WorldWideScience

Sample records for ground effect parameters

  1. Soft Soil Site Characterization on the Coast of Yantai and Its Effect on Ground Motion Parameters

    Institute of Scientific and Technical Information of China (English)

    Lü Yuejun; Tang Rongyu; Peng Yanju

    2005-01-01

    According to the Chinese GB50011-2001 code and the recommended provisions of FEMANEHRP and EUROCODE 8, by using shear wave velocity and borehole data, the site classification is evaluated for a typical soft soil site on the Yantai seacoast. The site seismic ground motion effect is analyzed and the influence of the coastal soil on design ground motion parameters is discussed. The results show that the brief site classification can not represent the real conditions of a soft soil site; the soft soil on the coast has a remarkable impact on the magnitude and spectrum of ground motion acceleration. The magnification on peak acceleration is bigger, however, due to the nonlinear deformation of the soil. The magnification is reduced nonlinearly with the increase of input ground motion; the spectrum is broadened and the characteristic period elongated on the soft soil site.

  2. Ground return effect on wave propagation parameters of overhead power cables

    Energy Technology Data Exchange (ETDEWEB)

    Malo Machado, V.M.; Brandao Faria, J.A.; Borges da Silva, J.F. (Centro de Electrotecnia da Univ. Tecnia de Lisboa, Inst. Superior Tecnico, Dept. of Electrical Engineering, 1096 Lisboa Codex (PT))

    1990-04-01

    The propagation properties of overhead three-phase cables are usually analyzed assuming that the pipe conductor establishes a perfect shielding between the inner conductor set and any outer conductor, i.e., the power cable is assumed as an isolated system. The influence of a lossy ground plane in the neighborhood of the cable is examined in this paper. The propagation parameters for both approaches are compared---significative differences being found to exist, in the zero mode, at low working frequencies.

  3. Ground measurements in Israel of solar events and their effects on the electrical parameters

    Science.gov (United States)

    Yaniv, Roy; Yair, Yoav; Price, Colin

    2017-04-01

    Solar events impact the Earth with fluxes of energetic particles or x-ray radiation and sometimes both together. The energetic particles induce pressure on the magnetosphere, generate enhanced and disruptive geomagnetic storms and deposit their energy to the Earth by altering the chemistry and changing the ionization in the upper atmosphere [Rycroft 2012]. Past measurements showed that in times of geomagnetic disturbances due to solar activity, an increase of the potential gradient (PG or Ez) and the conduction current (Jz) are observed on the day of the impact and on subsequent days [Cobb 1967, Reiter 1969, Nicoll and Harrison 2014, Elhalel et al., 2014, Mironova et al 2015]. We report on ground-based measurements of the Ez and Jz that were conducted continuously from two locations in Israel to measure the effect of solar events in low latitudes (30o35'N, 34o45'E 840m - Mitzpe Ramon and 33o18'N 35o47.2'E 2100m - Mt. Hermon) during days that were defined meteorologically as fair weather days. We present preliminary results of several case studies of solar events, that show a consistent increase of more than 50% in Ez during solar events compared to average fair weather values and to Kp and particles fluxes.

  4. Effects of Technological Parameters and Fishing Ground on Quality Attributes of Thawed, Chilled Cod Fillets Stored in Modified Atmosphere Packaging

    DEFF Research Database (Denmark)

    Bøknæs, Niels; Østerberg, Carsten; Sørensen, Rie

    2001-01-01

    Effects were studied of various technological parameters and fishing ground on quality attributes of thawed, chilled cod fillets stored in modified atmosphere packaging Frozen fillets of Baltic Sea and Barents Sea cod, representing two commercial fishing grounds, were used as raw material...... frozen storage is more appropriate for manufacturing of thawed chilled MAP cod fillets. During chill storage of thawed MAP Barents Sea fillets previously kept at -30degreesC for 15 weeks, significant growth of Photobacterium phosphoreum and production of trimethylamine were observed. Oil the contrary, P....... phosphoreum growth and trimethylamine production in thawed and chill-stored MAP Baltic Sea cod fillets were strongly inhibited after as little as 4 weeks of frozen storage at -30degreesC. Contents of trimethylamine oxide and NaCl were substantially higher in fillets of Barents Sea cod compared to fillets...

  5. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    these analyses. The amplification functions were extracted using the programme SITE_AMP (Boore, 2003), which computes amplifications based on the square root of the effective seismic impedance. Sensitivity indices were obtained by changing two parameters (thickness and shear-wave velocity) of the different layers while keeping the others constant. Additional analyses were carried out by producing various profiles within specified boundaries which are able to fit the experimental data. The analyses also show the important role that the shear-wave velocity profiles play in ground motion simulations. The results obtained highlight the importance of the correct knowledge of both the properties of the Upper Coralline Limestone and the Blue Clay, especially the Blue Clay thickness.

  6. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  7. Study of the Dependence Effectiveness of Low-potential Heat of the Ground and Atmospheric Air for Heating Buildings from Climatic parameters

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available The article represents the results of researches for division into districts of the territory of Russia and Europe by efficiency of using for the heat supply of buildings of low-potential thermal energy of ground and free air and their combination. While modeling of the heat regime of geothermal HPS in climatic conditions of different regions of the territory of Russia, the influence has been taken into account of the long-term extraction of geothermal heat energy on the ground heat regime as well as the influence of phase transitions of pore moisture in ground on the efficiency of operation of geothermal heat-pump heat-supply systems. While realization of the division into districts, the sinking of temperatures of ground massive was been taken into account which has been called by long-term extraction of the heat energy from the ground, and as calculation parameters of the heat energy from the ground, and as calculation parameters of ground massive temperatures, the ground temperatures were used which are waited for the 5-th year of operation of geothermal HPS.

  8. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients, but it required sensitivities that were one to two significant digits less accurate than those that required using parameter correlation coefficients; and (3) both the SVD and parameter correlation coefficients identified extremely correlated parameters better when the parameters...

  9. Mathematical Simulation of Transient Parameters of Vertical Grounding Electrodes

    Directory of Open Access Journals (Sweden)

    A. Dziaruhina

    2012-01-01

    Full Text Available The paper contains a mathematical simulation of transient parameters of vertical grounding electrodes for the first and subsequent short strokes of a lightning current. Results of the research show that transient resistances of grounding electrodes change appreciably in time. The transient resistances are always higher in the moment of voltage maximum then in the moment of current maximum. The dependences of transient resistances on grounding electrode length at different ground conductivity and lightning current parameters (first and subsequent short strokes are obtained in the paper. The paper proposes an approximate criterion for estimation of grounding electrode equivalent length at transient condition that considers short stroke parameters of the lightning current and ground conductivity.

  10. Effect of Oregano Essential Oil (Origanum vulgare subsp. hirtum) on the Storage Stability and Quality Parameters of Ground Chicken Breast Meat.

    Science.gov (United States)

    Al-Hijazeen, Marwan; Lee, Eun Joo; Mendonca, Aubrey; Ahn, Dong Uk

    2016-06-07

    A study was conducted to investigate the effect of oregano essential oil on the oxidative stability and color of raw and cooked chicken breast meats. Five treatments, including (1) control (none added); (2) 100 ppm oregano essential oil; (3) 300 ppm oregano essential oil; (4) 400 ppm oregano essential oil; and (5) 5 ppm butylated hydroxyanisole (BHA), were prepared with ground boneless, skinless chicken breast meat and used for both raw and cooked meat studies. For raw meat study, samples were individually packaged in oxygen-permeable bags and stored in a cold room (4 °C) for 7 days. For cooked meat study, the raw meat samples were vacuum-packaged in oxygen-impermeable vacuum bags and then cooked in-bag to an internal temperature of 75 °C. After cooling to room temperature, the cooked meats were repackaged in new oxygen-permeable bags and then stored at 4 °C for 7 days. Both raw and cooked meats were analyzed for lipid and protein oxidation, volatiles, and color at 0, 3, and 7 days of storage. Oregano essential oil significantly reduced (p oregano oil at 400 ppm showed the strongest effect for all these parameters. Hexanal was the major aldehyde, which was decreased significantly (p oregano oil treatment, in cooked meat. Overall, oregano essential oil at 100-400 ppm levels could be a good preservative that can replace the synthetic antioxidant in chicken meat.

  11. Four-Parameter Scheme for Ground Level of Helium Atom

    Institute of Scientific and Technical Information of China (English)

    HU Xian-Quan; XU Jie; MA Yong; ZHENG Rui-Lun

    2006-01-01

    In this paper, the ground state wave function of four parameters is developed and the expression of the ground state level is derived for the helium atom when the radial Schrodinger equation of the helium atom is solved.The ground energy is respectively computed by the optimized algorithms of Matlab 7.0 and the Monte Carlo methods.Furthermore, the ground state wave function is obtained. Compared with the experiment value and the value with the variation calculus in reference, the results of this paper show that in the four-parameter scheme, not only the calculations become more simplified and precise, but also the radial wave function of the helium atom meets the space symmetry automatically in ground state.

  12. Unsteady propulsion in ground effects

    Science.gov (United States)

    Park, Sung Goon; Kim, Boyoung; Sung, Hyung Jin

    2016-11-01

    Many animals in nature experience hydrodynamic benefits by swimming or flying near the ground, and this phenomenon is commonly called 'ground effect'. A flexible fin flapping near the ground was modelled, inspired by animals swimming. A transverse heaving motion was prescribed at the leading edge, and the posterior parts of the fin were passively fluttering by the fin-fluid interaction. The fin moved freely horizontally in a quiescent flow, by which the swimming speed was dynamically determined. The fin-fluid interaction was considered by using the penalty immersed boundary method. The kinematics of the flexible fin was altered by flapping near the ground, and the vortex structures generated in the wake were deflected upward, which was qualitatively analyzed by using the vortex dipole model. The swimming speed and the thrust force of the fin increased by the ground effects. The hydrodynamic changes from flapping near the ground affected the required power input in two opposite ways; the increased and decreased hydrodynamic pressures beneath the fin hindered the flapping motion, increasing the power input, while the transversely reduced flapping motion induced the decreased power input. The Froude propulsive efficiency was increased by swimming in the ground effects Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).

  13. Photophysical and photochemical parameters of octakis (benzylthio) phthalocyaninato zinc, aluminium and tin: Red shift index concept in solvent effect on the ground state absorption of zinc phthalocyanine derivatives

    Science.gov (United States)

    Akpe, Victor; Brismar, Hjalmar; Nyokong, Tebello; Osadebe, P. O.

    2010-12-01

    This paper addresses the synthesis of octa-substituted benzylthio metallophthalocyanines (OBTMPcs) that contain the central metal ions of Zn 2+, Al 3+ and Sn 4+. The ground state absorption of ZnPc(SR) 8 (OBTZnPc) along with the ZnPc derivatives, well documented in literature were used to study a new concept called the red shift index ( R sI ). The concept is based on the empirical values of R sI of the different complexes in solvent media. Unequivocally, parameters used in this paper show strong correlations that are consistent with the results obtained. For instance, R sI of the complexes tend to increase as the refractive index, n D, and solvent donor, DN, of solvent increases. Photodegradation (photobleaching) quantum yield, ϕ d measurements of these compounds show that they are highly photostable, ϕ d (0.03-0.33 × 10 -5). The triplet quantum yield, ϕ T (0.40-0.53) and the triplet lifetime, τ T (610-810 μs) are within the typical range for metallophthalocyanines in DMSO. The photosensitisation efficiency, SΔ, is relatively high for all the molecules (0.74-0.90).

  14. SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.

    Science.gov (United States)

    Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.

    1985-01-01

    Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.

  15. Replacing cottonseed meal with ground Prosopis juliflora pods; effect on intake, weight gain and carcass parameters of Afar sheep fed pasture hay basal diet.

    Science.gov (United States)

    Yasin, Mohammed; Animut, Getachew

    2014-08-01

    The experiment was conducted to determine the supplementary feeding value of ground Prosopis juliflora pod (Pjp) and cottonseed meal (CSM) and their mixtures on feed intake, body weight gain and carcass parameters of Afar sheep fed a basal diet of pasture hay. Twenty-five yearling fat-tailed Afar rams with mean initial live weight 17.24 ± 1.76 kg (mean ± SD) were used in a randomized complete block design. Animals were blocked on their initial body weight. The experiment was conducted for 12 weeks and carcass evaluation followed. Treatments were hay alone ad libitum (T 1) or with 300 g CSM (T 2), 300 g Pjp (T 5), 2:1 ratio (T 3) and 1:2 ratio of CSM : Pjp (T 4). The CP contents of the hay, CSM and Pjp were 10.5, 44.5 and 16.7 %, respectively. Hay DM intake was higher (P < 0.05) for non-supplemented and total DM intake was lower in non-supplemented. Average daily weight gain (ADG) was lower (P < 0.05) for T 1 compared to all supplemented treatments except T 5. Hot carcass weight and rib-eye muscle area also followed the same trend like that of ADG. Compared with feeding hay alone, supplementing with CSM or a mixture of CSM and Pjp appeared to be a better feeding strategy, biologically, for yearling Afar rams.

  16. estimation of climatic parameters from solar indices using ground ...

    African Journals Online (AJOL)

    User

    show the effect of solar forcing on the climatic parameters at different locations in Kenya. Solar ... the various layers of the Earth's atmosphere. .... near Kericho town, in the western high lands of ... Ocean environment that covers the whole of the.

  17. Parameter Estimation of a Ground Moving Target Using Image Sharpness Optimization.

    Science.gov (United States)

    Yu, Jing; Li, Yaan

    2016-06-30

    Motion parameter estimation of a ground moving target is an important issue in synthetic aperture radar ground moving target indication (SAR-GMTI) which has significant applications for civilian and military. The SAR image of a moving target may be displaced and defocused due to the radial and along-track velocity components, respectively. The sharpness cost function presents a measure of the degree of focus of the image. In this work, a new ground moving target parameter estimation algorithm based on the sharpness optimization criterion is proposed. The relationships between the quadratic phase errors and the target's velocity components are derived. Using two-dimensional searching of the sharpness cost function, we can obtain the velocity components of the target and the focused target image simultaneously. The proposed moving target parameter estimation method and image sharpness metrics are analyzed in detail. Finally, numerical results illustrate the effective and superior velocity estimation performance of the proposed method when compared to existing algorithms.

  18. FDTD simulation of LEMP propagation over lossy ground: Influence of distance, ground conductivity, and source parameters

    Science.gov (United States)

    Aoki, Masanori; Baba, Yoshihiro; Rakov, Vladimir A.

    2015-08-01

    We have computed lightning electromagnetic pulses (LEMPs), including the azimuthal magnetic field Hφ, vertical electric field Ez, and horizontal (radial) electric field Eh that propagated over 5 to 200 km of flat lossy ground, using the finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system. This is the first systematic full-wave study of LEMP propagation effects based on a realistic return-stroke model and including the complete return-stroke frequency range. Influences of the return-stroke wavefront speed (ranging from c/2 to c, where c is the speed of light), current risetime (ranging from 0.5 to 5 µs), and ground conductivity (ranging from 0.1 mS/m to ∞) on Hφ, Ez, and Eh have been investigated. Also, the FDTD-computed waveforms of Eh have been compared with the corresponding ones computed using the Cooray-Rubinstein formula. Peaks of Hφ, Ez, and Eh are nearly proportional to the return-stroke wavefront speed. The peak of Eh decreases with increasing current risetime, while those of Hφ and Ez are only slightly influenced by it. The peaks of Hφ and Ez are essentially independent of the ground conductivity at a distance of 5 km. Beyond this distance, they appreciably decrease relative to the perfectly conducting ground case, and the decrease is stronger for lower ground conductivity values. The peak of Eh increases with decreasing ground conductivity. The computed Eh/Ez is consistent with measurements of Thomson et al. (1988). The observed decrease of Ez peak and increase of Ez risetime due to propagation over 200 km of Florida soil are reasonably well reproduced by the FDTD simulation with ground conductivity of 1 mS/m.

  19. Effect of regularization parameters on geophysical reconstruction

    Institute of Scientific and Technical Information of China (English)

    Zhou Hui; Wang Zhaolei; Qiu Dongling; Li Guofa; Shen Jinsong

    2009-01-01

    In this paper we discuss the edge-preserving regularization method in the reconstruction of physical parameters from geophysical data such as seismic and ground-penetrating radar data.In the regularization method a potential function of model parameters and its corresponding functions are introduced.This method is stable and able to preserve boundaries, and protect resolution.The effect of regularization depends to a great extent on the suitable choice of regularization parameters.The influence of the edge-preserving parameters on the reconstruction results is investigated and the relationship between the regularization parameters and the error of data is described.

  20. Correlation study between ground motion intensity measure parameters and deformation demands for bilinear SDOF systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients ρ. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.

  1. NUMERICAL ANALYSIS OF THE GROUND EFFECT ON INSECT HOVERING

    Institute of Scientific and Technical Information of China (English)

    GAO Tong; LIU Nan-sheng; LU Xi-yun

    2008-01-01

    The ground effect on insect hovering is investigated using an immersed boundary-lattice Boltzmann method to solve the two-dimensional incompressible Navier-Stokes equations. A virtual model of an elliptic foil with oscillating translation and rotation near a ground is used. The objective of this study is to deal with the ground effect on the unsteady forces and vortical structures and to get the physical insights in the relevant mechanisms. Two typical insect hovering modes, I.e., normal and dragonfly hovering mode, are examined. Systematic computations have been carried out for some parameters, and the ground effect on the unsteady forces and vortical structures is analyzed.

  2. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  3. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  4. Parameter Estimation of a Ground Moving Target Using Image Sharpness Optimization

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2016-06-01

    Full Text Available Motion parameter estimation of a ground moving target is an important issue in synthetic aperture radar ground moving target indication (SAR-GMTI which has significant applications for civilian and military. The SAR image of a moving target may be displaced and defocused due to the radial and along-track velocity components, respectively. The sharpness cost function presents a measure of the degree of focus of the image. In this work, a new ground moving target parameter estimation algorithm based on the sharpness optimization criterion is proposed. The relationships between the quadratic phase errors and the target’s velocity components are derived. Using two-dimensional searching of the sharpness cost function, we can obtain the velocity components of the target and the focused target image simultaneously. The proposed moving target parameter estimation method and image sharpness metrics are analyzed in detail. Finally, numerical results illustrate the effective and superior velocity estimation performance of the proposed method when compared to existing algorithms.

  5. Lumped-Parameter Models for Windturbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting of a l...... ground. The importance of including an accurate model of the dynamic soil-structure interaction in an aeroelastic code is discussed. Furthermore, the sensibility of the response to changes in the soil properties is examined....

  6. Ground motion parameters of Shillong plateau: One of the most seismically active zones of northeastern India

    Institute of Scientific and Technical Information of China (English)

    Saurabh Baruah; Santanu Baruah; Naba Kumar Gogoi; Olga Erteleva; Felix Aptikaev; J.R.Kayal

    2009-01-01

    Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.

  7. Spectroscopic parameters of phosphine, PH3, in its ground vibrational state

    CERN Document Server

    Müller, Holger S P

    2013-01-01

    The ground state rotational spectrum of PH3 has been reanalyzed taking into account recently published very accurate data from sub-Doppler and conventional absorption spectroscopy measurements as well as previous data from the radio-frequency to the far-infrared regions. These data include Delta(J) = Delta(K) = 0 transitions between A1 and A2 levels, Delta(J) = 0, Delta(K) = 3 transitions as well as regular Delta(J) = 1, Delta(K) = 0 rotational transitions. Hyperfine splitting caused by the 31P and 1H nuclei has been considered, and the treatment of the A1/A2 splitting has been discussed briefly. Improved spectroscopic parameters have been obtained. Interestingly, the most pronounced effects occured for the hyperfine parameters.

  8. The Relationship Among Bedrock Seismic Ground Motion Parameters with Different Exceedance Probabilities in the Panxi Area

    Institute of Scientific and Technical Information of China (English)

    Lei Jiancheng

    2003-01-01

    Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake-resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11-89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map.

  9. Simulation of strong ground motion parameters of the 1 June 2013 Gulf of Suez earthquake, Egypt

    Science.gov (United States)

    Toni, Mostafa

    2017-06-01

    This article aims to simulate the ground motion parameters of the moderate magnitude (ML 5.1) June 1, 2013 Gulf of Suez earthquake, which represents the largest instrumental earthquake to be recorded in the middle part of the Gulf of Suez up to now. This event was felt in all cities located on both sides of the Gulf of Suez, with minor damage to property near the epicenter; however, no casualties were observed. The stochastic technique with the site-dependent spectral model is used to simulate the strong ground motion parameters of this earthquake in the cities located at the western side of the Gulf of Suez and north Red Sea namely: Suez, Ain Sokhna, Zafarana, Ras Gharib, and Hurghada. The presence of many tourist resorts and the increase in land use planning in the considered cities represent the motivation of the current study. The simulated parameters comprise the Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and Peak Ground Displacement (PGD), in addition to Pseudo Spectral Acceleration (PSA). The model developed for ground motion simulation is validated by using the recordings of three accelerographs installed around the epicenter of the investigated earthquake. Depending on the site effect that has been determined in the investigated areas by using geotechnical data (e.g., shear wave velocities and microtremor recordings), the investigated areas are classified into two zones (A and B). Zone A is characterized by higher site amplification than Zone B. The ground motion parameters are simulated at each zone in the considered areas. The results reveal that the highest values of PGA, PGV, and PGD are observed at Ras Gharib city (epicentral distance ∼ 11 km) as 67 cm/s2, 2.53 cm/s, and 0.45 cm respectively for Zone A, and as 26.5 cm/s2, 1.0 cm/s, and 0.2 cm respectively for Zone B, while the lowest values of PGA, PGV, and PGD are observed at Suez city (epicentral distance ∼ 190 km) as 3.0 cm/s2, 0.2 cm/s, and 0.05 cm/s respectively for Zone A

  10. (AJST) EFFECTS OF GROUND INSULATION AND GREENHOUSE ...

    African Journals Online (AJOL)

    NORBERT OPIYO AKECH

    of plastic digester to produce biogas under natural and greenhouse microenvironment. The specific ... and hydrogen sulphide (H2S). Biogas ... the effect of ground insulation on biogas production. ..... Methane Generation from Human, Animal.

  11. Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation

    Institute of Scientific and Technical Information of China (English)

    陈兴贤; 骆祖江; 周世玲

    2014-01-01

    In order to study the influences of hydraulic and mechanical parameters on land subsidence and ground fissure caused by groundwater exploitation, based on the Biot’s consolidation theory and combined with the nonlinear rheological theory of soil, the constitutive relation in Biot’s consolidation theory is extended to include the viscoelastic plasticity, and the dynamic relationship among the porosity, the hydraulic conductivity, the parameters of soil deformation and effective stress is also considered, a three-dimensional full coupling mathematical model is established and applied to the study of land subsidence and ground fissures of Cangzhou in Hebei Province, through the analysis of parameter sensitivity, the influences of soil hydraulic and mechanical parame-ters on land subsidence and ground fissure are revealed. It is shown that the elastic modulus E , the Poisson ratio, the specific yield m and the soil cohesion c have a great influence on the land subsidence and the ground fissures. In addition, the vertical hydraulic conductivity zk and the horizontal hydraulic conductivity ks also have a great influence on the land subsidence and the ground fissures.

  12. Prediction of ground motion parameters for the volcanic area of Mount Etna

    Science.gov (United States)

    Tusa, Giuseppina; Langer, Horst

    2016-01-01

    Ground motion prediction equations (GMPEs) have been derived for peak ground acceleration (PGA), velocity (PGV), and 5 % damped spectral acceleration (PSA) at frequencies between 0.1 and 10 Hz for the volcanic area of Mt. Etna. The dataset consists of 91 earthquakes with epicentral distances between 0.5 and 100 km. Given the specific characteristics of the area, we divided our data set into two groups: shallow events (SE, focal depth 5 km). The range of magnitude covered by the SE and the DE is 3.0 ≤ M L ≤ 4.3 and 3.0 ≤ M L ≤ 4.8, respectively. Signals of DE typically have more high frequencies than those of SE. These differences are clearly reflected in the empirical GMPEs of the two event groups. Empirical GMPEs were estimated considering several functional forms: Sabetta and Pugliese (Bull Seism Soc Am 77:1491-1513, 1987) (SP87), Ambraseys et al. (Earth Eng Struct Dyn 25:371-400, 1996) (AMB96), and Boore and Atkinson (Earth Spectra 24:99-138, 2008) (BA2008). From ANOVA, we learn that most of the errors in our GMPEs can be attributed to unmodeled site effects, whereas errors related to event parameters are limited. For DE, BA2008 outperforms the simpler models SP87 or AMB96. For SE, the simple SP87 is preferable considering the Bayesian Information Criterion since it proves more stable with respect to confidence and gives very similar or even lower prediction errors during cross-validation than the BA2008 model. We compared our results to relationships derived for Italy (ITA10, Bindi et al. Bull Earth Eng 99:2471-2488, 2011). For SE, the main differences are observed for distances greater than about 5 km for both horizontal and vertical PGAs. Conversely, for DE the ITA10 heavily overestimates the peak ground parameters for short distances.

  13. Solvent effect on absorption and fluorescence spectra of three biologically active carboxamides (C1, C2 and C3). Estimation of ground and excited state dipole moment from solvatochromic method using solvent polarity parameters.

    Science.gov (United States)

    Patil, N R; Melavanki, R M; Kapatkar, S B; Ayachit, N H; Saravanan, J

    2011-05-01

    The absorption and fluorescence spectra of three Carboxamides namely (E)-2-(4-Chlorobenzylideneamino)-N-(2-chlorophenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (C(1)), (E)-N-(3-Chlorophenyl)-2-(3, 4-dimethoxybenzylideneamino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (C(2)) and (E)-N-(3-Chlorophenyl)-2-(3,4,5-trimethoxybenzylideneamino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (C(3)) have been recorded at room temperature in solvents of different polarities using dielectric constant (ε) and refractive index (n). Experimental ground (μ(g)) and excited (μ(e)) state dipole moments are estimated by means of solvatochromic shift method and also the excited dipole moments are estimated in combination with ground state dipole moments. It was estimated that dipole moments of the excited state were higher than those of the ground state of all three molecules. Further, the changes in dipole moment (Δμ) were calculated both from solvatochromic shift method and on the basis of microscopic empirical solvent polarity parameter (E(N)(T)) and the values are compared.

  14. Influence of foundation type and soil stratification on ground vibration - a parameter study

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Prins, Joeri Nithan; Persson, Kent

    2016-01-01

    Vibration of machinery and construction work are major sources of noise and vibration pollution in the urban environment. The frequencies dominating the vibration, and the distances over which it spreads via the ground, depend on the source. However, soil stratification and foundation type have...... a significant influence. Thus, in order to achieve fair accuracy in the prediction of ground vibration caused by sources vibrating on a foundation, accurate models of the ground and foundation may be required. However, for assessment of vibration in the design phase, simple models may be preferred. The paper...... provides a parameter study regarding the influence of soil stratification and foundation type on the ground vibration at different distances away from the source. Especially, vibration levels caused by sources placed on surface footings and piles are compared, employing a three-dimensional numerical model...

  15. Probabilistic seismic hazard assessment in Greece – Part 1: Engineering ground motion parameters

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-01-01

    Full Text Available Seismic hazard assessment represents a basic tool for rational planning and designing in seismic prone areas. In the present study, a probabilistic seismic hazard assessment in terms of peak ground acceleration, peak ground velocity, Arias intensity and cumulative absolute velocity computed with a 0.05 g acceleration threshold, has been carried out for Greece. The output of the hazard computation produced probabilistic hazard maps for all the above parameters estimated for a fixed return period of 475 years. From these maps the estimated values are reported for 52 Greek municipalities. Additionally, we have obtained a set of probabilistic maps of engineering significance: a probabilistic macroseismic intensity map, depicting the Modified Mercalli Intensity scale obtained from the estimated peak ground velocity and a probabilistic seismic-landslide map based on a simplified conversion of the estimated Arias intensity and peak ground acceleration into Newmark's displacement.

  16. Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar

    Science.gov (United States)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.

    2012-12-01

    Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were

  17. Estimation of regression laws for ground motion parameters using as case of study the Amatrice earthquake

    Science.gov (United States)

    Tiberi, Lara; Costa, Giovanni

    2017-04-01

    The possibility to directly associate the damages to the ground motion parameters is always a great challenge, in particular for civil protections. Indeed a ground motion parameter, estimated in near real time that can express the damages occurred after an earthquake, is fundamental to arrange the first assistance after an event. The aim of this work is to contribute to the estimation of the ground motion parameter that better describes the observed intensity, immediately after an event. This can be done calculating for each ground motion parameter estimated in a near real time mode a regression law which correlates the above-mentioned parameter to the observed macro-seismic intensity. This estimation is done collecting high quality accelerometric data in near field, filtering them at different frequency steps. The regression laws are calculated using two different techniques: the non linear least-squares (NLLS) Marquardt-Levenberg algorithm and the orthogonal distance methodology (ODR). The limits of the first methodology are the needed of initial values for the parameters a and b (set 1.0 in this study), and the constraint that the independent variable must be known with greater accuracy than the dependent variable. While the second algorithm is based on the estimation of the errors perpendicular to the line, rather than just vertically. The vertical errors are just the errors in the 'y' direction, so only for the dependent variable whereas the perpendicular errors take into account errors for both the variables, the dependent and the independent. This makes possible also to directly invert the relation, so the a and b values can be used also to express the gmps as function of I. For each law the standard deviation and R2 value are estimated in order to test the quality and the reliability of the found relation. The Amatrice earthquake of 24th August of 2016 is used as case of study to test the goodness of the calculated regression laws.

  18. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    Directory of Open Access Journals (Sweden)

    Dmitry Kolomenskiy

    Full Text Available Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.

  19. Ground effects on magnetooptic Bragg cells

    Institute of Scientific and Technical Information of China (English)

    WEN Feng; WU BaoJian; QIU Kun

    2008-01-01

    Propagation equation of magnetostatic waves in an arbitrarily magnetized yttrium-iron-garnet/gadolinium-gallium-garnet waveguide coated with perfect metal planes is obtained using the method of the surface magnetic permeability. And ground effects on magnetooptic Bragg cells are investigated with the magnetooptic coupled-mode theory. Theoretical analysis indicates that, diffraction efficiency of guided optical waves can be improved by adjusting the spacing of the metal plane from the ferrite film, and ground effects on the diffraction efficiency will be enhanced using an appropriately tilted bias magnetic field. In the metal clad waveguide system, the magnetostatic wave frequency at which the diffraction efficiency peak is obtained corresponds to the "zero-dispersion" point. Performance of RF spectrum analyzers in this system can also be improved by comparing with the case of the sandwich waveguide. Therefore, magnetooptic Bragg cells with the metal clad waveguide are potential applications to the microwave communication and optical signal processing.

  20. Nonsearching Doppler parameter and velocity estimation method for synthetic aperture radar ground moving target imaging

    Science.gov (United States)

    Li, Zhongyu; Wu, Junjie; Huang, Yunlin; Yang, Haiguang; Yang, Jianyu

    2016-07-01

    For synthetic aperture radar (SAR), ground moving target (GMT) imaging necessitates the compensation of the additional azimuth modulation contributed by the unknown movement of the GMT. That is to say, it is necessary to estimate the Doppler parameters of the GMT without a priori knowledge of the GMT's motion parameters. This paper presents a Doppler parameter and velocity estimation method to refocus the GMT from its smeared response in SAR image. The main idea of this method is that an azimuth reference function is constructed to do the correlation integral with the azimuth signal of the GMT. And in general, the Doppler parameters of the presumed azimuth reference function are different from those of the GMT's azimuth signal since the velocity parameters of the GMT are unknown. Therefore, the correlation operation referred to here is actually mismatched, and the processing result of is shifted and defocused. The shifted and defocused result is utilized to get the real Doppler parameters and the velocity parameters of the GMT. One advantage of this method is that it is a nonsearching method. Another advantage is that both the Doppler centroid and the Doppler frequency rate of the GMT can be simultaneously estimated according to the relationships between the Doppler parameters and the smeared response of the GMT. In addition, the velocity of the GMT can also be obtained based on the estimated Doppler parameters. Numerical simulations and experimental data processing verify the validity of the method proposed.

  1. Aerodynamic ground effect in fruitfly sized insect takeoff

    CERN Document Server

    Kolomenskiy, Dmitry; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2015-01-01

    Flapping-wing takeoff is studied using numerical modelling, considering the voluntary takeoff of a fruitfly as reference. The parameters of the model are then varied to explore the possible effects of interaction between the flapping-wing model and the ground plane. The numerical method is based on a three-dimensional Navier-Stokes solver and a simple flight dynamics solver that accounts for the body weight, inertia, and the leg thrust. Forces, power and displacements are compared for takeoffs with and without ground effect. Natural voluntary takeoff of a fruitfly, modified takeoffs and hovering are analyzed. The results show that the ground effect during the natural voluntary takeoff is negligible. In the modified takeoffs, the ground effect does not produce any significant increase of the vertical force neither. Moreover, the vertical force even drops in most of the cases considered. There is a consistent increase of the horizontal force, and a decrease of the aerodynamic power, if the rate of climb is suff...

  2. The Relation Between Ground Acceleration and Earthquake Source Parameters: Theory and Observations

    Science.gov (United States)

    Lior, Itzhak; Ziv, Alon

    2017-04-01

    A simple relation between the root-mean-square of the ground acceleration and earthquake spectral (or source) parameters is introduced: 2 ----f20---- Arms = (2π )Ω0 √--( πκf0-)2, πκT 1 + 1.50.25 where Ω0 is the low frequency displacement spectral plateau, f0 is the corner frequency, κ is an attenuation parameter, and T is the data interval. This result uses the omega-squared model for far-field radiation, and accounts for site-specific attenuation. The main advantage of the new relation with respect to that of Hanks' (Hanks, 1979) is that it relaxes the simplifying assumption that the spectral corner frequency is much smaller than the maximum corner frequency resulting from attenuation, and that the spectrum may be approximated as being perfectly flat between the two frequencies. The newly proposed relation is tested using a composite dataset of earthquake records from Japan, California, Mexico and Taiwan. Excellent agreement is found between observed and predicted ground acceleration for any combination of corner frequencies. Thus, use of the above relation enables the extrapolation of ground motion prediction equation inferred from the frequent small magnitude earthquakes to the rare large magnitudes. This capacity is extremely useful near slow-slip plate boundaries, where the seismic moment release rates are low. Reference Hanks, T. C. (1979). b values and ω-γ seismic source models: implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion, J. Geophys. Res. 84, 2235-2241.

  3. AIRCRAFT MOTION PARAMETER ESTIMATION VIA MULTIPATH TIME-DELAY USING A SINGLE GROUND-BASED PASSIVE ACOUSTIC SENSOR

    Institute of Scientific and Technical Information of China (English)

    Dai Hongyan; Zou Hongxing

    2007-01-01

    The time-frequency analysis of the signal acquired by a single ground-based microphone shows a two-dimensional interference pattern in the time-frequency plane,which is caused by the time delay of the received signal emitted from a low flying aircraft via the direct path and the ground-reflected path.A model is developed for estimating the motion parameters of an aircraft flying along a straight line at a constant height and with a constant speed.Monte Carlo simulation results and experimental results are presented to validate the model,and an error analysis of the model is presented to verify the effectiveness of the estimation scheme advocated.

  4. Whole or ground millet grain provided in two supplementation frequencies for grazing beef cattle: nutritional parameters

    Directory of Open Access Journals (Sweden)

    João Marcos Beltrame Benatti

    2014-05-01

    Full Text Available The objective of this study was to evaluate the processing of millet grain provided at two supplementation frequencies for grazing beef cattle during the dry season on nutritional parameters. Five rumen-cannulated crossbred steers, with 24 to 26 months of age and average body weight of 428.6±26.06 kg, were assigned to a Latin square design (5 × 5 in a 2 × 2 + 1 factorial arrangement, as follows: two forms of millet grain (whole grains - or ground; WG - GG, two strategies of concentrate supplementation (daily distribution - 7X; or three times a week - 3X and a control treatment (mineral mixture - MM. Animals were kept in five paddocks of 0.24 ha each with Marandu grass pastures. Concentrate supplements were supplied at 2.00 and 4.66 kg/animal/day for treatments 7X and 3X, respectively. The concentrate supplementation enhanced the intake of total dry matter (DM and organic matter (OM and nutrients compared with mineral supplementation. No differences were found between dry matter intake and forage organic matter intake. The values of digestibility coefficients of DM, OM, ether extract, total carbohydrates and non-fiber carbohydrates were increased by concentrate supplementation. Regarding concentrations of rumen ammonia nitrogen, the interactions among time × treatment × day and day × treatment had effects on the measurements of ruminal pH. Plasma urea nitrogen, urinary urea excretion and urinary urea N excretion differed only between MM treatment and the others, with no interference of grain physical form and supplementation frequency on those variables. The millet grain processing does not alter forage intake, but improves digestibility. Daily supplementation increases digestibility of dry matter and neutral detergent fiber.

  5. Grounding Effect on Common Mode Interference of Underground Inverter

    Directory of Open Access Journals (Sweden)

    CHENG Qiang

    2013-09-01

    Full Text Available For the neutral point not grounded characteristics of underground power supply system in coal mine, this paper studied common mode equivalent circuit of underground PWM inverter, and extracted parasitic parameters of interference propagation path. The author established a common mode and differential mode model of underground inverter. Taking into account the rise time of PWM, the simulation results of conducted interference by Matlab software is compared with measurement spectrum on the AC side and motor side of converter, the difference is consistent showing that the proposed method has some validity. After Comparison of calculation results by Matlab simulation ,it can be concluded that ungrounded neutral of transformer could redue common mode current in PWM system, but not very effective, the most efficient way is to increase grounding  impedance of  inverter and motor.

  6. Environmental Effect / Impact Assessment of Industrial Effulent on Ground Water

    Directory of Open Access Journals (Sweden)

    Dr. Parmod Kumar

    2013-12-01

    Full Text Available In the present study the aim of investigation is physical and chemical parameters of ground water and soil. By selected Physical and chemical parameters it is found that (1.Biological oxygen demand (BOD and chemical oxygen demand (COD are directly proportional to each other where dissolved oxygen (DO is indirectly proportional to BOD and COD. (2. Total dissolved solids, alkalinity and hardness are significantly higher in pre monsoon and winter season as compared to monsoon season.(3. High values of different parameters of ground water sources indicate the influence of industrial wastes on ground water.

  7. Status Of Physico-Chemical Parameter Of Ground Water Of Gorakhpur City U.P. India

    Directory of Open Access Journals (Sweden)

    Priyanka Chaudhary

    2015-08-01

    Full Text Available ABSTRACT The ground water is most prime water which has multipurpose use ranging from drinking to industrial and agricultural uses. The continuously increase in the level of pollution of water is a serious problem. The city of Gorakhpur is not untouched with this serious issue .The pollution level of the major water sources in and around the city is increase rapidly. The main objective of the present study is to study the variation of ground water quality in Gorakhpur district by collecting 20 samples of water from hand pump from 20 locations well distributed with in Gorakhpur district were analyzed for different parameters such as pH electric conductivity chloride total free chlorine hardness fluoride nitrate iron Turbidity potassium. Groundwater is polluted from seepage pits refuse dumps septic tanks barnyards manures transport accident and different pollutant. Important sources of ground water pollution are sewage is dumped in shallow soak pits. It gives rise to cholera hepatitis dysenteries etc. especially in areas with high water table.

  8. A Bayesian and Physics-Based Ground Motion Parameters Map Generation System

    Science.gov (United States)

    Ramirez-Guzman, L.; Quiroz, A.; Sandoval, H.; Perez-Yanez, C.; Ruiz, A. L.; Delgado, R.; Macias, M. A.; Alcántara, L.

    2014-12-01

    We present the Ground Motion Parameters Map Generation (GMPMG) system developed by the Institute of Engineering at the National Autonomous University of Mexico (UNAM). The system delivers estimates of information associated with the social impact of earthquakes, engineering ground motion parameters (gmp), and macroseismic intensity maps. The gmp calculated are peak ground acceleration and velocity (pga and pgv) and response spectral acceleration (SA). The GMPMG relies on real-time data received from strong ground motion stations belonging to UNAM's networks throughout Mexico. Data are gathered via satellite and internet service providers, and managed with the data acquisition software Earthworm. The system is self-contained and can perform all calculations required for estimating gmp and intensity maps due to earthquakes, automatically or manually. An initial data processing, by baseline correcting and removing records containing glitches or low signal-to-noise ratio, is performed. The system then assigns a hypocentral location using first arrivals and a simplified 3D model, followed by a moment tensor inversion, which is performed using a pre-calculated Receiver Green's Tensors (RGT) database for a realistic 3D model of Mexico. A backup system to compute epicentral location and magnitude is in place. A Bayesian Kriging is employed to combine recorded values with grids of computed gmp. The latter are obtained by using appropriate ground motion prediction equations (for pgv, pga and SA with T=0.3, 0.5, 1 and 1.5 s ) and numerical simulations performed in real time, using the aforementioned RGT database (for SA with T=2, 2.5 and 3 s). Estimated intensity maps are then computed using SA(T=2S) to Modified Mercalli Intensity correlations derived for central Mexico. The maps are made available to the institutions in charge of the disaster prevention systems. In order to analyze the accuracy of the maps, we compare them against observations not considered in the

  9. Revisions to some parameters used in stochastic-method simulations of ground motion

    Science.gov (United States)

    Boore, David; Thompson, Eric M.

    2015-01-01

    The stochastic method of ground‐motion simulation specifies the amplitude spectrum as a function of magnitude (M) and distance (R). The manner in which the amplitude spectrum varies with M and R depends on physical‐based parameters that are often constrained by recorded motions for a particular region (e.g., stress parameter, geometrical spreading, quality factor, and crustal amplifications), which we refer to as the seismological model. The remaining ingredient for the stochastic method is the ground‐motion duration. Although the duration obviously affects the character of the ground motion in the time domain, it also significantly affects the response of a single‐degree‐of‐freedom oscillator. Recently published updates to the stochastic method include a new generalized double‐corner‐frequency source model, a new finite‐fault correction, a new parameterization of duration, and a new duration model for active crustal regions. In this article, we augment these updates with a new crustal amplification model and a new duration model for stable continental regions. Random‐vibration theory (RVT) provides a computationally efficient method to compute the peak oscillator response directly from the ground‐motion amplitude spectrum and duration. Because the correction factor used to account for the nonstationarity of the ground motion depends on the ground‐motion amplitude spectrum and duration, we also present new RVT correction factors for both active and stable regions.

  10. Assessment of changes in gait parameters and vertical ground reaction forces after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Bhargava P

    2007-01-01

    Full Text Available The principal objectives of arthroplasty are relief of pain and enhancement of range of motion. Currently, postoperative pain and functional capacity are assessed largely on the basis of subjective evaluation scores. Because of the lack of control inherent in this method it is often difficult to interpret data presented by different observers in the critical evaluation of surgical method, new components and modes of rehabilitation. Gait analysis is a rapid, simple and reliable method to assess functional outcome. This study was undertaken in an effort to evaluate the gait characteristics of patients who underwent arthroplasty, using an Ultraflex gait analyzer. Materials and Methods: The study was based on the assessment of gait and weight-bearing pattern of both hips in patients who underwent total hip replacement and its comparison with an age and sex-matched control group. Twenty subjects of total arthroplasty group having unilateral involvement, operated by posterior approach at our institution with a minimum six-month postoperative period were selected. Control group was age and sex-matched, randomly selected from the general population. Gait analysis was done using Ultraflex gait analyzer. Gait parameters and vertical ground reaction forces assessment was done by measuring the gait cycle properties, step time parameters and VGRF variables. Data of affected limb was compared with unaffected limb as well as control group to assess the weight-bearing pattern. Statistical analysis was done by′t′ test. Results: Frequency is reduced and gait cycle duration increased in total arthroplasty group as compared with control. Step time parameters including Step time, Stance time and Single support time are significantly reduced ( P value < .05 while Double support time and Single swing time are significantly increased ( P value < .05 in the THR group. Forces over each sensor are increased more on the unaffected limb of the THR group as compared to

  11. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    Science.gov (United States)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present inBi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely 241Am and 137Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  12. Effect of Correlations Between Model Parameters and Nuisance Parameters When Model Parameters are Fit to Data

    CERN Document Server

    Roe, Byron

    2013-01-01

    The effect of correlations between model parameters and nuisance parameters is discussed, in the context of fitting model parameters to data. Modifications to the usual $\\chi^2$ method are required. Fake data studies, as used at present, will not be optimum. Problems will occur for applications of the Maltoni-Schwetz \\cite{ms} theorem. Neutrino oscillations are used as examples, but the problems discussed here are general ones, which are often not addressed.

  13. Aerodynamics of flapping insect wing in inclined stroke plane hovering with ground effect

    Science.gov (United States)

    Gowda v, Krishne; Vengadesan, S.

    2014-11-01

    This work presents the time-varying aerodynamic forces and the unsteady flow structures of flapping insect wing in inclined stroke plane hovering with ground effect. Two-dimensional dragonfly model wing is chosen and the incompressible Navier-Stokes equations are solved numerically by using immersed boundary method. The main objective of the present work is to analyze the ground effect on the unsteady forces and vortical structures for the inclined stroke plane motions. We also investigate the influences of kinematics parameters such as Reynolds number (Re), stroke amplitude, wing rotational timing, for various distances between the airfoil and the ground. The effects of aforementioned parameters together with ground effect, on the stroke averaged force coefficients and regimes of force behavior are similar in both normal (horizontal) and inclined stroke plane motions. However, the evolution of the vortex structures which produces the effects are entirely different.

  14. Experimental study on working parameters of earth pressure balance shield machine tunneling in soft ground

    Institute of Scientific and Technical Information of China (English)

    Hehua ZHU; Shaoming LIAO; Qianwei XU; Qizhen ZHENG

    2008-01-01

    Deep sedimentary deposits of soft clays are widely distributed in coastal areas as well as many interior major cities in China. In order to study the stratum adapt-ability of earth pressure balance (EPB) shield machine tunneling in such types of soft ground, model tests of tunneling excavation, using the running tunnel of the Shanghai Metro Line M8 as a background, are carried out with different over burden ratios, opening rates of cutter head, driving speeds and rotation speeds of screw conveyor. Based on the test results, the interrelationships between chamber pressure and mucking efficiency, muck-ing rate and driving speed, thrust force and torque are obtained. The influences of tunnel depth, opening rate of cutter head and driving speed on thrust force and tor-que are revealed. Such findings can not only facilitate establishing relationships between shield working para-meters and soil properties, but also serve as a guide for the design and construction of shield tunnel in soft ground.

  15. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    Science.gov (United States)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  16. Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground

    Science.gov (United States)

    Proctor, Fred H.; Hamilton, David W.; Han, Jongil

    2000-01-01

    Numerical simulations are carried out with a three-dimensional Large-Eddy Simulation (LES) model to explore the sensitivity of vortex decay and transport in ground effect (IGE). The vortex decay rates are found to be strongly enhanced following maximum descent into ground effect. The nondimensional decay rate is found to be insensitive to the initial values of circulation, height, and vortex separation. The information gained from these simulations is used to construct a simple decay relationship. This relationship compares well with observed data from an IGE case study. Similarly, a relationship for lateral drift due to ground effect is constructed from the LES data. In the second part of this paper, vortex linking with the ground is investigated. Our numerical simulations of wake vortices for IGE show that a vortex may link with its image beneath the ground, if the intensity of the ambient turbulence is moderate to high. This linking with the ground (which is observed in real cases)gives the appearance of a vortex tube that bends to become vertically oriented and which terminates at the ground. From the simulations conducted, the linking time for vortices in the free atmosphere; i.e., a function of ambient turbulence intensity.

  17. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  18. Prediction of broadband ground-motion time histories: Hybrid low/high-frequency method with correlated random source parameters

    Science.gov (United States)

    Liu, P.; Archuleta, R.J.; Hartzell, S.H.

    2006-01-01

    We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (3D velocity structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been

  19. Cloud parameters using Ground Based Remote Sensing Systems and Satellites over urban coastal area

    Science.gov (United States)

    Han, Z. T.; Gross, B.; Moshary, F.; Wu, Y.; Ahmed, S. A.

    2013-12-01

    Determining cloud radiative and microphysical properties are very important as a means to assess their effect on earths energy balance. While MODIS and GOES have been used for estimating cloud properties, assessing cloud properties directly has been difficult due the lack of consistent ground based sensor measurements except in such established places such as the ARM site in Oklahoma. However, it is known that significant aerosol seeding from urban and/or maritime sources can modify cloud properties such as effective radius and cloud optical depth and therefore evaluation of satellite retrievals in such a unique area offers novel opportunities to assess the potential of satellite retrievals to distinguish these mechanisms In our study, we used a multi-filter rotating shadow band radiometer (MFRSR) and micro wave radiometer (MWR) to retrieve the cloud optical depth and cloud droplets effective radius . In particular, we make a statistical study during summer 2013 where water phase clouds dominate and assess the accuracy of both MODIS and GOES satellite cloud products including LWP, COD and Reff. Most importantly, we assess performance against satellite observing geometries. Much like previous studies at the ARM site, we observe significant biases in the effective radius when the solar zenith angle is too large. In addition, we show that biases are also sensitive to the LWP limiting such measurement s in assessing potential aerosol-cloud signatures Finally, we discuss preliminary aerosol-cloud interactions from our ground system where local lidar is used to assess aerosols below clouds and explore the Aerosol Cloud Index.

  20. An individual and dynamic Body Segment Inertial Parameter validation method using ground reaction forces.

    Science.gov (United States)

    Hansen, Clint; Venture, Gentiane; Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice

    2014-05-01

    Over the last decades a variety of research has been conducted with the goal to improve the Body Segment Inertial Parameters (BSIP) estimations but to our knowledge a real validation has never been completely successful, because no ground truth is available. The aim of this paper is to propose a validation method for a BSIP identification method (IM) and to confirm the results by comparing them with recalculated contact forces using inverse dynamics to those obtained by a force plate. Furthermore, the results are compared with the recently proposed estimation method by Dumas et al. (2007). Additionally, the results are cross validated with a high velocity overarm throwing movement. Throughout conditions higher correlations, smaller metrics and smaller RMSE can be found for the proposed BSIP estimation (IM) which shows its advantage compared to recently proposed methods as of Dumas et al. (2007). The purpose of the paper is to validate an already proposed method and to show that this method can be of significant advantage compared to conventional methods.

  1. Isoseismal map of the 2015 Nepal earthquake and its relationships with ground-motion parameters, distance and magnitude

    Science.gov (United States)

    Prajapati, Sanjay K.; Dadhich, Harendra K.; Chopra, Sumer

    2017-01-01

    A devastating earthquake of Mw 7.8 struck central Nepal on 25th April, 2015 (6:11:25 UT) which resulted in more than ∼9000 deaths, and destroyed millions of houses. Standing buildings, roads and electrical installations worth 25-30 billions of dollars are reduced to rubbles. The earthquake was widely felt in the northern parts of India and moderate damage have been observed in the northern part of UP and Bihar region of India. Maximum intensity IX, according to the USGS report, was observed in the meizoseismal zone, surrounding the Kathmandu region. In the present study, we have compiled available information from the print, electronic media and various reports of damages and other effects caused by the event, and interpreted them to obtain Modified Mercalli Intensities (MMI) at over 175 locations spread over Nepal and surrounding Indian and Tibet region. We have also obtained a number of strong motion recordings from India and Nepal seismic network and developed an empirical relationship between the MMI and peak ground acceleration (PGA), peak ground velocity (PGV). We have used least square regression technique to derive the empirical relation between the MMI and ground motion parameters and compared them with the empirical relationships available for other regions of the world. Further, seismic intensity information available for historical earthquakes, which have occurred in the Nepal Himalaya along with the present intensity data has been utilized for developing an attenuation relationship for the studied region using two step regression analyses. The derived attenuation relationship is useful for assessing damage of a potential future large earthquake (earthquake scenario-based planning purposes) in the region.

  2. Performance and Stability of a Winged Vehicle in Ground Effect

    CERN Document Server

    de Divitiis, Nicola

    2009-01-01

    Present work deals with the dynamics of vehicles which intentionally operate in the ground proximity. The dynamics in ground effect is influenced by the vehicle orientation with respect to the ground, since the aerodynamic force and moment coefficients, which in turn depend on height and angle of attack, also vary with the Euler angles. This feature, usually neglected in the applications, can be responsible for sizable variations of the aircraft performance and stability. A further effect, caused by the sink rate, determines unsteadiness that modifies the aerodynamic coefficients. In this work, an analytical formulation is proposed for the force and moment calculation in the presence of the ground and taking the aircraft attitude and sink rate into account. The aerodynamic coefficients are firstly calculated for a representative vehicle and its characteristics in ground effect are investigated. Performance and stability characteristics are then discussed with reference to significant equilibrium conditions, w...

  3. Ground motions and its effects in accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)

  4. Orientation effect on ground motion measurement for Mexican subduction earthquakes

    Institute of Scientific and Technical Information of China (English)

    H.P Hong; A. Pozos-Estrada; R. Gomez

    2009-01-01

    The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.

  5. Acoustic seafloor discrimination with echo shape parameters: A comparison with the ground truth

    NARCIS (Netherlands)

    Walree, P.A. van; Tȩgowski, J.; Laban, C.; Simons, D.G.

    2005-01-01

    Features extracted from echosounder bottom returns are compared with the ground truth in a North Sea survey area. The ground truth consists of 50 grab samples for which the grain size distribution, and the gravel and shell contents were determined. Echo envelopes are analysed for two single-beam ech

  6. Seismic microzoning from synthetic ground motion parameters Case study, Santiago de Cuba

    CERN Document Server

    Alvarez, L; Pico, R; Vaccari, F

    2003-01-01

    Synthetic seismograms (P - SV and SH waves) have been calculated along 6 profiles in Santiago de Cuba basin, with a cutoff frequency of 5 Hz, by using the hybrid approach (modal summation for a regional (ID) structure plus finite differences for a local (2D) structure embedded in the first). They correspond to a scenario earthquake of M sub S = 7 that may occur in Oriente fault zone, directly south of the city. As initial data for a seismic microzoning, the characterisation of earthquake effects has been made considering several relative (2D/1D) quantities (PGDR, PGVR, PGAR, DGAR, I sub A R etc.) and functions representative of the ground motion behaviour in soil (2D) with respect to bedrock (ID). The functions are the response spectra ratio RSR(f), already routinely used in this kind of work, and the elastic energy input ratio E sub I R(f), defined, for the first time, in this paper. These data, sampled at 105 sites within all the profiles have been classified in two steps, using logical combinatory algorith...

  7. Investigation of topographical effects on rupture dynamics and ground motions

    Science.gov (United States)

    Huang, H.; Chen, X.; Zhang, Z.

    2016-12-01

    Using the curved grid finite-difference method (CG-FDM), we model spontaneous dynamic rupture on vertical strike-slip faults with irregular free surfaces to investigate the effect of topography on near-source ground motion. Four groups of simulations, in which the epicentral distances from the topographical perturbations of the nucleation patch were varied, are modeled in this work. The simulated results show that the presence of irregular topography along the fault trace may increase the ground motion. Whether the irregular topography exhibits higher ground motion overall depends on the irregular topography's ability to prevent the sub-Rayleigh-to-supershear transition. When irregular topography prevents this transition, sub-Rayleigh rupture produces stronger ground motions than those of the sub-Rayleigh-to-supershear transition, although the moment magnitudes does not differ substantially between the two cases. To thoroughly understand the effects of irregular topography on near-source ground motion, we also model spontaneous dynamic rupture on a planar fault in full-space and half-space with varying initial shear stresses, and the corresponding modeling results indicate that the effect of initial shear stress on near-source ground motion is strong. These results may have implications for ground-motion prediction in future earthquakes involving geometrically complex faults.

  8. Estimating Hydraulic Parameters When Poroelastic Effects Are Significant

    Science.gov (United States)

    Berg, S.J.; Hsieh, P.A.; Illman, W.A.

    2011-01-01

    For almost 80 years, deformation-induced head changes caused by poroelastic effects have been observed during pumping tests in multilayered aquifer-aquitard systems. As water in the aquifer is released from compressive storage during pumping, the aquifer is deformed both in the horizontal and vertical directions. This deformation in the pumped aquifer causes deformation in the adjacent layers, resulting in changes in pore pressure that may produce drawdown curves that differ significantly from those predicted by traditional groundwater theory. Although these deformation-induced head changes have been analyzed in several studies by poroelasticity theory, there are at present no practical guidelines for the interpretation of pumping test data influenced by these effects. To investigate the impact that poroelastic effects during pumping tests have on the estimation of hydraulic parameters, we generate synthetic data for three different aquifer-aquitard settings using a poroelasticity model, and then analyze the synthetic data using type curves and parameter estimation techniques, both of which are based on traditional groundwater theory and do not account for poroelastic effects. Results show that even when poroelastic effects result in significant deformation-induced head changes, it is possible to obtain reasonable estimates of hydraulic parameters using methods based on traditional groundwater theory, as long as pumping is sufficiently long so that deformation-induced effects have largely dissipated. ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.

  9. Effective operator contributions to the oblique parameters

    CERN Document Server

    Sánchez-Colón, G

    1998-01-01

    We present a model and process independent study of the contributions from non-Standard Model physics to the oblique parameters S, T and U. We show that within an effective lagrangian parameterization the expressions for the oblique parameters in terms of observables are consistent, while those in terms of the vector-boson vacuum polarization tensors are ambiguous. We obtain the constraints on the scale of new physics derived from current data on S, T and U and note that deviations in U from its Standard Model value would favor a scenario where the underlying physics does not decouple.

  10. Effect of ground stress on hydraulic fracturing of methane well

    Institute of Scientific and Technical Information of China (English)

    DU Chun-zhi; MAO Xian-biao; MIAO Xie-xing; WANG Peng

    2008-01-01

    Most of the coal reservoirs in China are of low-permeability, so hydraulic fracturing is widely used to improve the permeability in the extraction of gas by ground drilling. The ground stress around the well was analyzed by using theory of elasticity. The pressure when the well fractured is formulated and the effect of ground stress on pressure is discussed. The effect of ground-stress-differences on hydraulic fracturing was analyzed by using the numerical software RFPA2D-Flow in reference to the tectonic stress in Jincheng coal area. The results show that: 1) the position where initial fracture appears is random and fracture branches emerge when the fractures expand if ground stresses in any two directions within a horizontal plane are equal; 2) otherwise, the fractures expand in general along the direction of maximum ground stress and the critical pressure decreases with increasing ground-stress-differences and 3) the preferred well-disposition pattern is diamond shaped. The preferred well spacing is 250 m×300 m. This study can provide a reference for the design of wells.

  11. Evaluation of hail suppression programme effectiveness using radar derived parameters

    Science.gov (United States)

    Tani, Satyanarayana; Paulitsch, Helmut; Teschl, Reinhard; Süsser-Rechberger, Barbara

    2016-04-01

    The objective of this study is evaluating "the operational hail suppression programme" in the province of Styria, Austria "for the year 2015". For the evaluation purpose the HAILSYS software tool was developed by integrating single polarization C-band weather radar data, aircraft trajectory, radiosonde freezing level data, hail events and crop damages information from the ground. The hail related radar derived parameters are: hail mass aloft, hail mass flux, probability of hail, vertical integrated hail mass, hail kinetic energy flux, and storm severity index. The spatial maps of hail kinetic energy and hail mass were developed to evaluate the seeding effect. The time history plots of vertical integrated hail mass, hail mass aloft and the probability of hail are drawn over an entire cell lifetime. The sensitivity and variation of radar hail parameters over time and associated changes due to cloud seeding will be presented.

  12. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model

    Science.gov (United States)

    Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad

    2016-09-01

    Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM

  13. Influence of foundation type and soil stratification on ground vibration - a parameter study

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Prins, Joeri Nithan; Persson, Kent

    2016-01-01

    Vibration of machinery and construction work are major sources of noise and vibration pollution in the urban environment. The frequencies dominating the vibration, and the distances over which it spreads via the ground, depend on the source. However, soil stratification and foundation type have...

  14. Dynamic Ground Effects Simulation Using OVERFLOW-D

    Science.gov (United States)

    Dwyer, Bill

    1999-01-01

    This presentation is broken into 5 logical sections. The Background Information section describes the technical issues being address by this study. The Approach section describes the organization of the contract effort which was laid out as the most effective means of quantifying, with validated methods, the magnitude of dynamic ground effects for the TCA (Technology Concept Aircraft) configuration. The Validation Case section describes the analysis of the XB-70 configuration in both static and dynamic ground effect, with comparisons to wind tunnel and flight test data. The TCA Analysis section then describes the application of the same codes and methodologies to the TCA in both static and dynamic ground effect. Comparisons are made between the static and dynamic, as well as to early static data from a recent wind tunnel test on the TCA configuration. Finally, the work to date is summarized and the future direction of this study is outlined.

  15. NQR parameters of complexes and polarizability effect.

    Science.gov (United States)

    Egorochkin, Alexey N; Kuznetsova, Olga V; Khamaletdinova, Nadiya M; Domratcheva-Lvova, Lada G

    2012-01-01

    The literature data on substituent influence on the nuclear quadrupole resonance frequencies (ν), quadrupole coupling constants (e(2) Qq ⋅ h(- 1) ), and asymmetry parameters (η) for 36 series of the H-complexes, charge-transfer complexes, transition metal complexes and other donor-acceptor complexes have been considered, using the correlation analysis. Generally the ν, e(2) Qq ⋅ h(- 1) , and η values were first established to depend on the inductive, resonance, polarizability, and steric effects of substituents. The presence or otherwise of certain effects as well as relation between their contributions are determined by the type of series. The polarizability effect owes its existence to the appearance of an excess charge on the indicator centre as a result of the complexation. The contribution of this effect ranges up to 75%.

  16. Bayesian parameter estimation for effective field theories

    CERN Document Server

    Wesolowski, S; Furnstahl, R J; Phillips, D R; Thapaliya, A

    2015-01-01

    We present procedures based on Bayesian statistics for effective field theory (EFT) parameter estimation from data. The extraction of low-energy constants (LECs) is guided by theoretical expectations that supplement such information in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools are developed that analyze the fit and ensure that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems and the extraction of LECs for the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.

  17. Bayesian parameter estimation for effective field theories

    Science.gov (United States)

    Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.

    2016-07-01

    We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.

  18. Lumped-Parameter Models for Wind-Turbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Liingaard, Morten

    2007-01-01

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computational model significantly. This may be obtained by the fitting of a ...... ground. The importance of including an accurate model of the dynamic soil-structure interaction in an aeroelastic code is discussed. Furthermore, the sensibility of the response to changes in the soil properties is examined....

  19. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-01

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  20. Procedure of evaluating parameters of inland earthquakes caused by long strike-slip faults for ground motion prediction

    Science.gov (United States)

    Ju, Dianshu; Dan, Kazuo; Fujiwara, Hiroyuki; Morikawa, Nobuyuki

    2016-04-01

    We proposed a procedure of evaluating fault parameters of asperity models for predicting strong ground motions from inland earthquakes caused by long strike-slip faults. In order to obtain averaged dynamic stress drops, we adopted the formula obtained by dynamic fault rupturing simulations for surface faults of the length from 15 to 100 km, because the formula of the averaged static stress drops for circular cracks, commonly adopted in existing procedures, cannot be applied to surface faults or long faults. The averaged dynamic stress drops were estimated to be 3.4 MPa over the entire fault and 12.2 MPa on the asperities, from the data of 10 earthquakes in Japan and 13 earthquakes in other countries. The procedure has a significant feature that the average slip on the seismic faults longer than about 80 km is constant, about 300 cm. In order to validate our proposed procedure, we made a model for a 141 km long strike-slip fault by our proposed procedure for strike-slip faults, predicted ground motions, and showed that the resultant motions agreed well with the records of the 1999 Kocaeli, Turkey, earthquake (Mw 7.6) and with the peak ground accelerations and peak ground velocities by the GMPE of Si and Midorikawa (1999).

  1. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  2. Experimental Investigation of Rotorcraft Outwash in Ground Effect

    Science.gov (United States)

    Tanner, Philip E.; Overmeyer, Austin D.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.

    2015-01-01

    The wake characteristics of a rotorcraft are affected by the proximity of a rotor to the ground surface, especially during hover. Ground effect is encountered when the rotor disk is within a distance of a few rotor radii above the ground surface and results in an increase in thrust for a given power relative to that same power condition with the rotor out of ground effect. Although this phenomenon has been highly documented and observed since the beginning of the helicopter age, there is still a relatively little amount of flow-field data existing to help understand its features. Joint Army and NASA testing was conducted at NASA Langley Research Center using a powered rotorcraft model in hover at various rotor heights and thrust conditions in order to contribute to the complete outwash data set. The measured data included outwash velocities and directions, rotor loads, fuselage loads, and ground pressures. The researchers observed a linear relationship between rotor height and percent download on the fuselage, peak mean outwash velocities occurring at radial stations between 1.7 and 1.8 r/R regardless of rotor height, and the measurement azimuthal dependence of the outwash profile for a model incorporating a fuselage. Comparisons to phase-locked PIV data showed similar contours but a more contracted wake boundary for the PIV data. This paper describes the test setup and presents some of the averaged results.

  3. Effect of electroconvulsive therapy on hematological parameters.

    Science.gov (United States)

    Chaturvedi, S; Chadda, R K; Rusia, U; Jain, N

    2001-11-30

    Although a complete blood count is part of the evaluation before the use of electroconvulsive therapy (ECT), there are no known hematological contraindications for the procedure. A preliminary study was done on 31 randomly selected psychiatric patients (chronic schizophrenia, n=10; acute depression, n=8; acute mania, n=6; acute psychosis, n=6; delusional disorder, n=1) receiving ECT to study its hematological effects. Blood samples were drawn just before and 0, 1 and 2 h after ECT. Hemoglobin (Hb%), total and differential leukocyte count (TLC and DLC), red blood cell (RBC) count, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and platelet count were measured on a fully automated hematology analyzer (Sysmex K-1000). Significant changes were found in TLC, percentage of polymorphs and lymphocytes, and Hb%. Changes in other parameters were not statistically significant. More such studies are needed to substantiate these observations and to understand the mechanism and implication of these effects.

  4. Robust parameter estimation for compact binaries with ground-based gravitational-wave observations using LALInference

    CERN Document Server

    Veitch, John; Farr, Benjamin; Farr, Will M; Graff, Philip; Vitale, Salvatore; Aylott, Ben; Blackburn, Kent; Christensen, Nelson; Coughlin, Michael; Del Pozzo, Walter; Feroz, Farhan; Gair, Jonathan; Haster, Carl-Johan; Kalogera, Vicky; Littenberg, Tyson; Mandel, Ilya; O'Shaughnessy, Richard; Pitkin, Matthew; Rodriguez, Carl; Röver, Christian; Sidery, Trevor; Smith, Rory; Van Der Sluys, Marc; Vecchio, Alberto; Vousden, Will; Wade, Leslie

    2014-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary coalescence (CBC) signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We are able to show using three independent sampling algorithms that our implementation consistently converges on the same results, giving confidence in the parameter estimates thus obtained. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star-black hole binary and a bin...

  5. Effectiveness of helicopter versus ground ambulance services for interfacility transport.

    Science.gov (United States)

    Arfken, C L; Shapiro, M J; Bessey, P Q; Littenberg, B

    1998-10-01

    Helicopters provide rapid interfacility transport, but the effect on patients is largely unknown. Patients requested to be transported between facilities by helicopter were followed prospectively to determine survival, disability, health status, and health care utilization. A total of 1,234 patients were transported by the primary aeromedical company; 153 patients were transported by ground and 25 patients were transported by other aeromedical services because of weather or unavailability of aircraft. There were no differences at 30 days for survivors in disability, health status, or health care utilization. Nineteen percent of helicopter-transported patients died compared with 15% of those transported by ground (p=0.21). The patients transported by helicopter did not have improved outcomes compared with patients transported by ground. These data argue against a large advantage of helicopters for interfacility transport. A randomized trial is needed to address these issues conclusively.

  6. Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the LALInference

    Science.gov (United States)

    Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.

    2015-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.

  7. Ground state of a confined Yukawa plasma including correlation effects

    CERN Document Server

    Henning, C; Filinov, A; Piel, A; Bonitz, M

    2007-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile \\cite{henning.pre06}. While the MF results are more accurate for weak screening, LDA with correlations included yields the proper description for large screening. By comparison with first-principle simulations for three-dimensional spherical Yukawa crystals we demonstrate that both approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  8. Characterization of the Aerodynamic Ground Effect and Its Influence in Multirotor Control

    National Research Council Canada - National Science Library

    Pedro Sanchez-Cuevas; Guillermo Heredia; Anibal Ollero

    2017-01-01

    This paper analyzes the ground effect in multirotors, that is, the change in the thrust generated by the rotors when flying close to the ground due to the interaction of the rotor airflow with the ground surface...

  9. Variations of the ionospheric parameters obtained from ground based measurements of ULF magnetic noise

    Science.gov (United States)

    Ermakova, Elena; Kotik, Dmitry; Bösinger, Tilmann

    2016-07-01

    The dynamics of the amplitude spectra and polarization parameter (epsilon)[1] of magnetic ULF noise were investigated during different seasons and high geomagnetic activity time using the data on the horizontal magnetic components monitoring at mid-latitude (New Life, Russia, 56 N, 46 E) and low-latitude stations (Crete, 35.15 N, 25.20 E). It was found that abrupt changes in the spectral polarization parameters can be linked as with variation of height of maximum and the electron density of the F-layer, and with a change in ionospheric parameters profiles at lower altitudes, for example, with the appearance of sporadic Es-layers and intermediate layers, located between the E and F-layers. It was detected the peculiarities in the daily dynamics of the epsilon parameter at low latitudes: a) the appearance in some cases more complicated than in the mid-latitudes, epsilon structure of the spectrum associated with the presence of two different values of the boundary frequency fB [2]; b) a decreasing of fB near local midnight observed in 70% of cases; c) observation of typical for dark time epsilon spectra after sunrise in the winter season. The numerical calculations of epsilon parameter were made using the IRI-2012 model with setting the models of sporadic and intermediate layers. The results revealed the dependence of the polarization spectra of the intensity and height of such thin layers. The specific changes in the electron density at altitudes of 80-350 km during the recovery phase of strong magnetic storms were defined basing on a comparative analysis of the experimental spectra and the results of the numerical calculations. References. 1. E. N. Ermakova, D. S. Kotik, A. V.Ryabov, A. V.Pershin, T. B.osinger, and Q. Zhou, Studying the variation of the broadband spectral maximum parameters in the natural ULF fields, Radiophysics and Quantum Electronics, Vol. 55, No. 10-11, March, 2013 p. 605-615. 2. T. Bosinger, A. G. Demekhov, E. N. Ermakova, C. Haldoupis and Q

  10. Solar eclipse effect on geomagnetic induction parameters

    Directory of Open Access Journals (Sweden)

    A. Ádám

    2005-12-01

    Full Text Available The 11 August 1999 total solar eclipse had been studied using a large array of stations in Central Europe (Bencze et al., 2005. According to the result of this study, the amplitudes of the field line resonance (FLR-type pulsations decreased in and around the dark spot by about a factor of 2, and this decrease moved with the velocity of the dark spot in the same direction. This decrease was interpreted as a switch-off of the FLR-type pulsations, due to a change in the eigenperiod of the field line as a consequence of a change in the charged particle distribution along the field line. An effect was also found in the phase of the (magnetic or electric perpendicular components.

    At the Nagycenk (NCK observatory lying in the zone of totality, both magnetic and electric records were available. The magnetotelluric (MT sounding curve computed by the usual method for the eclipse interval (08:00-14:00 UT fits the previously known standard curve extremely well. During the eclipse, however, impedance values in the FLR period range were highly scattered. The scatter remained as long as the eclipse lasted. Coherence values between magnetic and electric components decreased significantly. In contrast, an earlier similar switch-off of the FLR-type activity on the same day did not cause a similar scatter, in spite of a comparably low coherence. Thus, the lack of FLR-type activity disturbed the usual MT connection between the magnetic and electric components during the eclipse.

    The induction vector (tipper, especially its real part, shows a clear effect of the eclipse in the FLR period range (24-29 s, too. Both at NCK and at Bad Bergzabern (BBZ, westernmost station and longest FLR period, a definite decrease in the real tipper was ascertained during the totality. The average direction of the tipper did not change.

    Concerning both parameters, a random effect cannot fully

  11. Effects of process parameters on hydrothermal carbonization

    Science.gov (United States)

    Uddin, Md. Helal

    In recent years there has been increased research activity in renewable energy, especially upgrading widely available lignicellulosic biomass, in a bid to counter the increasing environmental concerns related with the use of fossil fuels. Hydrothermal carbonization (HTC), also known as wet torrefaction or hot water pretreatment, is a process for pretreatment of diverse lignocellulosic biomass feedstocks, where biomass is treated under subcritical water conditions in short contact time to produce high-value products. The products of this process are: a solid mass characterized as biochar/biocoal/biocarbon, which is homogeneous, energy dense, and hydrophobic; a liquid stream composed of five and six carbon sugars, various organic acids, and 5-HMF; and a gaseous stream, mainly CO2. A number of process parameters are considered important for the extensive application of the HTC process. Primarily, reaction temperature determines the characteristics of the products. In the solid product, the oxygen carbon ratio decreases with increasing reaction temperature and as a result, HTC biochar has the similar characteristics to low rank coal. However, liquid and gaseous stream compositions are largely correlated with the residence time. Biomass particle size can also limit the reaction kinetics due to the mass transfer effect. Recycling of process water can help to minimize the utility consumption and reduce the waste treatment cost as a result of less environmental impact. Loblolly pine was treated in hot compressed water at 200 °C, 230 °C, and 260 °C with 5:1 water:biomass mass ratio to investigate the effects of process parameters on HTC. The solid product were characterized by their mass yields, higher heating values (HHV), and equilibrium moisture content (EMC), while the liquid were characterized by their total organic carbon content and pH value.

  12. Effects of 3D random correlated velocity perturbations on predicted ground motions

    Science.gov (United States)

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  13. THE GROUNDING OF THE STRUCTURAL PARAMETERS OF THE AREAHLOBOYID RUSK SYNCHRONOUS CARDAN HINGE

    Directory of Open Access Journals (Sweden)

    A. Saniotskyi

    2015-02-01

    Full Text Available The method of calculation of structural parameters of the areahloboyid rusk synchronous cardan hinge with consideration of contact tensions in the mating surfaces is determined, the required torque in the input wave with a contact by using the Hertz’s theory of contact deformations is determined. The dependence of the maximum torque for different hyposizes of the cardan hinge is investigated. The dependences of the calculated maximum torque to the resistance of the material are demonstrated graphically in the logarithmic coordinate system.

  14. OPTIMUM PARAMETERS AND DESIGN OFTUNED MASS DAMPER FOR BUILDINGFRAMES UNDER GROUND ACCELERATION

    Institute of Scientific and Technical Information of China (English)

    李春祥

    2001-01-01

    For the purpose of comparison and applications, two criteria for the optimum searching are considered, which are the minimization of the minimum of the maximum dynamic magnification factor(Min. Min. Max. DMF) and the minimization of the minimum dynamic reduction factor (Min.Min.DRF). A study is carried out to investigate the applicability of designing TMD utilizing the unit modal participation factor. In addition, the design steps for the building frame with TMD are suggested. It is demonstrated that significant reduction in the response can be achieved by adopting the optimum TMD parameters in the present paper.

  15. Estimating the parameters of non-spinning binary black holes using ground-based gravitational-wave detectors: Statistical errors

    CERN Document Server

    Ajith, P

    2009-01-01

    (Abridged): We assess the statistical errors in estimating the parameters of non-spinning black-hole binaries using ground-based gravitational-wave detectors. While past assessments were based on only the inspiral/ring-down pieces of the coalescence signal, the recent progress in analytical and numerical relativity enables us to make more accurate projections using "complete" inspiral-merger-ringdown waveforms. We employ the Fisher matrix formalism to estimate how accurately the source parameters will be measurable using a single interferometer as well as a network of interferometers. Those estimates are further vetted by Monte-Carlo simulations. We find that the parameter accuracies of the complete waveform are, in general, significantly better than those of just the inspiral waveform in the case of binaries with total mass M > 20 M_sun. For the case of the Advanced LIGO detector, parameter estimation is the most accurate in the M=100-200 M_sun range. For an M=100M_sun system, the errors in measuring the tot...

  16. Retrieval of atmospheric optical parameters from ground-based sun-photometer measurements for Zanjan, Iran

    Science.gov (United States)

    Bayat, A.; Masoumi, A.; Khalesifard, H. R.

    2011-05-01

    We are reporting the results of ground-based spectroradiometric measurements on aerosols and water vapor in the atmosphere of Zanjan for the period of October 2006 to September 2008 using a CIMEL CE318-2 sun-photometer. Zanjan is a city in Northwest Iran, located at 36.70° N, 48.51° E, and at an altitude of 1800 m a.m.s.l. (above mean sea level). The spectral aerosol optical depth, Ångström exponent, and columnar water vapor have been calculated using the data recorded by the sun-photometer through the direct measurements on the sun radiance (sun-mode). The average values of aerosol optical depth at 440 nm, columnar water vapor, and the Ångström exponent, α, during the mentioned period are measured as, 0.28 ± 0.14, 0.57 ± 0.37 cm and 0.73 ± 0.30, respectively. The maximum (minimum) value of the aerosol optical depth was recorded in May 2007 (November 2007), and that of columnar water vapor, in July 2007 (January 2008). Using the least-squares method, the Ångström exponent was calculated in the spectral interval 440-870 nm along with α1 and α2, the coefficients of a second order polynomial fit to the plotted logarithm of aerosol optical depth versus the logarithm of wavelength. The coefficient α2 shows that most of the aerosols in the Zanjan area have dimensions larger than 1 micron. The calculated values for α2 - α1 indicate that 80 % of the aerosols are in the coarse-mode (>1 μm) and 20 % of them are in the fine-mode (<1 μm). Comparison of α2 - α1 for the atmosphere over Zanjan with other regions indicates dust particles are the most dominant aerosols in the region.

  17. Effects of Polymer Parameters on Drag Reduction.

    Science.gov (United States)

    Safieddine, Abbas Mohammad

    The effects of polymer parameters on fluid drag reduction using polyethylene oxide (PEO), polyacrylamide (PAM), guar gum (GG) and hydroxyethyl cellulose (HEC) were investigated. Due to the unavailability of high molecular weight (MW) water-soluble polymers having narrow molecular weight distribution (MWD), an aqueous preparative size exclusion chromatography (SEC) system capable of fractionating over wide MW ranges was constructed. An online low shear viscometer, coupled to the SEC, measured the instantaneous intrinsic viscosity of the eluting polymer solution and, therefore, served as a MW detector since Mark-Houwink "K" and "a" values for all four polymers were known. With the aid of the viscometer, the SEC system was calibrated. The preparative nature of the chromatography system allowed the collection of large volumes of nearly monodisperse fractions (MWD SEC approach allowed drag reduction (DR) experiments using well-characterized, narrowly dispersed polymer solutions under controlled tube flow conditions. Correlations of drag reduction performance with primary polymer parameters (i.e., concentration, intrinsic viscosity ((eta)), volume fraction (c(eta)), number of chain links (N), and combinations thereof) were used to test the validity of several theoretical DR models. Walsh's energy model, as well as the Deborah argument, did not completely account for drag reduction behavior under all experimental conditions. Within each of the flexible or rigid polymer groups, the extensional viscosity model was successful in correlating c(eta) N with DR under all turbulent conditions. However, it failed to account for the differences in chemical structure between the two polymer groups. However, when the cellulosic repeat unit was used instead of the carbon-carbon bond as the chain link for the rigid polymers (GG and HEC), all DR versus c (eta) N curves under all turbulent conditions collapsed into a single function. This has been predicted by the recent "yo-yo" model of

  18. Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote-sensing data

    Science.gov (United States)

    Silvestro, F.; Gabellani, S.; Rudari, R.; Delogu, F.; Laiolo, P.; Boni, G.

    2015-04-01

    During the last decade the opportunity and usefulness of using remote-sensing data in hydrology, hydrometeorology and geomorphology has become even more evident and clear. Satellite-based products often allow for the advantage of observing hydrologic variables in a distributed way, offering a different view with respect to traditional observations that can help with understanding and modeling the hydrological cycle. Moreover, remote-sensing data are fundamental in scarce data environments. The use of satellite-derived digital elevation models (DEMs), which are now globally available at 30 m resolution (e.g., from Shuttle Radar Topographic Mission, SRTM), have become standard practice in hydrologic model implementation, but other types of satellite-derived data are still underutilized. As a consequence there is the need for developing and testing techniques that allow the opportunities given by remote-sensing data to be exploited, parameterizing hydrological models and improving their calibration. In this work, Meteosat Second Generation land-surface temperature (LST) estimates and surface soil moisture (SSM), available from European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) H-SAF, are used together with streamflow observations (S. N.) to calibrate the Continuum hydrological model that computes such state variables in a prognostic mode. The first part of the work aims at proving that satellite observations can be exploited to reduce uncertainties in parameter calibration by reducing the parameter equifinality that can become an issue in forecast mode. In the second part, four parameter estimation strategies are implemented and tested in a comparative mode: (i) a multi-objective approach that includes both satellite and ground observations which is an attempt to use different sources of data to add constraints to the parameters; (ii and iii) two approaches solely based on remotely sensed data that reproduce the case of a scarce data

  19. Asymptotic properties of ground states of scalar field equations with a vanishing parameter

    CERN Document Server

    Moroz, Vitaly

    2012-01-01

    We study the leading order behaviour of positive solutions of the equation -\\Delta u +\\varepsilon u-|u|^{p-2}u+|u|^{q-2}u=0,\\qquad x\\in\\R^N, where $N\\ge 3$, $q>p>2$ and when $\\varepsilon>0$ is a small parameter. We give a complete characterization of all possible asymptotic regimes as a function of $p$, $q$ and $N$. The behavior of solutions depends sensitively on whether $p$ is less, equal or bigger than the critical Sobolev exponent $p^\\ast=\\frac{2N}{N-2}$. For $pp^\\ast$ the solution asymptotically coincides with the solution of the equation with $\\varepsilon=0$. In the most delicate case $p=p^\\ast$ the asymptotic behaviour of the solutions is given by a particular solution of the critical Emden--Fowler equation, whose choice depends on $\\varepsilon$ in a nontrivial way.

  20. Effect of ground motion from nuclear excavation: interim canal studies

    Energy Technology Data Exchange (ETDEWEB)

    King, C. Y.; Nadolski, M. E.

    1969-09-01

    The effect of ground motion due to nuclear excavation of a sea-level canal at two alternative routes, 17A and 25E, are discussed from the aspects of motion prediction and structural response. The importance of the high-rise building problem is stressed because of its complexity. Several damage criteria are summarized for advance planning of excavation and operation. The 1964 shot schedule and the latest revised schedule are included for comparison.

  1. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  2. Pilot Study on the Effect of Grounding on Delayed-Onset Muscle Soreness

    Science.gov (United States)

    Brown, Dick; Hill, Michael

    2010-01-01

    Abstract Objectives The purpose of this pilot study was to determine whether there are markers that can be used to study the effects of grounding on delayed-onset muscle soreness (DOMS). Design and subjects Eight (8) healthy subjects were exposed to an eccentric exercise that caused DOMS in gastrocnemius muscles of both legs. Four (4) subjects were grounded with electrode patches and patented conductive sheets connected to the earth. Four (4) control subjects were treated identically, except that the grounding systems were not connected to the earth. Outcome measures Complete blood counts, blood chemistry, enzyme chemistry, serum and saliva cortisols, magnetic resonance imaging and spectroscopy and pain levels were taken at the same time of day before the eccentric exercise and 24, 48, and 72 hours afterwards. Parameters consistently differing by 10% or more, normalized to baseline, were considered worthy of further study. Results Parameters that differed by these criteria included white blood cell counts, bilirubin, creatine kinase, phosphocreatine/inorganic phosphate ratios, glycerolphosphorylcholine, phosphorylcholine, the visual analogue pain scale, and pressure measurements on the right gastrocnemius. Conclusions In a pilot study, grounding the body to the earth alters measures of immune system activity and pain. Since this is the first intervention that appears to speed recovery from DOMS, the pilot provides a basis for a larger study. PMID:20192911

  3. Detect ground motion effects on the trajectory at ATF2

    CERN Document Server

    Rénier, Yves; Garcia, Rogelio

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the Beam Delivery System (BDS) of the next linear colliders (ILC and CLIC) as well as to define and to test the tunning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. The magnet displacements induced by ground motion are large enough for CLIC to perturb the beam stability above requirements. It is planned to measure the displacement of the magnets and implement a feed-forward correcting the effects on the beam trajectory with correctors (dipoles). This article studies the possibility to detect ground motion effects on the beam trajectory at ATF2. Characteristics of the ground motion at ATF2 are presented, the effects of the magnet displacements on the beam trajectory are simulated and an algorithm predicting the induced trajectory fluctuations is evaluated. After the estimated...

  4. Effect of mustard seed and sodium isoascorbate on lipid oxidation and colour of ground beef

    Directory of Open Access Journals (Sweden)

    Małgorzata Karwowska

    2013-12-01

    Full Text Available The aim of this study was to determine the effectiveness of the mustard seed in reducing lipid oxidation in ground beef compared to sodium isoascorbate. The research material were meat samples, prepared in four variants. The differentiating addition was ground white mustard (Sinapis alba, used in the native and autoclaved form. Reference were a control sample and a sample with the addition of sodium isoascorbate. The following were assayed during the study: TBARS value, redox potential, pH and colour parameters CIE L*a*b*. The addition of mustard had no effect on the pH value in comparison to the control sample and sodium isoascorbate. It has been shown that the use of mustard either native and autoclaved, decreased the value of TBARS ratio, and showed a similar effectiveness in preventing the oxidation of lipids as sodium isoascorbate.

  5. Effects of Ground Conditions on Microbial Cementation in Soils

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2013-12-01

    Full Text Available The purpose of this study is to understand the effect of ground conditions on microbial cementation in cohesionless soils. Since the method of microbial cementation is still at the experimental stage, for its practical use in the field, a number of laboratory experiments are required for the quantification of microbial cementation under various ground conditions, such as relative densities, relative compactions and particle size distributions. In this study, in order to evaluate the effectiveness of microbial cementation in treated sands and silts, an experiment was performed for different relative densities of silica sands, for different relative compactions of silts and for different particle size distributions of weathered soils sampled from the field. Scanning electron microscope (SEM, X-ray diffraction (XRD, energy dispersive X-ray (EDX spectroscopy and mapping analyses were implemented for the quantification of the levels of microbial cementations for sand, silt and weathered soil specimens. Based on the test results, a considerable microbial cementation was estimated depending on the soil conditions; therefore, an implementation of this new type of bio-grouting on a weak foundation may be possible to increase the strength and stiffness of weak ground.

  6. SIMULATION OF WAKE VORTEX AIRCRAFT IN GROUND EFFECT

    Directory of Open Access Journals (Sweden)

    Pamfil ŞOMOIAG

    2011-03-01

    Full Text Available The problem developed in this paper is encountered in airplane aerodynamics and concernsthe influence of long life longitudinal wake vortices generated by wing tips or by external obstaclessuch as reactors or landing gears. More generally it concerns 3D bodies of finite extension in crossflow. At the edge of such obstacles, longitudinal vortices are created by pressure differences inside theboundary layers and rotate in opposite senses. It can constitute a danger to another aircraft that fliesin this wake, especially during takeoff and landing. In this case the wake vortex trajectories andstrengths are altered by ground interactions. This study presents the results of a Large EddySimulation of wake vortex in ground effect providing the vorticity flux behavior.

  7. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_KU2004@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kandhro, Ghulam Abbas, E-mail: gakandhro@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sarfraz, Raja Adil, E-mail: rajaadilsarfraz@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Jamal, Muhammad Khan, E-mail: mkhanjamali@yahoo.com [Government Degree College Usta Muhammad, Balochistan 08300 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2009-07-30

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 {mu}g l{sup -1}. Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 {mu}g l{sup -1}, respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 {mu}g l{sup -1}. The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na{sup +}, K{sup +}, and SO{sub 4}{sup 2-} were found to be higher in surface and ground water, while elevated levels of Ca{sup 2+} and Cl{sup -} were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  8. Acute fatigue effects on ground reaction force of lower limbs during countermovement jumps

    OpenAIRE

    Carlos Gabriel Fábrica; González,Paula V.; Jefferson Fagundes Loss

    2013-01-01

    Parameters associated with the performance of countermovement jumps were identified from vertical ground reaction force recordings during fatigue and resting conditions. Fourteen variables were defined, dividing the vertical ground reaction force into negative and positive external working times and times in which the vertical ground reaction force values were lower and higher than the participant's body weight. We attempted to explain parameter variations by considering the relationship betw...

  9. Forecasts of the atmospherical parameters close to the ground at the LBT site in the context of the ALTA project

    Science.gov (United States)

    Turchi, Alessio; Masciadri, Elena; Fini, Luca

    2016-07-01

    In this paper we study the abilities of an atmospherical mesoscale model in forecasting the classical atmospherical parameters relevant for astronomical applications at the surface layer (wind speed, wind direction, temperature, relative humidity) on the Large Binocular Telescope (LBT) site - Mount Graham, Arizona. The study is carried out in the framework of the ALTA project aiming at implementing an automated system for the forecasts of atmospherical parameters (Meso-Nh code) and the optical turbulence (Astro-Meso-Nh code) for the service-mode operation of the LBT. The final goal of such an operational tool is to provide predictions with high time frequency of atmospheric and optical parameters for an optimized planning of the telescope operation (dome thermalization, wind-dependent dome orientation, observation planning based on predicted seeing, adaptive optics optimization, etc...). Numerical simulations are carried out with the Meso-Nh and Astro-Meso-Nh codes, which were proven to give excellent results in previous studies focused on the two ESO sites of Cerro Paranal and Cerro Armazones (MOSE Project). In this paper we will focus our attention on the comparison of atmospherical parameters forescasted by the model close to the ground with measurements taken by the observatory instrumentations and stored in the LBT telemetry in order to validate the numerical predictions. As previously done for Cerro Paranal (Lascaux et al., 2015), we will also present an analysis of the model performances based on the method of the contingency tables, that allows us to provide complementary key information with the respect to the bias and RMSE (systematic and statistical errors), such as the percentage of correct detection and the probability to obtain a correct detection inside a defined interval of values.

  10. Effect of Burnishing Parameters on Surface Finish

    Science.gov (United States)

    Shirsat, Uddhav; Ahuja, Basant; Dhuttargaon, Mukund

    2017-08-01

    Burnishing is cold working process in which hard balls are pressed against the surface, resulting in improved surface finish. The surface gets compressed and then plasticized. This is a highly finishing process which is becoming more popular. Surface quality of the product improves its aesthetic appearance. The product made up of aluminum material is subjected to burnishing process during which kerosene is used as a lubricant. In this study factors affecting burnishing process such as burnishing force, speed, feed, work piece diameter and ball diameter are considered as input parameters while surface finish is considered as an output parameter In this study, experiments are designed using 25 factorial design in order to analyze the relationship between input and output parameters. The ANOVA technique and F-test are used for further analysis.

  11. Structural Parameters of Star Clusters: Stochastic Effects

    CERN Document Server

    Narbutis, D; de Meulenaer, P; Mineikis, T; Vansevičius, V

    2014-01-01

    Stochasticity of bright stars introduces uncertainty and bias into derived structural parameters of star clusters. We have simulated a grid of cluster $V$-band images, observed with Subaru Suprime-Cam with age, mass, and size representing a cluster population in the M31 galaxy and derived their structural parameters by fitting King model to the surface brightness distribution. We have found that clusters less massive than $10^4 M_\\odot$ show significant uncertainty in their core and tidal radii for all ages, while clusters younger than 10 Myr have their sizes systematically underestimated for all masses. This emphasizes the importance of stochastic simulations to asses the true uncertainty of structural parameters in studies of semi-resolved and unresolved clusters.

  12. Effect of Burnishing Parameters on Surface Finish

    Science.gov (United States)

    Shirsat, Uddhav; Ahuja, Basant; Dhuttargaon, Mukund

    2016-06-01

    Burnishing is cold working process in which hard balls are pressed against the surface, resulting in improved surface finish. The surface gets compressed and then plasticized. This is a highly finishing process which is becoming more popular. Surface quality of the product improves its aesthetic appearance. The product made up of aluminum material is subjected to burnishing process during which kerosene is used as a lubricant. In this study factors affecting burnishing process such as burnishing force, speed, feed, work piece diameter and ball diameter are considered as input parameters while surface finish is considered as an output parameter In this study, experiments are designed using 25 factorial design in order to analyze the relationship between input and output parameters. The ANOVA technique and F-test are used for further analysis.

  13. Modeling of Morelia Fault Earthquake (Mw=5.4) source fault parameters using the coseismic ground deformation and groundwater level changes data

    Science.gov (United States)

    Sarychikhina, O.; Glowacka, E.; Mellors, R. J.; Vázquez, R.

    2009-12-01

    On 24 May 2006 at 04:20 (UTC) a moderate-size (Mw=5.4) earthquake struck the Mexicali Valley, Baja California, México, roughly 30 km to the southeast of the city of Mexicali, in the vicinity of the Cerro Prieto Geothermal Field (CPGF). The earthquake occurred on the Morelia fault, one of the east-dipping normal faults in the Mexicali Valley. Locally, this earthquake was strongly felt and caused minor damage. The event created 5 km of surface rupture and down-dip displacements of up to 25-30 cm were measured at some places along this surface rupture. Associated deformation was measured by vertical crackmeter, leveling profile, and Differential Synthetic Aperture Radar Interferometry (D-InSAR). A coseismic step-like groundwater level change was detected at 7 wells. The Mw=5.4 Morelia Fault earthquake had significant scientific interest, first, because of surprisingly strong effects for an earthquake of such size; second, the variability of coseismic effects data from different ground-based and space-based techniques which allows to the better constrain of the source fault parameters. Source parameters for the earthquake were estimated using forward modeling of both surface deformation data and static volume strain change (inferred from coseismic changes in groundwater level). All ground deformation data was corrected by anthropogenic component caused by the geothermal fluid exploitation in the CPGF. Modeling was based on finite rectangular fault embedded in an elastic media. The preferred fault model has a strike, rake, and dip of (48°, -89°, 45°) and has a length of 5.2 km, width of 6.7 km, and 34 cm of uniform slip. The geodetic moment, based on the modeled fault parameters, is 1.18E+17 Nm. The model matches the observed surface deformation, expected groundwater level changes, and teleseismic moment reasonably well and explains in part why the earthquake was so strongly felt in the area.

  14. Effect of Subsoil Compaction on Hydraulic Parameters

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Berisso, Feto Esimo; Schjønning, Per

    a significant trend of reduced macroporosity for the compacted upper depth. We conclude that the measured changes in the analyzed transport parameters support our hypothesis that the colloid-facilitated transport of agrochemicals in spatially connected macropores leads to a higher risk of contamination of water...

  15. Uncertainty reduction and parameters estimation of a~distributed hydrological model with ground and remote sensing data

    Science.gov (United States)

    Silvestro, F.; Gabellani, S.; Rudari, R.; Delogu, F.; Laiolo, P.; Boni, G.

    2014-06-01

    During the last decade the opportunity and usefulness of using remote sensing data in hydrology, hydrometeorology and geomorphology has become even more evident and clear. Satellite based products often provide the advantage of observing hydrologic variables in a distributed way while offering a different view that can help to understand and model the hydrological cycle. Moreover, remote sensing data are fundamental in scarce data environments. The use of satellite derived DTM, which are globally available (e.g. from SRTM as used in this work), have become standard practice in hydrologic model implementation, but other types of satellite derived data are still underutilized. In this work, Meteosat Second Generation Land Surface Temperature (LST) estimates and Surface Soil Moisture (SSM) available from EUMETSAT H-SAF are used to calibrate the Continuum hydrological model that computes such state variables in a prognostic mode. This work aims at proving that satellite observations dramatically reduce uncertainties in parameters calibration by reducing their equifinality. Two parameter estimation strategies are implemented and tested: a multi-objective approach that includes ground observations and one solely based on remotely sensed data. Two Italian catchments are used as the test bed to verify the model capability in reproducing long-term (multi-year) simulations.

  16. Effects of Mismatched Parameter on Chaotic Synchronization

    Institute of Scientific and Technical Information of China (English)

    PENGJiang-hua; FANGJin-qing

    2003-01-01

    Chaos-based security communication has become one of the most interesting hot subjects for research of chaotic theory in real world since. In recent years, secure communication via synchronized chaos has been intensely studied. However, in practical application it is difficult to construct two complete identical chaotic systems since there are many reasons to induce parameter mismatch between two systems (response system and drive system).

  17. Cross-Laboratory Comparative Study of the Impact of Experimental and Regression Methodologies on Salmonella Thermal Inactivation Parameters in Ground Beef.

    Science.gov (United States)

    Hildebrandt, Ian M; Marks, Bradley P; Juneja, Vijay K; Osoria, Marangeli; Hall, Nicole O; Ryser, Elliot T

    2016-07-01

    Isothermal inactivation studies are commonly used to quantify thermal inactivation kinetics of bacteria. Meta-analyses and comparisons utilizing results from multiple sources have revealed large variations in reported thermal resistance parameters for Salmonella, even when in similar food materials. Different laboratory or regression methodologies likely are the source of methodology-specific artifacts influencing the estimated parameters; however, such effects have not been quantified. The objective of this study was to evaluate the effects of laboratory and regression methodologies on thermal inactivation data generation, interpretation, modeling, and inherent error, based on data generated in two independent laboratories. The overall experimental design consisted of a cross-laboratory comparison using two independent laboratories (Michigan State University and U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center [ERRC] laboratories), both conducting isothermal Salmonella inactivation studies (55, 60, 62°C) in ground beef, and each using two methodologies reported in prior studies. Two primary models (log-linear and Weibull) with one secondary model (Bigelow) were fitted to the resultant data using three regression methodologies (two two-step regressions and a one-step regression). Results indicated that laboratory methodology impacted the estimated D60°C- and z-values (α = 0.05), with the ERRC methodology yielding parameter estimates ∼25% larger than the Michigan State University methodology, regardless of the laboratory. Regression methodology also impacted the model and parameter error estimates. Two-step regressions yielded root mean square error values on average 40% larger than the one-step regressions. The Akaike Information Criterion indicated the Weibull as the more correct model in most cases; however, caution should be used to confirm model robustness in application to real-world data. Overall, the

  18. Retrieval of Vegetation Structural Parameters and 3-D Reconstruction of Forest Canopies Using Ground-Based Echidna® Lidar

    Science.gov (United States)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Woodcock, C. E.; Jupp, D. L.; Culvenor, D.; Newnham, G.; Lovell, J.

    2010-12-01

    A ground-based, scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves structural parameters of forest stands rapidly and accurately, and by merging multiple scans into a single point cloud, the lidar also provides 3-D stand reconstructions. Echidna lidar technology scans with pulses of light at 1064 nm wavelength and digitizes the full return waveform sufficiently finely to recover and distinguish the differing shapes of return pulses as they are scattered by leaves, trunks, and branches. Deployments in New England in 2007 and the southern Sierra Nevada of California in 2008 tested the ability of the instrument to retrieve mean tree diameter, stem count density (stems/ha), basal area, and above-ground woody biomass from single scans at points beneath the forest canopy. Parameters retrieved from five scans located within six 1-ha stand sites matched manually-measured parameters with values of R2 = 0.94-0.99 in New England and 0.92-0.95 in the Sierra Nevada. Retrieved leaf area index (LAI) values were similar to those of LAI-2000 and hemispherical photography. In New England, an analysis of variance showed that EVI-retrieved values were not significantly different from other methods (power = 0.84 or higher). In the Sierra, R2 = 0.96 and 0.81 for hemispherical photos and LAI-2000, respectively. Foliage profiles, which measure leaf area with canopy height, showed distinctly different shapes for the stands, depending on species composition and age structure. New England stand heights, obtained from foliage profiles, were not significantly different (power = 0.91) from RH100 values observed by LVIS in 2003. Three-dimensional stand reconstruction identifies one or more “hits” along the pulse path coupled with the peak return of each hit expressed as apparent reflectance. Returns are classified as trunk, leaf, or ground returns based on the shape of the return pulse and its location. These data provide a point

  19. Local site effects on weak and strong ground motion

    Science.gov (United States)

    Aki, Keiiti

    1993-02-01

    This is a review of the current state of the art in characterizing effects of local geology on ground motion. A new horizon is clear in this aspect of strong motion studies. Non-linear amplification at sediment sites appears to be more pervasive than seismologists used to think. Several recent observations about the weak motion and the strong motion suggest that the non-linear amplification at sediment sites may be very common. First, on average, the amplification is always greater at the younger sediment sites for all frequencies up to 12 Hz, in the case of weak motion; while the relation is reversed for frequencies higher than 5 Hz, in the case of strong motion. Secondly, the application of the amplification factor determined from weak motion overestimates significantly the strong motion at sediment sites observed during the Loma Prieta earthquake within the epicentral distance of about 50 km. Thirdly, the variance of peak ground acceleration around the mean curve decreases with the increasing earthquake magnitude. Finally, the above non-linear effects are expected from geotechnical studies both in the magnitude of departure from the linear prediction and in the threshold acceleration level beyond which the non-linearity begins.

  20. Unmasking the soil cover's disruption by use of a dynamic model of measurement aerospace parameters of ground vegetation

    Directory of Open Access Journals (Sweden)

    E. V. Vysotskaya

    2016-03-01

    Full Text Available The "Introduction" describes topicality and importance of revealing the soil cover's disruption for a wide range of fields. It was shown that spectral brightness and colorimetric parameters of ground vegetation can be used for this task. However, a traditional scheme of data processing for remote sensing requires a long-term observations and can not always be applied, if quick decision-making is necessary or there is lack of information. Such cases require the use of special methods, one of which is a dynamic model developed with authors' participation based on the following basic relationships: (+,- (-, - (+, 0, (-, 0 (0,0. The section "Brief description of a dynamic model" describes the basic principles of dynamic systems used to solve the problem. Using above-mentioned relationships, the dynamics of a system consisting of several components is constructed and its main properties are listed. The main feature of this model is that the identification of structure and parameters of the dynamic system does not required sequential order of observations (as for models based on time series. This feature of the model enables for identifying the system's parameters of dynamics of the natural system to use information from a single picture taken from the spacecraft rather than long-term observations. The section "Materials and Methods" describes specific colorimetric parameters used to analyze the vegetation cover. The section "Obtained results" contains an example of the model's application to a satellite image for detecting the differences in two sites of a field with vegetation. One site is a recultivated area near the liquidated gas-oil well, another site is non-recultivated area at a considerable distance from the well (500-1000 m. The simulation results are described by eight signed graphs (4 graphs for each sites, whose structure allows to identify the system differences between the two cases. The section "Conclusions" summarizes the results of

  1. Effect of Ground Waste Concrete Powder on Cement Properties

    Directory of Open Access Journals (Sweden)

    Xianwei Ma

    2013-01-01

    Full Text Available The paste/mortar attached to the recycled aggregate decreases the quality of the aggregate and needs to be stripped. The stripped paste/mortar is roughly 20% to 50% in waste concrete, but relevant research is very limited. In this paper, the effects of ground waste concrete (GWC powder, coming from the attached paste/mortar, on water demand for normal consistency, setting time, fluidity, and compressive strength of cement were analyzed. The results show that the 20% of GWC powder (by the mass of binder has little effect on the above properties and can prepare C20 concrete; when the sand made by waste red clay brick (WRB replaces 20% of river sand, the strength of the concrete is increased by 17% compared with that without WRB sand.

  2. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  3. Earthquake Ground Motion in the Valley of Mexico: Basin Effects

    Science.gov (United States)

    Ramirez, L.; Contreras, M.; Bielak, J.; Aguirre, J.

    2007-12-01

    We present a study of the ground motion and resulting amplification in the Mexico City Basin due to strong earthquakes in the Mexican Pacific Coast. We propose an approximation of the regional structure and Mexico City's basin and analyze their response to two shallow earthquakes generated near the coast. We compare two sets of three dimensional simulations: the first includes a soft structure similar in shape and properties to the Valley of Mexico, while the second excludes the soft soil deposits. Our 3D computations, with a maximum resolution of 0.75 Hz, reproduce the amplitude and long durations characteristics usually observed in the basin. We confirm that stations inside the Mexican Volcanic Belt experience amplification. In the frequency band 0.2-0.4 Hz additional amplification occurs inside the valley due to the shallow soil deposits in the lake bed region. We compare the normalized durations of the ground motion at several stations against observed data, and speculate on the durations of the soil motion as being a local effect due to the basin's shape and low velocities.

  4. IDENTIFICATION OF OCEANOGRAPHIC PARAMETERS FOR DETERMINING PELAGIC TUNA FISHING GROUND IN THE NORTH PAPUA WATERS USING MULTI-SENSOR SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    VlNCENTIUS SlREGAR

    2006-01-01

    Full Text Available The North Papua waters as one of the important fi shing grounds in the world contribute approximately 75% of world production of pelagic tunas. These fishing grounds are still determined by hunting method. This method is time consuming and costly. However, in many areas determination of fishing ground using satellited data lias been applied by detecting the important oceanographic parameter of the presence of fish schooling such as, sea surface temperature and chlorophyl. Mostly these parameters are used integrat edly. The aim of this study is to assess the important oceanographic parameters detected from mu lti-sensor satellites (NO AA/AVHRR, Seawifs and Topex Poisedon for determining fishing ground of pelagic tunas in the North Papua waters at east season. The parameters include Sea Surface Temperature (STT, chlorophyl-a and currents. The ava ilability of data from optic sensor (Seawifs: chl-a and AVHRR: Thermal is limited by the presence of cloud cover. In that case, Topex Poseidon satellite data can be used to provide the currents data. The integration of data from multi-sensors increases the availability of the oceanographic parameters for prediction of the potential fishing zones in the study area.

  5. Constraining ground motion parameters and determining the historic earthquake that damaged the vaults underneath the Old City of Jerusalem

    Science.gov (United States)

    Yagoda-Biran, G.; Hatzor, Y. H.

    2013-12-01

    Evidence for seismically induced damage are preserved in historic masonry structures below the Old City of Jerusalem at a site known locally as the 'Western Wall Tunnels' complex, possibly one of the most important tourist attractions in the world. In the tunnels, structures dated to 500 BC and up until modern times have been uncovered by recent archeological excavation. One of the interesting findings is a 100 m long bridge, composed of two rows of barrel vaults, believed to have been constructed during the 3rd century AD to allow easy access to the Temple Mount. In one of the vaults a single masonry block is displaced 7 cm downward with respect to its neighbors (see figure below). Since the damage seems seismically driven, back analysis of the damage with the numerical Discontinuous Deformation Analysis (DDA) method was performed, in order to constrain the peak ground acceleration (PGA) that had caused the damage. First the numerical method used for back analysis was verified with an analytical solution for the case of a rocking monolithic column, then validated with experimental results for site response analysis. The verification and validation prove the DDA is capable of handling dynamic and wave propagation problems. Next, the back analysis was performed. Results of the dynamic numerical simulations suggest that the damage observed at the vault was induced by seismic vibrations that must have taken place before the bridge was buried underground, namely when it was still in service. We find that the PGA required for causing the observed damage was high - between 1.5 and 2 g. The PGA calculated for Jerusalem on the basis of established attenuation relationships for historic earthquakes that struck the region during the relevant time period is about one order of magnitude lower: 0.14 and 0.48 g, for the events that took place at 362 and 746 AD, respectively. This discrepancy is explained by local site effects that must have amplified bedrock ground motions by a

  6. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  7. Using structures of the August 24, 2016 Amatrice earthquake affected area as seismoscopes for assessing ground motion characteristics and parameters of the main shock and its largest aftershocks

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    induced by the studied earthquakes indicated the predominant effect of the vertical ground motion on buildings based on already reported building damage induced by recent destructive events in the Mediterranean region, (c) the conventional dynamic parameters of buildings did not play a significant role in their seismic response against the vertical component, due to its impact type of loading, (d) structures and materials presented similar response to ground motions almost independent from type and existing quality, and carried memories from previous large shocks of this sequence, (e) the main shock and its largest aftershocks caused building damage including spatial homothetic motions that reached statistically significant levels, it is concluded that the main shock and its largest aftershocks had similar focal mechanism parameters (normal faulting), were shallow events and were near-field earthquakes with short duration but high amplitude and the vertical component of the earthquakes' ground motion has prevailed. The aforementioned approach based solely on macroseismic observations was applied in the case of the 1755 Great Lisbon earthquake in order to determine its mechanism and epicenter location. Thus, it is suggested that the aforementioned methodology can be applied either in past historic earthquakes or complementarily in cases when the available seismological data are insufficient.

  8. Characterization of the Aerodynamic Ground Effect and Its Influence in Multirotor Control

    Directory of Open Access Journals (Sweden)

    Pedro Sanchez-Cuevas

    2017-01-01

    Full Text Available This paper analyzes the ground effect in multirotors, that is, the change in the thrust generated by the rotors when flying close to the ground due to the interaction of the rotor airflow with the ground surface. This effect is well known in single-rotor helicopters but has been assumed erroneously to be similar for multirotors in many cases in the literature. In this paper, the ground effect for multirotors is characterized with experimental tests in several cases and the partial ground effect, a situation in which one or some of the rotors of the multirotor (but not all are under the ground effect, is also characterized. The influence of the different cases of ground effect in multirotor control is then studied with several control approaches in simulation and validated with experiments in a test bench and with outdoor flights.

  9. A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves

    CERN Document Server

    Farr, Benjamin; Farr, Will M; O'Shaughnessy, Richard

    2014-01-01

    Ground-based gravitational wave detectors are sensitive to a narrow range of frequencies, effectively taking a snapshot of merging compact-object binary dynamics just before merger. We demonstrate that by adopting analysis parameters that naturally characterize this 'picture', the physical parameters of the system can be extracted more efficiently from the gravitational wave data, and interpreted more easily. We assess the performance of MCMC parameter estimation in this physically intuitive coordinate system, defined by (a) a frame anchored on the binary's spins and orbital angular momentum and (b) a time at which the detectors are most sensitive to the binary's gravitational wave emission. Using anticipated noise curves for the advanced-generation LIGO and Virgo gravitational wave detectors, we find that this careful choice of reference frame and reference time significantly improves parameter estimation efficiency for BNS, NS-BH, and BBH signals.

  10. Acute fatigue effects on ground reaction force of lower limbs during countermovement jumps

    Directory of Open Access Journals (Sweden)

    Carlos Gabriel Fábrica

    2013-12-01

    Full Text Available Parameters associated with the performance of countermovement jumps were identified from vertical ground reaction force recordings during fatigue and resting conditions. Fourteen variables were defined, dividing the vertical ground reaction force into negative and positive external working times and times in which the vertical ground reaction force values were lower and higher than the participant's body weight. We attempted to explain parameter variations by considering the relationship between the set of contractile and elastic components of the lower limbs. We determined that jumping performance is based on impulsion optimization and not on instantaneous ground reaction force value: the time in which the ground reaction force was lower than the body weight, and negative external work time was lower under fatigue. The results suggest that, during fatigue, there is less contribution from elastic energy and from overall active state. However, the participation of contractile elements could partially compensate for the worsening of jumping performance.

  11. Bloch-mode analysis for retrieving effective parameters of metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.

    2012-01-01

    We introduce an approach for retrieving effective parameters of metamaterials based on the Bloch-mode analysis of quasiperiodic composite structures. We demonstrate that, in the case of single-mode propagation, a complex effective refractive index can be assigned to the structure, being restored...... that this approach can be useful for retrieval of both material and wave effective parameters of a broad range of metamaterials....

  12. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  13. A c-holomorphic effective Nullstellensatz with parameter

    OpenAIRE

    Denkowski, Maciej P.

    2014-01-01

    We prove a local Nullstellensatz with parameter for a continuous family of c-holomorphic functions with an effective exponent independent of the parameter: the local degree of the cycle of zeroes of the central section section. We assume that this central section defines a proper intersection and we show that we can omit this assumption in case of isolated zeroes.

  14. Source and ground-motion parameters of the 2011 Lorca earthquake; Parametros de la fuente y del movimiento del suelo del terremoto de Lorca de 2011

    Energy Technology Data Exchange (ETDEWEB)

    Alguacil de la Blanca, G.; Vidal Sanchez, F.; Stich, D.; Mancilla Perez, F. L.; Lopez Comino, J. A.; Morales Soto, J.; Navarro Bernal, M.

    2012-07-01

    113 events of the Lorca seismic series has been relocated by using Double difference algorithm and data from both temporary and permanent seismic networks. Relocations yield shallow hypo central distribution of aftershocks with a {approx}5 km long, NE-SW trending, placed SW of the mainshock, suggesting a SW propagating rupture along the Alhama de Murcia fault. Similar oblique reverse faulting mechanism has been obtained for three largest events. Source parameters of these three earthquakes have been estimated. Horizontal ground motion was estimated at 11 city points whose local structure was known by SPAC experiments. A set of ground motion parameters (PGA, PGV, AI, CAV, SI, SA and SV) here calculated, have higher values at these points respect to the ones at LOR station. All parameter values are also above the expected values for Euro -Mediterranean earthquakes with local intensity VIII (EMS). Nevertheless, SD values are unusually short and less than the reference ones. Higher values of the response spectra of acceleration and velocity are given for periods of less than 0.7 s, with maximum spectral acceleration at 0.15 s and velocity at 0.5 s. The elastic input energy spectrum is well connected to the shake destructiveness in each place. Equivalent velocity > 60 cm/s is found in almost all sites and > 100 cm/s (for periods 0.3 to 0.6 s) in someone. Factors such as proximity, and focal mechanism and ground response characteristics explain the high ground motion parameter values obtained in Lorca sites and show the great influence of the source and site conditions on the characteristics of strong ground motion in the vicinity of the rupture. (Author) 68 refs.

  15. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  16. Effect of electrode shape on grounding resistances - Part 1

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Dahlin, Torleif

    2016-01-01

    . The focus-one protocol is a new method for estimating single electrode grounding resistances by measuring the resistance between a single electrode in an ERT array and all the remaining electrodes connected in parallel. For large arrays, the measured resistance is dominated by the grounding resistance...... of the electrode under test, the focus electrode. We have developed an equivalent circuit model formulation for the resistance measured when applying the focus-one protocol. Our model depends on the individual grounding resistances of the electrodes of the array, the mutual resistances between electrodes......, and the instrument input impedance. Using analytical formulations for the potentials around prolate and oblate spheroidal electrode models (as approximations for rod and plate electrodes), we have investigated the performance and accuracy of the focus-one protocol in estimating single-electrode grounding resistances...

  17. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  18. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  19. Effects of Dielectric Substrates and Ground Planes on Resonance Frequency of Archimedean Spirals.

    Science.gov (United States)

    Hooker, Jerris W; Ramaswamy, Vijaykumar; Arora, Rajendra K; Edison, Arthur S; Brey, William W

    2016-04-01

    Superconducting self-resonant spiral structures are of current interest for applications both in metamaterials and as probe coils for nuclear magnetic resonance (NMR) spectroscopy for high-sensitivity chemical analysis. Accurate spiral models are available in the literature for behavior of a spiral below and up to self-resonance. However, knowledge of the higher modes is also important. We present the relationships between the spiral parameters and the multiple mode frequencies of single sided spirals on dielectric substrates as modeled by method of moments simulation. In the absence of a ground plane, we find that the mode frequency has a linear though not necessarily harmonic dependence on the mode number. The effect of a thick substrate can be approximated by an effective dielectric constant. But when the thickness is less than 20% of the spiral trace width (router - rinner) this approximation is no longer accurate. We have developed a simple empirical formula to predict the higher modes.

  20. Trawling bats exploit an echo-acoustic ground effect

    Directory of Open Access Journals (Sweden)

    Sandor eZsebok

    2013-04-01

    Full Text Available A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the substrate and target height on both target detection and –discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc. Psychophysical performance was measured as a function of height above either smooth substrates (water or PVC or above a clutter substrate (artificial grass. At low heights above the clutter substrate (10, 20 or 35 cm, the bats’ detection performance was worse than above a smooth substrate. At a height of 50 cm, the substrate structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats’ echolocation calls during target approach shows that above the clutter substrate, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an object from below over water but from above over a clutter substrate.These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and –discrimination not only for prey on the water but also for some range above.

  1. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  2. Trawling bats exploit an echo-acoustic ground effect.

    Science.gov (United States)

    Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M; Wiegrebe, Lutz

    2013-01-01

    A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above.

  3. Effects of microbial transglutaminase, fibrimex and alginate on physicochemical properties of cooked ground meat with reduced salt level.

    Science.gov (United States)

    Atilgan, Esra; Kilic, Birol

    2017-02-01

    Effects of microbial transglutaminase (MTGase), fibrin/thrombin combination (fibrimex), alginate or combination of these binding agents on physicochemical parameters of cooked ground beef with reduced salt level were investigated. Seventeen treatments included three control (no binding agent) groups incorporated with varying concentrations of salt (0.5, 1, 2%, w/w) and fourteen treatment groups produced with MTGase or fibrimex or alginate or their combinations at 0.5 or 1% salt levels. The samples were analyzed for cooking loss (CL), pH, color, moisture, fat, protein, ash, salt, texture and TBARS. The results indicated that the use of MTGase or fibrimex or MTGase/fibrimex combination had significant effect on preventing textural deterioration caused by salt reduction. Even though the use of MTGase resulted in higher CL values, formulation of ground beef with fibrimex or alginate or MTGase/fibrimex/alginate combinations reduced CL when compared with the control groups. The use of fibrimex in ground beef resulted in a decrease in TBARS, lightness, redness and pH values. However, the use of alginate caused an increase in pH, lightness and redness values of ground beef. Based on the present study, the use of fibrimex or a combination of fibrimex with MTGase in the product formulation can be an effective strategy to reduce cooking loss, to improve or maintain the textural properties and to extend shelf life of cooked ground beef with reduced salt level.

  4. Effective Installations Technique of Grounding Conductors for Metal Oxide Surge Arresters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.H.; Kang, S.M. [Inha University, Inchon (Korea); Ryu, I.S. [Korea Electric Power Corporation, Seoul (Korea)

    2002-06-01

    This paper deals with the effects of grounding conductors for metal oxide surge arresters. When surge arresters are improperly installed, the results can cause costly damage of electrical equipments. In particular, the route of surge arrester connection is very important because bends and links of leads increase the impedances to lightning surges and tend to nullify the effectiveness of a grounding conductor. Therefore, there is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and 18 [kV] metal oxide distribution line arresters was experimentally investigated under the lightning and oscillatory impulse voltages. Thus, the results are as follows; (1) The induced voltage of a grounding conductor is drastically not affected by length of a connecting line, but it is very sensitive to types of grounding conductor. (2) The coaxial cable having a low characteristic impedance is suitable as a grounding conductor. (3) It is also clear from these results that bonding the metal raceway enclosing the grounding conductor to the grounding electrode is very effective because of skin effect. (4) The induced voltages of grounding conductors for the oscillatory impulse voltages are approximately twice as large as those for the lightning impulse voltages. (author). 9 refs., 12 figs., 2 tabs.

  5. Estimation of soil hydraulic parameters in the field by integrated hydrogeophysical inversion of time-lapse ground-penetrating radar data

    KAUST Repository

    Jadoon, Khan

    2012-01-01

    An integrated hydrogeophysical inversion approach was used to remotely infer the unsaturated soil hydraulic parameters from time-lapse ground-penetrating radar (GPR) data collected at a fixed location over a bare agricultural field. The GPR model combines a full-waveform solution of Maxwell\\'s equations for three-dimensional wave propaga- tion in planar layered media together with global reflection and transmission functions to account for the antenna and its interactions with the medium. The hydrological simu- lator HYDRUS-1D was used with a two layer single- and dual-porosity model. The radar model was coupled to the hydrodynamic model, such that the soil electrical properties (permitivity and conductivity) that serve as input to the GPR model become a function of the hydrodynamic model output (water content), thereby permiting estimation of the soil hydraulic parameters from the GPR data in an inversion loop. To monitor the soil water con- tent dynamics, time-lapse GPR and time domain reflectometry (TDR) measurements were performed, whereby only GPR data was used in the inversion. Significant effects of water dynamics were observed in the time-lapse GPR data and in particular precipitation and evaporation events were clearly visible. The dual porosity model provided betier results compared to the single porosity model for describing the soil water dynamics, which is sup- ported by field observations of macropores. Furthermore, the GPR-derived water content profiles reconstructed from the integrated hydrogeophysical inversion were in good agree- ment with TDR observations. These results suggest that the proposed method is promising for non-invasive characterization of the shallow subsurface hydraulic properties and moni- toring water dynamics at the field scale. © Soil Science Society of America.

  6. mu Eridani from MOST and from the ground: an orbit, the SPB component's fundamental parameters, and the SPB frequencies

    CERN Document Server

    Jerzykiewicz, M; Niemczura, E; Molenda-Żakowicz, J; Dymitrov, W; Fagas, M; Guenther, D B; Hartmann, M; Hrudková, M; Kamiński, K; Moffat, A F J; Kuschnig, R; Leto, G; Matthews, J M; Rowe, J F; Ruciński, S M; Sasselov, D; Weiss, W W

    2013-01-01

    MOST time-series photometry of mu Eri, an SB1 eclipsing binary with a rapidly-rotating SPB primary, is reported and analyzed. The analysis yields a number of sinusoidal terms, mainly due to the intrinsic variation of the primary, and the eclipse light-curve. New radial-velocity observations are presented and used to compute parameters of a spectroscopic orbit. Frequency analysis of the radial-velocity residuals from the spectroscopic orbital solution fails to uncover periodic variations with amplitudes greater than 2 km/s. A Rossiter-McLaughlin anomaly is detected from observations covering ingress. From archival photometric indices and the revised Hipparcos parallax we derive the primary's effective temperature, surface gravity, bolometric correction, and the luminosity. An analysis of a high signal-to-noise spectrogram yields the effective temperature and surface gravity in good agreement with the photometric values. From the same spectrogram, we determine the abundance of He, C, N, O, Ne, Mg, Al, Si, P, S,...

  7. Analysis of landslide mitigation effects using Ground Penetrating Radar

    Science.gov (United States)

    Ristic, Aleksandar; Govedarica, Miro; Vrtunski, Milan; Petrovacki, Dusan

    2013-04-01

    Area of Ground Penetrating Radar (GPR) technology applications becomes wider nowadays. It includes utility mapping as important part of civil engineering applications, geological structure and soil analyses, applications in agriculture, etc. Characteristics of the technology make it suitable for structure analysis of shallow landslides, whose number and impact on environment is dominant in the region. Especially when shallow landslide endangers some man-made structures such as buildings, roads or bridges, analysis of GPR data can yield very useful results. The results of GPR data analysis of the shallow landslide are represented here. It is situated on the mountain Fruska Gora in Serbia. Despite its dimensions (50x20m) this landslide was interesting for analysis for two reasons: - The landslide occurred at the part of the single road between the cement factory and the marl mine. The cement factory "Lafarge" in Beocin (Fruska Gora) is the largest cement manufacturer in the country. One of major priorities of the factory management is to keep the function of this road. The road is heavily exploited and over the years it led to landslide movements and damaging of the road itself. - The landslide dates back to earlier period and the mitigation measures were performed twice. Laying the foundation of the retaining wall was not performed during the first mitigation measures. The second mitigation measures were performed in 2010 and included detailed geotechnical analysis of the location with the appropriate foundation laying. Since the GPR technology can produce high resolution images of subsurface it provides clear insight into the current state of surveyed location. That kind of analysis is necessary to maintain permanent functionality of the road and to check the status of mitigation measures. Furthermore, the location characteristics do not allow easy access so the possibilities of other analysis technologies application are limited. In order to assess the effects of

  8. Stochastic model of the NASA/MSFC ground facility for large space structures with uncertain parameters: The maximum entropy approach

    Science.gov (United States)

    Hsia, Wei-Shen

    1987-01-01

    A stochastic control model of the NASA/MSFC Ground Facility for Large Space Structures (LSS) control verification through Maximum Entropy (ME) principle adopted in Hyland's method was presented. Using ORACLS, a computer program was implemented for this purpose. Four models were then tested and the results presented.

  9. Compensation of Cable Voltage Drops and Automatic Identification of Cable Parameters in 400 Hz Ground Power Units

    DEFF Research Database (Denmark)

    Borup, Uffe; Nielsen, Bo Vork; Blaabjerg, Frede

    2004-01-01

    In this paper a new cable voltage drop compensation scheme for ground power units (GPU) is presented. The scheme is able to predict and compensate the voltage drop in an output cable by measuring the current quantities at the source. The prediction is based on an advanced cable model that includes...

  10. The Healthy Worker Survivor Effect: Target Parameters and Target Populations.

    Science.gov (United States)

    Brown, Daniel M; Picciotto, Sally; Costello, Sadie; Neophytou, Andreas M; Izano, Monika A; Ferguson, Jacqueline M; Eisen, Ellen A

    2017-07-15

    We offer an in-depth discussion of the time-varying confounding and selection bias mechanisms that give rise to the healthy worker survivor effect (HWSE). In this update of an earlier review, we distinguish between the mechanisms collectively known as the HWSE and the statistical bias that can result. This discussion highlights the importance of identifying both the target parameter and the target population for any research question in occupational epidemiology. Target parameters can correspond to hypothetical workplace interventions; we explore whether these target parameters' true values reflect the etiologic effect of an exposure on an outcome or the potential impact of enforcing an exposure limit in a more realistic setting. If a cohort includes workers hired before the start of follow-up, HWSE mechanisms can limit the transportability of the estimates to other target populations. We summarize recent publications that applied g-methods to control for the HWSE, focusing on their target parameters, target populations, and hypothetical interventions.

  11. Measurement Error Effects of Beam Parameters Determined by Beam Profiles

    CERN Document Server

    Jang, Ji-Ho; Jeon, Dong-O

    2015-01-01

    A conventional method to determine beam parameters is using the profile measurements and converting them into the values of twiss parameters and beam emittance at a specified position. The beam information can be used to improve transverse beam matching between two different beam lines or accelerating structures. This work is related with the measurement error effects of the beam parameters and the optimal number of profile monitors in a section between MEBT (medium energy beam transport) and QWR (quarter wave resonator) of RAON linear accelerator.

  12. Self contamination effects in the TAUVEX UV Telescope: Ground testing and computer simulation

    Science.gov (United States)

    Lifshitz, Y.; Noter, Y.; Grossman, E.; Genkin, L.; Murat, M.; Saar, N.; Blasberger, A.

    1994-01-01

    The contamination effects due to outgassing from construction materials of the TAUVEX (Tel Aviv University UV Telescope) were evaluated using a combination of ground testing and computer simulations. Tests were performed from the material level of the system level including: (1) High sensitivity CVCM(10(exp -3 percent) measurements of critical materials. (2) Optical degradation measurements of samples specially contaminated by outgassing products at different contamination levels. (3) FTIR studies of chemical composition of outgassed products on above samples. (4) High resolution AFM studies of surface morphology of contaminated surfaces. The expected degradation of TAUVEX performance in mission was evaluated applying a computer simulation code using input parameters determined experimentally in the above tests. The results have served as guidelines for the proper selection of materials, cleanliness requirements, determination of the thermal conditions of the system and bakeout processes.

  13. An Effective Parameter Screening Strategy for High Dimensional Watershed Models

    Science.gov (United States)

    Khare, Y. P.; Martinez, C. J.; Munoz-Carpena, R.

    2014-12-01

    Watershed simulation models can assess the impacts of natural and anthropogenic disturbances on natural systems. These models have become important tools for tackling a range of water resources problems through their implementation in the formulation and evaluation of Best Management Practices, Total Maximum Daily Loads, and Basin Management Action Plans. For accurate applications of watershed models they need to be thoroughly evaluated through global uncertainty and sensitivity analyses (UA/SA). However, due to the high dimensionality of these models such evaluation becomes extremely time- and resource-consuming. Parameter screening, the qualitative separation of important parameters, has been suggested as an essential step before applying rigorous evaluation techniques such as the Sobol' and Fourier Amplitude Sensitivity Test (FAST) methods in the UA/SA framework. The method of elementary effects (EE) (Morris, 1991) is one of the most widely used screening methodologies. Some of the common parameter sampling strategies for EE, e.g. Optimized Trajectories [OT] (Campolongo et al., 2007) and Modified Optimized Trajectories [MOT] (Ruano et al., 2012), suffer from inconsistencies in the generated parameter distributions, infeasible sample generation time, etc. In this work, we have formulated a new parameter sampling strategy - Sampling for Uniformity (SU) - for parameter screening which is based on the principles of the uniformity of the generated parameter distributions and the spread of the parameter sample. A rigorous multi-criteria evaluation (time, distribution, spread and screening efficiency) of OT, MOT, and SU indicated that SU is superior to other sampling strategies. Comparison of the EE-based parameter importance rankings with those of Sobol' helped to quantify the qualitativeness of the EE parameter screening approach, reinforcing the fact that one should use EE only to reduce the resource burden required by FAST/Sobol' analyses but not to replace it.

  14. An automatic and effective parameter optimization method for model tuning

    Directory of Open Access Journals (Sweden)

    T. Zhang

    2015-05-01

    Full Text Available Physical parameterizations in General Circulation Models (GCMs, having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.

  15. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  16. The effect of ground electrode on the sensitivity, symmetricity and technical feasibility of scalp EEG recordings.

    Science.gov (United States)

    Paukkunen, Antti Kimmo Olavi; Sepponen, Raimo

    2008-09-01

    Although the choice of the measurement reference strongly affects the measurement sensitivity, validity and comparability, selection is often based on tradition, convenience and comparability to earlier results [Dien in Behav Res Methods Ins C 30(1):34-43, 1998; Femi and Sundor in Int J Psychosom 36(1-4):23-33; 1989]. Artificial means can be applied to compensate for the referential issues, but they cannot restore any lost data. The validity of the recorded data is ultimately defined by the hardware setup. In this simulation study, common average ground reference (AR) is characterized and compared to two alternative common ground reference schemes in respect to their influence on the sensitivity distribution and technical feasibility of scalp EEG recording. It was found that, despite the polar average reference effect [Junghöfer et al. in Clin Neurophysiol 110(6):1149-1155; 1999], AR merits a significantly higher symmetricity and should be promoted generally not only in high-electrode-density studies, but also in low-channel-count studies if the stringent design requirements can be met. In low-electrode-density studies, balancing the setup may prove challenging, but successful implementation can provide nearly undistorted data. Isolation of the system is a critical parameter, but technological advances enable the requirements to be fulfilled. A physical ground should be applied if high isolation is not applicable or if it is defined by the application. The results will apply for the applied homogenous concentric 3-sphere model, but should be further studied in a realistic context if more detailed and case-sensitive information is required; the underlying phenomena are generally applicable.

  17. Characterization of Effective Parameters in Abrasive Waterjet Rock Cutting

    Science.gov (United States)

    Oh, Tae-Min; Cho, Gye-Chun

    2014-03-01

    The rock cutting performance of an abrasive waterjet is affected by various parameters. In this study, rock cutting tests are conducted with different energy (i.e., water pressure, traverse speed, and abrasive feed rate), geometry (i.e., standoff distance), and material parameters [i.e., uniaxial compressive strength (UCS)]. In particular, experimental tests are carried out at a long standoff distance (up to 60 cm) to consider field application. The effective parameters of the rock cutting process are identified based on the relationships between the cutting performance indices (depth, width, and volume) and parameters. In addition, the cutting efficiency is analyzed with effective parameters as well as different pump types and the number of cutting passes considering the concept of kinetic jet energy. Efficiency analysis reveals that the cutting depth efficiency tends to increase with an increase in the water pressure and traverse speed and with a decrease in the standoff distance and UCS. Cutting volume efficiency strongly depends on standoff distance. High efficiency of cutting volume is obtained at a long standoff distance regardless of the pump type. The efficiency analysis provides a realistic way to optimize parameters for abrasive waterjet rock excavation.

  18. UPFC control parameter identification for effective power oscillation damping

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, R.K.; Singh, N.K. [Dept. of Electrical Engineering, Institute of Technology, Banaras Hindu University, Varanasi, UP 22100 (India)

    2009-07-15

    This paper presents UPFC control parameter identification for effective power oscillation damping (POD). A comparative analysis with minimum singular value (MSV), Hankel singular value (HSV), direct component of torque (DCT) and residue has been proposed for finding the most appropriate control input parameters of unified power flow controller (UPFC) for damping power system oscillations. The basic objective of the paper is to identify the control parameters of UPFC in order to provide adequate damping in power network with changing system conditions. The results presented in this paper are studied widely on single machine infinite bus. The test has also been carried for two area systems and same trend has been observed. The results show the suitability of this approach in identification of UPFC control parameters. (author)

  19. Effect of key parameters on synthesis of superparamagnetic nanoparticles (SPIONs

    Directory of Open Access Journals (Sweden)

    Malhotra Ankit

    2016-09-01

    Full Text Available There are various methods to synthesize superparamagnetic nanoparticles (SPIONs useful for MPI (magnetic particle imaging and in therapy (Hypothermia such as co-precipitation, hydrothermal reactions etc. In this research, the focus is to analyse the effects of crucial parameters such as effect of molecular mass of dextran and temperature of the co-precipitation. These parameters play a crucial role in the inherent magnetic properties of the resulting SPIONs. The amplitude spectrum and hysteresis curve of the SPIONs is analysed with MPS (magnetic particle spectrometer. PCCS (photon cross-correlation spectroscopy measurements are done to analyse the size distribution of hydrodynamic diameter the resulting SPIONs.

  20. Experimental Investigation Into the Aerodynamic Ground Effect of a Tailless Chevron and Lambda-shaped UCAVs

    Science.gov (United States)

    2006-03-01

    Significant advances during the last quarter-century in computing capabilities, electronics miniaturization, communications , guidance, navigation, and...Grumman X-47. The X-45 will combine advance air vehicle hardware, including integrated sensors, communication , navigation equipment and low...USNR for UCAV Ground Effects Test**** %****** Re-adapted by Won In, Capt, USAF for UCAV Ground Efects Test ****** %******************* Calculation

  1. Unsteady Computations of a Jet in a Crossflow with Ground Effect

    Science.gov (United States)

    Pandya, Shishir; Murman, Scott; Venkateswaran, Sankaran; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A numerical study of a jet in crossflow with ground effect is conducted using OVERFLOW with dual time-stepping and low Mach number preconditioning. The results of the numerical study are compared to an experiment to show that the numerical methods are capable of capturing the dominant features of the flow field as well as the unsteadiness associated with the ground vortex.

  2. Effect of viscoplastic material parameters on polymer indentation

    DEFF Research Database (Denmark)

    Tvergaard, V; Needleman, A

    2012-01-01

    The effect of material parameters characterizing viscoplastic flow on the indentation response of polymers is investigated using three-dimensional finite element analyses and a one-dimensional expanding spherical cavity model. The polymer is characterized by a finite strain elastic–viscoplastic c......The effect of material parameters characterizing viscoplastic flow on the indentation response of polymers is investigated using three-dimensional finite element analyses and a one-dimensional expanding spherical cavity model. The polymer is characterized by a finite strain elastic......–viscoplastic constitutive relation and two indenter shapes are considered; a conical indenter and a pyramidal indenter. The ability of the simpler expanding spherical cavity model to reproduce the trends obtained from the finite element solutions is assessed for both indenter shapes. Within the range of parameter...

  3. An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-12-01

    Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.

  4. Wave propagation phenomena in metamaterials for retrieving of effective parameters

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Ha, S.

    2011-01-01

    In the talk we give an overview of the developed restoration procedures and discuss their pros and cons in connection of assigning effective parameters (EP) to metamaterials (MMs). There are plenty of notorious physical phenomena preserving the unambiguous retrieving of EP, like strong coupling...

  5. Genetic parameters of direct and maternal effects for calving ease

    NARCIS (Netherlands)

    Eaglen, S.A.E.; Bijma, P.

    2009-01-01

    Genetic parameters of direct and maternal effects for calving ease in Dutch dairy cattle were estimated using 677,975 calving ease records from second calving. Particular emphasis was given to the presence and impact of environmental dam-offspring covariances on the estimated direct-maternal genetic

  6. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles

    NARCIS (Netherlands)

    Jhorar, R.K.; Dam, van J.C.; Bastiaanssen, W.G.M.; Feddes, R.A.

    2004-01-01

    Distributed hydrological models are useful tools to analyse the performance of irrigation systems at different levels. For the successful application of these models, it is imperative that effective soil hydraulic parameters at the scale of model application are known. The majority of previous

  7. Effect of noncircularity of experimental beam on CMB parameter estimation

    Science.gov (United States)

    Das, Santanu; Mitra, Sanjit; Tabitha Paulson, Sonu

    2015-03-01

    Measurement of Cosmic Microwave Background (CMB) anisotropies has been playing a lead role in precision cosmology by providing some of the tightest constrains on cosmological models and parameters. However, precision can only be meaningful when all major systematic effects are taken into account. Non-circular beams in CMB experiments can cause large systematic deviation in the angular power spectrum, not only by modifying the measurement at a given multipole, but also introducing coupling between different multipoles through a deterministic bias matrix. Here we add a mechanism for emulating the effect of a full bias matrix to the PLANCK likelihood code through the parameter estimation code SCoPE. We show that if the angular power spectrum was measured with a non-circular beam, the assumption of circular Gaussian beam or considering only the diagonal part of the bias matrix can lead to huge error in parameter estimation. We demonstrate that, at least for elliptical Gaussian beams, use of scalar beam window functions obtained via Monte Carlo simulations starting from a fiducial spectrum, as implemented in PLANCK analyses for example, leads to only few percent of sigma deviation of the best-fit parameters. However, we notice more significant differences in the posterior distributions for some of the parameters, which would in turn lead to incorrect errorbars. These differences can be reduced, so that the errorbars match within few percent, by adding an iterative reanalysis step, where the beam window function would be recomputed using the best-fit spectrum estimated in the first step.

  8. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  9. Bloch-mode analysis for effective parameters restoration

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Andryieuski, Andrei; Ha, Sangwoo

    2012-01-01

    We utilize the Bloch-mode analysis of periodic composite structures to introduce an approach for retrieving effective parameters of homogenized metamaterials. In the case of single-mode propagation we can restore a complex effective refractive index with a high accuracy. By further employing...... on the nature of microfields returned by Maxwell's solvers, showing that ignoring of difference between magnetic strength and induction lead to incorrect determination of the Poynting vector....

  10. Investigation of the effect of nanoparticles on nanosystems’ rheological parameters

    OpenAIRE

    Shamilov Valeh Mammad; Gadzhieva Nushaba Mubarak; Babayev Elbay Rasim; Ismayilova Mehpara Kamil

    2014-01-01

    The purpose of this paper is to evaluate nanosystems’ structural characteristics by means of IR spectroscopy method and study the effects of metal nanoparticles on the rheological parameters. It was determined that nanostructured composites have been obtained from the waste industrial oils by effect with aluminum (Al) nanoparticles. It has been found that developed nanosystems have both hydrophobic and hydrophilic nature. Therefore, due to their application in oil industry it is expected gain...

  11. Forecasts of the atmospherical parameters close to the ground at the LBT site in the context of the ALTA project

    CERN Document Server

    Turchi, Alessio; Fini, Luca

    2016-01-01

    In this paper we study the abilities of an atmospherical mesoscale model in forecasting the classical atmospherical parameters relevant for astronomical applications at the surface layer (wind speed, wind direction, temperature, relative humidity) on the Large Binocular Telescope (LBT) site - Mount Graham, Arizona. The study is carried out in the framework of the ALTA project aiming at implementing an automated system for the forecasts of atmospherical parameters (Meso-Nh code) and the optical turbulence (Astro-Meso-Nh code) for the service-mode operation of the LBT. The final goal of such an operational tool is to provide predictions with high time frequency of atmospheric and optical parameters for an optimized planning of the telescope operation (dome thermalization, wind-dependent dome orientation, observation planning based on predicted seeing, adaptive optics optimization, etc...). Numerical simulations are carried out with the Meso-Nh and Astro-Meso-Nh codes, which were proven to give excellent results...

  12. Effect of Probiotic supplementation on Growth parameters of Osmanabadi Kids

    Directory of Open Access Journals (Sweden)

    A.B. Kanduri

    2009-02-01

    Full Text Available The study was conducted to assess the effect of probiotic supplementation on growth parameters viz. body weight, body height, chest girth and body length of Osmanabadi kids. A multi-strain commercially available probiotic (Protexin containing Lactobacillus species, Streptococcus species and Yeast was administered orally at a dose rate of 2 gm per 25 kg body weight daily for 2 months to the treatment group. At the end of the first and second week, all the growth parameters were higher in the treatment group as compared to the control group, though the difference was not statistically significant. However, from the third week onwards, all growth parameters were significantly higher in the treatment group as compared to the control group. [Vet. World 2009; 2(1.000: 29-30

  13. Vertically Aligned ZnO Nanorods: Effect of Synthesis Parameters.

    Science.gov (United States)

    Rehman, Zeeshan Ur; Heo, Si-Nae; Cho, Hyeon Ji; Koo, Bon Heun

    2016-06-01

    This report is devoted to the synthesis of high quality nanorods using spin coating technique for seed layer growth. Effect of different parameter i.e., spins coating counts, spin coating speed, and the effect of temperature during the drying process was analyzed. Hot plate and furnace technique was used for heating purpose and the difference in the morphology was carefully observed. It is worthy to mention here that there is a substantial effect of all the above mentioned parameters on the growth and morphology of the ZnO nanostructure. The ZnO nanorods were finally synthesized using wet chemical method. The morphological properties of the obtained nanostructures were analyzed by using FESEM technique.

  14. Effects of primary selective laser trabeculoplasty on anterior segment parameters

    Directory of Open Access Journals (Sweden)

    Suzan Guven Yilmaz

    2015-10-01

    Full Text Available AIM:To investigate the effects of selective laser trabeculoplasty (SLT on the main numerical parameters of anterior segment with Pentacam rotating Scheimpflug camera in patients with ocular hypertension (OHT and primary open angle glaucoma (POAG.METHODS: Pentacam measurements of 45 eyes of 25 (15 females and 10 males patients (12 with OHT, 13 with POAG before and after SLT were obtained. Measurements were taken before and 1 and 3mo after SLT. Pentacam parameters were compared between OHT and POAG patients, and age groups (60y and older, and younger than 60y.RESULTS: The mean age of the patients was 57.8±13.9 (range 20-77y. Twelve patients (48% were younger than 60y, while 13 patients (52% were 60y and older. Measurements of pre-SLT and post-SLT 1mo were significantly different for the parameters of central corneal thickness (CCT and anterior chamber volume (ACV (P<0.05. These parameters returned back to pre-SLT values at post-SLT 3mo. Decrease of ACV at post-SLT 1mo was significantly higher in younger than 60y group than 60y and older group. There was no statistically significant difference in Pentacam parameters between OHT and POAG patients at pre- and post-treatment measurements (P>0.05.CONCLUSION:SLT leads to significant increase in CCT and decrease in ACV at the 1st month of the procedure. Effects of SLT on these anterior segment parameters, especially for CCT that interferes IOP measurement, should be considered to ensure accurate clinical interpretation.

  15. Rapid dike intrusion into Sakurajima volcano on August 15, 2015, as detected by multi-parameter ground deformation observations

    Science.gov (United States)

    Hotta, Kohei; Iguchi, Masato; Tameguri, Takeshi

    2016-04-01

    We present observations of ground deformation at Sakurajima in August 2015 and model the deformation using a combination of GNSS, tilt and strain data in order to interpret a rapid deformation event on August 15, 2015. The pattern of horizontal displacement during the period from August 14 to 16, 2015, shows a WNW-ESE extension, which suggests the opening of a dike. Using a genetic algorithm, we obtained the position, dip, strike length, width and opening of a dislocation source based on the combined data. A nearly vertical dike with a NNE-SSW strike was found at a depth of 1.0 km below sea level beneath the Showa crater. The length and width are 2.3 and 0.6 km, respectively, and a dike opening of 1.97 m yields a volume increase of 2.7 × 106 m3. 887 volcano-tectonic (VT) earthquakes beside the dike suggest that the rapid opening of the dike caused an accumulation of strain in the surrounding rocks, and the VT earthquakes were generated to release this strain. Half of the total amount of deformation was concentrated between 10:27 and 11:54 on August 15. It is estimated that the magma intrusion rate was 1 × 106 m3/h during this period. This is 200 times larger than the magma intrusion rate prior to one of the biggest eruptions at the summit crater of Minami-dake on July 24, 2012, and 2200 times larger than the average magma intrusion rate during the period from October 2011 to March 2012. The previous Mogi-type ground deformation is considered to be a process of magma accumulation in preexisting spherical reservoirs. Conversely, the August 2015 event was a dike intrusion and occurred in a different location to the preexisting reservoirs. The direction of the opening of the dike coincides with the T-axes and direction of faults creating a graben structure.

  16. Effect of Antioxidants on DC Tree and Grounded DC Tree in XLPE

    Science.gov (United States)

    Kawanami, Hiroshi; Komatsu, Isao; Sekii, Yasuo; Saito, Mitsugu; Sugi, Kazuyuki

    To study the effects of antioxidants on the initiation of the DC tree and the grounded DC tree, experiments were conducted using XLPE specimens containing phenolic and sulfur type antioxidants. Experimental results showed that sulfur type antioxidants in XLPE have the effect of increasing inception voltages of both the DC tree and the grounded DC tree. Based on results of those experiments, the mechanism of increase in the inception voltage of the DC tree and the grounded DC tree by antioxidants was examined along with the mechanism of polarity effects on those trees. Results showed a promotional effect of charge injection from a needle electrode by antioxidants, which are responsible for the increased inception voltages of the DC tree. Charge trapping by antioxidants explains the increase of inception voltages of the grounded DC tree.

  17. Effects of Color Reversal of Figure and Ground Drawing Materials on Drawing Performance

    Science.gov (United States)

    May, Deborah C.

    1978-01-01

    Studied were the effects of reversing the color of white and black figure and ground drawings on Goodenough-Harris Drawing Test performance of 21 cerebral palsied and 21 normal children (all 5 to 18 years old). (Author/SBH)

  18. Pile-soil stress ratio in bidirectionally reinforced composite ground by considering soil arching effect

    Institute of Scientific and Technical Information of China (English)

    邹新军; 杨眉; 赵明华; 杨小礼

    2008-01-01

    To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior and its effect factors were discussed in detail. Then, the unified strength theory was introduced to set up the elastoplastic equilibrium differential equation of the subsoil under the limit equilibrium state. And from the equation, the solutions were derived with the corresponding formulas presented to calculate the earth pressure over and beneath the horizontal reinforced cushion or pillow, the stress of inter-pile subsoil and the pile-soil stress ratio. Based on the obtained solutions and measured data from an engineering project, the influence rules by the soil property parameters (i.e., the cohesion c and internal friction angle φ) and pile spacing on the pile-soil stress ratio n were discussed respectively. The results show that to improve the load sharing ratio by the piles, the more effective means for filling materials with a larger value of φ is to increase the ratio of pile cap size to spacing, while to reduce the pile spacing properly and increase the value of cohesion c is advisable for those filling materials with a smaller value of φ.

  19. Multi-band gravitational-wave astronomy: parameter estimation and tests of general relativity with space and ground-based detectors

    CERN Document Server

    Vitale, Salvatore

    2016-01-01

    With the discovery of the black hole binary (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the eLISA band a few years before they finally merge in the band of ground-based detectors. This would allow for pre-merger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBH are indeed luminous in the electromagnetic band. In this paper we explore a quite different aspect of multi-band GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBH and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA ...

  20. Effect of short abstinence time on sperm motility parameters

    DEFF Research Database (Denmark)

    Alipour, Hiva; Dardmeh, Fereshteh; Van Der Horst, Gerhard

    2015-01-01

    Semen preparation medium have an important role in assisted reproduction techniques and their composition influences sperm binding and motility. Some studies have assessed the influence of pH on sperm kinetics. However, no study to date has assessed the effect of environmental pH on subtle...... differences in the details of the sperm movement (kinematics) of human sperm provided by computerized sperm analysis systems. This study was designed to assess the effect of two different media pH levels on kinematic parameters of the human sperm. Samples were prepared using the 40%/80% Pureception (Sage, USA......) density gradient and resuspended in customized sperm culture media with pH levels of 7.9 and 8.3 (Origio, Denmark). Kinematic parameters of the sperm in both groups were analyzed using the Sperm Class Analyzer (Microptic S.L., Spain) at 0, 6 and 24 hours following the addition of media. Results...

  1. The effect of cinnamon bark (Cinnamomum burmanii) essential oil microcapsules on vacuumed ground beef quality

    Science.gov (United States)

    Brilliana, I. N.; Manuhara, G. J.; Utami, R.; Khasanah, L. U.

    2017-04-01

    Ground beef has a short shelf life because it is susceptible to damage due to microbial contamination and lipid oxidation. So some sort of preservation method such as refrigerated storage, vacuum packaging or natural preservative addition is needed to extend the shelf life of ground beef. A natural preservative that can be used as a food preservative is the cinnamon bark (Cinnamomum burmanii) essential oil microcapsules. The aim of the research was to determine the influence of a cinnamon bark essential oil microcapsules (0%;0.5% and 1% w/w of the ground beef) on the Total Plate Count (TPC), Thiobarbituric Acid (TBA), pH and color of ground beef during refrigerated storage (4±1°C). The result showed that cinnamon bark essential oil microcapsules affected the TPC, TBA, pH and color of ground beef. The addition of the cinnamon bark essential oil microcapsules on ground beef can inhibit microbial growth, inhibit lipid oxidation, inhibit discoloration and lowering pH of fresh ground beef during refrigerated storage compared to the control sample. The higher of the microcapsules were added, the higher the inhibition of microbial growth, lipid oxidation and discoloration of ground beef, indicating better preservation effects.

  2. Viscosity Formulations and the Effect of Uncertain Parameters

    Science.gov (United States)

    Wasiliev, J. M.

    2015-12-01

    The development of detailed models of the interior of the Earth and other terrestrial planets is frequently hampered by poorly constrained compositional parameters, namely Activation Energy and Volume, which are necessary to define Arrhenius viscosity. This results in the values of said parameters varying considerably to suit the needs of individual investigations. A computational exploration of the effects of Activation Energy and Volume on the Earth's mantle was thus conducted, with a view to developing a robust and versatile method for obtaining a first-degree approximation for the parameter values, and providing some context for future studies. A wide range of plausible mantle configurations was examined in both one and two dimensions, with the latter case utilising the modelling program ASPECT to generate a series of simple Earth-like planets which were allowed to evolve until a steady state was achieved. A comprehensive statistical analysis was then performed, allowing for suitable parameter values to be more effectively constrained for numerous given viscosity formulations. Activation Energy was seen to exhibit considerable influence over the bulk magnitude of viscosity values, while Activation Volume heavily impacted the viscosity contrast between the upper and lower mantle. This behaviour stems from the parameters controlling the temperature and pressure dependency of viscosity within the calculation. Results were found to be highly dependent on the minimum and maximum values imposed on the viscosity, reinforcing the need for a fuller understanding of the formulation. A notable impact on stress profiles, and hence tectonic regime, was also observed. As such similar calculations were performed on directly scaled Super-Earths, with the intention of providing some insight into scenarios conducive to particular tectonic regimes in planets outside our solar system.

  3. Uncertainty from synergistic effects of multiple parameters in the Johnson and Ettinger (1991) vapor intrusion model

    Science.gov (United States)

    Tillman, Fred D.; Weaver, James W.

    Migration of volatile chemicals from the subsurface into overlying buildings is known as vapor intrusion (VI). Under certain circumstances, people living in homes above contaminated soil or ground water may be exposed to harmful levels of these vapors. VI is a particularly difficult pathway to assess, as challenges exist in delineating subsurface contributions to measured indoor-air concentrations as well as in adequate characterization of subsurface parameters necessary to calibrate a predictive flow and transport model. Often, a screening-level model is employed to determine if a potential indoor inhalation exposure pathway exists and, if such a pathway is complete, whether long-term exposure increases the occupants' risk for cancer or other toxic effects to an unacceptable level. A popular screening-level algorithm currently in wide use in the United States, Canada and the UK for making such determinations is the "Johnson and Ettinger" (J&E) model. Concern exists over using the J&E model for deciding whether or not further action is necessary at sites as many parameters are not routinely measured (or are un-measurable). Many screening decisions are then made based on simulations using "best estimate" look-up parameter values. While research exists on the sensitivity of the J&E model to individual parameter uncertainty, little published information is available on the combined effects of multiple uncertain parameters and their effect on screening decisions. This paper presents results of multiple-parameter uncertainty analyses using the J&E model to evaluate risk to humans from VI. Software was developed to produce automated uncertainty analyses of the model. Results indicate an increase in predicted cancer risk from multiple-parameter uncertainty by nearly a factor of 10 compared with single-parameter uncertainty. Additionally, a positive skew in model response to variation of some parameters was noted for both single and multiple parameter uncertainty analyses

  4. Geochemical studies of fluoride and other water quality parameters of ground water in Dhule region Maharashtra, India.

    Science.gov (United States)

    Patil, Dilip A; Deshmukh, Prashant K; Fursule, Ravindra A; Patil, Pravin O

    2010-07-01

    This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra State in India. The analysis was carried out for the parameters pH, DO (dissolved oxygen), BOD (biological oxygen demand), Cl-, NO3-, F-, S(2)-, total alkalinity, total solid, total dissolved solids (TDS), total suspended solids (TSS), total hardness, calcium, magnesium, carbonate and noncarbonate hardness, and concentrations of calcium and magnesium. These parameters were compared against the standards laid down by World Health Organization (WHO) and Indian Council of Medical Research (ICMR) for drinking water quality. High levels of NO(3)-, Cl-, F-, S(2)-, total solid, TDS, TSS, total hardness, magnesium and calcium have been found in the collected samples. From these observations, it has been found that fluoride is present as per the permissible limit (WHO 2003) in some of the villages studied, but both fluoride and nitrate levels are unacceptable in drinking water samples taken from several villages in Dhule. This is a serious problem and, therefore, requires immediate attention. Excess of theses impurities in water causes many diseases in plants and animals. This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra.

  5. Ground-Wave Propagation Effects on Transmission Lines through Error Images

    Directory of Open Access Journals (Sweden)

    Uribe-Campos Felipe Alejandro

    2014-07-01

    Full Text Available Electromagnetic transient calculation of overhead transmission lines is strongly influenced by the natural resistivity of the ground. This varies from 1-10K (Ω·m depending on several media factors and on the physical composition of the ground. The accuracy on the calculation of a system transient response depends in part in the ground return model, which should consider the line geometry, the electrical resistivity and the frequency dependence of the power source. Up to date, there are only a few reports on the specialized literature about analyzing the effects produced by the presence of an imperfectly conducting ground of transmission lines in a transient state. A broad range analysis of three of the most often used ground-return models for calculating electromagnetic transients of overhead transmission lines is performed in this paper. The behavior of modal propagation in ground is analyzed here into effects of first and second order. Finally, a numerical tool based on relative error images is proposed in this paper as an aid for the analyst engineer to estimate the incurred error by using approximate ground-return models when calculating transients of overhead transmission lines.

  6. Some Physical Parameters to Effect the Production of Heamatococcus pluvialis

    Science.gov (United States)

    Akpolat, O.; Eristurk, S.

    The aim of this study is to optimize the physical parameters affecting the production of Haematococcus pluvialis in photobioreactors and to simulate the process. Heamatococcus pluvialis is a green microalgea to have a great interest for production of natural astaxanthin and it can be cultivated in a closed photobiorector system under controlled conditions. Biomass composition, growth rate and high value product spectra like polyunsaturated fatty acids, pigments, poly saccariydes or vitamins depend on strongly the parameters of cultivation process. These are composition of cultivation medium, mixing model and aeration rate, hydrodynamic stress of medium which can be changed by adding some chemicals, cultivation temperature, pH, carbon dioxide and oxygen supply and most important of all: illumination. One of the most important problems during the cultivation is that cells have sensitivity to shear stress very much and the shear stress created by aeration and mixing effects the growth rate of the cell negatively and decreases yield. In this study, physical parameters such as; the rate of the air fed into the reactor, the mixing type, the reduction of the hydrodynamic stress by CMC addition, the effect of the cell size on the cell production and the flocculation speed of the culture, were investigated.

  7. Effect of noncircularity of experimental beam on CMB parameter estimation

    CERN Document Server

    Das, Santanu; Paulson, Sonu Tabitha

    2015-01-01

    Measurement of Cosmic Microwave Background (CMB) anisotropies has been playing a lead role in precision cosmology by providing some of the tightest constrains on cosmological models and parameters. However, precision can only be meaningful when all major systematic effects are taken into account. Non-circular beams in CMB experiments can cause large systematic deviation in the angular power spectrum, not only by modifying the measurement at a given multipole, but also introducing coupling between different multipoles through a deterministic bias matrix. Here we add a mechanism for emulating the effect of a full bias matrix to the Planck likelihood code through the parameter estimation code SCoPE. We show that if the angular power spectrum was measured with a non-circular beam, the assumption of circular Gaussian beam or considering only the diagonal part of the bias matrix can lead to huge error in parameter estimation. We demonstrate that, at least for elliptical Gaussian beams, use of scalar beam window fun...

  8. Effect of antioxidants supplementation on human sperm parameters after freezing

    Directory of Open Access Journals (Sweden)

    H. Ghasemi Hamidabadi,

    2008-01-01

    Full Text Available AbstractBackground and Purpose: Antioxidant reduces oxidative stress during cryo-preservation. The aim of this study was to find out the effects of vitamin E and C on sperm parameters after cryo-preservation.Materials and Methods: Human semen samples were obtained from Vali-e-asr Hospital. The samples were divided in two groups (normal and oligospermia groups. Semen was pooled in liquid nitrogen after thawing, samples were centrifuged, then vitamin E and C were added to medium and the aliquots were incubated for 45 minutes in incubator Co2. In control group, no antioxidant was added to medium. Sperm parameters were analyzed according to WHO criteria. Data was analyzed by ANNOVA test.Results: There was a significant increase in the progressive motility and viability of sperm which was supplemented by vitamin E, with 1, 2 Mm (p<0.05 in the normal groups (the increase in the oligospermia group, after addition of vitamin E with 1, 2, Mm was not significant. Vitamin C did not have a significant effect on sperm parameters with 1, 2 Mm concentration.Conclusion: Supplementation of media with alpha-tocopherol is beneficial for sperm motility and viability rates after cryopreservation and it may be of clinical value in assisted conception procedures.Key words: Alpha-tocopherol, Ascorbic acid, Sperm motility, Sperm morphologyJ Mazand Univ Med Sci 2008; 18(63: 20-27 (Persian

  9. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    Science.gov (United States)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  10. [Effect of various technical parameters on potential danger of an electric injury in the bathtub].

    Science.gov (United States)

    Heckmann, M; Brinkmann, B; Fechner, G

    1990-01-01

    In contrast to common beliefs there is not strict necessity for lethal danger during electric shock in a bathtub. Measurements of the electric field demonstrates the ground conditions and water temperature are of vital importance as are a variety of other parameters. With an electronic amplifier especially designed for this problem measurement of the electric parameters in the water was made possible.

  11. Towards parameter-free classification of sound effects in movies

    Science.gov (United States)

    Chu, Selina; Narayanan, Shrikanth; Kuo, C.-C. J.

    2005-08-01

    The problem of identifying intense events via multimedia data mining in films is investigated in this work. Movies are mainly characterized by dialog, music, and sound effects. We begin our investigation with detecting interesting events through sound effects. Sound effects are neither speech nor music, but are closely associated with interesting events such as car chases and gun shots. In this work, we utilize low-level audio features including MFCC and energy to identify sound effects. It was shown in previous work that the Hidden Markov model (HMM) works well for speech/audio signals. However, this technique requires a careful choice in designing the model and choosing correct parameters. In this work, we introduce a framework that will avoid such necessity and works well with semi- and non-parametric learning algorithms.

  12. Statistics of ductile fracture surfaces: the effect of material parameters

    DEFF Research Database (Denmark)

    Ponson, Laurent; Cao, Yuanyuan; Bouchaud, Elisabeth

    2013-01-01

    The effect of material parameters on the statistics of fracture surfaces is analyzed under small scale yielding conditions. Three dimensional calculations of ductile crack growth under mode I plane strain, small scale yielding conditions are carried out using an elastic-viscoplastic constitutive...... distributed. The three dimensional analysis permits modeling of a three dimensional material microstructure and of the resulting three dimensional stress and deformation states that develop in the fracture process region. Material parameters characterizing void nucleation are varied and the statistics...... of the resulting fracture surfaces is investigated. All the fracture surfaces are found to be self-affine over a size range of about two orders of magnitude with a very similar roughness exponent of 0.56 ± 0.03. In contrast, the full statistics of the fracture surfaces is found to be more sensitive to the material...

  13. Bayesian parameter estimation for chiral effective field theory

    Science.gov (United States)

    Wesolowski, Sarah; Furnstahl, Richard; Phillips, Daniel; Klco, Natalie

    2016-09-01

    The low-energy constants (LECs) of a chiral effective field theory (EFT) interaction in the two-body sector are fit to observable data using a Bayesian parameter estimation framework. By using Bayesian prior probability distributions (pdfs), we quantify relevant physical expectations such as LEC naturalness and include them in the parameter estimation procedure. The final result is a posterior pdf for the LECs, which can be used to propagate uncertainty resulting from the fit to data to the final observable predictions. The posterior pdf also allows an empirical test of operator redundancy and other features of the potential. We compare results of our framework with other fitting procedures, interpreting the underlying assumptions in Bayesian probabilistic language. We also compare results from fitting all partial waves of the interaction simultaneously to cross section data compared to fitting to extracted phase shifts, appropriately accounting for correlations in the data. Supported in part by the NSF and DOE.

  14. Effect of female sex hormones on cardiorespiratory parameters

    Science.gov (United States)

    Godbole, Gayatri; Joshi, A. R.; Vaidya, Savita M.

    2016-01-01

    Introduction: Female sex hormones, estrogen and progesterone regulate various phases of the menstrual cycle. Hormonal changes tend to affect various parameters of physical fitness. Maximum oxygen uptake (VO2 max) is a measure of aerobic power. This study was planned to assess effect of different phases of menstrual cycle on cardiorespiratory parameters like pulse rate, respiratory rate and VO2 max. Methods: 100 female medical students in the age group of 17-22 years were studied for three consecutive menstrual cycles. Weight, resting pulse rate, respiratory rate and VO2 max were measured during premenstrual phase (20th-25th day) and postmenstrual phase (5th to 10th day). Results: It was observed that there was a significant increase in body weight, pulse rate, and respiratory rate during premenstrual phase. There was a decrease in VO2 max during the premenstrual phase. Conclusion: This study indicates that there is decreased cardio-respiratory efficiency during premenstrual phase.

  15. The effect of boundary shape to acoustic parameters

    Science.gov (United States)

    Prawirasasra, M. S.; Sampurna, R.; Suwandi

    2016-11-01

    To design a room in term of acoustic, many variables need to be considered such as volume, acoustic characteristics & surface area of material and also boundary shape. Modifying each variable possibly change the sound field character. To find impact of boundary shape, every needed properties is simulated through acoustic prediction software. The simulation is using three models with different geometry (asymmetry and symmetry) to produce certain objective parameters. By applying just noticeable difference (JND), the effect is considered known. Furthermore, individual perception is needed to gain subjective parameter. The test is using recorded speech that is convoluted with room impulse of each model. The result indicates that 84% of participants could not recognize the speech which is emit from different geometry properties. In contrast, JND value of T30 is exceed 5%. But for D50, every model has JND below 5%.

  16. Effect of friction stir welding parameters on defect formation

    Science.gov (United States)

    Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.

    2015-10-01

    Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.

  17. Source parameters of the 2013, Ms 7.0, Lushan earthquake and the characteristics of the near-fault strong ground motion

    Science.gov (United States)

    Zhao, Fengfan; Meng, Lingyuan

    2016-04-01

    The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).

  18. On the unsteady motion and stability of a heaving airfoil in ground effect

    Institute of Scientific and Technical Information of China (English)

    Juan Molina; Xin Zhang; David Angland

    2011-01-01

    This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces' behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity.However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.

  19. Deep soil compaction as a method of ground improvement and to stabilization of wastes and slopes with danger of liquefaction, determining the modulus of deformation and shear strength parameters of loose rock.

    Science.gov (United States)

    Lersow, M

    2001-01-01

    For the stabilization of dumps with the construction of hidden dams and for building ground improvement, for instance for traffic lines over dumps, nearly all applied compaction methods have the aim to reduce the pore volume in the loose rock. With these methods, a homogenization of the compacted loose rock will be obtained too. The compaction methods of weight compaction by falling weight, compaction by vibration and compaction by blasting have been introduced, and their applications and efficiencies have been shown. For the estimation of the effective depth of the compaction and for a safe planning of the bearing layer, respectively, the necessary material parameters have to be determined for each deep compaction method. Proposals for the determination of these parameters have been made within this paper. In connection with the stabilization of flow-slide-prone dump slopes, as well as for the improvement of dump areas for the use as building ground, it is necessary to assess the deformation behavior and the bearing capacity. To assess the resulting building ground improvement, deformation indexes (assessment of the flow-prone layer) and strength indexes (assessment of the bearing capacity) have to be determined with soil mechanical tests. Förster and Lersow, [Patentschrift DE 197 17 988. Verfahren, auf der Grundlage last- und/oder weggesteuerter Plattendruckversuche auf der Bohrlochsohle, zur Ermittlung des Spannungs-Verformungs-Verhaltens und/oder von Deformationsmoduln und/oder von Festigkeitseigenschaften in verschiedenen Tiefen insbesondere von Lockergesteinen und von Deponiekörpern in situ; Förster W, Lersow M. Plattendruckversuch auf der Bohrlochsohle, Ermittlung des Spannungs-Verformungs-Verhaltens von Lockergestein und Deponiematerial Braunkohle--Surface Mining, 1998;50(4): 369-77; Lersow M. Verfahren zur Ermittlung von Scherfestigkeitsparametern von Lockergestein und Deponiematerial aus Plattendruckversuchen auf der Bohrlochsohle. Braunkohle

  20. Year-round effects of climate on demographic parameters of an arctic-nesting goose species.

    Science.gov (United States)

    van Oudenhove, Louise; Gauthier, Gilles; Lebreton, Jean-Dominique

    2014-11-01

    Understanding how climate change will affect animal population dynamics remains a major challenge, especially in long-distant migrants exposed to different climatic regimes throughout their annual cycle. We evaluated the effect of temperature throughout the annual cycle on demographic parameters (age-specific survival and recruitment, breeding propensity and fecundity) of the greater snow goose (Chen caerulescens atlantica L.), an arctic-nesting species. As this is a hunted species, we used the theory of exploited populations to estimate hunting mortality separately from natural mortality in order to evaluate climatic effects only on the latter form of mortality. Our analysis was based on a 22-year marking study (n = 27,150 females) and included live recaptures at the breeding colony and dead recoveries from hunters. We tested the effect of climatic covariates by applying a procedure that accounts for unexplained environmental variation in the demographic parameter to a multistate capture-mark-recapture recruitment model. Breeding propensity, clutch size and hatching probability all increased with high temperatures on the breeding grounds. First-year survival to natural causes of mortality increased when temperature was high at the end of the summer, whereas adult survival was not affected by temperature. On the contrary, accession to reproduction decreased with warmer climatic conditions during the non-breeding season. Survival was strongly negatively related to hunting mortality in adults, as expected, but not in first-year birds, which suggests the possibility of compensation between natural and hunting mortality in the latter group. We show that events occurring both at and away from the breeding ground can affect the demography of migratory birds, either directly or through carryover effects, and sometimes in opposite ways. This highlights the need to account for the whole life cycle of an animal when attempting to project the response of populations to future

  1. Focused Ion Beam Induced Effects on MOS Transistor Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R.; Soden, Jerry M.; Swanson, Scot E.; Tangyunyong, Paiboon; Vanderlinde, William E.

    1999-07-28

    We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

  2. Effects of ramadan fasting on cardiovascular and biochemical parameters

    Directory of Open Access Journals (Sweden)

    M Gupta

    2013-12-01

    Full Text Available Background: Muslims abstain from food and drink from dawn to sunset every day during Ramadan - the holiest month in Islamic lunar calendar.  Methods: The effect of Ramadan fast on body mass index (BMI, blood pressure (BP, fasting blood glucose (FBG and lipid profile were studied on 100 healthy male, adult Muslim volunteers. All parameters were recorded one week before the onset and then in the last week of Ramadan month and compared.  Results: There was no statistically significant effect on BMI, and systolic or diastolic blood pressures (p>0.05. However, fasting blood glucose (FBG, serum total cholesterol (TC, serum triglycerides (TG were significantly decreased (p = 0.000 and high density lipoprotein cholesterol (HDL-C level was significantly (p=0.000 increased in last week of Ramadan fasting compared to pre fasting levels. Conclusion: Our results show beneficial effects of Ramadan fasting on FBG and serum lipid profile. 

  3. Effect of Ceramic Scaffold Architectural Parameters on Biological Response.

    Science.gov (United States)

    Gariboldi, Maria Isabella; Best, Serena M

    2015-01-01

    Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.

  4. Effect of Ceramic Scaffold Architectural Parameters on Biological Response

    Directory of Open Access Journals (Sweden)

    Maria Isabella eGariboldi

    2015-10-01

    Full Text Available Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1 surface topography, (2 pore size and geometry, (3 porous networks and (4 macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way, as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.

  5. Mechanical Parameters Effects on Acoustic Absorption at Polymer Foam

    Directory of Open Access Journals (Sweden)

    Lyes Dib

    2015-01-01

    Full Text Available Polymer foams have acoustic absorption properties that play an important role in reducing noise level. When the skeleton is set to motion, it is necessary to use generalized Biot-Allard model which takes into account the deformation of the skeleton and the fluid and the interactions between them. The aim of this work is to study the quality of acoustic absorption in polyurethane foam and to show the importance of the structural vibration of this foam on the absorption by varying mechanical parameters (Young’s modulus E, Poisson’s coefficient ν, structural damping factor η, and the density ρ1. We calculated the absorption coefficient analytically using classical Biot formulation (us, uf and numerically using Biot mixed formulation (us, p in 3D COMSOL Multiphysics. The obtained results are compared together and show an excellent agreement. Afterwards, we studied the effect of varying each mechanical parameter independently on the absorption in interval of ±20%. The simulations show that these parameters have an influence on the sound absorption around the resonance frequency fr.

  6. Amplification Effect of Peak Ground Motion Acceleration in Class Ⅱ and Ⅲ Sites over Shandong Province

    Institute of Scientific and Technical Information of China (English)

    Diao Ting; Chen Shijun; Jiang Zaofeng

    2011-01-01

    In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil layers collected from 358 boreholes of class Ⅱ sites and 140 boreholes of class Ⅲ site. From the results, one can conclude that: (1) The scatter plot of ks generally obeys a normal distribution ; (2) ks decreases with the increase of the strength of input ground motion, which is more apparent in Class Ⅲ site than in class lI site; (3) for class Ⅱ site, with the increase of depth of the bedrock interface where ground motion inputs, ks increases gradually until to a stable value when the depth reaches up to approximately 20 meters or larger. Yet, for class Ⅲ site, ks is insensitive to the depth; (4) the average of ks for class Ⅱ site is 1.47, slightly larger than that used in the Seismic Ground Motion Parameters Zonation Map of China ( GB 18306-2001 ). Also, ks in class Ⅱ and Ⅲ sites at different levels of peak ground acceleration over Shandong Province is preliminarily discussed in the paper.

  7. Real parameter optimization by an effective differential evolution algorithm

    Directory of Open Access Journals (Sweden)

    Ali Wagdy Mohamed

    2013-03-01

    Full Text Available This paper introduces an Effective Differential Evolution (EDE algorithm for solving real parameter optimization problems over continuous domain. The proposed algorithm proposes a new mutation rule based on the best and the worst individuals among the entire population of a particular generation. The mutation rule is combined with the basic mutation strategy through a linear decreasing probability rule. The proposed mutation rule is shown to promote local search capability of the basic DE and to make it faster. Furthermore, a random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme are merged to avoid stagnation and/or premature convergence. Additionally, the scaling factor and crossover of DE are introduced as uniform random numbers to enrich the search behavior and to enhance the diversity of the population. The effectiveness and benefits of the proposed modifications used in EDE has been experimentally investigated. Numerical experiments on a set of bound-constrained problems have shown that the new approach is efficient, effective and robust. The comparison results between the EDE and several classical differential evolution methods and state-of-the-art parameter adaptive differential evolution variants indicate that the proposed EDE algorithm is competitive with , and in some cases superior to, other algorithms in terms of final solution quality, efficiency, convergence rate, and robustness.

  8. Calendula extract: effects on mechanical parameters of human skin.

    Science.gov (United States)

    Akhtar, Naveed; Zaman, Shahiq Uz; Khan, Barkat Ali; Amir, Muhammad Naeem; Ebrahimzadeh, Muhammad Ali

    2011-01-01

    The aim of this study was to evaluate the effects of newly formulated topical cream of Calendula officinalis extract on the mechanical parameters of the skin by using the cutometer. The Cutometer 580 MPA is a device that is designed to measure the mechanical properties of the skin in response to the application of negative pressure. This non-invasive method can be useful for objective and quantitative investigation of age related changes in skin, skin elasticity, skin fatigue, skin hydration, and evaluation of the effects of cosmetic and antiaging topical products. Two creams (base and formulation) were prepared for the study. Both the creams were applied to the cheeks of 21 healthy human volunteers for a period of eight weeks. Every individual was asked to come on week 1, 2, 3, 4, 5, 6, 7, and 8 and measurements were taken by using Cutometer MPA 580 every week. Different mechanical parameters of the skin measured by the cutometer were; R0, R1, R2, R5, R6, R7, and R8. These were then evaluated statistically to measure the effects produced by these creams. Using ANOVA, and t-test it was found that R0, and R6 were significant (p 0.05). The instrumental measurements produced by formulation reflected significant improvements in hydration and firmness of skin.

  9. Dynamical quantum Hall effect in the parameter space.

    Science.gov (United States)

    Gritsev, V; Polkovnikov, A

    2012-04-24

    Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect.

  10. Fundamental radiation effects parameters in metals and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    Useful information on defect production and migration can be obtained from examination of the fluence-dependent defect densities in irradiated materials, particularly when a transition from linear to sublinear accumulation is observed. Further work is needed on several intriguing reported radiation effects in metals. The supralinear defect cluster accumulation regime in thin foil irradiated metals needs further experimental confirmation, and the physical mechanisms responsible for its presence need to be established. Radiation hardening and the associated reduction in strain hardening capacity in FCC metals is a serious concern for structural materials. In general, the loss of strain hardening capacity is associated with dislocation channeling, which occurs when a high density of small defect clusters are produced (stainless steel irradiated near room temperature is a notable exception). Detailed investigations of the effect of defect cluster density and other physical parameters such as stacking fault energy on dislocation channeling are needed. Although it is clearly established that radiation hardening depends on the grain size (radiation-modified Hall-Petch effect), further work is needed to identify the physical mechanisms. In addition, there is a need for improved hardening superposition models when a range of different obstacle strengths are present. Due to a lack of information on point defect diffusivities and the increased complexity of radiation effects in ceramics compared to metals, many fundamental radiation effects parameters in ceramics have yet to be determined. Optical spectroscopy data suggest that the oxygen monovacancy and freely migrating interstitial fraction in fission neutron irradiated MgO and Al{sub 2}O{sub 3} are {approximately}10% of the NRT displacement value. Ionization induced diffusion can strongly influence microstructural evolution in ceramics. Therefore, fundamental data on ceramics obtained from highly ionizing radiation sources

  11. Unified approach for retrieval of effective parameters of metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.

    2011-01-01

    We propose the method of effective parameters retrieval based on the Bloch mode analysis of periodic metamaterials. We perform the surface and volume averaging of the electromagnetic field of the dominating (fundamental) Bloch mode to determine the Bloch and wave impedances, respectively. We show....../transmission based method and has no limitations on a metamaterial slab thickness. The method does not require averaging different fields' components at various surfaces or contours. The retrieval of both wave and material EPs is performed within a single computational cycle, after exporting fields on the unit cells...

  12. Wave propagation in metamaterials and effective parameters retrieving

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, S.; Sukhorukov, A.;

    2011-01-01

    of the determined effective parameters and applicability to thin slabs only. The other methods based, for example, on the eigenfunctions calculations [Menzel], or analytical calculations [Simovski] require advanced skills either in numerical methods and programming or in analytical derivations and maybe considered...... applicable to relatively thick slab when we can neglect the reflection from the rear interface [2]. Then phase and amplitude dependencies versus coordinates (cell number) allow the refractive index retrieving. Getting the input (Bloch) impedance from the reflection on the input interface serves to determine...

  13. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Azita; Volz, Kim R; Hansmann, Doulas R [Research and Development Department, EKOS Corporation, 11911 N Creek Parkway S, Bothell, WA 98011 (United States)], E-mail: asoltani@ekoscorp.com

    2008-12-07

    The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p < 0.14). To explore potential differences in the mechanism responsible for ultrasound-induced thrombolysis, a perfusion model was used to measure changes in average fibrin pore size of clot before, after and during exposure to MOP and COP protocols and cavitational activity was monitored in real time for both protocols using a passive cavitation detection system. The relative lysis enhancement by each COP and MOP protocol compared to alteplase alone yielded values of 33.69 {+-} 12.09% and 63.89 {+-} 15.02% in a thrombolysis model, respectively (p < 0.007). Both COP and MOP protocols caused an equivalent significant increase in average clot pore size of 2.09 x 10{sup -2} {+-} 0.01 {mu}m and 1.99 x 10{sup -2} {+-} 0.004 {mu}m, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.

  14. Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground.

    Science.gov (United States)

    Trudelle, Laurène; Cerchio, Salvatore; Zerbini, Alexandre N; Geyer, Ygor; Mayer, François-Xavier; Jung, Jean-Luc; Hervé, Maxime R; Pous, Stephane; Sallée, Jean-Baptiste; Rosenbaum, Howard C; Adam, Olivier; Charrassin, Jean-Benoit

    2016-12-01

    Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of 'transiting' (consistent/directional) versus 'localized' (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry < 200 m and in adjacent areas), females showed localized behaviour in deep waters (191 ± 20 m) and at large distances (14 ± 0.6 km) from shore, suggesting that their breeding habitat extends beyond the shallowest waters available close to the coastline. Males' active swimming speed decreased in shallow waters, but environmental parameters did not influence their likelihood to exhibit localized movements, which was probably dominated by social factors instead. In oceanic habitats, both males and females showed localized behaviours in shallow waters and favoured high chlorophyll-a concentrations. Active swimming speed accounts for a large proportion of observed movement speed; however, breeding humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level.

  15. Evaluation of the Most Current and Effective Methods in the Analysis of Chlorinated Dioxins in Ground Beef

    Directory of Open Access Journals (Sweden)

    Ebere C. Anyanwu

    2003-01-01

    Full Text Available Chlorinated dioxins are the group of environmental pollutants consisting of 210 chlorinated dibenzo-p-dioxins and dibenzofurans. They are highly toxic and persistent. They are lipophilic and can easily biomagnify in the food chain, hence posing a serious threat to human health. The daily consumption of low-level contaminated food, mainly of animal origin, leads to the accumulation of dioxins in the human body. The exposures of the general human population to dioxins and the specific issues of a risk assessment of dioxin pose serious concerns in public environmental and nutritional health. This paper reviews the analysis of chlorinated dioxins in ground beef. The sources of contamination of chlorinated dioxins in ground beef are first reviewed to form a basis for a clear understanding of the health implications of chlorinated dioxins in the human food chain and why it is necessary to monitor the level of dioxins in animal food products, especially ground beef. The methods of collection, sampling, and processing of ground beef, and the methods of sample clean up prior to the analysis, are reviewed. Emphasis is laid on the new techniques that are available and that might be effective in the analysis of chlorinated dioxins in ground beef. Among these new methods and techniques are: the synergistic combination of ELISA/GC/MS, direct sample introduction to /GC/MS-MS, automated clean-up method, and the supercritical fluid extraction methods. The possible treatments of results from each method and technique are discussed and their respective efficiencies are compared. Finally, quality control and quality assurance parameters are evaluated for levels of accuracy, reproducibility, and precision.

  16. Effects of aging on figure-ground perception: Convexity context effects and competition resolution.

    Science.gov (United States)

    Lass, Jordan W; Bennett, Patrick J; Peterson, Mary A; Sekuler, Allison B

    2017-02-01

    We examined age-related differences in figure-ground perception by exploring the effect of age on Convexity Context Effects (CCE; Peterson & Salvagio, 2008). Experiment 1, using Peterson and Salvagio's procedure and black and white stimuli consisting of 2 to 8 alternating concave and convex regions, established that older adults exhibited reduced CCEs compared to younger adults. Experiments 2 and 3 demonstrated that this age difference was found at various stimulus durations and sizes. Experiment 4 compared CCEs obtained with achromatic stimuli, in which the alternating convex and concave regions were each all black or all white, and chromatic stimuli in which the concave regions were homogeneous in color but the convex regions varied in color. We found that the difference between CCEs measured with achromatic and colored stimuli was larger in older than in younger adults. Our results are consistent with the hypothesis that the senescent visual system is less able to resolve the competition among various perceptual interpretations of the figure-ground relations among stimulus regions.

  17. Effects of intermittent lighting on broiler growth performance, slaughter performance, serum biochemical parameters and tibia parameters

    Directory of Open Access Journals (Sweden)

    Haiming Yang

    2015-12-01

    Full Text Available The objective of this study was to investigate the effects of intermittent lighting (IL on broiler growth and slaughter performance as well as serum biochemical and tibia parameters. Two hundred and eighty 7-d-old Ross 308 broilers were selected and reared from 8 to 42 d under IL photoperiods of either 2 hours of light:2 hours of dark (2L:2D or 4 hours of light:4 hours of dark (4L:4D, or under continuous lighting (CL. On day 42, body weight of broilers raised in the 4L:4D photoperiod was significantly increased compared to those reared in the 2L:2D photoperiod. The average daily feed intake (ADFI of broilers in IL was significantly less than broilers in CL. The feed conversion of broilers raised in the 4L:4D photoperiod was significantly more efficient than broilers in CL. The intestinal tract weight was greater in birds raised in the 4L:4D photoperiod compared to birds in CL. Similarly, the eviscerated yield with giblet and eviscerated carcass weights in birds reared in the 4L:4D photoperiod were significantly higher than corresponding weights observed in broilers raised in CL. Serum total protein concentration was distinctly higher in birds raised in the 4L:4D photoperiod than that in the 2L:2D photoperiod. In addition, the bone elastic modulus of birds reared in the 4L:4D photoperiod was greater than measurements observed in the 2L:2D photoperiod. Accordingly, we concluded that the 4L:4D photoperiodic lighting schedule was superior to both the 2L:2D photoperiod and CL in broiler production.

  18. Effects of Four Pesticides on Grain Growth Parameters of Rice

    Institute of Scientific and Technical Information of China (English)

    WU Jin-cai; DONG Bo; LI Dong-hu; QIU Hui-min; YANG Guo-qing

    2004-01-01

    Effect of four commonly used pesticides, triadlmefon, jingganmycin, triazoplos and imidacloprid, on grain growth parameters was examined using a growth equation in the present paper. Two hundreds of spikes, not damaged by pests were simultaneously marked per plot during the heading stage of rice. Rice plants were sprayed at 1 d after marking.Thereafter, 20 spikes were sampled at 4 d intervals and dried in an oven. Then, 10 superior and inferior grains were picked from each spike, and brown rice was weighed after shelling, respectively. First, second and third order derivates were deduced from the following grain growth formula:W=K/1+ea-bt , where W was the weight of 100 grains brown rice at time t; K was maximum of grain growth; a and b were parameters of the formula. The parameters were calculated as following:R0=Kbea/ (1 + ea)2 ,△ t=t2-t1,GT=bk/4(t2-t1)=Vmax(t2-t1),Vmax=bk/4Where R0, △t, GT and Vmax were initial growth power, active growth stage, accumulative weight of dried content during △ t and maximum growth rate, respectively. The result showed that GT and K of superior grain following 22.5 and 45 ga.i. ha-1 of imidacloprid sprays were significantly reduced, and △t was significantly decreased for 112.5 and 225ga.i. ha-1 jingganmycin treatments. In addition, the high dose of imidacloprid significantly reduced the weight of 1 000 rice grains by 9.77%. However, there was no significant difference for the weight of 1 000 grains between the high dose of jingganmycin and thecontrol, indicating that effective duration of jingganmycin on grain filling was shorterthan that of imidacloprid.

  19. Effects of Ground Motion Input on the Derived Fragility Functions: Case study of 2010 Haiti Earthquake

    Science.gov (United States)

    Hancilar, Ufuk; Harmandar, Ebru; Çakti, Eser

    2014-05-01

    Empirical fragility functions are derived by statistical processing of the data on: i) Damaged and undamaged buildings, and ii) Ground motion intensity values at the buildings' locations. This study investigates effects of different ground motion inputs on the derived fragility functions. The previously constructed fragility curves (Hancilar et al. 2013), which rely on specific shaking intensity maps published by the USGS after the 2010 Haiti Earthquake, are compared with the fragility functions computed in the present study. Building data come from field surveys of 6,347 buildings that are grouped with respect to structural material type and number of stories. For damage assessment, the European Macroseismic Scale (EMS-98) damage grades are adopted. The simplest way to account for the variability in ground motion input could have been achieved by employing different ground motion prediction equations (GMPEs) and their standard variations. However, in this work, we prefer to rely on stochastically simulated ground motions of the Haiti earthquake. We employ five different source models available in the literature and calculate the resulting strong ground motion in time domain. In our simulations we also consider the local site effects by published studies on NEHRP site classes and micro-zoning maps of the city of Port-au-Prince. We estimate the regional distributions from the waveforms simulated at the same coordinates that we have damage information from. The estimated spatial distributions of peak ground accelerations and velocities, PGA and PGV respectively, are then used as input to fragility computations. The results show that changing the ground motion input causes significant variability in the resulting fragility functions.

  20. Campaign 9 of the $K2$ Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    CERN Document Server

    Henderson, Calen B; Street, Rachel A; Bennett, David P; Hogg, David W; Poleski, R; Barclay, T; Barentsen, G; Howell, S B; Udalski, A; Szymański, M K; Skowron, J; Mróz, P; Kozłowski, S; Wyrzykowski, Ł; Pietrukowicz, P; Soszyński, I; Ulaczyk, K; Pawlak, M; Sumi, T; Abe, F; Asakura, Y; Barry, R K; Bhattacharya, A; Bond, I A; Donachie, M; Freeman, M; Fukui, A; Hirao, Y; Itow, Y; Koshimoto, N; Li, M C A; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Nagakane, M; Ohnishi, K; Oyokawa, H; Rattenbury, N; Saito, To; Sharan, A; Sullivan, D J; Tristram, P J; Yonehara, A; Bachelet, E; Bramich, D A; Cassan, A; Dominik, M; Jaimes, R Figuera; Horne, K; Hundertmark, M; Mao, S; Ranc, C; Schmidt, R; Snodgrass, C; Steele, I A; Tsapras, Y; Wambsganss, J; Akeson, R; Batista, V; Beaulieu, J -P; Beichman, C A; Bozza, V; Bryden, G; Ciardi, D; Cole, A; Coutures, C; Dong, S; Foreman-Mackey, D; Fouqué, P; Gaudi, B S; Kerins, E; Korhonen, H; Jørgensen, U; Lang, D; Lineweaver, C; Marquette, J -B; Mogavero, Federico; Morales, J C; Nataf, D; Pogge, R W; Santerne, A; Shvartzvald, Y; Suzuki, D; Tamura, M; Tisserand, P; Wang, D; Zhu, W

    2016-01-01

    $K2$'s Campaign 9 ($K2$C9) will conduct a $\\sim$3.4 deg$^{2}$ survey toward the Galactic bulge from 7/April through 1/July of 2016 that will leverage the spatial separation between $K2$ and the Earth to facilitate measurement of the microlens parallax $\\pi_{\\rm E}$ for $\\gtrsim$120 microlensing events, including several planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this white paper we provide an overview of the $K2$C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of $K2$C9, and the array of ground-based resources dedicated to concurrent observations. Finally, we outline the avenues throug...

  1. Study on the effect of ground motion direction on the response of engineering structure

    Science.gov (United States)

    Sun, Menghan; Fan, Feng; Sun, Baitao; Zhi, Xudong

    2016-12-01

    Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW (East -West) direction, NS (South- North) direction and perpendicular to the surface ( z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations: (1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined; (2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and (3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage

  2. Analysis of ionospheric electrodynamic parameters on mesoscales – a review of selected techniques using data from ground-based observation networks and satellites

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2011-03-01

    Full Text Available We present a review of selected data-analysis methods that are frequently applied in studies of ionospheric electrodynamics and magnetosphere-ionosphere coupling using ground-based and space-based data sets. Our focus is on methods that are data driven (not simulations or statistical models and can be used in mesoscale studies, where the analysis area is typically some hundreds or thousands of km across. The selection of reviewed methods is such that most combinations of measured input data (electric field, conductances, magnetic field and currents that occur in practical applications are covered. The techniques are used to solve the unmeasured parameters from Ohm's law and Maxwell's equations, possibly with help of some simplifying assumptions. In addition to reviewing existing data-analysis methods, we also briefly discuss possible extensions that may be used for upcoming data sets.

  3. Effect of DUPIC Cycle on CANDU Reactor Safety Parameters

    Directory of Open Access Journals (Sweden)

    Nader M.A. Mohamed

    2016-10-01

    Full Text Available Although, the direct use of spent pressurized water reactor (PWR fuel in CANda Deuterium Uranium (CANDU reactors (DUPIC cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO2 enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1 the power distribution amongst the fuel elements of the bundle; (2 the coolant void reactivity; and (3 the reactor point-kinetics parameters.

  4. Effect of DUPIC cycle on CANDU reactor safety parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M. A. [Atomic Energy Authority, ETRR-2, Cairo (Egypt); Badawi, Alya [Dept. of Nuclear and Radiation Engineering, Alexandria University, Alexandria (Egypt)

    2016-10-15

    Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO{sub 2} enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

  5. Effect of processing parameters on coconut oil expression efficiencies.

    Science.gov (United States)

    Mpagalile, Joseph Jeremiah; Clarke, Brian

    2005-03-01

    The effect of process parameters on oil expression efficiency from freshly dried coconut gratings was investigated. The range of parameters investigated were: pressing time, 4 and 8 min; particle size, fine (0.6 - 1.18 mm) and coarse (1.18 - 2.36 mm); pressure, 3-33 MPa; moisture content, 3%, 7%, 11% and 15%; and temperature, 30 degrees C, 60 degrees C and 90 degrees C. Results showed that 8 min of pressing and finer particles both led to significantly (P oil expression efficiency. The pressure increase within the range 3-13 MPa led to significantly higher oil yields, with yields leveling off thereafter. The effect of pressure increase was highly associated with the moisture content of the gratings, and the optimum moisture content under low-pressure pressing was found to be 11%. A pressing temperature of 60 degrees C led to higher oil expression efficiency, whereas a further increase of temperature to 90 degrees C did not lead to a significant increase in oil yield.

  6. Studying the effects of dynamical parameters on reactor core temperature

    Directory of Open Access Journals (Sweden)

    R Khodabakhsh

    2015-01-01

    Full Text Available In order to increase productivity, reduce depreciation, and avoid possible accidents in a system such as fuel rods' melting and overpressure, control of temperature changes in the reactor core is an important factor. There are several methods for solving and analysing the stability of point kinetics equations. In most previous analyses, the effects of various factors on the temperature of the reactor core have been ignored. In this work, the effects of various dynamical parameters on the temperature of the reactor core and stability of the system in the presence of temperature feedback reactivity with external reactivity step, ramp and sinusoidal for six groups of delayed neutrons were studied using the method of Lyapunov exponent. The results proved to be in good agreement with other works

  7. Computational Study on Effect of Synthetic Jet Design Parameters

    Directory of Open Access Journals (Sweden)

    Koichi Okada

    2010-01-01

    Full Text Available Effects of amplitude and frequency of synthetic jet on the characteristics of induced jet are investigated. To estimate effects of the parameters, flow inside the synthetic jet cavity and orifice and the outer flow is simultaneously simulated using large-eddy simulation (LES. Comparison of the present LES result with the experimental data shows that three-dimensional LES of the flow inside the cavity is essential for accurate estimation of the velocity and velocity fluctuation of the synthetic jet. Comparison of the present results under various flow conditions shows that amplitude and frequency can control profiles of time-averaged vertical velocity and fluctuation of the vertical velocity as well as damping rate of the induced velocity and fluctuation.

  8. Near-fault directivity pulse-like ground motion effect on high-speed railway bridge

    Institute of Scientific and Technical Information of China (English)

    陈令坤; 张楠; 蒋丽忠; 曾志平; 陈格威; 国巍

    2014-01-01

    The vehicle-track-bridge (VTB) element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions. Based on the PEER NAG Strong Ground Motion Database, the spatial analysis model of a vehicle-bridge system was developed, the VTB element was derived to simulate the interaction of train and bridge, and the elasto-plastic seismic responses of the bridge were calculated. The calculation results show that girder and pier top displacement, and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes, and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading. The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base, which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve. The results show that there is an amplification of the vertical deflection in the girder’s mid-span owing to the high vertical ground motion. In light of these findings, the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.

  9. Bonding effectiveness of different adhesion approaches to unground versus ground primary tooth enamel.

    Science.gov (United States)

    Knirsch, M S; Bonifácio, C C; Shimaoka, A M; Andrade, A P; Carvalho, R C R

    2009-06-01

    This study aims to evaluate the bonding effectiveness of self-etch and etch-and-rinse adhesive systems in on intact and ground primary tooth enamel. Sixty primary incisors were divided into 6 groups according to the adhesive system (etch-and-rinse - Adper Single Bond 2 - SB, 2 steps self-etch -Clearfil SE Bond - SE, and 1 step self-etch - One Up Bond F Plus OBF) and to the substrate (ground or intact enamel): G1-SB/intact enamel; G2-SE/intact enamel; G3- OBF/intact enamel; G4-SB/ground enamel; G5- SE/ground enamel and G6-OBF/ground enamel. Microshear bond test specimens were prepared with microhybrid composite and after 24h of water storage the microshear test was performed. Data were submitted to statistical analysis using two-way ANOVA and Tukey's tests (penamel characteristics (ground or intact) only when SE was used a statistically significant difference was found, as G2 (21.12+/-4.52) was statistically lower than G5 (33.29+/-5.44). Among the intact enamel groups, SB (26.11+/-7.56) was statistically superior to SE (21.12+/-4.52) and OBF (17.01+/-3.96). However, when comparisons were made among groups of ground enamel, SE (33.29+/-5.44) was significantly higher than SB (26.35+/-8.18) and OBF (17.52+/-3.46). The two-step self-etch adhesive system is a reliable alternative to etch and rinse adhesive systems on both ground and intact primary enamel.

  10. Ground effect on the aerodynamics of a two-dimensional oscillating airfoil

    Science.gov (United States)

    Lu, H.; Lua, K. B.; Lim, T. T.; Yeo, K. S.

    2014-07-01

    This paper reports results of an experimental investigation into ground effect on the aerodynamics of a two-dimensional elliptic airfoil undergoing simple harmonic translation and rotational motion. Ground clearance ( D) ranging from 1 c to 5 c (where c is the airfoil chord length) was investigated for three rotational amplitudes ( α m) of 30°, 45° and 60° (which respectively translate to mid-stroke angle of attack of 60°, 45° and 30°). For the lowest rotational amplitude of 30°, results show that an airfoil approaching a ground plane experiences a gradual decrease in cycle-averaged lift and drag coefficients until it reaches D ≈ 2.0 c, below which they increase rapidly. Corresponding DPIV measurement indicates that the initial force reduction is associated with the formation of a weaker leading edge vortex and the subsequent force increase below D ≈ 2.0 c may be attributed to stronger wake capture effect. Furthermore, an airfoil oscillating at higher amplitude lessens the initial force reduction when approaching the ground and this subsequently leads to lift distribution that bears striking resemblance to the ground effect on a conventional fixed wing in steady translation.

  11. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Science.gov (United States)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  12. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  13. EPA True NO2 ground site measurements – multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters – multiple sites ,GeoTASO NO2 Vertical Column

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA True NO2 ground site measurements – multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of...

  14. Longitudinal static stability requirements for wing in ground effect vehicle

    Science.gov (United States)

    Yang, Wei; Yang, Zhigang; Collu, Maurizio

    2015-06-01

    The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  15. Longitudinal static stability requirements for wing in ground effect vehicle

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2015-03-01

    Full Text Available The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  16. Longitudinal static stability requirements for wing in ground effect vehicle

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-06-01

    Full Text Available The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  17. A Digital Ground Distance Relaying Algorithm to Reduce the Effect of Fault Resistance during Single Phase to Ground and Simultaneous Faults

    Directory of Open Access Journals (Sweden)

    Mohammad Razaz

    2015-03-01

    Full Text Available This paper provides an algorithm of fault resistance compensation for digital ground distance relay considering the voltage and current transformer effects. Performance of the conventional ground distance relaying manner is adversely affected by different ground faults and also typical type, called a simultaneous open conductor and ground fault. The proposed scheme by using local-end data only, has shown satisfactory performances under wide variations in fault location, with different values of fault resistance and having positive and negative of power transfer angle. The presented method which has been carried out on the IEEE 14 bus benchmark is executed in PSCAD/EMTDC and MATLAB software, and the results show the accurate performance of mentioned configuration.

  18. Systematic Effects in Earth Orientation Parameters Determined by VLBI

    Science.gov (United States)

    Schuh, H.; Heinkelmann, R.

    2015-12-01

    Very Long Baseline Interferometry (VLBI) is the only technique that directly connects on the observation level the realizations of ITRS and ICRS in terms of their orientation. Many applications in spacecraft navigation, fundamental astronomy, astrometry and geosciences depend on the Earth Orientation Parameters (EOP) determined by VLBI. Currently, under the IAG/IAU Joint Working Group on the Theory of Earth Rotation, activities are supported to advance the theory of Earth rotation. Some components of Earth Rotation, such as the free modes like the Free Core Nutation (FCN) are not predictable but rely entirely on the observation through VLBI. In our presentation we investigate the EOP when alternating various VLBI analysis options such as correction models, a priori parameters, and other choices with the aim to detect and quantify possible systematic effects. Our approach is purely empirical: we alternate certain analysis options and assess the differences with respect to the reference solution that adheres to the IERS Conventions (2010) and applies the standard parameterization. For demonstration we analyze the regular International VLBI Service for Geodesy and Astrometry (IVS) sessions IVS-R1 and IVS-R4.The IAG flagship component GGOS (Global Geodetic Observing System) aims to provide the EOP with an accuracy of 1 mm on the Earth surface (about 30 microarcseconds). This accuracy target will be applied as a limit to interpret the significance of the differences obtained in our comparisons.

  19. Effects of soil amplification ratio and multiple wave interference for ground motion due to earthquake

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; XU Jiren; Ryuji Kubota

    2004-01-01

    Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interferences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array survey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplification ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a complicated distribution of the maximum amplitudes of acceleration waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak amplitude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplification effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the

  20. Effect of source parameters on forward-directivity velocity pulse for vertical strike slip fault in half space

    Institute of Scientific and Technical Information of China (English)

    Liu Qifang; Yuan Yifan; Jin Xing

    2006-01-01

    It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler ( 2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period of a forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault,rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.

  1. Effect of source parameters on forward-directivity velocity pulse for vertical strike slip fault in half space

    Science.gov (United States)

    Liu, Qifang; Yuan, Yifan; Jin, Xing

    2006-06-01

    It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period of a forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.

  2. Study Of Performance Parameters Effects On OFDM Systems

    Directory of Open Access Journals (Sweden)

    M.A. Mohamed

    2012-05-01

    Full Text Available The actual and next communication schemes tend to use OFDM systems in order to provide high baud rates, less intercarrier interference, and less intersymbol interference. OFDM has become the core of most 4G communication systems as fixed Wi-Fi system (IEEE802.11a standard, mobile Wi-Fi system (IEEE802.11b standard, fixed WiMAX system (IEEE802.16a standard, mobile WiMAX system (IEEE802.16e standard, and Long Term Evolution (LTE system. In this paper the detailed simulation of different OFDM systems with different constellation mapping schemes will be obtained using MATLAB-2011 program to study the effect of various design parameters on the system performance.

  3. Effect of Palm Pollen on Sperm Parameters of Infertile Man.

    Science.gov (United States)

    Rasekh, Athar; Jashni, Hojjatollah Karimi; Rahmanian, Karamatollah; Jahromi, Abdolreza Sotoodeh

    2015-04-01

    There is a rapidly growing trend in the consumption of herbal remedies in the developing countries. The aim of this study was to determine the effects of orally administered Date Palm Pollen (DPP) on the results of semen analysis in adult infertile men. Forty infertile men participated in our study. They were treated by Pollen powder 120 mg kg(-1) in gelatinous capsules every other day, for two months. Before and at the end of therapy, the semen was collected after masturbation and sperm numbers, motility and morphology were determined. Our findings revealed that consumption of DPP improved the sperm count. The treatment was significantly increased sperm motility, morphology and forward progressive motility. Date palm pollen seems to cure male infertility by improving the quality of sperm parameters.

  4. On the effects of subsurface parameters on evaporite dissolution (Switzerland)

    Science.gov (United States)

    Zidane, Ali; Zechner, Eric; Huggenberger, Peter; Younes, Anis

    2014-05-01

    Uncontrolled subsurface evaporite dissolution could lead to hazards such as land subsidence. Observed subsidences in a study area of Northwestern Switzerland were mainly due to subsurface dissolution (subrosion) of evaporites such as halite and gypsum. A set of 2D density driven flow simulations were evaluated along 1000 m long and 150 m deep 2D cross sections within the study area that is characterized by tectonic horst and graben structures. The simulations were conducted to study the effect of the different subsurface parameters that could affect the dissolution process. The heterogeneity of normal faults and its impact on the dissolution of evaporites is studied by considering several permeable faults that include non-permeable areas. The mixed finite element method (MFE) is used to solve the flow equation, coupled with the multipoint flux approximation (MPFA) and the discontinuous Galerkin method (DG) to solve the diffusion and the advection parts of the transport equation.

  5. Simulation of Urban Effects of Cloud Physical Parameters

    CERN Document Server

    Selvam, A M

    2000-01-01

    A scale invariant, selfsimilar atmospheric eddy continuum exists in the planetary atmospheric boundary layer spanning several orders of magnitude in scales and gives rise to the observed fractal geometry for the global cloud cover pattern. The global weather systems are manifestations of the unified atmospheric eddy continuum with inherent mutual global-local energy exchange and therefore local urban energy/pollution sources have long-range global effects leading to climate change and environmental degradation. It is shown that the observed scale invariant atmospheric eddy continuum originates from the turbulence scale by the universal period doubling route to chaos eddy growth phenomenon in the planetary atmospheric boundary layer. The cloud dynamical, microphysical and electrical parameters are shown to be simple unique functions of turbulence scale energy generation.

  6. Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge

    Directory of Open Access Journals (Sweden)

    Swagata Banerjee Basu

    2011-01-01

    Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.

  7. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices

    Science.gov (United States)

    Wang, Jin; Cao, Shuyang; Pang, Weichiang; Cao, Jinxin

    2017-02-01

    The three-dimensional wind velocity and dynamic pressure for stationary tornado-like vortices that developed over ground of different roughness categories were investigated to clarify the effects of ground roughness. Measurements were performed for various roughness categories and two swirl ratios. Variations of the vertical and horizontal distributions of velocity and pressure with roughness are presented, with the results showing that the tangential, radial, and axial velocity components increase inside the vortex core near the ground under rough surface conditions. Meanwhile, clearly decreased tangential components are found outside the core radius at low elevations. The high axial velocity inside the vortex core over rough ground surface indicates that roughness produces an effect similar to a reduced swirl ratio. In addition, the pressure drop accompanying a tornado is more significant at elevations closer to the ground under rough compared with smooth surface conditions. We show that the variations of the flow characteristics with roughness are dependent on the vortex-generating mechanism, indicating the need for appropriate modelling of tornado-like vortices.

  8. The Effect of Degradation of Ground water Resources on Capital of Pistachio Growers in Kerman Province

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Mortazavi

    2014-12-01

    Full Text Available Real cost evaluation of water is necessary in agricultural products depending on obtained value by this input. In most areas of world especially in arid and semiarid areas, exist over pumping of ground water because the real value of water is much most than the costs of water supply and the lack of fit management water resources. In this study, using a sample of 110 farmers, water dealing value of over using of groundwater in Rafsanjan pistachio production area were investigated. Analysis and regression methods were used in this regard. The average determined value obtained 24 cents, for each share of water in this region which with over drafting of ground water, and decreasing quality and quantity of water has had significant relationship in the one percent significance level. Finally, for elimination or reduction of ground water degradation and its effects, this paper recommended in addition to reduction of licenses for ground water pumping. Determination of optimal economic water/land ratio in new and old pistachio producing areas is the other proposal of this research for alleviation groundwater over drafting effects. Permission for water conduction between wells and combination of fresh and saline water and also using desalination systems are methods for solving low quality of ground water.

  9. Effects of ground cover from branches of arboreal species on weed growth and maize yield

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    Full Text Available ABSTRACTCultivating maize under systems of alley cropping results in improvements to the soil, a reduction in weeds and an increase in yield. Studies using ground cover from tree shoots produce similar results. The aim of this study was to evaluate the effects on weed growth and maize yield of ground cover made up of 30 t ha-1 (fresh matter of branches from the tree species: neem (Azadirachta indica A. Juss, gliricidia [Gliricidia sepium(Jacq. Kunth ex Walp.], leucaena [Leucaena leucocephala (Lam. de Wit.] and sabiá (Mimosa caesalpiniifolia Benth.. Two treatment groups (cultivars and weed control were evaluated. The cultivars AG 1041 and AL Bandeirantes were subjected to the following treatments: no hoeing, double hoeing, and ground a cover of branches of the above species when sowing the maize. A randomised block design was used with split lots (cultivars in the lots and ten replications. The cultivars did not differ for green ear or grain yield. Double hoeing was more effective than ground cover at reducing the growth of weeds. However, both weeding and ground cover resulted in similar yields for green ears and grain, which were greater than those obtained with the unweeded maize.

  10. Effect of structural disorder on the ground state properties of Co2CrAl Heusler alloy

    Science.gov (United States)

    Zagrebin, Mikhail A.; Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D.; Pavlukhina, Oksana O.

    2017-08-01

    In order to discuss the difference between the available theoretical and experimental values of the total magnetic moment of Co2CrAl Heusler alloy, in this paper we studied the effects of a structural disorder on the magnetic and electronic ground state properties of the alloy studied by means of ab initio and Monte Carlo methods. On the one hand, it is shown that a calculated magnetic ground state of the austenite L21 structure is ferromagnetic, and the alloy demonstrates half-metallic behavior. However, the equilibrium lattice parameter and magnetic moment calculated for ferrimagnetic state (where the Cr atoms are ordered antiferromagnetically) are in better agreement with the available experimental data than the ferromagnetic one. On the other hand, an account of a structural disorder results in a decrease in the magnetic moment to a value close to the experimental. However, systems with a structural disorder are energetically unfavorable in comparison with the ordered L21 structure at zero temperature. Using the calculated exchange coupling parameters in the Heisenberg Hamiltonian, the temperature dependences of magnetization, specific heat, magnetic part of internal energy as well as Helmholtz energy are simulated in the framework of Monte Carlo technique for both ordered and disordered cases. Eventually, it is shown that the disordered structure with smaller magnetization is more stable at higher temperatures. This indicates that the experimental compound might be disordered.

  11. Torsion - Rotation - Vibration Effects in the Ground and First Excited States of Methacrolein and Methyl Vinyl Ketone

    Science.gov (United States)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2016-06-01

    Methacrolein and methyl vinyl ketone are the two major oxidation products of isoprene emitted in the troposphere. New spectroscopic information is provided with the aim to allow unambiguous identification of these molecules, characterized by a large amplitude motion associated with the methyl top. State-of-the-art millimeter-wave spectroscopy experiments coupled to quantum chemical calculations have been performed. Comprehensive sets of molecular parameters have been obtained. The torsion-rotation-vibration effects will be discussed in detail. From the atmospheric application point of view the results provide precise ground state molecular constants essential as a foundation (by using the Ground State Combination Differences method) for the analysis of high resolution spectrum, recorded from 600 to 1600 wn. The infrared range can be then refitted using appropriate Hamiltonian parameters. The present work is funded by the French ANR through the PIA under contract ANR-11-LABX-0005-01 (Labex CaPPA), by the Regional Council Nord-Pas de Calais and by the European Funds for Regional Economic Development (FEDER).

  12. Analysis on effect of surface fault to site ground motion using finite element method

    Institute of Scientific and Technical Information of China (English)

    曹炳政; 罗奇峰

    2003-01-01

    Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.

  13. Effect of mechanical parameters on dielectric elastomer minimum energy structures

    Science.gov (United States)

    Shintake, Jun; Rosset, Samuel; Floreano, Dario; Shea, Herbert R.

    2013-04-01

    Soft robotics may provide many advantages compared to traditional robotics approaches based on rigid materials, such as intrinsically safe physical human-robot interaction, efficient/stable locomotion, adaptive morphology, etc. The objective of this study is to develop a compliant structural actuator for soft a soft robot using dielectric elastomer minimum energy structures (DEMES). DEMES consist of a pre-stretched dielectric elastomer actuator (DEA) bonded to an initially planar flexible frame, which deforms into an out-of-plane shape which allows for large actuation stroke. Our initial goal is a one-dimensional bending actuator with 90 degree stroke. Along with frame shape, the actuation performance of DEMES depends on mechanical parameters such as thickness of the materials and pre-stretch of the elastomer membrane. We report here the characterization results on the effect of mechanical parameters on the actuator performance. The tested devices use a cm-size flexible-PCB (polyimide, 50 μm thickness) as the frame-material. For the DEA, PDMS (approximately 50 μm thickness) and carbon black mixed with silicone were used as membrane and electrode, respectively. The actuators were characterized by measuring the tip angle and the blocking force as functions of applied voltage. Different pre-stretch methods (uniaxial, biaxial and their ratio), and frame geometries (rectangular with different width, triangular and circular) were used. In order to compare actuators with different geometries, the same electrode area was used in all the devices. The results showed that the initial tip angle scales inversely with the frame width, the actuation stroke and the blocking force are inversely related (leading to an interesting design trade-off), using anisotropic pre-stretch increased the actuation stroke and the initial bending angle, and the circular frame shape exhibited the highest actuation performance.

  14. Parameters that effect spine biomechanics following cervical disc replacement.

    Science.gov (United States)

    Goel, Vijay K; Faizan, Ahmad; Palepu, Vivek; Bhattacharya, Sanghita

    2012-06-01

    Total disc replacement (TDR) is expected to provide a more physiologic alternative to fusion. However, long-term clinical data proving the efficacy of the implants is lacking. Limited clinical data suggest somewhat of a disagreement between the in vitro biomechanical studies and in vivo assessments. This conceptual paper presents the potential biomechanical challenges affecting the TDR that should be addressed with a hope to improve the clinical outcomes and our understanding of the devices. Appropriate literature and our own research findings comparing the biomechanics of different disc designs are presented to highlight the need for additional investigations. The biomechanical effects of various surgical procedures are analyzed, reiterating the importance of parameters like preserving uncinate processes, disc placement and its orientation within the cervical spine. Moreover, the need for a 360° dynamic system for disc recipients who may experience whiplash injuries is explored. Probabilistic studies as performed already in the lumbar spine may explore high risk combinations of different parameters and explain the differences between "standard" biomechanical investigations and clinical studies. Development of a patient specific optimized finite element model that takes muscle forces into consideration may help resolve the discrepancies between biomechanics of TDR and the clinical studies. Factors affecting long-term performance such as bone remodeling, subsidence, and wear are elaborated. In vivo assessment of segmental spine motion has been, and continues to be, a challenge. In general, clinical studies while reporting the data have placed lesser emphasis on kinematics following intervertebral disc replacements. Evaluation of in vivo kinematics following TDR to analyze the quality and quantity of motion using stereoradiogrammetric technique may be needed.

  15. Ground Motion Prediction for the Vicinity by Using the Microtremor Site-effect Correction

    Science.gov (United States)

    Lin, C. M.; Wen, K. L.; Kuo, C. H.

    2015-12-01

    This study develops a method analyzing the seismograms of a strong-motion station and the microtremor site effects (H/V ratios) around it to predict the ground motion of its vicinity. The Hsinchu Science Park (HSP) in Taiwan was chosen as our study site. The horizontal S-wave seismograms of the TCU017 strong-motion station, which locates at the center of the HSP, were convoluted by the difference of the microtremor H/V ratio between various sites to synthesize the seismograms of several strong-motion stations around the HSP. The comparisons between synthetic and observed seismograms show that this method of ground motion prediction for the vicinity is feasible for far-field earthquakes. However, the seismic source and attenuation effects make this method ineffectual for near-field earthquakes. Because the microtremor H/V ratios at about 200 sites, which are densely distributed in the HSP, were conducted, the seismic ground motion distributions of some historical earthquakes were synthesized by this study. The synthetic ground motion distributions ignore the seismic source and attenuation effects but still show notable variations in the HSP because of the seismic site effects.

  16. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP

    NARCIS (Netherlands)

    Pereira, G.K.R.; Amaral, M.; Cesar, P.F.; Bottino, M.C.; Kleverlaan, C.J.; Valandro, L.F.

    2015-01-01

    This study evaluated the effects of low-temperature aging on the surface topography, phase transformation, biaxial flexural strength, and structural reliability of a ground Y-TZP ceramic. Disc-shaped specimens were manufactured and divided according to two factors: "grinding" - without grinding

  17. A Grounded Theory Study of Effective Global Leadership Development Strategies: Perspectives from Brazil, India, and Nigeria

    Science.gov (United States)

    Lokkesmoe, Karen Jane

    2009-01-01

    This qualitative, grounded theory study focuses on global leadership and global leadership development strategies from the perspective of people from three developing countries, Brazil, India, and Nigeria. The study explores conceptualizations of global leadership, the skills required to lead effectively in global contexts, and recommended…

  18. Leading Effective Educational Technology in K-12 School Districts: A Grounded Theory

    Science.gov (United States)

    Hill, Lara Gillian C.

    2011-01-01

    A systematic grounded theory qualitative study was conducted investigating the process of effectively leading educational technology in New Jersey public K-12 school districts. Data were collected from educational technology district leaders (whether formal or non-formal administrators) and central administrators through a semi-structured online…

  19. Effects of Outdoor School Ground Lessons on Students' Science Process Skills and Scientific Curiosity

    Science.gov (United States)

    Ting, Kan Lin; Siew, Nyet Moi

    2014-01-01

    The purpose of this study was to investigate the effects of outdoor school ground lessons on Year Five students' science process skills and scientific curiosity. A quasi-experimental design was employed in this study. The participants in the study were divided into two groups, one subjected to the experimental treatment, defined as…

  20. Single Phase-to-Ground Fault Line Identification and Section Location Method for Non-Effectively Grounded Distribution Systems Based on Signal Injection

    Institute of Scientific and Technical Information of China (English)

    PAN Zhencun; WANG Chengshan; CONG Wei; ZHANG Fan

    2008-01-01

    A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in thisi oaper. A special diagnostic signal current is injected into the fault distribution system, and then it is de- tected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section. The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.

  1. Projection Effects on Physical Parameters Obtained from Solar Vector Magnetograms

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Projection effects in Huairou solar vector magnetograms are corrected by transferring or mapping the observed vector magnetogram in the image plane to the heliographic plane (planar correction) and to the heliospheric coordinate system (spherical correction). The magnetograms after the correction are considerably different. The planar correction and the spherical correction lead to slightly different magnetic configurations, especially when the active region involved is far from the disk center. We also discuss the effects of the corrections on magnetic activity parameters, such as magnetic shear, current helicity, etc. It is shown that the neutral line is obviously distorted after the mapping. The mapping generally decreases the average shear angle on the neutral line by several degrees when the active region is in the eastern hemisphere, and increases it when in the western hemisphere. In most of the cases studied, the correction reduces the current helicity imbalance, and sometimes even changes its sign. It is found that the current helicity imbalance may change its sign in its evolution when there are apparent fluxes emerging from the lower photosphere. The corrections increase the noise level of Bz greatly, and decrease the noise level of Bt slightly. The accuracy of the magnetic field measurement at Huairou is estimated to be better than 20 G and 150 G for the longitudinal and the transverse component, respectively.

  2. The effect of Ramadan fasting on hematological parameters

    Directory of Open Access Journals (Sweden)

    Jafar Nasiri

    2016-12-01

    Full Text Available Background: Ramadan fasting is an obligation for many Muslims around the world who abstain from eating and drinking for one month, which has different medical and physiological effects, such as reducing blood pressure, lipid profile, blood glucose, and body weight. It has also been hypothesized that Ramadan fasting may induce some changes in the hematologic parameters. Thus, we aimed to investigate the effect of Ramadan fasting on blood cell count (CBC, and erythrocyte sedimentation rate (ESR. Methods: In the present study, 59 adult healthy individuals, who had completed one month of Ramadan fasting were included. Fasting blood samples were analyzed for ESR, hemoglobin (Hb, hematocrit (Hct, white blood cell (WBC, platelet count (PLT, mean corpuscular Volume (MCV and mean platelet volume (MPV, one day before, on the second and last week of Ramadan and one month after Ramadan (phase I , II, III,  and IV, respectively. Results: 34 men and 25 women with an age range of 15 to 24 years participated in the study. Mean ESR increased significantly (except phase IV, in comparison phase III. Mean Hb and Hct levels were significantly greater in phase III than phase I (P

  3. Evaluation of the Heading Confinement Pressure Effect on Ground Settlement for EPBTBM Using Full 3D Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Amir Hossein Haghi

    2013-06-01

    Full Text Available Ground settlement is often the most serious concern when tunneling under an old city with numerous historic monuments. A successful engineering design under these conditions would require getting the most out of the ground strength parameters and avoiding any weakening maneuver throughout the operation. Knowing that surface settlement is highly affected by tunneling parameters in EPB shield tunneling lead us to estimate the optimum values for the machine heading pressure with the lower amount of the ground settlement in fragile structure of the old city for the Esfahan Subway Project. Tunnels were dug underneath some of the most prominent historical sites along the path of the project. To improve precision and efficiency in tunneling operation, at the first step, tunnel heading confinement pressure is calculated by using an advanced 3D mathematical approach based on the limit equilibrium theory. Then, a promoted 3D finite element model is developed, taking into account the tunneling procedures and the designed heading confinement pressure from the first step. Settlements were pre-calculated and the surface displacement was checked at all sensitive locations. At the third step, settlement is estimated by exerting executed face supporting pressure to the tunnel face and the concluded amounts for displacement are compared with the outputs of extensometers. This comparison leads us to check the reliability of calculated settlements and the accuracy of the designed tunnel heading confinement pressure. Furthermore, evaluating the relation between extensometer outputs and executed tunnel face pressure at the points of extensometers stations validates the assumption that the safe face supporting pressure causes least surface displacement. Although the minimum pressure occurred in short term fluctuations, this approach confirms the sensibility of settlement with the least executed face supporting pressure.. It is also found that higher executed face

  4. Ameliorative effects of salt resistance on physiological parameters in ...

    African Journals Online (AJOL)

    REV A

    2013-08-21

    Aug 21, 2013 ... Fresh leaf tissue (600 mg) was ground in 5 ml ethanol. (80%) using a .... of senescence under stress (Pablo et al., 2008; Dong et al., 2001). Despite the ... strain PsJN protects the grapevines against Botrytis cinerea (Ait Barka ...

  5. Effect of Passive Pile on 3D Ground Deformation and on Active Pile Response

    OpenAIRE

    Bingxiang Yuan; Rui Chen; Jun Teng; Tao Peng; Zhongwen Feng

    2014-01-01

    Using a series of model tests, this study investigated the effect of a passive pile on 3D ground deformation around a laterally loaded pile and on that laterally loaded pile’s response in sand. The active pile head was subjected to lateral loads, and the passive pile was arranged in front of the active pile. In the model tests, the distance between the two pile centers was set to zero (i.e., a single pile test), 2.5, 4, and 6 times the pile width (B). The 3D ground surface deformations around...

  6. Viscous flowfields induced by three-dimensional lift jets in ground effect

    Science.gov (United States)

    Bower, W. W.

    1982-01-01

    The turbulent flowfields associated with single and multiple jets impinging on a ground plane are relevant to the aerodynamics of VTOL aircraft in ground effect. These flowfields are computed using the Reynolds equations and a two-equation turbulence model to describe an isolated jet and two interacting jets with fountain formation. Coordinate transformations are employed to apply the boundary conditions for the governing equations in the far field, and a third-order-accurate upwind-difference scheme is used to discretize the resulting system. Flowfield properties calculated for these impinging-jet configurations are presented and compared with experimental data.

  7. Effect of ship structure and size on grounding and collision damage distributions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    2000-01-01

    of the ship have the same probability density distributions regardless of a particular structural design and ship size.The present paper explores analytical methods for assessing the overall effect of structural design on the damage distributions in accidental grounding and collisions. The results...... of a larger relative damage length than that of a smaller ship in grounding damage. On the other hand, the damages to the side structure caused by ship collisions are found to be relatively smaller for large ships.The main conclusion is that the existing IMO damage distributions will severely underestimate...

  8. The anti-obesity effect of natural vanadium-containing Jeju ground water.

    Science.gov (United States)

    Park, Seon-Joo; Youn, Cha-Kyung; Hyun, Jin Won; You, Ho Jin

    2013-02-01

    This study investigated the anti-obesity effects of Jeju ground water containing the vanadium components S1 (8.0 ± 0.9 μg/l) and S3 (26.0 ± 2.09 μg/l) on the differentiation of 3 T3-L1 preadipocytes and obesity in mice that were fed a high-fat diet (HFD). The 3 T3-L1 preadipocyte cells were cultured and differentiated in media consisting of Jeju ground water (S1, S3) or deionized water (DW) containing dexamethasone, isobutylmethylxanthine, and insulin. Oil Red O staining showed that lipid accumulation was attenuated in adipocyte cells treated with Jeju ground water. S3 significantly decreased peroxisome-activated receptor γ and CCAAT-enhancer-binding protein α mRNA expression levels, which play major roles in the transcriptional control of adipogenesis, compared to DW. Furthermore, mRNA expression levels of targeted genes, such as adipocyte fatty acid, lipoprotein lipase, and leptin, were decreased by S3 treatment compared with the control group. In mice with HFD-induced obesity, Jeju ground water decreased HFD-induced body weight gain and reduced total cholesterol, triglyceride, and glucose levels in the plasma compared to control mice. Taken together, Jeju ground water inhibits preadipocyte differentiation and adipogenesis in obesity animal models.

  9. EFFECT OF SANTA ROSA LAKE ON GROUND WATER FLOW TO THE PECOS RIVER, NEW MEXICO.

    Science.gov (United States)

    Risser, Dennis W.

    1985-01-01

    In 1980, Santa Rosa Dam began impounding water on the Pecos River about 7 miles (11 kilometers) north of Santa Rosa, New Mexico, to provide flood control and storage for irrigation. Santa Rosa Lake has caused changes in the ground water flow system, which may cause changes in the streamflow of the Pecos River that cannot be detected at the present streamflow-gaging stations, which are used to administer water rights along the Pecos River. The effect of the lake on streamflow was investigated using a three-dimensional ground water flow model. These simulations indicated that the net change in ground water flow to the river would be almost zero if the lake were maintained at its flood control pool for 90 days.

  10. Temperature and energy deficit in the ground during operation and recovery phases of closed-loop ground source heat pump system: Effect of the groundwater flow

    Science.gov (United States)

    Erol, Selcuk; Francois, Bertrand

    2016-04-01

    The advection/dispersion mechanism of the groundwater flow in the ground has a significant effect on a borehole heat exchanger (BHE) to enhance its thermal performance. However, the amount of energy extracted from the ground never disappears and only shifts with the magnitude of the effective thermal velocity in the infinite domain. In this work, we focus on the temperature and the energy balance of the ground in an advection/dispersion dominated heat transfer system during the operation period of a BHE and the subsequent recovery phase when the system is idle. The problem is treated with single BHE and multi-BHEs systems, for different representative geology and different groundwater flow velocity. In order to assess the thermal energy deficit due to heat extraction from the ground, we used the finite line source analytical model, developed recently (Erol et al., 2015) that provides the temperature distributions around the boreholes for discontinuous heat extraction. The model is developed based on the Green's function, which is the solution of heat conduction/advection/dispersion equation in porous media, for discontinuous heat extraction by analytically convoluting rectangular function or pulses in time domain. The results demonstrate the significant positive impact of the groundwater flow for the recovery in terms of temperature deficit at the location of the borehole. However, the total thermal energy deficit is not affected by the groundwater movement. The energy balance of the ground is the same no matter the prevailing heat transfer system, which can be only conduction or advection/dispersion. In addition, the energy balance of the ground is not based on either the duration of the production period operation or of the recovery phase, but depends on the total amount of heat that is extracted and on the bulk volumetric heat capacity of the ground.

  11. Experimental Study of Ground Effect on Three-Dimensional Insect-Like Flapping Motion

    Science.gov (United States)

    Zhang, Xiaohu; Lua, Kim Boon; Chang, Rong; Lim, Tee Tai; Yeo, Khoon Seng

    2014-11-01

    This paper focuses on an experimental investigation aimed at evaluating the aerodynamics force characteristics of three-dimensional (3D) insect-like flapping motion in the vicinity of ground. The purpose is to establish whether flapping wing insects can derive aerodynamic benefit from ground effect similar to that experienced by a fixed wing aircraft. To evaluate this, force measurements were conducted in a large water tank using a 3D flapping mechanism capable of executing various insect flapping motions. Here, we focus on three types of flapping motions, namely simple harmonic flapping motion, hawkmoth-like hovering motion and fruitfly-like hovering motion, and two types of wing planforms (i.e. hawkmoth-like wing and fruitfly-like wing). Results show that hawkmoth-like wing executing simple harmonic flapping motion produces average lift to drag ratio (\\bar C\\bar L/\\bar C\\bar D) similar to that of fruitfly wing executing the same motion. In both cases, they are relatively independent of the wing distance from the ground. On the other hand, a hawkmoth wing executing hawkmoth flapping motion produces (\\bar C\\bar L/\\bar C\\bar D) characteristic different from that of fruitfly wing executing fruitfly motion. While the (\\bar C\\bar L/\\bar C\\bar D) value of the former is a function of the wing distance from the ground, the latter is minimally affected by ground effect. Unlike fixed wing aerodynamics, all the flapping wing cases considered here do not show a monotonic increase in (\\bar C\\bar L/\\bar C\\bar D) with decreasing wing distance from the ground.

  12. Effects of geliogeophysical disturbances in haemorheological parameters of human

    Science.gov (United States)

    Ionova, V.; Sergeenko, N.; Sazanova, E.

    The changes of the rheological characteristics of blood at healthy people and patients with cerebrum-vascular pathology during 23 geomagnetic disturbances were studied. The analysis of dynamics of haemorheological parameters of both human groups has shown that the most of parameters are beginning statistically authentically to fall outside the normal limits already prior the beginning of the magnetic disturbance, others - per day of a beginning of disturbance. This fact specifies at an increase of variability for functional activity of blood cell in conditions of geomagnetic disturbance and allows to assume presence of direct influences of an environmental physical processes at the blood cell. The deterioration of deformation properties of erythrocytes is observed in the blood of people. The analysis of the data has resulted in occurrence of a hypothesis about appearance of instability at thrombosis-vascular part of haemostasis under influence of variation of electromagnetic field in during of magnetospheric disturbances. Such effect can be caused as direct and indirect action of an electrîmagnetic field of the Earth on the cells of blood. Haemoglobin of erythrocytes includes atoms of iron, having a deflection of the magnetic moment. In the cells, which had their erythrocytes membrane under influence of an electrîmagnetic field, had diminution of electrical mobility, that can influence the dynamics of physiological process of aggregation --disaggregation of erythrocytes in a stream of blood. Another channel of influence of geomagnetic disturbances on rheological property of blood can be connected with the action of electrîmagnetic fields through synchronization of rhythms of electromagnetic oscillations of cells of central nervous system. From the entire spectrum of an electrîmagnetic field apparent on the surface of the Earth, biologically effective factor is in a range of ultralow frequencies from 0,0001 up to 100 Ãö. The biorhythms of the brain, such as an

  13. Effects of a Group of High-Rise Structures on Ground Motions under Seismic Excitation

    Directory of Open Access Journals (Sweden)

    Qing-jun Chen

    2015-01-01

    Full Text Available A three-dimensional simulation was created to determine the seismic performance of coupled systems with a group of up to 100 pile-high-rise structures resting on soil layers using system modal, harmonic, and time domain analysis. The results demonstrated that the existence of a structural group mitigates the structural responses with respect to the single-structure-soil interaction (SSI and results in significantly nonuniform ground seismic motions. Due to the influence of a structural group, adjacent structures can exhibit fully alternating mechanical behavior, and buildings in the urban fringe are subjected to stronger shaking than downtown buildings. The overall trend of the influence of structural groups is that ground motions are lessened inside an urban area, and ground motions at the locations between structures differ from those at the locations of the structures. Moreover, the effective distance of a structural group on ground motions is associated with the urban width. Less distance between structures enhances the interaction effect. In addition, the soil properties can greatly influence the system’s seismic responses and can even completely change the effect trends. The results in our paper are consistent with the phenomena observed in the Mexico City earthquake and the 1976 earthquake in Friuli, Italy.

  14. Effect of vehicle front end profiles leading to pedestrian secondary head impact to ground.

    Science.gov (United States)

    Gupta, Vishal; Yang, King H

    2013-11-01

    Most studies of pedestrian injuries focus on reducing traumatic injuries due to the primary impact between the vehicle and the pedestrian. However, based on the Pedestrian Crash Data Study (PCDS), some researchers concluded that one of the leading causes of head injury for pedestrian crashes can be attributed to the secondary impact, defined as the impact of the pedestrian with the ground after the primary impact of the pedestrian with the vehicle. The purpose of this study is to understand if different vehicle front-end profiles can affect the risk of pedestrian secondary head impact with the ground and thus help in reducing the risk of head injury during secondary head impact with ground. Pedestrian responses were studied using several front-end profiles based off a mid-size vehicle and a SUV that have been validated previously along with several MADYMO pedestrian models. Mesh morphing is used to explore changes to the bumper height, bonnet leading-edge height, and bonnet rear reference-line height. Simulations leading up to pedestrian secondary impact with ground are conducted at impact speeds of 40 and 30 km/h. In addition, three pedestrian sizes (50th, 5th and 6yr old child) are used to enable us to search for a front-end profile that performs well for multiple sizes of pedestrians, not just one particular size. In most of the simulations, secondary ground impact with pedestrian head/neck/shoulder region occurred. However, there were some front-end profiles that promoted secondary ground impact with pedestrian lower extremities, thus avoiding pedestrian secondary head impact with ground. Previous pedestrian safety research work has suggested the use of active safety methods, such as 'pop up hood', to reduce pedestrian head injury during primary impact. Accordingly, we also conducted simulations using a model with the hood raised to capture the effect of a pop-up hood. These simulations indicated that even though pop-up hood helped reducing the head injury

  15. Statistical evaluation of effects of riparian buffers on nitrate and ground water quality

    Science.gov (United States)

    Spruill, T.B.

    2000-01-01

    A study was conducted to statistically evaluate the effectiveness of riparian buffers for decreasing nitrate concentrations in ground water and for affecting other chemical constituents. Values for pH, specific conductance, alkalinity, dissolved organic carbon (DOC), silica, ammonium, phosphorus, iron, and manganese at 28 sites in the Contentnea Creek Basin were significantly higher (p 20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dssolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dissolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (water samples from buffer and nonbuffer areas indicated significantly higher specific conductance, calcium, chloride, and nitrate nitrogen in nonbuffer areas. Riparian buffers along streams can affect the composition of the hyporheic zone by providing a source of organic carbon to the streambed, which creates reducing geochemical conditions that consequently can affect the chemical quality of old ground water discharging through it. Buffer zones between agricultural fields and streams facilitate dilution of conservative chemical constituents in young ground water that originate from fertilizer applications and also allow denitrification in ground water by providing an adequate source of organic carbon generated by vegetation in the buffer zone. Based on the median chloride and nitrate values for young ground water in the Contentnea Creek Basin, nitrate was 95% lower in buffer areas compared with nonbuffer areas, with a 30 to 35% reduction estimated to be due to

  16. Effect of Adjusting Pseudo-Guessing Parameter Estimates on Test Scaling When Item Parameter Drift Is Present

    Directory of Open Access Journals (Sweden)

    Kyung T. Han

    2015-07-01

    Full Text Available In item response theory test scaling/equating with the three-parameter model, the scaling coefficients A and B have no impact on the c-parameter estimates of the test items since the c-parameter estimates are not adjusted in the scaling/equating procedure. The main research question in this study concerned how serious the consequences would be if c-parameter estimates are not adjusted in the test equating procedure when item-parameter drift (IPD is present. This drift is commonly observed in equating studies and hence, has been the source of considerable research. The results from a series of Monte-Carlo simulation studies conducted under 32 different combinations of conditions showed that some calibration strategies in the study, where the c-parameters were adjusted to be identical across two test forms, resulted in more robust equating performance in the presence of IPD. This paper discusses the practical effectiveness and the theoretical importance of appropriately adjusting c-parameter estimates in equating.

  17. Effect of hyperthermic water bath on parameters of cellular immunity.

    Science.gov (United States)

    Blazícková, S; Rovenský, J; Koska, J; Vigas, M

    2000-01-01

    Effects of hyperthermic water bath on selected immune parameters (lymphocyte subpopulations, natural killer (NK) cell counts and their activity) were studied in a group of 10 volunteers. Application of hyperthermic water bath (both topical and whole-body) was followed by a significant reduction of relative B lymphocyte counts. Whole-body hyperthermic water bath reduced relative total T lymphocyte counts, increased relative CD8+ T lymphocyte and NK cell counts and increased NK activity. Whole-body hyperthermic bath increased somatotropic hormone (STH) activity in eight out of 10 volunteers; higher relative counts of CD8+ lymphocytes and NK cells were observed compared with the group of volunteers not responding to hyperthermic water bath by STH secretion. In five volunteers STH was released in response to local hyperthermic water bath and the NK activity of lymphocytes also increased but their relative counts did not. The results suggest that these increases in CD8+ lymphocyte and NK cell counts are probably dependent on increased STH production.

  18. An automatic and effective parameter optimization method for model tuning

    Directory of Open Access Journals (Sweden)

    T. Zhang

    2015-11-01

    simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.

  19. Effect of spatial coherence on laser beam self-focusing from orbit to the ground in the atmosphere.

    Science.gov (United States)

    Deng, Hanling; Ji, Xiaoling; Li, Xiaoqing; Zhang, Hao; Wang, Xianqu; Zhang, Yuqiu

    2016-06-27

    The effect of spatial coherence on laser beam self-focusing in the atmosphere to assist delivering powerful laser beams from orbit to the ground is studied. It is found that a fully coherent beam is more strongly compressed on the ground than a partially (spatial) coherent beam (PCB), even so, for a PCB the compressed spot size on the ground may be reduced below the diffraction limit due to self-focusing effect, and a PCB has higher threshold critical power than a fully coherent beam. Furthermore, an effective design rule for maximal compression without beam splitting of the transported PCB from orbit to the ground is presented.

  20. Parasitic Effects of Grounding Paths on Common-Mode EMI Filter's Performance in Power Electronics Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuo [ORNL; Maillet, Yoann [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Lai, Rixin [General Electric; Luo, Fang [Virginia Polytechnic Institute and State University (Virginia Tech); Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech)

    2010-01-01

    High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.

  1. Effects of different fermentation parameters on quality characteristics of kefir.

    Science.gov (United States)

    Kök-Taş, Tuğba; Seydim, Atif C; Ozer, Barbaros; Guzel-Seydim, Zeynep B

    2013-02-01

    The main objective of the study was to determine the effects of different fermentation parameters on kefir quality. Kefir samples were produced using kefir grains or natural kefir starter culture, and fermentation was carried out under normal or modified atmosphere (10% CO(2)) conditions. The microbiological (lactobacilli, lactococci, Lactobacillus acidophilus, Bifidobacterium spp., and yeasts), chemical (pH, lactic acid, total solids, protein, ethanol, exopolysaccharide contents), rheological, and sensory properties of kefir samples were investigated during a 21-d storage period. The use of different fermentation parameters or the choice of grain versus natural kefir starter culture did not significantly affect the content of microorganisms. Lactobacilli, lactococci, and yeast contents of kefir samples varied between 9.21 and 9.28, 9.23 and 9.29, and 4.71 and 5.53 log cfu/mL, respectively, on d 1 of storage. Contents of L. acidophilus and Bifidobacterium spp. were between 5.78 and 6.43 and between 3.19 and 6.14 log cfu/mL, respectively, during 21 d of storage. During the storage period, pH, lactic acid (%), total solids (%), protein (%), acetaldehyde, and ethanol contents of kefir samples ranged from 4.29 to 4.53, from 0.81 to 0.95%, from 7.81 to 8.21%, from 3.09 to 3.48%, from 3.8 to 23.6 mg/L, and from 76.5 to 5,147 mg/L, respectively. The exopolysaccharide contents of the samples decreased during 21 d of cold storage; the samples fermented under modified atmosphere had relatively higher exopolysaccharide contents, indicating higher potential therapeutic properties. The kefir samples exhibited non-Newtonian pseudoplastic flow behavior according to the power law model. According to the sensory results, kefir produced from natural kefir starter culture under CO(2) atmosphere had the highest overall evaluation score at d 1. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Spatial and optical parameters of contrails in the vortex and dispersion regime determined by means of a ground-based scanning lidar

    Energy Technology Data Exchange (ETDEWEB)

    Freudenthaler, V.; Homburg, F.; Jaeger, H. [Fraunhofer-Inst. fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany)

    1997-12-31

    The spatial growth of individual condensation trails (contrails) of commercial aircrafts in the time range from 15 s to 60 min behind the aircraft is investigated by means of a ground-based scanning backscatter lidar. The growth in width is mainly governed by wind shear and varies between 18 m/min and 140 m/min. The growth of the cross-section varies between 3500 m{sup 2}/min and 25000 m{sup 2}/min. These values are in agreement with results of model calculations and former field measurements. The vertical growth is often limited by boundaries of the humid layer at flight level, but values up to 18 m/min were observed. Optical parameters like depolarization, optical depth and lidar ratio, i.e. the extinction-to-backscatter ratio, have been retrieved from the measurements at a wavelength of 532 nm. The linear depolarization rises from values as low as 0.06 for a young contrail (10 s old) to values around 0.5, typical for aged contrails. The latter indicates the transition from non-crystalline to crystalline particles in persistent contrails within a few minutes. The scatter of depolarization values measured in individual contrails is narrow, independent of the contrails age, and suggests a rather uniform growth of the particles inside a contrail. (author) 18 refs.

  3. Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    Science.gov (United States)

    Henderson, Calen B.; Poleski, Radosław; Penny, Matthew; Street, Rachel A.; Bennett, David P.; Hogg, David W.; Gaudi, B. Scott; K2 Campaign 9 Microlensing Science Team; Zhu, W.; Barclay, T.; Barentsen, G.; Howell, S. B.; Mullally, F.; Udalski, A.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Soszyński, I.; Ulaczyk, K.; Pawlak, M.; OGLE Project, The; Sumi, T.; Abe, F.; Asakura, Y.; Barry, R. K.; Bhattacharya, A.; Bond, I. A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Oyokawa, H.; Rattenbury, N.; Saito, To.; Sharan, A.; Sullivan, D. J.; Tristram, P. J.; Yonehara, A.; MOA Collaboration; Bachelet, E.; Bramich, D. M.; Cassan, A.; Dominik, M.; Figuera Jaimes, R.; Horne, K.; Hundertmark, M.; Mao, S.; Ranc, C.; Schmidt, R.; Snodgrass, C.; Steele, I. A.; Tsapras, Y.; Wambsganss, J.; RoboNet Project, The; Bozza, V.; Burgdorf, M. J.; Jørgensen, U. G.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Evans, D. F.; Hessman, F. V.; Hinse, T. C.; Husser, T.-O.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Skottfelt, J.; Southworth, J.; Unda-Sanzana, E.; The MiNDSTEp Team; Bryson, S. T.; Caldwell, D. A.; Haas, M. R.; Larson, K.; McCalmont, K.; Packard, M.; Peterson, C.; Putnam, D.; Reedy, L.; Ross, S.; Van Cleve, J. E.; K2C9 Engineering Team; Akeson, R.; Batista, V.; Beaulieu, J.-P.; Beichman, C. A.; Bryden, G.; Ciardi, D.; Cole, A.; Coutures, C.; Foreman-Mackey, D.; Fouqué, P.; Friedmann, M.; Gelino, C.; Kaspi, S.; Kerins, E.; Korhonen, H.; Lang, D.; Lee, C.-H.; Lineweaver, C. H.; Maoz, D.; Marquette, J.-B.; Mogavero, F.; Morales, J. C.; Nataf, D.; Pogge, R. W.; Santerne, A.; Shvartzvald, Y.; Suzuki, D.; Tamura, M.; Tisserand, P.; Wang, D.

    2016-12-01

    K2's Campaign 9 (K2C9) will conduct a ˜3.7 deg2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax {π }{{E}} for ≳ 170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST.

  4. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    Full Text Available Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history, the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard, or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae in 2,528 olive groves in Andalusia (Spain from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  5. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Science.gov (United States)

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M; Campos, Mercedes

    2015-01-01

    Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history), the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard), or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae) in 2,528 olive groves in Andalusia (Spain) from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  6. Effect of spin-orbit coupling on the ground state structure of mercury

    Science.gov (United States)

    Mishra, Vinayak; Gyanchandani, Jyoti; Chaturvedi, Shashank; Sikka, S. K.

    2014-05-01

    Near zero kelvin ground state structure of mercury is the body centered tetragonal (BCT) structure (β Hg). However, in all previously reported density functional theory (DFT) calculations, either the rhombohedral or the HCP structure has been found to be the ground state structure. Based on the previous calculations it was predicted that the correct treatment of the SO effects would improve the result. We have performed FPLAPW calculations, with and without inclusion of the SO coupling, for determining the ground state structure. These calculations determine rhombohedral structure as the ground state structure instead of BCT structure. The calculations, without inclusion of SO effect, predict that the energies of rhombohedral and BCT structures are very close to each other but the energy of rhombohedral structure is lower than that of BCT structure at ambient as well as high pressure. On the contrary, the SO calculations predict that though at ambient conditions the rhombohedral structure is the stable structure but on applying a pressure of 3.2 GPa, the BCT structure becomes stable. Hence, instead of predicting the stability of BCT structure at zero pressure, the SO calculations predict its stability at 3.2 GPa. This small disagreement is expected when the energy differences between the structures are small.

  7. The effect of selected parameters of the honing process on cylinder liner surface topography

    Science.gov (United States)

    Pawlus, P.; Dzierwa, A.; Michalski, J.; Reizer, R.; Wieczorowski, M.; Majchrowski, R.

    2014-04-01

    Many truck cylinder liners made from gray cast iron were machined. Ceramic and diamond honing stones were used in the last stages of operation: coarse honing and plateau honing. The effect of honing parameters on the cylinder liner surface topography was studied. Selected surface topography parameters were response variables. It was found that parameters from the Sq group were sensitive to honing parameter change. When plateau honing time varied, the Smq parameter increased, while the other parameters, Spq and Svq, were stable.

  8. Line parameter study of ozone at 5 and 10 μm using atmospheric FTIR spectra from the ground: A spectroscopic database and wavelength region comparison

    Science.gov (United States)

    Janssen, Christof; Boursier, Corinne; Jeseck, Pascal; Té, Yao

    2016-08-01

    Atmospheric ozone concentration measurements mostly depend on spectroscopic methods that cover different spectral regions. Despite long years of measurement efforts, the uncertainty goal of 1% in absolute line intensities has not yet been reached. Multispectral inter-comparisons using both laboratory and atmospheric studies reveal that important discrepancies exist when ozone columns are retrieved from different spectral regions. Here, we use ground based FTIR to study the sensitivity of ozone columns on different spectroscopic parameters as a function of individual bands for identifying necessary improvements of the spectroscopic databases. In particular, we examine the degree of consistency that can be reached in ozone retrievals using spectral windows in the 5 and 10 μm bands of ozone. Based on the atmospheric spectra, a detailed database inter-comparison between HITRAN (version 2012), GEISA (version 2011) and S&MPO (as retrieved from the website at the end of 2015) is made. Data from the 10 μm window are consistent to better than 1%, but there are larger differences when the windows at 5 μm are included. The 5 μm results agree with the results from 10 μm within ±2% for all databases. Recent S&MPO data are even more consistent with the desired level of 1%, but spectroscopic data from HITRAN give about 4% higher ozone columns than those from GEISA. If four sub-windows in the 5 μm band are checked for consistency, retrievals using GEISA or S&MPO parameters show less dispersion than those using HITRAN, where one window in the P-branch of the ν1 + ν3 band gives about 2% lower results than the other three. The atmospheric observations are corroborated by a direct comparison of the spectroscopic databases, using a simple statistical analysis based on intensity weighted spectroscopic parameters. The bias introduced by the weighted average approach is investigated and it is negligible if relative differences between databases do not correlate with line

  9. Species composition and fire: non-additive mixture effects on ground fuel flammability

    Directory of Open Access Journals (Sweden)

    Cassandra eVan Altena

    2012-04-01

    Full Text Available Biodiversity effects on many aspects of ecosystem function have been well documented. However, fire is an exception: fire experiments have mainly included single species, bulk litter, or vegetation, and, as such, the role of biodiversity as a determinant of flammability, a crucial aspect of ecosystem function, is poorly understood. This study is the first to experimentally test whether flammability characteristics of two-species mixtures are non-additive, i.e. differ from expected flammability based on the component species in monoculture. In standardized fire experiments on ground fuels, including monocultures and mixtures of five contrasting subarctic plant fuel types in a controlled laboratory environment, we measured flame speed, flame duration and maximum temperature. Broadly half of the mixture combinations showed non-additive effects for these flammability indicators; these were mainly enhanced dominance effects, where the fuel types with the more flammable value for a characteristic determined the flammability of the whole mixture. The high incidence of species non-additive effects on ground fuel flammability suggest that the combinations of fuel types may have important effects on ground fire regimes in vegetations differing or changing in species composition.

  10. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    Science.gov (United States)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    size distribution of ground beetles is significantly right skewed on more frequently flooded areas whereas on more stable localities it becomes left skewed. Our results also demonstrated that the presence of ERS does not changes the structure of ground beetle communities if the frequency of inundation of river banks is reduced. This study indicated that not only habitat parameters but also biotic interactions between competing species from a regional pool are important for the conservation of riverine communities. Vulnerable beetles characteristic of riverine habitats are small and usually weak competitors. A reduced frequency of bank inundation creates possibilities for the colonization of ERS by species from surrounding habitats and elimination of the species well adapted to the dynamic flow conditions typifying unmodified stream sections.

  11. Evaluating Topographic Effects on Ground Deformation: Insights from Finite Element Modeling

    Science.gov (United States)

    Ronchin, Erika; Geyer, Adelina; Martí, Joan

    2015-07-01

    Ground deformation has been demonstrated to be one of the most common signals of volcanic unrest. Although volcanoes are commonly associated with significant topographic relief, most analytical models assume the Earth's surface as flat. However, it has been confirmed that this approximation can lead to important misinterpretations of the recorded surface deformation data. Here we perform a systematic and quantitative analysis of how topography may influence ground deformation signals generated by a spherical pressure source embedded in an elastic homogeneous media and how these variations correlate with the different topographic parameters characterizing the terrain form (e.g., slope, aspect, curvature). For this, we bring together the results presented in previous published papers and complement them with new axisymmetric and 3D finite element (FE) model results. First, we study, in a parametric way, the influence of a volcanic edifice centered above the pressure source axis. Second, we carry out new 3D FE models simulating the real topography of three different volcanic areas representative of topographic scenarios common in volcanic regions: Rabaul caldera (Papua New Guinea) and the volcanic islands of Tenerife and El Hierro (Canary Islands). The calculated differences are then correlated with a series of topographic parameters. The final aim is to investigate the artifacts that might arise from the use of half-space models at volcanic areas due to diverse topographic features (e.g., collapse caldera structures, prominent central edifices, large landslide scars).

  12. An experimental study on effect of process parameters in deep ...

    African Journals Online (AJOL)

    DR OKE

    Literature review reveals that the research on various aspects of modeling, simulation and process optimization of deep .... methodology is valuable only when the design parameters are qualitative and discrete. .... Work hardening exponent.

  13. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    Science.gov (United States)

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  14. EFFECTS OF SYNTHESIS PARAMETERS ON THE STRUCTURE OF TITANIA NANOTUBES

    Directory of Open Access Journals (Sweden)

    M. NORANI MUTI

    2008-08-01

    Full Text Available Detection of hydrogen is crucial for industrial process control and medical applications where presence of hydrogen in breath indicates different type of health problems particularly in infants. A better performed sensor with high sensitivity, selectivity, reliability and faster response time would be critical and sought after especially for medical applications. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to investigate the effect of the anodizing conditions on the structure of titania nanotubes produced by anodizing method. The anodizing parameters namely the ambient temperature and separation of electrodes are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes for enhanced properties based on their uniformity, coverage, pore size and crystallinity. Samples of nanotubes produced were subjected to annealing process at varying time and temperature in order to improve the crystallinity of the nanotubes. The highly ordered porous titania nanotubes produced by this method are of tabular shape and have good uniformity and alignment over large areas. The pore size of the titania nanotubes ranges from 47 to 94 nm, while the wall thickness is in the range of 17 to 26 nm. The length of the nanotubes was found to be about 280 nm. The structure of nanotubes changes from amorphous to crystalline after undergoing annealing treatment. Nanotubes have also shown to have better crystallinity if they were subjected to annealing treatment at higher temperature. The characteristics of nanotubes obtained are found to be agreeable to those that have been reported to show improved hydrogen gas sensing properties.

  15. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    Science.gov (United States)

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  16. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Science.gov (United States)

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations

  17. Atmospheric effects on infrared measurements at ground level: Application to monitoring of transport infrastructures

    Science.gov (United States)

    Boucher, Vincent; Dumoulin, Jean

    2014-05-01

    Being able to perform easily non-invasive diagnostics for surveillance and monitoring of critical transport infrastructures is a major preoccupation of many technical offices. Among all the existing electromagnetic methods [1], long term thermal monitoring by uncooled infrared camera [2] is a promising technique due to its dissemination potential according to its low cost on the market. Nevertheless, Knowledge of environmental parameters during measurement in outdoor applications is required to carry out accurate measurement corrections induced by atmospheric effects at ground level. Particularly considering atmospheric effects and measurements in foggy conditions close as possible to those that can be encountered around transport infrastructures, both in visible and infrared spectra. In the present study, atmospheric effects are first addressed by using data base available in literature and modelling. Atmospheric attenuation by particles depends greatly of aerosols density, but when relative humidity increases, water vapor condenses onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of radiation will correspondingly be modified. In a first approach, we used aerosols size distributions derived from Shettle and Fenn [3] for urban area which could match some of experimental conditions encountered during trials on transport infrastructures opened to traffic. In order to calculate the influence of relative humidity on refractive index, the Hänel's model [4] could be used. The change in the particulate size is first related to relative humidity through dry particle radius, particle density and water activity. Once the wet aerosol particle size is found, the effective complex refractive index is the volume weighted average of the refractive indexes of the dry aerosol substance

  18. Kin effects on energy allocation in group-living ground squirrels.

    Science.gov (United States)

    Viblanc, Vincent A; Saraux, Claire; Murie, Jan O; Dobson, F Stephen

    2016-09-01

    The social environment has potent effects on individual phenotype and fitness in group-living species. We asked whether the presence of kin might act on energy allocation, a central aspect of life-history variation. Using a 22-year data set on reproductive and somatic allocations in Columbian ground squirrels (Urocitellus columbianus), we tested the effects of co-breeding and non-breeding kin on the fitness and energy allocation balance between reproduction and personal body condition of individual females. Greater numbers of co-breeding kin had a positive effect on the number of offspring weaned, through the mechanism of altering energy allocation patterns. On average, females with higher numbers of co-breeding kin did not increase energy income but biased energy allocation towards reproduction. Co-breeding female kin ground squirrels maintain close nest burrows, likely providing a social buffer against territorial invasions from non-kin ground squirrels. Lower aggressiveness, lower risks of infanticide from female kin and greater protection of territorial boundaries may allow individual females to derive net fitness benefits via their energy allocation strategies. We demonstrated the importance of kin effects on a fundamental life-history trade-off.

  19. Ground shock from multiple earth penetrator bursts: Effects for hexagonal weapon arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.; Yarrington, P.

    1990-08-01

    Calculations have been performed with the HULL hydrocode to study ground shock effects for multiple earth penetrator weapon (EPW) bursts in hexagonal-close-packed (HCP) arrays. Several different calculational approaches were used to treat this problem. The first simulations involved two-dimensional (2D) calculations, where the hexagonal cross-section of a unit-cell in an effectively-infinite HCP array was approximated by an inscribed cylinder. Those calculations showed substantial ground shock enhancement below the center of the array. To refine the analysis, 3D unit-cell calculations were done where the actual hexagonal cross-section of the HCP array was modelled. Results of those calculations also suggested that the multiburst array would enhance ground shock effects over those for a single burst of comparable yield. Finally, 3D calculations were run in which an HCP array of seven bursts was modelled explicitly. In addition, the effects of non-simultaneity were investigated. Results of the seven-burst HCP array calculations were consistent with the unit-cell results and, in addition, provided information on the 3D lethal contour produced by such an array.

  20. Physically-based modifications to the Sacramento Soil Moisture Accounting model. Part A: Modeling the effects of frozen ground on the runoff generation process

    Science.gov (United States)

    Koren, Victor; Smith, Michael; Cui, Zhengtao

    2014-11-01

    This paper presents the first of two physically-based modifications to a widely-used and well-validated hydrologic precipitation-runoff model. Here, we modify the Sacramento Soil Moisture Accounting (SAC-SMA) model to include a physically-based representation of the effects of freezing and thawing soil on the runoff generation process. This model is called the SAC-SMA Heat Transfer model (SAC-HT). The frozen ground physics are taken from the Noah land surface model which serves as the land surface component of several National Center for Environmental Prediction (NCEP) numerical weather prediction models. SAC-HT requires a boundary condition of the soil temperature at the bottom of the soil column (a climatic annual air temperature is typically used, and parameters derived from readily available soil texture data). A noteworthy feature of SAC-HT is that the frozen ground component needs no parameter calibration. SAC-HT was tested at 11 sites in the U.S. for soil temperature, one site in Russia for soil temperature and soil moisture, eight basins in the upper Midwest for the effects of frozen-ground on streamflow, and one location for frost depth. High correlation coefficients for simulated soil temperature at three depths at 11 stations were achieved. Multi-year simulations of soil moisture and soil temperature agreed very well at the Valdai, Russia test location. In eight basins affected by seasonally frozen soil in the upper Midwest, SAC-HT provided improved streamflow simulations compared to SAC-SMA when both models used a priori parameters. Further improvement was gained through calibration of the non-frozen ground a priori parameters. Frost depth computed by SAC-HT compared well with observed values in the Root River basin in Minnesota.

  1. Computer predictions of ground storage effects on performance of Galileo and ISPM generators

    Science.gov (United States)

    Chmielewski, A.

    1983-01-01

    Radioisotope Thermoelectric Generators (RTG) that will supply electrical power to the Galileo and International Solar Polar Mission (ISPM) spacecraft are exposed to several degradation mechanisms during the prolonged ground storage before launch. To assess the effect of storage on the RTG flight performance, a computer code has been developed which simulates all known degradation mechanisms that occur in an RTG during storage and flight. The modeling of these mechanisms and their impact on the RTG performance are discussed.

  2. The antioxidant epazote effect (Chenopodium ambrosioides L.) on raw ground beef

    OpenAIRE

    Luz H. Villalobos-Delgado; Edith G. Gonzalez-Mondragon; Alma Yadira Salazar-Govea; Joaquin T. Santiago-Castro; Juana Ramirez-Andrade

    2016-01-01

    For this paper, solid-liquid extractions of epazote (Chenopodium ambrosioides L.) were carried out using water (IE) and ethanol (EtOHE) as solvents, with the objective of evaluating its antioxidant effect on raw ground beef stored at 4 °C for 9 days. The analysis was carried out under the following treatments: CTL (meat without antioxidants), CIE (meat with infusion of epazote), CEtOHE (meat with ethanolic extract of epazote) and ASC (meat with sodium ascorbate solution). The characteristics ...

  3. Overweight effect on spirometric parameters in adolescents undergoing exercise.

    Science.gov (United States)

    Costa, Rayana de Oliveira; Silva, Juliana Pereira; Lacerda, Eliana Mattos; Dias, Rodrigo; Pezolato, Vitor Alexandre; Silva, Carlos Alberto da; Krinski, Kleverton; Correia, Marco Aurélio de Valois; Cieslak, Fabrício

    2016-01-01

    To evaluate effects of overweight on spirometric parameters in adolescents who underwent bronchial provocation test for exercise. We included 71 male adolescents. The diagnosis of asthma was done based on participants' clinical history and on the International Study Questionnaire Asthma and Allergies in Childhood, and the diagnosis of obesity was based on body mass index above 95th percentile. The bronchospasm induced by exercise was assessed using the run-walk test on a treadmill for eight minutes. The decrease in forced expiratory volume in one second > or equal to 10% before exercise was considered positive, and to calculate the intensity in exercise-induced bronchospasm we measured the maximum percentage of forced expiratory volume in one second and above the curve area. Data analysis was carried out using the Mann-Whitney U test and Friedman test (ANOVA), followed by Wilcoxon test (psexo masculino. O diagnóstico de asma foi obtido por meio de histórico clínico e do questionário International Study of Asthma and Allergies in Childhood, e o de obesidade, pelo índice de massa corporal acima do percentil 95. Para avaliar o broncoespasmo induzido pelo exercício, utilizou-se o teste correr/caminhar em esteira ergométrica, com duração de 8 minutos, considerando positivo se diminuição do volume expiratório forçado no primeiro segundo >10% do valor pré-exercício e, para a intensidade do broncoespasmo induzido pelo exercício, foram utilizados o cálculo da queda percentual máxima do volume expiratório forçado no primeiro segundo e a área acima da curva. A análise dos dados foi realizada pelo teste U Mann-Whitney e pela ANOVA de Friedman, seguido do teste de Wilcoxon (p<0,05). O teste de Fisher foi empregado para analisar a frequência de broncoespasmo induzido pelo exercício. Foram encontradas diferenças significativas quanto à frequência de broncoespasmo induzido pelo exercício (p=0,013) e ao tempo de recuperação pós-exercício (p=0

  4. Effects of large-scale wildfire on ground foraging ants (Hymenoptera: Formicidae) in southern California

    Science.gov (United States)

    Matsuda, Tritia; Turschak, Greta; Brehme, Cheryl; Rochester, Carlton; Mitrovich, Milan; Fisher, Robert

    2011-01-01

    We investigated the effect of broad-scale wildfire on ground foraging ants within southern California. In October and November of 2003, two wildfires burned large portions of the wildlands within San Diego County. Between January 2005 and September 2006, we surveyed 63 plots across four sites to measure the effect of the fires on the ant assemblages present in four vegetation types: 1) coastal sage scrub, 2) chaparral, 3) grassland, and 4) woodland riparian. Thirty-six of the 63 plots were sampled before the fires between March 2001 and June 2003. Mixed model regression analyses, accounting for the burn history of each plot and our pre- and postfire sampling efforts, revealed that fire had a negative effect on ant species diversity. Multivariate analyses showed that ant community structure varied significantly among the four vegetation types, and only the ant assemblage associated with coastal sage scrub exhibited a significant difference between burned and unburned samples. The most notable change detected at the individual species level involved Messor andrei (Mayr), which increased from ant samples to 32.1% in burned plots postfire. We theorize that M. andrei responded to the increase of bare ground and postfire seed production, leading to an increase in the detection rate for this species. Collectively, our results suggest that wildfires can have short-term impacts on the diversity and community structure of ground foraging ants in coastal sage scrub. We discuss these findings in relation to management implications and directions for future research.

  5. Application of Ground Phosphate Rock to Diminish the Effects of Simulated Acid Rain of Soil Properties

    Institute of Scientific and Technical Information of China (English)

    DONGYUAN-YAN; LIXUE-YUAN

    1992-01-01

    The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method.Results show as follows:(1)For yellow brown soil,the effect of simulated acid rain on the properties of soil with a pH value of 5.9 was relatively small,except a great quantity of acid rain deposited on it.(2) for red soil,the effect of simulated acid rain on the properties of soil was significant.With the increase of the amount of acid deposition,the pH value of soil was declined,but the contents of exchangeable H+,Al3+ and Mn2+ and the amount of SO41- retention were increased.(3) Many properties of acid soils could be improved by applying ground phosphate rock.For example,pH value of soils and the amounts of available P and exchangeable Ca2+ and Mg2+ were increased,and the amounts of exchangeable H+ and Al3+ and SO42- retained was reduced.The application of ground posphate rock could effctively diminish the pollution of acid rain to soil.

  6. The Effects of Spatial Smoothing on Solar Magnetic Helicity Parameters and the Hemispheric Helicity Sign Rule

    Science.gov (United States)

    Koch Ocker, Stella; Petrie, Gordon

    2016-12-01

    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode/SOT-SP data spanning 2006-2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition to studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.

  7. Wear prediction on total ankle replacement effect of design parameters

    CERN Document Server

    Saad, Amir Putra Bin Md; Harun, Muhamad Noor; Kadir, Mohammed Rafiq Abdul

    2016-01-01

    This book develops and analyses computational wear simulations of the total ankle replacement for the stance phase of gait cycle. The emphasis is put on the relevant design parameters. The book presents a model consisting of three components; tibial, bearing and talar representing their physiological functions.

  8. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...... to the polymer part was mainly influenced by packing pressure level and distance from the gate....

  9. Effect of Kepler calibration on global seismic and background parameters

    CERN Document Server

    Salabert, D; Mathur, S; Ballot, J

    2016-01-01

    Calibration issues associated to scrambled collateral smear affecting the Kepler short-cadence data were discovered in the Data Release 24 and were found to be present in all the previous data releases since launch. In consequence, a new Data Release 25 was reprocessed to correct for these problems. We perform here a preliminary study to evaluate the impact on the extracted global seismic and background parameters between data releases. We analyze the sample of seismic solar analogs observed by Kepler in short cadence between Q5 and Q17. We start with this set of stars as it constitutes the best sample to put the Sun into context along its evolution, and any significant differences on the seismic and background parameters need to be investigated before any further studies of this sample can take place. We use the A2Z pipeline to derive both global seismic parameters and background parameters from the Data Release 25 and previous data releases and report on the measured differences.

  10. Investigation of the influence of topographic irregularities and two dimensional effects on the intensity of surface ground motion with one- and two-dimensional analyses

    Directory of Open Access Journals (Sweden)

    L. Yılmazoğlu

    2013-12-01

    Full Text Available In this work, the surface ground motion that occurs during an earthquake in ground sections having different topographic forms has been examined with one and two dynamic site response analyses. One-dimensional analyses were undertaken using the Equivalent-Linear Earthquake Response Analysis program based on the equivalent linear analysis principle and the Deepsoil program which is able to make both equivalent linear and nonlinear analyses and two-dimensional analyses using the Plaxis software. The viscous damping parameters used in the dynamic site response analyses undertaken with the Plaxis software were obtained using the DeepSoil program. In the dynamic site response analyses, the synthetic acceleration over a 475 yr replication period representing the earthquakes in Istanbul was used as the basis of the bedrock ground motion. The peak ground acceleration obtained different depths of soils and acceleration spectrum values have been compared. The surface topography and layer boundaries in the 5-5' section were selected in order to examine the effect of the land topography and layer boundaries on the analysis results were flattened and compared with the actual status. The analysis results showed that the characteristics of the surface ground motion changes in relation to the varying local soil conditions and land topography.

  11. The Influence of Earth Temperature on the Dynamic Characteristics of Frozen Soil and the Parameters of Ground Motion on Sites of Permafrost

    Institute of Scientific and Technical Information of China (English)

    Wang Lanmin; Zhang Dongli; Wu Zhijian; Ma Wei; Li Xiaojun

    2004-01-01

    Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.

  12. Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.

    Science.gov (United States)

    Cespedes, Ann; Penz, Carla M; DeVries, Philip J

    2015-05-01

    Flight is a key innovation in the evolutionary success of insects and essential to dispersal, territoriality, courtship and oviposition. Wing shape influences flight performance and selection likely acts to maximize performance for conducting essential behaviours that in turn results in the evolution of wing shape. As wing shape also contributes to fitness, optimal shapes for particular flight behaviours can be assessed with aerodynamic predictions and placed in an ecomorphological context. Butterflies in the tribe Haeterini (Nymphalidae) are conspicuous members of understorey faunas in lowland Neotropical forests. Field observations indicate that the five genera in this clade differ in flight height and behaviour: four use gliding flight at the forest floor level, and one utilizes flapping flight above the forest floor. Nonetheless, the association of ground level gliding flight behaviour and wing shape has never been investigated in this or any other butterfly group. We used landmark-based geometric morphometrics to test whether wing shapes in Haeterini and their close relatives reflected observed flight behaviours. Four genera of Haeterini and some distantly related Satyrinae showed significant correspondence between wing shape and theoretical expectations in performance trade-offs that we attribute to selection for gliding in ground effect. Forewing shape differed between sexes for all taxa, and male wing shapes were aerodynamically more efficient for gliding flight than corresponding females. This suggests selection acts differentially on male and female wing shapes, reinforcing the idea that sex-specific flight behaviours contribute to the evolution of sexual dimorphism. Our study indicates that wing shapes in Haeterini butterflies evolved in response to habitat-specific flight behaviours, namely gliding in ground effect along the forest floor, resulting in ecomorphological partitions of taxa in morphospace. The convergent flight behaviour and wing morphology

  13. Effects of Prophylactic Ankle Supports on Vertical Ground Reaction Force During Landing: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Wenxin Niu, Tienan Feng, Lejun Wang, Chenghua Jiang, Ming Zhang

    2016-03-01

    Full Text Available There has been much debate on how prophylactic ankle supports (PASs may influence the vertical ground reaction force (vGRF during landing. Therefore, the primary aims of this meta-analysis were to systematically review and synthesize the effect of PASs on vGRF, and to understand how PASs affect vGRF peaks (F1, F2 and the time from initial contact to peak loading (T1, T2 during landing. Several key databases, including Scopus, Cochrane, Embase, PubMed, ProQuest, Medline, Ovid, Web of Science, and the Physical Activity Index, were used for identifying relevant studies published in English since inception to April 1, 2015. The computerized literature search and cross-referencing the citation list of the articles yielded 3,993 articles. Criteria for inclusion required that 1 the study was conducted on healthy adults; 2 the subject number and trial number were known; 3 the subjects performed landing with and without PAS; 4 the landing movement was in the sagittal plane; 5 the comparable vGRF parameters were reported; and 6 the F1 and F2 must be normalized to the subject’s body weight. After the removal of duplicates and irrelevant articles, 6, 6, 15 and 11 studies were respectively pooled for outcomes of F1, T1, F2 and T2. This study found a significantly increased F2 (.03 BW, 95% CI: .001, .05 and decreased T1 (-1.24 ms, 95% CI: -1.77, -.71 and T2 (-3.74 ms, 95% CI: -4.83, -2.65 with the use of a PAS. F1 was not significantly influenced by the PAS. Heterogeneity was present in some results, but there was no evidence of publication bias for any outcome. These changes represented deterioration in the buffering characteristics of the joint. An ideal PAS design should limit the excessive joint motion of ankle inversion, while allowing a normal range of motion, especially in the sagittal plane.

  14. Effects and implications of fault zone heterogeneity and anisotropy on earthquake strong ground motion

    Science.gov (United States)

    Su, Wei-Jou

    This thesis consists of two parts. Part one is concerned with the effect of fault zone heterogeneity on the strong ground motion of the Loma Preita earthquake. Part two is concerned with the effect of the effective hexagonal anisotropy of a fault zone on strong ground motion. A superposition of Gaussian beams is used to analyze these problems because it can account for both the rupture history of the fault plane and the fault zone heterogeneity. We also extend this method to investigate the combined effects of the rupture process on a fault plane and medium anisotropy on the synthetic seismograms. The strong ground motion of the Loma Prieta Earthquake is synthesized using a known three-dimensional crustal model of the region, a rupture model determined under the assumption of laterally homogeneous structure, and Green's functions computed by superposition of Gaussian beams. Compared to results obtained assuming a laterally homogeneous crust, stations lying to the northeast of the rupture zone are predicted to be defocused, while stations lying to the west of the fault trace are predicted to be focused. The defocusing is caused by a zone of high velocity material between the San Andreas and Sargent faults, and the focusing is caused by a region of low velocity lying between the Zayantes and San Andreas faults. If lateral homogeneity is assumed, the net effect of the predicted focusing and defocusing is to bias estimates of the relative slip of two high slip regions found in inversions of local and teleseismic body waves. These biases are similar in magnitude to those estimated for waveform inversions from the effects of using different subsets of data and/or different misfit functions and are similar in magnitude to the effects predicted for non-linear site responses.

  15. The effect of short ground vegetation on terrestrial laser scans at a local scale

    Science.gov (United States)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  16. How flexibility and dynamic ground effect could improve bio-inspired propulsion

    Science.gov (United States)

    Quinn, Daniel

    2016-11-01

    Swimming animals use complex fin motions to reach remarkable levels of efficiency, maneuverability, and stealth. Propulsion systems inspired by these motions could usher in a new generation of advanced underwater vehicles. Two aspects of bio-inspired propulsion are discussed here: flexibility and near-boundary swimming. Experimental work on flexible propulsors shows that swimming efficiency depends on wake vortex timing and boundary layer attachment, but also on fluid-structure resonance. As a result, flexible vehicles or animals could potentially improve their performance by tracking their resonance properties. Bio-inspired propulsors were also found to produce more thrust with no loss in efficiency when swimming near a solid boundary. Higher lift-to-drag ratios for near-ground fixed-wing gliders is commonly known as ground effect. This newly observed "dynamic ground effect" suggests that bio-inspired vehicles and animals could save energy by harnessing the performance gains associated with near-boundary swimming. This work was supported by the Office of Naval Research (MURI N00014-08-1-0642, Program Director Dr. Bob Brizzolara) and the National Science Foundation (DBI-1062052, PI Lisa Fauci; EFRI-0938043, PI George Lauder).

  17. The Effect of Pulsar Timing Noise and Glitches on Timing Analysis for Ground Based Telescopes Observation

    Science.gov (United States)

    Oña-Wilhelmi, E.; de Jager, O. C.; Contreras, J. L.; de los Reyes, R.; Fonseca, V.; López, M.; Lucarelli, F.; MAGIC Collaboration

    2003-07-01

    Pulsed emission from a number of gamma-ray pulsars is expected to be detectable with next generation ground-based gamma-ray telescopes such as MAGIC and possibly H.E.S.S. within a few hours of observations. The sensitivity is however not sufficient to enable a detection within a few seconds as reached by radio surveys. In some cases we may be fortunate to do a period search given a few hours' data, but if the signal is marginal, the correct period parameters must be known to allow a folding of the gamma-ray arrival times. The residual phases are then sub jected to a test for uniformity from which the significance of a signal can be assessed. If contemporary radio parameters are not available, we have to extrap olate archival radio parameters to the observation time in question. Such an extrap olation must then be accurate enough to avoid significant pulse smearing. The pulsar ephemerides from the archival data of HartRAO and Princeton (b etween 1989 and 1998) provide an excellent opportunity to study the accuracy of extrap olations of such ephemerides to the present moment, if an appropriate time shift is intro duced. The aim of this study is to investigate the smear in the gamma-ray pulse profile during a single night of observations.

  18. Ground Bounce Noise Reduction in Vlsi Circuits

    Directory of Open Access Journals (Sweden)

    Vipin Kumar Sharma

    2015-12-01

    Full Text Available : Scaling of devices in CMOS technology leads to increase in parameter like Ground bounce noise, Leakage current, average power dissipation and short channel effect. FinFET are the promising substitute to replace CMOS. Ground bounce noise is produced when power gating circuit goes from SLEEP to ACTIVE mode transition. FinFET based designs are compared with MOSFET based designs on basis of different parameter like Ground bounce noise, leakage current and average power dissipation. HSPICE is the software tool used for simulation and circuit design.

  19. Interpreting parameters in the logistic regression model with random effects

    DEFF Research Database (Denmark)

    Larsen, Klaus; Petersen, Jørgen Holm; Budtz-Jørgensen, Esben

    2000-01-01

    interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects......interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects...

  20. Effective Parameters on Performance of Multipressure Combined Cycle Power Plants

    OpenAIRE

    Thamir K. Ibrahim; Rahman, M M

    2014-01-01

    A parametric analysis is performed for numerous configurations of a combined cycle gas turbine (CCGT) power plant, including single-pressure, double-pressure, triple-pressure, triple-pressure with reheat, and supplementary triple-pressure with reheat. The compression ratio of the gas turbine and the steam pressure of the steam turbine are taken as design parameters. The thermodynamic model was developed based on an existing MARAFIQ CCGT power plant and performance model code developed using t...

  1. Effects of complex parameters on classical trajectories of Hamiltonian systems

    Indian Academy of Sciences (India)

    Asiri Nanayakkara; Thilagarajah Mathanaranjan

    2014-06-01

    Anderson et al have shown that for complex energies, the classical trajectories of real quartic potentials are closed and periodic only on a discrete set of eigencurves. Moreover, recently it was revealed that when time is complex $t(t = t_r e^{i_})$, certain real Hermitian systems possess close periodic trajectories only for a discrete set of values of . On the other hand, it is generally true that even for real energies, classical trajectories of non-PT symmetric Hamiltonians with complex parameters are mostly non-periodic and open. In this paper, we show that for given real energy, the classical trajectories of complex quartic Hamiltonians $H = p^2 + ax^4 + bx^k$ (where is real, is complex and = 1 or 2) are closed and periodic only for a discrete set of parameter curves in the complex -plane. It was further found that given complex parameter , the classical trajectories are periodic for a discrete set of real energies (i.e., classical energy gets discretized or quantized by imposing the condition that trajectories are periodic and closed). Moreover, we show that for real and positive energies (continuous), the classical trajectories of complex Hamiltonian $H = p^2 + x^4$, ($= _r$ e$^{i}$) are periodic when $ = 4 \\tan^{−1}$[($n/(2m + n)$)] for $\\forall n$ and $m \\mathbb{Z}$.

  2. Effect of Yttria Content on the Zirconia Unit Cell Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Jessica A.; Lepple, Maren; Gao, Yan; Lipkin, Don M.; Levi, Carlos G. (UCSB); (GE Global)

    2012-02-06

    The relationship between yttria concentration and the unit cell parameters in partially and fully stabilized zirconia has been reassessed, motivated by the need to improve the accuracy of phase analysis upon decomposition of t{prime}-based thermal barrier coatings. Compositions ranging from 6 to 18 mol% YO{sub 1.5} were synthesized and examined by means of high-resolution X-ray diffraction. Lattice parameters were determined using the Rietveld refinement method, a whole-pattern fitting procedure. The revised empirical relationships fall within the range of those published previously. However, efforts to achieve superior homogeneity of the materials, as well as accuracy of the composition and lattice parameters, provide increased confidence in the reliability of these correlations for use in future studies. Additional insight into the potential sources for scatter previously reported for the transition region ({approx}12-14 mol% YO{sub 1.5}), where tetragonal and cubic phases have been observed to coexist, is also provided. Implications on the current understanding of stabilization mechanisms in zirconia are discussed.

  3. Comparison of midlatitude ionospheric F region peak parameters and topside Ne profiles from IRI2012 model prediction with ground-based ionosonde and Alouette II observations

    Science.gov (United States)

    Gordiyenko, G. I.; Yakovets, A. F.

    2017-07-01

    The ionospheric F2 peak parameters recorded by a ground-based ionosonde at the midlatitude station Alma-Ata [43.25N, 76.92E] were compared with those obtained using the latest version of the IRI model (http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html). It was found that for the Alma-Ata (Kazakhstan) location, the IRI2012 model describes well the morphology of seasonal and diurnal variations of the ionospheric critical frequency (foF2) and peak density height (hmF2) monthly medians. The model errors in the median foF2 prediction (percentage deviations between the median foF2 values and their model predictions) were found to vary approximately in the range from about -20% to 34% and showed a stable overestimation in the median foF2 values for daytime in January and July and underestimation for day- and nighttime hours in the equinoctial months. The comparison between the ionosonde hmF2 and IRI results clearly showed that the IRI overestimates the nighttime hmF2 values for March and September months, and the difference is up to 30 km. The daytime Alma-Ata hmF2 data were found to be close to the IRI predictions (deviations are approximately ±10-15 km) in winter and equinoctial months, except in July when the observed hmF2 values were much more (from approximately 50-200 km). The comparison between the Alouette foF2 data and IRI predictions showed mixed results. In particular, the Alouette foF2 data showed a tendency to be overestimated for daytime in winter months similar to the ionosonde data; however, the overestimated foF2 values for nighttime in the autumn equinox were in disagreement with the ionosonde observations. There were large deviations between the observed hmF2 values and their model predictions. The largest deviations were found during winter and summer (up to -90 km). The comparison of the Alouette II electron density profiles with those predicted by the adapted IRI2012 model in the altitude range hmF2 of the satellite position showed a great

  4. The effect of randomly earthed ground wires on PLC transmission; A simulation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brandao Faria, J.A.; Borges da Silva, J.F. (Centro de Electrotecnia da Universidade Tecnica de Lisboa, Instituto Superior Tecnico, Dept. of Electrical Engineering, 1096 Lisboa Codex (PT))

    1990-10-01

    Power line ground wires are discretely bonded to earth along the line at each tower. When the spacing between towers is constant and approaches a multiple of one half wavelength at the operating frequency, abrupt variations in the propagation parameters occur, that would affect carrier transmission performance at the vicinity of certain critical frequencies. In practice the spacing between towers is not exactly constant and one may wish to know the result of taking this circumstance into account. The analysis and numerical results presented in this paper show that even slight random perturbations of line periodicity are sufficient to render unnoticeable any sharp variations in attenuation, velocity and surge impedance, one might be led to expect from the analysis of the strictly periodic case.

  5. Nuclear level densities with pairing and self-consistent ground-state shell effects

    CERN Document Server

    Arnould, M

    1981-01-01

    Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statistically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (41 refs).

  6. Structure of Ground state Wave Functions for the Fractional Quantum Hall Effect: A Variational Approach

    Science.gov (United States)

    Mukherjee, Sutirtha; Mandal, Sudhansu

    The internal structure and topology of the ground states for fractional quantum Hall effect (FQHE) are determined by the relative angular momenta between all the possible pairs of electrons. Laughlin wave function is the only known microscopic wave function for which these relative angular momenta are homogeneous (same) for any pair of electrons and depend solely on the filling factor. Without invoking any microscopic theory, considering only the relationship between number of flux quanta and particles in spherical geometry, and allowing the possibility of inhomogeneous (different) relative angular momenta between any two electrons, we develop a general method for determining a closed-form ground state wave function for any incompressible FQHE state. Our procedure provides variationally obtained very accurate wave functions, yet having simpler structure compared to any other known complex microscopic wave functions for the FQHE states. This method, thus, has potential in predicting a very accurate ground state wave function for the puzzling states such as the state at filling fraction 5/2. We acknowledge support from Department of Science and Technology, India.

  7. Effect of technological parameters on optical performance of fiber coupler

    Institute of Scientific and Technical Information of China (English)

    SHUAI Ci-jun; DUAN Ji-an; ZHONG Jue

    2007-01-01

    To find out the influence of technological parameters on optical performance of fused optical fiber device, the fiber coupler was served as subject investigated by using the fused biconical taper machining as experimental setup. Fused fiber coupler's optical performances such as insertion loss, excess loss, directivity and uniformity were tested with the optical test system that was constituted of tunable laser and optical spectrum analyzer. Especially the relationship between optical performance and drawing speed was investigated. The experimental results show that the optical performance is closely related to process conditions. At fused temperature of 1 200℃, there exists a drawing speed of 150 μm/s, which makes the device's performance optimum. Out of this speed region, the optical performance drops quickly. At drawing speed of 200 tm/s, the excess loss is relatively small when the fused temperature is above 1 200℃. So the technological parameters have close relationship with optical performance of the coupler, and the good performance coupler can't get until the drawing speed and fused temperature match accurately.

  8. Research on Effect of Age Parameter in Second Language Acquisition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan

    2013-01-01

    In the filed of Second Language Acquisition (SLA), language learners’final competence and learning efficiency could be greatly influenced by individual differences, including language aptitude, learners’motivation, first language context and age. These individual differences mentioned above are always regarded as the remarkable parameters in the study on SLA. As one of the most influential parameter, age newly has been re-fetched by contemporary SLA researchers and in this research field critical and sensitive period hypothesis are set as highly valuable research target to explore the problems of learning rate, teaching method⁃ology and language policy. This article firstly introduces the basic theoretical framework of critical and sensitive period hypothesis, and then explores the relation of these two hypotheses and the SLA by existing experimental results. Based on detailed theoretical introduction and exploration of recent research experiment, implications of critical and sensitive period hypothesis are further ap⁃plied in the Chinese teaching context, i.e. the feasibility of age- based multi-methodology teaching method. Meanwhile, exist⁃ing limitations of current major research in this filed also will be presented in order to assist the future experimental study in Chi⁃nese teaching context, especially university ESL teaching.

  9. Effect of train carbody's parameters on vertical bending stiffness performance

    Science.gov (United States)

    Yang, Guangwu; Wang, Changke; Xiang, Futeng; Xiao, Shoune

    2016-10-01

    Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.

  10. Deducing effective light transport parameters in optically thin systems

    CERN Document Server

    Mazzamuto, Giacomo; Toninelli, Costanza; Wiersma, Diederik

    2015-01-01

    We present an extensive Monte Carlo study on light transport in optically thin slabs, addressing both axial and transverse propagation. We completely characterize the so-called ballistic-to-diffusive transition, notably in terms of the spatial variance of the transmitted/reflected profile. We test the validity of the prediction cast by diffusion theory, that the spatial variance should grow independently of absorption and, to a first approximation, of the sample thickness and refractive index contrast. Based on a large set of simulated data, we build a freely available look-up table routine allowing reliable and precise determination of the microscopic transport parameters starting from robust observables which are independent of absolute intensity measurements. We also present the Monte Carlo software package that was developed for the purpose of this study.

  11. Effect of gasification parameter on coal gasification in thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shen, S.; Pang, X.; Bao, W.; Lo, Y.; Zhu, S. [Taiyuan University of Technology, Taiyuan (China)

    2004-12-01

    The influence of several parameters such as the power input of plasma jet, vapor and air input etc on gas composition and carbon conversion from coal gasification in an air-steam plasma jet was studied. The main gaseous products are H{sub 2}, CO, CO{sub 2}, CH{sub 2}4 and tar was discovered. Results show that the concentration of H{sub 2}, CO and carbon conversion increases, and the concentration of CO{sub 2} significantly decreases, when the power input of plasma jet is raised. The concentration of H{sub 2} increases when the vapor flux is increased, but excessive steam can decrease carbon conversion. The carbon conversion is enhanced by decreasing feed rate. The air flux should be reduced to improve the quality of coal gas in a certain range. The carbon conversion of Datong coal can exceed 95% at appropriate condition. 18 refs., 4 figs., 2 tabs.

  12. Cost-Effective Control of Ground-Level Ozone Pollution in and around Beijing

    Institute of Scientific and Technical Information of China (English)

    Xie Xuxuan; Zhang Shiqiu; Xu Jianhua; Wu Dan; Zhu Tong

    2012-01-01

    Ground level ozone pollution has become a significant air pollution problem in Beijing. Because of the complex way in which ozone is formed, it is difficult for policy makers to identify optimal control options on a cost-effective basis. This paper identi- fies and assesses a range of options for addressing this problem. We apply the Ambient Least Cost Model and compare the eco- nomic costs of control options, then recommend the most effective sequence to realize pollution control at the lowest cost. The study finds that installing of Stage II gasoline vapor recovery system at Beijing's 1446 gasoline stations would be the most cost-effective option. Overall, options to reduce ozone pollution by cutting ve- hicular emissions are much more cost-effective than options to "clean up" coal-fired power plants.

  13. Effect of firefighter boots and viscoelastic insoles on the impact force of the ground reaction force’s vertical component

    Directory of Open Access Journals (Sweden)

    Jesús Cámara-Tobalina

    2011-12-01

    Full Text Available The aims of the present study were to determine the effect of firefighter's boots on the vertical component of the ground reaction force (GRF at heel strike, also known as heel strike transient and to analyze the effect of the viscoelastic insoles placed into the firefighter’s boots on this force during the gait. The magnitude of the impact force (FZI from the vertical ground reaction force, the time to the production of this force (TZI and the loading rate (GC were registered. 39 firefighters without any pathology during 2 years before the study were recruited. Three different walking conditions were tested: 1 gait with firefighter's boots, 2 gait with firefighter's boots and viscoelastic insoles and 3 gait with sport shoes. The results showed a higher production and magnitude of the impact force during gait with firefighter's boots than during gait with sport shoes (13,1 vs. 2,6 % of occurrence of the impact force and 61,39 ± 35,18 %BW (body weight vs. 49,38 ± 22,99 %BW, respectively. The gait with viscoelastic insoles placed into the firefighter's boots did not show significant differences in any of the parameters characterizing the impact force compared to the gait without insoles. The results of this study show a lower cushioning of the impact force during the gait with firefighter's boots in comparison to the gait with sport shoes and the inefficiency of the viscoelastic insoles placed inside the firefighter's boots to ameliorate the cushioning of the impact force at natural walking speed.

  14. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication.

    Science.gov (United States)

    Jian, Huang; Ke, Deng; Chao, Liu; Peng, Zhang; Dagang, Jiang; Zhoushi, Yao

    2014-06-30

    Adaptive optics (AO) systems can suppress the signal fade induced by atmospheric turbulence in satellite-to-ground coherent optical communication. The lower bound of the signal fade under AO compensation was investigated by analyzing the pattern of aberration modes for a one-stage imaging AO system. The distribution of the root mean square of the residual aberration is discussed on the basis of the spatial and temporal characteristics of the residual aberration of the AO system. The effectiveness of the AO system for improving the performance of coherent optical communication is presented in terms of the bit error rate and system availability.

  15. Numerical Study of a Long-Lived, Isolated Wake Vortex in Ground Effect

    Science.gov (United States)

    Proctor, Fred H.

    2014-01-01

    This paper examines a case observed during the 1990 Idaho Falls Test program, in which a wake vortex having an unusually long lifetime was observed while in ground effect. A numerical simulation is performed with a Large Eddy Simulation model to understand the response of the environment in affecting this event. In the simulation, it was found that one of the vortices decayed quickly, with the remaining vortex persisting beyond the time-bound of typical vortex lifetimes. This unusual behavior was found to be related to the first and second vertical derivatives of the ambient crosswind.

  16. The hydrogen concentration as parameter to identify natural attenuation processes of volatile chlorinated hydrocarbons in ground water; Die Wasserstoffkonzentration als Parameter zur Identifizierung des natuerlichen Abbaus von leichtfluechtigen Chlorkohlenwasserstoffen (LCKW) im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Alter, M.D.

    2006-06-15

    In this study, the hydrogen concentration as parameter to identify natural attenuation processes of volatile chlorinated hydrocarbons was investigated. The currently accepted and recommended bubble strip method for hydrogen sampling was optimized, and a storage method for hydrogen samples was developed. Furthermore batch experiments with a dechlorinating mixed culture and pure cultures were carried out to study H{sub 2}-concentrations of competing redox processes. The extraction of hydrogen from ground water was optimized by a reduced inlet diameter of the usually applied gas sampling bulbs, allowing a maximal turbulent ow and gas transfer. With a gas volume of 10 ml and flow rates of 50 to 140 ml/min, the course of extraction almost followed the theoretical course of equilibration. At flow rates > 100 ml/min a equilibrium of 98% was achieved within 20 min. Until recently it was generally accepted that hydrogen samples can be stored only for 2 hours and therefore have to be analyzed immediately in the eld. Here, it was shown that eld samples can be stored for 1-3 days until analysis. For the dechlorination of tetrachloroethene (PCE), a hydrogen threshold concentration of 1-2 nM was found with the dechlorinating mixed culture as well as with a pure culture of Sulfurospirillum multivorans in combination with another pure culture Methanosarcina mazei. No dechlorination was detectable below this concentration. With the dechlorinating mixed culture, this finding is valid for all successive dechlorination steps until ethene. The hydrogen threshold concentration for denitrification were below the detection limit of 0,2 nM with the dechlorinating mixed culture. A threshold concentration of 3,1-3,5 nM was found for sulphate reduction and a threshold of 7-9 nM H{sub 2} for hydrogenotrophic methanogenesis. This implies that the natural dechlorination at contaminated sites is preferred to competing processes like sulphate reduction and methanogenesis. The threshold

  17. Effect of atrazine (Herbicide) on blood parameters of common carp ...

    African Journals Online (AJOL)

    EJIRO

    the environment the atrazine or triazine based herbicides are not degraded by ... biological effects of environmental pollution in waters. Monitoring of blood .... leading to an excess utilization of stored carbohydrates. Hussein et al. (1996) ... Acute toxicity of ammonia and its sublethal effects on selected haematological and.

  18. Retrievals of ethane from ground-based high-resolution FTIR solar observations with updated line parameters: determination of the optimum strategy for the Jungfraujoch station.

    Science.gov (United States)

    Bader, W.; Perrin, A.; Jacquemart, D.; Sudo, K.; Yashiro, H.; Gauss, M.; Demoulin, P.; Servais, C.; Mahieu, E.

    2012-04-01

    Ethane (C2H6) is the most abundant Non-Methane HydroCarbon (NMHC) in the Earth's atmosphere, with a lifetime of approximately 2 months. C2H6 has both anthropogenic and natural emission sources such as biomass burning, natural gas loss and biofuel consumption. Oxidation by the hydroxyl radical is by far the major C2H6 sink as the seasonally changing OH concentration controls the strong modulation of the ethane abundance throughout the year. Ethane lowers Cl atom concentrations in the lower stratosphere and is a major source of peroxyacetyl nitrate (PAN) and carbon monoxide (by reaction with OH). Involved in the formation of tropospheric ozone and in the destruction of atmospheric methane through changes in OH, C2H6 is a non-direct greenhouse gas with a net-global warming potential (100-yr horizon) of 5.5. The retrieval of ethane from ground-based infrared (IR) spectra is challenging. Indeed, the fitting of the ethane features is complicated by numerous interferences by strong water vapor, ozone and methane absorptions. Moreover, ethane has a complicated spectrum with many interacting vibrational modes and the current state of ethane parameters in HITRAN (e.g. : Rothman et al., 2009, see http://www.hitran.com) was rather unsatisfactory in the 3 μm region. In fact, PQ branches outside the 2973-3001 cm-1 range are not included in HITRAN, and most P and R structures are missing. New ethane absorption cross sections recorded at the Molecular Spectroscopy Facility of the Rutherford Appleton Laboratory (Harrison et al., 2010) are used in our retrievals. They were calibrated in intensity by using reference low-resolution spectra from the Pacific Northwest National Laboratory (PNNL) IR database. Pseudoline parameters fitted to these ethane spectra have been combined with HITRAN 2004 line parameters (including all the 2006 updates) for all other species encompassed in the selected microwindows. Also, the improvement brought by the update of the line positions and intensities

  19. A Comparative Parametric Analysis of the Ground Fault Current Distribution on Overhead Transmission Lines

    OpenAIRE

    VINTAN, M.

    2016-01-01

    The ground fault current distribution in an effectively grounded power network is affected by various factors, such as: tower footing impedances, spans lengths, configuration and parameters of overhead ground wires and power conductors, soil resistivity etc. In this paper, we comparatively analyze, using different models, the ground fault current distribution in a single circuit transmission line with one ground wire. A parametric comparative analysis was done in order to stud...

  20. Effect Of Long-Period Earthquake Ground Motions On Nonlinear Vibration Of Shells With Variable Thickness

    Science.gov (United States)

    Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers

    2010-12-01

    Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The

  1. Zoning of the territory of Russia by the effectiveness of low-potential heat of the ground and atmospheric air for heating buildings

    Science.gov (United States)

    Vasilyev, G. P.; Kolesova, M. V.; Gornov, V. F.; Yurchenko, I. A.

    2016-06-01

    The article represents the results of researches to zone the territory of Russia and Europe division into districts of by efficiency of using for the heat supply of buildings of low-potential thermal energy of ground and free air and their combination. While modeling the heat regime of geothermal HPS in climatic conditions of different regions of the territory of Russia, the influence of the long-term extraction of geothermal heat energy on the ground heat regime has been taken into account as well as the influence of phase transitions of pore moisture in ground on the efficiency of operation of geothermal heat-pump heat-supply systems. Also considered were the sinking of temperatures of ground massif by long-term extraction of the heat energy from the ground as calculation parameters of the heat energy from the ground, and as calculation parameters of ground massif temperatures.

  2. Optimisation of shock absorber process parameters using failure mode and effect analysis and genetic algorithm

    Science.gov (United States)

    Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal

    2013-07-01

    The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.

  3. Low-speed aerodynamic characteristics of a powered NASP-like configuration in ground effect

    Science.gov (United States)

    Gatlin, Gregory M.

    1989-01-01

    Results are presented on the low-speed aerodynamic characteristics of a simplified NASP (for National Aerospace Plane Program)-like configuration, obtained in the NASA-Langley 14-by-22-foot subsonic tunnel. The model consisted of a triangular wedge forebody, a rectangular midsection housing the propulsion simulation system, and a rectangular wedge aftbody; it also included a delta wing, exhaust flow deflectors, and aftbody fences. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow. It was found that power-on ground effects for NASP-like configuration can be substantial; these effects can be reduced by increasing the angle-of-attack to the value of the aftbody ramp angle. Power-on lift losses in ground effect increased with increasing thrust, but could be reduced by the addition of a delta wing to the configuration. Power-on lift losses also increased with use of aftbody fences.

  4. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators.

    Science.gov (United States)

    Shearin, A F; Reberg-Horton, S C; Gallandt, E R

    2007-10-01

    Ground beetles are well known as beneficial organisms in agroecosystems, contributing to the predation of a wide range of animal pests and weed seeds. Tillage has generally been shown to have a negative effect on ground beetles, but it is not known whether this is because of direct mortality or the result of indirect losses resulting from dispersal caused by habitat deterioration. In 2005, field experiments measured direct, tillage-induced mortality, of four carabid weed seed predators, Harpalus rufipes DeGeer, Agonum muelleri Herbst, Anisodactylus merula Germar, and Amara cupreolata Putzeys, and one arthropod predator, Pterostichus melanarius Illiger, common to agroecosystems in the northeastern United States. Three tillage treatments (moldboard plow, chisel plow, and rotary tillage) were compared with undisturbed controls at two sites (Stillwater and Presque Isle) and at two dates (July and August) in Maine. Carabid activity density after disturbance was measured using fenced pitfall traps installed immediately after tillage to remove any effects of dispersal. Rotary tillage and moldboard plowing reduced weed seed predator activity density 52 and 54%, respectively. Carabid activity density after chisel plowing was similar to the undisturbed control. This trend was true for each of the weed seed predator species studied. However, activity density of the arthropod predator P. melanarius was reduced by all tillage types, indicating a greater sensitivity to tillage than the four weed seed predator species. These results confirm the need to consider both direct and indirect effects of management in studies of invertebrate seed predators.

  5. Computer simulations of comet- and asteroidlike bodies passing through the Venusian atmosphere: Preliminary results on atmospheric and ground shock effects

    Science.gov (United States)

    Roddy, D.; Hatfield, D.; Hassig, P.; Rosenblatt, M.; Soderblom, L.; Dejong, E.

    1992-01-01

    We have completed computer simulations that model shock effects in the venusian atmosphere caused during the passage of two cometlike bodies 100 m and 1000 m in diameter and an asteroidlike body 10 km in diameter. Our objective is to examine hypervelocity-generated shock effects in the venusian atmosphere for bodies of different types and sizes in order to understand the following: (1) their deceleration and depth of penetration through the atmosphere; and (2) the onset of possible ground-surface shock effects such as splotches, craters, and ejecta formations. The three bodies were chosen to include both a range of general conditions applicable to Venus as well as three specific cases of current interest. These calculations use a new multiphase computer code (DICE-MAZ) designed by California Research & Technology for shock-dynamics simulations in complex environments. The code was tested and calibrated in large-scale explosion, cratering, and ejecta research. It treats a wide range of different multiphase conditions, including material types (vapor, melt, solid), particle-size distributions, and shock-induced dynamic changes in velocities, pressures, temperatures (internal energies), densities, and other related parameters, all of which were recorded in our calculations.

  6. Effect of cutting parameters on chip formation in orthogonal cutting

    Directory of Open Access Journals (Sweden)

    S. Ben Salem

    2012-01-01

    Full Text Available Purpose: of this paper is to study the chip formation to obtain the optimal cutting conditions and to observe the different chip formation mechanisms. Analysis of machining of a hardened alloy, X160CrMoV12-1 (cold work steel: AISI D2 with a ferritic and cementite matrix and coarse primary carbides, showed that there are relationships between the chip geometry, cutting conditions and the different micrographs under different metallurgical states.Design/methodology/approach: Machining of hardened alloys has some metallurgical and mechanical difficulties even if many successful processes have been increasingly developed. A lot of study has been carried out on this subject, however only with modest progress showing specific results concerning the real efficiency of chip formation. Hence, some crucial questions remain unanswered: the evolution of white layers produced during progressive tool flank wear in dry hard turning and to correlate this with the surface integrity of the machined surface. For the experimental study here, various cutting speeds and feed rates have been applied on the work material.Findings: The “saw-tooth type chips” geometry has been examined and a specific attention was given to the chip samples that were metallographically processed and observed under scanning electronic microscope (SEM to determine if white layers are present.Research limitations/implications: This research will be followed by a detail modelling and need more experimental results for a given a good prediction of the results occurred on the damage related to the microstructure by using the cutting parameters.Practical implications: A special detail was given to the mechanism of chip formation resulting from hard machining process and behaviour of steel at different metallurgical states on the material during the case of annealing and or the case of quench operations.Originality/value: For the sake of simplicity, ANOVA (Analysis of Variance was used to

  7. Ibis ground calibration

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Bazzano, A.; Del Santo, M.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Blondel, C.; Laurent, P.; Lebrun, F. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Di Cocco, G.; Malaguti, E. [Istituto di Astrofisica Spaziale e Fisica-Bologna - IASF/CNR (Italy); Gabriele, M.; La Rosa, G.; Segreto, A. [Istituto di Astrofisica Spaziale e Fisica- IASF/CNR, Palermo (Italy); Quadrini, E. [Istituto di Astrofisica Spaziale e Fisica-Cosmica, EASF/CNR, Milano (Italy); Volkmer, R. [Institut fur Astronomie und Astrophysik, Tubingen (Germany)

    2003-11-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system.

  8. Effect of extrusion parameters on some properties of dietary fiber ...

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... The independent variables studied were extrusion temperature (from. 59.77 to ... The extraction of juice from citrus fruits, such as oranges, grapefruit ..... properties of extruded orange pulp and its effect on the quality of cookies.

  9. Effects of Toluene on Some Physicochemical Parameters of The ...

    African Journals Online (AJOL)

    ADOWIE PERE

    corked bottles. It was stored in a cool dry place prior ... the initial safe concentration to be used (Vincent-. Akpu ... Winkler's method while temperature and pH were .... nuclear configurations, coupled with division arrest. .... Effects of waste oil on.

  10. Effect of music therapy on oncologic staff bystanders: a substantive grounded theory.

    Science.gov (United States)

    O'Callaghan, Clare; Magill, Lucanne

    2009-06-01

    Oncologic work can be satisfying but also stressful, as staff support patients and families through harsh treatment effects, uncertain illness trajectories, and occasional death. Although formal support programs are available, no research on the effects of staff witnessing patients' supportive therapies exists. This research examines staff responses to witnessing patient-focused music therapy (MT) programs in two comprehensive cancer centers. In Study 1, staff were invited to anonymously complete an open-ended questionnaire asking about the relevance of a music therapy program for patients and visitors (what it does; whether it helps). In Study 2, staff were theoretically sampled and interviewed regarding the personal effects of witnessing patient-centered music therapy. Data from each study were comparatively analyzed according to grounded theory procedures. Positive and negative cases were evident and data saturation arguably achieved. In Study 1, 38 staff unexpectedly described personally helpful emotional, cognitive, and team effects and consequent improved patient care. In Study 2, 62 staff described 197 multiple personal benefits and elicited patient care improvements. Respondents were mostly nursing (57) and medical (13) staff. Only three intrusive effects were reported: audibility, initial suspicion, and relaxation causing slowing of work pace. A substantive grounded theory emerged applicable to the two cancer centers: Staff witnessing MT can experience personally helpful emotions, moods, self-awarenesses, and teamwork and thus perceive improved patient care. Intrusive effects are uncommon. Music therapy's benefits for staff are attributed to the presence of live music, the human presence of the music therapist, and the observed positive effects in patients and families. Patient-centered oncologic music therapy in two cancer centers is an incidental supportive care modality for staff, which can reduce their stress and improve work environments and perceived

  11. Influence of different head-neck positions on vertical ground reaction forces, linear and time parameters in the unridden horse walking and trotting on a treadmill.

    Science.gov (United States)

    Waldern, N M; Wiestner, T; von Peinen, K; Gómez Alvarez, C G; Roepstorff, L; Johnston, C; Meyer, H; Weishaupt, M A

    2009-03-01

    It is believed that the head-neck position (HNP) has specific effects on the loading pattern of the equine locomotor system, but very few quantitative data are available. To quantify the effects of 6 different HNPs on forelimb-hindlimb loading and underlying temporal changes. Vertical ground reaction forces of each limb and interlimb coordination were measured in 7 high level dressage horses walking and trotting on an instrumented treadmill in 6 predetermined HNPs: HNP1--unrestrained; HNP2--elevated neck, bridge of the nose in front of the vertical; HNP3--elevated neck, bridge of the nose behind the vertical; HNP4--low and flexed neck; HNP5--head and neck in extreme high position; and HNP6--forward downward extension of head and neck. HNP1 served as a velocity-matched control. At the walk, the percentage of vertical stride impulse carried by the forehand (Iz(fore)) as well as stride length and overreach distance were decreased in HNP2, HNP3, HNP4 and HNP5 when compared to HNP1. At the trot, Iz(fore) was decreased in HNP2, HNP3, HNP4 and HNP5. Peak forces in the forelimbs increased in HNP5 and decreased in HNP6. Stance duration in the forelimbs was decreased in HNP2 and HNP5. Suspension duration was increased in HNP2, HNP3 and HNP5. Overreach distance was shorter in HNP4 and longer in HNP6. In comparison to HNP1 and HNP6, HNPs with elevation of the neck with either flexion or extension at the poll as well as a low and flexed head and neck lead to a weight shift from the forehand to the hindquarters. HNP5 had the biggest effect on limb timing and load distribution. At the trot, shortening of forelimb stance duration in HNP5 increased peak vertical forces although Iz(fore) decreased. Presented results contribute to the understanding of the value of certain HNPs in horse training.

  12. Two types of phase diagrams for two-species Bose-Einstein condensates and the combined effect of the parameters

    Science.gov (United States)

    Li, Z. B.; Liu, Y. M.; Yao, D. X.; Bao, C. G.

    2017-07-01

    Under the Thomas-Fermi approximation, an approach is proposed to solve the coupled Gross-Pitaevskii equations (CGP) for the two-species Bose-Einstein condensate analytically. The essence of this approach is to find out the building blocks to build the solution. By introducing the weighted strengths, relatively simpler analytical solutions have been obtained. A number of formulae have been deduced to relate the parameters when the system is experimentally tuned at various status. These formulae demonstrate the combined effect of the parameters, and are useful for the evaluation of their magnitudes. The whole parameter space is divided into zones, where each supports a specific phase. All the boundaries separating these zones have analytical expressions. Based on the division, the phase diagrams against any set of parameters can be plotted. In addition, by introducing a model for the asymmetric states, the total energies of the lowest symmetric and asymmetric states have been compared. Thereby, in which case the former will be replaced by the latter has been evaluated. The CGP can be written in a matrix form. For repulsive inter-species interaction V AB , when the parameters vary and cross over the singular point of the matrix, a specific state transition will happen and the total energy of the lowest symmetric state will increase remarkably. This provides an excellent opportunity for the lowest asymmetric state to emerge as the ground state. For attractive V AB , when the parameters tend to a singular point, the system will tend to collapse. The effects caused by the singular points have been particularly studied.

  13. Effect of Tabor parameter on hysteresis losses during adhesive contact

    Science.gov (United States)

    Ciavarella, M.; Greenwood, J. A.; Barber, J. R.

    2017-01-01

    The Tabor parameter μ is conventionally assumed to determine the range of applicability of the classical 'JKR' solution for adhesive elastic contact of a sphere and a plane, with the variation of the contact area and approach with load, and in particular the maximum tensile force (the pull-off force) being well predicted for μ > 5 . Here we show that the hysteretic energy loss during a contact separation cycle is significantly overestimated by the JKR theory, even at quite large values of μ. This stems from the absence of long-range tensile forces in the JKR theory, which implies that jump into contact is delayed until the separation α = 0 . We develop an approximate solution based on the use of Wu's solution with van der Waals interactions for jump-in, and the JKR theory for jump out of contact, and show that for μ > 5 , the predicted hysteresis loss is then close to that found by direct numerical solutions using the Lennard-Jones force law. We also show how the same method can be adapted to allow for contact between bodies with finite support stiffness.

  14. Effects of Microneedle Design Parameters on Hydraulic Resistance

    Science.gov (United States)

    Hood, R. Lyle; Kosoglu, Mehmet A.; Parker, Matthew; Rylander, Christopher G.

    2011-01-01

    Microneedles have been an expanding medical technology in recent years due to their ability to penetrate tissue and deliver therapy with minimal invasiveness and patient discomfort. Variations in design have allowed for enhanced fluid delivery, biopsy collection, and the measurement of electric potentials. Our novel microneedle design attempts to combine many of these functions into a single length of silica tubing capable of both light and fluid delivery terminating in a sharp tip of less than 100 microns in diameter. This manuscript focuses on the fluid flow aspects of the design, characterizing the contributions to hydraulic resistance from the geometric parameters of the microneedles. Experiments consisted of measuring the volumetric flow rate of de-ionized water at set pressures (ranging from 69-621 kPa) through a relevant range of tubing lengths, needle lengths, and needle tip diameters. Data analysis showed that the silica tubing (~150 micron bore diameter) adhered to within ±5% of the theoretical prediction by Poiseuille’s Law describing laminar internal pipe flow at Reynolds numbers less than 700. High hydraulic resistance within the microneedles correlated with decreasing tip diameter. The hydraulic resistance offered by the silica tubing preceding the microneedle taper was approximately 1-2 orders of magnitude less per unit length, but remained the dominating resistance in most experiments as the tubing length was >30 mm. These findings will be incorporated into future design permutations to produce a microneedle capable of both efficient fluid transfer and light delivery. PMID:22211159

  15. Effects of parameters on rotational fine blanking of helical gears

    Institute of Scientific and Technical Information of China (English)

    杨珊; 宋燕利; 张梅

    2014-01-01

    The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die. In this work, rotational fine blanking which combined the linear and rotational motion of punch and counterpunch was applied for the forming of helical gears. A three-dimensional (3D) rigid-plastic finite element model was developed on the DEFORM-3D platform. By finite element simulation and analysis, the influences of key parameters on the punch load and cut surface were investigated. It is shown that:1) with increasing the counterforce or helical angle, the punch load and the depth of die roll increase;2) with increasing blank holder force, the punch load increases while the depth of die roll decreases;3) V-ring indenter facilitates an improvement in the quality. The results of this research reveal the deformation mechanism of rotational fine blanking of helical gears, and provide valuable guidelines for further experimental studies.

  16. Effect of cloud-to-ground lightning and meteorological conditions on surface NOx and O3 in Hong Kong

    Science.gov (United States)

    Fei, Leilei; Chan, L. Y.; Bi, Xinhui; Guo, Hai; Liu, Yonglin; Lin, Qinhao; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2016-12-01

    Cloud-to-ground (CG) lightning, meteorological conditions and corresponding surface nitrogen oxides (NOx) and ozone (O3) variations in relation to thunderstorm and lightning activities over Hong Kong at Kwai Chung (urban), Tung Chung (new town) and Tap Mun (background) during active lightning seasons from 2009 to 2013 were studied by analyzing respective air quality monitoring station data along with CG lightning and meteorological data. We observed NOx enhancement and significant O3 decline on lightning days. Influences of land use types, lightning activities and meteorological conditions on surface NOx and O3 were examined. NOx and O3 concentrations shifted towards higher and lower levels, respectively, during lightning days especially in the dominant wind directions. Principal component analysis/absolute principal component scores (PCA/APCS) method and stepwise multiple linear regression (MLR) analysis were employed to examine the influence of thunderstorm related lightning and meteorological parameters on surface NOx and O3. Wind speed was supposed to be the most important meteorological parameter affecting the concentration of NOx, and lightning activities were observed to make a positive contribution to NOx. Negative contribution of hot, cloudy and wet weather and positive contribution of wind speed were found to affect the concentration of O3. Lightning parameters were also found to make a small positive contribution to O3 concentration at Tap Mun and Tung Chung, but the net effect of lightning activities and corresponding meteorological conditions was the decrease of O3 on lightning days. Reasonably good agreement between the predicted and observed NOx and O3 values indicates that PCA/APCS-MLR is a valuable method to study the thunderstorm induced NOx and O3 variations.

  17. Ground Observation and Correction of P-band Radar Imaging Ionospheric Effects

    Directory of Open Access Journals (Sweden)

    Zhao Ning

    2014-02-01

    Full Text Available For high resolution space-borne P-band SAR system, ionospheric effects could cause serious phase errors. These errors are causally related to the radar frequency and the TEC of ionosphere and make the image quality degraded. To guarantee the image quality, the ionosphere errors must be emended. Based on the mismatched filter model caused by ionosphere, it is pointed out that accurate ionosphere TEC is the key for phase error correction, a high precision ionosphere TEC measurement method is further put forward by using the phase errors of SAR echoes, which is validated by processing the data of a ground based P-band radar with well focused radar image of the international space station obtained. The results indicate that the method can effectively increase the accuracy of ionosphere TEC estimation, and thus improve the radar imaging quality, it is applicable to low frequency space-borne SAR systems for reducing the ionosphere effects.

  18. Phase noise effects on turbulent weather radar spectrum parameter estimation

    Science.gov (United States)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  19. Engineering characteristics of near-fault vertical ground motions and their effect on the seismic response of bridges

    Institute of Scientific and Technical Information of China (English)

    Li Xinle; Dou Huijuan; Zhu Xi

    2007-01-01

    A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion,focusing on the effect of earthquake magnitude,site conditions,pulse duration,and statistical component.The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes,and the relationship between the vertical and horizontal ground motions is comparatively intricate.In addition,the effect of the near-fault ground motions on bridge performance is analyzed,considering both the material nonlinear characteristics and the P~△ effect.

  20. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance.

    Science.gov (United States)

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi

    2017-07-27

    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway.

  1. Effects of Cooling on Ankle Muscle Strength, Electromyography, and Gait Ground Reaction Forces

    Directory of Open Access Journals (Sweden)

    Amitava Halder

    2014-01-01

    Full Text Available The effects of cooling on neuromuscular function and performance during gait are not fully examined. The purpose of this study was to investigate the effects of local cooling for 20 min in cold water at 10°C in a climate chamber also at 10°C on maximal isometric force and electromyographic (EMG activity of the lower leg muscles. Gait ground reaction forces (GRFs were also assessed. Sixteen healthy university students participated in the within subject design experimental study. Isometric forces of the tibialis anterior (TA and the gastrocnemius medialis (GM were measured using a handheld dynamometer and the EMG was recorded using surface electrodes. Ground reaction forces during gait and the required coefficient of friction (RCOF were recorded using a force plate. There was a significantly reduced isometric maximum force in the TA muscle (P<0.001 after cooling. The mean EMG amplitude of GM muscle was increased after cooling (P<0.003, indicating that fatigue was induced. We found no significant changes in the gait GRFs and RCOF on dry and level surface. These findings may indicate that local moderate cooling 20 min of 10°C cold water, may influence maximal muscle performance without affecting activities at sub-maximal effort.

  2. Pounding Effects in Simply Supported Bridges Accounting for Spatial Variability of Ground Motion: A Case Study

    Directory of Open Access Journals (Sweden)

    G. Tecchio

    2012-01-01

    Full Text Available This study carries out a parametrical analysis of the seismic response to asynchronous earthquake ground motion of a long multispan rc bridge, the Fener bridge, located on a high seismicity area in the north-east of Italy. A parametrical analysis has been performed investigating the influence of the seismic input correlation level on the structural response: a series of nonlinear time history analyses have been executed, in which the variation of the frequency content in the accelerograms at the pier bases has been described by considering the power spectral density function (PSD and the coherency function (CF. In order to include the effects due to the main nonlinear behaviours of the bridge components, a 3D finite element model has been developed, in which the pounding of decks at cap-beams, the friction of beams at bearings, and the hysteretic behaviour of piers have been accounted for. The sensitivity analysis has shown that the asynchronism of ground motion greatly influences pounding forces and deck-pier differential displacements, and these effects have to be accurately taken into account for the design and the vulnerability assessment of long multispan simply supported bridges.

  3. Simple method to measure effects of horizontal atmospherical turbulence at ground level

    Science.gov (United States)

    Tíjaro Rojas, Omar J.; Galeano Traslaviña, Yuber A.; Torres Moreno, Yezid

    2016-09-01

    The Kolmogorov's theory has been used to explain physical phenomena like the vertical turbulence in atmosphere, others recent works have made new advances and have improved K41 theory. In addition, this theory has been applied to studying different issues associated to measure atmospheric effects, and have special interest to find answers in optics to questions as e.g. at ground level, Could it find edges of two or more close objects, from a distant observer? (Classic resolution problem). Although this subject is still open, we did a model using the statistics of the centroid and the diameter of the laser beam propagated under horizontal turbulence at ground level until the object plane. The goal is to measure efficiently the turbulence effects in the long horizontal path propagation of electromagnetic wave. Natural movement of laser beam within the cavity needs be subtracted from the total transversal displacement in order to obtain a best approach. This simple proposed method is used to find the actual statistics of the centroid and beam diameter on the object plane where the turbulence introduces an additional transversal shift. And it has been tested for different values of horizontal distances under non-controlled environment in a synchronized acquisition scheme. Finally, we show test results in open very strong turbulence with high controlled temperature. This paper presents the implemented tests mainly into laboratory and discuss issues to resolve.

  4. The antioxidant epazote effect (Chenopodium ambrosioides L. on raw ground beef

    Directory of Open Access Journals (Sweden)

    Luz H. Villalobos-Delgado

    2016-12-01

    Full Text Available For this paper, solid-liquid extractions of epazote (Chenopodium ambrosioides L. were carried out using water (IE and ethanol (EtOHE as solvents, with the objective of evaluating its antioxidant effect on raw ground beef stored at 4 °C for 9 days. The analysis was carried out under the following treatments: CTL (meat without antioxidants, CIE (meat with infusion of epazote, CEtOHE (meat with ethanolic extract of epazote and ASC (meat with sodium ascorbate solution. The characteristics determined for both IE and EtOHE before being added to the meat were pH, antioxidant activity (AA, total polyphenols (TP and total flavonoids (TF. The antioxidant effect on the ground beef was evaluated using the thiobarbituric acid reactive substances (TBARS method and instrumental color. EI showed the highest TF content. Meat with IE and EtOHE treatments had lower TBARS values than control meat, and higher of L* and b* values, which indicate greater clarity in both treatments. In conclusion, under these conditions, epazote has potential as a natural antioxidant in order to extend the shelf life of meat and meat products.

  5. The Prediction of Jet Noise Ground Effects Using an Acoustic Analogy and a Tailored Green's Function

    Science.gov (United States)

    Miller, Steven A. E.

    2013-01-01

    An assessment of an acoustic analogy for the mixing noise component of jet noise in the presence of an infinite surface is presented. The reflection of jet noise by the ground changes the distribution of acoustic energy and is characterized by constructive and destructive interference patterns. The equivalent sources are modeled based on the two-point cross- correlation of the turbulent velocity fluctuations and a steady Reynolds-Averaged Navier-Stokes (RANS) solution. Propagation effects, due to reflection by the surface and refaction by the jet shear layer, are taken into account by calculating the vector Green's function of the linearized Euler equations (LEE). The vector Green's function of the LEE is written in relation to Lilley's equation; that is, approximated with matched asymptotic solutions and the Green's function of the convective Helmholtz equation. The Green's function of the convective Helmholtz equation for an infinite flat plane with impedance is the Weyl-van der Pol equation. Predictions are compared with an unheated Mach 0.95 jet produced by a nozzle with an exit diameter of 0.3302 meters. Microphones are placed at various heights and distances from the nozzle exit in the peak jet noise direction above an acoustically hard and an asphalt surface. The predictions are shown to accurately capture jet noise ground effects that are characterized by constructive and destructive interference patterns in the mid- and far-field and capture overall trends in the near-field.

  6. Ground state energy and wave function of an off-centre donor in spherical core/shell nanostructures: Dielectric mismatch and impurity position effects

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Zouitine, Asmae [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Feddi, El Mustapha [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); and others

    2014-09-15

    Ground state energy and wave function of a hydrogen-like off-centre donor impurity, confined anywhere in a ZnS/CdSe spherical core/shell nanostructure are determined in the framework of the envelope function approximation. Conduction band-edge alignment between core and shell of nanostructure is described by a finite height barrier. Dielectric constant mismatch at the surface where core and shell materials meet is taken into account. Electron effective mass mismatch at the inner surface between core and shell is considered. A trial wave function where coulomb attraction between electron and off-centre ionized donor is used to calculate ground state energy via the Ritz variational principle. The numerical approach developed enables access to the dependence of binding energy, coulomb correlation parameter, spatial extension and radial probability density with respect to core radius, shell radius and impurity position inside ZnS/CdSe core/shell nanostructure.

  7. The oxidative stress parameters and the effect of dyslipidemia on the parameters of oxidative stress in lichen planus

    Directory of Open Access Journals (Sweden)

    Arzu Kılıç

    2015-12-01

    Full Text Available Background and Design: Various reports have demonstrated an association between inflammatory skin disorders and oxidative stress. Additionally, dyslipidemia and systemic disorders have been found to associate with chronic inflammatory skin diseases. In this study, we aimed to investigate the oxidative stress parameters and the effect of dyslipidemia on the parameters of oxidative stress in lichen planus (LP. Materials and Methods: Fifty-four patients with LP and 60 control subjects were enrolled in the study. Total cholesterol, triglyceride, highdensity lipoprotein cholesterol (HDL-C, low-de nsity lipoprotein cholesterol (LDL-C, and very low density lipoprotein cholesterol (VLDL-C levels were studied in all participants. After participants with associated systemic diseases were excluded, total antioxidant status (TAS, paraoxonase (PON, arylesterease, stimulated PON and total thiol levels (TTL levels were studied in 36 patients with LP and control group. Results: 62.96% of the patients were detected to have dyslipidemia. Total cholesterol and LDL-C levels were found to be significantly higher and HDL-C levels were found to be significantly lower in patient group when compared with control group. Serum TAS was found to be significantly lower in patient group than in control group. When patients with dyslipidemia were compared with patients without dyslipidemia in terms of oxidative stress parameters, serum level of TTL was found to be lower in patients with dyslipidemia. Conclusion: In this study, LP was associated with dyslipidemia. Besides, our findings showed that decreased TAS activity might have a role in the pathogenesis of LP. Our findings support that associated dyslipidemia may contribute to the etiopathogenesis of LP by reducing the antioxidant defense. Prospective studies with larger samples are needed to enlighten the possible effects of dyslipidemia on the incidence, mechanism and severity of LP

  8. Varying parameter models to accommodate dynamic promotion effects

    NARCIS (Netherlands)

    Foekens, E.W.; Leeflang, P.S.H.; Wittink, D.R.

    1999-01-01

    The purpose of this paper is to examine the dynamic effects of sales promotions. We create dynamic brand sales models (for weekly store-level scanner data) by relating store intercepts and a brand's own price elasticity to a measure of the cumulated previous price discounts - amount and time - for t

  9. Climate effects of biofuels: measuring some key parameters

    Science.gov (United States)

    Lobell, D.; Campbell, E.; Fernandez, L.; Loarie, S.; Georgescu, M.; Asner, G.; Field, C.

    2008-12-01

    Many of the recent changes in the global food system have been associated, directly or indirectly, with a rapid expansion of biofuel production. One of the main scientific challenges associated with these changes is to understand the effects on the climate system, and in particular whether there are hotspots where biofuel production is especially good or bad for climate protection. The climate effects of biofuels depend on both net changes in greenhouse gas balance and direct biophysical effects of land cover changes. Recent work has shown that the first of these depends critically on assumptions about indirect land use changes that result from biofuel-induced price increases, and in particular on assumptions about how productive biomass agriculture in marginal areas will be. The biophysical effects depend largely on albedo and evapotranspiration changes that can be location and crop specific. Here we will present recent research results on each of these topics, with a focus on marginal land productivity in the United States and land use changes in Brazil.

  10. Varying parameter models to accommodate dynamic promotion effects

    NARCIS (Netherlands)

    Foekens, E.W.; Leeflang, P.S.H.; Wittink, D.R.

    1999-01-01

    The purpose of this paper is to examine the dynamic effects of sales promotions. We create dynamic brand sales models (for weekly store-level scanner data) by relating store intercepts and a brand's own price elasticity to a measure of the cumulated previous price discounts - amount and time - for

  11. Retrieval of Effective Parameters of Subwavelength Periodic Photonic Structures

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Yankovskaya, Elizaveta A.; Zhukovsky, Sergei;

    2014-01-01

    We revisit the standard Nicolson Ross Weir method of effective permittivity and permeability restoration of photonic structures for the case of subwavelength metal-dielectric multilayers. We show that the direct application of the standard method yields a false zero-epsilon point and an associated...

  12. White LED compared with other light sources: age-dependent photobiological effects and parameters for evaluation.

    Science.gov (United States)

    Rebec, Katja Malovrh; Klanjšek-Gunde, Marta; Bizjak, Grega; Kobav, Matej B

    2015-01-01

    Ergonomic science at work and living places should appraise human factors concerning the photobiological effects of lighting. Thorough knowledge on this subject has been gained in the past; however, few attempts have been made to propose suitable evaluation parameters. The blue light hazard and its influence on melatonin secretion in age-dependent observers is considered in this paper and parameters for its evaluation are proposed. New parameters were applied to analyse the effects of white light-emitting diode (LED) light sources and to compare them with the currently applied light sources. The photobiological effects of light sources with the same illuminance but different spectral power distribution were determined for healthy 4-76-year-old observers. The suitability of new parameters is discussed. Correlated colour temperature, the only parameter currently used to assess photobiological effects, is evaluated and compared to new parameters.

  13. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pmetabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  14. CO2 Laser Microchanneling Process: Effects of Compound Parameters and Pulse Overlapping

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2016-09-01

    PMMA (Polymethyl methacrylate) is commonly used in many microfluidic devices like Lab-on-a-chip devices, bioanalytical devices etc. CO2 lasers provide easy and cost effective solution for micromachining needs on PMMA. Microchannels are an integral part of most of these microfluidic devices. CO2 laser beams have been successfully applied by many authors to fabricate microchannels on PMMA substrates. Laser beam power and scanning speed are the most important laser input parameters affecting the output parameters like microchannel depth, width and heat affected zone (HAZ). The effect of these individual parameters on output parameters are well known and already elaborated by many authors. However, these output parameters can more significantly be described by some compound parameters (combination of direct input laser parameters) like laser fluence, specific point energy, interaction time and P/U (power/scanning speed) ratio. The explanation of effect of these compound parameters was not found in earlier researches. In this work, several experiments were carried out to determine the effects of these compound parameters on output parameters i.e. microchannel width, depth and heat affected zone. The effect of pulse overlapping was also determined by performing experiments at different pulse overlaps and with two different energy deposition settings. The concept of actual pulse overlapping has been introduced by considering actual beam spot diameter instead of using theoretical beam diameter. Minimum pulse overlapping was determined experimentally in order to ensure smooth microchannel edges.

  15. Antagonistic effects of caffeine and alcohol on mental performance parameters.

    Science.gov (United States)

    Hasenfratz, M; Bunge, A; Dal Prá, G; Bättig, K

    1993-10-01

    Scientific experiments done so far allow no clear conclusions about the popular belief that freshly brewed coffee can offset the debilitating effects of alcoholic intoxication. This question was addressed using a computer-controlled and subject-paced rapid information processing task (RIP) which was shown earlier to be sensitive to psychoactive substances. Nine male students were tested in a Latin square design before and after the intake of 3.3 mg/kg caffeine (or placebo) followed by 0.7 g/kg alcohol (or placebo). Whereas the mean RIP-task processing rate and the mean reaction time were impaired by alcohol and improved by caffeine, no changes were observed after the combination of alcohol and caffeine. Thus, it was concluded that under the tested conditions, caffeine was able to offset the debilitating effects of alcohol.

  16. Effects of propagation conditions on radar beam-ground interaction: impact on data quality

    Directory of Open Access Journals (Sweden)

    A. Fornasiero

    2005-01-01

    Full Text Available A large part of the research in the radar meteorology is devoted to the evaluation of the radar data quality and to the radar data processing. Even when, a set of absolute quality indexes can be produced (like as ground clutter presence, beam blockage rate, distance from radar, etc., the final product quality has to be determined as a function of the task and of all the processing steps. In this paper the emphasis lies on the estimate of the rainfall at the ground level taking extra care for the correction for ground clutter and beam blockage, that are two main problems affecting radar reflectivity data in complex orography. In this work a combined algorithm is presented that avoids and/or corrects for these two effects. To achieve this existing methods are modified and integrated with the analysis of radar signal propagation in different atmospheric conditions. The atmospheric refractivity profile is retrieved from the nearest in space and time radiosounding. This measured profile is then used to define the `dynamic map' used as a declutter base-field. Then beam blockage correction is applied to the data at the scan elevations computed from this map. Two case studies are used to illustrate the proposed algorithm. One is a summer event with anomalous propagation conditions and the other one is a winter event. The new algorithm is compared to a previous method of clutter removal based only on static maps of clear air and vertical reflectivity continuity test. The improvement in rain estimate is evaluated applying statistical analysis and using rain gauges data. The better scores are related mostly to the ``optimum" choice of the elevation maps, introduced by the more accurate description of the signal propagation. Finally, a data quality indicator is introduced as an output of this scheme. This indicator has been obtained from the general scheme, which takes into account all radar data processing steps.

  17. Effects of irradiation on trans fatty acids formation in ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Brito, M.S. E-mail: msavoy@net.ipen.br; Villavicencio, A.L.C.H. E-mail: villavic@net.ipen.br; Mancini-filho, Jorge

    2002-03-01

    In order to give the consumer the assurance that meat processed by irradiation is a safe product, a great deal of research has been developed in the world. The effect of irradiation on the hygienic quality of meat and meat products is considered as related to the control of meat-borne parasites of humans; elimination of pathogens from fresh meat and poultry; and elimination of pathogens from processed meat. Lipid oxidation and associated changes are the major causes of the quality deterioration of meat during storage. Irradiation of lipids induces the production of free radicals, which react with oxygen, leading to the formation of carbonyls, responsible for alterations in food nutritional and sensorial characteristics. Trans fatty acids are present in ground beef and can also be formed during its processing. Interestingly, the trans fatty acids, due to their chemical and physical characteristics, show more resistance to the oxidizing process. This property motivated us to investigate the level of the trans fatty acids, as well as the level of oxidation in irradiated ground beef. Irradiation of ground beef was performed by gamma rays from a {sup 60}Co source. The applied radiation doses were 0; 1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0 and 8.0 kGy. Lipid peroxidation in terms of TBA number and carbonyl content was monitored during storage. The sample characteristics and trans fatty acids composition were measured, following irradiation and after 60 and 90 days of storage at -10 deg. C.

  18. Determination of the effect of brand and product identification on consumer palatability ratings of ground beef patties.

    Science.gov (United States)

    Wilfong, A K; McKillip, K V; Gonzalez, J M; Houser, T A; Unruh, J A; Boyle, E A E; O'Quinn, T G

    2016-11-01

    The objective of this study was to determine the effect of brand and product identification on consumer palatability ratings of ground beef patties. Six treatments were used in the study: 90/10 Certified Angus Beef (CAB) ground sirloin, 90/10 ground beef, 80/20 CAB ground chuck, 80/20 ground chuck, 80/20 ground beef, and 73/27 CAB ground beef. Ground beef was processed into 151.2-g patties using a patty former with 2 consecutively formed patties assigned to blind consumer testing and the following 2 assigned to informed testing. Following cooking to 74°C, patties were cut into quarters and served to consumers. Consumers ( = 112) evaluated samples in 2 rounds for tenderness, juiciness, flavor liking, texture liking, and overall liking. Each trait was also rated as either acceptable or unacceptable. In the first round of testing, samples were blind evaluated, with no information about the treatments provided to consumers, but in the second round, product type and brand were disclosed prior to sample evaluation. Additionally, texture profile and shear force analyses were performed on patties from each treatment. Few differences were observed for palatability traits during blind consumer testing; however, during informed testing, 90/10 CAB ground sirloin was rated greatest ( brand disclosure. Increased ( branded product that received increased ( brand and product information, few consumers find differences in eating quality among ground beef treatments; however, when consumers are aware of the brand, fat level, and subprimal blend prior to sampling, these factors have a large impact on consumer eating satisfaction.

  19. Removing the gauge parameter dependence of the effective potential by a field redefinition

    DEFF Research Database (Denmark)

    Nielsen, N. K.

    2014-01-01

    The gauge parameter dependence of the effective potential is determined by partial differential equations involving also the Higgs boson field expectation value. Solving these equations by the method of characteristics leads to elimination of the gauge parameter dependence of the effective...

  20. Effect of Rolling Parameters on Plate Curvature during Snake Rolling

    Institute of Scientific and Technical Information of China (English)

    FU Yao; XIE Shuisheng; XIONG Baiqing; HUANG Guojie; CHENG Lei

    2012-01-01

    In order to predict the plate curvature during snake rolling,FE model was constructed based on plane strain assumption.The accuracy of the FE model was verified by the comparison between the plate curvature conducted by FE model and experiment respectively.By using FE model,the effect of offset distance,speed ratio,reduction,roll radius and initial plate thickness on the plate curvature during snake rolling was investigated.The experimental results show that,a proper offsetting distance can efficiently decrease plate curvature,however an excessive offsetting distance will increase plate curvature.A larger speed ratio,reduction will cause a large plate curvature,however a larger roll radius has effect to reduce plate curvature.Plate which undergoes a larger reduction and plate with a larger initial thickness always need a larger offset distance to keep the plate the minimum plate curvature,but for a larger roll radius a smaller offset distance is needed.

  1. Effects of prone and reverse trendelenburg positioning on ocular parameters.

    Science.gov (United States)

    Grant, Geordie P; Szirth, Bernard C; Bennett, Henry L; Huang, Sophia S; Thaker, Rajesh S; Heary, Robert F; Turbin, Roger E

    2010-01-01

    : In a pilot study of awake volunteers, intraocular pressure (IOP), choroid layer thickness, and optic nerve diameter were shown to increase in the prone position over 5 h with a nonsignificant trend of attenuation using a 4-degree increase of table inclination. These effects have previously not been isolated from anesthetic and fluid administration over a prolonged period, using an adequate sample size. : After institutional review board approval, 10 healthy volunteers underwent IOP measurement (Tono-Pen XL, Medtronic Solan, Jacksonville, FL) as well as choroidal thickness and optic nerve diameter assessment (Sonomed B-1000, Sonomed, Inc., Lake Success, NY, or the I System-ABD, Innovative Imaging, Inc., Sacramento, CA) on a Jackson table (Orthopedic Systems, Inc., Union City, CA), during 5 h horizontal prone and 5 h 4-degree reverse Trendelenburg positioning. Measurements were assessed as initial supine, initial prone, and hourly thereafter. Vital signs were recorded at each position and time point. : IOP, choroidal thickness, and optic nerve diameter were observed to increase with time in the prone position. A small degree of reverse Trendelenburg attenuated the increase in choroidal thickness but not IOP or optic nerve diameter. : Prolonged prone positioning increases IOP, choroid layer thickness, and optic nerve diameter independent of anesthetics and intravenous fluid infusion and 4 degrees of table inclination (15 cm of head to foot vertical disparity) may not attenuate these effects.

  2. The Town Effect: Dynamic Interaction between a Group of Structures and Waves in the Ground

    Science.gov (United States)

    Uenishi, Koji

    2010-11-01

    In a conventional approach, the mechanical behaviour of a structure subjected to seismic or blast waves is treated separately from its surroundings, and in many cases, the dynamic coupling effect between multiple structures and the waves propagating in the ground is disregarded. However, if many structures are built densely in a developed urban area, this dynamic interaction may not become negligible. The first purpose of this contribution is to briefly show the effect of multiple interactions between waves and surface buildings in a town. The analysis is based on a recently developed, fully coupled, rigorous mathematical study, and for simplicity, each building in the town is represented by a rigid foundation, a mass at the top and an elastic spring that connects the foundation and mass. The buildings stand at regular spatial intervals on a linear elastic half-space and are subjected to two-dimensional anti-plane vibrations. It is found that the buildings in this model significantly interact with each other through the elastic ground, and the resonant (eigen) frequencies of the collective system (buildings or town) become lower than that of a single building with the same rigid foundation. This phenomenon may be called the “town effect” or “city effect.” Then, second, it is shown that the actual, unique structural damage pattern caused by the 1976 Friuli, Italy, earthquake may better be explained by this “town effect,” rather than by investigating the seismic performance of each damaged building individually. The results suggest that it may also be possible to evaluate the physical characteristics of incident seismic/blast waves “inversely” from the damage patterns induced to structures by the waves.

  3. Effect of Threshold Voltage on Various CMOS Performance Parameter

    Directory of Open Access Journals (Sweden)

    Mr. Abhishek Verma

    2014-04-01

    Full Text Available SiO2, once thought of as the most precious element in the design of CMOS circuits has not lived up to the expectations of being the perfect gate oxide. Efforts have been made to replace it with High K oxides such as Lanthanum Oxide (La2O3, Hafnium Oxide (HfO2 and many more. This review covers the problems faced by the High K oxides, one of them being escalation in threshold voltage which results in increased power dissipation. The solution to the above stated problem is to reduce the threshold voltage by several techniques, also covered in the review. Effect of threshold voltage on leakage current and power and reliability of CMOS are also taken under consideration.

  4. Effect of Cycloplegia on Keratometric and Biometric Parameters in Keratoconus

    Science.gov (United States)

    2016-01-01

    Purpose. To obtain information about effect of cycloplegia on keratometry and biometry in keratoconus. Methods. 48 keratoconus (Group 1) and 52 healthy subjects (Group 2) were included in the study. We measured the flat meridian of the anterior corneal surface (K1), steep meridian of the anterior corneal surface (K2), lens thickness (LT), anterior chamber depth (ACD), and axial length (AL) using the Lenstar LS 900 before and after cycloplegia. Results. The median K1 in Group 1 was 45.64 D before and 45.42 D after cycloplegia, and the difference was statistically significant (P 0.05). There were significant differences in SE, LT, ACD, and RLP between before and after cycloplegia in either Group 1 (all P keratoconus patients were detected. PMID:28058115

  5. Effect of mix parameters on longevity of bituminous mixtures

    Science.gov (United States)

    Reichle, Clayton Matthew

    This study was performed to evaluate the effects of varying aggregate sources, aggregate gradations on the stripping and rutting potential of bituminous based plant mixes specified by the Missouri Department of Transportation. The different aggregate combinations included two different aggregate sources (Potosi Dolomite and Jefferson City Dolomite) including two variations for the Jefferson City Dolomite mix to simulate a marginally in-specification mix and an out-of-specification but in-field tolerance mix. The "field" mix simulated the marginal mix where field tolerance of high dust and low binder content were maximized. All three mixes were evaluated for stripping susceptibility using the Tensile Strength Ratio (TSR) test and the Hamburg Wheel Tracking Device (HWTD). The mix characteristics (unit weight, effective binder content, and air voids) were used for a Level 3 analysis in the Mechanistic-Empirical Pavement Design Guide (MEPDG) to determine long term pavement distress conditions such as fatigue cracking, rutting, and IRI (smoothness). The Potosi mix exhibited the best resistance to rutting and stripping during both the TSR testing as well as the Hamburg testing. The Jefferson City In-Spec and Out-of-Spec mixes showed less resistance to rutting and stripping in order, respectively. This was expected for the Jefferson City mixes where the aggregate was of lower quality (higher Los Angeles Abrasion, Micro Deval loss, absorption, and deleterious materials). Also, in the case of the Jefferson City Out-of-Spec mix, the binder content was lower. Upon evaluating the mixes using the MEPDG software, it was shown that mix characteristics such as air voids, VMA, and VFA influenced the fatigue cracking, rutting, and IRI predictions to a minor degree.

  6. High Re wall-modeled LES of aircraft wake vortices in ground effect

    Science.gov (United States)

    Thiry, Olivier; Winckelmans, Gregoire; Duponcheel, Matthieu

    2014-11-01

    We have been able to perform wall-resolved LES, using a fourth order code, to simulate (aircraft) wake vortices interacting with the ground, also with cross or head winds, up to Reynolds numbers of the order of Re = Γ / ν = 2 ×104 . The present work aims at providing higher Re simulations, and also simulations with rough walls (e.g., grass), through the use of LES with near wall modeling. Various types of models are compared: point-wise and averaged algebraic models, and two-layers models. When using averaged models, the averaging methodology is of importance, since there is essentially no homogeneous direction in the case of wake vortices in ground effects. Uni- and multi-directional averaging strategies, with and without additional time averaging will be considered. When two-layer models are used, a RANS sub-layer will be compared to a simpler approach based on simplified turbulent boundary layer equations. The approaches are first validated on simpler flows, channel flow or wake flow, for which reference wall-resolved LES or DNS results are available. Research fellow (Ph.D. student) at the F.R.S.-FNRS (Belgium)

  7. Embodiment of abstract categories in space… grounding or mere compatibility effects? The case of politics.

    Science.gov (United States)

    Farias, Ana Rita; Garrido, Margarida V; Semin, Gün R

    2016-05-01

    In two experiments, the role played by stimulus response compatibility in driving the spatial grounding of abstract concepts is examined. In Experiment 1, participants were asked to classify politics-related words appearing to the left or the right side of a computer monitor as socialist or conservative. Responses were given by pressing vertically aligned keys and thus orthogonal to the spatial information that may have been implied by the words. Responses given by left or right index finger were counterbalanced. In Experiment 2, a lexical decision task, participants categorized political words or non-words presented to the left or the right auditory channels, by pressing the top/bottom button of a response box. The response category labels (word or non-word) were also orthogonal to the spatial information that may have been implied by the stimulus words. In both experiments, responses were faster when socialism-related words were presented on the left and conservatism-related words were presented on the right, irrespective of the reference of the response keys or labels. Overall, our findings suggest that the spatial grounding of abstract concepts (or at least politics-related ones) is independent of experimentally driven stimulus-response compatibility effects.

  8. Application of Fault Location Mode Based on Travelling Waves for Neutral Non-effective Grounding Systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Fault location for distribution feeders short circuit especially single-phase grounding fault is an important task in distribution system with non-effectively grounded neutral.Fault location mode for distribution feeders using fault generated current and voltage transient traveling waves was investigated.The characteristics of transient traveling waves resulted from each short circuit fault and their transmission disciplinarian in distribution feeders are analyzed.This paper proposed that double end travelling waves theory which measures arriving time of fault initiated surge at both ends of the monitored line is fit for distribution feeders but single end traveling waves theory not.According to different distribution feeders,on the basis of analyzing original traveling waves reflection rule in line terminal, Current-voltage mode,voltage-voltage mode and current-current mode for fault location based on traveling waves are proposed and aerial mode component of original traveling waves is used to realize fault location.Experimental test verify the feasibility and correctness of the proposed method.

  9. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    CERN Document Server

    Zhang, Chuan-Xin; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-01-01

    Considering features of stellar spectral radiation and survey explorers, we established a computational model for stellar effective temperatures, detected angular parameters, and gray rates. Using known stellar flux data in some band, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177,860 stellar effective temperatures and detected angular parameters using the Midcourse Space Experiment (MSX) catalog data. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research made full use of catalog data and presented an original technique for studying stellar characteristics. It proposed a novel method for calculating stellar effective temperatures and detected angular parameters, and pro...

  10. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    Science.gov (United States)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  11. Effects of uranium-mining releases on ground-water quality in the Puerco River Basin, Arizona and New Mexico

    Science.gov (United States)

    Van Metre, Peter C.; Wirt, Laurie; Lopes, T.J.; Ferguson, S.A.

    1997-01-01

    Shallow ground water beneath the Puerco River of Arizona and New Mexico was studied to determine the effects of uranium-mining releases on water quality. Ground-water samples collected from 1989 to 1991 indicate that concentrations of dissolved uranium have decreased. Most samples from the alluvial aquifer downstream from Gallup, New Mexico, met with U.S. Environmental Protection Agency's maximum contaminant levels for gross alpha, gross beta, and radium and the proposed maximum contaminant level for uranium.

  12. The effect of urban design parameters on the local microclimate

    Energy Technology Data Exchange (ETDEWEB)

    Kakoniti, Androula; Georgiou, Gregoria; Neophytou, Marina [Department of Civil and Environmental Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Marakkos, Konstantinos [Department of Aerospace Engineering, University of Manchester, M60 1QD, Manchester (United Kingdom)

    2015-01-22

    Two-dimensional steady-state simulations have been performed using the standard k-e turbulence model coupled with the heat transfer models available in the CFD software FLUENT 6.1, in order to examine the impact of radiation on the Urban Heat Island phenomenon. Specifically, the impact of radiation in three typical urban areas of Cyprus during the summer period is examined. The first geometry considered represents a typical suburban area and is termed as the reference geometry. The second geometry represents an area at the centre of a town with higher buildings and relatively narrower roads. The third geometry, on the other hand, describes a suburban area with wider roads and larger houses than the reference model. Computed values for air temperature in the urban street canyon have indicated that the increase in temperature associated with radiative heat transfer can be reduced by optimising the canyon geometry and, ultimately, help to mitigate the human thermal discomfort. The present study has also revealed that the selection of construction materials can be optimised to offer further reductions in the air temperature of the urban environment. It can be concluded that the combined effect of these remedies can lead to reductions in the energy consumption for building air-conditioning over the summer period.

  13. Effect of Packaging materials on Quality Parameters of Garlic

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Grewal

    2015-11-01

    Full Text Available Studies were carried out to evaluate the effect of storage period and different packaging material on the quality of garlic flakes dried by convective-cum-microwave (CCM and fluidized-cum-microwave (FCM hybrid drying. Garlic flakes were packaged and stored in high density polyethylene (HDPE, low density polyethylene (LDPE and laminated aluminium foil for 3 months under ambient conditions. Samples were investigated to observe for change in rehydration ratio, colour, physiological loss in weight % and overall acceptability. Among the hybrid drying techniques adopted, the garlic flakes developed under optimized condition of fluidized bedcum-microwave was found better in terms of shelf life and quality attributes. The aluminium packaging was adjudged to be the best in retaining the quality of dried garlic flakes up to 3 months of storage. Overall, it can be concluded that the fluidized bed cum microwave dried garlic flakes packed in Aluminium package were the best, and can be stored safely up to 3 months.

  14. The effects of forming parameters on conical ring rolling process.

    Science.gov (United States)

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the "obtuse angle zone" of ring's cross-section are higher than those at "acute angle zone"; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained.

  15. The Effects of Forming Parameters on Conical Ring Rolling Process

    Directory of Open Access Journals (Sweden)

    Wen Meng

    2014-01-01

    Full Text Available The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ and temperature distributions with rolling time were investigated. The effects of ring’s outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring’s cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring’s outer surfaces. As the ring’s outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring’s outer radius growth rate and rolls sizes were obtained.

  16. Effect of hematoporphyrin derivative on hematological parameters in rats.

    Science.gov (United States)

    Khanum, F; Anilakumar, K R; Santhanam, K

    1995-08-01

    Wistar rats were injected with hematoporphyrin derivative (Hpd) intraperitoneally and kept in the dark. Rats were sacrificed 2,24,48 and 72 h after injection. It was observed that Hpd in the dark did not affect the hemoglobin content and number of erythrocytes, while the leukocyte count was increased and blood pH decreased. Blood levels of glucose and lactate were increased significantly. Because the food intake was similar in all the groups, glycogenolysis was suspected to be the source of increased glucose levels in blood. However, a significant increase in the glycogen content of the livers of Hpd-treated rats was observed, which rules out glycogenolysis. Hyperglycemia may result due to a number of reasons such as stimulation of the central nervous pathways innervating the liver and adrenal medulla, excessive glucogenesis in liver from glycogen and noncarbohydrate sources, emotional stress, anesthesia and hormonal effects. The present study rules out hyperglycemia due to anesthesia and glucogenesis in the liver. Maintenance of blood glucose levels is a highly complex mechanism. Further investigations to understand these mechanisms are in progress.

  17. Effect of thermodisinfection on mechanic parameters of cancellous bone.

    Science.gov (United States)

    Fölsch, Christian; Kellotat, Andreas; Rickert, Markus; Ishaque, Bernd; Ahmed, Gafar; Pruss, Axel; Jahnke, Alexander

    2016-09-01

    Revision surgery of joint replacements is increasing and raises the demand for allograft bone since restoration of bone stock is crucial for longevity of implants. Proceedings of bone grafts influence the biological and mechanic properties differently. This study examines the effect of thermodisinfection on mechanic properties of cancellous bone. Bone cylinders from both femoral heads with length 45 mm were taken from twenty-three 6-8 months-old piglets, thermodisinfected at 82.5 °C according to bone bank guidelines and control remained native. The specimens were stored at -20 °C immediately and were put into 21 °C Ringer's solution for 3 h before testing. Shear and pressure modulus were tested since three point bending force was examined until destruction. Statistical analysis was done with non-parametric Wilcoxon, t test and SPSS since p mechanic properties of cancellous bone and the reduction of mechanic properties should not relevantly impair clinical use of thermodisinfected cancellous bone.

  18. Glomus caroticus, environment, time parameters of cardiac and pathogenic mechanisms of formation of somatogenic depression and mixed encephalopathies on the methodological grounds of non-invasive hemogram analyzer

    Directory of Open Access Journals (Sweden)

    Anatoly N. Malykhin

    2013-05-01

    Full Text Available Aims The aim is to determine interaction of risk factors (volume of ingested food and exogenous alcohol and their effects on thermal regulation of a body due to the changed activity of biochemical reactions of neuromediator regulatory systems, related to the synthesis of endogenous alcohol. Materials and methods Based on study of neurological status, biochemical and instrumental methods of precordial mapping, urine specific gravity and thermometry of five biologically active points, 1200 males were examined for pathogenic mechanisms of endogenous alcohol synthesis and formation of time parameters of cardiac and clinical manifestation of somatogenic depression, metabolic syndrome and alcohol abuse with formation of encephalopathies. Results The amount of endogenous alcohol determines disorders in the bradykininacetylcholine and dopamine-noradrenalin systems and formation of clinical syndromes in the continuum of somatogeny-psychogeny (according to the international classification of diseases (ICD-10. Conclusion Changes in thermal regulation were accompanied with changes of functional mechanisms of Glomus Caroticus, affecting erythrocyte and its receptors, related to atomic oxygen and hydrogen in atmosphere, with formation of relevant pH values of arterial and venous blood, amount of endogenous alcohol.

  19. Effective dose conversion coefficients for radionuclides exponentially distributed in the ground

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kimiaki [Japan Atomic Energy Agency, Tokyo (Japan); Ishigure, Nobuhito [Nagoya University, Graduate School of Medicine, Nagoya City (Japan); Petoussi-Henss, Nina; Schlattl, Helmut [Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Department of Radiation Physics and Diagnostics, Neuherberg (Germany)

    2012-11-15

    In order to provide fundamental data required for dose evaluation due to environmental exposures, effective dose conversion coefficients, that is, the effective dose rate per unit activity per unit area, were calculated for a number of potentially important radionuclides, assuming an exponential distribution in ground, over a wide range of relaxation depths. The conversion coefficients were calculated for adults and a new-born baby on the basis of dosimetric methods that the authors and related researchers have previously developed, using Monte Carlo simulations and anthropomorphic computational phantoms. The differences in effective dose conversion coefficients due to body size between the adult and baby phantoms were found to lie within 50 %, for most cases; however, for some low energies, differences could amount to a factor of 3. The effective dose per unit source intensity per area was found to decrease by a factor of 2-5, for increasing relaxation depths from 0 to 5 g/cm{sup 2}, above a source energy of 50 keV. It is also shown that implementation of the calculated coefficients into the computation of the tissue weighting factors and the adult reference computational phantoms of ICRP Publication 103 does not significantly influence the effective dose conversion coefficients of the environment. Consequently, the coefficients shown in this paper could be applied for the evaluation of effective doses, as defined according to both recommendations of ICRP Publications 103 and 60. (orig.)

  20. Dynamic Response and Ground-Motion Effects of Building Clusters During Large Earthquakes

    Science.gov (United States)

    Isbiliroglu, Y. D.; Taborda, R.; Bielak, J.

    2012-12-01

    The objective of this study is to analyze the response of building clusters during earthquakes, the effect that they have on the ground motion, and how individual buildings interact with the surrounding soil and with each other. We conduct a series of large-scale, physics-based simulations that synthesize the earthquake source and the response of entire building inventories. The configuration of the clusters, defined by the total number of buildings, their number of stories, dynamic properties, and spatial distribution and separation, is varied for each simulation. In order to perform these simulations efficiently while recurrently modifying these characteristics without redoing the entire "source to building structure" simulation every time, we use the Domain Reduction Method (DRM). The DRM is a modular two-step finite-element methodology for modeling wave propagation problems in regions with localized features. It allows one to store and reuse the background motion excitation of subdomains without loss of information. Buildings are included in the second step of the DRM. Each building is represented by a block model composed of additional finite-elements in full contact with the ground. These models are adjusted to emulate the general geometric and dynamic properties of real buildings. We conduct our study in the greater Los Angeles basin, using the main shock of the 1994 Northridge earthquake for frequencies up to 5Hz. In the first step of the DRM we use a domain of 82 km x 82 km x 41 km. Then, for the second step, we use a smaller sub-domain of 5.12 km x 5.12 km x 1.28 km, with the buildings. The results suggest that site-city interaction effects are more prominent for building clusters in soft-soil areas. These effects consist in changes in the amplitude of the ground motion and dynamic response of the buildings. The simulations are done using Hercules, the parallel octree-based finite-element earthquake simulator developed by the Quake Group at Carnegie

  1. Modeling of Regional Climate Change Effects on Ground-Level Ozone and Childhood Asthma

    Science.gov (United States)

    Sheffield, Perry E.; Knowlton, Kim; Carr, Jessie L.; Kinney, Patrick L.

    2011-01-01

    Background The adverse respiratory effects of ground-level ozone are well-established. Ozone is the air pollutant most consistently projected to increase under future climate change. Purpose To project future pediatric asthma emergency department visits associated with ground-level ozone changes, comparing 1990s to 2020s. Methods This study assessed future numbers of asthma emergency department visits for children aged 0–17 years using (1) baseline New York City metropolitan area emergency department rates, (2) a dose–response relationship between ozone levels and pediatric asthma emergency department visits, and (3) projected daily 8-hour maximum ozone concentrations for the 2020s as simulated by a global-to-regional climate change and atmospheric chemistry model. Sensitivity analyses included population projections and ozone precursor changes. This analysis occurred in 2010. Results In this model, climate change could cause an increase in regional summer ozone-related asthma emergency department visits for children aged 0–17 years of 7.3% across the New York City metropolitan region by the 2020s. This effect diminished with inclusion of ozone precursor changes. When population growth is included, the projections of morbidity related to ozone are even larger. Conclusions The results of this analysis demonstrate that the use of regional climate and atmospheric chemistry models make possible the projection of local climate change health effects for specific age groups and specific disease outcomes – such as emergency department visits for asthma. Efforts should be made to improve on this type of modeling to inform local and wider-scale climate change mitigation and adaptation policy. PMID:21855738

  2. Effect of coated and uncoated ground flaxseed addition on rheological, physical and sensory properties of Taftoon bread.

    Science.gov (United States)

    Roozegar, M H; Shahedi, M; Keramet, J; Hamdami, N; Roshanak, S

    2015-08-01

    Flaxseed is used to fortify bread. In order to reduce cyanogenic glycosides compounds of flaxseed, ground flaxseed was incubated at 30 °C and heated in a kitchen microwave oven. The cyanogenic compounds of flaxseed were reduced to 13.4 %. Treated ground flaxseed was coated with Arabic gum solution containing ascorbic acid and hydrogenated fat and was stored at 25 °C for 80 days in order to prevent oxidation of flaxseed oil. Results showed that oxidation in coated samples was lower than that in control samples and that there was a significant difference between them (p bread. Rheological, physical and organoleptic tests were carried out in order to evaluate dough and bread properties. Results showed that with increasing coated and uncoated ground flaxseed percentages, a decrease in water absorption and an increase in stability, dough development and relaxation time of dough occurred. The lowest water absorption was observed by adding 25 % coated ground flaxseed with hydrogenated fat. The highest dough development and dough stability time were observed by adding 25 % coated ground flaxseed with Arabic gum. Results indicated that coated and uncoated ground flaxseed has a good effect on decreasing the staling rate compared to the control bread. Results of organoleptic test showed that bread with 5 and 15 % coated and uncoated ground flaxseed had better acceptability.

  3. Effects of isoflurane on echocardiographic parameters in healthy dogs.

    Science.gov (United States)

    Sousa, Marlos G; Carareto, Roberta; De-Nardi, Andrigo B; Brito, Fábio L C; Nunes, Newton; Camacho, Aparecido A

    2008-05-01

    To study the echocardiographic effects of isoflurane at an end-tidal concentration approximating 1.0 times the minimum alveolar concentration (MAC) in healthy unpremedicated dogs. Prospective experimental trial. Sixteen mature mongrel dogs of either sex weighing 11.06 +/- 2.72 kg. After performing a baseline echocardiogram in the awake animal, anesthesia was induced with increasing inspired concentrations of isoflurane via a face mask until tracheal intubation was possible. Following intubation, the end-tidal concentration was decreased to 1.4% for the rest of the anesthetic period. Serial echocardiograms were recorded at 25, 40, and 55 minutes after the end-tidal concentration was reached. No changes were observed in heart rate. However, significant decreases were seen in left ventricular end-diastolic diameter (Mean maximal change: 13.8%), interventricular septal thickness during systole (15.2%), interventricular septal thickening fraction (72.2%), left ventricular free wall thickening fraction (63.5%), ejection fraction (39.9%), and fractional shortening (46.7%). In addition, peak flow velocities across mitral, pulmonic, and aortic valves were significantly lower than baseline values. Decreases were also observed in end-diastolic left ventricular volume index (approximately 32.1% from the awake value), stroke index (58.2%), and cardiac index (55.3%) when compared with awake measurements. and clinical relevance Our results indicate that 1 x MAC isoflurane caused significant myocardial depression in healthy dogs. These changes in myocardial function need to be considered carefully when isoflurane is to be used in dogs with poor cardiovascular reserve.

  4. Assessment of dairy cow locomotion in a commercial farm setting: the effects of walking speed on ground reaction forces and temporal and linear stride characteristics.

    Science.gov (United States)

    Walker, A M; Pfau, T; Channon, A; Wilson, A

    2010-02-01

    Objectives of this study were to determine the effects of walking speed on ground reaction force (GRF) parameters and to explore inter- and intra-individual variability with unsupervised data collection in a commercial farm setting. We used eight high producing loose-housed Holstein Friesian cows consistently scored sound, with no veterinary treatment during the collection period. Cows walked freely (0.52-1.37 m/s) over a five force platform array, twice daily, following milking. GRF data were split into speed categories and temporal and kinetic gait parameters extracted. A general linear model was carried out to determine effects of speed. Variation in parameters between cows is inconsistent, while between speed categories (containing data from multiple cows) the parameters which vary are consistent. Stance and stride time were reduced with increasing speed but no change in peak vertical GRF or duty factor was found. This ability to track parameters within an individual over time aids detection of subtle changes associated with lameness. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region.

    Science.gov (United States)

    Jing, Xufeng; Xia, Rui; Wang, Weimin; Tian, Ying; Hong, Zhi

    2016-05-01

    We propose analytical expressions to determine the effective constitutive parameters of a planar bianisotropic metamaterial from scattering parameters in the terahertz region. In our retrieval method, the transmission and reflection coefficients in only one wave propagation direction are applied. Considering the nonsymmetry of planar metamaterials in the wave propagation direction, the effective refractive index and the impedance should be obtained by a modified S parameters retrieval process. The effective parameters of the permittivity, permeability, and magnetoelectric coupling coefficient of planar bianisotropic metamaterials can be retrieved by derived equations. Specifically, the constitutive parameters for different planar metamaterials, among which two are isotropic and the other two are bianisotropic metamaterials, are determined. The intrinsic differences between the normal planar metamaterials and the bianisotropic metamaterials are evidently illustrated. The phenomenon including electric coupling to magnetic resonance and only electric response in the transmission spectrum is confirmed by retrieval effective permittivity and permeability.

  6. Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time

    Directory of Open Access Journals (Sweden)

    X. He

    2013-08-01

    Full Text Available Uncertainty of groundwater model predictions has in the past mostly been related to uncertainty in the hydraulic parameters, whereas uncertainty in the geological structure has not been considered to the same extent. Recent developments in theoretical methods for quantifying geological uncertainty have made it possible to consider this factor in groundwater modeling. In this study we have applied the multiple-point geostatistical method (MPS integrated in the Stanford Geostatistical Modeling Software (SGeMS for exploring the impact of geological uncertainty on groundwater flow patterns for a site in Denmark. Realizations from the geostatistical model were used as input to a groundwater model developed from Modular three-dimensional finite-difference ground-water model (MODFLOW within the Groundwater Modeling System (GMS modeling environment. The uncertainty analysis was carried out in three scenarios involving simulation of groundwater head distribution and travel time. The first scenario implied 100 stochastic geological models all assigning the same hydraulic parameters for the same geological units. In the second scenario the same 100 geological models were subjected to model optimization, where the hydraulic parameters for each of them were estimated by calibration against observations of hydraulic head and stream discharge. In the third scenario each geological model was run with 216 randomized sets of parameters. The analysis documented that the uncertainty on the conceptual geological model was as significant as the uncertainty related to the embedded hydraulic parameters.

  7. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, Agnieszka J., E-mail: a.bednarska@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland)

    2009-05-15

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  8. Strong ground movement induced by mining activities and its effect on power transmission structures

    Institute of Scientific and Technical Information of China (English)

    DAI Kao-shan; CHEN Shen-en

    2009-01-01

    Surface mining activities may introduce damages to nearby infrastructure. Concerns are put forward by the power company about structural integrity of electric power transmission structures in areas where coal mining activities cause strong ground vibrations. Common practice in the power industry is to limit ground motion by specifying maximum Peak Particle Velocity. So far, there is a lack of industry-wide recognized guidelines on how ground vibration limits should be set for the transmission structures. In order to develop a defense strategy to protect power transmission lines against strong ground motions in mining areas, a systematic research work was conducted to establish strong ground vibration characteristics and to study impacts of ground excitations on transmission pole structures. Ground movements were recorded using geophones and wireless tri-axial sensing units. The process of generating ground motion response spectra via analyzing actual ground motion measurements is described in the paper. These spectra developed based on peak particle velocities were used as a basis for spectral analysis performed using validated Finite Element models to obtain structural displacements, reactions and stress states of the transmission pole structures in the mining sites. A quantitative ground motion limit was established by comparing structural responses with the corresponding design requirements.

  9. 2.5D Simulation of basin-edge effects on the ground motion characteristics

    Indian Academy of Sciences (India)

    J P Narayan

    2003-09-01

    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated using 2.5D modeling. One of the most significant advantages of the 2.5D simulation is that 3D radiation pattern can be generated in a 2D numerical grid using double-couple shear dislocation source. Further, 2.5D numerical modeling avoids the extensive computational cost of 3D modeling. The responses of basin-edge model using different soil velocities revealed that surface waves were generated near the edge of the basin and propagated normal to the edge, towards the basin. Further, the results depict increase of amplification, duration and surface wave generation with the decrease in soil velocity.

  10. Health effects of digital textbooks on school-age children: a grounded theory approach.

    Science.gov (United States)

    Seomun, Gyeongae; Lee, Jung-Ah; Kim, Eun-Young; Im, Meeyoung; Kim, Miran; Park, Sun-A; Lee, Youngjin

    2013-10-01

    This qualitative study used the grounded theory approach to analyze digital textbook-related health experiences of school-age children. In-depth interviews were held with 40 elementary school students who had used digital textbooks for at least a year. Data analysis revealed a total of 56 concepts, 20 subcategories, and 11 categories related to digital textbook health issues, the central phenomena being "health-related experiences." Students' health-related experiences were classified into "physical" and "psychological" symptoms. Adverse health effects related to digital textbook usage were addressed via both "student-led" and "instructor-led" coping strategies. Students' coping strategies were often inefficient, but instructor-led strategies seemed to prevent health problems. When health issues were well managed, students tended to accept digital textbooks as educational tools. Our findings suggest that students can form healthy computer habits if digital textbook usage is directed in a positive manner.

  11. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer

    Institute of Scientific and Technical Information of China (English)

    PAN Lin-Jun; LU Da-Ren

    2012-01-01

    Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu- ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The compari- son shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.

  12. EFFECT OF RADIATION AND POROSITY PARAMETER ON MAGNETOHYDRODYNAMIC FLOW DUE TO STRETCHING SHEET IN POROUS MEDIA

    Directory of Open Access Journals (Sweden)

    Phool Singh

    2011-01-01

    Full Text Available An analysis is made for the steady two-dimensional flow of a viscous incompressible electrically conducting fluid in the vicinity of a stagnation point on a stretching sheet. Fluid is considered in a porous medium under the influence of (itransverse magnetic field, (iivolumetric rate of heat generation/absorption in the presence of radiation effect. Rosseland approximation is used to model the radiative heat transfer. The governing boundary layer equations are transformed to ordinary differential equations by taking suitable similarity variables. In the present reported work the effect of porosity parameter, radiation parameter, magnetic field parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Variation of above discussed parameters with the ratio of free stream velocity parameter to stretching sheet parameter have been graphically represented.

  13. Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  14. Anxiolytic and antidepressive effects of magnesium in rats and their effect on general behavioural parameters

    Directory of Open Access Journals (Sweden)

    Samardžić Janko

    2011-01-01

    Full Text Available Magnesium (Mg is an essential element that catalyses more than 300 enzyme systems. Its effects on the central nervous system are exhibited through the blocking of activity of N-methyl D-aspartat (NMDA receptors and potentiating of GABA-ergic neurotransmission. Due to the vast importance of these two neurotransmission systems in the fine regulation of the central integrative function activity, the aim of this research was to test the anxiolytic and antidepressive effects of magnesium, after acute and repeated application, and its influence on general behavioural parameters. In this research Wistar albino rats were treated with increasing doses of Mg chloride 6-hydrate (MgCl 10, 20, 30 mg/kg. In order to determine anxiolytic and antidepressive properties of magnesium two models were used: elevated plus maze (EPM and forced swim test (FST. Behavioural parameters (stillness and mobility were recorded during acute and repeated administration of the active substance. Results of EPM testing showed no significant difference between groups, p>0.05. After acute application of increasing doses of magnesium chloride hydrate in FST, we showed the statistically significant difference in immobility time between the group of animals treated with Mg and the control group treated with the solvent, p<0.01. The statistically significant difference between groups treated with the lowest and the middle dose of magnesium and the controls was observed already on the first day of examining behavioural parameters (p=0.020, p=0.010. Our research has showed that magnesium, following acute administration, increases locomotor activity, and has an antidepressive but not an anxiolytic effect.

  15. Effects of tegaserod on bile composition and hepatic secretion in Richardson ground squirrels on an enriched cholesterol diet

    Directory of Open Access Journals (Sweden)

    Pfannkuche Hans-Juergen

    2006-06-01

    Full Text Available Abstract Background Tegaserod is effective in treating IBS patients with constipation, and does not alter gallbladder motility in healthy individuals or in patients with IBS. However, it is not known if tegaserod affects the biliary tract in gallstone disease, so to this end the effects of tegaserod on bile composition and hepatic secretion of Richardson ground squirrels maintained on an enriched cholesterol diet were examined. Results Animals were fed either a control (0.03% or enriched (1% cholesterol diet for 28 days, and treated s.c. with tegaserod (0.1 mg/kg BID or vehicle. Bile flow, bile acid, phospholipids and cholesterol secretion were measured with standard methods. Tegaserod treatment or enriched cholesterol diet, alone or combination, did not alter body or liver weights. The enriched cholesterol diet increased cholesterol saturation index (CSI, cholesterol concentrations in gallbladder and hepatic duct bile by ~50% and decreased bile acids in gallbladder bile by 17%. Tegaserod treatment reversed these cholesterol-induced changes. None of the treatments, drug or diet, altered fasting gallbladder volume, bile flow and bile salts or phospholipid secretion in normal diet and cholesterol-fed animals. However, tegaserod treatment prevented the decreases in bile acid pool size and cycling frequency caused by the enriched cholesterol diet, consequent to re-establishing normal bile acid to concentrations in the gall bladder. Tegaserod had no effect on these parameters with normal diet animals. Conclusion Tegaserod treatment results in increased enterohepatic cycling and lowers cholesterol saturation in the bile of cholesterol-fed animals. These effects would decrease conditions favorable to cholesterol gallstone formation.

  16. An Efficient approach for Shielding Effect of the Grounding Electrodes under Impulse-Current Voltage based on MATLAB

    Directory of Open Access Journals (Sweden)

    Kalyani Pole

    2012-06-01

    Full Text Available The lightning current waveform has a major influence on the dynamic performance of ground electrodes. While high lightning current intensity improves the dynamic grounding performance due to ionization of the soil, very fast fronted pulses might worsen the performance in case of inductive behaviour. The previous analysis has often been based on quasistatic approximation that is not applicable to very fast fronted pulses. Previous Research focused on analyzing the impulse current dispersal regularity of different branches when injecting at one point. Comparing with the leakage current distribution of a single ground electrode, it is found that the leakage currents along the branches increase with the distance to the current feed point, and the more conductors near the injection point, the more uneven the leakage current distribution is. In this paper by simulation result we indicate that shielding effect should be taken into account when analyzing the impulse characteristics of grounding electrodes. Based on the simulation results, new empirical formulas applicable for slow and very fast fronted lightning current pulses are proposed. The effects of the ionization of the soil are disregarded; therefore, the new formulas are applicable for a conservative estimate of the upper bound of the impulse impedance of ground electrodes. In this paper we also analyze and compare by the MATLAB. We also provide dynamic behavior of ground electrodes.

  17. Detection of the Zeeman effect in atmospheric O2 using a ground-based microwave radiometer

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Murk, Axel; Larsson, Richard; Buehler, Stefan A.; Eriksson, Patrick

    2015-04-01

    In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The Zeeman effect is a phenomenon which occurs when an external magnetic field interacts with a molecule or an atom of total electron spin different from zero. Such an interaction will split an original energy level into several sub-levels [1]. In the atmosphere, oxygen is an abundant molecule which in its ground electronic state has a permanent magnetic dipole moment coming from two parallel electron spins. The interaction of the magnetic dipole moment with the Earth magnetic field leads to a Zeeman splitting of the O2 rotational transitions which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz in Bern (Switzerland). The measurements were possible using a Fast Fourier Transform (FFT) spectrometer with 1 GHz of band width to measure the whole oxygen emission line centered at 53.07 GHz and a narrow spectrometer (4 MHz) to measure the center of the line with a very high resolution (1 kHz). Both a fixed and a rotating mirror were incorporated to the TEMPERA (TEMPERature RAdiometer) radiometer in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. The measured spectra showed a clear polarized signature when the observational angles were changed evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) [2] allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The incorporation of this effect to the forward model will allow to extend the temperature retrievals beyond 50 km. This improvement in the forward model will be very useful for the assimilation of brightness temperatures in

  18. Ground-temperature controlling effects of duct-ventilated railway embankment in permafrost regions

    Institute of Scientific and Technical Information of China (English)

    NIU; Fujun; CHENG; Guodong

    2004-01-01

    Based on observed data from field-testing embankment of the Qinghai-Tibet Railway, ground-temperature controlling effect of duct-ventilated embankment is studied in this paper.The results show that ventilation ducts can effectively cool the soils surrounding the ducts of the embankment, and the heat budget of the ambient soils in a year shows as heat release. Temperature status of the permafrost below the embankment with ducts buried in the relatively high position is similar to that of the common embankment. The permafrost processes warming all along in the two freezing-thawing cycles when the embankment was constructed. However, the temperature of the frozen soils below the embankment, in which the ducts buried in the relatively low position, rises a little in the initial stage. After that, it cools down gradually. At the same time,ventilation ducts can effectively reduce the thermal disturbance caused by the filled soils. The frozen soils below the common embankment and that with high-posited ducts absorb heat all along in the initial two cycles. While the soils below the embankment with low-posited ducts begin to release heat in the second cycle. This phenomenon proves that the ventilation embankment with low-posited ducts shows efficient temperature-controlling effect. Such embankment can actively cool the subgrade soils and therefore keeps the roadbed thermally stable.

  19. A ground-based measurement of the relativistic beaming effect in a detached double WD binary

    CERN Document Server

    Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi

    2010-01-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...

  20. Characterization of the Virginia earthquake effects and source parameters from website traffic analysis

    Science.gov (United States)

    Bossu, R.; Lefebvre, S.; Mazet-Roux, G.; Roussel, F.

    2012-12-01

    of inhabitants than localities having experienced weak ground motion. In other words, we observe higher proportion of visitors from localities where the earthquake was widely felt when compared to localities where it was scarcely felt. This opens the way to automatically map the relative level of shaking within minutes of an earthquake's occurrence. In conclusion, the study of the Virginia earthquake shows that eyewitnesses' visits to our website follow the arrival of the P waves at their location. This further demonstrates the real time public desire of information after felt earthquakes, a parameter which should be integrated in the definition of earthquake information services. It also reveals additional capabilities of the flashsourcing method. Earthquakes felt at large distances i.e. where the propagation time to the most distant eyewitnesses exceeds a couple of minutes, can be located and their magnitude estimated in a time frame comparable to the one of automatic seismic locations by real time seismic networks. It also provides very rapid indication on the effects of the earthquakes, by mapping the felt area, detecting the localities affected by network disruption and mapping the relative level of shaking. Such information are essential to improve situation awareness, constrain real time scenario and in in turn, contribute to improved earthquake response.

  1. Field investigation on effects of railway track geometric parameters on rail wear

    Institute of Scientific and Technical Information of China (English)

    SADEGHI J.; AKBARI B.

    2006-01-01

    Rail wear has dramatic impact on track performance, ride quality and maintenance costs. The amount of rail wear is influenced by various elements among which geometric parameters play an important role. The amount of wear in Iran's railway lines and its imposed maintenance costs oblige us to make modifications on the various geometrical parameters. In order to ensure the effectiveness of these changes, it is necessary to investigate these parameters and their effects on the wear. This research is aimed at studying the effects of different track geometrical parameters on the vertical and lateral wear by conducting a three phase field investigation. The first phase was carried out at the switches of a station, the second phase at a straight line, and the third at a curved line out of the station. The results obtained are analyzed and the role of each track geometrical parameter in the rail wear is discussed. Recommendations for prevention or reduction of rail wear are presented.

  2. Estimation the upper limit of prehistoric peak ground acceleration using the parameters of intact stalagmite in Plavecka Priepast, PP2 Slovakia-Seismic Hazard of Vienna and Bratislava

    Science.gov (United States)

    Gribovszki, Katalin; Kovács, Károly; Mónus, Péter; Konecny, Pavel; Bokelmann, Goetz; Brimich, Ladislav

    2014-05-01

    A specially shaped (high, slim and more or less cylindrical), vulnerable, intact stalagmite (STM) in Plavecka Priepast PP2 has been examined last year. This STM is suitable for estimating the upper limit for horizontal peak ground acceleration generated by paleoearthquake. The method of our investigation is the same as before: --- the density, Young's modulus and tensile failure stress of broken STM samples (lying at the same hall of PP2, as the investigated stalagmite) have been measured in mechanical laboratory; --- the height and diameters of the intact STMs, as well as its natural frequency have been determined in situ; --- theoretical calculations based on these measurements then produce the value of horizontal ground acceleration resulting in failure, as well as the theoretical natural frequency of the STM; --- core samples were taken from a column dripstone standing in the same hall as the investigated stalagmite to obtain the age of the stalagmite, by Multi Collector - Inductively Coupled Plasma Mass Spectrometry analysis (MC-ICPMS). This technique can yield important new constraints on seismic hazard, as geological structures close to Plavecka Priepast PP2 cave did not generate strong paleoearthquakes in the last few thousand years which would have produced horizontal ground acceleration larger than the upper acceleration threshold that we determine from the STM. These results have to be taken into account, when calculating the seismic potential of faults near to PP2 cave as well as in Vienna basin Markgrafneusiedler fault. A particular important of this study results from the seismic hazard of two close-by capitals: Vienna and Bratislava.

  3. The lumping of heat transfer parameters in cooled packed beds: effect of the bed entry

    NARCIS (Netherlands)

    Westerink, E.J.; Gerner, J.W.; Gerner, J.W.; Westerterp, K.R.; van der Wal, S.

    1993-01-01

    The lumping of the heat transfer parameters of the one- and the two-dimensional pseudo-homogeneous model of a cooled fixed bed were compared. It appeared that the lumping of the two-dimensional parameters, being the effective radial conductivity h-eff and the heat transfer coefficient at the wall (a

  4. The combined effects of cover design parameters on tomato production of a passive greenhouse

    NARCIS (Netherlands)

    Vanthoor, B.H.E.; Stanghellini, C.; Henten, van E.; Gazquez, J.C.

    2008-01-01

    The objective of this paper is to demonstrate the need of a multiple design parameter approach to greenhouse design. To illustrate this need, we determined the combined effects of cover design parameters on tomato production of a passive greenhouse, that is a greenhouse with only natural ventilation

  5. Experimental investigation of a draft tube spouted bed for effects of geometric parameters on operation

    DEFF Research Database (Denmark)

    Azizaddini, Seyednezamaddin; Lin, Weigang; Dam-Johansen, Kim

    2016-01-01

    Experiments are performed in a draft tube spouted bed (DTSB) to investigate effects of the operating conditions and the geometric parameters on the hydrodynamics. Geometry parameters, such as heights of the entrained zone, draft tube inner diameter, inner angle of the conical section were studied...

  6. Effect of Implantation Machine Parameters on N+ ion Implantation for Upland Cotton (Gossypium hirsutum L.) Pollen

    Institute of Scientific and Technical Information of China (English)

    YUE Jieyu; YU Lixiang; WU Yuejin; TANG Canming

    2008-01-01

    Effect of parameters of ion implantation machine,including ion energy,total dose,dose rate,impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied.The best parameters were screened out.The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.

  7. Investigation of full and partial ground effects on a flapping foil hovering above a finite-sized platform

    Science.gov (United States)

    Wang, Lu; Yeung, Ronald W.

    2016-07-01

    The full and partial ground effects on the lift generation of a flapping airfoil in normal hovering mode are investigated numerically using the discrete vortex method in two dimensions. To achieve full ground effect, the airfoil of chord c is made to hover above the center of a finite-sized platform of length 10c. We have observed the force-enhancement, force-reduction, and force-recovery regimes at low, medium, and high ground clearances in line with the existing literature. This paper puts special focus on partial ground effect when the airfoil is hovering near the edge of the platform. Lift-modifying mechanisms not previously observed under full ground effect have been discovered. When stroke reversal occurs near the edge of the platform, a relatively stationary strong vortex may form above the platform edge. This strong vortex can either increase or decrease the instantaneous lift force on the airfoil depending on the position of the airfoil relative to the platform edge. Also, the platform edge may lead to the formation of an additional vortex pair which increases the instantaneous lift force as the airfoil sweeps past the edge under suitable conditions. Lastly, the platform edge can lead to the formation of a reverse von Kármán vortex street that extends well below the stroke plane under suitable geometric arrangements.

  8. 炸药近地爆炸的数值模拟及影响参数的分析%Numerical Simulation and Analysis of Influence Parameters for Explosions Near Ground

    Institute of Scientific and Technical Information of China (English)

    陈鑫; 高轩能

    2014-01-01

    A simulation model is established by finite element program ANSYS/LS?DYNA.Based on the correctness and reliability of the model and parameters selection,the influences of different parameters on the Mach wave overpressure, including the ground material,explosive height,air domain shape and explosive equivalent on the Mach wave overpressure are investigated.The numerical results show that:1)For the explosion of non?close range,the Mach wave overpressure peaks on different grounds are similar,which can be simplified as rigid ground.2)Rigid shell ground and cuboid air do-main would be chosen to establish model.3)Comparing with empirical formula,the numerical simulation error of Mach wave overpressure peak decreases with the increase of explosive equivalent,and increases with the increase of explosive height.%应用 ANSYS/LS?DYNA有限元程序建模,在验证模型及参数选取正确可靠的基础上,研究了地面材料、炸药高度、空气域形状以及炸药当量等参数对马赫波超压的影响。结果表明:对于非近距离的爆炸,不同地面上的马赫波超压峰值相差不大,可简化为刚性地面;建模宜选择刚性壳体地面以及长方体空气域;与经验公式相比,数值模拟的马赫波超压峰值误差随着炸药当量的增大而减小,随着炸药高度的减小而增大。

  9. [Diversity and stability of arthropod community in peach orchard under effects of ground cover vegetation].

    Science.gov (United States)

    Jiang, Jie-xian; Wan, Nian-feng; Ji, Xiang-yun; Dan, Jia-gui

    2011-09-01

    A comparative study was conducted on the arthropod community in peach orchards with and without ground cover vegetation. In the orchard with ground cover vegetation, the individuals of beneficial, neutral, and phytophagous arthropods were 1.48, 1.84 and 0.64 times of those in the orchard without ground cover vegetation, respectively, but the total number of arthropods had no significant difference with that in the orchard without ground cover vegetation. The species richness, Shannon's diversity, and Pielou's evenness index of the arthropods in the orchard with ground cover vegetation were 83.733 +/- 4.932, 4.966 +/- 0.110, and 0.795 +/- 0.014, respectively, being significantly higher than those in the orchard without ground cover vegetation, whereas the Berger-Parker's dominance index was 0.135 +/- 0.012, being significantly lower than that (0.184 +/- 0.018) in the orchard without ground cover vegetation. There were no significant differences in the stability indices S/N and Sd/Sp between the two orchards, but the Nn/Np, Nd/Np, and Sn/Sp in the orchard with ground cover vegetation were 0.883 +/- 0.123. 1714 +/- 0.683, and 0.781 +/- 0.040, respectively, being significantly higher than those in the orchard without ground cover vegetation. Pearson's correlation analysis indicated that in the orchard with ground cover vegetation, the Shannon's diversity index was significantly negatively correlated with Nd/Np, Sd/Sp, and S/N but had no significant correlations with Nn/Np and Sn/Sp, whereas in the orchard without ground cover vegetation, the diversity index was significantly positively correlated with Nn/Np and Nd/Np and had no significant correlations with Sd/Sp, Sn/Sp, and S/N.

  10. Neural responses to the mechanical parameters of a high velocity, low amplitude spinal manipulation: effect of preload parameters

    Science.gov (United States)

    Reed, William. R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2014-01-01

    Objective The purpose of this study was to determine how the preload that precedes a high velocity low amplitude spinal manipulation (HVLA-SM) affects muscle spindle input from lumbar paraspinal muscles both during and after the HVLA-SM. Methods Primary afferent activity from muscle spindles in lumbar paraspinal muscles were recorded from the L6 dorsal root in anesthetized cats. HVLA-SM of the L6 vertebra was preceded either by no preload or by systematic changes in the preload magnitude, duration, and the presence or absence of a downward incisural point (DIP). Immediate effects of preload on muscle spindle responses to the HVLA-SM were determined by comparing mean instantaneous discharge frequencies (MIF) during the HVLA-SM’s thrust phase with baseline. Longer lasting effects of preload on spindle responses to the HVLA-SM were determined by comparing MIF during slow ramp and hold movement of the L6 vertebra before and following the HVLA-SM. Results The smaller compared to the larger preload magnitude and the longer compared to the shorter preload duration significantly increased (P=0.02 and P=0.04) respectively) muscle spindle responses during the HVLA-SM thrust. The absence of preload had the greatest effect on the change in MIF. Interactions between preload magnitude, duration and DIP often produced statistically significant but arguably physiologically modest changes in the passive signaling properties of the muscle spindle following the manipulation. Conclusion Because preload parameters in this animal model were shown to affect neural responses to an HVLA-SM, preload characteristics should be taken into consideration when judging this intervention’s therapeutic benefit in both clinical efficacy studies and in clinical practice. PMID:24387888

  11. Shrub encroachment in Arctic tundra: Betula nana effects on above- and below-ground litter decomposition.

    Science.gov (United States)

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-03-06

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a two-year decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns in to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered

  12. A Comparison of Space and Ground Based Facility Environmental Effects for FEP Teflon. Revised

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Kitral, Michael

    1998-01-01

    Fluorinated Ethylene Propylene (FEP) Teflon is widely used as a thermal control material for spacecraft, however, it is susceptible to erosion, cracking, and subsequent mechanical failure in low Earth orbit. One of the difficulties in determining whether FEP Teflon will survive during a mission is the wide disparity of erosion rates observed for this material in space and in ground based facilities. Each environment contains different levels of atomic oxygen, ions, and vacuum ultraviolet (VUV) radiation in addition to parameters such as the energy of the arriving species and temperature. These variations make it difficult to determine what is causing the observed differences in erosion rates. This paper attempts to narrow down which factors affect the erosion rate of FEP Teflon through attempting to change only one environmental constituent at a time. This was attempted through the use of a single simulation facility (plasma asher) environment with a variety of Faraday cages and VUV transparent windows. Isolating one factor inside of a radio frequency (RF) plasma proved to be very difficult. Two observations could be made. First, it appears that the erosion yield of FEP Teflon with respect to that of polyimide Kapton is not greatly affected by the presence or lack of VUV radiation present in the RF plasma and the relative erosion yield for the FEP Teflon may decrease with increasing fluence. Second, shielding from charged particles appears to lower the relative erosion yield of the FEP to approximately that observed in space, however it is difficult to determine for sure whether ions, electrons, or some other components are causing the enhanced erosion.

  13. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  14. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  15. Current climate change effects on the ground thermal regime in Central Yakutia

    Institute of Scientific and Technical Information of China (English)

    Stepan Varlamov; Yuri Skachkov; Pavel Skryabin

    2014-01-01

    The-evolution-of-ground-thermal-state-has-been-studied-to-assess-impacts-of-current-climatic-warming-on-permafrost-in-Central-Yakutia.-The-analysis-of-long-term-data-of-regional-weather-stations-has-revealed-one-of-the-highest-increasing-trends-in-mean-annual-air-temperature-in-northern-Russia.-A-forecast-of-surface-air-temperature-fluctuations-has-been-made-by-applying-a-frequency-analysis-method.-Monitoring-of-ground-thermal-conditions-allows-us-to-identify-inter-annual-and-long-term-variability-among-a-wide-range-of-natural-conditions.-Experimental-research-has-indicated-a-long-term-dynamics-of-ground-thermal-state-evolution:-ground-temperatures-at-the-depth-of-zero-annual-amplitude-and-seasonally-thawed-layer-depth.-Long-term-variability-of-thaw-depth-shows-near-zero-to-weak-positive-trends-in-small-valleys-in-contrast-to-weak-negative-trends-on-slopes.-With-significant-climatic-warming,-the-thermal-state-of-near-surface-layers-of-permafrost-demonstrates-steadiness.-Anthropogenic-impacts-on-ground-thermal-regime-in-various-terrain-types-have-been-qualitatively-evaluated.-Clear-cutting,-ground-cover-stripping,-and-post-fire-deforestation-in-inter-alas-type-terrains-result-in-a-significant-increase-of-temperature-and-seasonal-ground-thaw-depth,-as-well-as-adverse-cryogenic-processes.-The-dynamics-of-mean-annual-ground-temperature-in-slash-and-burn-sites-have-been-evaluated-in-reference-to-stages-of-successive-vegetation-recovery.

  16. Contextual effects on perceived contrast : Figure-ground assignment and orientation contrast

    NARCIS (Netherlands)

    Self, Matthew W; Mookhoek, Aart; Tjalma, Nienke; Roelfsema, Pieter R

    2015-01-01

    Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual area

  17. Effect of smoking on reproductive hormones and semen parameters of infertile Saudi Arabians

    Directory of Open Access Journals (Sweden)

    Haifa A Al-Turki

    2015-01-01

    Conclusions: This study shows that the effect of smoking is dramatic reduction in the hormonal levels and semen parameters. It is recommended that smoking men undergoing fertility treatment should stop smoking to increase their chances of having offspring.

  18. Does endoscopic thoracic sympathectomy through clipping procedure have early effects on electrocardiographic parameters?

    Directory of Open Access Journals (Sweden)

    Fatih Candas

    2017-01-01

    Interpretation & conclusions: Our study showed that ETS through clipping procedure had positive effects on the mechanisms of arrhythmia by reducing HR, QTcd, TpTe and TpTe dispersion parameters of ECG in early periods in hyperhidrosis patients.

  19. Diffraction corrections for second harmonic beam fields and effects on the nonlinearity parameter evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.

  20. Effects of angiotensin converting enzyme inhibitor: ramipril on different biochemical parameters in essential hypertensive patients

    Directory of Open Access Journals (Sweden)

    Pratibha S. Salve

    2016-06-01

    Conclusions: Ramipril has beneficial effects on RAS (Renin angiotensin system and kinin system or both may contribute to the improvement in different biochemical parameters by ramipril. [Int J Res Med Sci 2016; 4(6.000: 2288-2291

  1. Effect of kinetic parameters on heterologous protein production: a sysbio approach

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Rattleff, Stig; Thykær, Jette

    To improve the expression and secretion of heterologous proteins in the filamentous grampositive bacteria, Streptomyces lividans, bioprocessing strategies were developed. A mathematical model was constructed to study the effects of the process kinetic parameters on the production of the model...

  2. The Effect of Network Parameters on Pi-Sigma Neural Network for Temperature Forecasting

    Science.gov (United States)

    Husaini, Noor Aida; Ghazali, Rozaida; Nawi, Nazri Mohd; Ismail, Lokman Hakim

    In this paper, we present the effect of network parameters to forecast temperature of a suburban area in Batu Pahat, Johor. The common ways of predicting the temperature using Neural Network has been applied for most meteorological parameters. However, researchers frequently neglected the network parameters which might affect the Neural Network's performance. Therefore, this study tends to explore the effect of network parameters by using Pi Sigma Neural Network (PSNN) with backpropagation algorithm. The network's performance is evaluated using the historical dataset of temperature in Batu Pahat for one step-ahead and benchmarked against Multilayer Perceptron (MLP) for comparison. We found out that, network parameters have significantly affected the performance of PSNN for temperature forecasting. Towards the end of this paper, we concluded the best forecasting model to predict the temperature based on the comparison of our study.

  3. Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

    Institute of Scientific and Technical Information of China (English)

    A.N. Behkami; M. Soltani

    2005-01-01

    The spin cut-off parameter of the nuclear level density and effective moment of inertia for a large number of nuclei have been determined from analysis of the experimental data on S-wave neutron resonances and spins of lowlying levels. Contrary to claims made before, it is shown the spin cut-off parameter differs considerably from their corresponding rigid body values, and the energy dependence of the effective moment of inertia confirms the interacting fermion model prediction.

  4. Modeling and Computing Example for Effective Electromagnetic Parameters of Multiphase Composite Media

    Institute of Scientific and Technical Information of China (English)

    SONG Wei-Li; YUAN Jie; HOU Zhi-Ling; CAO Mao-Sheng

    2009-01-01

    A method using strong fluctuation theory (SFT) to compute the effective electromagnetic parameters of multiphase composite media, and common materials used to design radar-absorbing materials, is demonstrated. The effective electromagnetic parameters of ultrafine caxbonyl-iron (DT-50) and fiber fabric, which are both multiphase composite media and represent coated and structured radar absorbing materials, respectively, are investigated, and the corresponding equations of electromagnetic parameters by using the SFT axe attained. Moreover, we design a program to simplify the solutions, and the results are discussed.

  5. Effects of structural parameters and rigidity of driving diaphragm on flow characteristics of micro valveless pump

    Institute of Scientific and Technical Information of China (English)

    谢海波; 傅新; 杨华勇

    2003-01-01

    The structure and operating principle of micro valveless pump were investigated theoretically and experimentally. The mathematical model of pressure and flow rate within the micro nozzle/diffuser was established to analyze the effects of nozzle/diffuser parameters on the output flow rate of the micro valveless pump.The experiments were carried out with different structural parameters, driving frequencies, vibration amplitudes and stiffness of the driving diaphragms. Effects of the structural parameters and driving conditions on the operation performance of the pump are discussed in detail. The work provides useful reference for structure optimization selection of the driving diaphragm of micro valveless pump.

  6. Effects of structural parameters and rigidity of driving diaphragm on flow characteristics of micro valveless pump

    Institute of Scientific and Technical Information of China (English)

    谢海波; 傅新; 杨华勇

    2003-01-01

    The structure and operating principle of micro valveless pump were investigated theoretically and experimentally. The mathematical model of pressure and flow rate within the micro nozzle/diffuser was established to analyze the effects of nozzle/diffuser parameters on the output flow rate of the micro valveless pump. The experiments were carried out with different structural parameters, driving frequencies, vibration amplitudes and stiffness of the driving diaphragms. Effects of the structural parameters and driving conditions on the operation performance of the pump are discussed in detail. The work provides useful reference for structure optimization selection of the driving diaphragm of micro valveless pump.

  7. Decay of ground motion peak values is faster for smaller magnitude events: investigation of the role played by the attenuation and the scattering effects

    Science.gov (United States)

    Dujardin, A.; Courboulex, F.; Causse, M.; Traversa, P.

    2013-12-01

    The decay of ground motion peak values (PGA, PGV ...) with distance is a parameter of great importance in the prediction of ground motion for seismic hazard assessment. This decay appears to be dependent on the size of the earthquakes: faster for small than for large earthquakes. This has been observed many times in real databases and is now included in most of the Ground Motion Prediction Equations (GMPEs). Nevertheless, the physical causes of these differences have never been clearly identified. In order to understand and quantify this effect we explore the influence two of major processes: the anelastic attenuation and the scattering effects. We first performed synthetic tests using the stochastic simulation program SMSIM (Boore 2003) and we generate temporal series at different distances and different magnitudes for different values of the quality factor (Q(f)) which describe the anelastic attenuation. We observe that the decay of ground motion peak values (especially PGA and PGV) is strongly dependent on the spectral shape of the Fourier spectrum. Due to the fact that the small earthquakes have higher frequency content, they are more affected by attenuation than larger earthquakes, and therefore the decay of PGA with distance is faster. We propose an analytical formulation that predicts this effect with a given stress drop and a Q factor value and assuming an omega square spectrum for the source. We then test the influence of the combination of source and path effects (i.e. interactions between Green and source functions) and the generation of constructive and destructive interferences in complex medium. We realized simulations by means of the discrete wave number technique in a 1D layered medium. If the medium is complex enough, interactions between Green's and source function lead to constructive interferences. This effect is more important when the source duration is longer (i.e. the magnitude is important), and we show that even without anelastic

  8. Effects of gully terrain on stress field distribution and ground pressure behavior in shallow seam mining

    Institute of Scientific and Technical Information of China (English)

    Li Jianwei; Liu Changyou; Zhao Tong

    2016-01-01

    This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain. This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine. The effects of gully ter-rain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress (g) at the location corresponding to the maximum vertical stress. Based on the function g=f(h), the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area, moderately affected area, or non-affected area. Working face 6106 in the Chuancao Gedan Mine had a coal bed depth<80 m and was located in what was identified as a signifi-cantly affected area. Hence, mining may cause sliding of the gully slope and increased loading (including significant dynamic loading) on the roof strata. Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope, and that dynamic loadings were observed upslope of the working face expansion, provided that the expanding direction of the working face is parallel to the gully.

  9. Effect of starting distance on vertical ground reaction forces in the normal dog.

    Science.gov (United States)

    DuLaney, D; Purinton, T; Dookwah, H; Budsberg, S

    2005-01-01

    The purpose of this study was to evaluate the effect of starting distance on the peak vertical force (PVF) and associated vertical impulses (VI) of normal dogs. Five dogs of similar weight and body type were trotted at a velocity of 1.6-2.2 m/s from each of three starting distances; 2, 4, and 6 m, from the first plate in a two plate test field. A total of ten trials were recorded from each starting distance, five left first contacts and five right first contacts. Each ground reaction force (GRF) of interest was evaluated both within and between the three starting distances using a complete block ANOVA. There was not any significant effect of distance found on peak vertical forces in our study. However, distance did affect VI. Forelimb VI generated at a 2 m trot was significantly less than VI generated at a 6 m trot. Neither extreme distance was found to be significantly different than the 4 m VI. The VI of the hind limb was not significantly affected.

  10. Schemed Power-augmented Flow for Wing-in-ground Effect Craft in Cruise

    Institute of Scientific and Technical Information of China (English)

    YANG Wei; YANG Zhigang

    2011-01-01

    To provide detailed insight into schemed power-angmented flow for wing-in-ground effect (WIG) craft in view of the concept of cruising with power assistance, this paper presents a numerical study.The engine installed before the wing for power-augmented flow is replaced by a simplified engine model in the simulations, and is considered to be equipped with a thrust vector nozzle.Flow features with different deflected nozzle angles are studied.Comparisons are made on aerodynamics to evaluate performance of power-augmented ram (PAR) modes in cruise.Considerable schemes of power-augmented flow in cruise are described.The air blown from the PAR engine accelerates the flow around wing and a high-speed attached flow near the trailing edge is recorded for certain deflected nozzle angles.This effect takes place and therefore the separation is prevented not only at the trailing edge but also on the whole upper side.The realization of suction varies with PAR modes.It is also found that scheme of blowing air under the wing for PAR engine is aerodynamically not efficient in cruise.The power-augmented flow is extremely complicated.The numerical results give clear depiction of the flow.Optimal scheme of power-augmented flow with respect to the craft in cruise depends on the specific engines and the flight regimes.

  11. EFFECT OF SETTING THE PARAMETERS OF FLAME WEEDER ON WEED CONTROL EFFECTIVENESS

    Directory of Open Access Journals (Sweden)

    Miroslav Mojžiš

    2013-12-01

    Full Text Available Unconventional ways of growing plants, when we return to non-chemical methods of controlling weeds, require new weed control methods. One of the few physical methods, which found wider application in practice, is a flame weeder with heat burners based on the use of gas (LPG. However, the process of practical use of this flame weeder has a number of factors that positively or negatively affect the effectiveness of weed control. A precise setting of flame weeders is influenced, for example by weed species, weed growth stage, weather, type of crop grown, but also heat transmission and heat absorption by plant. Many variables that enter into the process must be eliminated for their negative impacts on achieving the best results in fighting against weeds. In this paper, we have focused on naming these parameters, on field trials that confirm the justification of the precise setting of parameters, and recommendations for practice to achieve a higher efficiency of thermal weed control.

  12. Kondo effects in a triangular triple quantum dot II: ground-state properties for deformed configurations

    Science.gov (United States)

    Oguri, Akira; Amaha, Shinichi; Nisikawa, Yunori; Hewson, A. C.; Tarucha, Seigo; Numata, Takahide

    2010-03-01

    We study transport through a triangular triple quantum dot (TTQD) connected to two noninteracting leads, using the numerical renormalization group. The system has been theoretically revealed to show a variety of Kondo effects depending on the electron filling of the triangle [1]. For instance, the SU(4) Kondo effect takes place at three-electron filling, and a two-stage Kondo screening of a high-spin S=1 Nagaoka state takes place at four-electron filling. Because of the enhanced freedom in the configurations, however, the large parameter space of the TTQD still has not been fully explored, especially for large deformations. We report the effects of the inhomogeneity in the inter-dot couplings and the level positions in a wide region of the filling. [1] T. Numata, Y. Nisikawa, A. Oguri, and A. C. Hewson: PRB 80, 155330 (2009).

  13. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  14. Effects of temperature and ground-state coherence decay on enhancement and amplification in a Delta atomic system

    CERN Document Server

    Manjappa, Manukumara; Karigowda, Asha; Narayanan, Andal; Sanders, Barry C

    2014-01-01

    We study phase-sensitive amplification of electromagnetically induced transparency in a warm $^{85}$Rb vapor wherein a microwave driving field couples the two lower energy states of a $\\Lambda$ energy-level system thereby transforming into a $\\Delta$ system. Our theoretical description includes effects of ground-state coherence decay and temperature effects. In particular, we demonstrate that driving-field enhanced electromagnetically induced transparency is robust against significant loss of coherence between ground states. We also show, that for specific field intensities, a threshold rate of ground-state coherence decay exists at every temperature. This threshold separates the probe-transmittance behavior into two regimes: probe amplification vs. probe attenuation. Thus, electromagnetically induced transparency plus amplification is possible at any temperature in a $\\Delta$ system.

  15. Effect of adaptive threshold filtering on ultrasonic nakagami parameter to detect variation in scatterer concentration.

    Science.gov (United States)

    Tsui, Po-Hsiang; Wan, Yung-Liang; Huang, Chih-Chung; Wang, Ming-Chen

    2010-10-01

    The Nakagami parameter is associated with the Nakagami distribution estimated from ultrasonic backscattered signals and closely reflects the scatterer concentrations in tissues. There is an interest in exploring the possibility of enhancing the ability of the Nakagami parameter to characterize tissues. In this paper, we explore the effect of adaptive thresholdfiltering based on the noise-assisted empirical mode decomposition of the ultrasonic backscattered signals on the Nakagami parameter as a function of scatterer concentration for improving the Nakagami parameter performance. We carried out phantom experiments using 5 MHz focused and nonfocused transducers. Before filtering, the dynamic ranges of the Nakagami parameter, estimated using focused and nonfocused transducers between the scatterer concentrations of 2 and 32 scatterers/mm3, were 0.44 and 0.1, respectively. After filtering, the dynamic ranges of the Nakagami parameter, using the focused and nonfocused transducers, were 0.71 and 0.79, respectively. The experimental results showed that the adaptive threshold filter makes the Nakagami parameter measured by a focused transducer more sensitive to the variation in the scatterer concentration. The proposed method also endows the Nakagami parameter measured by a nonfocused transducer with the ability to differentiate various scatterer concentrations. However, the Nakagami parameters estimated by focused and nonfocused transducers after adaptive threshold filtering have different physical meanings: the former represents the statistics of signals backscattered from unresolvable scatterers while the latter is associated with stronger resolvable scatterers or local inhomogeneity due to scatterer aggregation.

  16. Effects of ground fires on element dynamics in mountainous coniferous forest in Germany

    Directory of Open Access Journals (Sweden)

    Kerstin Näthe

    2012-09-01

    Full Text Available Disturbances such as fires are a natural phenomenon of forested ecosystems, having a different impact on (micro- climate (e.g. emissions of gases and aerosols, ecology (destruction of flora and fauna and nutrient cycles especially in the soils. Forest fires alter the spatial distribution (forest floor vs. mineral soil, binding forms (organic vs. inorganic and availability (water solubility of organic substances and nutrients. The effects of fires on chemical, biological and physical soil properties in forested ecosystems have been intensively studied in the last decades, especially in the Mediterranean area and North America. However, differences in fire intensity, forest type (species, age and location (climate, geological substrate, nutrient status lead to divergent results. Furthermore, only a few case studies focused on the effects of ground fires in hilly landscapes, on the vertical and lateral water-driven fluxes of elements (C, N, nutrients, as well as on the input of fire-released terrestrial nutrients into aquatic ecosystems. Thus, this study will evaluate the effects of low-severity fires on nutrient cycling in a coniferous forest in a hilly landscape connected to an aquatic system. At three spatially independent sites three paired plots (control and manipulated were chosen at a forested site in Thuringia, Germany. All plots are similar in the vegetation cover and pedogenetic properties.In relation to control sites, this study will examine the effects of low-severity fires on:a the mobilization of organic carbon and nutrients (released from ash material and the forest floor via leachate and erosion paths,b the binding form (inorganic/organic of elements and organic compounds, and c the particle size fraction (DOM/POM of elements and organic compounds.The goal of this study is a better understanding of the impact of forest fires on element cycling and release in a hilly landscape connected to an aquatic system, supposedly driven by

  17. Density-Dependent Effects of an Invasive Ant on a Ground-Dwelling Arthropod Community.

    Science.gov (United States)

    Cooling, M; Sim, D A; Lester, P J

    2015-02-01

    It is frequently assumed that an invasive species that is ecologically or economically damaging in one region, will typically be so in other environments. The Argentine ant Linepithema humile (Mayr) is listed among the world's worst invaders. It commonly displaces resident ant species where it occurs at high population densities, and may also reduce densities of other ground-dwelling arthropods. We investigated the effect of varying Argentine ant abundance on resident ant and nonant arthropod species richness and abundance in seven cities across its range in New Zealand. Pitfall traps were used to compare an invaded and uninvaded site in each city. Invaded sites were selected based on natural varying abundance of Argentine ant populations. Argentine ant density had a significant negative effect on epigaeic ant abundance and species richness, but hypogaeic ant abundance and species richness was unaffected. We observed a significant decrease in Diplopoda abundance with increasing Argentine ant abundance, while Coleoptera abundance increased. The effect on Amphipoda and Isopoda depended strongly on climate. The severity of the impact on negatively affected taxa was reduced in areas where Argentine ant densities were low. Surprisingly, Argentine ants had no effect on the abundance of the other arthropod taxa examined. Morphospecies richness for all nonant arthropod taxa was unaffected by Argentine ant abundance. Species that are established as invasive in one location therefore cannot be assumed to be invasive in other locations based on presence alone. Appropriate management decisions should reflect this knowledge. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. An Efficient approach for Shielding Effect of the Grounding Electrodes under Impulse-Current Voltage based on Matlab

    Directory of Open Access Journals (Sweden)

    Ms. Kalyani Pole

    2012-06-01

    Full Text Available The lightning current waveform has a majorinfluence on the dynamic performance of groundelectrodes. While high lightning current intensityimproves the dynamic grounding performance dueto ionization of the soil, very fast fronted pulsesmight worsen the performance in case of inductivebehaviour. The previous analysis has often beenbased on quasistatic approximation that is notapplicable to very fast fronted pulses. PreviousResearch focused on analyzing the impulse currentdispersal regularity of different branches wheninjecting at one point. Comparing with the leakagecurrent distribution of a single ground electrode, itis found that the leakage currents along thebranches increase with the distance to the currentfeed point, and the more conductors near theinjection point, the more uneven the leakagecurrent distribution is. In this paper by simulationresult we indicate that shielding effect should betaken into account when analyzing the impulsecharacteristics of grounding electrodes. Based onthe simulation results, new empirical formulasapplicable for slow and very fast fronted lightningcurrent pulses are proposed. The effects of theionization of the soil are disregarded; therefore, thenew formulas are applicable for a conservativeestimate of the upper bound of the impulseimpedance of ground electrodes. In this paper wealso analyze and compare by the MATLAB. We alsoprovide dynamic behavior of ground electrodes.

  19. Experimental investigation on tip vortices and aerodynamics of a wing with ground effect

    Institute of Scientific and Technical Information of China (English)

    Ruimin; Sun; Daichin

    2011-01-01

    The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the d...

  20. Variation of TEC and related parameters over the Indian EIA region from ground and space based GPS observations during the low solar activity period of May 2007-April 2008

    Science.gov (United States)

    Chakravarty, S. C.; Nagaraja, Kamsali; Jakowski, N.

    2017-03-01

    The annual variations of ionospheric Total Electron Content (TEC), F-region peak ionisation (NmF2) and the ionospheric slab thickness (τ) over the Indian region during the low solar activity period of May 2007-April 2008 have been studied. For this purpose the ground based TEC data obtained from GAGAN measurements and the space based data from GPS radio occultation technique using CHAMP have been utilised. The results of these independent measurements are combined to derive additional parameters such as the equivalent slab thickness of the total and the bottom-side ionospheric regions (τT and τB). The one year hourly average values of all these parameters over the ionospheric anomaly latitude region (10-26°N) are presented here along with the statistical error estimates. It is expected that these results are potentially suited to be used as base level values during geomagnetically quiet and undisturbed solar conditions.

  1. Storende invloeden en genetische parameters in bedrijfsprestatietoetsresultaten = Environmental effects and genetic parameters in on-farm test results

    NARCIS (Netherlands)

    Merks, J.W.M.

    1987-01-01

    In dit effectiviteitsonderzoek wordt nagegaan in hoeverre de bedrijfsprestatietoetsresultaten beinvloed worden door bedrijfs- en andere storende invloeden en worden een aantal belangrijke genetische parameters hiervoor geschat. De resultaten van raszuivere (NL en GY) beren en zeugen uit het stamboek

  2. Quantifying the effect of riming on snowfall using ground-based observations

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Ground-based observations of ice particle size distribution and ensemble mean density are used to quantify the effect of riming on snowfall. The rime mass fraction is derived from these measurements by following the approach that is used in a single ice-phase category microphysical scheme proposed for the use in numerical weather prediction models. One of the characteristics of the proposed scheme is that the prefactor of a power law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent does not change. To derive the rime mass fraction, a mass-dimensional relation representative of unrimed snow is also determined. To check the validity of the proposed retrieval method, the derived rime mass fraction is converted to the effective liquid water path that is compared to microwave radiometer observations. Since dual-polarization radar observations are often used to detect riming, the impact of riming on dual-polarization radar variables is studied for differential reflectivity measurements. It is shown that the relation between rime mass fraction and differential reflectivity is ambiguous, other factors such as change in median volume diameter need also be considered. Given the current interest on sensitivity of precipitation to aerosol pollution, which could inhibit riming, the importance of riming for surface snow accumulation is investigated. It is found that riming is responsible for 5% to 40% of snowfall mass. The study is based on data collected at the University of Helsinki field station in Hyytiälä during U.S. Department of Energy Biogenic Aerosols Effects on Clouds and Climate (BAECC) field campaign and the winter 2014/2015. In total 22 winter storms were analyzed, and detailed analysis of two events is presented to illustrate the study.

  3. The effect of substantive parameters on the efficiency of Archimedes screw microhydro power: a review

    Science.gov (United States)

    Nurul Suraya, A.; Ammar, N. M. M.; Ummu Kulthum, J.

    2015-12-01

    Due to the increasing demands in electricity and decreasing in fossil fuels sources, then hydropower are being developed and most of the project involve with large dams construction and may cause the people live surrounding to be flooded. Hence, the construction of Archimedes screw runner blade turbine can be the best option to generate energy without cause too much environmental impact like a fish friendly turbine and low maintenance cost. This review focus on the parameters that affected the performance of turbine. Besides the review also presented a methodologies based on parameters studied by previous researcher and from that review, it has been found that the uses of external parameter have an effect on the internal parameter in terms of efficiency. In further investigation, another parameter such as gap leakage, velocity of water, blade thickness should be considered to investigate the relationship of efficiency.

  4. Planting depth and rhizome size effects on below ground growth of licorice (Glycyrrhiza glabra L.

    Directory of Open Access Journals (Sweden)

    reza vali allah poor

    2009-06-01

    Full Text Available An experiment was carried out to evaluate the effects of planting depth and rhizome sizes on below ground growth of licorice (Glycyrrhiza glabra L. at research glasshouse of Mashhad Unversity in 2001. Factorial experiment containing 2 factors of planting depth (10, 20 and 40‌cm and rhizome sizes (1,2 and 3 buds or 4,7 and 10 gr with two replications in completely randomized block design was employed. Development of different variables during growing season including root and mother rhizome dry weight were measured.The highest and the lowest root dry weight (RDWhave been seen in depth of 20 and 40 cm‌, respectively. About 100 days after planting (DAP, RDW increaseed very slowly but thenafter increased faster‌. Rhizome of any sizes in‌ 20 cm, gave the highest RDW‌. Three-bud rhizomes produced the highest RDW and 1-bud rhizome produced the lowest. Mother rhizome dry weight (MRDW reduced untill 60 days after planting. After 75th day, MRDW has increased and all plants started to fill their mother rhizome and finally rhizome of depth 20 cm produced the highest dry weight. In 160 days after planting, mother rhizomes started to lose their weight‌. 1and 3 -bud mother rhizome produce the lowest and highest MRDW, respectively.

  5. EFFECT OF DIELECTRIC CONSTANT ON THE EXCITON GROUND STATE ENERGY OF CdSe QUANTUM DOTS

    Institute of Scientific and Technical Information of China (English)

    HUI PING

    2000-01-01

    The B-spline technique is used in the calculation of the exciton ground state energy based on the effective mass approximation (EMA) model.The exciton is confined in CdSe microspherical crystallites with a finite-height potential wall (dots).In this approach,(a) the wave function is allowed to penetrate to the outside of the dots; (b) the dielectric constants of the quantum dot and the surrounding material are considered to be different; and (c) the dielectric constant of the dots are size-dependent.The exciton energies as functions of radii of the dots in the range 0.5-3.5nm are calculated and compared with experimental and previous theoretical data.The results show that: (1) The exciton energy is convergent as the radius of the dot becomes very small.(2) A good agreement with the experimental data better than other theoretical results is achieved.(3) The penetration (or leaking) of the wave function and the difference of the dielectric constants in different regions are necessary for correcting the Coulomb interaction energy and reproducing experimental data.(4) The EMA model with B-spline technique can describe the status of excition confined in quantum dot very well.

  6. Effect of incorporation of Moringa oleifera leaves extract on quality of ground pork patties.

    Science.gov (United States)

    Muthukumar, M; Naveena, B M; Vaithiyanathan, S; Sen, A R; Sureshkumar, K

    2014-11-01

    Present study was conducted to evaluate the effect of addition of different levels of Moringa oleifera leaves extract (MLE) and butylated hydroxytoluene (BHT) in raw and cooked pork patties during refrigerated storage. Five treatments evaluated include: Control (without MLE/BHT), MLE 300 (300 ppm equivalent M. oleifera leaves phenolics), MLE 450 (450 ppm equivalent M. oleifera leaves phenolics), MLE 600 (600 ppm equivalent M. oleifera leaves phenolics) and BHT 200 (200 ppm BHT). Total phenolic content ranged from 60.78 to 70.27 mg per gram. A concentration dependent increase in reducing power and 1,1-diphenyl 2-picrylhydrazyl (DPPH) radical scavenging activity of both MLE and BHT was noticed. Higher (P BHT 200 compared to control. Addition of MLE did not affect the sensory attributes or microbial quality. These results showed that M. oleifera leaves can be used as a potential source of natural antioxidants to inhibit lipid oxidation in ground pork patties.

  7. Effect of oil extracted from coffee grounds in the radiolytic stabilization of PVC

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S., E-mail: aquino@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2013-07-01

    Commercial Poly(vinyl chloride) (PVC) containing oil extracted from coffee grounds (OCG) at concentrations of 0.50; 1.00 and 1.50 wt% were investigated. The samples were irradiated with gamma radiation ({sup 60}Co) at room temperature and air atmosphere. The viscosity-average molar mass (M{sub v}) was measured for PVC systems without and with oil. Decreases in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of OCG at 0.5 wt% into PVC matrix irradiated at dose of 25 kGy decreased the number of main chain scissions and was calculated a protection index of 67% in PVC matrix. Results about the free radical scavenger action of the OCG were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Decrease of 7% of Young's modulus value and a decrease of 31.5% on the elongation at break value were recorded for PVC films exposed to gamma irradiation. However, no significant changes were recorded in mechanical properties of PVC with OCG. (author)

  8. The isolating and insulating effects of hepatitis C: a substantive grounded theory.

    Science.gov (United States)

    McCreaddie, May; Lyons, Imogen; Horsburgh, Dorothy; Miller, Margot; Frew, Jeff

    2011-01-01

    Hepatitis C has a global prevalence of 3%, causing chronic infection in 75% of cases, and is currently the main cause of liver transplant in the United Kingdom. This study reviewed patients' and service providers' perspectives on hepatitis C as an enduring condition, using a constructivist grounded theory approach. A constant comparative approach to data collection and analyses incorporating a coding paradigm was applied to semistructured interviews, focus groups, and memos. Sixteen patients and three focus groups of staff (n = 17) were recruited via purposive theoretical sampling (February through August 2008). A negative synergistic relationship between the condition hepatitis C, patients, and service providers that creates isolating and insulating effects for the relevant parties emerged from the data as a middle-range theory. Stigma and contagion create a "real" or perceived sense of isolation for hepatitis C comorbid and itinerant patients, who require the right support at the right time. Healthcare staff adhere to professional demarcation lines to manage potentially untenable patient caseloads. In turn, patients and professionals perceive that a crisis may be required to bring about successful therapeutic intervention. A service that incorporates seamless outreach services and facilitates interdisciplinary working is needed to manage complex patients with this enduring condition.

  9. Effects of 10% biofuel substitution on ground level ozone formation in Bangkok, Thailand

    Science.gov (United States)

    Milt, Austin; Milano, Aaron; Garivait, Savitri; Kamens, Richard

    2009-12-01

    The Thai Government's search for alternatives to imported petroleum led to the consideration of mandating 10% biofuel blends (biodiesel and gasohol) by 2012. Concerns over the effects of biofuel combustion on ground level ozone formation in relation to their conventional counterparts need addressing. Ozone formation in Bangkok is explored using a trajectory box model. The model is compared against O 3, NO, and NO 2 time concentration data from air monitoring stations operated by the Thai Pollution Control Department. Four high ozone days in 2006 were selected for modeling. Both the traditional trajectory approach and a citywide average approach were used. The model performs well with both approaches but slightly better with the citywide average. Highly uncertain and missing data are derived within realistic bounds using a genetic algorithm optimization. It was found that 10% biofuel substitution will lead to as much as a 16 ppb peak O 3 increase on these four days compared to a 48 ppb increase due to the predicted vehicle fleet size increase between 2006 and 2012. The approach also suggests that when detailed meteorological data is not available to run three dimensional airshed models, and if the air is stagnant or predominately remains over an urban area during the day, that a simple low cost trajectory analysis of O 3 formation may be applicable.

  10. Effect of Surface Geology on Ground Motions: The Case of Station TAP056 - Chutzuhu Site

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Wen

    2008-01-01

    Full Text Available In the Tatun mountain area of northern Taiwan are two strong motion stations approximately 2.5 km apart, TAP056 and TAP066 of the TSMIP network. The accelerometer at station TAP056 is often triggered by earthquakes, but that at TAP066 station is not. Comparisons of vertical and horizontal peak ground accelerations reveal PGA in the vertical, east-west, and north-south components at TAP056 station to be 3.89, 7.57, and 5.45 times those at station TAP066, respectively. The PGA ratio does not seem to be related to earthquake source or path. Fourier spectra of earthquake records at station TAP056 always have approximately the same dominant frequency; however, those at station TAP066 are different due to different sources and paths of different events. This shows that spectra at TAP056 station are mainly controlled by local site effects. The spectral ratios of TAP056/TAP066 show the S-wave is amplified at around 8 ~ 10 Hz. The horizontal/vertical spectral ratios of station TAP056 also show a dominant frequency at about 6 and 8 ~ 10 Hz. After dense microtremor surveying and the addition of one accelerometer just 20 meters away from the original observation station, we can confirm that the top soft soil layer upon which the observation station is constructed generates the local site response at station TAP056.

  11. Effect of soil roughness on the inversion of off-ground monostatic GPR signal for noninvasive quantification of soil properties

    NARCIS (Netherlands)

    Lambot, S.; Antoine, M.; Vanclooster, M.; Slob, E.C.

    2006-01-01

    We report on a laboratory experiment that investigates the effect of soil surface roughness on the identification of the soil electromagnetic properties from full-wave inversion of ground-penetrating radar (GPR) data in the frequency domain. The GPR system consists of an ultrawide band stepped-frequ

  12. The Effects of Opposition and Gender on Knee Kinematics and Ground Reaction Force during Landing from Volleyball Block Jumps

    Science.gov (United States)

    Hughes, Gerwyn; Watkins, James; Owen, Nick

    2010-01-01

    The aim of this study was to examine the effect of opposition and gender on knee kinematics and ground reaction force during landing from a volleyball block jump. Six female and six male university volleyball players performed two landing tasks: (a) an unopposed and (b) an opposed volleyball block jump and landing. A 12-camera motion analysis…

  13. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Science.gov (United States)

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  14. A summary of ground motion effects at SLAC (Stanford Linear Accelerator Center) resulting from the Oct 17th 1989 earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ruland, R.E.

    1990-08-01

    Ground motions resulting from the October 17th 1989 (Loma Prieta) earthquake are described and can be correlated with some geologic features of the SLAC site. Recent deformations of the linac are also related to slow motions observed over the past 20 years. Measured characteristics of the earthquake are listed. Some effects on machine components and detectors are noted. 18 refs., 16 figs.

  15. The Effects of Opposition and Gender on Knee Kinematics and Ground Reaction Force during Landing from Volleyball Block Jumps

    Science.gov (United States)

    Hughes, Gerwyn; Watkins, James; Owen, Nick

    2010-01-01

    The aim of this study was to examine the effect of opposition and gender on knee kinematics and ground reaction force during landing from a volleyball block jump. Six female and six male university volleyball players performed two landing tasks: (a) an unopposed and (b) an opposed volleyball block jump and landing. A 12-camera motion analysis…

  16. Stochastic model of the NASA/MSFC ground facility for large space structures with uncertain parameters: The maximum entropy approach, part 2

    Science.gov (United States)

    Hsia, Wei Shen

    1989-01-01

    A validated technology data base is being developed in the areas of control/structures interaction, deployment dynamics, and system performance for Large Space Structures (LSS). A Ground Facility (GF), in which the dynamics and control systems being considered for LSS applications can be verified, was designed and built. One of the important aspects of the GF is to verify the analytical model for the control system design. The procedure is to describe the control system mathematically as well as possible, then to perform tests on the control system, and finally to factor those results into the mathematical model. The reduction of the order of a higher order control plant was addressed. The computer program was improved for the maximum entropy principle adopted in Hyland's MEOP method. The program was tested against the testing problem. It resulted in a very close match. Two methods of model reduction were examined: Wilson's model reduction method and Hyland's optimal projection (OP) method. Design of a computer program for Hyland's OP method was attempted. Due to the difficulty encountered at the stage where a special matrix factorization technique is needed in order to obtain the required projection matrix, the program was successful up to the finding of the Linear Quadratic Gaussian solution but not beyond. Numerical results along with computer programs which employed ORACLS are presented.

  17. Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Crown Width Modeling

    Directory of Open Access Journals (Sweden)

    Petras Rupšys

    2015-01-01

    Full Text Available A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. We examine tree crown width dynamic with the Bertalanffy type stochastic differential equation (SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects parameters. All results were implemented in a symbolic algebra system MAPLE.

  18. Simulation of spatially varying ground motions including incoherence, wave‐passage and differential site‐response effects

    DEFF Research Database (Denmark)

    Konakli, Katerina; Der Kiureghian, Armen

    2012-01-01

    A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....... In the first, simulated motions are consistent with the power spectral densities of a segmented recorded motion and are characterized by uniform variability at all locations. Uniform variability in the array of ground motions is essential when synthetic motions are used for statistical analysis of the response...

  19. Projected effects of proposed chloride-control projects on shallow ground water; preliminary results for the Wichita River basin, Texas

    Science.gov (United States)

    Garza, Sergio

    1983-01-01

    The U.S. Army Corps of Engineers' plan to control the natural chloride pollution in the Wichita River basin includes the construction of Truscott Brine Lake on a tributary of the North Wichita River. In connection with the proposed brine lake, the U.S. Geological Survey was requested to: (1) Define the existing ground-water conditions in the shallow fresh-water system of the project area; and (2) project the post-construction effects of the proposed lake on the fresh-water aquifer, especially in relation to hydraulic-head changes but also with respect to possible changes in the chemical quality of the ground water.

  20. Effects of ground hazelnut shell, wood, and tea waste on the mechanical properties of cement

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Black Sea Technical Univ., Trabzon (Turkey). Fatih Education Faculty; Aslan, A. [Celal Bayar Univ., Manisa (Turkey). Dept. of Chemistry

    1998-08-01

    In this study, the mechanical properties of Portland cement mixes with an admixture such as ground hazelnut shell, spruce and beech woods, and tea waste were studied. The compressive and bending strengths test results obtained from these mixes were investigated with comparing to the control mix. From results, it was obtained that especially ground hazelnut shell and beech wood can be used as additives or partial replacement for Portland cement.

  1. Principle and Design of a Single-phase Inverter Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then...... margin subjecting to large range of load change. The PI method is taken as the comparative method and the performances of both control methods are presented in detail. Experimental results prove the effectiveness and novelty of the proposed grounding system and control method....

  2. The effect of plasma operating parameters on analyte signals in inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Horlick, G.; Tan, S. H.; Vaughan, M. A.; Rose, C. A.

    Utilizing the SCIEX ICP-MS an extensive study of the effects that plasma operating parameters have on analyte ion signals in ICP-MS has been carried out. Parameters studied included aerosol flow rate (nebulizer pressure), auxiliary flow rate, power and sampling depth (sampling position from the load coil). The two key parameters are aerosol flow rate (nebulizer pressure) and power. Elements can be grouped into characteristic behaviour patterns based on the overall dependence of their ion count signal on these two parameters. The nebulizer pressure-power behavior patterns allow a sensible selection of compromise operating conditions and significantly clarify single parameter observations which often indicate confusing trends in behavior. In addition to characterizing analyte ion signals the parameter behavior plots have also been used to study oxide species and plus two ions in ICP-MS. While aerosol flow rate and power appear to be the key ICP parameters in ICP-MS, ion signals are dependent on sampling depth and auxiliary flow rate and some data are also presented illustrating the signal dependence on these two parameters.

  3. Effect of liquid municipal biosolid application method on tile and ground water quality.

    Science.gov (United States)

    Lapen, D R; Topp, E; Edwards, M; Sabourin, L; Curnoe, W; Gottschall, N; Bolton, P; Rahman, S; Ball-Coelho, B; Payne, M; Kleywegt, S; McLaughlin, N

    2008-01-01

    This study examined bacteria and nutrient quality in tile drainage and shallow ground water resulting from a fall land application of liquid municipal biosolids (LMB), at field application rates of 93,500 L ha(-1), to silt-clay loam agricultural field plots using two different land application approaches. The land application methods were a one-pass AerWay SSD approach (A), and surface spreading plus subsequent incorporation (SS). For both treatments, it took between 3 and 39 min for LMB to reach tile drains after land application. The A treatment significantly (p Kjeldahl N (TKN), NH(4)-N, Total P (TP), PO(4)-P, E. coli., and Clostridium perfringens. E. coli contamination resulting from application occurred to at least 2.0-m depth in ground water, but was more notable in ground water immediately beneath tile depth (1.2 m). Treatment ground water concentrations of selected nutrients and bacteria for the study period ( approximately 46 d) at 1.2-m depth were significantly higher in the treatment plots, relative to control plots. The TKN and TP ground water concentrations at 1.2-m depth were significantly (p 0.1) treatment differences for the bacteria. For the macroporous field conditions observed, pre-tillage by equipment such as the AerWay SSD, will reduce LMB-induced tile and shallow ground water contamination compared to surface spreading over non-tilled soil, followed by incorporation.

  4. Comparison of the effect of grounding the column wall in gas-solid fluidized beds on electrostatic charge generation

    Energy Technology Data Exchange (ETDEWEB)

    Sowinski, Andrew; Mayne, Antonio; Javed, Bassam; Mehrani, Poupak, E-mail: poupak.mehrani@uottawa.ca [University of Ottawa, Chemical and Biological Engineering Department, 161 Louis Pasteur St., Ottawa, Ontario, K1N 6N5 (Canada)

    2011-06-23

    In gas-solid fluidized beds as particles are fluidized, they continuously come into contact with other particles, as well as the fluidization column wall. This generates electrostatic charges by means of triboelectrification and frictional charging, leading to particle agglomeration, reactor wall fouling, and eventually process downtime and large financial losses. Grounding the fluidization column has been considered as a means of helping electrostatic charge dissipation within fluidized beds; however, in industrial applications despite the process vessels being grounded, the electrostatic problem still persists. This work focused on the effect of fluidization column grounding on particle wall fouling. Experiments were conducted in an atmospheric system consist of a 0.1 m in diameter carbon steel fluidization column. The mass and charge-to-mass ratio (q/m) of the particles that remained adhered to the column wall upon the completion of one hour fluidization period were measured in an electrically isolated and grounded columns to quantitatively determine the amount of reactor wall fouling. Polyethylene particles with different particle size ranges (300- 1000 {mu}m) were fluidized with extra dry air at 1.5 times their respective minimum fluidization velocity (u{sub mf}). Results obtained in the grounded fluidization column were not significantly different from those in the isolated column for all particle size ranges tested where the particles mass collected and q/m and were found to be generally similar.

  5. Research of the Effectiveness of Using Air and Ground Low-grade Heat for Buildings Heating in Different Regions of Russia

    Directory of Open Access Journals (Sweden)

    Vasilyev G.P.

    2016-01-01

    Full Text Available The article presents the results of research on zoning of the Russian Federation based on efficiency of utilization of the low-grade heat of ground and air as well as combinations thereof for heating buildings. When modeling thermal behavior of geothermal HHS in the climatic conditions of various regions of the Russian Federation we considered the effect of long-term recovery of geothermal heat on the thermal behavior of the ground, as well as the effect of the ground pore water phase transitions on the operational efficiency of geothermal heat pump heating systems. The zoning took into account temperature drop of the ground mass caused by many years of heat recovery from the ground. Ground temperatures expected for the 5th year of geothermal HHS operation were used as design ground mass temperatures.

  6. Effect of machining parameters on surface finish of Inconel 718 in end milling

    Directory of Open Access Journals (Sweden)

    Sarkar Bapi

    2017-01-01

    Full Text Available Surface finish is an important criteria in machining process and selection of proper machining parameters is important to obtain good surface finish. In the present work effects of the machining parameters in end milling of Inconel 718 were investigated. Central composite design was used to design the total number of experiments. A Mathematical model for surface roughness has been developed using response surface methodology. In this study, the influence of cutting parameters such as cutting speed, feed rate and depth of cut on surface roughness was analyzed. The study includes individual effect of cutting parameters on surface roughness as well as their interaction. The analysis of variance (ANOVA was employed to find the validity of the developed model. The results show that depth of cut mostly affected the surface roughness. It is also observed that surface roughness values are comparable in both dry and wet machining conditions.

  7. Effect of experimental parameters on optimal reflection of light from opaque media

    CERN Document Server

    Anderson, Benjamin R; Eilers, Hergen

    2016-01-01

    Previously we considered the effect of experimental parameters on optimized transmission through opaque media using spatial light modulator (SLM)-based wavefront shaping. In this study we consider the opposite geometry, in which we optimize reflection from an opaque surface such that the backscattered light is focused onto a spot on an imaging detector. By systematically varying different experimental parameters (genetic algorithm iterations, bin size, SLM active area, target area, spot size, and sample angle with respect to the optical axis) and optimizing the reflected light we determine how each parameter affects the intensity enhancement. We find that the effects of the experimental parameters on the enhancement are similar to those measured for a transmissive geometry, but with the exact functional forms changed due to the different geometry and the use of a genetic algorithm instead of an iterative algorithm. Additionally, we find preliminary evidence of greater enhancements than predicted by random mat...

  8. Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads

    Institute of Scientific and Technical Information of China (English)

    Xu Long; Fei Ge; Lei Wang; Youshi Hong

    2009-01-01

    This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investi-gated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

  9. Effects of extruded corn on milk yield and composition and blood parameters in lactating dairy cows

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2010-01-01

    Full Text Available According to a 2x2 cross over design, fourteen Holstein dairy cows at 99±55 DIM were fed two diets containing 21.5% DM of either ground corn (GC or extruded corn (EC. Performance and metabolic profile were detected during the third week of each experimental period. DMI and milk yield were not affected by dietary treatments. Milk fat and protein percentage of EC diet were significantly (P<0.10 lower than those of GC diet. Probably the higher rumen degradability of starch from EC thesis modified the synthesis of specific fatty acids leading to a milk fat depression event. Diets did not influence blood parameters, except for lower values of total protein and glucose content in EC diet-fed cows. Results suggested that the dietary inclusion of extruded corn should not be used at the tested level of substitution.

  10. Study on Effects of Diesel Engine Cooling System Parameters on Water Temperature

    Institute of Scientific and Technical Information of China (English)

    骆清国; 冯建涛; 刘国夫; 桂勇

    2011-01-01

    A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater tem- perature response in different operating conditions is simulated numerically. The effects of single or multiple system parameters on the water temperature are analyzed. The results show that, changing different single parameters, the time taken for the steady backwater temperature is different, but relatively short; and if multiple parameters are changed, the time will be longer. Referred to the thermal balance test, the simulation results are validated and provide a basis for the intelligent con- trol of the cooling system.

  11. Effect of buoyancy and power design parameters on hybrid airship performance

    Science.gov (United States)

    Talbot, P. D.; Gelhausen, P. A.

    1983-01-01

    The effects of several design parameters on the performance of hybrid airships having rotors and propellers were examined with a simple mathematical model. The parameters included buoyancy ratio, Froude number, ratio of rotor power to total power, and rotor shaft tilt. Performance variations resulting from changes in these parameters were calculated, and are presented and discussed. Performance quantities included best climb rate, equivalent vehicle L/D, and maximum speed. Performance at all speeds between hover and maximum speed was found to be sensitive to power distribution between rotors and propellers, and to rotor shaft tilt.

  12. Effect of Antenna Parameters on the Field Coverage in Tunnel Environments

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2016-01-01

    Full Text Available Radio wave propagation in confined spaces is consequent upon the reflections of boundaries; thus, the radiation characteristics of the antenna have significant influence on the field coverage in the confined space. This paper investigates the effects of antenna parameters on field coverage characteristics in a tunnel environment. A modified modal method is proposed to analyse the wave propagation properties along the tunnel. The relationships between the amplitudes of modes and the antenna parameters, including the beam width, beam direction, and antenna location, are analysed. The results indicate that by properly selecting the antenna parameters, optimum field coverage in tunnel environments can be realized.

  13. Extraction of cluster parameters from Sunyaev-Zeldovich effect observations with simulated annealing optimization

    CERN Document Server

    Hansen, S H

    2004-01-01

    We present a user-friendly tool for the analysis of data from Sunyaev-Zeldovich effect observations. The tool is based on the stochastic method of simulated annealing, and allows the extraction of the central values and error-bars of the 3 SZ parameters, Comptonization parameter, y, peculiar velocity, v_p, and electron temperature, T_e. The f77-code SASZ will allow any number of observing frequencies and spectral band shapes. As an example we consider the SZ parameters for the COMA cluster.

  14. [The image noise effect on the results of Gamma knife dosimetry parameters test].

    Science.gov (United States)

    Cheng, Xiaojun; Zhang, Conghua; Hu, Chuanpeng; Dai, Fuyou; Wei, Kunjie; Chu, Caifang

    2012-12-01

    In order to analyze the image noise effect on the results of Gamma knife dosimetry parameter test, we tested the dosimetry parameters of the Gamma knives according to GBZ 168-2005. Radiological protection standards of X (gamma)-ray stereotactic radiosurgery for head treatment. Dose analysis software was applied to examine the testing film before and after image denoising, and SPSS 11.0 software was used for statistical analysis. The results showed that there was a significant difference in the results of the maximum deviation between radiation field size and its nominal value (t = 7.600, P Gamma knife dosimetry parameters, so as to cause deviations.

  15. Effect of a fluctuating parameter mismatch and the associated time-scales on coupled Rossler oscillators

    Indian Academy of Sciences (India)

    Manu P John; P U Jijo; V M Nandakumaran

    2009-03-01

    We study the effect of parameter fluctuations and the resultant multiplicative noise on the synchronization of coupled chaotic systems. We introduce a new quantity, the fluctuation rate as the number of perturbations occurring to the parameter in unit time. It is shown that is the most significant quantity that determines the quality of synchronization. It is found that parameter fluctuations with high fluctuation rates do not destroy synchronization, irrespective of the statistical features of the fluctuations. We also present a quasi-analytic explanation to the relation between and the error in synchrony.

  16. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  17. Estimation of effective soil hydraulic parameters for water management studies in semi-arid zones. Integral use of modelling, remote sensing and parameter estimation

    NARCIS (Netherlands)

    Jhorar, R.K.

    2002-01-01

    Key words: evapotranspiration, effective soil hydraulic parameters, remote sensing, regional water management, groundwater use, Bhakra Irrigation System, India.The meaningful application of water management simulation models at regional scale for the analysis of alternate water manage

  18. Sunyaev-Zeldovich effect in WMAP and its effect on cosmological parameters

    CERN Document Server

    Huffenberger, Kevin M; Makarov, A; Huffenberger, Kevin M.; Seljak, Uros; Makarov, Alexey

    2004-01-01

    We use multi-frequency information in first year WMAP data to search for the Sunyaev-Zeldovich (SZ) effect. WMAP has sufficiently broad frequency coverage to constrain SZ without the addition of higher frequency data: the SZ power spectrum amplitude is expected to increase 50% from W to Q frequency band. This, in combination with the low noise in WMAP, allows us to strongly constrain the SZ contribution. We derive an optimal frequency combination of WMAP cross-spectra to extract SZ in the presence of noise, CMB, and radio point sources, which are marginalized over. We find that the SZ contribution is less than 2% (95% c.l.) at the first acoustic peak in W band. Under the assumption that the removed radio point sources are not correlated with SZ this limit implies sigma_8<1.07 at 95% c.l. We investigate the effect on the cosmological parameters of allowing an SZ component. We run Monte Carlo Markov Chains with and without an SZ component and find that the addition of SZ does not affect any of the cosmologic...

  19. Effects of a dimple potential on the ground-state properties of a quasi-one-dimensional Bose–Einstein condensate with two- and three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, Elife Ö.

    2015-04-01

    The ground state of a quasi-one-dimensional interacting Bose gas confined by a harmonic plus Gaussian dimple potential is studied within the variational approach and also Gross–Pitaevskii mean-field approximation. The effect of the superimposed dimple trap on the order parameter, the chemical and effective potentials of the system is analyzed for repulsive and attractive two- as well as three-body interactions between the particles. The results obtained from both methods show that the characteristics of the trap such as the width and depth of the dimple affect the corresponding ground state properties of the system in a qualitatively similar way to the repulsive and attractive interatomic interactions, respectively. - Highlights: • We study the effects of a dimple potential on a quasi-1D Bose-Einstein condensate. • We used variational and Gross-Pitaevskii mean-field approaches. • The width of the dimple affects the system similarly to repulsive interaction. • The depth of the dimple affects the system similarly to attractive interaction.

  20. Effect of Measurement vs. Counting Errors on Parameters' Covariance in Neutron Tomography Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, Michał [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Blair, Jerome J. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2013-06-13

    We present here a method that estimates the relative effect of the counting uncertainty and of the instrument uncertainty on that of the parameters in a parametric model for neutron time of flight. The final result, obtained independently of calculation of the parameter values from measured data, presents explicitly the ratio of the two uncertainties in terms of the choice, settings, and placement of the detector and the oscilloscope. Consequently, the method can serve as a tool in planning a measurement setup.