.90 m apart, and sole forage species were planted in rows spaced 0.45 m apart. In October 2005, the forages were killed with glyphosate and soybean was planted. After the soybean harvest in March 2006, sole late-season corn was planted in the entire experimental area. Corn grain and stover yields were unaffected by intercropping. Above-ground crop residue was greater when corn was intercropped with Tanzania grass (10.7 Mg ha-1, Marandu (10.1 Mg ha-1, and Ruzi Grass (9.8 Mg ha-1 than when corn was not intercropped (4.0 Mg ha-1. The intercropped treatments increased the percentage of soil surface covered with crop residue. Soybean and corn grain yields were higher after sole ruzi grass and intercropped ruzi grass than after other crops. The intercropping corn with Brachiaria spp. and corn with Panicum spp. increases above-ground crop residue production and maintains nutrients in the soil without reducing late-season corn yield and the viability of no-till in the midwestern region of Brazil.

  16. Specialization on pollen or nectar in bumblebee foragers is not associated with ovary size, lipid reserves or sensory tuning

    Directory of Open Access Journals (Sweden)

    Adam R. Smith

    2016-10-01

    Full Text Available Foraging specialization allows social insects to more efficiently exploit resources in their environment. Recent research on honeybees suggests that specialization on pollen or nectar among foragers is linked to reproductive physiology and sensory tuning (the Reproductive Ground-Plan Hypothesis; RGPH. However, our understanding of the underlying physiological relationships in non-Apis bees is still limited. Here we show that the bumblebee Bombus terrestris has specialist pollen and nectar foragers, and test whether foraging specialization in B. terrestris is linked to reproductive physiology, measured as ovarian activation. We show that neither ovary size, sensory sensitivity, measured through proboscis extension response (PER, or whole-body lipid stores differed between pollen foragers, nectar foragers, or generalist foragers. Body size also did not differ between any of these three forager groups. Non-foragers had significantly larger ovaries than foragers. This suggests that potentially reproductive individuals avoid foraging.

  17. Habitat use and foraging patterns of molting male Long-tailed Ducks in lagoons of the central Beaufort Sea, Alaska

    Science.gov (United States)

    Flint, Paul L.; Reed, John; Deborah Lacroix,; Richard Lanctot,

    2016-01-01

    From mid-July through September, 10 000 to 30 000 Long-tailed Ducks (Clangula hyemalis) use the lagoon systems of the central Beaufort Sea for remigial molt. Little is known about their foraging behavior and patterns of habitat use during this flightless period. We used radio transmitters to track male Long-tailed Ducks through the molt period from 2000 to 2002 in three lagoons: one adjacent to industrial oil field development and activity and two in areas without industrial activity. We found that an index to time spent foraging generally increased through the molt period. Foraging, habitat use, and home range size showed similar patterns, but those patterns were highly variable among lagoons and across years. Even with continuous daylight during the study period, birds tended to use offshore areas during the day for feeding and roosted in protected nearshore waters at night. We suspect that variability in behaviors associated with foraging, habitat use, and home range size are likely influenced by availability of invertebrate prey. Proximity to oil field activity did not appear to affect foraging behaviors of molting Long-tailed Ducks.

  18. A Comparative Study of Species Diversity of Migrant Birds Between ...

    African Journals Online (AJOL)

    stop migration. Despite Hadejia-Nguru Wetlands (Ramsar site) being an important wintering ground for migratory birds, little is known about the diversity while density is completely lacking. This study assessed the status of migratory birds in the ...

  19. Eye Size, Fovea, and Foraging Ecology in Accipitriform Raptors.

    Science.gov (United States)

    Potier, Simon; Mitkus, Mindaugas; Bonadonna, Francesco; Duriez, Olivier; Isard, Pierre-François; Dulaurent, Thomas; Mentek, Marielle; Kelber, Almut

    2017-01-01

    Birds with larger eyes are predicted to have higher spatial resolution because of their larger retinal image. Raptors are well known for their acute vision, mediated by their deep central fovea. Because foraging strategies may demand specific visual adaptations, eye size and fovea may differ between species with different foraging ecology. We tested whether predators (actively hunting mobile prey) and carrion eaters (eating dead prey) from the order Accipitriformes differ in eye size, foveal depth, and retinal thickness using spectral domain optical coherence tomography and comparative phylogenetic methods. We found that (1) all studied predators (except one) had a central and a temporal fovea, but all carrion eaters had only the central fovea; (2) eye size scaled with body mass both in predators and carrion eaters; (3) predators had larger eyes relative to body mass and a thicker retina at the edge of the fovea than carrion eaters, but there was no difference in the depth of the central fovea between the groups. Finally, we found that (4) larger eyes generally had a deeper central fovea. These results suggest that the visual system of raptors within the order Accipitriformes may be highly adapted to the foraging strategy, except for the foveal depth, which seems mostly dependent upon the eye size. © 2017 S. Karger AG, Basel.

  20. Individual differences in decision making by foraging hummingbirds.

    Science.gov (United States)

    Morgan, Kate V; Hurly, T Andrew; Healy, Susan D

    2014-11-01

    For both humans and animals preference for one option over others can be influenced by the context in which the options occur. In animals, changes in preference could be due to comparative decision-making or to changes in the energy state of the animal when making decisions. We investigated which of these possibilities better explained the response of wild hummingbirds to the addition of a decoy option to a set of two options by presenting Rufous hummingbirds (Selasphorus rufus) with a foraging experiment with two treatments. In each treatment the birds were presented with a binary choice between two options and a trinary choice with three options. In treatment one the binary choice was between a volume option and a concentration option, whereas in treatment two the same volume option was presented alongside an alternative concentration option. In the trinary choice, birds were presented with the same options as in the binary choice plus one of two inferior options. Birds changed their preferences when a poorer option was added to the choice set: birds increased their preference for the same option when in the presence of either decoy. Which option differed across individuals and the changes in preference were not readily explained by either energy maximisation or the decoy effect. The consistency in response within individuals, however, would suggest that the individual itself brings an extra dimension to context-dependent decision-making. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight

    Directory of Open Access Journals (Sweden)

    Graham R. Martin

    2017-11-01

    Full Text Available Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid

  2. Foraging habitat quality constrains effectiveness of artificial nest-site provisioning in reversing population declines in a colonial cavity nester.

    Directory of Open Access Journals (Sweden)

    Inês Catry

    Full Text Available Among birds, breeding numbers are mainly limited by two resources of major importance: food supply and nest-site availability. Here, we investigated how differences in land-use and nest-site availability affected the foraging behaviour, breeding success and population trends of the colonial cavity-dependent lesser kestrel Falco naumanni inhabiting two protected areas. Both areas were provided with artificial nests to increase nest-site availability. The first area is a pseudo-steppe characterized by traditional extensive cereal cultivation, whereas the second area is a previous agricultural zone now abandoned or replaced by forested areas. In both areas, lesser kestrels selected extensive agricultural habitats, such as fallows and cereal fields, and avoided scrubland and forests. In the second area, tracked birds from one colony travelled significantly farther distances (6.2 km ± 1.7 vs. 1.8 km ± 0.4 and 1.9 km ± 0.6 and had significant larger foraging-ranges (144 km(2 vs. 18.8 and 14.8 km(2 when compared to the birds of two colonies in the extensive agricultural area. Longer foraging trips were reflected in lower chick feeding rates, lower fledging success and reduced chick fitness. Availability and occupation of artificial nests was high in both areas but population followed opposite trends, with a positive increment recorded exclusively in the first area with a large proportion of agricultural areas. Progressive habitat loss around the studied colony in the second area (suitable habitat decreased from 32% in 1990 to only 7% in 2002 is likely the main driver of the recorded population decline and suggests that the effectiveness of bird species conservation based on nest-site provisioning is highly constrained by habitat quality in the surrounding areas. Therefore, the conservation of cavity-dependent species may be enhanced firstly by finding the best areas of remaining habitat and secondly by increasing the carrying capacity of high

  3. Dawn chorus variation in East-Asian tropical montane forest birds and its ecological and morphological correlates

    NARCIS (Netherlands)

    Chen, W.-M.; Lee, Y.-F.; Tsai, C.-F.; Yao, C.-T.; Chen, Y.-H.; Li, S.-H.; Kuo, Y.-M.

    2015-01-01

    Many birds in breeding seasons engage in vigorous dawn singing that often turns to a prominent chorus. We examined dawn chorus variation of avian assemblages in a tropical montane forest in Taiwan and tested the hypothesis that onset sequence is affected by eye sizes, foraging heights, and diet of

  4. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes.

    Science.gov (United States)

    Lisney, Thomas J; Stecyk, Karyn; Kolominsky, Jeffrey; Schmidt, Brian K; Corfield, Jeremy R; Iwaniuk, Andrew N; Wylie, Douglas R

    2013-05-01

    Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the 'openness' of their habitats.

  5. A mobile target-netting technique for canopy birds

    Science.gov (United States)

    Scott Stoleson; Linda Ordiway; Emily H. Thomas; Donald. Watts

    2016-01-01

    Mist-netting of birds is a well-established and much used method for capturing birds for banding, taking blood, feather, or tissue samples, attaching radio transmitters or light-sensitive geolocators, and other purposes (Karr 1981, Dunn and Ralph 2004). Mistnets are typically ground based, with individual nets stretched between poles and extending 2.6 m high. Captures...

  6. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    Science.gov (United States)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well understood. Therefore there are two themes in the study, 1) Forage quantity: above-ground biomass and productivity and 2) Forage quality: foliar N and C to N ratios and % fiber. The themes are addressed in three questions: 1) How does forage quantity and quality vary between upland forests and peatlands? 2) How does wildfire affect the availability and nutritional quality of forage items? 3) How does forage quality vary between sites recovering from wildfire versus timber harvest? Research sites were located in the Auden region north of Geraldton, ON. This landscape was chosen because it is known woodland caribou habitat and has thorough wildfire and silviculture data from the past 7 decades. Plant diversity, above-ground biomass, vascular green area and seasonal foliar fiber and C to N ratios were collected across a matrix of sites representing a chronosequence of time since disturbance in upland forests and peatlands. Preliminary findings revealed productivity peaked in early age stands (0-30 yrs) and biomass peaked

  7. Best practices for assessing forage fish fisheries-seabird resource competition

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Anker-Nilssen, Tycho; Arimitsu, Mayumi L.; Bennison, Ashley; Bertrand, Sophie; Boersch-Supan, Philipp; Boyd, Charlotte; Bransome, Nicole C.; Crawford, Robert J.M.; Daunt, Francis; Furness, Robert W.; Gianuca, Dimas; Gladics, Amanda; Koehn, Laura; Lang, Jennifer W.; Loggerwell, Elizabeth; Morris, Taryn L.; Phillips, Elizabeth M.; Provencher, Jennifer; Punt, André E..; Saraux, Claire; Shannon, Lynne; Sherley, Richard B.; Simeone, Alejandro; Wanless, Ross M.; Wanless, Sarah; Zador, Stephani

    2017-01-01

    Worldwide, in recent years capture fisheries targeting lower-trophic level forage fish and euphausiid crustaceans have been substantial (∼20 million metric tons [MT] annually). Landings of forage species are projected to increase in the future, and this harvest may affect marine ecosystems and predator-prey interactions by removal or redistribution of biomass central to pelagic food webs. In particular, fisheries targeting forage fish and euphausiids may be in competition with seabirds, likely the most sensitive of marine vertebrates given limitations in their foraging abilities (ambit and gape size) and high metabolic rate, for food resources. Lately, apparent competition between fisheries and seabirds has led to numerous high-profile conflicts over interpretations, as well as the approaches that could and should be used to assess the magnitude and consequences of fisheries-seabird resource competition. In this paper, we review the methods used to date to study fisheries competition with seabirds, and present “best practices” for future resource competition assessments. Documenting current fisheries competition with seabirds generally involves addressing two major issues: 1) are fisheries causing localized prey depletion that is sufficient to affect the birds? (i.e., are fisheries limiting food resources?), and 2) how are fisheries-induced changes to forage stocks affecting seabird populations given the associated functional or numerical response relationships? Previous studies have been hampered by mismatches in the scale of fisheries, fish, and seabird data, and a lack of causal understanding due to confounding by climatic and other ecosystem factors (e.g., removal of predatory fish). Best practices for fisheries-seabird competition research should include i) clear articulation of hypotheses, ii) data collection (or summation) of fisheries, fish, and seabirds on matched spatio-temporal scales, and iii) integration of observational and experimental

  8. forage systems mixed with forage legumes grazed by lactating cows

    Directory of Open Access Journals (Sweden)

    Clair Jorge Olivo

    2017-02-01

    Full Text Available Current research evaluates productivity, stocking and nutritional rates of three forage systems with Elephant Grass (EG + Italian Ryegrass (IR + Spontaneous Growth Species (SGS, without forage legumes; EG + IR + SGS + Forage Peanut (FP, mixed with FP; and EG + IR + SGS + Red Clover (RC, mixed with RC, in rotational grazing method by lactating cows. IR developed between rows of EG. FP was maintained, whilst RC was sow to respective forage systems. The experimental design was completely randomized, with three treatments and two replication, subdivided into parcels over time. Mean rate for forage yield and average stocking rate were 10.6, 11.6 and 14.4 t ha-1; 3.0, 2.8 and 3.1 animal unit ha-1 day-1, for the respective systems. Levels of crude protein and total digestible nutrients were 17.8, 18.7 and 17.5%; 66.5, 66.8 and 64.8%, for the respective forage systems. The presence of RC results in better and higher forage yield in the mixture, whilst FP results in greater control of SGS. The inclusion of forage legumes in pasture systems provides better nutritional rates.

  9. Foraging plasticity of breeding Northern Rockhopper Penguins, Eudyptes moseleyi, in response to changing energy requirements

    KAUST Repository

    Booth, Jenny Marie

    2018-04-02

    During the breeding season, seabirds must balance the changing demands of self- and off-spring provisioning with the constraints imposed by central-place foraging. Recently, it was shown that Northern Rockhopper Penguins at Tristan da Cunha in the South Atlantic Ocean switch diet from lower to higher trophic level prey throughout their breeding cycle. Here, we investigated if this switch is reflected in their foraging behaviour, using time-depth recorders to study the diving behaviour of 27 guard and 10 crèche birds during the breeding season 2010 at Tristan da Cunha and obtaining complementary stomach contents of 20 birds. While no significant effects of breeding stage were detected on any foraging trip or dive parameters, stage/prey had a significant effect on feeding dive parameters, with dive duration, bottom time, and maximum depth explaining the majority of the dissimilarity amongst categories. We verified the previously shown dietary shift from zooplankton and cephalopods during the guard stage to a higher-energy fish-based diet during the crèche stage, which was reflected in a change in dive behaviour from shorter, shallower to longer, deeper dives. This prey switching behaviour may reflect preferential selection to account for the increased physiological needs of chicks or simply mirror changes in local prey abundance. Nonetheless, we show that Northern Rockhopper Penguins demonstrate behavioural plasticity as a response to their changing energy requirements, which is a critical trait when living in a spatio-temporally heterogeneous environment. This ability is likely to be particularly important under extrinsic constraints such as long-term environmental change.

  10. Reproductive plasticity and landscape heterogeneity benefit a ground-nesting bird in a fire-prone ecosystem.

    Science.gov (United States)

    Carroll, J Matthew; Hovick, Torre J; Davis, Craig A; Elmore, Robert Dwayne; Fuhlendorf, Samuel D

    2017-10-01

    Disturbance is critical for the conservation of rangeland ecosystems worldwide and many of these systems are fire dependent. Although it is well established that restoring fire as an ecological process can lead to increased biodiversity in grasslands and shrublands, the underlying mechanisms driving community patterns are poorly understood for fauna in fire-prone landscapes. Much of this uncertainty stems from the paucity of studies that examine the effects of fire at scales relevant to organism life histories. We assessed the response of a non-migratory ground-dwelling bird to disturbance (i.e., prescribed fire) and environmental stochasticity over the course of a 4-yr period, which spanned years of historic drought and record rainfall. Specifically, we investigated the nesting ecology of Northern Bobwhite (Colinus virginianus; hereafter Bobwhite) to illuminate possible avenues by which individuals respond to dynamic landscape patterns during a critical reproductive stage (i.e., nesting) in a mixed-grass shrubland in western Oklahoma, USA. We found that Bobwhites exhibited extreme plasticity in nest substrate use among time since fire categories (TSF) and subsequently maintained high nest survival (e.g., 57-70%). Bobwhites were opportunistic in nest substrate use among TSF categories (i.e., 72% of nest sites in shrubs in 0-12 months post fire compared to 71% in herbaceous vegetation in >36 months post fire), yet nesting decisions were first filtered by similar structural components (i.e., vertical and horizontal cover) within the vicinity of nest sites regardless of TSF category. Despite being a non-migratory and comparatively less mobile ground-nesting bird species, Bobwhites adjusted to dynamic vegetation mosaics on a fire-prone landscape under stochastic climatic conditions that culminated in stable and high nest survival. Broadly, our findings provide a unique depiction of organism response strategies to fire at scales relevant to a critical life-stage, a

  11. Crimean-Congo haemorrhagic fever virus infection in birds: field investigations in Senegal.

    Science.gov (United States)

    Zeller, H G; Cornet, J P; Camicas, J L

    1994-01-01

    In Senegal, wild ground-feeding birds are frequently infested with immature ticks. In two areas where numerous Crimean-Congo haemorrhagic fever (CCHF) virus isolations were obtained from Hyalomma marginatum rufipes adult ticks collected on ungulates, 175 birds were captured and sera collected. CCHF antibodies were detected by ELISA in 6/22 red-beaked hornbills (Tockus erythrorhynchus), 2/11 glossy starlings (Lamprotornis sp.) and 1/3 guinea fowls. The virus was isolated from H. m. rufipes nymphs collected on a hornbill. The role of wild ground-feeding birds in CCHF virus ecology in West Africa is discussed.

  12. Effects of growth stage on quality characteristics of triticale forages

    Science.gov (United States)

    The use of triticale (X Triticosecale Wittmack) in dairy-cropping systems has expanded greatly in recent years, partly to improve land stewardship by providing winter ground cover. Our objectives were to relate the nutritive value of triticale forages grown in central Wisconsin with plant growth sta...

  13. Ovary activation does not correlate with pollen and nectar foraging specialization in the bumblebee Bombus impatiens

    Directory of Open Access Journals (Sweden)

    Meagan A. Simons

    2018-02-01

    Full Text Available Social insect foragers may specialize on certain resource types. Specialization on pollen or nectar among honeybee foragers is hypothesized to result from associations between reproductive physiology and sensory tuning that evolved in ancestral solitary bees (the Reproductive Ground-Plan Hypothesis; RGPH. However, the two non-honeybee species studied showed no association between specialization and ovary activation. Here we investigate the bumblebee B. impatiens because it has the most extensively studied pollen/nectar specialization of any bumblebee. We show that ovary size does not differ between pollen specialist, nectar specialist, and generalist foragers, contrary to the predictions of the RGPH. However, we also found mixed support for the second prediction of the RGPH, that sensory sensitivity, measured through proboscis extension response (PER, is greater among pollen foragers. We also found a correlation between foraging activity and ovary size, and foraging activity and relative nectar preference, but no correlation between ovary size and nectar preference. In one colony non-foragers had larger ovaries than foragers, supporting the reproductive conflict and work hypothesis, but in the other colony they did not.

  14. Ovary activation does not correlate with pollen and nectar foraging specialization in the bumblebee Bombus impatiens.

    Science.gov (United States)

    Simons, Meagan A; Smith, Adam R

    2018-01-01

    Social insect foragers may specialize on certain resource types. Specialization on pollen or nectar among honeybee foragers is hypothesized to result from associations between reproductive physiology and sensory tuning that evolved in ancestral solitary bees (the Reproductive Ground-Plan Hypothesis; RGPH). However, the two non-honeybee species studied showed no association between specialization and ovary activation. Here we investigate the bumblebee B. impatiens because it has the most extensively studied pollen/nectar specialization of any bumblebee. We show that ovary size does not differ between pollen specialist, nectar specialist, and generalist foragers, contrary to the predictions of the RGPH. However, we also found mixed support for the second prediction of the RGPH, that sensory sensitivity, measured through proboscis extension response (PER), is greater among pollen foragers. We also found a correlation between foraging activity and ovary size, and foraging activity and relative nectar preference, but no correlation between ovary size and nectar preference. In one colony non-foragers had larger ovaries than foragers, supporting the reproductive conflict and work hypothesis, but in the other colony they did not.

  15. Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Liu, H.; Jin, Y.; Devine, S.; Dahlgren, R. A.; Covello, S.; Larsen, R.; O'Geen, A. T.

    2017-12-01

    California rangelands cover 23 million hectares and support a $3.4 billion annual cattle industry. Rangeland forage production varies appreciably from year-to-year and across short distances on the landscape. Spatially explicit and near real-time information on forage production at a high resolution is critical for effective rangeland management, especially during an era of climatic extremes. We here integrated a multispectral MicaSense RedEdge camera with a 3DR solo quad-copter and acquired time-series images during the 2017 growing season over a topographically complex 10-hectare rangeland in San Luis Obispo County, CA. Soil moisture and temperature sensors were installed at 16 landscape positions, and vegetation clippings were collected at 36 plots to quantify forage dry biomass. We built four centimeter-level models for forage production mapping using time series of sUAS images and ground measurements of forage biomass and soil temperature and moisture. The biophysical model based on Monteith's eco-physiological plant growth theory estimated forage production reasonably well with a coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 424 kg/ha when the soil parameters were included, and a R2 of 0.79 and a RMSE of 510 kg/ha when only remote sensing and topographical variables were included. We built two empirical models of forage production using a stepwise variable selection technique, one with soil variables. Results showed that cumulative absorbed photosynthetically active radiation (APAR) and elevation were the most important variables in both models, explaining more than 40% of the spatio-temporal variance in forage production. Soil moisture accounted for an additional 29% of the variance. Illumination condition was selected as a proxy for soil moisture in the model without soil variables, and accounted for 18% of the variance. We applied the remote sensing-based models to map daily forage production at 30-cm resolution for the

  16. Bone-associated gene evolution and the origin of flight in birds.

    Science.gov (United States)

    Machado, João Paulo; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2016-05-18

    Bones have been subjected to considerable selective pressure throughout vertebrate evolution, such as occurred during the adaptations associated with the development of powered flight. Powered flight evolved independently in two extant clades of vertebrates, birds and bats. While this trait provided advantages such as in aerial foraging habits, escape from predators or long-distance travels, it also imposed great challenges, namely in the bone structure. We performed comparative genomic analyses of 89 bone-associated genes from 47 avian genomes (including 45 new), 39 mammalian, and 20 reptilian genomes, and demonstrate that birds, after correcting for multiple testing, have an almost two-fold increase in the number of bone-associated genes with evidence of positive selection (~52.8 %) compared with mammals (~30.3 %). Most of the positive-selected genes in birds are linked with bone regulation and remodeling and thirteen have been linked with functional pathways relevant to powered flight, including bone metabolism, bone fusion, muscle development and hyperglycemia levels. Genes encoding proteins involved in bone resorption, such as TPP1, had a high number of sites under Darwinian selection in birds. Patterns of positive selection observed in bird ossification genes suggest that there was a period of intense selective pressure to improve flight efficiency that was closely linked with constraints on body size.

  17. Do Birds Avoid Railroads as Has Been Found for Roads?

    Science.gov (United States)

    Wiącek, Jarosław; Polak, Marcin; Filipiuk, Maciej; Kucharczyk, Marek; Bohatkiewicz, Janusz

    2015-09-01

    The construction of railway lines usually has a negative effect on the natural environment: habitats are destroyed, collisions with trains cause deaths, and the noise and vibrations associated with rail traffic disturb the lives of animals. Cases are known, however, where the opposite holds true: a railway line has a positive effect on the fauna in its vicinity. In this study, we attempted to define the influence of a busy railway line on a breeding community of woodland birds. Birds were counted using the point method at 45 observation points located at three different distances (30, 280, 530 m) from the tracks. At each point, we determined the habitat parameters and the intensity of noise. In total, 791 individual birds of 42 species were recorded on the study plot. Even though the noise level fell distinctly with increasing distance from the tracks, the abundance of birds and the number of species were the highest near the railway line. Moreover, insectivorous species displayed a clear preference for the vicinity of the line. The noise from the trains did not adversely affect the birds on the study plot. The environmental conditions created by the edge effect meant that the birds preferred the neighborhood of the tracks: the more diverse habitats near the tracks supplied attractive nesting and foraging niches for many species of birds. Trains passing at clear intervals acted as point sources of noise and did not elicit any negative reactions on the part of the birds; this stands in contrast to busy roads, where the almost continuous flow of traffic in practice constitutes a linear source of noise.

  18. Bird use of organic apple orchards: Frugivory, pest control and implications for production.

    Directory of Open Access Journals (Sweden)

    Anna M Mangan

    Full Text Available As the largest terrestrial biomes, crop and pasturelands can have very large positive or negative impacts on biodiversity and human well-being. Understanding how animals use and impact agroecosystems is important for making informed decisions that achieve conservation and production outcomes. Yet, few studies examine the tradeoffs associated with wildlife in agricultural systems. We examined bird use of organic apple orchards as well as how birds influence fruit production positively through control of an economically important insect pest (codling moth (Cydia pomonella and negatively through fruit damage. We conducted transect surveys, observed bird frugivory and assessed bird and insect damage with an exclosure experiment in small organic farms in western Colorado. We found that organic apple orchards in this region provide habitat for a large number of both human-adapted and human-sensitive species and that the species in orchards were relatively similar to adjacent hedgerow habitats. Habitat use did not vary as a function of orchard characteristics, and apple damage by both birds and C. pomonella was consistent within and across apple blocks that varied in size. A small subset of bird species was observed foraging on apples yet the effect of birds as agents of fruit damage appeared rather minor and birds did not reduce C. pomonella damage. Our results demonstrate that organic apple orchards have the potential to provide habitat for diverse bird communities, including species typically sensitive to human activities, with little apparent effect on production.

  19. Prey distribution, physical habitat features, and guild traits interact to produce contrasting shorebird assemblages among foraging patches.

    Directory of Open Access Journals (Sweden)

    Beth M VanDusen

    Full Text Available Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline. Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρ(s = 0.56 with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρ(s = 0.71 with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these

  20. Projected poleward shift of king penguins' (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean.

    Science.gov (United States)

    Péron, Clara; Weimerskirch, Henri; Bost, Charles-André

    2012-07-07

    Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies.

  1. On the timing of foraging flights by oystercatchers, haematopus ostralegus, on tidal mudflats

    Science.gov (United States)

    Daan, Serge; Koene, Paul

    The tidal movements of flocks of oystercatchers foraging on mudflats at low tide and roosting inland behind a dike at high tide were studied and the effects of day-to-day variations in the time of mudflat exposure by ebb analysed. High mean water levels and short low tides led to reduced intake during low water due to increased bird densities in addition to temporal constraints (Fig. 4). Increased feeding around the roost apparently compensated for some of the reduced intake (Figs 6 ad 7) although accurate intake measurements could be made for foraging on the tidal flats only. It is argued that optimal timing of foraging flights to coincide with exposure of the mussel banks would contribute to exploitation of this tidal food source. The median departure time from the roosts relative to the time of mudflat exposure was early on days when the tide went out late and late when the tide was early (Figs 8 and 9). Daily variations in departure time were predicted by the daily variations in tabulated high water times, but not by variations in mudflat exposure or coverage (Fig. 10). The conclusion is drawn that the birds employ a timing mechanism not directly associated with the tidal water movements. In some pilot experiments in caged oystercatchers, feeding schedules elicitated feeling attempts in anticipation of expected food. The anticipatory patterns were different for fixed and tidally shifting daily food schedules, and moreover differed between the two feeding times per day (Figs 12 and 13). Five possible mechanisms for tidal anticipation are discussed, making use either of unknown exogenous cues, or of—likewise unknown—endogenous timers of hourglass type of rhythmic with circatidal, circalunadian or circadian period. Experimental tests for these possibilities are outlined.

  2. Heat Damaged Forages: Effects on Forage Quality

    Science.gov (United States)

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  3. Seed selection by dark-eyed juncos (Junco hyemalis): optimal foraging with nutrient constraints?

    Science.gov (United States)

    Thompson, D B; Tomback, D F; Cunningham, M A; Baker, M C

    1987-11-01

    Observations of the foraging behavior of six captive dark-eyed juncos (Junco hyemalis) are used to test the assumptions and predictions of optimal diet choice models (Pyke et al. 1977) that include nutrients (Pulliam 1975). The birds sequentially encountered single seeds of niger thistle (Guizotia abyssinica) and of canary grass (Phalaris canariensis) on an artificial substrate in the laboratory. Niger thistle seeds were preferred by all birds although their profitability in terms of energy intake (J/s) was less than the profitability of canary grass seeds. Of four nutritional components used to calculate profitabilities (mg/s) lipid content was the only characteristic that could explain the junco's seed preference. As predicted by optimal diet theory the probability of consuming niger thistle seeds was independent of seed abundance. However, the consumption of 71-84% rather than 100% of the seeds encountered is not consistent with the prediction of all-or-nothing selection. Canary grass seeds were consumed at a constant rate (no./s) independent of the number of seeds encountered. This consumption pattern invalidates a model that assumes strict maximization. However, it is consistent with the assumption that canary grass seeds contain a nutrient which is required in minimum amounts to meet physiological demands (Pulliam 1975). These experiments emphasize the importance of incorporating nutrients into optimal foraging models and of combining seed preference studies with studies of the metabolic requirements of consumers.

  4. Foraging

    NARCIS (Netherlands)

    Ydenberg, R.C.; Prins, H.H.T.

    2012-01-01

    This chapter describes the role played by behavioural adjustments to foraging behaviour in accommodating rapid environmental change. It looks into the adjustments of foraging behaviour to predation danger as a result of changes in the type and array of food available. It investigates the effects of

  5. Optimally frugal foraging

    Science.gov (United States)

    Bénichou, O.; Bhat, U.; Krapivsky, P. L.; Redner, S.

    2018-02-01

    We introduce the frugal foraging model in which a forager performs a discrete-time random walk on a lattice in which each site initially contains S food units. The forager metabolizes one unit of food at each step and starves to death when it last ate S steps in the past. Whenever the forager eats, it consumes all food at its current site and this site remains empty forever (no food replenishment). The crucial property of the forager is that it is frugal and eats only when encountering food within at most k steps of starvation. We compute the average lifetime analytically as a function of the frugality threshold and show that there exists an optimal strategy, namely, an optimal frugality threshold k* that maximizes the forager lifetime.

  6. a comparative study of species diversity of migrant birds between

    African Journals Online (AJOL)

    A.S RINGIM

    ABSTRACT. Among the most complex and fascinating behaviour in birds is their long, non-stop migration. Despite Hadejia-Nguru Wetlands (Ramsar site) being an important wintering ground for migratory birds, little is known about the diversity while density is completely lacking. This study assessed the status of migratory ...

  7. Avian foods, foraging and habitat conservation in world rice fields

    Science.gov (United States)

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.

    2010-01-01

    Worldwide, rice (Oryza sativa) agriculture typically involves seasonal flooding and soil tillage, which provides a variety of microhabitats and potential food for birds. Water management in rice fields creates conditions ranging from saturated mud flats to shallow (seed mass from North America ranging from 66672 kg/ha. Although initially abundant after harvest, waste rice availability can be temporally limited. Few abundance estimates for other foods, such as vertebrate prey or forage vegetation, exist for rice fields. Outside North America, Europe and Japan, little is known about abundance and importance of any avian food in rice fields. Currently, flooding rice fields after harvest is the best known management practice to attract and benefit birds. Studies from North America indicate specific agricultural practices (e.g. burning stubble) may increase use and improve access to food resources. Evaluating and implementing management practices that are ecologically sustainable, increase food for birds and are agronomically beneficial should be global priorities to integrate rice production and avian conservation. Finally, land area devoted to rice agriculture appears to be stable in the USA, declining in China, and largely unquantified in many regions. Monitoring trends in riceland area may provide information to guide avian conservation planning in rice-agriculture ecosystems.

  8. Escape Distance in Ground-Nesting Birds Differs with Individual Level of Camouflage.

    Science.gov (United States)

    Wilson-Aggarwal, Jared K; Troscianko, Jolyon T; Stevens, Martin; Spottiswoode, Claire N

    2016-08-01

    Camouflage is one of the most widespread antipredator strategies in the animal kingdom, yet no animal can match its background perfectly in a complex environment. Therefore, selection should favor individuals that use information on how effective their camouflage is in their immediate habitat when responding to an approaching threat. In a field study of African ground-nesting birds (plovers, coursers, and nightjars), we tested the hypothesis that individuals adaptively modulate their escape behavior in relation to their degree of background matching. We used digital imaging and models of predator vision to quantify differences in color, luminance, and pattern between eggs and their background, as well as the plumage of incubating adult nightjars. We found that plovers and coursers showed greater escape distances when their eggs were a poorer pattern match to the background. Nightjars sit on their eggs until a potential threat is nearby, and, correspondingly, they showed greater escape distances when the pattern and color match of the incubating adult's plumage-rather than its eggs-was a poorer match to the background. Finally, escape distances were shorter in the middle of the day, suggesting that escape behavior is mediated by both camouflage and thermoregulation.

  9. Red-cockaded woodpecker male/female foraging differences in young forest stands.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2010-07-01

    ABSTRACT The Red-cockaded Woodpecker (Picoides borealis) is an endangered species endemic to pine (Pinus spp.) forests of the southeastern United States. I examined Red-cockaded Woodpecker foraging behavior to learn if there were male/female differences at the Savannah River Site, South Carolina. The study was conducted in largely young forest stands (,50 years of age) in contrast to earlier foraging behavior studies that focused on more mature forest. The Redcockaded Woodpecker at the Savannah River site is intensively managed including monitoring, translocation, and installation of artificial cavity inserts for roosting and nesting. Over a 3-year period, 6,407 foraging observations covering seven woodpecker family groups were recorded during all seasons of the year and all times of day. The most striking differences occurred in foraging method (males usually scaled [45% of observations] and females mostly probed [47%]),substrate used (females had a stronger preference [93%] for the trunk than males [79%]), and foraging height from the ground (mean 6 SE foraging height was higher for males [11.1 6 0.5 m] than females [9.8 6 0.5 m]). Niche overlap between males and females was lowest for substrate (85.6%) and foraging height (87.8%), and highest for tree species (99.0%), tree condition (98.3%), and tree height (96.4%). Both males and females preferred to forage in older, large pine trees. The habitat available at the Savannah River Site was considerably younger than at most other locations, but the pattern of male/female habitat partitioning observed was similar to that documented elsewhere within the range attesting to the species’ ability to adjust behaviorally.

  10. Response of avian bark foragers and cavity nesters to regeneration treatments in the oak-hickory forest of Northern Alabama

    Science.gov (United States)

    Wang Yong; Callie Jo Schweitzer; Adrian A. Lesak

    2006-01-01

    We examined bark-foraging and cavity-nesting birds’ use of upland hardwood habitat altered through a shelterwood regeneration experiment on the mid-Cumberland Plateau of northern Alabama. The five regeneration treatments were 0, 25, 50, 75, and 100 percent basal area retention. The 75 percent retention treatment was accomplished by stem-injecting herbicide into mostly...

  11. Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica

    Science.gov (United States)

    Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.

    2011-01-01

    We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins, Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.

  12. Bird on a (live) wire

    Energy Technology Data Exchange (ETDEWEB)

    Farr, M.

    2003-09-30

    Bird mortality as a result of contact with power lines is discussed. U. S. statistics are cited, according to which 174 million birds annually die as a result of contact with power lines, specifically when birds touch two phases of current at the same time. Raptors are particularly vulnerable to power-line electrocution due to their habit of perching on the highest vantage point available as they survey the ground for prey. Hydro lines located in agricultural areas, with bodies of water on one side and fields on the other, also obstruct flight of waterfowl as dusk and dawn when visibility is low. Various solutions designed to minimize the danger to birds are discussed. Among these are: changing the configuration of wires and cross arms to make them more visible to birds in flight and less tempting as perches, and adding simple wire markers such as flags, balloons, and coloured luminescent clips that flap and twirl in the wind. There is no evidence of any coordinated effort to deal with this problem in Ontario. However, a report is being prepared for submission to Environment Canada outlining risks to birds associated with the growing number of wind turbine power generators (negligible compared with power lines and communications towers), and offering suggestions on remedial measures. The Fatal Light Awareness Program (FLAP) also plans to lobby the Canadian Wildlife Service to discuss the possibility of coordinating efforts to monitor, educate about and ultimately reduce this form of bird mortality.

  13. Relationship between bird-of-prey decals and bird-window collisions on a Brazilian university campus

    Directory of Open Access Journals (Sweden)

    Thaís Brisque

    2017-10-01

    Full Text Available ABSTRACT Bird-window collisions are a dramatic cause of bird mortality globally. In Latin America, statistics are generally very scarce and/or inaccessible so the frequency of such incidents is still poorly understood. Nevertheless, civilians have applied preventive methods (e.g. adhesive bird-of-prey decals sparsely but, to our knowledge, no study has evaluated their effectiveness in Brazil. Here, we estimated the mortality rate of bird-window collisions and tested the effectiveness of bird-of-prey decals at preventing such accidents. We undertook daily searches for bird carcasses, presumably resulting from window collisions, near all buildings on a university campus over seven months. Adhesive bird-of-prey decals were then applied to the two buildings with the highest mortality rates and surveys continued for over 12 more months. The mortality rates before and after the application of decals and between seasons were then compared using Friedman test. We recorded 36 collisions, 29 around the two buildings with the highest collision rates 19 prior and 10 after our intervention with associated collision rates of 0.08 and 0.04 collisions/day. Although mortality was reduced by almost half, this difference was not statistically significant. The Blue-black grassquit, Volatinia jacarina (Linnaeus, 1766, and Ruddy ground dove, Columbina talpacoti (Temminck, 1810 suffered the highest number of collisions, followed by the Rufous-collared sparrow, Zonotrichia capensis (P. L. Statius Müller, 1776. Our bird-of-prey decals and efforts were insufficient to prevent or dramatically reduce the number of bird-window collisions. Therefore, we recommend that different interventions be used and additional long-term studies undertaken on their efficacy.

  14. GPS-tracking and colony observations reveal variation in offshore habitat use and foraging ecology of breeding Sandwich Terns

    Science.gov (United States)

    Fijn, R. C.; de Jong, J.; Courtens, W.; Verstraete, H.; Stienen, E. W. M.; Poot, M. J. M.

    2017-09-01

    Breeding success of seabirds critically depends on their foraging success offshore. However, studies combining at-sea tracking and visual provisioning observations are scarce, especially for smaller species of seabirds. This study is the first in which breeding Sandwich Terns were tracked with GPS-loggers to collect detailed data on foraging habitat use in four breeding seasons. The maximum home range of individual Sandwich Terns comprised approximately 1900 km2 and the average foraging range was 27 km. Trip durations were on average 135 min with average trip lengths of 67 km. Actual foraging behaviour comprised 35% of the time budget of a foraging trip. Substantial year-to-year variation was found in habitat use and trip variables, yet with the exception of 2012, home range size remained similar between years. Food availability, chick age and environmental conditions are proposed as the main driving factors between inter- and intra-annual variations in trip variables. Our multi-method approach also provided geo-referenced information on prey presence and we conclude that future combining of colony observations and GPS-loggers deployments can potentially provide a near complete insight into the feeding ecology of breeding Sandwich Terns, including the behaviour of birds at sea.

  15. Grassland birds wintering at U.S. Navy facilities in southern Texas

    Science.gov (United States)

    Woodin, Marc C.; Skoruppa, Mary Kay; Bryan, Pearce D.; Ruddy, Amanda J.; Hickman, Graham C.

    2010-01-01

    Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured

  16. Bird communities in two oceanic island forests fragmented by roads ...

    African Journals Online (AJOL)

    Although most studies on road effects on birds have been conducted on continental grounds, road fragmentation on oceanic islands is often heavier. We assessed variation in bird communities near (≤ 25 m) and far (>100 m) from forest roads dividing laurel and pine forests on Tenerife, Canary Islands. Line transects were ...

  17. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Science.gov (United States)

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  18. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Directory of Open Access Journals (Sweden)

    Nobuo Kokubun

    Full Text Available Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting occurred over the ocean basin (bottom depth >1,000 m. Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1 flight, characterized by regular wing flapping, (2 resting on water, characterized by non-active behavior, and (3 foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3% compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%. The mean duration of foraging (2.4 ± 2.9 min was shorter than that of flight between prey patches (24.2 ± 53.1 min. Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight. Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  19. Group foraging increases foraging efficiency in a piscivorous diver, the African penguin

    Science.gov (United States)

    McGeorge, Cuan; Ginsberg, Samuel; Pichegru, Lorien; Pistorius, Pierre A.

    2017-01-01

    Marine piscivores have evolved a variety of morphological and behavioural adaptations, including group foraging, to optimize foraging efficiency when targeting shoaling fish. For penguins that are known to associate at sea and feed on these prey resources, there is nonetheless a lack of empirical evidence to support improved foraging efficiency when foraging with conspecifics. We examined the hunting strategies and foraging performance of breeding African penguins equipped with animal-borne video recorders. Individuals pursued both solitary as well as schooling pelagic fish, and demonstrated independent as well as group foraging behaviour. The most profitable foraging involved herding of fish schools upwards during the ascent phase of a dive where most catches constituted depolarized fish. Catch-per-unit-effort was significantly improved when targeting fish schools as opposed to single fish, especially when foraging in groups. In contrast to more generalist penguin species, African penguins appear to have evolved specialist hunting strategies closely linked to their primary reliance on schooling pelagic fish. The specialist nature of the observed hunting strategies further limits the survival potential of this species if Allee effects reduce group size-related foraging efficiency. This is likely to be exacerbated by diminishing fish stocks due to resource competition and environmental change. PMID:28989785

  20. Resources or landmarks: which factors drive homing success in Tetragonula carbonaria foraging in natural and disturbed landscapes?

    Science.gov (United States)

    Leonhardt, Sara D; Kaluza, Benjamin F; Wallace, Helen; Heard, Tim A

    2016-10-01

    To date, no study has investigated how landscape structural (visual) alterations affect navigation and thus homing success in stingless bees. We addressed this question in the Australian stingless bee Tetragonula carbonaria by performing marking, release and re-capture experiments in landscapes differing in habitat homogeneity (i.e., the proportion of elongated ground features typically considered prominent visual landmarks). We investigated how landscape affected the proportion of bees and nectar foragers returning to their hives as well as the earliest time bees and foragers returned. Undisturbed landscapes with few landmarks (that are conspicuous to the human eye) and large proportions of vegetation cover (natural forests) were classified visually/structurally homogeneous, and disturbed landscapes with many landmarks and fragmented or no extensive vegetation cover (gardens and plantations) visually/structurally heterogeneous. We found that proportions of successfully returning nectar foragers and earliest times first bees and foragers returned did not differ between landscapes. However, most bees returned in the visually/structurally most (forest) and least (garden) homogeneous landscape, suggesting that they use other than elongated ground features for navigation and that return speed is primarily driven by resource availability in a landscape.

  1. Scrub-shrub bird habitat associations at multiple spatial scales in beaver meadows in Massachusetts

    Science.gov (United States)

    Chandler, R.B.; King, D.I.; DeStefano, S.

    2009-01-01

    Most scrub-shrub bird species are declining in the northeastern United States, and these declines are largely attributed to regional declines in habitat availability. American Beaver (Castor canadensis; hereafter “beaver”) populations have been increasing in the Northeast in recent decades, and beavers create scrub-shrub habitat through their dam-building and foraging activities. Few systematic studies have been conducted on the value of beaver-modified habitats for scrub-shrub birds, and these data are important for understanding habitat selection of scrub-shrub birds as well as for assessing regional habitat availability for these species. We conducted surveys in 37 beaver meadows in a 2,800-km2 study area in western Massachusetts during 2005 and 2006 to determine the extent to which these beaver-modified habitats are used by scrub-shrub birds, as well as the characteristics of beaver meadows most closely related to bird use. We modeled bird abundance in relation to microhabitat-, patch-, and landscape-context variables while adjusting for survey-specific covariates affecting detectability using N-mixture models. We found that scrub-shrub birds of regional conservation concern occupied these sites and that birds responded differently to microhabitat, patch, and landscape characteristics of beaver meadows. Generally, scrub-shrub birds increased in abundance along a gradient of increasing vegetation complexity, and three species were positively related to patch size. We conclude that these habitats can potentially play an important role in regional conservation of scrub-shrub birds and recommend that conservation priority be given to larger beaver meadows with diverse vegetation structure and composition.

  2. Accumulation features of persistent organochlorines in resident and migratory birds from Asia

    International Nuclear Information System (INIS)

    Kunisue, Tatsuya; Watanabe, Mafumi; Subramanian, Annamalai; Sethuraman, Alagappan; Titenko, Alexei M.; Qui, Vo; Prudente, Maricar; Tanabe, Shinsuke

    2003-01-01

    Accumulation features of persistent organochlorines in migratory birds from Asia did not necessarily reflect only the pollution in the sampling area. - Concentrations of organochlorine contaminants including polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) were determined in the resident and migratory birds, which were collected from India, Japan, Philippines, Russia (Lake Baikal) and Vietnam. Accumulation patterns of organochlorine concentrations in resident birds suggested that the predominant contaminants of each country were as follows: Japan-PCBs Philippines-PCBs and CHLs, India-HCHs and DDTs, Vietnam-DDTs, and Lake Baikal-PCBs and DDTs. The migratory birds from Philippines and Vietnam retained mostly the highest concentrations of DDTs among the organochlorines analyzed, indicating the presence of stopover and breeding grounds of those birds in China and Russia. On the other hand, migratory birds from India and Lake Baikal showed different patterns of organochlorine residues, reflecting that each species has inherent migratory routes and thus has exposure to different contaminants. Species which have breeding grounds around the Red Sea and Persian Gulf showed high levels of PCBs, indicating the presence of areas heavily polluted by PCBs in the Middle East

  3. Are stress hormone levels a good proxy of foraging success? An experiment with king penguins, Aptenodytes patagonicus.

    Science.gov (United States)

    Angelier, Frédéric; Giraudeau, Mathieu; Bost, Charles-André; Le Bouard, Fabrice; Chastel, Olivier

    2009-09-01

    In seabirds, variations in stress hormone (corticosterone; henceforth CORT) levels have been shown to reflect changing marine conditions and, especially, changes in food availability. However, it remains unclear how CORT levels can be mechanistically affected by these changes at the individual level. Specifically, the influence of food acquisition and foraging success on CORT secretion is poorly understood. In this study, we tested whether food acquisition can reduce baseline CORT levels (;the food intake hypothesis') by experimentally reducing foraging success of King Penguins (Aptenodytes patagonicus). Although CORT levels overall decreased during a foraging trip, CORT levels did not differ between experimental birds and controls. These results demonstrate that mass gain at sea is not involved in changes in baseline CORT levels in this species. The overall decrease in CORT levels during a foraging trip could result from CORT-mediated energy regulation (;the energy utilisation hypothesis'). Along with other evidence, we suggest that the influence of foraging success and food intake on CORT levels is complex and that the ecological meaning of baseline CORT levels can definitely vary between species and ecological contexts. Therefore, further studies are needed to better understand (1) how baseline CORT levels are functionally regulated according to energetic status and energetic demands and (2) to what extent CORT can be used to aid in the conservation of seabird populations.

  4. Optimal diving behaviour and respiratory gas exchange in birds.

    Science.gov (United States)

    Halsey, Lewis G; Butler, Patrick J

    2006-11-01

    This review discusses the advancements in our understanding of the physiology and behaviour of avian diving that have been underpinned by optimal foraging theory and the testing of optimal models. To maximise their foraging efficiency during foraging periods, diving birds must balance numerous factors that are directly or indirectly related to the replenishment of the oxygen stores and the removal of excess carbon dioxide. These include (1) the time spent underwater (which diminishes the oxygen supply, increases carbon dioxide levels and may even include a build up of lactate due to anaerobic metabolism), (2) the time spent at the surface recovering from the previous dive and preparing for the next (including reloading their oxygen supply, decreasing their carbon dioxide levels and possibly also metabolising lactate) and (3) the trade-off between maximising oxygen reserves for consumption underwater by taking in more air to the respiratory system, and minimising the energy costs of positive buoyancy caused by this air, to maximise the time available underwater to forage. Due to its importance in avian diving, replenishment of the oxygen stores has become integral to models of optimal diving, which predict the time budgeting of animals foraging underwater. While many of these models have been examined qualitatively, such tests of predictive trends appear fallible and only quantifiable support affords strong evidence of their predictive value. This review describes how the quantification of certain optimal diving models, using tufted ducks, indeed demonstrates some predictive success. This suggests that replenishment of the oxygen stores and removal of excess carbon dioxide have significant influences on the duration of the surface period between dives. Nevertheless, present models are too simplistic to be robust predictors of diving behaviour for individual animals and it is proposed that they require refinement through the incorporation of other variables that also

  5. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    Directory of Open Access Journals (Sweden)

    Martin Olofsson

    2010-05-01

    Full Text Available Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function.Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head.In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  6. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    Science.gov (United States)

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  7. The influence of mistletoes on birds in an agricultural landscape of central Mexico

    Science.gov (United States)

    Zuria, Iriana; Castellanos, Ignacio; Gates, J. Edward

    2014-11-01

    Mistletoes are hemiparasitic flowering plants that function as keystone resources in forests and woodlands of temperate regions, where a positive relationship between mistletoe density and avian species richness has been observed. Mistletoes have been less studied in tropical regions and the relationship between birds and mistletoes has seldom been explored in tropical agricultural systems. Therefore, we studied the presence of infected trees and infection prevalence (i.e., number of parasitized trees/total number of trees) by Psittacanthus (Loranthaceae) mistletoes in 23 hedgerows located in an agricultural landscape of central Mexico during the dry and rainy seasons, and investigated the relationship between bird species richness and abundance and the abundance of mistletoes. We found a mean of 74 mistletoe plants per 100-m transect of only one species, Psittacanthus calyculatus. Thirty-one percent of the trees surveyed were infected and tree species differed in infection prevalence, mesquite (Prosopis laevigata) being the most infected species with 86% of the surveyed trees infected. For both seasons, we found a positive and significant association between bird species richness and number of mistletoe plants. The same pattern was observed for total bird abundance. Many resident and Neotropical migratory birds were observed foraging on mistletoes. Our results show that mistletoes are important in promoting a higher bird species richness and abundance in tropical agricultural landscapes.

  8. The Foraging Ecology of the Endangered Cape Verde Shearwater, a Sentinel Species for Marine Conservation off West Africa.

    Science.gov (United States)

    Paiva, Vitor H; Geraldes, Pedro; Rodrigues, Isabel; Melo, Tommy; Melo, José; Ramos, Jaime A

    2015-01-01

    Large Marine Ecosystems such as the Canary Current system off West Africa sustains high abundance of small pelagic prey, which attracts marine predators. Seabirds are top predators often used as biodiversity surrogates and sentinel species of the marine ecosystem health, thus frequently informing marine conservation planning. This study presents the first data on the spatial (GPS-loggers) and trophic (stable isotope analysis) ecology of a tropical seabird-the endangered Cape Verde shearwater Calonectris edwardsii-during both the incubation and the chick-rearing periods of two consecutive years. This information was related with marine environmental predictors (species distribution models), existent areas of conservation concern for seabirds (i.e. marine Important Bird Areas; marine IBAs) and threats to the marine environment in the West African areas heavily used by the shearwaters. There was an apparent inter-annual consistency on the spatial, foraging and trophic ecology of Cape Verde shearwater, but a strong alteration on the foraging strategies of adult breeders among breeding phases (i.e. from incubation to chick-rearing). During incubation, birds mostly targeted a discrete region off West Africa, known by its enhanced productivity profile and thus also highly exploited by international industrial fishery fleets. When chick-rearing, adults exploited the comparatively less productive tropical environment within the islands of Cape Verde, at relatively close distance from their breeding colony. The species enlarged its trophic niche and increased the trophic level of their prey from incubation to chick-rearing, likely to provision their chicks with a more diversified and better quality diet. There was a high overlap between the Cape Verde shearwaters foraging areas with those of European shearwater species that overwinter in this area and known areas of megafauna bycatch off West Africa, but very little overlap with existing Marine Important Bird Areas. Further

  9. Experimental Evidence that Social Relationships Determine Individual Foraging Behavior.

    Science.gov (United States)

    Firth, Josh A; Voelkl, Bernhard; Farine, Damien R; Sheldon, Ben C

    2015-12-07

    Social relationships are fundamental to animals living in complex societies. The extent to which individuals base their decisions around their key social relationships, and the consequences this has on their behavior and broader population level processes, remains unknown. Using a novel experiment that controlled where individual wild birds (great tits, Parus major) could access food, we restricted mated pairs from being allowed to forage at the same locations. This introduced a conflict for pair members between maintaining social relationships and accessing resources. We show that individuals reduce their own access to food in order to sustain their relationships and that individual foraging activity was strongly influenced by their key social counterparts. By affecting where individuals go, social relationships determined which conspecifics they encountered and consequently shaped their other social associations. Hence, while resource distribution can determine individuals' spatial and social environment, we illustrate how key social relationships themselves can govern broader social structure. Finally, social relationships also influenced the development of social foraging strategies. In response to forgoing access to resources, maintaining pair bonds led individuals to develop a flexible "scrounging" strategy, particularly by scrounging from their pair mate. This suggests that behavioral plasticity can develop to ameliorate conflicts between social relationships and other demands. Together, these results illustrate the importance of considering social relationships for explaining behavioral variation due to their significant impact on individual behavior and demonstrate the consequences of key relationships for wider processes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Vision and foraging in cormorants: more like herons than hawks?

    Directory of Open Access Journals (Sweden)

    Craig R White

    Full Text Available BACKGROUND: Great cormorants (Phalacrocorax carbo L. show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique. METHODOLOGY/PRINCIPAL FINDINGS: We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m. CONCLUSIONS/SIGNIFICANCE: We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons.

  11. Variability in the Foraging Distribution and Diet of Cape Gannets between the Guard and Post-guard Phases of the Breeding Cycle

    Directory of Open Access Journals (Sweden)

    Jonathan A. Botha

    2018-02-01

    Full Text Available During breeding, seabirds are central place foragers and are sensitive to changes in local prey availability. As the breeding season progresses, foraging behavior and distribution is expected to change in response to possible changes in local prey availability. In addition, adult gender, and the increasing nutritional demands of a growing chick may also influence the foraging behavior of individuals. At present, relatively few studies have assessed the foraging behavior of adult birds during the late post-guard stages of chick rearing. Through a combination of GPS tracking and diet sampling we investigated the foraging distances, spatial distribution, and prey composition of adult Cape gannets (Morus capensis during the guard and post-guard stages of chick rearing. We found no clear evidence for consistent sex-specific differences in foraging distances and spatial distribution during the guard stage, although marginal differences in the location of core foraging areas during the post-guard stage were apparent. Results, however, revealed a clear increase in foraging range from the early guard to the late post-guard stage of chick rearing. During December the diet was comprised almost exclusively of anchovy (Engraulis encrasicolus, the proportion of which had decreased significantly in the diet by January. This was mirrored by a substantial increase in the proportion of saury (Scomberesox saurus. These results suggest that Cape gannets show flexibility in the foraging behavior and diet, which may be related to changes in the abundance and distribution of prey or may reflect changes in the energetic requirements of the growing offspring. This study provides the first assessment of Cape gannet foraging behavior and spatial distribution during the post-guard stage of chick rearing. The importance of considering intra-annual variability in foraging distribution when using seabird tracking data in trophic and marine spatial planning studies are

  12. 9 CFR 93.104 - Certificate for pet birds, commercial birds, zoological birds, and research birds.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Certificate for pet birds, commercial birds, zoological birds, and research birds. 93.104 Section 93.104 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN...

  13. Windmills and birds

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, N W; Poulsen, E

    1984-07-01

    The objective of this study is an investigation of potential conflicts between windmills and birds. Emphasis is on frightening, collision risk and biotopic changes due to windmill systems. The study is based on the environment of Koldby and Nibe windmills (South Jutland). Biotopic changes were not observed around the existing windmills. Drainage of mill grounds at Nibe had probably no effect on water level in the area around; a longer observation is necessary to draw any decisive conclusions.(EG).

  14. Virginia ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, pelagic birds, passerine birds, and gulls...

  15. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection

    Science.gov (United States)

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2017-01-01

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.

  16. [Response of forest bird communities to forest gap in winter in southwestern China].

    Science.gov (United States)

    Zhao, Dong-Dong; Wu, Ying-Huan; Lu, Zhou; Jiang, Guang-Wei; Zhou, Fang

    2013-06-01

    Although forest gap ecology is an important field of study, research remains limited. By plot setting and point counted observation, the response of birds to forest gaps in winter as well as bird distribution patterns in forest gaps and intact canopies were studied in a north tropical monsoon forest of southwestern China from November 2011 to February 2012 in the Fangcheng Golden Camellia National Nature Reserve, Guangxi. The regression equation of bird species diversity to habitat factor was Y1=0.611+0.002 X13+0.043 X2+0.002 X5-0.003 X8+0.006 X10+0.008 X1 and the regression equation of bird species dominance index to habitat factor was Y3=0.533+0.001 X13+0.019 X2+0.002 X3-0.017 X4+0.002 X1. There were 45 bird species (2 orders and 13 families) recorded in the forest gap, accounting for 84.9% of all birds (n=45), with an average of 9.6 species (range: 2-22). Thirty-nine bird species (5 orders and 14 families) were recorded in non-gap areas, accounting for 73.6% of all birds (n=39), with an average of 5.3 species (range: 1-12). These results suggested that gap size, arbor average height (10 m from gap margin), arbor quantity (10 m from gap margin), shrub quantity (10 m from gap margin), herbal average coverage (1 m from gap margin) and bare land ratio were the key forest gap factors that influenced bird diversities. On the whole, bird diversity in the forest gap was greater than in the intact canopy. Spatial distributions in the forest gaps were also observed in the bird community. Most birds foraged in the "middle" and "canopy" layers in the vertical stratification. In addition, "nearly from" and "close from" contained more birds in relation to horizontal stratification. Feeding niche differentiation was suggested as the main reason for these distribution patterns.

  17. Analysis of Inter- and Intra-individual Variation in Foraging Habits of the Endangered Hawaiian Petrel Using Stables Isotopes

    Science.gov (United States)

    Morra, K. E.; Ostrom, P. H.; Wiley, A. E.; James, H. F.; Stricker, C. A.; Gandhi, H.

    2014-12-01

    Stable isotope analysis of the endangered Hawaiian petrel's (Pterodroma sandwichensis, HAPE) feathers provides otherwise intractable information regarding non-breeding season foraging habits. Adult HAPE spend 3.5-6 months at sea during the non-breeding season, at which time they sequentially molt their flight feathers. Because feathers are metabolically inert once synthesized, they capture isotopic signals while they are grown, providing an opportunity to study foraging habits over time. Here we use stable hydrogen (δD), carbon (δ13C) and nitrogen (δ15N) isotopes to assess variation in foraging habits within and between individuals, and among four breeding colonies. δD is an indicator of prevalence of fish vs. invertebrates in the diet. In one analysis, we observed large variation in feather δD (125‰), with adults from Maui and Kauai having significantly higher δD values than corresponding hatch-year birds, indicating significant dietary differences between age groups. In a second analysis, we utilized δ13C and δ15N of Hawaii, Maui and Lanai adults, values which vary with trophic level and also at the base of the food web across HAPE's foraging range, potentially revealing information about feeding location, as well as diet. Furthermore, because the sequence of molt is known, we are able to determine whether individual foraging specialization (continued use of the same foraging behavior over time) exists in this species. To do this, we analyzed two primary feathers, P1 and P6, which reflect the beginning and the middle of the non-breeding season, respectively. We did not find significant differences in δ13C or δ15N between P1 and P6, suggesting consistent foraging habits within individuals over time. This provides evidence that individual foraging specialization exists within these populations. Analysis of a secondary feather grown late in the molt sequence would further illuminate the extent of foraging specialization. Finally, δ15N differs

  18. A Comparitive Analysis of the Influence of Weather on the Flight Altitudes of Birds.

    Science.gov (United States)

    Shamoun-Baranes, Judy; van Loon, Emiel; van Gasteren, Hans; van Belle, Jelmer; Bouten, Willem; Buurma, Luit

    2006-01-01

    Birds pose a serious risk to flight safety worldwide. A Bird Avoidance Model (BAM) is being developed in the Netherlands to reduce the risk of bird aircraft collisions. In order to develop a temporally and spatially dynamic model of bird densities, data are needed on the flight-altitude distribution of birds and how this is influenced by weather. This study focuses on the dynamics of flight altitudes of several species of birds during local flights over land in relation to meteorological conditions.We measured flight altitudes of several species in the southeastern Netherlands using tracking radar during spring and summer 2000. Representatives of different flight strategy groups included four species: a soaring species (buzzard ), an obligatory aerial forager (swift Apus apus), a flapping and gliding species (blackheaded gull Larus ridibundus), and a flapping species (starling Sturnus vulgaris).Maximum flight altitudes varied among species, during the day and among days. Weather significantly influenced the flight altitudes of all species studied. Factors such as temperature, relative humidity, atmospheric instability, cloud cover, and sea level pressure were related to flight altitudes. Different combinations of factors explained 40% 70% of the variance in maximum flight altitudes. Weather affected flight strategy groups differently. Compared to flapping species, buzzards and swifts showed stronger variations in maximum daily altitude and f lew higher under conditions reflecting stronger thermal convection. The dynamic vertical distributions of birds are important for risk assessment and mitigation measures in flight safety as well as wind turbine studies.

  19. Polychlorinated biphenyls and organochlorine pesticides as intrinsic tracer tags of foraging grounds of bluefin tuna in the northwest Atlantic Ocean.

    Science.gov (United States)

    Deshpande, Ashok D; Dickhut, Rebecca M; Dockum, Bruce W; Brill, Richard W; Farrington, Cameron

    2016-04-15

    Researchers have utilized chemical fingerprints in the determination of habitat utilization and movements of the aquatic animals. In the present effort, we analyzed polychlorinated biphenyl (PCB) congeners and organochlorine pesticides in the samples of juvenile bluefin tuna caught offshore of Virginia, and in larger bluefin tuna from the Gulf of Maine and near Nova Scotia. For a given specimen, or a given location, PCB concentrations were highest, followed by DDTs, and chlordanes. Average contaminant concentrations from fish captured from the three locations were not significantly different; and PCBs, DDTs, and chlordanes correlated well with each other. Trans-nonachlor/PCB 153 ratios in bluefin tuna of eastern Atlantic (i.e., Mediterranean) origin are low compared to the corresponding ratios in fish in the western Atlantic. As the former migrate to the western Atlantic, these ratios gradually turnover due to the accumulation of biomass from forage contaminated with higher trans-nonachlor/PCB 153 ratio reflecting dissimilar use of chlordane pesticides on two sides of the Atlantic Ocean. The trans-nonachlor/PCB 153 ratio indicated that one juvenile bluefin tuna from offshore of Virginia and one large bluefin tuna from Gulf of Maine in the present study originated from foraging grounds in the Mediterranean Sea, and that they have made the trans-Atlantic migrations. The remaining individuals were determined to be either spawned in the Gulf of Mexico or the trans-nonachlor/PCB 153 ratio for the putative Mediterranean bluefin tuna was completely turned over to resemble the ratio characteristic to the western Atlantic. Based on the turnover time for trans-nonachlor/PCB 153 ratio previously determined, the residence time of juvenile bluefin tuna offshore Virginia was estimated to be at least 0.8 to 1.6years. A discriminant function analysis (DFA) plot of total PCB normalized signatures of PCB congeners showed three separate clusters, which suggested that bluefin tuna

  20. Ecology of selected marine communities in Glacier Bay: Zooplankton, forage fish, seabirds and marine mammals

    Science.gov (United States)

    Robards, Martin D.; Drew, Gary S.; Piatt, John F.; Anson, Jennifer Marie; Abookire, Alisa A.; Bodkin, James L.; Hooge, Philip N.; Speckman, Suzann G.

    2003-01-01

    -Bay.We identified 55 species of fish during this study (1999 and 2000) from beach seines, mid-water trawls, and rod and line catches. The diversity of physical, oceanographic, and glacial chronological conditions within Glacier Bay contribute a suite of factors that influence the distribution and abundance of fish. Accordingly, we observed significant differences in the abundance and distribution of fish within the Bay. Most significantly, abundance and diversity (primarily juvenile fish including walleye Pollock, eelblennies, and capelin) were greatest at the head of both the east and west arms where zooplankton abundance was greatest – in close proximity to tidewater glaciers and freshwater runoff. All of Glacier Bay and Icy Strait were surveyed hydroacoustically for plankton and fish during June 1999 surveys. Acoustically determined forage biomass was concentrated in relatively few important areas such as Pt. Adolphus, Berg Bay, on the Geikie-Scidmore shelf, around the Beardslee/Marble islands, and the upper arms of Glacier Bay. Forage biomass (primarily small schooling fish and euphausiids) was concentrated in shallow, nearshore waters; 50 % of acoustic biomass was found at depths 0.01 fish/m3) for seabirds foraging on zooplankton and small schooling fish. Less than 1 % of the area contained patches suitable (e.g., >0.1 fish/m3) for whales foraging on zooplankton and small schooling fish. High-density aggregations of 0.1-10 fish/m3 were comprised mostly of schools containing capelin, pollock, herring or euphausiids (0.1-1 kg/m3).During predator surveys (1999-2000), we observed 63 species of birds and 7 species of marine mammals. Seasonal distribution and abundance of these “apex” predators was highly variable by species. Glacier Bay supports high numbers of seabirds and marine mammals that consume zooplankton and small schooling fish. Nearshore areas had higher densities of both birds and marine mammals. Several areas, such as Pt. Adolphus, Berg Bay, on the Geikie

  1. Individual odor recognition in birds: an endogenous olfactory signature on petrels' feathers?

    Science.gov (United States)

    Bonadonna, Francesco; Miguel, Eve; Grosbois, Vladimir; Jouventin, Pierre; Bessiere, Jean-Marie

    2007-09-01

    A growing body of evidence indicates that odors are used in individual, sexual, and species recognition in vertebrates, and may be reliable signals of quality and compatibility. Petrels are seabirds that exhibit an acute sense of smell. During the breeding period, many species of petrels live in dense colonies on small oceanic islands and form pairs that use individual underground burrows. Mates alternate between parental duties and foraging trips at sea. Returning from the ocean at night (to avoid bird predators), petrels must find their nest burrow. Antarctic prions, Pachyptila desolata, are thought to identify their nest by recognizing their partner's odor, suggesting the existence of an individual odor signature. We used gas chromatography and mass spectrometry to analyze extracts obtained from the feathers of 13 birds. The chemical profile of a single bird was more similar to itself, from year to year, than to that of any other bird. The profile contained up to a hundred volatile lipids, but the odor signature may be based on the presence or absence of a few specific compounds. Our results show that the odor signature in Antarctic prions is probably endogenous, suggesting that in some species of petrels it may broadcast compatibility and quality of potential mates.

  2. Breeding bird response to juniper woodland expansion

    Science.gov (United States)

    Rosenstock, Steven S.; van Riper, Charles

    2001-01-01

    In recent times, pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands have expanded into large portions of the Southwest historically occupied by grassland vegetation. From 1997-1998, we studied responses of breeding birds to one-seed juniper (J. monosperma) woodland expansion at 2 grassland study areas in northern Arizona. We sampled breeding birds in 3 successional stages along a grassland-woodland gradient: un-invaded grassland, grassland undergoing early stages of juniper establishment, and developing woodland. Species composition varied greatly among successional stages and was most different between endpoints of the gradient. Ground-nesting grassland species predominated in uninvaded grassland but declined dramatically as tree density increased. Tree- and cavity-nesting species increased with tree density and were most abundant in developing woodland. Restoration of juniper-invaded grasslands will benefit grassland-obligate birds and other wildlife.

  3. Effect of forage quality in faeces from different ruminant species fed high and low quality forage

    DEFF Research Database (Denmark)

    Jalali, A R; Nørgaard, P; Nielsen, M O

    2010-01-01

    Effect of forage quality in faeces from different ruminant species fed high and low quality forage......Effect of forage quality in faeces from different ruminant species fed high and low quality forage...

  4. West Nile Virus in Resident Birds from Yucatan, Mexico.

    Science.gov (United States)

    Chaves, Andrea; Sotomayor-Bonilla, Jesus; Monge, Otto; Ramírez, Abigaíl; Galindo, Francisco; Sarmiento-Silva, Rosa Elena; Gutiérrez-Espeleta, Gustavo A; Suzán, Gerardo

    2016-01-01

    West Nile virus (WNV) in the Americas is thought to be transported at large spatial scales by migratory birds and locally spread and amplified by resident birds. Local processes, including interspecific interactions and dominance of passerine species recognized as competent reservoirs, may boost infection and maintain endemic cycles. Change in species composition has been recognized as an important driver for infection dynamics. Due to migration and changes in species diversity and composition in wintering grounds, changes in infection prevalence are expected. To these changes, we used PCR to estimate the prevalence of WNV in wild resident birds during the dry and rainy seasons of 2012 in Yucatan, Mexico. Serum samples were obtained from 104 wild birds, belonging to six orders and 35 species. We detected WNV in 14 resident birds, representing 11 species and three orders. Prevalences by order was Passeriformes (27%), Columbiformes (6%), and Piciformes (33%). Resident birds positive to WNV from Yucatan may be indicative of local virus circulation and evidence of past virus transmission activity.

  5. A Bird Strike Handbook for Base-Level Managers

    Science.gov (United States)

    1984-09-01

    areas, abundant at any airfield, can serve as a safe haven for birds to rest. When the grass is short, they feel safer because they can see predators ...Many atimals are found in these areas. When small aimals arse present, raptors (birds of prey) are likely to be found. Thus, if animals live in the...the area around them, at all times. But, if the grass is so tall that they are not able to see one another, or possible predators , while on the ground

  6. Does greed help a forager survive?

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-06-01

    We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.

  7. Native birds and alien insects: spatial density dependence in songbird predation of invading oak gallwasps.

    Directory of Open Access Journals (Sweden)

    Karsten Schönrogge

    Full Text Available Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource.

  8. Influences of the Tamarisk Leaf Beetle (Diorhabda carinulata) on the diet of insectivorous birds along the Dolores River in Southwestern Colorado

    Science.gov (United States)

    Puckett, Sarah L.; van Riper, Charles

    2014-01-01

    We examined the effects of a biologic control agent, the tamarisk leaf beetle (Diorhabda carinulata), on native avifauna in southwestern Colorado, specifically, addressing whether and to what degree birds eat tamarisk leaf beetles. In 2010, we documented avian foraging behavior, characterized the arthropod community, sampled bird diets, and undertook an experiment to determine whether tamarisk leaf beetles are palatable to birds. We observed that tamarisk leaf beetles compose 24.0 percent (95-percent-confidence interval, 19.9-27.4 percent) and 35.4 percent (95-percent-confidence interval, 32.4-45.1 percent) of arthropod abundance and biomass in the study area, respectively. Birds ate few tamarisk leaf beetles, despite a superabundance of D. carinulata in the environment. The frequency of occurrence of tamarisk leaf beetles in bird diets was 2.1 percent (95-percent-confidence interval, 1.3- 2.9 percent) by abundance and 3.4 percent (95-percent-confidence interval, 2.6-4.2 percent) by biomass. Thus, tamarisk leaf beetles probably do not contribute significantly to the diets of birds in areas where biologic control of tamarisk is being applied.

  9. Long-term decline of a winter-resident bird community in Puerto Rico

    Science.gov (United States)

    J. Faaborg; W. J. Arendt; J. D. Toms; K. M. Dugger; W. A. Cox; M. Canals Mora

    2013-01-01

    Despite concern expressed two decades ago, there has been little recent discussion about continuing declines of migrant bird populations. Monitoring efforts have been focused almost exclusively on the breeding grounds. We describe the long-term decline of a winter-resident bird population in Guanica Commonwealth Forest, Puerto Rico, one of the last remaining tracts of...

  10. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology

    NARCIS (Netherlands)

    Lameris, T.K.; Jochems, Femke; van der Graaf, A.J.; Andersson, M.; Limpens, J.; Nolet, B.A.

    2017-01-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be

  11. An overview of migratory birds in Brazil

    Directory of Open Access Journals (Sweden)

    Marina Somenzari

    2018-03-01

    Full Text Available Abstract We reviewed the occurrences and distributional patterns of migratory species of birds in Brazil. A species was classified as migratory when at least part of its population performs cyclical, seasonal movements with high fidelity to its breeding grounds. Of the 1,919 species of birds recorded in Brazil, 198 (10.3% are migratory. Of these, 127 (64% were classified as Migratory and 71 (36% as Partially Migratory. A few species (83; 4.3% were classified as Vagrant and eight (0,4% species could not be defined due to limited information available, or due to conflicting data.

  12. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs

    Science.gov (United States)

    Stone, Bram W. G.; Faillace, Cara A.; Lafond, Jonathan J.; Baumgarten, Joni M.; Mozdzer, Thomas J.; Dighton, John; Meiners, Scott J.; Grabosky, Jason C.; Ehrenfeld, Joan G.

    2017-01-01

    Background and Aims Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Methods Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Key Results Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. Conclusions In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory

  13. Risk of Agricultural Practices and Habitat Change to Farmland Birds

    Directory of Open Access Journals (Sweden)

    David Anthony. Kirk

    2011-06-01

    Full Text Available Many common bird species have declined as a result of agricultural intensification and this could be mitigated by organic farming. We paired sites for habitat and geographical location on organic and nonorganic farms in Ontario, Canada to test a priori predictions of effects on birds overall, 9 guilds and 22 species in relation to candidate models for farming practices (13 variables, local habitat features (12 variables, or habitat features that influence susceptibility to predation. We found that: (1 Overall bird abundance, but not richness, was significantly (p < 0.05 higher on organic sites (mean 43.1 individuals per site than nonorganic sites (35.8 individuals per site. Significantly more species of birds were observed for five guilds, including primary grassland birds, on organic vs. nonorganic sites. No guild had higher richness or abundance on nonorganic farms; (2 Farming practice models were the best (Î"AIC < 4 for abundance of birds overall, primary grassland bird richness, sallier aerial insectivore richness and abundance, and abundance of ground nesters; (3 Habitat models were the best for overall richness, Neotropical migrant abundance, richness and abundance of Ontario-USA-Mexico (short-distance migrants and resident richness; (4 Predation models were the best for richness of secondary grassland birds and ground feeders; (5 A combination of variables from the model types were best for richness or abundance overall, 13 of 18 guilds (richness and abundance and 16 of 22 species analyzed. Five of 10 farming practice variables (including herbicide use, organic farm type and 9 of 13 habitat variables (including hedgerow length, proportion of hay were significant in best models. Risk modeling indicated that herbicide use could decrease primary grassland birds by one species (35% decline from 3.4 to 2.3 species per site. Organic farming could benefit species of conservation concern by 49% (an increase from 7.6 to 11.4 grassland birds. An

  14. Effects of land use on bird populations and pest control services on coffee farms.

    Science.gov (United States)

    Railsback, Steven F; Johnson, Matthew D

    2014-04-22

    Global increases in both agriculture and biodiversity awareness raise a key question: Should cropland and biodiversity habitat be separated, or integrated in mixed land uses? Ecosystem services by wildlife make this question more complex. For example, birds benefit agriculture by preying on pest insects, but other habitat is needed to maintain the birds. Resulting land use questions include what areas and arrangements of habitat support sufficient birds to control pests, whether this pest control offsets the reduced cropland, and the comparative benefits of "land sharing" (i.e., mixed cropland and habitat) vs. "land sparing" (i.e., separate areas of intensive agriculture and habitat). Such questions are difficult to answer using field studies alone, so we use a simulation model of Jamaican coffee farms, where songbirds suppress the coffee berry borer (CBB). Simulated birds select habitat and prey in five habitat types: intact forest, trees (including forest fragments), shade coffee, sun coffee, and unsuitable habitat. The trees habitat type appears to be especially important, providing efficient foraging and roosting sites near coffee plots. Small areas of trees (but not forest alone) could support a sufficient number of birds to suppress CBB in sun coffee; the degree to which trees are dispersed within coffee had little effect. In simulations without trees, shade coffee supported sufficient birds to offset its lower yield. High areas of both trees and shade coffee reduced pest control because CBB was less often profitable prey. Because of the pest control service provided by birds, land sharing was predicted to be more beneficial than land sparing in this system.

  15. Review of the White Rose Development Project : environmental impact statement with emphasis on concerns regarding marine birds

    International Nuclear Information System (INIS)

    Johnson, M.

    2001-07-01

    The Canadian Nature Federal (CNF) works in partnership with other environmental organizations, governments and industry to promote the development of ecologically sound solutions to conservation problems. This paper was prepared by the Important Bird Areas Program within the CNF and submitted to the Canada-Newfoundland Offshore Petroleum Board to make them aware of the threats that offshore oil and gas activity pose to marine birds. In particular, the CNF has taken the opportunity offered by the Public Review of Husky Oil's proposed White Rose Development Application. This submission is not intended as a comprehensive review of the development application, but rather to identify specific concerns regarding the impact the project will have on marine birds. Of the 43 coastal important bird areas that have been identified in Newfoundland, 6 are located within the White Rose Study Area. All of the bird species spend their time on the water and forage by diving into the water column. This makes them particularly vulnerable to oil or any other water pollution. The CNF is concerned about the effects that flaring operations, drill cuttings, and oil spills will have on the birds. Since there is no way to mitigate the effects of oil on seabirds, prevention is the only realistic approach to minimizing the effects on marine birds from offshore oil activity. 1 append

  16. Fear of feces? Trade-offs between disease risk and foraging drive animal activity around raccoon latrines

    Science.gov (United States)

    Weinstein, Sara B.; Moura, Chad W.; Mendez, Jon Francis; Lafferty, Kevin D.

    2017-01-01

    Fear of predation alters prey behavior, which can indirectly alter entire landscapes. A parasite-induced ecology of fear might also exist if animals avoid parasite-contaminated resources when infection costs outweigh foraging benefits. To investigate whether animals avoid parasite contaminated sites, and if such avoidance balances disease costs and foraging gains, we monitored animal behavior at raccoon latrines – sites that concentrate both seeds and pathogenic parasite eggs. Using wildlife cameras, we documented over 40 potentially susceptible vertebrate species in latrines and adjacent habitat. Latrine contact rates reflected background activity, diet preferences and disease risk. Disease-tolerant raccoons and rats displayed significant site attraction, while susceptible birds and small mammals avoided these high-risk sites. This suggests that parasites, like predators, might create a landscape of fear for vulnerable hosts. Such non-consumptive parasite effects could alter disease transmission, population dynamics, and even ecosystem structure.

  17. A new approach to study of seabird-fishery overlap: Connecting chick feeding with parental foraging and overlap with fishing vessels

    Directory of Open Access Journals (Sweden)

    Junichi Sugishita

    2015-07-01

    Full Text Available Incidental fisheries bycatch is recognised as a major threat to albatross populations worldwide. However, fishery discards and offal produced in large quantities might benefit some scavenging seabirds. Here, we demonstrate an integrated approach to better understand the ecological ramifications of fine-scale overlap between seabirds and fisheries. As a case study, we examined whether foraging in association with a fishing vessel is advantageous for chick provisioning in terms of quantity of food delivered to chicks, in northern royal albatross (Diomedea sanfordi at Taiaroa Head, New Zealand. Fine-scale overlap between albatrosses and vessels was quantified by integrating GPS tracking and Vessel Monitoring Systems (VMS. Meal size delivered to chicks was measured using custom-designed nest balances, and monitoring of attendance of adults fitted with radio transmitters was used in conjunction with time-lapse photography at the nest allowed us to allocate each feeding event to a specific parent. The combination of these techniques enabled comparison of meal sizes delivered to chicks with parental foraging trip durations with or without fishing vessels association. A total of 45 foraging trips and associated chick feeding events were monitored during the chick-rearing period in 2012. Differences in the meal size and foraging trip duration relative to foraging overlap with fisheries were examined using a linear mixed-effect model, adjusted for chick age. Our results, based on three birds, suggest that foraging in association with vessels does not confer an advantage for chick feeding for this population that demonstrated low rates of overlap while foraging. The integrated research design presented can be applied to other seabird species that are susceptible to bycatch, and offers a valuable approach to evaluate habitat quality by linking habitat use and foraging success in terms of total amount of food delivered to offspring.

  18. Prey type and foraging ecology of Sanderlings Calidris alba in different climate zones: are tropical areas more favourable than temperate sites?

    Directory of Open Access Journals (Sweden)

    Kirsten Grond

    2015-08-01

    Full Text Available Sanderlings (Calidris alba are long-distance migratory shorebirds with a non-breeding range that spans temperate and tropical coastal habitats. Breeding in the High Arctic combined with non-breeding seasons in the tropics necessitate long migrations, which are energetically demanding. On an annual basis, the higher energy expenditures during migration might pay off if food availability in the tropics is higher than at temperate latitudes. We compared foraging behaviour of birds at a north temperate and a tropical non-breeding site in the Netherlands and Ghana, respectively. In both cases the birds used similar habitats (open beaches, and experienced similar periods of daylight, which enabled us to compare food abundance and availability, and behavioural time budgets and food intake. During the non-breeding season, Sanderlings in the Netherlands spent 79% of their day foraging; in Ghana birds spent only 38% of the daytime period foraging and the largest proportion of their time resting (58%. The main prey item in the Netherlands was the soft-bodied polychaete Scolelepis squamata, while Sanderlings in Ghana fed almost exclusively on the bivalve Donax pulchellus, which they swallowed whole and crushed internally. Average availability of polychaete worms in the Netherlands was 7.4 g ash free dry mass (AFDM m−2, which was one tenth of the 77.1 g AFDM m−2 estimated for the beach in Ghana. In the tropical environment of Ghana the Sanderlings combined relatively low energy requirements with high prey intake rates (1.64 mg opposed to 0.13 mg AFDM s−1 for Ghana and the Netherlands respectively. Although this may suggest that the Ghana beaches are the most favourable environment, processing the hard-shelled bivalve (D. pulchellus which is the staple food could be costly. The large amount of daytime spent resting in Ghana may be indicative of the time needed to process the shell fragments, rather than indicate rest.

  19. Potential bird dispersers of Psychotria in a area of Atlantic forest on Ilha Grande, RJ, Southeastern Brazil: a biochemical analysis of the fruits

    Directory of Open Access Journals (Sweden)

    E. M. Almeida

    Full Text Available The present study assessed the fruiting pattern, bird foraging behavior, and sugar content of ripe fruits of two sympatric species of Rubiaceae (Psychotria brasiliensis and P. nuda. This study was carried out in an Atlantic forest area on Ilha Grande, RJ, between August 1998 and July 1999. Fruit production occurred year round, with a peak of mature P. brasiliensis fruits in December 1998 and another of P. nuda in February of 1999. Lipaugus lanioides (Cotingidae, Baryphtengus ruficapillus (Momotidae and Saltator similis (Emberizidae made the most frequent foraging visits to fruiting P. brasiliensis, so that L. lanioides and B. ruficapillus removed the fruits with sallying maneuvers while S. similis gleaned the fruits. Lipaugus lanioides was by far the most important consumer, and potentially the main disperser of P. brasiliensis. Birds of this genus are heavy frugivores in the tropical forests and are widely assumed to be important seed dispersers. The fruits were analyzed quantitatively and qualitatively in relation to the amounts of sucrose and starch. Psychotria brasiliensis (the visited species showed the smallest quantity of sucrose and the highest amount of starch. These findings suggest that what may influence the birds' choice of fruit is the proportion of starch in the Psychotria species studied here rather than the carbohydrate composition.

  20. The Foraging Ecology of the Endangered Cape Verde Shearwater, a Sentinel Species for Marine Conservation off West Africa.

    Directory of Open Access Journals (Sweden)

    Vitor H Paiva

    Full Text Available Large Marine Ecosystems such as the Canary Current system off West Africa sustains high abundance of small pelagic prey, which attracts marine predators. Seabirds are top predators often used as biodiversity surrogates and sentinel species of the marine ecosystem health, thus frequently informing marine conservation planning. This study presents the first data on the spatial (GPS-loggers and trophic (stable isotope analysis ecology of a tropical seabird-the endangered Cape Verde shearwater Calonectris edwardsii-during both the incubation and the chick-rearing periods of two consecutive years. This information was related with marine environmental predictors (species distribution models, existent areas of conservation concern for seabirds (i.e. marine Important Bird Areas; marine IBAs and threats to the marine environment in the West African areas heavily used by the shearwaters. There was an apparent inter-annual consistency on the spatial, foraging and trophic ecology of Cape Verde shearwater, but a strong alteration on the foraging strategies of adult breeders among breeding phases (i.e. from incubation to chick-rearing. During incubation, birds mostly targeted a discrete region off West Africa, known by its enhanced productivity profile and thus also highly exploited by international industrial fishery fleets. When chick-rearing, adults exploited the comparatively less productive tropical environment within the islands of Cape Verde, at relatively close distance from their breeding colony. The species enlarged its trophic niche and increased the trophic level of their prey from incubation to chick-rearing, likely to provision their chicks with a more diversified and better quality diet. There was a high overlap between the Cape Verde shearwaters foraging areas with those of European shearwater species that overwinter in this area and known areas of megafauna bycatch off West Africa, but very little overlap with existing Marine Important Bird

  1. Subterranean termite open-air foraging and tolerance to desiccation: Comparative water relation of two sympatric Macrotermes spp. (Blattodea: Termitidae).

    Science.gov (United States)

    Hu, Jian; Neoh, Kok-Boon; Appel, Arthur G; Lee, Chow-Yang

    2012-02-01

    The foraging patterns of termites are strongly related to physiological limits in overcoming desiccation stress. In this study, we examined moisture preferences and physiological characteristics of Macrotermes carbonarius (Hagen) and M. gilvus (Hagen) as both exhibit conspicuous patterns of foraging activity. Despite both species showing no significant differences in calculated cuticular permeability, and percentage of total body water, they differed greatly in rate of water loss and surface area to volume ratio. For example, M. carbonarius which had a lower surface area to volume ratio (29.26-53.66) showed lower rate of water loss and percentage of total body water loss. This also resulted in higher LT(50) when exposed to extreme conditions (≈2% RH). However, contrasting observations were made in M. gilvus that has smaller size with higher surface area to volume ratio of 40.28-69.75. It is likely that the standard equation for calculating insect surface areas is inadequate for these termite species. The trend was further supported by the result of a moisture preference bioassay that indicated M. carbonarius had a broader range of moisture preference (between 5% and 20%) than M. gilvus which had a relatively narrow moisture preference (only 20%). These results explain why M. carbonarius can tolerate desiccation stress for a longer period foraging above-ground in the open air; while M. gilvus only forages below ground or concealed within foraging mud tubes. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Alabama ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, gulls, and terns...

  3. Maryland ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, and gulls and...

  4. Bird interactions with offshore oil and gas platforms: review of impacts and monitoring techniques.

    Science.gov (United States)

    Ronconi, Robert A; Allard, Karel A; Taylor, Philip D

    2015-01-01

    Thousands of oil and gas platforms are currently operating in offshore waters globally, and this industry is expected to expand in coming decades. Although the potential environmental impacts of offshore oil and gas activities are widely recognized, there is limited understanding of their impacts on migratory and resident birds. A literature review identified 24 studies and reports of bird-platform interactions, most being qualitative and half having been peer-reviewed. The most frequently observed effect, for seabirds and landbirds, is attraction and sometimes collisions associated with lights and flares; episodic events have caused the deaths of hundreds or even thousands of birds. Though typically unpredictable, anecdotally, it is known that poor weather, such as fog, precipitation and low cloud cover, can exacerbate the effect of nocturnal attraction to lights, especially when coincidental with bird migrations. Other effects include provision of foraging and roosting opportunities, increased exposure to oil and hazardous environments, increased exposure to predators, or repulsion from feeding sites. Current approaches to monitoring birds at offshore platforms have focused on observer-based methods which can offer species-level bird identification, quantify seasonal patterns of relative abundance and distribution, and document avian mortality events and underlying factors. Observer-based monitoring is time-intensive, limited in spatial and temporal coverage, and suffers without clear protocols and when not conducted by trained, independent observers. These difficulties are exacerbated because deleterious bird-platform interaction is episodic and likely requires the coincidence of multiple factors (e.g., darkness, cloud, fog, rain conditions, occurrence of birds in vicinity). Collectively, these considerations suggest a need to implement supplemental systems for monitoring bird activities around offshore platforms. Instrument-based approaches, such as radar

  5. Nitrogen removal and nitrate leaching for forage systems receiving dairy effluent.

    Science.gov (United States)

    Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Wade, Brett L; Rymph, Stuart J; Prine, Gordon M; Van Horn, Harold H

    2002-01-01

    Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.

  6. Mercury in birds of San Francisco Bay-Delta, California: trophic pathways, bioaccumulation, and ecotoxicological risk to avian reproduction

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Heinz, Gary; De La Cruz, Susan E. W.; Takekawa, John Y.; Miles, A. Keith; Adelsbach, Terrence L.; Herzog, Mark P.; Bluso-Demers, Jill D.; Demers, Scott A.; Herring, Garth; Hoffman, David J.; Hartman, Christopher A.; Willacker, James J.; Suchanek, Thomas H.; Schwarzbach, Steven E.; Maurer, Thomas C.

    2014-01-01

    San Francisco Bay Estuary in northern California has a legacy of mercury contamination, which could reduce the health and reproductive success of waterbirds in the estuary. The goal of this study was to use an integrated field and laboratory approach to evaluate the risks of mercury exposure to birds in the estuary. We examined mercury bioaccumulation, and other contaminants of concern, in five waterbird species that depend heavily on San Francisco Bay Estuary for foraging and breeding habitat: American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), Caspian terns (Hydroprogne caspia), and surf scoters (Melanitta perspicillata). These species have different foraging habitats and diets that represent three distinct foraging guilds within the estuary’s food web. In this report, we provide an integrated synthesis of the primary findings from this study and results are synthesized from 54 peer-reviewed publications generated to date with other unpublished results.

  7. Foraging in a tidally structured environment by red knots (Calidris canutus) : Ideal, but not free

    NARCIS (Netherlands)

    van Gils, JA; Spaans, B; Dekinga, A; Piersma, T; Speirs, D.C.

    Besides the "normal" challenge of obtaining adequate intake rates in a patchy and dangerous world, shorebirds foraging in intertidal habitats face additional environmental hurdles. The tide forces them to commute between a roosting site and feeding grounds, twice a day. Moreover, because intertidal

  8. Plant species of Okhla Bird Sanctuary: a wetland of Upper Gangetic Plains, India [with erratum

    OpenAIRE

    Manral, Upma; Raha, Angshuman; Solanki, Ridhima; Hussain, Syed; Babu, Mattozbiyil; Mohan, Dhananjai; Veeraswami, Gopi; Sivakumar, K.; Talukdar, Gautam

    2013-01-01

    The Okhla Bird Sanctuary (OBS), a man-modified floodplain wetland having high human impact, is located in an urbanized landscape. Its location in the Central Asian Flyway of migratory birds makes it an ideal transit and wintering ground for birds. This paper describes the vegetation composition and significance of the Sanctuary as a bird habitat. A floristic survey was carried out from winter 2009 to spring 2010 while preparing a management plan for OBS. 192 species of plants belonging to 46 ...

  9. Quitting time: When do honey bee foragers decide to stop foraging on natural resources?

    Directory of Open Access Journals (Sweden)

    Michael eRivera

    2015-05-01

    Full Text Available Honey bee foragers may use both personal and social information when making decisions about when to visit resources. In particular, foragers may stop foraging at resources when their own experience indicates declining resource quality, or when social information, namely the delay to being able to unload nectar to receiver bees, indicates that the colony has little need for the particular resource being collected. Here we test the relative importance of these two factors in a natural setting, where colonies are using many dynamically changing resources. We recorded detailed foraging histories of individually marked bees, and identified when they appeared to abandon any resources (such as flower patches that they had previously been collecting from consistently. As in previous studies, we recorded duration of trophallaxis events (unloading nectar to receiver bees as a proxy for resource quality and the delays before returning foragers started trophallaxis as a proxy for social need for the resource. If these proxy measures accurately reflect changes in resource quality and social need, they should predict whether bees continue foraging or not. However, neither factor predicted when individuals stopped foraging on a particular resource, nor did they explain changes in colony-level foraging activity. This may indicate that other, as yet unstudied processes also affect individual decisions to abandon particular resources.

  10. The influence of small urban parks characteristics on bird diversity

    DEFF Research Database (Denmark)

    Jasmani, Zanariah; Ravn, Hans Peter; van den Bosch, Cecil C.Konijnendijk

    2017-01-01

    using the combined field survey method of structured observation and field measurements. The measured variables were divided into three broad categories of physical characteristics, species richness and human factors. Bird species richness and abundance were used as the indicators for assessing...... biodiversity. Pearson correlations and multiple regressions were conducted to analyse the relationships between variables and to identify which variables had a significant effect on bird species richness and abundance. The results demonstrated that park area and vegetation variables (e.g. the percentage...... of tree canopy cover, open grass/ground, native-exotic plants) are the important predictors of bird species richness and abundance. The percentage of canopy covers (negative relation) and park area (positive relation) are the best predictors of bird species richness in small urban parks. Meanwhile...

  11. Effects of forage provision to dairy calves on growth performance and rumen fermentation: A meta-analysis and meta-regression.

    Science.gov (United States)

    Imani, M; Mirzaei, M; Baghbanzadeh-Nobari, B; Ghaffari, M H

    2017-02-01

    A meta-analysis of the potential effect of forage provision on growth performance and rumen fermentation of dairy calves was conducted using published data from the literature (1998-2016). Meta-regression was used to evaluate the effects of different forage levels, forage sources, forage offering methods, physical forms of starter, and grain sources on the heterogeneity of the results. We considered 27 studies that reported the effects of forage provision to dairy calves. Estimated effect sizes of forage were calculated on starter feed intake, average daily gain (ADG), feed efficiency (FE), body weight (BW), and rumen fermentation parameters. Intake of starter feed, ADG, BW, ruminal pH, and rumen molar proportion of acetate increased when supplementing forage but FE decreased. Heterogeneity (the amount of variation among studies) was significant for intake of starter feed, ADG, FE, final BW, and rumen fermentation parameters. Improving overall starter feed intake was greater in calves offered alfalfa hay compared with those offered other types of forages. During the milk feeding and overall periods, improving ADG was greater for calves fed a high level of forage (>10% in dry matter) compared with those fed a low level of forage (≤10% in dry matter) diets. The advantages reported in weight gain at a high level of forage could be due to increased gut fill. Improving overall ADG was lower for calves offered forages with textured starter feed compared with ground starter feed. The meta-regression analysis revealed that changes associated with forage provision affect FE differently for various forage sources and forage offering methods during the milk-feeding period. Forage sources also modulated the effect of feeding forage on ruminal pH during the milk-feeding period. In conclusion, forage has the potential to affect starter feed intake and performance of dairy calves, but its effects depend on source, level, and method of forage feeding and physical form of starter

  12. Impact of a 90 m/2 MW wind turbine on birds. En 90 m/2 MW vindmoelles indvirkning paa fuglelivet; Fugles reaktioner paa opfoerelsen og idriftsaettelsen af Tjaereborgmoellen ved Det Danske Vadehav

    Energy Technology Data Exchange (ETDEWEB)

    Brinch Pedersen, M; Poulsen, E

    1991-10-01

    It is consluded that the wind turbine has caused a ''vacuum effect'', preventing birds from exploiting the areas close to the wind turbine. The impact of this disturbance on birds is evaluated to be a considerable addition to already existing disturbances from e.g. farming, and has caused further deteriorations of the Tjaereborg polder for breeding, staging and foraging birds. Once the wind turbine has been operating permanently for a longer period it will be possible to evaluate the total impact on birds and thus evluate effects of implementation of a large wind turbine on the avian fauna in the Wadden Sea region. (author) 48 refs.

  13. FireBird - a small satellite fire monitoring mission: Status and first results

    Science.gov (United States)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  14. Foraging in a tidally structured environment by red knots (Calidris canutus): Ideal, but not free

    NARCIS (Netherlands)

    Van Gils, J.A.; Spaans, B.; Dekinga, A.; Piersma, T.

    2006-01-01

    Besides the “normal” challenge of obtaining adequate intake rates in a patchy and dangerous world, shorebirds foraging in intertidal habitats face additional environmental hurdles. The tide forces them to commute between a roosting site and feeding grounds, twice a day. Moreover, because intertidal

  15. Extreme reversed sexual dichromatism in a bird without sex role reversal.

    Science.gov (United States)

    Heinsohn, Robert; Legge, Sarah; Endler, John A

    2005-07-22

    Brilliant plumage is typical of male birds, reflecting differential enhancement of male traits when females are the limiting sex. Brighter females are thought to evolve exclusively in response to sex role reversal. The striking reversed plumage dichromatism of Eclectus roratus parrots does not fit this pattern. We quantify plumage color in this species and show that very different selection pressures are acting on males and females. Male plumage reflects a compromise between the conflicting requirements for camouflage from predators while foraging and conspicuousness during display. Females are liberated from the need for camouflage but compete for rare nest hollows.

  16. Using Next-Generation Sequencing to Contrast the Diet and Explore Pest-Reduction Services of Sympatric Bird Species in Macadamia Orchards in Australia.

    Directory of Open Access Journals (Sweden)

    Eduardo Crisol-Martínez

    Full Text Available Worldwide, avian communities inhabiting agro-ecosystems are threatened as a consequence of agricultural intensification. Unravelling their ecological role is essential to focus conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose avian pest-reduction services, thus supporting avian conservation. In this study, we used next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird species foraging in macadamia orchards in eastern Australia. Across all species and based on arthropod DNA sequence similarities ≥98% with records in the Barcode of Life Database, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests. Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug, considered a major pest, was present in 23% of all faecal samples collected. Results also showed that resource partitioning in this system is low, as most bird species shared large proportion of their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition differed between some species, most likely because of differences in foraging behaviour. Overall, this study reached a level of taxonomic resolution never achieved before in the studied species, thus contributing to a significant improvement in the avian ecological knowledge. Our results showed that bird communities prey upon economically important pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction services using next-generation sequencing, which could contribute to the conservation of avian communities and their natural habitats in agricultural systems.

  17. Using Next-Generation Sequencing to Contrast the Diet and Explore Pest-Reduction Services of Sympatric Bird Species in Macadamia Orchards in Australia.

    Science.gov (United States)

    Crisol-Martínez, Eduardo; Moreno-Moyano, Laura T; Wormington, Kevin R; Brown, Philip H; Stanley, Dragana

    2016-01-01

    Worldwide, avian communities inhabiting agro-ecosystems are threatened as a consequence of agricultural intensification. Unravelling their ecological role is essential to focus conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose avian pest-reduction services, thus supporting avian conservation. In this study, we used next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird species foraging in macadamia orchards in eastern Australia. Across all species and based on arthropod DNA sequence similarities ≥98% with records in the Barcode of Life Database, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests. Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug), considered a major pest, was present in 23% of all faecal samples collected. Results also showed that resource partitioning in this system is low, as most bird species shared large proportion of their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition differed between some species, most likely because of differences in foraging behaviour. Overall, this study reached a level of taxonomic resolution never achieved before in the studied species, thus contributing to a significant improvement in the avian ecological knowledge. Our results showed that bird communities prey upon economically important pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction services using next-generation sequencing, which could contribute to the conservation of avian communities and their natural habitats in agricultural systems.

  18. Variation in zooplankton prey distribution determines marine foraging distributions of breeding Cassin's Auklet

    Science.gov (United States)

    Bertram, Douglas F.; Mackas, David L.; Welch, David W.; Boyd, W. Sean; Ryder, John L.; Galbraith, Moira; Hedd, April; Morgan, Ken; O'Hara, Patrick D.

    2017-11-01

    To investigate the causal basis for patterns of seabird foraging distributions during breeding we integrated data from ship-board seabird and zooplankton surveys, aerial radio telemetry, and colony-based research programs. We examined the marine distributions of Cassin's Auklet (Ptychoramphus aleuticus) breeding on Triangle Island, in the Northeast Pacific off the coast of B.C., Canada using surveys conducted in 1999, 2000, and 2001. Concurrently, we sampled zooplankton at 16 stations along a cross shelf transect in the vicinity of Triangle Island. In 1999 and 2000, when populations of the preferred copepod prey Neocalanus cristatus were available at deep-water stations (1000-2000 m), the majority of the auklets were concentrated SW of the colony 40-75 km offshore and parallel to, but 35 -50 km beyond the shelf break in deep water (1200-2000 m). Birds did not fly farther out to sea to where prey was five times more abundant when N. cristatus could be found at lower abundance levels, closer to the colony. In 2001, N. cristatus were virtually absent at the deep-water stations, likely as a result of massive salp (family Salpidae) aggregations which may have consumed and displaced the seabirds' preferred prey. We demonstrate that while birds were still able to locate and provision chicks with N. cristatus in 2001, they had to forage farther away from the colony in order to do so. Our telemetry results are generally consistent with analyses of at-sea distributions of Cassin's Auklets derived from ship-board surveys (1990-2010) both of which have contributed to the design of the proposed Scott Islands marine National Wildlife Area, the first of its kind in Canada.

  19. Hybrid value foraging: How the value of targets shapes human foraging behavior.

    Science.gov (United States)

    Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla

    2018-04-01

    In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.

  20. Starvation dynamics of a greedy forager

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-07-01

    We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.

  1. Birds and burns of the interior West: descriptions, habitats, and management in western forests.

    Science.gov (United States)

    Victoria Saab; William Block; Robin Russell; John Lehmkuhl; Lisa Bate; Rachel White

    2007-01-01

    This publication provides information about prescribed fire effects on habitats and populations of birds of the interior West and a synthesis of existing information on bird responses to fire across North America. Our literature synthesis indicated that aerial, ground, and bark insectivores favored recently burned habitats, whereas foliage gleaners preferred unburned...

  2. New Developments in Forage Varieties

    Science.gov (United States)

    Forage crops harvested for hay or haylage or grazed support dairy, beef, sheep and horse production. Additional livestock production from reduced forage acreage supports the need for forage variety improvement. The Consortium for Alfalfa Improvement is a partnership model of government, private no...

  3. Methane Production of Different Forages in Ruminal Fermentation

    Directory of Open Access Journals (Sweden)

    S. J. Meale

    2012-01-01

    Full Text Available An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on CH4 production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at 55°C and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall’s buffer and rumen fluid were incubated under anaerobic conditions at 39°C for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM ranged from 671 to 713 (grasses, 377 to 590 (leguminous shrubs and 288 to 517 (non-leguminous shrubs. After 24 h of in vitro incubation, cumulative gas, CH4 production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05 within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate CH4 emissions without compromising digestion. Grazing of these two species may be a strategy to reduce CH4 emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

  4. Bird assemblage patterns in relation to anthropogenic habitat ...

    African Journals Online (AJOL)

    Using habitat stratification, birds were surveyed along transects in tidal and supralittoral sub-habitats using DISTANCE sampling protocol, and along the river by encounter rates to determine abundance and species richness. Indices of human activity as well as habitat structure parameters including ground cover, plant ...

  5. Effects of land use on bird populations and pest control services on coffee farms

    Science.gov (United States)

    Railsback, Steven F.; Johnson, Matthew D.

    2014-01-01

    Global increases in both agriculture and biodiversity awareness raise a key question: Should cropland and biodiversity habitat be separated, or integrated in mixed land uses? Ecosystem services by wildlife make this question more complex. For example, birds benefit agriculture by preying on pest insects, but other habitat is needed to maintain the birds. Resulting land use questions include what areas and arrangements of habitat support sufficient birds to control pests, whether this pest control offsets the reduced cropland, and the comparative benefits of “land sharing” (i.e., mixed cropland and habitat) vs. “land sparing” (i.e., separate areas of intensive agriculture and habitat). Such questions are difficult to answer using field studies alone, so we use a simulation model of Jamaican coffee farms, where songbirds suppress the coffee berry borer (CBB). Simulated birds select habitat and prey in five habitat types: intact forest, trees (including forest fragments), shade coffee, sun coffee, and unsuitable habitat. The trees habitat type appears to be especially important, providing efficient foraging and roosting sites near coffee plots. Small areas of trees (but not forest alone) could support a sufficient number of birds to suppress CBB in sun coffee; the degree to which trees are dispersed within coffee had little effect. In simulations without trees, shade coffee supported sufficient birds to offset its lower yield. High areas of both trees and shade coffee reduced pest control because CBB was less often profitable prey. Because of the pest control service provided by birds, land sharing was predicted to be more beneficial than land sparing in this system. PMID:24711377

  6. Bird community responses to the edge between suburbs and reserves.

    Science.gov (United States)

    Ikin, Karen; Barton, Philip S; Knight, Emma; Lindenmayer, David B; Fischer, Joern; Manning, Adrian D

    2014-02-01

    New insights into community-level responses at the urban fringe, and the mechanisms underlying them, are needed. In our study, we investigated the compositional distinctiveness and variability of a breeding bird community at both sides of established edges between suburban residential areas and woodland reserves in Canberra, Australia. Our goals were to determine if: (1) community-level responses were direct (differed with distance from the edge, independent of vegetation) or indirect (differed in response to edge-related changes in vegetation), and (2) if guild-level responses provided the mechanism underpinning community-level responses. We found that suburbs and reserves supported significantly distinct bird communities. The suburban bird community, characterised by urban-adapted native and exotic species, had a weak direct edge response, with decreasing compositional variability with distance from the edge. In comparison, the reserve bird community, characterised by woodland-dependent species, was related to local tree and shrub cover. This was not an indirect response, however, as tree and shrub cover was not related to edge distance. We found that the relative richness of nesting, foraging and body size guilds also displayed similar edge responses, indicating that they underpinned the observed community-level responses. Our study illustrates how community-level responses provide valuable insights into how communities respond to differences in resources between two contrasting habitats. Further, the effects of the suburban matrix penetrate into reserves for greater distances than previously thought. Suburbs and adjacent reserves, however, provided important habitat resources for many native species and the conservation of these areas should not be discounted from continued management strategies.

  7. Spatial heterogeneity in resource distribution promotes facultative sociality in two trans-Saharan migratory birds.

    Directory of Open Access Journals (Sweden)

    Ainara Cortés-Avizanda

    Full Text Available BACKGROUND: Migrant populations must cope not only with environmental changes in different biomes, but also with the continuous constraints imposed by human-induced changes through landscape transformation and resource patchiness. Theoretical studies suggest that changes in food distribution can promote changes in the social arrangement of individuals without apparent adaptive value. Empirical research on this subject has only been performed at reduced geographical scales and/or for single species. However, the relative contribution of food patchiness and predictability, both in space and time, to abundance and sociality can vary among species, depending on their degree of flexibility. METHODOLOGY/PRINCIPAL FINDINGS: By means of constrained zero-inflated Generalized Additive Models we analysed the spatial distribution of two trans-Saharan avian scavengers that breed (Europe and winter (Africa sympatrically, in relation to food availability. In the summering grounds, the probability of finding large numbers of both species increases close to predictable feeding sources, whereas in the wintering grounds, where food resources are widespread, we did not find such aggregation patterns, except for the black kite, which aggregated at desert locust outbreaks. The comparison of diets in both species through stable isotopes revealed that their diets overlapped during summering, but not during wintering. CONCLUSIONS/SIGNIFICANCE: Our results suggest that bird sociality at feeding grounds is closely linked to the pattern of spatial distribution and predictability of trophic resources, which are ultimately induced by human activities. Migrant species can show adaptive foraging strategies to face changing distribution of food availability in both wintering and summering quarters. Understanding these effects is a key aspect for predicting the fitness costs and population consequences of habitat transformations on the viability of endangered migratory species.

  8. Louse flies on birds of Baja California

    OpenAIRE

    Tella, José Luis; Rodríguez-Estrella, Ricardo; Blanco, Guillermo

    2000-01-01

    Louse flies were collected from 401 birds of 32 species captured in autumn of 1996 in Baja California Sur (México). Only one louse fly species (Microlynchia pusilla) was found. It occurred in four of the 164 common ground doves (Columbina passerina) collected. This is a new a host species for this louse fly.

  9. Vision in avian emberizid foragers: maximizing both binocular vision and fronto-lateral visual acuity.

    Science.gov (United States)

    Moore, Bret A; Pita, Diana; Tyrrell, Luke P; Fernández-Juricic, Esteban

    2015-05-01

    Avian species vary in their visual system configuration, but previous studies have often compared single visual traits between two to three distantly related species. However, birds use different visual dimensions that cannot be maximized simultaneously to meet different perceptual demands, potentially leading to trade-offs between visual traits. We studied the degree of inter-specific variation in multiple visual traits related to foraging and anti-predator behaviors in nine species of closely related emberizid sparrows, controlling for phylogenetic effects. Emberizid sparrows maximize binocular vision, even seeing their bill tips in some eye positions, which may enhance the detection of prey and facilitate food handling. Sparrows have a single retinal center of acute vision (i.e. fovea) projecting fronto-laterally (but not into the binocular field). The foveal projection close to the edge of the binocular field may shorten the time to gather and process both monocular and binocular visual information from the foraging substrate. Contrary to previous work, we found that species with larger visual fields had higher visual acuity, which may compensate for larger blind spots (i.e. pectens) above the center of acute vision, enhancing predator detection. Finally, species with a steeper change in ganglion cell density across the retina had higher eye movement amplitude, probably due to a more pronounced reduction in visual resolution away from the fovea, which would need to be moved around more frequently. The visual configuration of emberizid passive prey foragers is substantially different from that of previously studied avian groups (e.g. sit-and-wait and tactile foragers). © 2015. Published by The Company of Biologists Ltd.

  10. Effects of Grazing Management in Brachiaria grass-forage Peanut Pastures on Canopy Structure and Forage Intake.

    Science.gov (United States)

    Gomes, F K; Oliveira, M D B L; Homem, B G C; Boddey, R M; Bernardes, T F; Gionbelli, M P; Lara, M A S; Casagrande, D R

    2018-06-13

    Maintenance of mixed grass-legume pastures for stand longevity and improved animal utilization is a challenge in warm-season climates. The goal of this study was to assess grazing management on stand persistence, forage intake, and N balance of beef heifers grazing mixed pastures of Brachiaria brizantha and Arachis pintoi. A two-year experiment was carried out in Brazil, where four grazing management were assessed: rest period interrupted at 90%, 95%, and 100% of light interception (LI) and a fixed rest period of 42 days (90LI, 95LI, 100LI, and 42D, respectively). The LI were taken at 50 points at ground level and at five points above the canopy for each paddock using a canopy analyzer. For all treatments, the post-grazing stubble height was 15 cm. Botanical composition and canopy structure characteristics such as canopy height, forage mass, and vertical distribution of the morphological composition were evaluated pre-and post-grazing. Forage chemical composition, intake, and microbial synthesis were also determined. A randomized complete block design was used, considering the season of the year as a repeated measure over time. Grazing management and season were considered fixed, while block and year were considered random effects. In the summer, legume mass accounted for 19% of the canopy at 100LI, which was less than other treatments (a mean of 30%). The 100LI treatment had a greater grass stem mass compared with other treatments. In terms of vertical distribution for 100LI, 38.6% of the stem mass was above the stubble height, greater than the 5.7% for other treatments. The canopy structure limited neutral detergent fiber intake (P = 0.007) at 100LI (1.02% of BW/d), whereas 42D, 90LI, and 95LI treatments had NDF intake close to 1.2% of BW/d. The intake of digestible organic matter (OM; P = 0.007) and the ratio of crude protein/digestible OM (P < 0.001) were less at 100LI in relation to the other treatments. The production of microbial N (P < 0.001) and efficiency

  11. Migratory flows and foraging habitat selection by shorebirds along the northeastern coast of Brazil: The case of Baía de Todos os Santos

    Science.gov (United States)

    Lunardi, Vitor O.; Macedo, Regina H.; Granadeiro, José P.; Palmeirim, Jorge M.

    2012-01-01

    Large numbers of Nearctic shorebirds migrate and winter along the coast of northeastern Brazil, but there is little information on their migratory flows, foraging ecology, and on the structure of the species assemblages that they form with resident shorebirds. We studied these issues on intertidal flats of Baía de Todos os Santos (Bahia), the second largest bay in Brazil. During a full year cycle we carried out weekly bird counts in an intertidal area of 280 ha divided in sectors, where we also measured environmental parameters. The analyses of weekly counts resulted in a detailed phenology of use of the area by shorebirds. Five species were resident and ten were Nearctic migrants. Several of the latter had clear peaks in numbers in March and October, revealing the use of the bay as a stopover during both the north-bound and south-bound migration flows. A canonical correspondence analysis of the relationship between environmental parameters and bird numbers indicated that the foraging bird assemblage could be divided into five main groups, occupying distinct ecological gradients in the study area. The most important factors driving this structure were invertebrate prey abundance, percentage of fine sediments, area of mangrove cover and distance to channels. Our findings imply that maintenance of the diversity of intertidal habitats in this bay is crucial to satisfy the particular habitat requirements of resident and migrant shorebirds using the northeastern coastal regions of Brazil.

  12. Harvesting Effects on Species Composition and Distribution of Cover Attributes in Mixed Native Warm-Season Grass Stands

    Directory of Open Access Journals (Sweden)

    Vitalis W. Temu

    2015-05-01

    Full Text Available Managing grasslands for forage and ground-nesting bird habitat requires appropriate defoliation strategies. Subsequent early-summer species composition in mixed stands of native warm-season grasses (Indiangrass (IG, Sorghastrum nutans, big bluestem (BB, Andropogon gerardii and little bluestem (LB, Schizachyrium scoparium responding to harvest intervals (treatments, 30, 40, 60, 90 or 120 d and durations (years in production was assessed. Over three years, phased May harvestings were initiated on sets of randomized plots, ≥90 cm apart, in five replications (blocks to produce one-, two- and three-year-old stands. Two weeks after harvest, the frequencies of occurrence of plant species, litter and bare ground, diagonally across each plot (line intercept, were compared. Harvest intervals did not influence proportions of dominant plant species, occurrence of major plant types or litter, but increased that of bare ground patches. Harvest duration increased the occurrence of herbaceous forbs and bare ground patches, decreased that of tall-growing forbs and litter, but without affecting that of perennial grasses, following a year with more September rainfall. Data suggest that one- or two-year full-season forage harvesting may not compromise subsequent breeding habitat for bobwhites and other ground-nesting birds in similar stands. It may take longer than a year’s rest for similar stands to recover from such changes in species composition.

  13. Columbia River ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, diving birds, seabirds, passerine birds, gulls, and terns in...

  14. Ontogeny of lift and drag production in ground birds.

    Science.gov (United States)

    Heers, Ashley M; Tobalske, Bret W; Dial, Kenneth P

    2011-03-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight.

  15. Freeing Maya Angelou's Caged Bird

    OpenAIRE

    Graham, Joyce L.

    1991-01-01

    This study involves a comprehensive examination of one book, Maya Angelou's autobiographical I Know Why Why the Caged Bird Sings, since it was first published in 1970. Recognized as an important literary work, the novel is used in many middle and secondary school classrooms throughout the united States. Additionally, the work often is challenged in public schools on the grounds of its sexual and/or racial content. The purpose of this study included establishing th...

  16. Benefits of collective intelligence: Swarm intelligent foraging, an ethnographic research

    Directory of Open Access Journals (Sweden)

    Sivave Mashingaidze

    2014-12-01

    Full Text Available Wisdom of crowds; bees, colonies of ants, schools of fish, flocks of birds, and fireflies flashing synchronously are all examples of highly coordinated behaviors that emerge from collective, decentralized intelligence. This article is an ethnographic study of swarm intelligence foraging of swarms and the benefits derived from collective decision making. The author used using secondary data analysis to look at the benefits of swarm intelligence in decision making to achieve intended goals. Concepts like combined decision making and consensus were discussed and four principles of swarm intelligence were also discussed viz; coordination, cooperation, deliberation and collaboration. The research found out that collective decision making in swarms is the touchstone of achieving their goals. The research further recommended corporate to adopt collective intelligence for business sustainability.

  17. Forage quantity and quality

    Science.gov (United States)

    Jorgenson, Janet C.; Udevitz, Mark S.; Felix, Nancy A.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    The Porcupine caribou herd has traditionally used the coastal plain of the Arctic National Wildlife Refuge, Alaska, for calving. Availability of nutritious forage has been hypothesized as one of the reasons the Porcupine caribou herd migrates hundreds of kilometers to reach the coastal plain for calving (Kuropat and Bryant 1980, Russell et al. 1993).Forage quantity and quality and the chronology of snowmelt (which determines availability and phenological stages of forage) have been suggested as important habitat attributes that lead calving caribou to select one area over another (Lent 1980, White and Trudell 1980, Eastland et al. 1989). A major question when considering the impact of petroleum development is whether potential displacement of the caribou from the 1002 Area to alternate calving habitat will limit access to high quantity and quality forage.Our study had the following objectives: 1) quantify snowmelt patterns by area; 2) quantify relationships among phenology, biomass, and nutrient content of principal forage species by vegetation type; and 3) determine if traditional concentrated calving areas differ from adjacent areas with lower calving densities in terms of vegetation characteristics.

  18. Lower foraging efficiency of offspring constrains use of optimal habitat in birds with extended parental care

    NARCIS (Netherlands)

    Nolet, B.A.; Gyimesi, A.; van Lith, B.

    2014-01-01

    Keywords: food intake rate; giving-up density; habitat switch; parental costs; social dominance After reproducing successfully, birds with extended parental care form family groups. Despite being the dominant social unit, such family groups have been reported to switch to alternative habitat earlier

  19. Optimal Foraging in Semantic Memory

    Science.gov (United States)

    Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.

    2012-01-01

    Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…

  20. [Diversity of birds in the Agricultural Center Cotové, Santa Fe de Antioquia, Colombia].

    Science.gov (United States)

    Martínez-Bravo, Caty Milena; Mancera-Rodríguez, Néstor Javier; Buitrago-Franco, Germán

    2013-12-01

    Fragmentation of natural habitats is a central concern of biodiversity conservation and is considered a significant factor contributing to species loss and populations decline. We studied this in Cotové Agricultural Center in the municipality of Santa Fe de Antioquia (Colombia),where the conversion of natural forests to different land use systems, has limited the amount of available habitat. With the aim to describe the effect of habitat loss on bird presence in five land uses (fruiting trees, silvopastoral systems, secondary forest, pasture low density of trees and grass cutting) in this area, we studied bird diversity using two methods: fixed point counts and mist nets to analyze the influence of land use in the composition, richness and abundance of birds present were studied. A total of 6633 individuals of 101 species were observed of which 11 species were migratory. The insectivorous and frugivorous foraging guilds were better represented. The Shannon index indicated the highest values of alpha diversity for the silvopastoral system, and the fruit with the lowest. The grazing and silvopastoral land systems shared more species with low tree density. The importance of the environmental heterogeneity found is highlighted as a positive factor for bird species richness, mostly of low and middle habitat specificity, and preferably from edge habitats and open areas. In order to preserve natural regeneration and connectivity between different land use types, and to promote stability of bird species populations, some management actions should be implemented in the area.

  1. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs.

    Science.gov (United States)

    Caplan, Joshua S; Stone, Bram W G; Faillace, Cara A; Lafond, Jonathan J; Baumgarten, Joni M; Mozdzer, Thomas J; Dighton, John; Meiners, Scott J; Grabosky, Jason C; Ehrenfeld, Joan G

    2017-04-01

    Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory and overstorey canopy conditions. Shrubs that have

  2. Density and success of bird nests relative to grazing on western Montana grasslands

    Science.gov (United States)

    Fondell, Thomas F.; Ball, I.J.

    2004-01-01

    Grassland birds are declining at a faster rate than any other group of North American bird species. Livestock grazing is the primary economic use of grasslands in the western United States, but the effects of this use on distribution and productivity of grassland birds are unclear. We examined nest density and success of ground-nesting birds on grazed and ungrazed grasslands in western Montana. In comparison to grazed plots, ungrazed plots had reduced forb cover, increased litter cover, increased litter depth, and increased visual obstruction readings (VOR) of vegetation. Nest density among 10 of 11 common bird species was most strongly correlated with VOR of plots, and greatest nest density for each species occurred where mean VOR of the plot was similar to mean VOR at nests. Additionally, all bird species were relatively consistent in their choice of VOR at nests despite substantial differences in VOR among plots. We suggest that birds selected plots based in part on availability of suitable nest sites and that variation in nest density relative to grazing reflected the effect of grazing on availability of nest sites. Nest success was similar between grazed plots and ungrazed plots for two species but was lower for nests on grazed plots than on ungrazed plots for two other species because of increased rates of predation, trampling, or parasitism by brown-headed cowbirds (Molothrus ater). Other species nested almost exclusively on ungrazed plots (six species) or grazed plots (one species), precluding evaluation of the effects of grazing on nest success. We demonstrate that each species in a diverse suite of ground-nesting birds preferentially used certain habitats for nesting and that grazing altered availability of preferred nesting habitats through changes in vegetation structure and plant species composition. We also show that grazing directly or indirectly predisposed some bird species to increased nesting mortality. Management alternatives that avoid

  3. Determination of Mineral Contents of Some Legume and Cereal Forages Grown as Naturally in Pastures of Erzurum Province

    Directory of Open Access Journals (Sweden)

    Esra GÜRSOY

    2017-06-01

    Full Text Available This study was carried out to determine the mineral substances such as macro and micro minerals of legume and cereal forages grown as naturally in the pastures of Erzurum province. In present study, clover, (Medicago sativa, mountain hispanic sainfoin (Hedysarum elegans, bird vetch (Vicia cracca, hairy vetch (Vicia villosa, mountain vetch (Vicia alpestris, mountain clover (Trifolium montanum, caucasian clover (Trifolium ambiguum, the three-headed clover (Trifolium trichocephalum, tawny grass crown (Coronilla varia, the crown of the eastern horn of grass (Coronilla orientatis and yellow flowers gazelle (Lotus corniculatus from legume forages; cocksfoot (Dactylis glomerata, crested wheatgrass (Agropyron cristatum, red fescue (Festuca rubra, sheep ball (Festuca ovina, tawny bromine (Bromus variegatus, blue split (Agropyron intermedium, kelp tail grass (Phleum pratense, meadow bluegrass (Poa pratensis from cereal forages were investigated. The obtained data were subjected to an analysis of variance by using SPSS 12.0 package program. Significant differences between means were tested by using Duncan’s Multiple Range Test. Macro minerals such as Nitrogen (N, Phosphorus (P, Potassium (K, Calcium (Ca, Magnesium (Mg and Sulfur (S assigned for legume forages changed between 2.39- 3.30%, 1.16-1.28%, 0.70-2.69%, 0.56-1.61%, 0.11-0.51% and 0.16-0.27%, respectively. The amounts of micro mineral like Iron (Fe, Virgin (Cu, Zinc (Zn, Manganese (Mn and Boron (B of legume forages were determined to be 105.9-893.7 ppm, 2.22-12.36 ppm, 14.11-195 ppm, 18.18-66.58 ppm and 5.91-40.39 ppm, respectively. Instances of macro minerals of cereal forages were found for N 1.76-of 2.19%, P 1.10-1.19%, K 1.99-3.25%, Ca 0.09-1.15%, Mg 0.07-0.26% and S 0.22-0.36% in present study. Micro minerals such as Fe, Cu, Zn, Mn and B determined for cereal forages changed between 74.90-630.6 ppm, 4-9.84 ppm, 31.49-335.6 ppm, 24.63-94.51 ppm and 0.35-26.64 ppm, respectively. In conclusion

  4. Importance of the 2014 Colorado River Delta pulse flow for migratory songbirds: Insights from foraging behavior

    Science.gov (United States)

    Darrah, Abigail J.; Greeney, Harold F.; van Riper, Charles

    2017-01-01

    The Lower Colorado River provides critical riparian areas in an otherwise arid region and is an important stopover site for migrating landbirds. In order to reverse ongoing habitat degradation due to drought and human-altered hydrology, a pulse flow was released from Morelos Dam in spring of 2014, which brought surface flow to dry stretches of the Colorado River in Mexico. To assess the potential effects of habitat modification resulting from the pulse flow, we used foraging behavior of spring migrants from past and current studies to assess the relative importance of different riparian habitats. We observed foraging birds in 2000 and 2014 at five riparian sites along the Lower Colorado River in Mexico to quantify prey attack rates, prey attack maneuvers, vegetation use patterns, and degree of preference for fully leafed-out or flowering plants. Prey attack rate was highest in mesquite (Prosopis spp.) in 2000 and in willow (Salix gooddingii) in 2014; correspondingly, migrants predominantly used mesquite in 2000 and willow in 2014 and showed a preference for willows in flower or fruit in 2014. Wilson’s warbler (Cardellina pusilla) used relatively more low-energy foraging maneuvers in willow than in tamarisk (Tamarix spp.) or mesquite. Those patterns in foraging behavior suggest native riparian vegetation, and especially willow, are important resources for spring migrants along the lower Colorado River. Willow is a relatively short-lived tree dependent on spring floods for dispersal and establishment and thus spring migrants are likely to benefit from controlled pulse flows.

  5. Forage production in mixed grazing systems of elephant grass with arrowleaf clover or forage peanut

    Directory of Open Access Journals (Sweden)

    Daiane Cristine Seibt

    Full Text Available ABSTRACT Most dairy production systems are pasture-based, usually consisting of sole grass species. This system facilitates pasture management, but results in high production costs, mainly because of nitrogen fertilizers. An alternative to making forage systems more sustainable is to introduce legumes into the pasture. Mixed pastures allow better forage distribution over time and reduce fertilization costs. Thus, the objective of this study was to evaluate, throughout the year, three forage systems (FS: FS1 (control - elephant grass (EG, ryegrass (RG, and spontaneous species (SS; FS2 - EG + RG + SS + arrowleaf clover; and FS3 - EG + RG + SS + forage peanut. Elephant grass was planted in rows spaced 4 m apart. Ryegrass was sown between the EG lines, in the winter. Arrowleaf clover was sown according to the respective treatments and forage peanut was preserved. Evaluation was carried out using Holstein cows. The experiment was arranged in a completely randomized design, with three treatments (FS, and three repetitions (paddocks with repeated measurements (grazing cycles. Forage mass achieved 3.46, 3.80, and 3.91 t ha-1 for the treatments FS1, FS2 and FS3, respectively. The forage systems intercropped with legumes produced the best results.

  6. Projected Hg dietary exposure of 3 bird species nesting on a contaminated floodplain (South River, Virginia, USA).

    Science.gov (United States)

    Wang, Jincheng; Newman, Michael C

    2013-04-01

    Dietary Hg exposure was modeled for Carolina wren (Thryothorus ludovicianus), Eastern song sparrow (Melospiza melodia), and Eastern screech owl (Otus asio) nesting on the contaminated South River floodplain (Virginia, USA). Parameterization of Monte-Carlo models required formal expert elicitation to define bird body weight and feeding ecology characteristics because specific information was either unavailable in the published literature or too difficult to collect reliably by field survey. Mercury concentrations and weights for candidate food items were obtained directly by field survey. Simulations predicted the probability that an adult bird during breeding season would ingest specific amounts of Hg during daily foraging and the probability that the average Hg ingestion rate for the breeding season of an adult bird would exceed published rates reported to cause harm to other birds (>100 ng total Hg/g body weight per day). Despite the extensive floodplain contamination, the probabilities that these species' average ingestion rates exceeded the threshold value were all <0.01. Sensitivity analysis indicated that overall food ingestion rate was the most important factor determining projected Hg ingestion rates. Expert elicitation was useful in providing sufficiently reliable information for Monte-Carlo simulation. Copyright © 2013 SETAC.

  7. Sympatric cattle grazing and desert bighorn sheep foraging

    Science.gov (United States)

    Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2015-01-01

    Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by

  8. An automated system for monitoring bird collisions with power lines and tower guys

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, R.G. [Electric Power Research Inst., Palo Alto, CA (United States)

    2005-07-01

    An automated system for monitoring collisions between birds and power lines was presented. The bird strike indicator (BSI) was developed to gather bird collision information that is difficult to obtain through direct human observation as well as to aid in the calculation of inherent biases which must be considered when attempting to determine total mortality from data obtained in on-the-ground dead bird searches. The BSI can be placed directly on power lines, static wires, or tower guy cables with a standard hot stick power line clamp. The sensor consists of a state-of-the-art accelerometers, power supplies, signal processors, and data acquisition systems. The BSI also includes a communication system for transmitting data to a ground-based unit in which raw data can be stored. A complete BSI consists of 30 sensors with signal processing and data logging capabilities, and a base station. The sensors integrate several components, including wireless radio, data storage, and a microcontroller with an A/D converter. Full-scale field deployment has shown that the BSI is both robust and sensitive to vibrations in the guy wires, as the system has been tuned to eliminate vibrations induced by wind. 3 figs.

  9. The possible hindrance of a 8 MW wind farm along the Zuidermeerdijk in the Noordoostpolder, Netherlands, for birds

    International Nuclear Information System (INIS)

    Van den Bergh, L.M.J.; Spaans, A.L.

    1993-01-01

    The title farm comprises 16 three-bladed 500 kW wind turbines. Hindrance of wind turbines are collisions with the wind turbines and in the wake behind the blades and loss or disintegration of the natural habitat because of the presence of the wind turbines (aspect of disturbance). The title study is focused on counting the number of collision bird victims per year, and analyzing the disturbance effects on hibernating and foraging birds. It appeared that almost 150 to more than 1500 birds will collide with one of the 16 wind turbines. A few hundred tufted ducks, some tens of pochard and some tens of wild ducks per kilometre of the wind farm will leave their natural habitat. Based on the results it is concluded that the dike area between kilometre marker 32.5 and kilometre marker 35.5 is the most suitable area for a wind turbine array along the Zuidermeerdijk in between Schokkerhaven and Ketelbrug, both Netherlands. 3 figs., 5 tabs., 2 appendices, 33 refs

  10. Multi-scale associations between vegetation cover and woodland bird communities across a large agricultural region.

    Directory of Open Access Journals (Sweden)

    Karen Ikin

    Full Text Available Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1 How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2 Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3 Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha over two time periods across a large (6,800 km(2 agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.

  11. Breeding of marine birds on Farwa Island, western Libya | Etayeb ...

    African Journals Online (AJOL)

    Breeding of marine birds on Farwa Island, western Libya. ... They provide food, shelter and nesting grounds for many avifauna during their migration ... northern part of the island and at Ras-Attalgha, beside the plant cover of the island itself.

  12. Human disturbances and predation on artificial ground nests across an urban gradient

    OpenAIRE

    Bocz, R.; Szép, D.; Witz, D.; Ronczyk, L.; Kurucz, K.; Purger, J. J.

    2017-01-01

    In our study with artificial nests we observed that the absence of ground nesting bird species in the city centre and in residential districts was due to disturbance by humans and domestic animals (dogs and cats) rather than to predation. Furthermore, predation pressure was higher in the outskirts of the city due to the greater number of natural predators. Our results suggest that planning and creating undisturbed areas could increase the chances of ground nesting birds settling and breeding ...

  13. Patterns of distribution, abundance, and change over time in a subarctic marine bird community

    Science.gov (United States)

    Cushing, Daniel A.; Roby, Daniel D.; Irons, David B.

    2018-01-01

    Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989-2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.

  14. The seasonal role of field characteristics on seed-eating bird abundances in agricultural landscapes

    Institute of Scientific and Technical Information of China (English)

    Emmanuel ZUFIAURRE; Mariano CODESIDO; Agustín M.ABBA; David BILENCA

    2017-01-01

    In temperate agroecosystems,avian responses in abundance and distribution to landscape attributes may be exacerbated by the coupling of natural seasons and farming practices.We assessed the seasonal roles of field WPe,field use in the surroundings,and distance from a field to the nearest woodlot on the abundance of seed-eating birds in a 225,000 km2 study area in the Pampas of central Argentina.During spring-summer and autumn of 2011-2013,we randomly selected 392 fields and used transect samples to collect data on abundance and presence of seed-eating bird species.We recorded a total of 11,579 individuals belonging to 15 seed-eating bird species.We used generalized lineal mixed models to relate bird abundance to field type,field use in the surroundings,and distance to the nearest woodlot.In spring-summer (breeding season) most bird responses were associated with their nesting requirements.Species that build their nests in trees,such as eared doves Zenaida auriculata,picazuro pigeons Patagioenas picazuro,and monk parakeets Myiopsitta monachus,were more abundant in fields closer to woodlots,whereas grassland yellow-finches Sicalis luteola,which nest at areas with tall grasses,were more abundant in fields with livestock use patches in the field surroundings.In autumn (non-breeding season),most bird responses were associated with foraging and refuge needs.The high abundance of eared doves in crop stubbles and the association of pigeons at field surroundings dominated by croplands or at crop stubbles surrounded by livestock use fields revealed the intimate association of these species to sites with high availability of food resources.In addition,both picazuro pigeons and spot-winged pigeons Patagioenas maculosa were associated with woodlots,which provide suitable roosting sites.Our results show that in temperate agroecosystems,the relationships between field characteristics and seed-eating bird abundances vary with season.

  15. The seasonal role of field characteristics on seed-eating bird abundances in agricultural landscapes

    Science.gov (United States)

    Codesido, Mariano; Abba, Agustín M.; Bilenca, David

    2017-01-01

    Abstract In temperate agroecosystems, avian responses in abundance and distribution to landscape attributes may be exacerbated by the coupling of natural seasons and farming practices. We assessed the seasonal roles of field type, field use in the surroundings, and distance from a field to the nearest woodlot on the abundance of seed-eating birds in a 225,000 km2 study area in the Pampas of central Argentina. During spring-summer and autumn of 2011–2013, we randomly selected 392 fields and used transect samples to collect data on abundance and presence of seed-eating bird species. We recorded a total of 11,579 individuals belonging to 15 seed-eating bird species. We used generalized lineal mixed models to relate bird abundance to field type, field use in the surroundings, and distance to the nearest woodlot. In spring-summer (breeding season) most bird responses were associated with their nesting requirements. Species that build their nests in trees, such as eared doves Zenaida auriculata, picazuro pigeons Patagioenas picazuro, and monk parakeets Myiopsitta monachus, were more abundant in fields closer to woodlots, whereas grassland yellow-finches Sicalis luteola, which nest at areas with tall grasses, were more abundant in fields with livestock use patches in the field surroundings. In autumn (non-breeding season), most bird responses were associated with foraging and refuge needs. The high abundance of eared doves in crop stubbles and the association of pigeons at field surroundings dominated by croplands or at crop stubbles surrounded by livestock use fields revealed the intimate association of these species to sites with high availability of food resources. In addition, both picazuro pigeons and spot-winged pigeons Patagioenas maculosa were associated with woodlots, which provide suitable roosting sites. Our results show that in temperate agroecosystems, the relationships between field characteristics and seed-eating bird abundances vary with season. PMID

  16. Patterns of distribution, abundance, and change over time in a subarctic marine bird community

    Science.gov (United States)

    Cushing, Daniel; Roby, Daniel D.; Irons, David B.

    2017-01-01

    Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989–2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.

  17. Avian Information Systems: Developing Web-Based Bird Avoidance Models

    Directory of Open Access Journals (Sweden)

    Judy Shamoun-Baranes

    2008-12-01

    Full Text Available Collisions between aircraft and birds, so-called "bird strikes," can result in serious damage to aircraft and even in the loss of lives. Information about the distribution of birds in the air and on the ground can be used to reduce the risk of bird strikes and their impact on operations en route and in and around air fields. Although a wealth of bird distribution and density data is collected by numerous organizations, these data are not readily available nor interpretable by aviation. This paper presents two national efforts, one in the Netherlands and one in the United States, to develop bird avoidance nodels for aviation. These models integrate data and expert knowledge on bird distributions and migratory behavior to provide hazard maps in the form of GIS-enabled Web services. Both models are in operational use for flight planning and flight alteration and for airfield and airfield vicinity management. These models and their presentation on the Internet are examples of the type of service that would be very useful in other fields interested in species distribution and movement information, such as conservation, disease transmission and prevention, or assessment and mitigation of anthropogenic risks to nature. We expect that developments in cyber-technology, a transition toward an open source philosophy, and higher demand for accessible biological data will result in an increase in the number of biological information systems available on the Internet.

  18. Landscape-moderated bird nest predation in hedges and forest edges

    Science.gov (United States)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  19. Temporal-spatial segregation among hummingbirds foraging on honeydew in a temperate forest in Mexico

    Directory of Open Access Journals (Sweden)

    Carlos LARA, Vanessa MARTÍNEZ-GARCÍA, Raúl ORTIZ-PULIDO, Jessica BRAVO-CADENA, Salvador LORANCA, Alex CÓRDOBA-AGUILAR

    2011-02-01

    Full Text Available Spatial and temporal variation in interactions between hummingbirds and plants have often been examined, and hummingbirds and insects are known to indirectly interact in networks of nectar plants. In a highland temperate forest in Hidalgo, Mexico some oak trees were heavily infested by honeydew-producing insects (family Margarodidae, tribe Xylococcini, genus Strigmacoccus and the honeydew was consumed by hummingbirds. Here using survival analysis we investigate how the honeydew produced by dense populations of these margarodids is temporally and spatially partitioned by hummingbirds. We also measured the availability and quality of honeydew exudates, and then we recorded the time until a bird visited and used such resources. Four hummingbird species consumed this resource (Atthis eloisa, Hylocharis leucotis, Colibri thalassinus and Eugenes fulgens. Data from 294 hours of observation on seven focal trees suggested temporal and spatial segregation among visiting birds according to body size and territorial behavior during the most honeydew-limited time. Hummingbird species differed in the daily times they foraged, as well as in the location where honeydew-producing insects were visited on the trees. Temporal and spatial segregation among hummingbird species is interpreted as an adaptation to reduce the risk of aggressive encounters. This may facilitate multispecies coexistence and allow these birds to exploit honeydew more effectively [Current Zoology 57 (1: 56–62, 2011].

  20. Ecological and economic services provided by birds on Jamaican Blue Mountain coffee farms.

    Science.gov (United States)

    Kellermann, Jherime L; Johnson, Matthew D; Stercho, Amy M; Hackett, Steven C

    2008-10-01

    Coffee farms can support significant biodiversity, yet intensification of farming practices is degrading agricultural habitats and compromising ecosystem services such as biological pest control. The coffee berry borer (Hypothenemus hampei) is the world's primary coffee pest. Researchers have demonstrated that birds reduce insect abundance on coffee farms but have not documented avian control of the berry borer or quantified avian benefits to crop yield or farm income. We conducted a bird-exclosure experiment on coffee farms in the Blue Mountains, Jamaica, to measure avian pest control of berry borers, identify potential predator species, associate predator abundance and borer reductions with vegetation complexity, and quantify resulting increases in coffee yield. Coffee plants excluded from foraging birds had significantly higher borer infestation, more borer broods, and greater berry damage than control plants. We identified 17 potential predator species (73% were wintering Neotropical migrants), and 3 primary species composed 67% of migrant detections. Average relative bird abundance and diversity and relative resident predator abundance increased with greater shade-tree cover. Although migrant predators overall did not respond to vegetation complexity variables, the 3 primary species increased with proximity to noncoffee habitat patches. Lower infestation on control plants was correlated with higher total bird abundance, but not with predator abundance or vegetation complexity. Infestation of fruit was 1-14% lower on control plants, resulting in a greater quantity of saleable fruits that had a market value of US$44-$105/ha in 2005/2006. Landscape heterogeneity in this region may allow mobile predators to provide pest control broadly, despite localized farming intensities. These results provide the first evidence that birds control coffee berry borers and thus increase coffee yield and farm income, a potentially important conservation incentive for producers.

  1. A Remote Sensing Based Forage Biomass Yield Inversion Model of Alpine-cold Meadow during Grass-withering Period in Sanjiangyuan Area

    International Nuclear Information System (INIS)

    Song, Weize; Jia, Haifeng; Liang, Shidong; Wang, Zheng; Liu, Shujie; Hao, Lizhuang; Chai, Shatuo

    2014-01-01

    Estimating forage biomass yield remotely from space is still challenging nowadays. Field experiments were conducted and ground measurements correlated to remote sensing data to estimate the forage biomass yield of Alpine-cold meadow grassland during the grass and grass-withering period in Sanjiangyuan area in Yushu county. Both Shapiro-Wilk and Kolmogorov-Smirnov two-tailed tests showed that the field training samples are normally distributed, the Spearman coefficient indicated that the parametric correlation analysis had significant differences. The optimal regression models were developed based on the Landsat Thematic Mapper Normalized Difference Vegetation Index (TM-NDVI) and the forage biomass field data during the grass and the grass-withering periods, respectively. Then an integration model was used to predict forage biomass yield of alpine-cold meadow in the grass-withering period. The model showed good prediction accuracy and reliability. It was found that this approach can not only estimate forage yield in large scale efficiently but also overcome the seasonal limitation of remote sensing inversion. This technique can provides valuable guidance to animal husbandry to resource more efficiently in winter

  2. Utilization of 15N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    International Nuclear Information System (INIS)

    Peschke, H.

    1981-01-01

    After systematic application of 15 N-ammonium nitrate, the change of the dinuclidic composition and 15 N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative 15 N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The 15 N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are 15 N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors. (author)

  3. Response of ground-nesting farmland birds to agricultural intensification across Europe: Landscape and field level management factors

    NARCIS (Netherlands)

    Guerrero, I.; Morales, M.B.; Onate, J.J.; Geiger, F.; Berendse, F.; Snoo, de G.R.

    2012-01-01

    European farmland bird populations have decreased dramatically in recent decades and agricultural intensification has been identified as the main cause contributing to these declines. Identifying which specific intensification pressures are driving those population trends seems vital for bird

  4. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  5. 76 FR 38203 - Proposed Information Collection; North American Woodcock Singing Ground Survey

    Science.gov (United States)

    2011-06-29

    ...] Proposed Information Collection; North American Woodcock Singing Ground Survey AGENCY: Fish and Wildlife... populations. The North American Woodcock Singing Ground Survey is an essential part of the migratory bird.... II. Data OMB Control Number: 1018-0019. Title: North American Woodcock Singing Ground Survey. Service...

  6. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  7. Evidence of trapline foraging in honeybees.

    Science.gov (United States)

    Buatois, Alexis; Lihoreau, Mathieu

    2016-08-15

    Central-place foragers exploiting floral resources often use multi-destination routes (traplines) to maximise their foraging efficiency. Recent studies on bumblebees have showed how solitary foragers can learn traplines, minimising travel costs between multiple replenishing feeding locations. Here we demonstrate a similar routing strategy in the honeybee (Apis mellifera), a major pollinator known to recruit nestmates to discovered food resources. Individual honeybees trained to collect sucrose solution from four artificial flowers arranged within 10 m of the hive location developed repeatable visitation sequences both in the laboratory and in the field. A 10-fold increase of between-flower distances considerably intensified this routing behaviour, with bees establishing more stable and more efficient routes at larger spatial scales. In these advanced social insects, trapline foraging may complement cooperative foraging for exploiting food resources near the hive (where dance recruitment is not used) or when resources are not large enough to sustain multiple foragers at once. © 2016. Published by The Company of Biologists Ltd.

  8. Boa constrictor (Boa constrictor): foraging behavior

    Science.gov (United States)

    Sorrell, G.G.; Boback, M.S.; Reed, R.N.; Green, S.; Montgomery, Chad E.; DeSouza, L.S.; Chiaraviglio, M.

    2011-01-01

    Boa constrictor is often referred to as a sit-and-wait or ambush forager that chooses locations to maximize the likelihood of prey encounters (Greene 1983. In Janzen [ed.], Costa Rica Natural History, pp. 380-382. Univ. Chicago Press, Illinois). However, as more is learned about the natural history of snakes in general, the dichotomy between active versus ambush foraging is becoming blurred. Herein, we describe an instance of diurnal active foraging by a B. constrictor, illustrating that this species exhibits a range of foraging behaviors.

  9. Offshore wind turbines and bird activity at Blyth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    In 1996, a study was implemented to ultimately determine the impact of two 2MW wind turbines situated 900 metres offshore of the north-east of England. The turbines, with a hub height of 66 metres, began operation in December 2000. Earlier, similar studies were carried out on a row of wind turbines mounted on the harbour wall of the nearby town of Blyth. The report gives details of (i) total mortality and mortality due to the turbines; (ii) number of bird strikes; (iii) habitat displacement; (iv) feeding grounds; (v) flight routes and (vi) impact on bird populations of a nearby Site of Special Scientific Interest. The study was conducted by AMEC Wind Limited under contract to the DTI.

  10. Visual Foraging With Fingers and Eye Gaze

    Directory of Open Access Journals (Sweden)

    Ómar I. Jóhannesson

    2016-03-01

    Full Text Available A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a The fact that a sizeable number of observers (in particular during gaze foraging had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints.

  11. Habitat-specific foraging strategies in Australasian gannets

    Directory of Open Access Journals (Sweden)

    Melanie R. Wells

    2016-07-01

    Full Text Available Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26, in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change.

  12. The Bird.

    Science.gov (United States)

    Hannon, Jean

    2001-01-01

    Students use a dead bird to learn about bird life, anatomy, and death. Students examine a bird body and discuss what happened to the bird. Uses outdoor education as a resource for learning about animals. (SAH)

  13. Human disturbances and predation on artificial ground nests across an urban gradient

    Directory of Open Access Journals (Sweden)

    Bocz, R.

    2017-03-01

    Full Text Available In our study with artificial nests we observed that the absence of ground nesting bird species in the city centre and in residential districts was due to disturbance by humans and domestic animals (dogs and cats rather than to predation. Furthermore, predation pressure was higher in the outskirts of the city due to the greater number of natural predators. Our results suggest that planning and creating undisturbed areas could increase the chances of ground nesting birds settling and breeding in human–dominated landscapes.

  14. Five years of monitoring bird strike potential at a mountain-top wind turbine, Yukon Territory

    Energy Technology Data Exchange (ETDEWEB)

    Mossop, D.H. [Yukon College, Whitehorse, YT (Canada)

    1997-12-31

    A five-year study was conducted to determine if birds were at risk of collision with an experimental wind turbine on a 1,500 metre mountain near the major Shakwak migration corridor used by many thousands of birds. More than 100 ground searches at the turbine site and about 80 hours of migration watch were conducted. In five years, six birds hit the control tower, none hit the turbine tower. All strikes were in winter and none of the birds killed were in migration. Waterfowl were found to navigate in the valley centre about 1,000 feet below the turbine. Small birds were rarely found at the altitude where the turbine was located. Raptors were the most common birds found near the site, but they were able to avoid the tower. It was concluded that birds using the migration corridor near Whitehorse were not at great risk of collision with towers above 1,200 metre altitude. 7 refs., 3 tabs., 6 figs.

  15. Interactions Increase Forager Availability and Activity in Harvester Ants.

    Directory of Open Access Journals (Sweden)

    Evlyn Pless

    Full Text Available Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  16. Bird migration patterns in the arid southwest-Final report

    Science.gov (United States)

    Ruth, Janet M.; Felix, Rodney K.; Dieh, Robert H.

    2010-01-01

    To ensure full life-cycle conservation, we need to understand migrant behavior en route and how migrating species use stopover and migration aerohabitats. In the Southwest, birds traverse arid and mountainous landscapes in migration. Migrants are known to use riparian stopover habitats; we know less about how migrant density varies across the Southwest seasonally and annually, and how migrants use other habitat types during migratory stopover. Furthermore, we lack information about migrant flight altitudes, speeds, and directions of travel, and how these patterns vary seasonally and annually across the Southwest. Using weather surveillance radar data, we identified targets likely dominated by nocturnally migrating birds and determined their flight altitudes, speeds, directions over ground, and variations in abundance. Migrating or foraging bats likely are present across the region in some of these data, particularly in central Texas. We found that migrants flew at significantly lower altitudes and significantly higher speeds in spring than in fall. In all seasons migrants maintained seasonally appropriate directions of movement. We detected significant differences in vertical structure of migrant densities that varied both geographically within seasons and seasonally within sites. We also found that in fall there was a greater and more variable passage of migrants through the central part of the borderlands (New Mexico and west Texas); in spring there was some suggestion of greater and more variable passage of migrants in the eastern borderlands (central and south Texas). Such patterns are consistent with the existence of at least two migration systems through western North America and the use of different migration routes in spring and fall for at least some species. Using radar data and satellite land cover data, we determined the habitats with which migrants are associated during migration stopover. There were significant differences in bird densities among

  17. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    Science.gov (United States)

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  18. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    Directory of Open Access Journals (Sweden)

    Sarah Papiorek

    Full Text Available Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of

  19. Status of wetland birds of Chhilchhila Wildlife Sanctuary, Haryana, India

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2013-03-01

    Full Text Available The Chhilchhila Wildlife Sanctuary (76036-76046 E and 29052-30000 N, situated in Kurukshetra District of Haryana provides an important wintering ground for a diverse range of wetland birds. This study was carried out from April 2009 to March 2012 to document the diversity of wetland birds. Altogether 57 species of wetland birds belonging to 37 genera and 16 families were recorded from the study area. Family Anatidae dominated the wetland bird community with 13 species. Among recorded species, 33 were winter migrants, two summer migrants and 22 were resident species. The winter migratory birds did not arrive at this wetland in one lot and at one time. Instead, they displayed a definite pattern specific to species for arrival and departure. They appeared at the wetland during mid-October and stayed up to early April. The composition of birds in major feeding guilds in the study area showed that the insectivore guild was the most common with 35.09% species, followed by carnivore (29.82%, omnivore (19.30%, herbivore (10.53% and piscivore (5.26%. Among the birds recorded in this study area, Darter (Anhinga melanogaster and Painted Stork (Mycterialeucocephala were Near Threatened species. Comb Duck (Sarkidiornismelanotos, listed in Appendix II of CITES, was also spotted in the sanctuary. The spotting of these threatened bird species highlights the importance of Chhilchhila Wildlife Sanctuary as a significant wetland bird habitat in Haryana. However, anthropogenic activities like fire wood collection, livestock grazing, cutting of emergent and fringe vegetation and improper management of the wetland are major threats to the ecology of this landscape.

  20. Agonistic asymmetries and the foraging ecology of Bald Eagles

    Science.gov (United States)

    Knight, Richard L.; Skagen, Susan Knight

    1988-01-01

    We investigated the effects of both asymmetries and differing food levels on contest outcomes of wintering Bald Eagles (Haliaeetus leucocephalus) feeding on chum salmon (Oncorhynchus keta) carcasses. Large eagles, regardless of age, were more successful in pirating than smaller eagles. Small pirating eagles were usually unsuccessful unless they were adults attempting to supplant other small eagles. Feeding eagles were more successful in defeating pirating eagles according to (1) whether their heads were up to prior to a pirating attempt, (2) how long their heads had been up, and (3) whether they displayed. During periods of food scarcity pirating eagles were less successful, a fact attributed in a proximate sense to the increase incidence of retaliation by feeding birds. When food was scarce and eagles had a choice between scavenging the pirating, they chose to scavenge more often. Body size appears to be an important factor in determining social dominance and influencing differences in foraging modes of wintering Bald Eagles.

  1. Utilization of /sup 15/N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, H [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Pflanzenproduktion

    1981-12-01

    After systematic application of /sup 15/N-ammonium nitrate, the change of the dinuclidic composition and /sup 15/N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative /sup 15/N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The /sup 15/N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are /sup 15/N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors.

  2. Coastal Resources Atlas: Long Island: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, seabirds, passerine birds, and gulls and...

  3. Recreation-induced changes in boreal bird communities in protected areas.

    Science.gov (United States)

    Kangas, K; Luoto, M; Ihantola, A; Tomppo, E; Siikamäki, P

    2010-09-01

    The impacts of human-induced disturbance on birds have been studied in growing extent, but there are relatively few studies about the effects of recreation on forest bird communities in protected areas. In this paper, the relative importance of recreation as well as environmental variables on bird communities in Oulanka National Park, in northeastern Finland, was investigated using general additive models (GAM). Bird data collected using the line transect method along hiking trails and in undisturbed control areas were related to number of visits, area of tourism infrastructure, and habitat variables. We further examined the impact of spatial autocorrelation by calculating an autocovariate term for GAMs. Our results indicate that number of visits affects the occurrence and composition of bird communities, but it had no impact on total species richness. Open-cup nesters breeding on the ground showed strongest negative response to visitor pressure, whereas the open-cup nesters nesting in trees and shrubs were more tolerant. For cavity-nesting species, recreation had no significant impact. The contribution of the number of visits was generally low also in models in which it was selected, and the occurrence of birds was mainly determined by habitat characteristics of the area. However, our results show that the recreation-induced disturbance with relatively low visitor pressure can have negative impacts on some bird species and groups of species and should be considered in management of protected areas with recreational activities.

  4. Transport of Ixodid ticks and tick-borne pathogens by migratory birds.

    Directory of Open Access Journals (Sweden)

    Gunnar eHasle

    2013-09-01

    Full Text Available Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur.

  5. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    Science.gov (United States)

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-02

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.

  6. Common Starlings (Sturnus vulgaris) increasingly select for grazed areas with increasing distance-to-nest.

    Science.gov (United States)

    Heldbjerg, Henning; Fox, Anthony D; Thellesen, Peder V; Dalby, Lars; Sunde, Peter

    2017-01-01

    The abundant and widespread Common Starling (Sturnus vulgaris) is currently declining across much of Europe due to landscape changes caused by agricultural intensification. The proximate mechanisms causing adverse effects to breeding Starlings are unclear, hampering our ability to implement cost-efficient agri-environmental schemes to restore populations to former levels. This study aimed to show how this central foraging farmland bird uses and selects land cover types in general and how use of foraging habitat changes in relation to distance from the nest. We attached GPS-loggers to 17 breeding Starlings at a Danish dairy cattle farm in 2015 and 2016 and analysed their use of different land cover types as a function of distance intervals from the nest and their relative availability. As expected for a central place forager, Starlings increasingly avoided potential foraging areas with greater distance-to-nest: areas ≥ 500 m were selected > 100 times less frequently than areas within 100 m. On average, Starlings selected the land cover category Grazed most frequently, followed by Short Grass, Bare Ground, Meadow and Winter Crops. Starlings compensated for elevated travel costs by showing increasing habitat selection the further they foraged from the nest. Our results highlight the importance of Grazed foraging habitats close to the nest site of breeding Starlings. The ecological capacity of intensively managed farmlands for insectivorous birds like the Starling is decreasing through conversion of the most strongly selected land cover type (Grazed) to the least selected (Winter Crops) which may be further exacerbated through spatial segregation of foraging and breeding habitats.

  7. Common Starlings (Sturnus vulgaris increasingly select for grazed areas with increasing distance-to-nest.

    Directory of Open Access Journals (Sweden)

    Henning Heldbjerg

    Full Text Available The abundant and widespread Common Starling (Sturnus vulgaris is currently declining across much of Europe due to landscape changes caused by agricultural intensification. The proximate mechanisms causing adverse effects to breeding Starlings are unclear, hampering our ability to implement cost-efficient agri-environmental schemes to restore populations to former levels. This study aimed to show how this central foraging farmland bird uses and selects land cover types in general and how use of foraging habitat changes in relation to distance from the nest. We attached GPS-loggers to 17 breeding Starlings at a Danish dairy cattle farm in 2015 and 2016 and analysed their use of different land cover types as a function of distance intervals from the nest and their relative availability. As expected for a central place forager, Starlings increasingly avoided potential foraging areas with greater distance-to-nest: areas ≥ 500 m were selected > 100 times less frequently than areas within 100 m. On average, Starlings selected the land cover category Grazed most frequently, followed by Short Grass, Bare Ground, Meadow and Winter Crops. Starlings compensated for elevated travel costs by showing increasing habitat selection the further they foraged from the nest. Our results highlight the importance of Grazed foraging habitats close to the nest site of breeding Starlings. The ecological capacity of intensively managed farmlands for insectivorous birds like the Starling is decreasing through conversion of the most strongly selected land cover type (Grazed to the least selected (Winter Crops which may be further exacerbated through spatial segregation of foraging and breeding habitats.

  8. Forage Production Technology Transfer in Kwale and Kilifi Districts of Coast Province

    International Nuclear Information System (INIS)

    Mwatate, C.D; Ramadhan, C.D.A; Njunie, M.N

    1999-01-01

    A forage production and utilisation programme was introduced in Kwale (AEZ CL2/CL3) and Kilifi (AEZ CL3/CL4) districts to combat major constraint in low quality and quantity feed at the coast. Dairy production had a great market potential stimulated by the high urban and rural population. Willing farmers were invited to PRC-Mtwapa to see how grasses, legumes and multipurpose trees would fit in their mixed maize cassava farming system. After explaining the forage characteristics to the farmers, they were allowed to select a maximum of three out of eight legumes (Vigna Unguiculata; Dolichos lablab; Clitoria tanatea; Stylosanthes guianennsis; Mucuna pruriens; Pueraria phaseloids; Macroptlium atropurpureum and Centrosema pubescens), tree out of five Napier grasses (Cultivar Mott, Clone 13, French Cameroon, Gold Coast and Bana). Giant panicum and and one of the two multipurpose trees (Gliricidia sepium and Leucaena leucocephala) to test in their farms. After planting in mid 1996 on-farm the research-extension team monitored ground cover and labor aplied monthly by gender, green leaf production, and survival over the drought in 1997. Along-side the planted forages, actual forage fed by dairy farmers was sampled, analysed for chemical composition and degradability to advise farmers on ration formulation. Ranking by farmers showed a preference for clitiria, Macuna and Dolichos in Kwale as the three best legumes. More than 70% of Napier grass variety had established while establishment rate of gliricidia was 33%. An extension leaflet developed during the study will be used to disseminate the information in the region

  9. Evolution of embryonic developmental period in the marine bird families Alcidae and Spheniscidae: roles for nutrition and predation?

    Science.gov (United States)

    Hipfner, J Mark; Gorman, Kristen B; Vos, Rutger A; Joy, Jeffrey B

    2010-06-14

    Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP. Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits) were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so. Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the debate on evolutionary determinants of avian EDP, as

  10. Temporal effects of hunting on foraging behavior of an apex predator: Do bears forego foraging when risk is high?

    Science.gov (United States)

    Hertel, Anne G; Zedrosser, Andreas; Mysterud, Atle; Støen, Ole-Gunnar; Steyaert, Sam M J G; Swenson, Jon E

    2016-12-01

    Avoiding predators most often entails a food cost. For the Scandinavian brown bear (Ursus arctos), the hunting season coincides with the period of hyperphagia. Hunting mortality risk is not uniformly distributed throughout the day, but peaks in the early morning hours. As bears must increase mass for winter survival, they should be sensitive to temporal allocation of antipredator responses to periods of highest risk. We expected bears to reduce foraging activity at the expense of food intake in the morning hours when risk was high, but not in the afternoon, when risk was low. We used fine-scale GPS-derived activity patterns during the 2 weeks before and after the onset of the annual bear hunting season. At locations of probable foraging, we assessed abundance and sugar content, of bilberry (Vaccinium myrtillus), the most important autumn food resource for bears in this area. Bears decreased their foraging activity in the morning hours of the hunting season. Likewise, they foraged less efficiently and on poorer quality berries in the morning. Neither of our foraging measures were affected by hunting in the afternoon foraging bout, indicating that bears did not allocate antipredator behavior to times of comparably lower risk. Bears effectively responded to variation in risk on the scale of hours. This entailed a measurable foraging cost. The additive effect of reduced foraging activity, reduced forage intake, and lower quality food may result in poorer body condition upon den entry and may ultimately reduce reproductive success.

  11. Individual lifetime pollen and nectar foraging preferences in bumble bees

    Science.gov (United States)

    Hagbery, Jessica; Nieh, James C.

    2012-10-01

    Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16-36 % of individuals specialized (≥90 % of visits) on nectar or pollen only. On its first day of foraging, an individual's foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.

  12. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the 'reptile'-bird transition.

    Science.gov (United States)

    Benson, Roger B J; Butler, Richard J; Carrano, Matthew T; O'Connor, Patrick M

    2012-02-01

    Pneumatic (air-filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird-line archosaurs (ornithodirans). These include the theropod dinosaurs (of which birds are extant representatives), the pterosaurs, and sauropodomorph dinosaurs. Postulated functions of skeletal pneumatisation include weight reduction in large-bodied or flying taxa, and density reduction resulting in energetic savings during foraging and locomotion. However, the influence of these hypotheses on the early evolution of pneumaticity has not been studied in detail previously. We review recent work on the significance of pneumaticity for understanding the biology of extinct ornithodirans, and present detailed new data on the proportion of the skeleton that was pneumatised in 131 non-avian theropods and Archaeopteryx. This includes all taxa known from significant postcranial remains. Pneumaticity of the cervical and anterior dorsal vertebrae occurred early in theropod evolution. This 'common pattern' was conserved on the line leading to birds, and is likely present in Archaeopteryx. Increases in skeletal pneumaticity occurred independently in as many as 12 lineages, highlighting a remarkably high number of parallel acquisitions of a bird-like feature among non-avian theropods. Using a quantitative comparative framework, we show that evolutionary increases in skeletal pneumaticity are significantly concentrated in lineages with large body size, suggesting that mass reduction in response to gravitational constraints at large body sizes influenced the early evolution of pneumaticity. However, the body size threshold for extensive pneumatisation is lower in theropod lineages more closely related to birds (maniraptorans). Thus, relaxation of the relationship between body size and pneumatisation preceded

  13. Feeding associations between capybaras Hydrochoerus hydrochaeris (Linnaeus (Mammalia, Hydrochaeridae and birds in the Lami Biological Reserve, Porto Alegre, Rio Grande do Sul, Brazil Associações alimentares entre capivaras (Hydrochoerus hydrochaeris (Linnaeus (Mammalia, Hydrochaeridae e aves na Reserva Biológica do Lami, Porto Alegre, Rio Grande do Sul, Brasil

    Directory of Open Access Journals (Sweden)

    Ana C. Tomazzoni

    2005-09-01

    Full Text Available Feeding associations between capybaras Hydrochoerus hydrochaeris (Linnaeus, 1766 and some bird species were registered in the Lami Biological Reserve, southern Brazil, through observations in a set of transects established in the five major vegetation types of the study area: shrubby and herbaceous swamps, wet grasslands, sandy grasslands and forests. Data included: date and time, vegetation type, bird species, number of individuals (birds and capybaras, type of prey consumed, foraging strategy of the birds and the behavior of the capybaras in relation to the presence of birds. Five species of birds were registered: Caracara plancus (Miller, 1777, Furnarius rufus (Gmelin, 1788, Machetornis rixosus (Vieillot, 1819, Milvago chimachima (Vieillot, 1816 and Molothrus bonariensis (Gmelin, 1789. The interactions were observed in the shrubby swamp (M. bonariensis, forest (C. plancus and wet grassland (F. rufus, M. rixosus, M. chimachima. The foraging strategies were: (1 use of the capybara as a perch, hunting from its back (M. rixosus, M. bonariensis; (2 use of the capybara as a beater, hunting in the ground (F. rufus, M. rixosus, M. bonariensis; (3 foraging in the skin of the capybara, by picking the ectoparasites (C. plancus, F. rufus, M. chimachima. Strategies (1 and (2 were employed to catch arthropods flushed from the vegetation. Sometimes, capybaras lay down and exposed the abdomen and lateral areas of their bodies to facilitate cleaning by M. chimachima, but the presence of other bird species seemed to be neutral to capybaras.Foram registradas associações alimentares entre capivaras Hydrochoerus hydrochaeris (Linnaeus, 1766 e aves na Reserva Biológica do Lami, sul do Brasil, por meio de observações em um conjunto de transecções estabelecidas nos cinco principais tipos de vegetação existentes na área: banhado arbustivo, banhado herbáceo, campo úmido, campo arenoso e mata. As informações coletadas foram: data, horário, tipo de vegeta

  14. A GIS-based model of Serengeti grassland bird species | Gottschalk ...

    African Journals Online (AJOL)

    The study was conducted on the Serengeti Plains, Tanzania, combining (1) records from a bird survey, (2) local measurements of vegetation structure and precipitation, and (3) a habitat map derived from a Landsat satellite image classification. The question of whether ground-based or satellite data explained more of the ...

  15. Spatio-temporal variability of ichthyophagous bird assemblage around western Mediterranean open-sea cage fish farms.

    Science.gov (United States)

    Aguado-Giménez, Felipe; Eguía-Martínez, Sergio; Cerezo-Valverde, Jesús; García-García, Benjamín

    2018-06-14

    Ichthyophagous birds aggregate at cage fish farms attracted by caged and associated wild fish. Spatio-temporal variability of such birds was studied for a year through seasonal visual counts at eight farms in the western Mediterranean. Correlation with farm and location descriptors was assessed. Considerable spatio-temporal variability in fish-eating bird density and assemblage structure was observed among farms and seasons. Bird density increased from autumn to winter, with the great cormorant being the most abundant species, also accounting largely for differences among farms. Grey heron and little egret were also numerous at certain farms during the coldest seasons. Cattle egret was only observed at one farm. No shags were observed during winter. During spring and summer, bird density decreased markedly and only shags and little egrets were observed at only a few farms. Season and distance from farms to bird breeding/wintering grounds helped to explain some of the spatio-temporal variability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Agronomic and forage characteristics of Guazuma ulmifolia Lam.

    OpenAIRE

    Manríquez-Mendoza, Leonor Yalid; López-Ortíz, Silvia; Pérez-Hernández, Ponciano; Ortega- Jiménez, Eusebio; López-Tecpoyotl, Zenón Gerardo; Villarruel-Fuentes, Manuel

    2011-01-01

    Native trees are an important source of forage for livestock, particularly in regions having prolonged dry periods. Some tree species have fast growth rates, good nutritional quality, and the ability to produce forage during dry periods when the need for forage is greater. Guazuma ulmifolia Lam. is a tree native to tropical America that has a high forage potential. This species is mentioned in a number of studies assessing the forage potential of trees in a diverse array of environments and v...

  17. Comparison of the forage and grain composition from insect-protected and glyphosate-tolerant MON 88017 corn to conventional corn (Zea mays L.).

    Science.gov (United States)

    McCann, Melinda C; Trujillo, William A; Riordan, Susan G; Sorbet, Roy; Bogdanova, Natalia N; Sidhu, Ravinder S

    2007-05-16

    The next generation of biotechnology-derived products with the combined benefit of herbicide tolerance and insect protection (MON 88017) was developed to withstand feeding damage caused by the coleopteran pest corn rootworm and over-the-top applications of glyphosate, the active ingredient in Roundup herbicides. As a part of a larger safety and characterization assessment, MON 88017 was grown under field conditions at geographically diverse locations within the United States and Argentina during the 2002 and 2003-2004 field seasons, respectively, along with a near-isogenic control and other conventional corn hybrids for compositional assessment. Field trials were conducted using a randomized complete block design with three replication blocks at each site. Corn forage samples were harvested at the late dough/early dent stage, ground, and analyzed for the concentration of proximate constituents, fibers, and minerals. Samples of mature grain were harvested, ground, and analyzed for the concentration of proximate constituents, fiber, minerals, amino acids, fatty acids, vitamins, antinutrients, and secondary metabolites. The results showed that the forage and grain from MON 88017 are compositionally equivalent to forage and grain from control and conventional corn hybrids.

  18. Understanding interaction effects of climate change and fire management on bird distributions through combined process and habitat models

    Science.gov (United States)

    White, Joseph D.; Gutzwiller, Kevin J.; Barrow, Wylie C.; Johnson-Randall, Lori; Zygo, Lisa; Swint, Pamela

    2011-01-01

    Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process-based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf-area index values were lower in shrubland. This high probability of occurrence likely is related to the species' use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.

  19. Daily torpor and hibernation in birds and mammals

    Science.gov (United States)

    RUF, THOMAS; GEISER, FRITZ

    2014-01-01

    Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e., the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e., hypometabolic states associated with low body temperatures (torpor), have been distinguished: Daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged however, suggesting that these phenotypes may merely represent the extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species, 43 birds and 171 mammals form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms are small on average, but hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30-g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the BMR in daily heterotherms but only 6% of basal metabolic rate in hibernators. Consequently, our analysis strongly supports the view that

  20. Growth performance, feeding behavior, and selected blood metabolites of Holstein dairy calves fed restricted amounts of milk: No interactions between sources of finely ground grain and forage provision.

    Science.gov (United States)

    Mirzaei, M; Khorvash, M; Ghorbani, G R; Kazemi-Bonchenari, M; Ghaffari, M H

    2017-02-01

    The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage

  1. BEE FORAGE MAPPING BASED ON MULTISPECTRAL IMAGES LANDSAT

    Directory of Open Access Journals (Sweden)

    A. Moskalenko

    2016-10-01

    Full Text Available Possibilities of bee forage identification and mapping based on multispectral images have been shown in the research. Spectral brightness of bee forage has been determined with the use of satellite images. The effectiveness of some methods of image classification for mapping of bee forage is shown. Keywords: bee forage, mapping, multispectral images, image classification.

  2. Anthropogenically-Mediated Density Dependence in a Declining Farmland Bird.

    Directory of Open Access Journals (Sweden)

    Jenny C Dunn

    Full Text Available Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats, high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity, nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.

  3. Direct fitness benefits and kinship of social foraging groups in an Old World tropical babbler

    Science.gov (United States)

    Kaiser, Sara A.; Martin, Thomas E.; Oteyza, Juan C.; Armstad, Connor E.; Fleischer, Robert C.

    2018-01-01

    Molecular studies have revealed that social groups composed mainly of nonrelatives may be widespread in group-living vertebrates, but the benefits favoring such sociality are not well understood. In the Old World, birds often form conspecific foraging groups that are maintained year-round and offspring usually disperse to other social groups. We tested the hypothesis that nonbreeding group members are largely unrelated and gain direct fitness benefits through breeding opportunities (males) and brood parasitism (females) in the tropical gray-throated babbler, Stachyris nigriceps, in Malaysian Borneo. Babblers foraged in social groups containing one or more breeding pairs (median = 8 group members of equal sex ratio), but group members rarely assisted with breeding (9% of 67 breeding pairs had a third helper; exhibiting facultative cooperative breeding). Although 20% of 266 group member dyads were first-order relatives of one or both members of the breeding pairs, 80% were unrelated. Male group members gained direct fitness benefits through extrapair and extra-group paternity (25% of 73 offspring), which was independent of their relatedness to the breeding pair and increased with decreasing group size. In contrast, females did not gain direct fitness benefits through brood parasitism. The low levels of relatedness and helping in social groups suggest that most group members do not gain indirect fitness benefits by helping to raise unrelated offspring. These findings highlight the importance of examining benefits of sociality for unrelated individuals that largely do not help and broaden the direct fitness benefits of group foraging beyond assumed survival benefits.

  4. Local equilibrium in bird flocks

    Science.gov (United States)

    Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene

    2016-12-01

    The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

  5. Influence of olfactory and visual cover on nest site selection and nest success for grassland-nesting birds.

    Science.gov (United States)

    Fogarty, Dillon T; Elmore, R Dwayne; Fuhlendorf, Samuel D; Loss, Scott R

    2017-08-01

    Habitat selection by animals is influenced by and mitigates the effects of predation and environmental extremes. For birds, nest site selection is crucial to offspring production because nests are exposed to extreme weather and predation pressure. Predators that forage using olfaction often dominate nest predator communities; therefore, factors that influence olfactory detection (e.g., airflow and weather variables, including turbulence and moisture) should influence nest site selection and survival. However, few studies have assessed the importance of olfactory cover for habitat selection and survival. We assessed whether ground-nesting birds select nest sites based on visual and/or olfactory cover. Additionally, we assessed the importance of visual cover and airflow and weather variables associated with olfactory cover in influencing nest survival. In managed grasslands in Oklahoma, USA, we monitored nests of Northern Bobwhite ( Colinus virginianus ), Eastern Meadowlark ( Sturnella magna ), and Grasshopper Sparrow ( Ammodramus savannarum ) during 2015 and 2016. To assess nest site selection, we compared cover variables between nests and random points. To assess factors influencing nest survival, we used visual cover and olfactory-related measurements (i.e., airflow and weather variables) to model daily nest survival. For nest site selection, nest sites had greater overhead visual cover than random points, but no other significant differences were found. Weather variables hypothesized to influence olfactory detection, specifically precipitation and relative humidity, were the best predictors of and were positively related to daily nest survival. Selection for overhead cover likely contributed to mitigation of thermal extremes and possibly reduced detectability of nests. For daily nest survival, we hypothesize that major nest predators focused on prey other than the monitored species' nests during high moisture conditions, thus increasing nest survival on these

  6. Modelling foraging movements of diving predators: a theoretical study exploring the effect of heterogeneous landscapes on foraging efficiency

    Directory of Open Access Journals (Sweden)

    Marianna Chimienti

    2014-09-01

    Full Text Available Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the development of renewable sources it is unknown how the foraging activity of diving predators such as seabirds will respond to both the presence of underwater structures and the potential corresponding changes in prey distributions. Motivated by this issue we developed a theoretical model to gain general understanding of how the foraging efficiency of diving predators may vary according to landscape structure and foraging strategy. Our theoretical model highlights that animal movements, intervals between prey capture and foraging efficiency are likely to critically depend on the distribution of the prey resource and the size and distribution of introduced underwater structures. For multiple prey loaders, changes in prey distribution affected the searching time necessary to catch a set amount of prey which in turn affected the foraging efficiency. The spatial aggregation of prey around small devices (∼ 9 × 9 m created a valuable habitat for a successful foraging activity resulting in shorter intervals between prey captures and higher foraging efficiency. The presence of large devices (∼ 24 × 24 m however represented an obstacle for predator movement, thus increasing the intervals between prey captures. In contrast, for single prey loaders the introduction of spatial aggregation of the resources did not represent an advantage suggesting that their foraging efficiency is more strongly affected by other factors such as the timing to find the first prey item which was found to occur faster in the presence of large devices. The development of this theoretical model

  7. Workshop: Western hemisphere network of bird banding programs

    Science.gov (United States)

    Celis-Murillo, A.

    2007-01-01

    Purpose: To promote collaboration among banding programs in the Americas. Introduction: Bird banding and marking provide indispensable tools for ornithological research, management, and conservation of migratory birds on migratory routes, breeding and non-breeding grounds. Many countries and organizations in Latin America and the Caribbean are in the process of developing or have expressed interest in developing national banding schemes and databases to support their research and management programs. Coordination of developing and existing banding programs is essential for effective data management, reporting, archiving and security, and most importantly, for gaining a fuller understanding of migratory bird conservation issues and how the banding data can help. Currently, there is a well established bird-banding program in the U.S.A. and Canada, and programs in other countries are being developed as well. Ornithologists in many Latin American countries and the Caribbean are interested in using banding and marking in their research programs. Many in the ornithological community are interested in establishing banding schemes and some countries have recently initiated independent banding programs. With the number of long term collaborative and international initiatives increasing, the time is ripe to discuss and explore opportunities for international collaboration, coordination, and administration of bird banding programs in the Western Hemisphere. We propose the second ?Western Hemisphere Network of Bird Banding Programs? workshop, in association with the SCSCB, to be an essential step in the progress to strengthen international partnerships and support migratory bird conservation in the Americas and beyond. This will be the second multi-national meeting to promote collaboration among banding programs in the Americas (the first meeting was held in October 8-9, 2006 in La Mancha, Veracruz, Mexico). The Second ?Western Hemisphere Network of Bird Banding Programs

  8. Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Luan D. Lima

    2013-12-01

    Full Text Available Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae. Foraging activity may be limited by temperature, humidity, radiation, wind, and other abiotic factors, all of which can affect energy costs during foraging. Ectatomma vizottoi's biology has only recently been studied, and no detailed information is available on its foraging patterns or diet in the field. For this reason, and because foraging activity is an important part of the ecological success of social insects, the present study aimed to investigate E. vizottoi's foraging strategies and dietary habits. First, we determined how abiotic factors constrained E. vizottoi's foraging patterns in the field by monitoring the foraging activity of 16 colonies on eight different days across two seasons. Second, we characterized E. vizottoi's diet by monitoring another set of 26 colonies during peak foraging activity. Our results show that E. vizottoi has foraging strategies that are similar to those of congeneric species. In spite of having a low efficiency index, colonies adopted strategies that allowed them to successfully obtain food resources while avoiding adverse conditions. These strategies included preying on other ant species, a foraging tactic that could arise if a wide variety of food items are not available in the environment or if E. vizottoi simply prefers, regardless of resource availability, to prey on other invertebrates and especially on other ant species.

  9. Trapline foraging by bumble bees: VII. Adjustments for foraging success following competitor removal

    OpenAIRE

    Kazuharu Ohashi; Alison Leslie; James D. Thomson

    2013-01-01

    Animals collecting food from renewable resource patches scattered in space often establish small foraging areas to which they return faithfully. Such area fidelity offers foraging advantages through selection of profitable patches, route minimization, and regular circuit visits to these patches (“trapline foraging”). Resource distribution under field conditions may often vary in time, however, especially when competitors suddenly vanish and a number of patches become available for their neigh...

  10. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  11. Scavengers on the move: behavioural changes in foraging search patterns during the annual cycle.

    Directory of Open Access Journals (Sweden)

    Pascual López-López

    Full Text Available BACKGROUND: Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. METHODOLOGY/PRINCIPAL FINDINGS: We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding. Our results show that vultures followed a brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. CONCLUSIONS/SIGNIFICANCE: Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects could play an important role. Our results support the growing

  12. Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area

    Science.gov (United States)

    2014-01-01

    Background A few billion birds migrate annually between their breeding grounds in Europe and their wintering grounds in Africa. Many bird species are tick-infested, and as a result of their innate migratory behavior, they contribute significantly to the geographic distribution of pathogens, including spotted fever rickettsiae. The aim of the present study was to characterize, in samples from two consecutive years, the potential role of migrant birds captured in Europe as disseminators of Rickettsia-infected ticks. Methods Ticks were collected from a total of 14,789 birds during their seasonal migration northwards in spring 2009 and 2010 at bird observatories on two Mediterranean islands: Capri and Antikythira. All ticks were subjected to RNA extraction followed by cDNA synthesis and individually assayed with a real-time PCR targeting the citrate synthase (gltA) gene. For species identification of Rickettsia, multiple genes were sequenced. Results Three hundred and ninety-eight (2.7%) of all captured birds were tick-infested; some birds carried more than one tick. A total number of 734 ticks were analysed of which 353 ± 1 (48%) were Rickettsia-positive; 96% were infected with Rickettsia aeschlimannii and 4% with Rickettsia africae or unidentified Rickettsia species. The predominant tick taxon, Hyalomma marginatum sensu lato constituted 90% (n = 658) of the ticks collected. The remaining ticks were Ixodes frontalis, Amblyomma sp., Haemaphysalis sp., Rhipicephalus sp. and unidentified ixodids. Most ticks were nymphs (66%) followed by larvae (27%) and adult female ticks (0.5%). The majority (65%) of ticks was engorged and nearly all ticks contained visible blood. Conclusions Migratory birds appear to have a great impact on the dissemination of Rickettsia-infected ticks, some of which may originate from distant locations. The potential ecological, medical and veterinary implications of such Rickettsia infections need further examination. PMID:25011617

  13. The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging.

    Science.gov (United States)

    Killen, Shaun S; Brown, Joseph A; Gamperl, A Kurt

    2007-07-01

    1. In many species, individuals will alter their foraging strategy in response to changes in prey density. However, previous work has shown that prey density has differing effects on the foraging mode decisions of ectotherms as compared with endotherms. This is likely due to differences in metabolic demand; however, the relationship between metabolism and foraging mode choice in ectotherms has not been thoroughly studied. 2. Juvenile lumpfish Cyclopterus lumpus forage using one of two modes: they can actively search for prey while swimming, or they can 'sit-and-wait' for prey while clinging to the substrate using a ventral adhesive disk. The presence of these easily distinguishable foraging modes makes juvenile lumpfish ideal for the study of foraging mode choice in ectotherms. 3. Behavioural observations conducted during laboratory experiments showed that juvenile lumpfish predominantly use the 'cling' foraging mode when prey is abundant, but resort to the more costly 'swim' mode to seek out food when prey is scarce. The metabolic cost of active foraging was also quantified for juvenile lumpfish using swim-tunnel respirometry, and a model was devised to predict the prey density at which lumpfish should switch between the swim and cling foraging modes to maximize energy intake. 4. The results of this model do not agree with previous observations of lumpfish behaviour, and thus it appears that juvenile lumpfish do not try to maximize their net energetic gain. Instead, our data suggest that juvenile lumpfish forage in a manner that reduces activity and conserves space in their limited aerobic scope. This behavioural flexibility is of great benefit to this species, as it allows young individuals to divert energy towards growth as opposed to activity. In a broader context, our results support previous speculation that ectotherms often forage in a manner that maintains a minimum prey encounter rate, but does not necessarily maximize net energy gain.

  14. Neural Mechanisms of Foraging

    OpenAIRE

    Kolling, Nils; Behrens, Timothy EJ; Mars, Rogier B; Rushworth, Matthew FS

    2012-01-01

    Behavioural economic studies, involving limited numbers of choices, have provided key insights into neural decision-making mechanisms. By contrast, animals’ foraging choices arise in the context of sequences of encounters with prey/food. On each encounter the animal chooses to engage or whether the environment is sufficiently rich that searching elsewhere is merited. The cost of foraging is also critical. We demonstrate humans can alternate between two modes of choice, comparative decision-ma...

  15. Bird attributes, plant characteristics, and seed dispersal of Pera glabrata (Schott, 1858), (Euphorbiaceae) in a disturbed cerrado area.

    Science.gov (United States)

    Francisco, M R; Lunardi, V O; Galetti, M

    2007-11-01

    Several plant characteristics, such as fruit production, nutrient reward, secondary compounds, and fruit color display, affect fruit choice by birds. On the other hand, several bird attributes affect their efficiency as dispersers. Here we investigate the ornithochoric seed dispersal of Pera glabrata Schott (Euphorbiaceae) in a cerrado fragment in southeastern Brazil. A set of bird attributes, such as frequency of visits, number of diaspores eaten, time spent foraging, methods of taking and handling the diaspores and agonistic interactions were analyzed in order to infer about the potential of each species to act as a seed disperser. Birds were the unique seed dispersers of these oil-rich diaspores. We observed 414 bird visits during 60 hours of focal observations in five trees from December 1999 to January 2000. Twenty bird species from seven families ate the diaspores of P. glabrata, but only 14 species were considered potential seed dispersers because they swallowed the diaspores, increasing the probabilities for the seeds to be defecated and/or regurgitated away from the parent trees. The main potential seed dispersers were: Turdus leucomelas (Muscicapidae), Dacnis cayana (Emberizidae), Colaptes melanochloros (Picidae) and Elaenia spp. (Tyrannidae). We did not find any significant seasonal change in the number of visits on the fruiting trees throughout the day. We also did not find any relation between the number of visits per tree and fruit production. The most effective seed dispersers of P. glabrata were generalist birds, which have a high visiting rate, high fruit consumption rate, and spend short periods on the plants. The large number of species recorded as potential seed dispersers of P. glabrata, being most of them very abundant even in Brazilian disturbed areas, may guarantee seed dispersal of this plant in small fragments and regenerating areas.

  16. Annual forage cropping-systems for midwestern ruminant livestock production

    OpenAIRE

    McMillan, John Ernest

    2016-01-01

    Annual forage cropping systems are a vital aspect of livestock forage production. One area where this production system can be enhanced is the integration of novel annual forages into conventional cropping systems. Two separate projects were conducted to investigate alternative forage options in annual forage production. In the first discussed research trial, two sets of crops were sown following soft red winter wheat (Triticum aestivum L.) grain harvest, at two nitrogen application rates 56 ...

  17. Sexual segregation in juvenile New Zealand sea lion foraging ranges: implications for intraspecific competition, population dynamics and conservation.

    Directory of Open Access Journals (Sweden)

    Elaine S Leung

    Full Text Available Sexual segregation (sex differences in spatial organisation and resource use is observed in a large range of taxa. Investigating causes for sexual segregation is vital for understanding population dynamics and has important conservation implications, as sex differences in foraging ecology may affect vulnerability to area-specific human activities. Although behavioural ecologists have proposed numerous hypotheses for this phenomenon, the underlying causes of sexual segregation are poorly understood. We examined the size-dimorphism and niche divergence hypotheses as potential explanations for sexual segregation in the New Zealand (NZ sea lion (Phocarctos hookeri, a nationally critical, declining species impacted by trawl fisheries. We used satellite telemetry and linear mixed effects models to investigate sex differences in the foraging ranges of juvenile NZ sea lions. Male trip distances and durations were almost twice as long as female trips, with males foraging over the Auckland Island shelf and in further locations than females. Sex was the most important variable in trip distance, maximum distance travelled from study site, foraging cycle duration and percent time at sea whereas mass and age had small effects on these characteristics. Our findings support the predictions of the niche divergence hypothesis, which suggests that sexual segregation acts to decrease intraspecific resource competition. As a consequence of sexual segregation in foraging ranges, female foraging grounds had proportionally double the overlap with fisheries operations than males. This distribution exposes female juvenile NZ sea lions to a greater risk of resource competition and bycatch from fisheries than males, which can result in higher female mortality. Such sex-biased mortality could impact population dynamics, because female population decline can lead to decreased population fecundity. Thus, effective conservation and management strategies must take into account

  18. The Effects of Forage Policy on Feed Costs in Korea

    Directory of Open Access Journals (Sweden)

    Jae Bong Chang

    2018-05-01

    Full Text Available Feeding operations are substantial on livestock farms, besides being potentially expensive. Feeding efficiency has been considered a major influence on profits in the livestock industry. Indeed, feed costs are shown to be the largest single item of production cost in Korea. To promote production and use of domestic forage, the Korean government has enforced the forage base expansion program that strengthens the competitiveness of the livestock industry by reducing the production cost. The forage base expansion program includes three main policies: subsidized forage production, support for processing and distribution, and expanding land for forage production. This paper investigates the influence of the government’s policies often conjectured to have pronounced effects on forage production. To evaluate the forage policies, this paper uses a path-analysis approach linking government spending on forage base expansion programs and feed costs. Results indicate that the Korean government’s spending on supporting domestic forage production results in a decrease in the ratio of forage expenses to total feed cost.

  19. Social interactions of juvenile brown boobies at sea as observed with animal-borne video cameras.

    Directory of Open Access Journals (Sweden)

    Ken Yoda

    Full Text Available While social interactions play a crucial role on the development of young individuals, those of highly mobile juvenile birds in inaccessible environments are difficult to observe. In this study, we deployed miniaturised video recorders on juvenile brown boobies Sula leucogaster, which had been hand-fed beginning a few days after hatching, to examine how social interactions between tagged juveniles and other birds affected their flight and foraging behaviour. Juveniles flew longer with congeners, especially with adult birds, than solitarily. In addition, approximately 40% of foraging occurred close to aggregations of congeners and other species. Young seabirds voluntarily followed other birds, which may directly enhance their foraging success and improve foraging and flying skills during their developmental stage, or both.

  20. The Physiological Suppressing Factors of Dry Forage Intake and the Cause of Water Intake Following Dry Forage Feeding in Goats — A Review

    Directory of Open Access Journals (Sweden)

    Katsunori Sunagawa

    2016-02-01

    Full Text Available The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of NaHCO3 due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h

  1. Identifying effective actions to guide volunteer-based and nationwide conservation efforts for a ground-nesting farmland bird.

    Science.gov (United States)

    Santangeli, Andrea; Arroyo, Beatriz; Millon, Alexandre; Bretagnolle, Vincent

    2015-08-01

    1. Modern farming practices threaten wildlife in different ways, and failure to identify the complexity of multiple threats acting in synergy may result in ineffective management. To protect ground-nesting birds in farmland, monitoring and mitigating impacts of mechanical harvesting is crucial. 2. Here, we use 6 years of data from a nationwide volunteer-based monitoring scheme of the Montagu's harrier, a ground-nesting raptor, in French farmlands. We assess the effectiveness of alternative nest protection measures and map their potential benefit to the species. 3. We show that unprotected nests in cultivated land are strongly negatively affected by harvesting and thus require active management. Further, we show that protection from harvesting alone (e.g. by leaving a small unharvested buffer around the nest) is impaired by post-harvest predation at nests that become highly conspicuous after harvest. Measures that simultaneously protect from harvesting and predation (by adding a fence around the nest) significantly enhance nest productivity. 4. The map of expected gain from nest protection in relation to available volunteers' workforce pinpoints large areas of high expected gain from nest protection that are not matched by equally high workforce availability. This mismatch suggests that the impact of nest protection can be further improved by increasing volunteer efforts in key areas where they are low relative to the expected gain they could have. 5. Synthesis and applications . This study shows that synergistic interplay of multiple factors (e.g. mechanical harvesting and predation) may completely undermine the success of well-intentioned conservation efforts. However, identifying areas where the greatest expected gains can be achieved relative to effort expended can minimize the risk of wasted volunteer actions. Overall, this study underscores the importance of citizen science for collecting large-scale data useful for producing science and ultimately informs

  2. Forage evaluation by analysis after

    African Journals Online (AJOL)

    by forages, can be estimated by amino acid analysis of the products of fermentation in vitro. Typical results of such analyses are presented in Table 1. These results indicate that after fermentation the amino acid balance of forages is not optimal for either milk or meat production, with histidine usually being the first limiting.

  3. Unusual nocturnal feeding by Brown Rock-chat Cercomela fusca (Passeriformes: Muscicapidae in Bikaner, Rajasthan, India

    Directory of Open Access Journals (Sweden)

    P. Singh

    2009-04-01

    Full Text Available Brown Rock-chat is a diurnal insectivorous bird commonly associated with human habitations. I report here nocturnal foraging of the species in and around Bikaner in Rajasthan. The birds showed a marked bimodal activity during their nocturnal foraging which peaked in early morning and late evening hours. Bright sodium-vapour lights that attracted a horde of insects during monsoons offered ideal foraging opportunities for the birds. This behavior is explained here as an adaptation to maximize their food intake during the period when the birds breed and their nutritional requirements are naturally high.

  4. Assessing the Fauna Diversity of Marudu Bay Mangrove Forest, Sabah, Malaysia, for Future Conservation

    Directory of Open Access Journals (Sweden)

    Mohamed Zakaria

    2015-04-01

    Full Text Available Mangrove is an evergreen, salt tolerant plant community, which grows in inter-tidal coastal zones of tropical and subtropical regions of the world. They are ecologically important for many fauna species and are rich in food resources and consist of many different vegetation structures. They serve as ideal foraging and nursery grounds for a wide array of species such as birds, mammals, reptiles, fishes and aquatic invertebrates. In spite of their crucial role, around 50% of mangrove habitats have been lost and degraded in the past two decades. The fauna diversity of mangrove habitat at Marudu Bay, Sabah, East Malaysia was examined using various methods: i.e. aquatic invertebrates by swap nets, fish by angling rods and cast nets, reptiles, birds, and mammals through direct sighting. The result showed that Marudu Bay mangrove habitats harbored a diversity of fauna species including 22 aquatic invertebrate species (encompassing 11 crustacean species, six mollusk species and four worm species, 36 fish species, 74 bird species, four reptile species, and four mammal species. The wide array of fauna species could be due to the availability of complex vegetation structures, sheltered beaches and tidal mudflats, which are rich in food resources and also offer safe foraging and breeding grounds for them. These heterogeneous habitats must be protected in a sustainable way in order to ensure the continued presence of aquatic and terrestrial fauna species for future generations.

  5. How does vegetation structure influence woodpeckers and secondary cavity nesting birds in African cork oak forest?

    Science.gov (United States)

    Segura, Amalia

    2017-08-01

    The Great Spotted Woodpecker provides important information about the status of a forest in terms of structure and age. As a primary cavity creator, it provides small-medium size cavities for passerines. However, despite its interest as an ecosystem engineer, studies of this species in Africa are scarce. Here, spatially explicit predictive models were used to investigate how forest structural variables are related to both the Great Spotted Woodpecker and secondary cavity nesting birds in Maamora cork oak forest (northwest Morocco). A positive association between Great Spotted Woodpecker and both dead-tree density and large mature trees (>60 cm dbh) was found. This study area, Maamora, has an old-growth forest structure incorporating a broad range of size and condition of live and dead trees, favouring Great Spotted Woodpecker by providing high availability of foraging and excavating sites. Secondary cavity nesting birds, represented by Great Tit, African Blue Tit, and Hoopoe, were predicted by Great Spotted Woodpecker detections. The findings suggest that the conservation of the Maamora cork oak forest could be key to maintaining these hole-nesting birds. However, this forest is threatened by forestry practises and livestock overgrazing and the challenge is therefore to find sustainable management strategies that ensure conservation while allowing its exploitation.

  6. Individual-based ecology of coastal birds.

    Science.gov (United States)

    Stillman, Richard A; Goss-Custard, John D

    2010-08-01

    Conservation objectives for non-breeding coastal birds (shorebirds and wildfowl) are determined from their population size at coastal sites. To advise coastal managers, models must predict quantitatively the effects of environmental change on population size or the demographic rates (mortality and reproduction) that determine it. As habitat association models and depletion models are not able to do this, we developed an approach that has produced such predictions thereby enabling policy makers to make evidence-based decisions. Our conceptual framework is individual-based ecology, in which populations are viewed as having properties (e.g. size) that arise from the traits (e.g. behaviour, physiology) and interactions of their constituent individuals. The link between individuals and populations is made through individual-based models (IBMs) that follow the fitness-maximising decisions of individuals and predict population-level consequences (e.g. mortality rate) from the fates of these individuals. Our first IBM was for oystercatchers Haematopus ostralegus and accurately predicted their density-dependent mortality. Subsequently, IBMs were developed for several shorebird and wildfowl species at several European sites, and were shown to predict accurately overwinter mortality, and the foraging behaviour from which predictions are derived. They have been used to predict the effect on survival in coastal birds of sea level rise, habitat loss, wind farm development, shellfishing and human disturbance. This review emphasises the wider applicability of the approach, and identifies other systems to which it could be applied. We view the IBM approach as a very useful contribution to the general problem of how to advance ecology to the point where we can routinely make meaningful predictions of how populations respond to environmental change.

  7. Impact on bird fauna of a non-native oyster expanding into blue mussel beds in the Dutch Wadden Sea

    NARCIS (Netherlands)

    Waser, A.M.; Deuzeman, S.; wa Kangeri, A.K.; van Winden, E.; Postma, J.; De Boer, P.; Van der Meer, J.; Ens, B.J.

    2016-01-01

    Intertidal mussel beds are important for intertidal ecosystems, because they feature a high taxonomic diversityand abundance of benthic organisms and are important foraging grounds for many avian species. After the introductionof the Pacific oyster (Crassostrea gigas) into the EuropeanWadden

  8. Stable isotopes (δ13C, δ15N combined with conventional dietary approaches reveal plasticity in central-place foraging behaviour of little penguins (Eudyptula minor

    Directory of Open Access Journals (Sweden)

    Andre eChiaradia

    2016-01-01

    Full Text Available Marine top and meso predators like seabirds are limited by the need to breed on land but forage on limited or patchily distributed resources at sea. Constraints imposed by such central-place foraging behaviour change during breeding or even disappear outside the breeding period when there is no immediate pressure to return to a central place. However, central place foraging is usually factored as an unchanging condition in life history studies. Here we used little penguin Eudyptula minor, a resident bird with one of the smallest foraging range among seabirds, to examine the different degree of pressure/constraints of being a central-place forager. We combined data on isotopic composition (δ13C and δ15N, conventional stomach contents and body mass of little penguins breeding at Phillip Island, Australia over nine years (2003-11. We explored relationships between diet and body mass in each stage of the breeding season (pre-laying, incubation, guard, and post-guard in years of high and low reproductive success. Values of δ13C and δ15N as well as isotopic niche width had similar patterns among years, with less variability later in the season when little penguins shorten their foraging range at the expected peak of their central-place foraging limitation. Body mass peaked before laying and hatching in preparation for the energetically demanding periods of egg production and chick provisioning. An increase of anchovy and barracouta in the diet, two major prey for little penguins, occurred at the critical stage of chick rearing. These intra-annual trends could be a response to imposed foraging constraints as reproduction progresses, while inter-annual trends could reflect their ability to match or mismatch the high energy demanding chick rearing period with the peak in availability of high-quality prey such as anchovy. Our findings underline the key advantages of using a stable isotope approach combined with conventional dietary reconstruction to

  9. Guam and the Northern Mariana Islands ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for pelagic birds, shorebirds, wading birds, waterfowl, gulls, terns, and passerine birds in Guam and the...

  10. Who started first? Bird species visiting novel birdfeeders.

    Science.gov (United States)

    Tryjanowski, Piotr; Morelli, Federico; Skórka, Piotr; Goławski, Artur; Indykiewicz, Piotr; Pape Møller, Anders; Mitrus, Cezary; Wysocki, Dariusz; Zduniak, Piotr

    2015-07-07

    Adapting to exploit new food sources may be essential, particularly in winter, when the impact of food limitation on survival of individuals is critical. One of the most important additional sources of food for birds in human settlements is birdfeeders. At a large spatial scale, we experimentally provided birdfeeders with four different kinds of food to analyze exploitation and use of a novel food supply provided by humans. Nine species started foraging at the new birdfeeders. The species that exploited the new feeders the fastest was the great tit. Use of novel food sources was faster in urban habitats and the presence of other feeders reduced the time until a new feeder was located. Urbanization may be associated with behavioural skills, technical innovations and neophilia resulting in faster discovery of new food sources. This process is accelerated by the experience of feeder use in the vicinity, with a strong modifying effect of the number of domestic cats.

  11. Multiple-stage decisions in a marine central-place forager.

    Science.gov (United States)

    Friedlaender, Ari S; Johnston, David W; Tyson, Reny B; Kaltenberg, Amanda; Goldbogen, Jeremy A; Stimpert, Alison K; Curtice, Corrie; Hazen, Elliott L; Halpin, Patrick N; Read, Andrew J; Nowacek, Douglas P

    2016-05-01

    Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager

  12. Multiple-stage decisions in a marine central-place forager

    Science.gov (United States)

    Friedlaender, Ari S.; Johnston, David W.; Tyson, Reny B.; Kaltenberg, Amanda; Goldbogen, Jeremy A.; Stimpert, Alison K.; Curtice, Corrie; Hazen, Elliott L.; Halpin, Patrick N.; Read, Andrew J.; Nowacek, Douglas P.

    2016-05-01

    Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager

  13. Quantification and characterization of putative diazotrophic bacteria from forage palm under saline water irrigation

    Directory of Open Access Journals (Sweden)

    Gabiane dos Reis Antunes

    2017-09-01

    Full Text Available The aim of this study was to evaluate the density and phenotypical diversity of diazotrophic endophytic bacteria from the forage palm irrigated with different saline water depths. Opuntia stricta (IPA-200016 received five depths of saline water (L1: 80%. ETo; L2: 60%.ETo; L3: 40%; ETo; L4: 20%; ETo and, L5: 0% ETo, where ETo is the reference evapotranspiration. The roots were collected in the field, disinfected, grounded and serial diluted from 10-1 to 10-4. The total concentration of diazotrophic bacteria was determined by the most probable number method (MPN and the isolated bacteria were characterized phenotipically. The concentration of bacteria found in forage palm roots ranged from 0.36 x 104 to 109.89 104 cells per gram of root, with highest occurrence on the 60 and 80% ETo. In the dendrogram of similarity it was possible to observe the formation of 24 phenotypic groups with 100% similarity. All bacteria presented similarity superior to 40%. Among these groups, 14 are rare groups, formed by only a single bacterial isolate. In the Semi-Arid conditions, the forage palm that receives the highest amount of saline water, presents a higher density of putative nitrogen-fixing endophytic bacteria with high phenotypic diversity.

  14. The effect of irradiation dose and age of bird on the ESR signal in irradiated chicken drumsticks

    International Nuclear Information System (INIS)

    Gray, R.; Stevenson, M.H.; Kilpatrick, D.J.

    1990-01-01

    Groups of 20 broiler chickens of the same genetic strain and reared under identical conditions were slaughtered at either 4, 5, 6, 7 or 8 weeks of age. Pairs of drumsticks were removed from each bird and groups were either not irradiated or irradiated at 2.5, 5.0, 7.5 or 10.0 kGy using a cobalt 60 source. Bone samples were excised, fragmented, freeze dried and ground prior to the determination of free radical concentration using electron spin resonance (ESR) spectroscopy. Increasing irradiation dose gave a highly significant increase in free radical concentration whilst for each irradiation dose, bones from younger birds gave significantly lower concentrations compared to those for older birds. Crystallinity coefficient increased linearly with age of bird and this may account in part for the increased signal observed as the birds aged. (author)

  15. Quality of the forage apparently consumed by beef calves in natural grassland under fertilization and oversown with cool season forage species

    Directory of Open Access Journals (Sweden)

    Denise Adelaide Gomes Elejalde

    2012-06-01

    Full Text Available The objective of this study was to evaluate the chemical composition of the forage apparently consumed by steers in a natural grassland on region of Campanha, in Rio Grande do Sul, Brazil, subjected or not to different inputs: NP - natural pasture without inputs; FNP - fertilized natural pasture and INP - improved natural grassland with fertilization and over-seeded with cultivated winter species. Three Angus steers testers and a variable number of regulator animals per experimental unit were utilized in order to maintain 13 kg of DM/100 kg of live weight (LW as forage allowance. One time at each season, hand plucking samples were performed along the daily grazing time simulating forage harvested by the animals. The collected samples after drying and grind were submitted to chemical analysis to determine the forage quality. Except in winter and spring, the values of neutral detergent fiber were higher than the critical value of 550 g/kg of DM, which could limit forage intake, demonstrating that the values of forage on offer provided (15.6; 13.7; 13.5; 15.8 kg of DM/100 kg of LW/day in summer, autumn, winter and spring, respectively were not restrictive to intake. The oversowing of winter cultivated species or fertilization positively alter the degradable fiber content. The seasons had marked influence on the chemical composition of forage apparently consumed; positively increasing some fractions of forage chemical composition in the seasons in which native or cultivated winter species increased their participation. The forage chemical composition is the determining factor in animal performance in natural pasture.

  16. Bird diversity and distribution in relation to urban landscape types in northern Rwanda.

    Science.gov (United States)

    Gatesire, T; Nsabimana, D; Nyiramana, A; Seburanga, J L; Mirville, M O

    2014-01-01

    Using the point count method, linear mixed models, Shannon's diversity index, and Bray-Curtis cluster analysis, we conducted a study of the effect of urban fabric layout on bird diversity and distribution in northern Rwanda. The results showed a significant effect of city landscapes on bird richness and relative abundance; residential neighborhoods, institutional grounds, and informal settlements had the highest species diversity in comparison to other microlandscape types. Riversides were characterized by specialized bird species, commonly known to be restricted to wetland environments. Built-up areas and open field landscapes had comparable results. One Albertine Rift endemic bird species, the Ruwenzori Double-collared Sunbird (Cinnyris stuhlmanni), was recorded. Three migratory birds were found in Musanze city for the first time: the Common Sandpiper (Actitis hypoleucos), the Spotted Flycatcher (Muscicapa striata), and the Willow Warbler (Phylloscopus trochilus). Two bird species have not been previously reported in Rwanda: the Garden Warbler (Sylvia borin) and the Lesser Spotted Eagle (Aquila pomarina). The implications of this study are particularly relevant to urban decision makers who should consider the existence of a great diversity of avian fauna when developing and implementing master plans, especially when villages and cities are in proximity of protected areas or natural reserves.

  17. Rhode Island, Connecticut, New York, and New Jersey ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, waterfowl, raptors, diving birds, pelagic birds, passerine birds, gulls and...

  18. Spatial variation in foraging behaviour of a marine top predator (Phoca vitulina determined by a large-scale satellite tagging program.

    Directory of Open Access Journals (Sweden)

    Ruth J Sharples

    Full Text Available The harbour seal (Phoca vitulina is a widespread marine predator in Northern Hemisphere waters. British populations have been subject to rapid declines in recent years. Food supply or inter-specific competition may be implicated but basic ecological data are lacking and there are few studies of harbour seal foraging distribution and habits. In this study, satellite tagging conducted at the major seal haul outs around the British Isles showed both that seal movements were highly variable among individuals and that foraging strategy appears to be specialized within particular regions. We investigated whether these apparent differences could be explained by individual level factors: by modelling measures of trip duration and distance travelled as a function of size, sex and body condition. However, these were not found to be good predictors of foraging trip duration or distance, which instead was best predicted by tagging region, time of year and inter-trip duration. Therefore, we propose that local habitat conditions and the constraints they impose are the major determinants of foraging movements. Specifically the distance to profitable feeding grounds from suitable haul-out locations may dictate foraging strategy and behaviour. Accounting for proximity to productive foraging resources is likely to be an important component of understanding population processes. Despite more extensive offshore movements than expected, there was also marked fidelity to the local haul-out region with limited connectivity between study regions. These empirical observations of regional exchange at short time scales demonstrates the value of large scale electronic tagging programs for robust characterization of at-sea foraging behaviour at a wide spatial scale.

  19. Drug metabolism in birds

    Science.gov (United States)

    Pan, Huo Ping; Fouts, James R.

    1979-01-01

    Papers published over 100 years since the beginning of the scientific study of drug metabolism in birds were reviewed. Birds were found to be able to accomplish more than 20 general biotransformation reactions in both functionalization and conjugation. Chickens were the primary subject of study but over 30 species of birds were used. Large species differences in drug metabolism exist between birds and mammals as well as between various birds, these differences were mostly quantitative. Qualitative differences were rare. On the whole, drug metabolism studies in birds have been neglected as compared with similar studies on insects and mammals. The uniqueness of birds and the advantages of using birds in drug metabolism studies are discussed. Possible future studies of drug metabolism in birds are recommended.

  20. Soil bulk electrical resistivity and forage ground cover: nonlinear models in an alfalfa (Medicago sativa L. case study

    Directory of Open Access Journals (Sweden)

    Roberta Rossi

    2015-12-01

    Full Text Available Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage- variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER and plant productivity in an alfalfa (Medicago sativa L. field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam, gravel content (0 to 55% and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.

  1. The regulation of ant colony foraging activity without spatial information.

    Directory of Open Access Journals (Sweden)

    Balaji Prabhakar

    Full Text Available Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.

  2. Impact on bird fauna of a non-native oyster expanding into blue mussel beds in the Dutch Wadden Sea

    NARCIS (Netherlands)

    Waser, A.M.; Deuzeman, S.; wa Kangeri, A.K.; van Winden, E.; Postma, J.; de Boer, Peter; van der Meer, J.; Ens, B.J.

    2016-01-01

    Intertidal mussel beds are important for intertidal ecosystems, because they feature a high taxonomic diversity and abundance of benthic organisms and are important foraging grounds for many avian species. After the introduction of the Pacific oyster (Crassostrea gigas) into the European Wadden Sea,

  3. Impact on bird fauna of a non-native oyster expanding into blue mussel beds in the Dutch Wadden Sea

    NARCIS (Netherlands)

    Waser, Andreas M.; Deuzeman, Symen; Kangeri, Arno K.W.; Winden, van Erik; Postma, Jelle; Boer, de Peter; Meer, van der Jaap; Ens, Bruno J.

    2016-01-01

    Intertidal mussel beds are important for intertidal ecosystems, because they feature a high taxonomic diversity and abundance of benthic organisms and are important foraging grounds for many avian species. After the introduction of the Pacific oyster (Crassostrea gigas) into the European Wadden

  4. Olfaction in bird dogs during hunting.

    Science.gov (United States)

    Steen, J B; Mohus, I; Kvesetberg, T; Walløe, L

    1996-05-01

    The ability to catch scent continuously while running, which may be an essential skill for many animals of prey, requires that ambient air flows inward through the nose also during expiration. In this study on bird dogs, the direction of air flow was detected by measuring the temperature in the air inside the nostril. While resting, nose ventilation was synchronous with lung ventilation. While searching for ground scent, the dog was sniffing at a frequency of up to 200 s-1, a strategy which may create turbulence in the nasal passages and thereby enhance transport of scent molecules to the receptors in the ethmoidal cavity. When the bird dog was searching for game while running with its head high against the wind, it maintained a continuous inward air stream through the nose for up to 40s spanning at least 30 respiratory cycles. We suggest that expiratory gas flowing at high velocity from the trachea to the mouth cavity creates a lower pressure than in the nose thus causing an inward air stream through the nose during expiration by a Bernoulli effect.

  5. Conservation of forest birds: evidence of a shifting baseline in community structure.

    Science.gov (United States)

    Rittenhouse, Chadwick D; Pidgeon, Anna M; Albright, Thomas P; Culbert, Patrick D; Clayton, Murray K; Flather, Curtis H; Huang, Chengquan; Masek, Jeffrey G; Stewart, Susan I; Radeloff, Volker C

    2010-08-02

    Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance. We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (-28.7 - -10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States. Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United States may

  6. POPs and stable isotopes in bird and forage fish tissues - Persistent organic pollutant levels in juvenile salmonids, forage fish and their avian predators from Puget Sound and the outer WA coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project is examining contaminant loads of fish prey species of a resident marine bird (Rhinoceros Auklet) breeding in inland waters (Puget Sound) and in the...

  7. Eye structure and amphibious foraging in albatrosses

    Science.gov (United States)

    Martin, G. R.

    1998-01-01

    Anterior eye structure and retinal visual fields were determined in grey-headed and black-browed albatrosses, Diomedea melanophris and D. chrysostoma (Procellariiformes, Diomedeidae), using keratometry and an ophthalmoscopic reflex technique. Results for the two species were very similar and indicate that the eyes are of an amphibious optical design suggesting that albatross vision is well suited to the visual pursuit of active prey both on and below the ocean surface. The corneas are relatively flat (radius ca. 14.5 mm) and hence of low absolute refractive power (ca. 23 dioptres). In air the binocular fields are relatively long (vertical extent ca. 70 degrees) and narrow (maximum width in the plane of the optic axes 26–32 degrees), a topography found in a range of bird species that employ visual guidance of bill position when foraging. The cyclopean fields measure approximately 270 degrees in the horizontal plane, but there is a 60 degrees blind sector above the head owing to the positioning of the eyes below the protruding supraorbital ridges. Upon immersion the monocular fields decrease in width such that the binocular fields are abolished. Anterior eye structure, and visual field topography in both air and water, show marked similarity with those of the Humboldt penguin.

  8. Evolution of embryonic developmental period in the marine bird families Alcidae and Spheniscidae: roles for nutrition and predation?

    Directory of Open Access Journals (Sweden)

    Vos Rutger A

    2010-06-01

    Full Text Available Abstract Background Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks and Spheniscidae (penguins exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP. Results Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so. Conclusion Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the

  9. Persistence of forage fish ‘hot spots’ and its association with foraging Steller sea lions (Eumetopias jubatus) in southeast Alaska

    Science.gov (United States)

    Gende, Scott M.; Sigler, Michael F.

    2006-02-01

    Whereas primary and secondary productivity at oceanic 'hotspots' may be a function of upwelling and temperature fronts, the aggregation of higher-order vertebrates is a function of their ability to search for and locate these areas. Thus, understanding how predators aggregate at these productive foraging areas is germane to the study of oceanic hot spots. We examined the spatial distribution of forage fish in southeast Alaska for three years to better understand Steller sea lion ( Eumetopias jubatus) aggregations and foraging behavior. Energy densities (millions KJ/km 2) of forage fish were orders of magnitude greater during the winter months (November-February), due to the presence of schools of overwintering Pacific herring ( Clupea pallasi). Within the winter months, herring consistently aggregated at a few areas, and these areas persisted throughout the season and among years. Thus, our study area was characterized by seasonally variable, highly abundant but highly patchily distributed forage fish hot spots. More importantly, the persistence of these forage fish hot spots was an important characteristic in determining whether foraging sea lions utilized them. Over 40% of the variation in the distribution of sea lions on our surveys was explained by the persistence of forage fish hot spots. Using a simple spatial model, we demonstrate that when the density of these hot spots is low, effort necessary to locate these spots is minimized when those spots persist through time. In contrast, under similar prey densities but lower persistence, effort increases dramatically. Thus an important characteristic of pelagic hot spots is their persistence, allowing predators to predict their locations and concentrate search efforts accordingly.

  10. Forage mass and the nutritive value of pastures mixed with forage peanut and red clover

    Directory of Open Access Journals (Sweden)

    Ricardo Lima de Azevedo Junior

    2012-04-01

    Full Text Available The objective of this research was to estimate three pasture-based systems mixed with elephantgrass + spontaneous growth species, annual ryegrass, for pasture-based system 1; elephantgrass + spontaneous growth species + forage peanut, for pasture-based system 2; and elephantgrass + spontaneous growth species + annual ryegrass + red clover, for pasture-based system 3. Elephantgrass was planted in rows 4 m apart from each other. During the cool-season, annual ryegrass was sown in the alleys between the rows of elephantgrass; forage peanut and red clover were sown in the alleys between the elephantgrass according to the respective treatment. The experimental design was totally randomized in the three treatments (pasture-based systems, two replicates (paddocks in completely split-plot time (grazing cycles. Holstein cows receiving 5.5 kg-daily complementary concentrate feed were used in the evaluation. Pre-grazing forage mass, botanical composition and stocking rate were evaluated. Samples of simulated grazing were collected to analyze organic matter (OM, neutral detergent fiber (NDF, crude protein (CP and organic matter in situ digestibility (OMISD. Nine grazing cycles were performed during the experimental period (341 days. The average dry matter values for pre-grazing and stocking rate were 3.34; 3.46; 3.79 t/ha, and 3.28; 3.34; 3.60 AU/ha for each respective pasture-based system. Similar results were observed between the pasture-based systems for OM, NDF, CP and OMISD. Considering forage mass, stocking rate and nutritive value, the pasture-based system intercropped with forage legumes presented better performance.

  11. Birds of Sabaki Birds of Sabaki

    African Journals Online (AJOL)

    CJ

    2005-02-25

    Feb 25, 2005 ... covers approximately 250ha.The area encompassed by this study extends from Mambrui to the north, the sea to the east, the opposite bank of the estuary to the south and the Sabaki bridge and Malindi-Garsen road to the west. The area is defined as an Important Bird Area(IBA) by BirdLife International in ...

  12. Southeast Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for waterfowl in Southeast Alaska. Vector polygons in this data set represent locations of foraging and rafting...

  13. Birds choose long-term partners years before breeding

    Science.gov (United States)

    Teitelbaum, Claire S.; Converse, Sarah J.; Mueller, Thomas

    2017-01-01

    Pair bonds can provide social benefits to long-term monogamous species alongside their benefits for reproduction. However, little is known about when these bonds form, in particular how long they are present before breeding. Previous studies of pair formation in long-term monogamous birds have been rather data-limited, but for many migratory birds they report pair formation on the wintering grounds. We provide the first systematic investigation of prebreeding association patterns of long-term monogamous pairs by examining entire life histories based on tracking data of migratory whooping cranes, Grus americana. We found that a substantial portion (62%) of breeding pairs started associating at least 12 months before first breeding, with 16 of 58 breeding pairs beginning to associate over 2 years before first breeding. For most pairs, these associations with future breeding partners also became unique and distinguishable from association patterns with nonpartner individuals 12 months before first breeding. In addition, 60% of pair associations began before at least one partner had reached nominal sexual maturity. Most pairs began associating in the late spring upon arrival at the summer grounds, while associations beginning at other times of the year were rare. Patterns in the associations of pairs prior to breeding can point to the potential benefits of prebreeding relationships, for instance providing support in competitive interactions or increasing partner familiarity.

  14. Using heronry birds to monitor urbanization impacts: a case study of painted stork Mycteria leucocephala nesting in the Delhi Zoo, India.

    Science.gov (United States)

    Urfi, Abdul Jamil

    2010-03-01

    Although urbanization is a frequently cited cause of biodiversity loss (Czech and Krausman 1997) our understanding about urban ecology is severely limited (Marzluff et al. 2001). Birds are popular bio-indicators of environmental change because they are ecologically versatile, their populations as well as select fitness parameters can be conveniently monitored, often with the voluntary involvement of local nature enthusiasts across large geographical scales, and their presence/absence in a particular area is consequential (Bibby et al. 1992; Urfi 2004). In India, while several studies have focused on changes in bird populations and distributions in natural habitats (Urfi et al. 2005), very few have actually attempted to study either the impacts of urbanization on birds or how different species have adjusted to environmental change. However, many Indian cities offer foraging and nesting habitat for birds, especially colonial waterbirds such as stork, ibis, spoonbill, heron, egret, cormorant, and spoonbill. Some notable examples in this regard are Piele Gardens in Bhavnagar city (Parasharya and Naik 1990), Karanji Tank in Mysore (Jamgaonkar et al. 1994) and the National Zoological Park (hence forth Delhi Zoo) in India's capital city New Delhi (Urfi 1997). In this article, I focus on the opportunities for meaningful ecological research offered by the wild waterbirds nesting in the Delhi Zoo premises and discuss the significance for initiating novel, long term conservation monitoring programs, involving volunteers and bird watchers, to create data bases that will be useful for understanding urbanization and climate change impacts on biodiversity.

  15. The Role of Non-Foraging Nests in Polydomous Wood Ant Colonies.

    Science.gov (United States)

    Ellis, Samuel; Robinson, Elva J H

    2015-01-01

    A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.

  16. Traplining in bumblebees (Bombus impatiens): a foraging strategy's ontogeny and the importance of spatial reference memory in short-range foraging.

    Science.gov (United States)

    Saleh, Nehal; Chittka, Lars

    2007-04-01

    To test the relative importance of long-term and working spatial memories in short-range foraging in bumblebees, we compared the performance of two groups of bees. One group foraged in a stable array of six flowers for 40 foraging bouts, thereby enabling it to establish a long-term memory of the array, and adjust its spatial movements accordingly. The other group was faced with an array that changed between (but not within) foraging bouts, and thus had only access to a working memory of the flowers that had been visited. Bees in the stable array started out sampling a variety of routes, but their tendency to visit flowers in a repeatable, stable order ("traplining") increased drastically with experience. These bees used shorter routes and converged on four popular paths. However, these routes were mainly formed through linking pairs of flowers by near-neighbour movements, rather than attempting to minimize overall travel distance. Individuals had variations to a primary sequence, where some bees used a major sequence most often, followed by a minor less used route, and others used two different routes with equal frequency. Even though bees foraging in the spatially randomized array had access to both spatial working memory and scent marks, this manipulation greatly disrupted foraging efficiency, mainly via an increase in revisitation to previously emptied flowers and substantially longer search times. Hence, a stable reference frame greatly improves foraging even for bees in relatively small arrays of flowers.

  17. Were Malagasy Uncarina fruits dispersed by the extinct elephant bird?

    Directory of Open Access Journals (Sweden)

    N. Illing

    2010-02-01

    Full Text Available We hypothesise that the spiny fruits of the endemic Madagascar
    genus Uncarina (Pedaliaceae are trample burrs that evolved to be
    dispersed on the feet of the extinct elephant bird (Aepyornis. Our
    evidence is: i the morphology of the fruit with its large grapple
    hooks is more likely to attach to a foot than to adhere to fur and
    ii the presentation of mature fruits on the ground rather than in the
    canopy. These differences to adhesive burrs make lemurs unlikely
    dispersers. We argue, given the absence of other large terrestrial
    mammals in Madagascar, that the most likely dispersers of
    Uncarina fruits were the extinct large birds. If correct, our hypothesis
    has implications for conservation of Uncarina, the biogeography
    of the elephant birds and dispersal biology. For
    example, we predict that the demography of Uncarina will be
    skewed towards adult plants, and that the dispersal mutualism
    could possibly be rescued by domestic animals.

  18. Linking snake behavior to nest predation in a Midwestern bird community.

    Science.gov (United States)

    Weatherhead, Patrick J; Carfagno, Gerardo L F; Sperry, Jinelle H; Brawn, Jeffrey D; Robinson, Scott K

    2010-01-01

    Nest predators can adversely affect the viability of songbird populations, and their impact is exacerbated in fragmented habitats. Despite substantial research on this predator-prey interaction, however, almost all of the focus has been on the birds rather than their nest predators, thereby limiting our understanding of the factors that bring predators and nests into contact. We used radiotelemetry to document the activity of two snake species (rat snakes, Elaphe obsoleta; racers, Coluber constrictor) known to prey on nests in Midwestern bird communities and simultaneously monitored 300 songbird nests and tested the hypothesis that predation risk should increase for nests when snakes were more active and in edge habitat preferred by both snake species. Predation risk increased when rat snakes were more active, for all nests combined and for two of the six bird species for which we had sufficient nests to allow separate analyses. This result is consistent with rat snakes being more important nest predators than racers. We found no evidence, however, that nests closer to forest edges were at greater risk. These results are generally consistent with the one previous study that investigated rat snakes and nest predation simultaneously. The seemingly paradoxical failure to find higher predation risk in the snakes' preferred habitat (i.e., edge) might be explained by the snakes using edges at least in part for non-foraging activities. We propose that higher nest predation in fragmented habitats (at least that attributable to snakes) results indirectly from edges promoting larger snake populations, rather than from edges directly increasing the risk of nest predation by snakes. If so, the notion of edges per se functioning as ecological "traps" merits further study.

  19. Monitoring buried remains with a transparent 3D half bird's eye view of ground penetrating radar data in the Zeynel Bey tomb in the ancient city of Hasankeyf, Turkey

    International Nuclear Information System (INIS)

    Kadioglu, Selma; Kadioglu, Yusuf Kagan; Akyol, Ali Akin

    2011-01-01

    The aim of this paper is to show a new monitoring approximation for ground penetrating radar (GPR) data. The method was used to define buried archaeological remains inside and outside the Zeynel Bey tomb in Hasankeyf, an ancient city in south-eastern Turkey. The study examined whether the proposed GPR method could yield useful results at this highly restricted site, which has a maximum diameter inside the tomb of 4 m. A transparent three-dimensional (3D) half bird's eye view was constructed from a processed parallel-aligned two-dimensional GPR profile data set by using an opaque approximation instead of linear opacity. Interactive visualizations of transparent 3D sub-data volumes were conducted. The amplitude-colour scale was balanced by the amplitude range of the buried remains in a depth range, and appointed a different opaque value for this range, in order to distinguish the buried remains from one another. Therefore, the maximum amplitude values of the amplitude-colour scale were rearranged with the same colour range. This process clearly revealed buried remains in depth slices and transparent 3D data volumes. However, the transparent 3D half bird's eye views of the GPR data better revealed the remains than the depth slices of the same data. In addition, the results showed that the half bird's eye perspective was important in order to image the buried remains. Two rectangular walls were defined, one within and the other perpendicularly, in the basement structure of the Zeynel Bey tomb, and a cemetery was identified aligned in the east–west direction at the north side of the tomb. The transparent 3D half bird's eye view of the GPR data set also determined the buried walls outside the tomb. The findings of the excavation works at the Zeynel Bey tomb successfully overlapped with the new visualization results

  20. Risso's dolphins plan foraging dives.

    Science.gov (United States)

    Arranz, Patricia; Benoit-Bird, Kelly J; Southall, Brandon L; Calambokidis, John; Friedlaender, Ari S; Tyack, Peter L

    2018-02-28

    Humans remember the past and use that information to plan future actions. Lab experiments that test memory for the location of food show that animals have a similar capability to act in anticipation of future needs, but less work has been done on animals foraging in the wild. We hypothesized that planning abilities are critical and common in breath-hold divers who adjust each dive to forage on prey varying in quality, location and predictability within constraints of limited oxygen availability. We equipped Risso's dolphins with sound-and-motion recording tags to reveal where they focus their attention through their externally observable echolocation and how they fine tune search strategies in response to expected and observed prey distribution. The information from the dolphins was integrated with synoptic prey data obtained from echosounders on an underwater vehicle. At the start of the dives, whales adjusted their echolocation inspection ranges in ways that suggest planning to forage at a particular depth. Once entering a productive prey layer, dolphins reduced their search range comparable to the scale of patches within the layer, suggesting that they were using echolocation to select prey within the patch. On ascent, their search range increased, indicating that they decided to stop foraging within that layer and started searching for prey in shallower layers. Information about prey, learned throughout the dive, was used to plan foraging in the next dive. Our results demonstrate that planning for future dives is modulated by spatial memory derived from multi-modal prey sampling (echoic, visual and capture) during earlier dives. © 2018. Published by The Company of Biologists Ltd.

  1. Assessing the impact on birds of prey of nine established wind farms in Thrace, NE Greece

    Energy Technology Data Exchange (ETDEWEB)

    Kret, Elzbieta; Carcamo, Beatriz; Zografou, Christina; Vasilakis, Dimitris

    2011-07-01

    Full text: In this study, we evaluate the impact on birds of prey of nine already established wind farms in Thrace, where a large scale wind farm development project of at least 930 MW is under development. Moreover, the area is acknowledged as of high ornithological interest, used for nesting, wintering and passage by rare territorial birds of prey, including the Near Threatened black vultures that use it for foraging. Finally, ca 50% of the wind farm development project area is covered by Natura 2000 sites. During the monitoring (2008-2010), carcass surveys were carried out in order to estimate mortality. In addition, avian space use surveys were carried out, in order to calculate indexes and to establish comparisons with a previous monitoring study run in 2004-05. In total, 14 birds of prey were found dead (one black vulture, four griffon vultures, one booted eagle, two short-toed eagles, one western marsh harrier, one Eurasian sparrow hawk, three common buzzards, one hawk species). The estimated mortality rate was 0.152 birds of prey (including vultures/turbine/year). Griffon vultures, black vultures and common buzzards comprised more than 50% of observations in the study area. Crossing densities between wind turbines were positively correlated with east exposition and the inclination of the slope, and the length of the wind turbines. gaps, while it was negatively correlated with north exposition. The use of the area was more intensive four years after the initial monitoring, but numbers of common buzzard observations drastically decreased. We suggest that during the planning phase of wind farms it is important to avoid steep slopes, east expositions and to take into account the distance between consecutive wind turbines. Our findings indicate that running a post-construction monitoring during only one year may not be enough to properly assess the impact of wind farms on birds of prey. (Author)

  2. Birds and music

    Directory of Open Access Journals (Sweden)

    L Amini

    2009-03-01

    Through research in old mythological narrations, and literary texts, one could assume an intrinsic relationship between music and such sweet-singing mythological birds as phoenix, sphinx, Song-song, holy birds like Kership-tah, and other birds including swan and ring dove.

  3. Resource diversity and landscape-level homogeneity drive native bee foraging.

    Science.gov (United States)

    Jha, Shalene; Kremen, Claire

    2013-01-08

    Given widespread declines in pollinator communities and increasing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previously believed and does not follow a simple optimal foraging strategy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Furthermore, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Overall, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services.

  4. Information Foraging in Nuclear Power Plant Control Rooms

    International Nuclear Information System (INIS)

    Boring, R.L.

    2011-01-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  5. Information Foraging in Nuclear Power Plant Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  6. Effects of ground thyme and probiotic supplements in diets on broiler performance, blood biochemistry and immunological response to sheep red blood cells

    Directory of Open Access Journals (Sweden)

    Seyed A. Hosseini

    2013-03-01

    Full Text Available A trial was conducted to study the effects of the aromatic plant thyme, a commercial probiotic (Protexin and avilamycin on broiler performance, blood biochemical parameters and also the antibody response to sheep red blood cells. A total of 750 broilers were assigned into five replicate groups for each of five dietary treatments, namely; control (C, 2.5 mg/kg avilamycin (AB, 0.1 g/kg commercial probiotic (P, 5 g/kg ground thyme (T1, and 7.5 g/kg ground thyme (T2. In general, body weight, feed consumption and feed conversion ratio were not affected by dietary treatments compared to the control birds (P>0.05. Birds fed the P supplemented treatment had the greatest serum protein levels (P<0.001 and highest albumin levels (P<0.001 when compared with control birds, while the birds fed T2 had the lowest (P<0.001. Dietary supplementation reduced (P<0.001 cholesterol and triglyceride concentration in serum of broilers, with the effect were more noticeable by P supplements. Moreover, blood calcium and phosphorus concentrations were higher (P<0.001 in birds fed the P-supplemented diet compared to the birds fed the control diets. This study suggests that probiotic supplementation in particular, and to an intermediate extent ground thyme supplementation in diets of broiler, resulted in chicks with favorably improved blood biochemical parameters and mineral utilization, compared to the birds fed diets supplemented with avilamycin or without any supplementation.

  7. Improving the Yield and Nutritional Quality of Forage Crops

    Directory of Open Access Journals (Sweden)

    Nicola M. Capstaff

    2018-04-01

    Full Text Available Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

  8. Territorial defense of the red-whiskered bulbul, Pycnonotus jocosus (Pycnonotidae, in a semi-wild habitat of the bird farm

    Directory of Open Access Journals (Sweden)

    Sunthorn Sotthibandhu

    2003-09-01

    Full Text Available The territorial behavior of the red-whiskered bulbul, Pycnonotus jocosus, was studied in the semiwild habitat of a bird farm compound in the District of Chana, Songkhla Province, the south of Thailand. The male and female birds were bred and reared in the farm till they reached maturity following which they were released to the wild. A mating pair was later formed and their territory established in the farm area. A decoy was used to simulate a natural intruder to the defended area. Ten test stations were sited in the four cardinal points of the compass and with reference to the farmhouse. The experiments were conducted during the pre-nesting and nesting periods. It was found that territorial boundary was marked by the resident male’s aggressive calls and threat displays to the decoy. The territory covered an area of approximately 0.3 hectare in which it was used for foraging and nesting. The size remained the same in both pre-nesting and nesting periods, but the territorial behavior during the nesting period was evidently more vigorous than that in the pre-nesting period. The intensities of territorial behavior had been hypothesized to be associated with diurnal foraging rhythms. But the finding was contradictory to this prediction. There was no significant difference in the intensity of territorial behavior (P > 0.05 at the three time regimes in the morning, at noon, and in the afternoon. It was suggested that the resident bird’s aggressive behavior might be associated with the degree of hunger pang.

  9. The possible hindrance of a 10 MW wind farm along the Noordermeerdijk in the Noordoostpolder, Netherlands, for birds

    International Nuclear Information System (INIS)

    Van den Bergh, L.M.J.; Spaans, A.L.

    1993-01-01

    The title farm comprises 14 two-bladed 750 kW wind turbines. Hindrance of wind turbines are collisions with the wind turbines and in the wake behind the blades and loss or disintegration of the natural habitat because of the presence of the wind turbines (aspect of disturbance). The title study is focused on counting the number of collision bird victims per year, and analyzing the disturbance effects on hibernating and foraging birds. It appeared that almost 150 to more than 1500 birds will collide with one of the 16 wind turbines. A few hundred tufted ducks, some tens of pochard and some tens of wild ducks per kilometer of the array will leave their natural habitat. Based on the results it is concluded that the site south of the kilometre marker 7.0 is preferred to the site directly south of kilometre marker 5.0. It is also concluded that the above-mentioned array is preferred to a wind turbine array of 16 wind turbines of 500 kW each. The results of the investigation on that array are published in a separate report for which a separate abstract has been prepared. 2 figs., 6 tabs., 2 appendices, 34 refs

  10. Utilization of Swamp Forages from South Kalimantan on Local Goat Performances

    Directory of Open Access Journals (Sweden)

    T. Rostini

    2014-04-01

    Full Text Available Forages in swamp area consist of grass and legumes that have good productivity and nutrient quality. This research was aimed to evaluate the potency of swamp forage on digestibility and performance of goats. There were 24 local male goats aged 10-12 months with initial body weight of 13.10±1.55 kg, allocated into 6 treatments. Those were control (R0: 60% grass and 40% legumes; (R1: 60% swamp forages and 40% concentrate; (R2: 100% swamp forages; (R3: 100% swamp forage hay; (R4: 100% swamp forage silage; (R5: 100% haylage swamp forages. Results showed that silage treatment significantly increased (P<0.05 consumption and digestibility. Swamp forages could be utilized well by preservation (silage, hay, and haylage. Ensilage of swamp forages increased protein content from 13.72% to 14.02%, protein intake (74.62 g/d, dry matter intake (532.11 g/d, nitrogen free extract intake (257.39 g/d, with total body weight gain (3.5 kg in eight weeks and average daily gain (62.60 g/d. It is concluded that ensilage of swamp forages (R4 is very potential to be utilized as forage source for ruminants such as goats.

  11. Genetic stock compositions and natal origin of green turtle (Chelonia mydas foraging at Brunei Bay

    Directory of Open Access Journals (Sweden)

    Juanita Joseph

    2016-04-01

    Full Text Available Knowledge of genetics composition and growth stages of endangered green turtles, as well as the connectivity between nesting and foraging grounds is important for effective conservation. A total of 42 green turtles were captured at Brunei Bay with curved carapace length ranging from 43.8 to 102.0 cm, and most sampled individuals were adults and large juveniles. Twelve haplotypes were revealed in mitochondrial DNA control region sequences. Most haplotypes contained identical sequences to haplotypes previously found in rookeries in the Western Pacific, Southeast Asia, and the Indian Ocean. Haplotype and nucleotide diversity indices of the Brunei Bay were 0.8444±0.0390 and 0.009350±0.004964, respectively. Mixed-stock analysis (for both uninformative and informative prior weighting by population size estimated the main contribution from the Southeast Asian rookeries of the Sulu Sea (mean ≥45.31%, Peninsular Malaysia (mean ≥17.42%, and Sarawak (mean ≥12.46%. Particularly, contribution from the Sulu Sea rookery was estimated to be the highest and lower confidence intervals were more than zero (≥24.36%. When estimating contributions by region rather than individual rookeries, results showed that Brunei Bay was sourced mainly from the Southeast Asian rookeries. The results suggest an ontogenetic shift in foraging grounds and provide conservation implications for Southeast Asian green turtles.

  12. Estimated Number of Birds Killed by House Cats (Felis catus in Canada

    Directory of Open Access Journals (Sweden)

    Peter Blancher

    2013-12-01

    Full Text Available Predation by house cats (Felis catus is one of the largest human-related sources of mortality for wild birds in the United States and elsewhere, and has been implicated in extinctions and population declines of several species. However, relatively little is known about this topic in Canada. The objectives of this study were to provide plausible estimates for the number of birds killed by house cats in Canada, identify information that would help improve those estimates, and identify species potentially vulnerable to population impacts. In total, cats are estimated to kill between 100 and 350 million birds per year in Canada (> 95% of estimates were in this range, with the majority likely to be killed by feral cats. This range of estimates is based on surveys indicating that Canadians own about 8.5 million pet cats, a rough approximation of 1.4 to 4.2 million feral cats, and literature values of predation rates from studies conducted elsewhere. Reliability of the total kill estimate would be improved most by better knowledge of feral cat numbers and diet in Canada, though any data on birds killed by cats in Canada would be helpful. These estimates suggest that 2-7% of birds in southern Canada are killed by cats per year. Even at the low end, predation by house cats is probably the largest human-related source of bird mortality in Canada. Many species of birds are potentially vulnerable to at least local population impacts in southern Canada, by virtue of nesting or feeding on or near ground level, and habitat choices that bring them into contact with human-dominated landscapes where cats are abundant. Because cat predation is likely to remain a primary source of bird mortality in Canada for some time, this issue needs more scientific attention in Canada.

  13. Relationship between legacy and emerging organic pollutants in Antarctic seabirds and their foraging ecology as shown by δ13C and δ15N.

    Science.gov (United States)

    Mello, Flávia V; Roscales, Jose L; Guida, Yago S; Menezes, Jorge F S; Vicente, Alba; Costa, Erli S; Jiménez, Begoña; Torres, João Paulo M

    2016-12-15

    Foraging ecology and the marine regions exploited by Antarctic seabirds outside of breeding strongly influence their exposure to persistent organic pollutants (POPs). However, relationships between them are largely unknown, an important knowledge gap given that many species are capital breeders and POPs may be deleterious to seabirds. This study investigates the relationship between Antarctic seabird foraging ecology (measured by δ 13 C and δ 15 N) and POPs accumulated in their eggs prior to breeding. Organochlorinated pesticides, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and dechlorane plus (DP) were measured in eggs of chinstrap, Adélie, and gentoo penguins (Pygoscelis antarctica, P. adeliae, P. papua), as well as south polar skua (Catharacta maccormicki), sampled on King George Island. Total POP levels were as follows: skua (3210±3330ng/g lipid weight)>chinstrap (338±128ng/g)>Adélie (287±43.3ng/g)>gentoo (252±49.4ng/g). Trophic position and pre-breeding foraging sites were important in explaining POP accumulation patterns across species. The most recalcitrant compounds were preferentially accumulated in skuas, occupying one trophic level above penguins. In contrast, their Antarctic endemism, coupled with influence from cold condensation of pollutants, likely contributed to penguins exhibiting higher concentrations of more volatile compounds (e.g., hexachlorobenzene, PCB-28 and -52) than skuas. Regional differences in penguin pre-breeding foraging areas did not significantly affect their POP burdens, whereas the trans-equatorial migration and foraging sites of skuas were strongly reflected in their pollutant profiles, especially for PBDEs and DPs. Overall, our results provide new insights on migratory birds as biovectors of POPs, including non-globally regulated compounds such as DP, from northern regions to Antarctica. Copyright © 2016. Published by Elsevier B.V.

  14. Urban gardens promote bee foraging over natural habitats and plantations.

    Science.gov (United States)

    Kaluza, Benjamin F; Wallace, Helen; Heard, Tim A; Klein, Alexandra-Maria; Leonhardt, Sara D

    2016-03-01

    Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.

  15. 76 FR 32224 - Migratory Birds; Take of Migratory Birds by the Armed Forces

    Science.gov (United States)

    2011-06-03

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service Migratory Birds; Take of Migratory Birds by... Forces to incidentally take migratory birds during approved military readiness activities without violating the Migratory Bird Treaty Act (MBTA). The Authorization Act provided this interim authority to...

  16. Fearful foragers: honey bees tune colony and individual foraging to multi-predator presence and food quality.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Fear can have strong ecosystem effects by giving predators a role disproportionate to their actual kill rates. In bees, fear is shown through foragers avoiding dangerous food sites, thereby reducing the fitness of pollinated plants. However, it remains unclear how fear affects pollinators in a complex natural scenario involving multiple predator species and different patch qualities. We studied hornets, Vespa velutina (smaller and V. tropica (bigger preying upon the Asian honey bee, Apis cerana in China. Hornets hunted bees on flowers and were attacked by bee colonies. Bees treated the bigger hornet species (which is 4 fold more massive as more dangerous. It received 4.5 fold more attackers than the smaller hornet species. We tested bee responses to a three-feeder array with different hornet species and varying resource qualities. When all feeders offered 30% sucrose solution (w/w, colony foraging allocation, individual visits, and individual patch residence times were reduced according to the degree of danger. Predator presence reduced foraging visits by 55-79% and residence times by 17-33%. When feeders offered different reward levels (15%, 30%, or 45% sucrose, colony and individual foraging favored higher sugar concentrations. However, when balancing food quality against multiple threats (sweeter food corresponding to higher danger, colonies exhibited greater fear than individuals. Colonies decreased foraging at low and high danger patches. Individuals exhibited less fear and only decreased visits to the high danger patch. Contrasting individual with emergent colony-level effects of fear can thus illuminate how predators shape pollination by social bees.

  17. Characteristics of Urban Natural Areas Influencing Winter Bird Use in Southern Ontario, Canada

    Science.gov (United States)

    Smith, Paul G. R.

    2007-03-01

    Characteristics of urban natural areas and surrounding landscapes were identified that best explain winter bird use for 28 urban natural areas in southern Ontario, Canada. The research confirms for winter birds the importance of area (size) and natural vegetation, rather than managed, horticultural parkland, within urban natural areas as well as percent urban land use and natural habitat in surrounding landscapes. Alien bird density and percent ground feeding species increased with percent surrounding urban land use. Higher percent forest cover was associated with higher percentages of forest, bark feeding, small (species. Natural area size (ha) was related to higher species richness, lower evenness and higher percentages of insectivorous, forest interior, area-sensitive, upper canopy, bark feeding, and non-resident species. Higher number of habitat types within natural areas and percent natural habitat in surrounding landscapes were also associated with higher species richness. Common, resident bird species dominated small areas (20 ha start to support some area-sensitive species. Areas similar to rural forests had >25% insectivores, >25% forest interior species, >25% small species, and species. Indicator species separated urban natural areas from rural habitats and ordination placed urban natural areas along a gradient between urban development and undisturbed, rural forests. More attention is needed on issues of winter bird conservation in urban landscapes.

  18. 7 CFR 457.117 - Forage production crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117 Forage..., or a mixture thereof, or other species as shown in the Actuarial Documents. Harvest—Removal of forage... different price elections by type, in which case you may select one price election for each forage type...

  19. Offspring Hg exposure relates to parental feeding strategies in a generalist bird with strong individual foraging specialization.

    Science.gov (United States)

    Santos, Cátia S A; Blondel, Léa; Sotillo, Alejandro; Müller, Wendt; Stienen, Eric W M; Boeckx, Pascal; Soares, Amadeu M V M; Monteiro, Marta S; Loureiro, Susana; de Neve, Liesbeth; Lens, Luc

    2017-12-01

    Generalist species can potentially exploit a wide variety of resources, but at the individual level they often show a certain degree of foraging specialization. Specific foraging strategies, however, may increase exposure to environmental contaminants that can alter the cost-benefit balance of consuming particular food items. The Lesser Black-backed Gull (Larus fuscus) is known to opportunistically feed on a wide range of marine and terrestrial prey that differ in contaminant load, such as mercury (Hg) that strongly biomagnifies through the aquatic food web. The hypothesis tested in this study were: i) a predominant use of marine prey by females during egg-formation and by both parents during chick rearing increases the exposure to Hg during embryonic development and chick growth, and ii) this affects parental investment in clutch volume, chick growth and body condition. Total Hg burden and isotopic signatures of carbon (δ 13 C) and nitrogen (δ 15 N) were determined for eggs, down feathers, and primary feathers of L. fuscus chicks collected at a coastal colony in Belgium. As expected, eggs and feathers of chicks from parents with a stable isotope signature that suggested a predominantly marine diet had higher levels of Hg. The use of marine resources by females during the egg-formation period positively correlated to maternal investment in egg size, though entailing the cost of increased Hg-concentrations which in turn negatively affected clutch volume. Furthermore, it is shown that the use of chick down feathers is a suitable matrix to non-lethally estimate Hg concentrations in eggs. Contrary to our expectations, no relationship between Hg exposure and chick growth or chick body condition was found, which may be due the low concentrations found. We conclude that currently Hg contamination does not constitute a risk for development and condition of L. fuscus offspring at the levels currently observed at the Belgian coast. Copyright © 2017 Elsevier B.V. All

  20. Do night-active birds lack daily melatonin rhythms? A case study comparing a diurnal and a nocturnal-foraging gull species

    NARCIS (Netherlands)

    Wikelski, M; Tarlow, EM; Eising, CM; Groothuis, TGG; Gwinner, E; Tarlow, Elisa M.; Groothuis, Ton G.G.; Bairlein, F.

    Plasma melatonin concentrations in most animals investigated so far increase at night regardless of whether individuals are day or night active. Nevertheless, daily melatonin amplitudes are often seasonally adjusted to ecological conditions, with birds that breed at high latitudes and migrate during

  1. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China.

    Science.gov (United States)

    Hsieh, Ying-Hen; Wu, Jianhong; Fang, Jian; Yang, Yong; Lou, Jie

    2014-01-01

    From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10-5 [3.08*10-5, 3.23*10-5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.

  2. Joint review of related contracts on bird populations in the Ravenglass Estuary

    International Nuclear Information System (INIS)

    Anderson, N.; Evans, P.R.; Lowe, V.P.W.

    1987-10-01

    Black-headed Gulls breeding at Ravenglass (and at other coastal sites in Cumbria) fed exclusively inland during the breeding season and so they and their young could not have acquired any radionuclides present in the estuarine muds and invertebrates. Levels in the invertebrates and in gull tissues were low; they were slightly higher in Shelducks, which feed on estuarine invertebrates but have nested successfully at Ravenglass in recent years. Gulls and two other ground-nesting bird species have suffered severe disturbance and predation by foxes in recent springs at Ravenglass; Shelducks nest in burrows and have escaped such effects. Levels of radionuclides in birds, particularly gulls, are too low to have caused breeding failures at Ravenglass. (author)

  3. Review: Feeding conserved forage to horses: recent advances and recommendations.

    Science.gov (United States)

    Harris, P A; Ellis, A D; Fradinho, M J; Jansson, A; Julliand, V; Luthersson, N; Santos, A S; Vervuert, I

    2017-06-01

    The horse is a non-ruminant herbivore adapted to eating plant-fibre or forage-based diets. Some horses are stabled for most or the majority of the day with limited or no access to fresh pasture and are fed preserved forage typically as hay or haylage and sometimes silage. This raises questions with respect to the quality and suitability of these preserved forages (considering production, nutritional content, digestibility as well as hygiene) and required quantities. Especially for performance horses, forage is often replaced with energy dense feedstuffs which can result in a reduction in the proportion of the diet that is forage based. This may adversely affect the health, welfare, behaviour and even performance of the horse. In the past 20 years a large body of research work has contributed to a better and deeper understanding of equine forage needs and the physiological and behavioural consequences if these are not met. Recent nutrient requirement systems have incorporated some, but not all, of this new knowledge into their recommendations. This review paper amalgamates recommendations based on the latest understanding in forage feeding for horses, defining forage types and preservation methods, hygienic quality, feed intake behaviour, typical nutrient composition, digestion and digestibility as well as health and performance implications. Based on this, consensual applied recommendations for feeding preserved forages are provided.

  4. Developing Cyber Foraging Applications for Portable Devices

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2008-01-01

    This paper presents the Locusts cyber foraging framework. Cyber foraging is the opportunistic use of computing resources available in the nearby environment, and using such resources thus fall into the category of distributed computing. Furthermore, for the resources to be used efficiently, paral...

  5. Forage: a sensitive indicator of airborne radioactivity

    International Nuclear Information System (INIS)

    Jackson, W.M.; Noakes, J.E.; Spaulding, J.D.

    1981-01-01

    This paper presents the results of using Ge(Li) γ-ray spectroscopy to measure radioactivity concentration of forage in the vicinity of the Joseph M. Farley Nuclear Plant, Houston County, AL., over a 31/2 yr period. The report period includes 2 yr of pre-operational and 11/2 yr of operational sampling. Although the objective of forage sampling was the measurement of manmade airborne fallout radioactivity, several natural radioisotopes were also found to be present. A summary of natural radioactivity data for all samples measured during the period from August 1975 to December 1978 is given. Approximately 10 days after each of four Chinese atmospheric nuclear tests conducted during the sampling period fresh fission product fallout was measured on the forage. The information from these nuclear tests shows forage sampling to be a convenient and sensitive monitoring tool for airborne fallout radioactivity. (author)

  6. Comparative Effect of Sole Forage and Mixed Concentrate-Forage ...

    African Journals Online (AJOL)

    There was no statistical (P>0.05) difference in average intake of forage between the two treatment groups. Economically, Treatment 1 proves to be better for the enhancement of body weight in growing rabbits than Treatment 2. Key words: Weaner rabbits,Poultry grower mesh, Tridax procumbens, Feed intake,Body weight ...

  7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for diving birds, gulls, terns, passerine birds, pelagic birds, raptors, shorebirds, wading birds, and...

  8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for alcids, diving birds, gulls, terns, passerine birds, pelagic birds, raptors, shorebirds, wading birds,...

  9. How extensive is the effect of modern farming on bird communities in a sand dune desert?

    Directory of Open Access Journals (Sweden)

    Faris Khoury

    2009-12-01

    Full Text Available Bird community structure and diversity measures in sand dune habitats far from and close to modern farms in Wadi Araba, south-west Jordan, were compared using 52 line transects for breeding birds and habitat variables. A change in the bird community of sand dunes surrounding farming projects was measured to a distance of 1 km, but could neither be related to changes in habitat structure nor to the activity of op- portunistic predators (Red Fox as these did not vary significantly between the two samples. The farms included lines of trees and offered a constant source of water, which attracted a variety of opportunistic species, thus increasing bird diversity and total bird abundances. The absence of characteristic ground-dwelling species of open sand dune habitats in the structurally intact sand dunes surrounding farms was likely to be the result of localized, but effectively far-reaching habitat modification (farms acting as barriers and/or competition with some of the opportunistic species, which were common around farms.

  10. Hive Relocation Does Not Adversely Affect Honey Bee (Hymenoptera: Apidae Foraging

    Directory of Open Access Journals (Sweden)

    Fiona C. Riddell Pearce

    2013-01-01

    Full Text Available Honey bees, Apis mellifera, face major challenges including diseases and reduced food availability due to agricultural intensification. Additionally, migratory beekeeping may subject colonies to a moving stress, both during the move itself and after the move, from the bees having to forage in a novel environment where they have no knowledge of flower locations. This study investigated the latter. We moved three colonies housed in observation hives onto the campus from a site 26 km away and compared their foraging performance to three similarly sized colonies at the same location that had not been moved. We obtained data on (1 foraging performance by calculating distance by decoding waggle dances, (2 hive foraging rate by counting forager departure rate, (3 forage quality by assessing sugar content of nectar from returning foragers, and (4 forager success by calculating the proportion of bees returning to the nest entrance with nectar in their crop. We repeated this 3 times (August 2010, October 2010, and June 2011 to encompass any seasonal effects. The data show no consistent difference in foraging performance of moved versus resident hives. Overall the results suggest that moving to a new location does not adversely affect the foraging success of honey bees.

  11. 7 CFR 407.13 - Group risk plan for forage.

    Science.gov (United States)

    2010-01-01

    ... acres of hay in the county, as specified in the actuarial documents. The actuarial documents will... a period for forage regrowth. 2. Crop Insured The insured crop will be the forage types shown on the... the Group Risk Plan Common Policy, acreage seeded to forage after July 1 of the previous crop year...

  12. Conservation of forest birds: evidence of a shifting baseline in community structure.

    Directory of Open Access Journals (Sweden)

    Chadwick D Rittenhouse

    2010-08-01

    Full Text Available Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance.We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period and modest losses in abundance (-28.7 - -10.2 individuals per route that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States.Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years. Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United

  13. Screamy Bird

    DEFF Research Database (Denmark)

    Tarby, Sara; Cermak, Daniel

    2016-01-01

    Sara Tarby, Daniel Cermak-Sassenrath. Screamy Bird. Digital game. Kulturnatten 2016, Danish Science Ministry, Copenhagen, DK, Oct 14, 2016.......Sara Tarby, Daniel Cermak-Sassenrath. Screamy Bird. Digital game. Kulturnatten 2016, Danish Science Ministry, Copenhagen, DK, Oct 14, 2016....

  14. Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur.

    Directory of Open Access Journals (Sweden)

    Stefan M Böhm

    2011-04-01

    Full Text Available The intensive foraging of insectivorous birds and bats is well known to reduce the density of arboreal herbivorous arthropods but quantification of collateral leaf damage remains limited for temperate forest canopies. We conducted exclusion experiments with nets in the crowns of young and mature oaks, Quercus robur, in south and central Germany to investigate the extent to which aerial vertebrates reduce herbivory through predation. We repeatedly estimated leaf damage throughout the vegetation period. Exclusion of birds and bats led to a distinct increase in arthropod herbivory, emphasizing the prominent role of vertebrate predators in controlling arthropods. Leaf damage (e.g., number of holes differed strongly between sites and was 59% higher in south Germany, where species richness of vertebrate predators and relative oak density were lower compared with our other study site in central Germany. The effects of bird and bat exclusion on herbivory were 19% greater on young than on mature trees in south Germany. Our results support previous studies that have demonstrated clear effects of insectivorous vertebrates on leaf damage through the control of herbivorous arthropods. Moreover, our comparative approach on quantification of leaf damage highlights the importance of local attributes such as tree age, forest composition and species richness of vertebrate predators for control of arthropod herbivory.

  15. Invasive rats strengthen predation pressure on bird eggs in a South Pacific island rainforest.

    Science.gov (United States)

    Duron, Quiterie; Bourguet, Edouard; De Meringo, Hélène; Millon, Alexandre; Vidal, Eric

    2017-12-01

    Invasive rats ( Rattus spp.) are known to have pervasive impacts on island birds, particularly on their nesting success. To conserve or restore bird populations, numerous invasive rat control or eradication projects are undertaken on islands worldwide. However, such projects represent a huge investment and the decision-making process requires proper assessment of rat impacts. Here, we assessed the influence of two sympatric invasive rats ( Rattus rattus and R. exulans ) on native bird eggs in a New Caledonian rainforest, using artificial bird-nest monitoring. A total of 178 artificial nests containing two eggs of three different sizes were placed either on the ground or 1.5 m high and monitored at the start of the birds' breeding season. Overall, 12.4% of the nests were depredated during the first 7 days. At site 1, where nests were monitored during 16 days, 41.8% of the nests were depredated. The main predator was the native crow Corvus moneduloides , responsible for 62.9% of the overall predation events. Rats were responsible for only 22.9% of the events, and ate only small and medium eggs at both heights. Our experiment suggests that in New Caledonia, predation pressure by rats strengthens overall bird-nest predation, adding to that by native predators. Experimental rat control operations may allow reduced predation pressure on nests as well as the recording of biodiversity responses after rat population reduction.

  16. Subalpine bumble bee foraging distances and densities in relation to flower availability.

    Science.gov (United States)

    Elliott, Susan E

    2009-06-01

    Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.

  17. Selection indicates preference in diverse habitats: a ground-nesting bird (Charadrius melodus) using reservoir shoreline.

    Science.gov (United States)

    Anteau, Michael J; Sherfy, Mark H; Wiltermuth, Mark T

    2012-01-01

    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m(2)) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  18. Birds and Bird Habitat: What Are the Risks from Industrial Wind Turbine Exposure?

    Science.gov (United States)

    Sprague, Terry; Harrington, M. Elizabeth; Krogh, Carmen M. E.

    2011-01-01

    Bird kill rate and disruption of habitat has been reported when industrial wind turbines are introduced into migratory bird paths or other environments. While the literature could be more complete regarding the documentation of negative effects on birds and bird habitats during the planning, construction, and operation of wind power projects,…

  19. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  20. SILAGE QUALITY OF CORN AND SORGHUM ADDED WITH FORAGE PEANUTS

    Directory of Open Access Journals (Sweden)

    WALKÍRIA GUIMARÃES CARVALHO

    2016-01-01

    Full Text Available Corn and sorghum are standard silage crops because of their fermentative characteristics. While corn and sorghum silages have lower crude protein (CP contents than other crops, intercropping with legumes can increase CP content. Furthermore, one way to increase CP content is the addition of legumes to silage. Consequently, the research objective was to evaluate the fermentative and bromatological characteristics of corn (Zea mays and sorghum (Sorghum bicolor silages added with forage peanuts (Arachis pintoi. The experimental design was completely randomized with four replicates. The treatments consisted of corn silage, sorghum silage, forage peanut silage, corn silage with 30% forage peanut, and sorghum silage with 30% forage peanut. The results showed that the corn and sorghum added with peanut helped to improve the silage fermentative and bromatological characteristics, proving to be an efficient technique for silage quality. The forage peanut silage had lower fermentative characteristics than the corn and sorghum silages. However, the forage peanut silage had a greater CP content, which increased the protein contents of the corn and sorghum silages when intercropped with forage peanuts.

  1. Solent Disturbance and Mitigation Project Phase II: Predicting the impact of human disturbance on overwintering birds in the Solent.

    OpenAIRE

    Stillman, Richard A.; West, Andrew D.; Clarke, Ralph T.; Liley, D.

    2012-01-01

    The Solent coastline provides feeding grounds for internationally protected populations of overwintering waders and wildfowl, and is also extensively used for recreation. In response to concerns over the impact of recreational pressure on birds within protected areas in the Solent, the Solent Forum initiated the Solent Disturbance and Mitigation Project to determine visitor access patterns around the coast and how their activities may influence the birds. The project has been divided into two...

  2. Biosecurity and bird movement practices in upland game bird facilities in the United States.

    Science.gov (United States)

    Slota, Katharine E; Hill, Ashley E; Keefe, Thomas J; Bowen, Richard A; Pabilonia, Kristy L

    2011-06-01

    Since 1996, the emergence of Asian-origin highly pathogenic avian influenza subtype H5N1 has spurred great concern for the global poultry industry. In the United States, there is concern over the potential of a foreign avian disease incursion into the country. Noncommercial poultry operations, such as upland game bird facilities in the United States, may serve as a potential source of avian disease introduction to other bird populations including the commercial poultry industry, backyard flocks, or wildlife. In order to evaluate how to prevent disease transmission from these facilities to other populations, we examined biosecurity practices and bird movement within the upland game bird industry in the United States. Persons that held a current permit to keep, breed, or release upland game birds were surveyed for information on biosecurity practices, flock and release environments, and bird movement parameters. Biosecurity practices vary greatly among permit holders. Many facilities allow for interaction between wild birds and pen-reared birds, and there is regular long-distance movement of live adult birds among facilities. Results suggest that upland game bird facilities should be targeted for biosecurity education and disease surveillance efforts.

  3. Phenotypic divergence among west European populations of Reed Bunting Emberiza schoeniclus: the effects of migratory and foraging behaviours.

    Directory of Open Access Journals (Sweden)

    Júlio M Neto

    Full Text Available Divergent selection and local adaptation are responsible for many phenotypic differences between populations, potentially leading to speciation through the evolution of reproductive barriers. Here we evaluated the morphometric divergence among west European populations of Reed Bunting in order to determine the extent of local adaptation relative to two important selection pressures often associated with speciation in birds: migration and diet. We show that, as expected by theory, migratory E. s. schoeniclus had longer and more pointed wings and a slightly smaller body mass than the resident subspecies, with the exception of E. s. lusitanica, which despite having rounder wings was the smallest of all subspecies. Tail length, however, did not vary according to the expectation (shorter tails in migrants probably because it is strongly correlated with wing length and might take longer to evolve. E. s. witherbyi, which feed on insects hiding inside reed stems during the winter, had a very thick, stubby bill. In contrast, northern populations, which feed on seeds, had thinner bills. Despite being much smaller, the southern E. s. lusitanica had a significantly thicker, longer bill than migratory E. s. schoeniclus, whereas birds from the UK population had significantly shorter, thinner bills. Geometric morphometric analyses revealed that the southern subspecies have a more convex culmen than E. s. schoeniclus, and E. s. lusitanica differs from the nominate subspecies in bill shape to a greater extent than in linear bill measurements, especially in males. Birds with a more convex culmen are thought to exert a greater strength at the bill tip, which is in agreement with their feeding technique. Overall, the three subspecies occurring in Western Europe differ in a variety of traits following the patterns predicted from their migratory and foraging behaviours, strongly suggesting that these birds have became locally adapted through natural selection.

  4. The effects of food presentation and microhabitat upon resource monopoly in a ground-foraging ant (Hymenoptera: Formicidae community

    Directory of Open Access Journals (Sweden)

    Terrence P McGlynn

    2000-06-01

    Full Text Available In Neotropical wet forests several species of omnivorous, resource-defending ants, live and forage in close proximity to one another. Although the forest floor is heterogeneous in microhabitat and food quantity, little is known about the impact of microhabitat and food variation upon resource monopoly among ants. We investigated how food type and microhabitat influence food monopoly in resource-defending ants in old-growth tropical wet forest in the Caribbean lowlands of Costa Rica. We measured several microhabitat characteristics at 66 points in a 0.5 hectare plot, and baited each point with two categories of tuna bait. These baits were presented in "split" and "clumped" arrangements. We measured the frequency of bait monopoly by a single species, as well as the number of recruited ant foragers at a bait. Out of five common species, two (Wasmannia auropunctata and Pheidole simonsi more frequently monopolized one bait type over the other, and one (P. simonsi recruited more ants to the split baits. We then considered the recruitment response by all ant species in the community. We found that the frequency of monopoly, sharing, and the absence of ants at a given point in the rainforest differed with bait type. The frequency of monopoly was associated with microhabitat type in two out of eight microhabitat variables (leaf litter depth and palms; variation in two other types (canopy tree distance and leafcutter ant trails was associated with changes in forager number. In at least two ant species, food presentation affected monopoly at baits; among all resource-defending ants, the microhabitats where ants foraged for food and the type of food located determined in part the frequency of monopoly and the number of foragers at the food item. These results suggest that the location and presentation of food items determines in part which ant species will utilize the resource.En los bosques húmedos de la Región Neotropical conviven varias especies de

  5. Long bone cross-sectional geometric properties of Later Stone Age foragers and herder�foragers

    Directory of Open Access Journals (Sweden)

    Michelle E. Cameron

    2014-09-01

    Full Text Available Diaphyseal cross-sectional geometry can be used to infer activity patterns in archaeological populations. We examined the cross-sectional geometric (CSG properties of adult Later Stone Age (LSA herder-forager long bones from the inland lower Orange River Valley of South Africa (n=5 m, 13 f. We then compared their CSG properties to LSA forager adults from the coastal fynbos (n=23 m, 14 f and forest (n=17 m, 19 f regions, building on a previous report (Stock and Pfeiffer, 2004. The periosteal mould method was used to quantify total subperiosteal area, torsional strength, bilateral asymmetry and diaphyseal circularity (Imax/Imin at the mid-distal (35% location of upper arms (humeri and the mid-shaft (50% location of upper legs (femora. Maximum humerus and femur lengths were similar among the three samples, suggesting that adult stature was similar in all three regions. When compared to the previous study, CSG property values obtained using the periosteal mould method correlated well, and there were no significant differences between data collected using the different methods. No statistically significant differences were found among the humerus or femur CSG properties from the different regions. This finding suggests that all individuals undertook similar volitional habitual activities in regard to their upper limbs, and also had similar degrees of terrestrial mobility. These results indicate relative behavioural homogeneity among LSA foragers and herder foragers from South Africa. The small degree of regional variation apparent among the three samples may reflect local ecology and the subsistence demands affecting populations in these different regions.

  6. Systematic temporal patterns in the relationship between housing development and forest bird biodiversity.

    Science.gov (United States)

    Pidgeon, Anna M; Flather, Curtis H; Radeloff, Volker C; Lepczyk, Christopher A; Keuler, Nicholas S; Wood, Eric M; Stewart, Susan I; Hammer, Roger B

    2014-10-01

    As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale-dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2-phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low-density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long-term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship

  7. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.

    Science.gov (United States)

    Cantalapiedra-Hijar, G; Yáñez-Ruiz, D R; Martín-García, A I; Molina-Alcaide, E

    2009-02-01

    The effects of forage type and forage:concentrate ratio (F:C) on apparent nutrient digestibility, ruminal fermentation, and microbial growth were investigated in goats. A comparison between liquid (LAB) and solid (SAB)-associated bacteria to estimate microbial N flow (MNF) from urinary purine derivative excretion was also examined. Treatments were a 2 x 2 factorial arrangement of forage type (grass hay vs. alfalfa hay) and high vs. low F:C (70:30 and 30:70, respectively). Four ruminally cannulated goats were fed, at maintenance intake, 4 experimental diets according to a 4 x 4 Latin square design. High-concentrate diets resulted in greater (P 0.05) when diets included alfalfa hay. Total protozoa numbers and holotricha proportion were greater and less (P forage used. The MNF measured in goats fed different diets was influenced by the bacterial pellet (LAB or SAB). In addition, the purine bases:N ratio values found were different from those reported in the literature, which underlines the need for these variables to be analyzed directly in pellets isolated from specific animals and experimental conditions.

  8. Wind power and bird kills

    International Nuclear Information System (INIS)

    Raynolds, M.

    1998-01-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy

  9. Wind power and bird kills

    Energy Technology Data Exchange (ETDEWEB)

    Raynolds, M.

    1998-12-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy.

  10. Environmental disturbance and conservation of marine and shoreline birds on the west coast of Vancouver Island

    International Nuclear Information System (INIS)

    Morgan, K.H.; Butler, R.W.; Vermeer, R.W.

    1992-01-01

    Loss of habitat and oiling of birds represent two major threats to marine and shoreline bird populations on Vancouver Island's west coast, since their effects are widespread and cumulative. Offshore tanker traffic and local inshore shipments of petroleum products expose the coast to high risks of oiling. Large numbers of birds are most at risk when concentrated in relatively small areas, such as highly productive feeding areas, at communal roosting sites, and around nesting colonies. Logging of mature and old-growth forests has led to destruction of the nesting habitat of marbled murrelets (Brachyramphus marmoratus), while industrial development of estuaries, mudflats, and spawning grounds of Pacific herring (Clupea harengus pallasi) has diminished feeding habitats for other marine and shoreline birds. Fisheries operations, human disturbance of colonies, and introduced predators, notably the raccoon (Procyon lotor) and mink (Mustela vison), have impacted upon local populations. Management actions and research needs to mitigate these threats are addressed. 40 refs

  11. Work or sleep? : honeybee foragers opportunistically nap during the day when forage is not available

    OpenAIRE

    Klein, Barrett; Seeley, Thomas D.

    2011-01-01

    Shifts in work schedules test humans’ capacity to be flexible in the timing of both work and sleep. Honeybee, Apis mellifera, foragers also shift their work schedules, but how flexible they are in the timing of sleep as they shift the timing of work is unknown, despite the importance of colony-level plasticity in the face of a changing environment. We hypothesized that sleep schedules of foragers are not fixed and instead vary depending on the time when food is available. We trained bees to v...

  12. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2015-05-01

    Full Text Available One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM model. Three different basic simulation scenarios (with irrigation were carried out using forage crops (namely maize, soybean and sorghum for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.

  13. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options.

    Science.gov (United States)

    Islam, M R; Garcia, S C; Clark, C E F; Kerrisk, K L

    2015-05-01

    One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.

  14. 76 FR 19875 - Migratory Bird Hunting; Proposed 2011-12 Migratory Game Bird Hunting Regulations (Preliminary...

    Science.gov (United States)

    2011-04-08

    ..., carriage, or export of any * * * bird, or any part, nest, or egg'' of migratory game birds can take place... 50 CFR Part 20 Migratory Bird Hunting; Proposed 2011-12 Migratory Game Bird Hunting Regulations (Preliminary) With Requests for Indian Tribal Proposals and Requests for 2013 Spring and Summer Migratory Bird...

  15. Predation risk and optimal foraging trade-off in the demography and spacing of the George River Herd, 1958 to 1993

    Directory of Open Access Journals (Sweden)

    Arthur T. Bergerud

    2003-04-01

    Full Text Available The behavior options of feeding animals lie on a continuum between energy maximization and minimization of predation risk. We studied the distribution, mobility, and energy budgets of the George River herd, Ungava from 1974 to 1993. We arranged the annual cycle into 6 phases where we argue that the importance between the priorities of optimal foraging and predation risk change between periods. At calving, risk is more important than foraging for females but males take more risk to optimally forage. During the mosquito season, insect avoidance takes priority over risk and for¬aging. Optimal foraging takes precedent over risk in the late summer and fall and it is at this time that the herd expanded its range relative to numbers and forage abundance. In the winter (December to mid-March animals sought restricted localized ranges with low snow cover to reduce predation risk. The spring migration of females may have increased risk during the interval the females were moving back to the tundra to give birth to their neonates on the low risk calv¬ing ground. In May, females sought early greens near treeline, which may have increased risk in order to provide maximum nutrition to their fetuses in the last weeks of pregnancy. The ancestors of the George River Herd during the Pleistocene, 18 000 yr. BP may have reduced predation risk by spacing-out in the Appalachian Mountains, removed from the major specie of the megafauna in the lowlands. With global warming, it is argued the major problem for caribou will be increased wolf predation rather than changing forage and nutritional regimes. It is essential that First Nation residents of the North maintain their option to manage wolf numbers if excessive predation in the future adversely affects the migratory herds of the Northwest Territories and Ungava.

  16. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    Directory of Open Access Journals (Sweden)

    Bronwyn Price

    Full Text Available In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha and landscape (100-1000s ha scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  17. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    Science.gov (United States)

    Price, Bronwyn; McAlpine, Clive A; Kutt, Alex S; Ward, Doug; Phinn, Stuart R; Ludwig, John A

    2013-01-01

    In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha) and landscape (100-1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  18. Annotated Bibliography of Bird Hazards to Aircraft: Bird Strike Committee Citations 1967-1997

    National Research Council Canada - National Science Library

    Short, Jeffrey

    1998-01-01

    .... This annotated bibliography of bird hazards to aircraft, termed ABBHA, is a compilation of citations with abstracts on a wide range of related topics such as bird strike tolerance engineering, bird...

  19. 78 FR 53217 - Migratory Bird Hunting; Migratory Bird Hunting Regulations on Certain Federal Indian Reservations...

    Science.gov (United States)

    2013-08-28

    ..., and by what means such birds or any part, nest, or egg thereof may be taken, hunted, captured, killed... Service 50 CFR Part 20 Migratory Bird Hunting; Migratory Bird Hunting Regulations on Certain Federal...-FXMB1231099BPP0] RIN 1018-AY87 Migratory Bird Hunting; Migratory Bird Hunting Regulations on Certain Federal...

  20. Scheduling and development support in the Scavenger cyber foraging system

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2010-01-01

    Cyber foraging is a pervasive computing technique where small mobile devices offload resource intensive tasks to stronger computing machinery in the vicinity. One of the main challenges within cyber foraging is that it is very difficult to develop cyber foraging enabled applications. An applicati...