WorldWideScience

Sample records for ground effect machines

  1. Machine Translation Effect on Communication

    DEFF Research Database (Denmark)

    Jensen, Mika Yasuoka; Bjørn, Pernille

    2011-01-01

    Intercultural collaboration facilitated by machine translation has gradually spread in various settings. Still, little is known as for the practice of machine-translation mediated communication. This paper investigates how machine translation affects intercultural communication in practice. Based...... on communication in which multilingual communication system is applied, we identify four communication types and its’ influences on stakeholders’ communication process, especially focusing on establishment and maintenance of common ground. Different from our expectation that quality of machine translation results...

  2. Grounding the RPA Force: Why Machine Needs Man

    Science.gov (United States)

    2016-06-01

    AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY GROUNDING THE RPA FORCE: WHY MACHINE NEEDS MAN by Charles M. Washuk, Major, USAF (MBA...6 CHALLENGES OF MANNED FLIGHT...tactics will still require the presence of an operator, or “ man .” This paper focuses on the need for the Air Force to address the 18X career field and

  3. Ground loops detection system in the RFX machine

    International Nuclear Information System (INIS)

    Bellina, F.; Pomaro, N.; Trevisan, F.

    1996-01-01

    RFX is a toroidal machine for the fusion research based on the RFP configuration. During the pulse, in any conductive loop close to the machine very strong currents can be induced, which may damage the diagnostics and the other instrumentation. To avoid loops, the earthing system of the machine is tree-shaped. However, an accidental contact between metallic earthed masses of the machine may give rise to an unwanted loop as well. An automatic system for the detection of ground loops in the earthing system has therefore been developed, which works continuously during shutdown intervals and between pulses. In the paper the design of the detection system is presented, together with the experimental results on prototypes. 4 refs., 3 figs., 1 tab

  4. Effects of a range of machined and ground surface finishes on the simulated reactor helium corrosion of several candidate structural materials

    International Nuclear Information System (INIS)

    Thompson, L.D.

    1981-02-01

    This report discusses the corrosion behavior of several candidate reactor structural alloys in a simulated advanced high-temperature gas-cooled reactor (HTGR) environment over a range of lathe-machined and centerless-ground surface finishes. The helium environment contained 50 Pa H 2 /5 Pa CO/5 Pa CH 4 / 2 O (500 μatm H 2 /50 μatm CO/50 μatm CH 4 / 2 O) at 900 0 C for a total exposure of 3000 h. The test alloys included two vacuum-cast superalloys (IN 100 and IN 713LC); a centrifugally cast austenitic alloy (HK 40); three wrought high-temperature alloys (Alloy 800H, Hastelloy X, and Inconel 617); and a nickel-base oxide-dispersion-strengthened alloy (Inconel MA 754). Surface finish variations did not affect the simulated advanced-HTGR corrosion behavior of these materials. Under these conditions, the availability of reactant gaseous impurities controls the kinetics of the observed gas-metal interactions. Variations in the near-surface activities and mobilities of reactive solute elements, such as chromium, which might be expected to be affected by changes in surface finish, do not seem to greatly influence corrosion in this simulated advanced HTGR environment. 18 figures, 4 tables

  5. Machine learning techniques for gait biometric recognition using the ground reaction force

    CERN Document Server

    Mason, James Eric; Woungang, Isaac

    2016-01-01

    This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of ...

  6. Ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Blume, J A [John A. Blume and Associates, San Francisco, CA (United States)

    1969-07-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  7. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.

    1969-01-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  8. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians.

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G

    2017-02-17

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)NJOPFM1367-263010.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  9. 30 CFR 75.703-3 - Approved methods of grounding offtrack mobile, portable and stationary direct-current machines.

    Science.gov (United States)

    2010-07-01

    ..., portable and stationary direct-current machines. 75.703-3 Section 75.703-3 Mineral Resources MINE SAFETY... stationary direct-current machines. In grounding offtrack direct-current machines and the enclosures of their... requirements: (1) Installation of silicon diodes shall be restricted to electric equipment receiving power from...

  10. Free Swimming in Ground Effect

    Science.gov (United States)

    Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith

    2017-11-01

    A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.

  11. Effect of Machining Velocity in Nanoscale Machining Operations

    International Nuclear Information System (INIS)

    Islam, Sumaiya; Khondoker, Noman; Ibrahim, Raafat

    2015-01-01

    The aim of this study is to investigate the generated forces and deformations of single crystal Cu with (100), (110) and (111) crystallographic orientations at nanoscale machining operation. A nanoindenter equipped with nanoscratching attachment was used for machining operations and in-situ observation of a nano scale groove. As a machining parameter, the machining velocity was varied to measure the normal and cutting forces. At a fixed machining velocity, different levels of normal and cutting forces were generated due to different crystallographic orientations of the specimens. Moreover, after machining operation percentage of elastic recovery was measured and it was found that both the elastic and plastic deformations were responsible for producing a nano scale groove within the range of machining velocities from 250-1000 nm/s. (paper)

  12. Modeling a ground-coupled heat pump system by a support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-08-15

    This paper reports on a modeling study of ground coupled heat pump (GCHP) system performance (COP) by using a support vector machine (SVM) method. A GCHP system is a multi-variable system that is hard to model by conventional methods. As regards the SVM, it has a superior capability for generalization, and this capability is independent of the dimensionality of the input data. In this study, a SVM based method was intended to adopt GCHP system for efficient modeling. The Lin-kernel SVM method was quite efficient in modeling purposes and did not require a pre-knowledge about the system. The performance of the proposed methodology was evaluated by using several statistical validation parameters. It is found that the root-mean squared (RMS) value is 0.002722, the coefficient of multiple determinations (R{sup 2}) value is 0.999999, coefficient of variation (cov) value is 0.077295, and mean error function (MEF) value is 0.507437 for the proposed Lin-kernel SVM method. The optimum parameters of the SVM method were determined by using a greedy search algorithm. This search algorithm was effective for obtaining the optimum parameters. The simulation results show that the SVM is a good method for prediction of the COP of the GCHP system. The computation of SVM model is faster compared with other machine learning techniques (artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS)); because there are fewer free parameters and only support vectors (only a fraction of all data) are used in the generalization process. (author)

  13. Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS

    Science.gov (United States)

    Armstrong, David J.; Günther, Maximilian N.; McCormac, James; Smith, Alexis M. S.; Bayliss, Daniel; Bouchy, François; Burleigh, Matthew R.; Casewell, Sarah; Eigmüller, Philipp; Gillen, Edward; Goad, Michael R.; Hodgkin, Simon T.; Jenkins, James S.; Louden, Tom; Metrailler, Lionel; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raynard, Liam; Rauer, Heike; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-05-01

    State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new automated methods. Here we describe a machine learning algorithm that forms an integral part of the pipeline for the NGTS transit survey, demonstrating the efficacy of machine learning in selecting planetary candidates from multi-night ground based survey data. Our method uses a combination of random forests and self-organising-maps to rank planetary candidates, achieving an AUC score of 97.6% in ranking 12368 injected planets against 27496 false positives in the NGTS data. We build on past examples by using injected transit signals to form a training set, a necessary development for applying similar methods to upcoming surveys. We also make the autovet code used to implement the algorithm publicly accessible. autovet is designed to perform machine learned vetting of planetary candidates, and can utilise a variety of methods. The apparent robustness of machine learning techniques, whether on space-based or the qualitatively different ground-based data, highlights their importance to future surveys such as TESS and PLATO and the need to better understand their advantages and pitfalls in an exoplanetary context.

  14. Squat Ground Reaction Force on a Horizontal Squat Device, Free Weights, and Smith Machine

    Science.gov (United States)

    Scott-Pandorf, Melissa M.; Newby, Nathaniel J.; Caldwell, Erin; DeWitt, John K.; Peters, Brian T.

    2010-01-01

    Bed rest is an analog to spaceflight and advancement of exercise countermeasures is dependent on the development of exercise equipment that closely mimic actual upright exercise. The Horizontal Squat Device (HSD) was developed to allow a supine exerciser to perform squats that mimic upright squat exercise. PURPOSE: To compare vertical ground reaction force (GRFv) on the HSD with Free Weight (FW) or Smith Machine (SM) during squat exercise. METHODS: Subjects (3F, 3M) performed sets of squat exercise with increasing loads up to 1-repetition (rep) maximum. GRF data were collected and compared with previous GRF data for squat exercise performed with FW & SM. Loads on the HSD were adjusted to magnitudes comparable with FW & SM by subtracting the subject s body weight (BW). Peak GRFv for 45-, 55-, 64-, & 73-kg loads above BW were calculated. Percent (%) difference between HSD and the two upright conditions were computed. Effect size was calculated for the 45-kg load. RESULTS: Most subjects were unable to lift >45 kg on the HSD; however, 1 subject completed all loads. Anecdotal evidence suggested that most subjects shoulders or back failed before their legs. The mean % difference are shown. In the 45-kg condition, effect sizes were 0.37 & 0.83 (p>0.05) for HSD vs. FW and HSD vs. SM, respectively, indicating no differences between exercise modes. CONCLUSION: When BW was added to the target load, results indicated that vertical forces were similar to those in FW and SM exercise. The exercise prescription for the HSD should include a total external resistance equivalent to goal load plus subject BW. The HSD may be used as an analog to upright exercise in bed rest studies, but because most subjects were unable to lift >45 kg, it may be necessary to prescribe higher reps and lower loads to better target the leg musculature

  15. Ground effect aerodynamics of racing cars

    OpenAIRE

    Zhang, Xin; Toet, Willem; Zerihan, Jonathan

    2006-01-01

    We review the progress made during the last thirty years on ground effect aerodynamics associated with race cars, in particular open wheel race cars. Ground effect aerodynamics of race cars is concerned with generating downforce, principally via low pressure on the surfaces nearest to the ground. The “ground effected” parts of an open wheeled car's aerodynamics are the most aerodynamically efficient and contribute less drag than that associated with, for example, an upper rear wing. Whilst dr...

  16. Effect of machining fluid on the process performance of wire electrical discharge machining of nanocomposite ceramic

    Directory of Open Access Journals (Sweden)

    Zhang Chengmao

    2015-01-01

    Full Text Available Wire electric discharge machining (WEDM promise to be effective and economical techniques for the production of tools and parts from conducting ceramic blanks. However, the manufacturing of nanocomposite ceramics blanks with these processes is a long and costly process. This paper presents a new process of machining nanocomposite ceramics using WEDM. WEDM uses water based emulsion, polyvinyl alcohol and distilled water as the machining fluid. Machining fluid is a primary factor that affects the material removal rate and surface quality of WEDM. The effects of emulsion concentration, polyvinyl alcohol concentration and distilled water of the machining fluid on the process performance have been investigated.

  17. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  18. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    International Nuclear Information System (INIS)

    Sharma Mradul; Koul Maharaj Krishna; Mitra Abhas; Nayak Jitadeepa; Bose Smarajit

    2014-01-01

    A detailed case study of γ-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for γ-hadron segregation. (research papers)

  19. Predicting ground contact events for a continuum of gait types: An application of targeted machine learning using principal component analysis.

    Science.gov (United States)

    Osis, Sean T; Hettinga, Blayne A; Ferber, Reed

    2016-05-01

    An ongoing challenge in the application of gait analysis to clinical settings is the standardized detection of temporal events, with unobtrusive and cost-effective equipment, for a wide range of gait types. The purpose of the current study was to investigate a targeted machine learning approach for the prediction of timing for foot strike (or initial contact) and toe-off, using only kinematics for walking, forefoot running, and heel-toe running. Data were categorized by gait type and split into a training set (∼30%) and a validation set (∼70%). A principal component analysis was performed, and separate linear models were trained and validated for foot strike and toe-off, using ground reaction force data as a gold-standard for event timing. Results indicate the model predicted both foot strike and toe-off timing to within 20ms of the gold-standard for more than 95% of cases in walking and running gaits. The machine learning approach continues to provide robust timing predictions for clinical use, and may offer a flexible methodology to handle new events and gait types. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. (ajst) effects of ground insulation and greenhouse

    African Journals Online (AJOL)

    NORBERT OPIYO AKECH

    and quality of biogas generation from dairy cattle dung. The effects ... Therefore ground insulation of plastic biogas digester under greenhouse conditions significantly enhances ..... The low values obtained did not suggest failure of the system ...

  1. Multiple-Machine Scheduling with Learning Effects and Cooperative Games

    Directory of Open Access Journals (Sweden)

    Yiyuan Zhou

    2015-01-01

    Full Text Available Multiple-machine scheduling problems with position-based learning effects are studied in this paper. There is an initial schedule in this scheduling problem. The optimal schedule minimizes the sum of the weighted completion times; the difference between the initial total weighted completion time and the minimal total weighted completion time is the cost savings. A multiple-machine sequencing game is introduced to allocate the cost savings. The game is balanced if the normal processing times of jobs that are on the same machine are equal and an equal number of jobs are scheduled on each machine initially.

  2. An improved modelling of asynchronous machine with skin-effect ...

    African Journals Online (AJOL)

    The conventional method of analysis of Asynchronous machine fails to give accurate results especially when the machine is operated under high rotor frequency. At high rotor frequency, skin-effect dominates causing the rotor impedance to be frequency dependant. This paper therefore presents an improved method of ...

  3. Agustin de Betancourt’s Wind Machine for Draining Marshy Ground: Approach to Its Geometric Modeling with Autodesk Inventor Professional

    Directory of Open Access Journals (Sweden)

    José Ignacio Rojas-Sola

    2016-12-01

    Full Text Available The present study shows the process followed in making the three-dimensional model and geometric documentation of a historical invention of the renowned Spanish engineer Agustin de Betancourt y Molina, which forms part of his rich legacy. Specifically, this was a wind machine for draining marshy ground, designed in 1789. The present research relies on the computer-aided design (CAD techniques using Autodesk Inventor Professional software, based on the scant information provided by the only two drawings of the machine, making it necessary to propose a number of dimensional and geometric hypotheses as well as a series of movement restrictions (degrees of freedom, to arrive at a consistent design. The results offer a functional design for this historic invention.

  4. Single-event effect ground test issues

    International Nuclear Information System (INIS)

    Koga, R.

    1996-01-01

    Ground-based single event effect (SEE) testing of microcircuits permits characterization of device susceptibility to various radiation induced disturbances, including: (1) single event upset (SEU) and single event latchup (SEL) in digital microcircuits; (2) single event gate rupture (SEGR), and single event burnout (SEB) in power transistors; and (3) bit errors in photonic devices. These characterizations can then be used to generate predictions of device performance in the space radiation environment. This paper provides a general overview of ground-based SEE testing and examines in critical depth several underlying conceptual constructs relevant to the conduct of such tests and to the proper interpretation of results. These more traditional issues are contrasted with emerging concerns related to the testing of modern, advanced microcircuits

  5. The effect of abrading and cutting instruments on machinability of dental ceramics.

    Science.gov (United States)

    Sakoda, Satoshi; Nakao, Noriko; Watanabe, Ikuya

    2018-03-16

    The aim was to investigate the effect of machining instruments on machinability of dental ceramics. Four dental ceramics, including two zirconia ceramics were machined by three types (SiC, diamond vitrified, and diamond sintered) of wheels with a hand-piece engine and two types (diamond and carbide) of burs with a high-speed air turbine. The machining conditions used were abrading speeds of 10,000 and 15,000 r.p.m. with abrading force of 100 gf for the hand-piece engine, and a pressure of 200 kPa and a cutting force of 80 gf for the air-turbine hand-piece. The machinability efficiency was evaluated by volume losses after machining the ceramics. A high-abrading speed had high-abrading efficiency (high-volume loss) compared to low-abrading speed in all abrading instruments used. The diamond vitrified wheels demonstrated higher volume loss for two zirconia ceramics than those of SiC and diamond sintered wheels. When the high-speed air-turbine instruments were used, the diamond points showed higher volume losses compared to the carbide burs for one ceramic and two zirconia ceramics with high-mechanical properties. The results of this study indicated that the machinability of dental ceramics depends on the mechanical and physical properties of dental ceramics and machining instruments. The abrading wheels show autogenous action of abrasive grains, in which ground abrasive grains drop out from the binder during abrasion, then the binder follow to wear out, subsequently new abrasive grains come out onto the instrument surface (autogenous action) and increase the grinding amount (volume loss) of grinding materials.

  6. Ground Shock Effects from Accidental Explosions

    Science.gov (United States)

    1976-11-01

    1,200 P0 A = V P cp 8 Horizontal Dh = Dv tannin " 1 (cp/U)] Vh = Vv tan [sin" 1 (cp/U)] \\ - \\ tanfainŕ (cp/U)] For tan sin (c /U...explosive are not included in the present analysis . This effect will limit the credibility of the direct- induced ground shock predictions, but if the... analysis . Dr. D. R. Richmond of Lovelace Foundation provided data on human shock tolerances. 26 REFERENCES 1. "Structures to Resist the Effects of

  7. Simulating the effect of SFCL on limiting the internal fault of synchronous machine

    International Nuclear Information System (INIS)

    Kheirizad, I; Varahram, M H; Jahed-Motlagh, M R; Rahnema, M; Mohammadi, A

    2008-01-01

    In this paper, we have modelled a synchronous generator with internal one phase to ground fault and then the performance of this machine with internal one phase to ground fault have been analyzed. The results show that if the faults occur in vicinity of machine's terminal, then we would have serious damages. To protect the machine from this kind of faults we have suggested integrating a SFCL (superconducting fault current limiter) into the machine's model. The results show that the fault currents in this case will reduce considerably without influencing the normal operation of the machine

  8. Space weather effects on ground based technology

    Science.gov (United States)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  9. Healthier vending machines in workplaces: both possible and effective.

    Science.gov (United States)

    Gorton, Delvina; Carter, Julie; Cvjetan, Branko; Ni Mhurchu, Cliona

    2010-03-19

    To develop healthier vending guidelines and assess their effect on the nutrient content and sales of snack products sold through hospital vending machines, and on staff satisfaction. Nutrition guidelines for healthier vending machine products were developed and implemented in 14 snack vending machines at two hospital sites in Auckland, New Zealand. The guidelines comprised threshold criteria for energy, saturated fat, sugar, and sodium content of vended foods. Sales data were collected prior to introduction of the guidelines (March-May 2007), and again post-introduction (March-May 2008). A food composition database was used to assess impact of the intervention on nutrient content of purchases. A staff survey was also conducted pre- and post-intervention to assess acceptability. Pre-intervention, 16% of staff used vending machines once a week or more, with little change post-intervention (15%). The guidelines resulted in a substantial reduction in the amount of energy (-24%), total fat (-32%), saturated fat (-41%), and total sugars (-30%) per 100 g product sold. Sales volumes were not affected, and the proportion of staff satisfied with vending machine products increased. Implementation of nutrition guidelines in hospital vending machines led to substantial improvements in nutrient content of vending products sold. Wider implementation of these guidelines is recommended.

  10. Altering the "Near-Miss" Effect in Slot Machine Gamblers

    Science.gov (United States)

    Dixon, Mark R.; Nastally, Becky L.; Jackson, James E.; Habib, Reza

    2009-01-01

    This study investigated the potential for recreational gamblers to respond as if certain types of losing slot machine outcomes were actually closer to a win than others (termed the "near-miss effect"). Exposure to conditional discrimination training and testing disrupted this effect for 10 of the 16 participants. These 10 participants demonstrated…

  11. Experimental simulation of ground motion effects

    International Nuclear Information System (INIS)

    Syphers, M.J.; Chao, A.W.; Dutt, S.; Yan, Y.T.; Zhang, P.L.; Ball, M.; Brabson, B.; Budnick, J.; Caussyn, D.D.; Collins, J.; Derenchuk, V.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Huang, H.; Jones, W.P.; Lee, S.Y.; Li, D.; Nagaitsev, S.; Pei, X.; Rondeau, G.; Sloan, T.; Minty, M.G.; Gabella, W.; Ng, K.Y.; Teng, L.; Tepikian, S.

    1993-05-01

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward strange attractors of the dissipative system. These phenomena might be important to understanding the effect of ground vibration on the SSC beam, where the synchrotron frequency is about 4 ∼ 7 Hz, and the effect of power supply ripple on the RHIC beam, where the synchrotron frequency ramps through 60 Hz at 17 GeV/c

  12. Experimental simulation of ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; Chao, A.W.; Dutt, S.; Yan, Y.T.; Zhang, P.L. [Superconducting Super Collider Lab., Dallas, TX (United States); Ball, M.; Brabson, B.; Budnick, J.; Caussyn, D.D.; Collins, J.; Derenchuk, V.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Huang, H.; Jones, W.P.; Lee, S.Y.; Li, D.; Nagaitsev, S.; Pei, X.; Rondeau, G.; Sloan, T. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States); Minty, M.G. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gabella, W.; Ng, K.Y. [Fermi National Accelerator Lab., Batavia, IL (United States); Teng, L. [Argonne National Lab., IL (United States); Tepikian, S. [Brookhaven National Lab., Upton, NY (United States)

    1993-05-01

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward strange attractors of the dissipative system. These phenomena might be important to understanding the effect of ground vibration on the SSC beam, where the synchrotron frequency is about 4 {approximately} 7 Hz, and the effect of power supply ripple on the RHIC beam, where the synchrotron frequency ramps through 60 Hz at 17 GeV/c.

  13. Experimental Simulation of Ground Motion Effects

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-07-11

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward strange attractors of the dissipative system. These phenomena might be important to understanding the effect of ground vibration on the SSC beam, where the synchrotron frequency is about 4 {approx} 7 Hz, and the effect of power supply ripple on the RHIC beam, where the synchrotron frequency ramps through 60 Hz at 17 GeV/c.

  14. Agustin de Betancourt’s wind machine for draining marshy ground: analysis of its construction through computer-aided engineering

    Directory of Open Access Journals (Sweden)

    J. I. Rojas-Sola

    2018-04-01

    Full Text Available The objective of this research is to analyze the construction of the wind machine for draining marshy ground designed by Agustin de Betancourt and Molina in 1789. To do this, a static analysis by finite elements method from the threedimensional model obtained with Autodesk Inventor Professional has been performed. The results show that the greatest stresses of the mechanism take place when the main shaft is meshed with the cogwheel, namely the point of contact between the worm screw and cogwheel. However, the maximum displacements and the greatest deformations take place in the blades. In addition, the mechanism is oversized, reaching at no point the tensile strength of the material, confirming the successful construction of this historical invention.

  15. Modeling demagnetization effects in permanent magnet synchronous machines

    NARCIS (Netherlands)

    Kral, C.; Sprangers, R.L.J.; Waarma, J.; Haumer, A.; Winter, O.; Lomonova, E.

    2010-01-01

    This paper presents a permanent magnet model which takes temperature dependencies and demagnetization effects into account. The proposed model is integrated into a magnetic fundamental wave machine model using the model- ing language Modelica. For different rotor types permanent magnet models are

  16. Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe

    Science.gov (United States)

    Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.

    2018-04-01

    The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.

  17. Ground motion and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1985-07-01

    The effects of ground motion on accelerator design are discussed. The limitations on performance are discussed for various categories of motion. For example, effects due to ground settlement, tides, seismic disturbances and man-induced disturbances are included in this discussion. 42 figs., 7 tabs

  18. Trampoline effect in extreme ground motion.

    Science.gov (United States)

    Aoi, Shin; Kunugi, Takashi; Fujiwara, Hiroyuki

    2008-10-31

    In earthquake hazard assessment studies, the focus is usually on horizontal ground motion. However, records from the 14 June 2008 Iwate-Miyagi earthquake in Japan, a crustal event with a moment magnitude of 6.9, revealed an unprecedented vertical surface acceleration of nearly four times gravity, more than twice its horizontal counterpart. The vertical acceleration was distinctly asymmetric; the waveform envelope was about 1.6 times as large in the upward direction as in the downward direction, which is not explained by existing models of the soil response. We present a simple model of a mass bouncing on a trampoline to account for this asymmetry and the large vertical amplitude. The finding of a hitherto-unknown mode of strong ground motion may prompt major progress in near-source shaking assessments.

  19. Influence of Machine Exploitation Effectiveness on Furniture Production Quality Level

    Directory of Open Access Journals (Sweden)

    Stasiak-Betlejewska Renata

    2015-12-01

    Full Text Available One of the most important factors determining the company‘s capacity to produce high quality products is the level of machinery operation effectiveness. Companies having modern machinery are characterized by high productivity. To obtain a high quality product, the equipment should be properly used, without any failure, which contributes significantly to the exploitation level increase. The modernity level and the exploitation effectiveness level for chosen machine producing furniture components in relation to the product quality level were analysed in the paper. As a result of the research findings analysis, proposals for corrective actions with regard to machinery maintenance and production processes were presented.

  20. Effect of electrode shape on grounding resistances - Part 2

    DEFF Research Database (Denmark)

    Tomaskovicova, Sonia; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2016-01-01

    Although electric resistivity tomography (ERT) is now regarded as a standard tool in permafrost monitoring, high grounding resistances continue to limit the acquisition of time series over complete freeze-thaw cycles. In an attempt to alleviate the grounding resistance problem, we have tested three...... electrode designs featuring increasing sizes and surface area, in the laboratory and at three different field sites in Greenland. Grounding resistance measurements showed that changing the electrode shape (using plates instead of rods) reduced the grounding resistances at all sites by 28%-69% during...... unfrozen and frozen ground conditions. Using meshes instead of plates (the same rectangular shape and a larger effective surface area) further improved the grounding resistances by 29%-37% in winter. Replacement of rod electrodes of one entire permanent permafrost monitoring array by meshes resulted...

  1. Ground motions and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators

  2. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    Science.gov (United States)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  3. Effective and efficient optics inspection approach using machine learning algorithms

    International Nuclear Information System (INIS)

    Abdulla, G.; Kegelmeyer, L.; Liao, Z.; Carr, W.

    2010-01-01

    The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.

  4. Ground effect on a self-propelled undulatory foil

    Science.gov (United States)

    Zhang, Dong; Chao, Liming; Pan, Guang

    2018-04-01

    The unsteady ground effect on a self-propelled undulatory foil is numerically investigated in this paper. The situation can be widely found in nature especially for fish swimming near the ground. In this study, frequency varies from 0.1 Hz to 2 Hz and distance from the ground varies from 0.2 L to 1 L. Under most kinematics, the ground has a negative effect on the performance of the foil. The swimming velocity slows down, power spend increases and swimming economy reduces. The higher frequency can produce a larger negative effect. Only at the low frequencies f = 0.1 Hz, 0.25 Hz and 0.5 Hz with distance of 0.2 L the velocity can be enhanced by 18%, 6%, 0.8%, respectively. The lift production is found to be increased. The link between the performance and the wake dynamics is also established by studying the vortex structures.

  5. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  6. Feedback effect on flute dynamics in a mirror machine

    International Nuclear Information System (INIS)

    Be’ery, I; Seemann, O

    2015-01-01

    The effect of active feedback on flute instability is experimentally studied in a table-top mirror machine. Changing the plasma conditions from mirror-loss dominated to flute-loss dominated, it is demonstrated that while the feedback has no effect on plasma density in the first case, it increases the plasma density by up to 50% in the second case. Measurements of the dependence of instability amplitude on feedback gain show that large gain stimulates high frequency perturbations. The period of these perturbations corresponds to the inherent delay of immersed electrode feedback. Variation of the spatial phase between the input and output of the phase reveals a large asymmetry between positive and negative phase shifts. A simplified model is introduced to explain how a negative phase shift causes positive feedback between the external feedback and the centrifugally driven rotation. (paper)

  7. Ground Reaction Force and Mechanical Differences Between the Interim Resistive Exercise Device (iRED) and Smith Machine While Performing a Squat

    Science.gov (United States)

    Amonette, William E.; Bentley, Jason R.; Lee, Stuart M. C.; Loehr, James A.; Schneider, Suzanne

    2004-01-01

    Musculoskeletal unloading in microgravity has been shown to induce losses in bone mineral density, muscle cross-sectional area, and muscle strength. Currently, an Interim Resistive Exercise Device (iRED) is being flown on board the ISS to help counteract these losses. Free weight training has shown successful positive musculoskeletal adaptations. In biomechanical research, ground reaction forces (GRF) trajectories are used to define differences between exercise devices. The purpose of this evaluation is to quantify the differences in GRF between the iRED and free weight exercise performed on a Smith machine during a squat. Due to the differences in resistance properties, inertial loading and load application to the body between the two devices, we hypothesize that subjects using iRED will produce GRF that are significantly different from the Smith machine. There will be differences in bar/harness range of motion and the time when peak GRF occurred in the ROMbar. Three male subjects performed three sets of ten squats on the iRED and on the Smith Machine on two separate days at a 2-second cadence. Statistically significant differences were found between the two devices in all measured GRF variables. Average Fz and Fx during the Smith machine squat were significantly higher than iRED. Average Fy (16.82 plus or minus.23; p less than .043) was significantly lower during the Smith machine squat. The mean descent/ascent ratio of the magnitude of the resultant force vector of all three axes for the Smith machine and iRED was 0.95 and 0.72, respectively. Also, the point at which maximum Fz occurred in the range of motion (Dzpeak) was at different locations with the two devices.

  8. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  9. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  10. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    Science.gov (United States)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  11. Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine

    International Nuclear Information System (INIS)

    Cho, Jeong Yeon; Han, Won Jeong; Kim, Eun Kyung

    2007-01-01

    The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines

  12. Mechanisms in wing-in-ground effect aerodynamics

    Science.gov (United States)

    Jones, Marvin Alan

    An aircraft in low-level flight experiences a large increase in lift and a marked reduction in drag, compared with flight at altitude. This phenomenon is termed the 'wing-in-ground' effect. In these circumstances a region of high pressure is created beneath the aerofoil, and a pressure difference is set up between its upper and lower surfaces. A pressure difference is not permitted at the trailing edge and therefore a mechanism must exist which allows the pressures above and below to adjust themselves to produce a continuous pressure field in the wake. It is the study of this mechanism and its role in the aerodynamics of low-level flight that forms the basis of our investigation. We begin in Chapter 2 by considering the flow past a thin aero-foil moving at moderate distances from the ground, the typical ground clearance a being of order unity. The aforementioned mechanism is introduced and described in detail in the context of this inviscid problem. Chapter 3 considers the same flow for large and small ground clearances and in the later case shows that the flow solution beneath the aerofoil takes on a particularly simple form. In this case the lift is shown to increase as a-1. In Chapter 4 we focus on the flow past the trailing edge of an aerofoil moving even nearer the ground, with the ground just outside the boundary layer. We show that in this case our asymptotic theory for small a is consistent with a 'triple-deck' approach to the problem which incorporates ground effects via a new pressure-displacement law. The triple-deck ground-interference problem is stated and solved. In Chapter 5 we investigate the case where the aerofoil is so near the ground that the ground is inside the boundary layer. Here the moving ground interacts with the aerofoil in a fully viscous way and the non-linear boundary layer equations hold along the entire length of the aerofoil. Again a pressure difference at the trailing edge is not permitted and this produces upstream adjustment

  13. Tunnel flexibility effect on the ground surface acceleration response

    Science.gov (United States)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo

    2016-09-01

    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  14. Monitoring and Analysis of Ground Settlement Induced by Tunnelling with Slurry Pressure-Balanced Tunnel Boring Machine

    Directory of Open Access Journals (Sweden)

    Hyunku Park

    2018-01-01

    Full Text Available A case study of monitoring and analysis of ground settlement caused by tunnelling of stacked twin tunnels for underground metro line construction through the densely populated area using the slurry pressure-balanced TBM is presented. Detailed ground settlement monitoring was carried out for the initial stage of down-track tunnelling in order to estimate trough width factor and volume losses including face, shield, and tail losses. In addition, using the gap model, prediction of volume loss and ground settlement was carried out with consideration of the ground condition, TBM configurations, and actual operation data. The predictions of the gap model were compared with the observed results, and adjustment factors were determined for volume loss estimation. The adjusted factors were applied to predict ground settlement of the up-track tunnel, and its results were compared with the field measurements.

  15. Evaluation of machining effect for the residual stress of SA508 by hole drilling method

    International Nuclear Information System (INIS)

    Lee, Jeong Kun; Lee, Kyoung Soo; Song, Ki O; Kim, Young Shin

    2009-01-01

    Residual stresses on a surface of the material are welcome or undesirable since it's direction, compression or tensile. But especially for the fatigue, it is not negligible effect on the material strength. These residual stresses developed during the manufacturing processes involving material deformation, heat treatment, machining. The object of this paper is verifying the effect of machining what is mostly used for SA508. For verifying the effect of machining, three different kind of machining have been achieved, milling, grinding, wire cutting. Also to measure the residual stress, hole drill method and indentation method are used.

  16. Effect of soil stabilized by cement on dynamic response of machine foundations

    Directory of Open Access Journals (Sweden)

    Al-Wakel Saad

    2018-01-01

    Full Text Available Machine foundations require significant attention from designers. The main goal of the design of machine foundation is to limit the amplitude displacement and not disturb the people who work near the machine. In some cases, if the design of machine foundations does not satisfy the acceptable value of the dynamic response (such as maximum amplitude of displacement, the stabilization of soil under the machine foundation may be used to decrease the amplitude of displacement. This paper outlines effect of stabilized soil under the foundation by cement on the displacement response of machine foundations. Three-dimensional analyses by using finite element method are carried out to investigate the effect of depth of stabilized layer with different percentage of cement content on the dynamic response of the machine foundation. In addition, the effect of area stabilized by cement material on the dynamic response of machine foundation is investigated. The results shown that, the dynamic response of machine foundations generally decreases with increasing the depth of soil layer stabilized with cement. A significant decrease in the displacement of machine foundations is occurred for the stabilized soil layer with a depth of two times of the width of foundation, and the optimum percentage of cement for stabilizing is 6%.

  17. The Effect of Machining Conditions on the Forces in the Process of Roller Brush Machining

    Directory of Open Access Journals (Sweden)

    Jakub Matuszak

    2017-12-01

    Full Text Available Because of its advantages, brushing processing has many uses. The main ones include the removal of corrosion products, surface cleaning, deburring and shaping the properties of the surface layer. The intensity of these processes depends on the degree of impact of brush fibres on the work surface. In the case of tools, in which the resilient fibres are the working elements, forces in the brushing process, apart from the machining parameters, depend on the characteristics and overall dimensions of individual fibres. The paper presents the results of studies of the influence of technological parameters and type of fibres on the radial force in the brushing process.

  18. Effect of site conditions on ground motion and damage

    Science.gov (United States)

    Borcherdt, R.; Glassmoyer, G.; Andrews, M.; Cranswick, E.

    1989-01-01

    Results of seismologic studies conducted by the U.S. reconnaissance team in conjunction with Soviet colleagues following the tragic earthquakes of December 7, 1988, suggest that site conditions may have been a major factor in contributing to increased damage levels in Leninakan. As the potential severity of these effects in Leninakan had not been previously identified, this chapter presents results intended to provide a preliminary quantification of these effects on both damage and levels of ground motion observed in Leninakan. The article describes the damage distribution geologic setting, ground motion amplification in Leninakan, including analog amplifications and spectral amplifications. Preliminary model estimates for site response are presented. It is concluded that ground motion amplification in the 0.5-2.5-second period range was a major contributing factor to increased damage in Leninakan as compared with Kirovakan. Leninakan is located on thick water saturated alluvial deposits.

  19. Experimental Investigation of Rotorcraft Outwash in Ground Effect

    Science.gov (United States)

    Tanner, Philip E.; Overmeyer, Austin D.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.

    2015-01-01

    The wake characteristics of a rotorcraft are affected by the proximity of a rotor to the ground surface, especially during hover. Ground effect is encountered when the rotor disk is within a distance of a few rotor radii above the ground surface and results in an increase in thrust for a given power relative to that same power condition with the rotor out of ground effect. Although this phenomenon has been highly documented and observed since the beginning of the helicopter age, there is still a relatively little amount of flow-field data existing to help understand its features. Joint Army and NASA testing was conducted at NASA Langley Research Center using a powered rotorcraft model in hover at various rotor heights and thrust conditions in order to contribute to the complete outwash data set. The measured data included outwash velocities and directions, rotor loads, fuselage loads, and ground pressures. The researchers observed a linear relationship between rotor height and percent download on the fuselage, peak mean outwash velocities occurring at radial stations between 1.7 and 1.8 r/R regardless of rotor height, and the measurement azimuthal dependence of the outwash profile for a model incorporating a fuselage. Comparisons to phase-locked PIV data showed similar contours but a more contracted wake boundary for the PIV data. This paper describes the test setup and presents some of the averaged results.

  20. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  1. 96 THE EFFECT OF AUTOMATED TELLER MACHINES ON BANKS ...

    African Journals Online (AJOL)

    reduces the number of human deployment by banks thereby reducing cost of operations. ... United States (PLUS and CIRRUS) drooped their long standing opposition to allowing ..... Automated teller machine network pricing – A review of the.

  2. Effect of machining damage on tensile properties of beryllium

    International Nuclear Information System (INIS)

    Hanafee, J.E.

    1976-01-01

    It is well established that damage introduced at the surface of beryllium during machining operations can lower its mechanical properties. Tensile tests were conducted to illustrate this on beryllium presently being used for parts in the W79 program and similar to the new powder-processed beryllium specified for production (tentative specification MEL 76-001319). The objective of this study is to quantitatively illuminate the importance of controlling machining damage in this particular grade of powder-processed beryllium

  3. Effect of dispersion hardening process on machinability of EN AB-AlSi9Mg silumin

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-07-01

    Full Text Available Nowadays, aluminum and its alloys found their application in any type design structures, many’s the time being an alternative for a ferrous alloys due to their technological properties like low density, ductility, high strength and good corrosion resistance. Among different fabrication processes the machining stage has a significant importance considering fabrication costs and processing time. Therefore, optimization of the process parameters that affect machining stages such as, tool wear, alloy machinability, machining effort and cutting speed becomes an area of constant development and study. To the most important factors having impact on machining properties belong: initial condition of machined material, which depends on a method and conditions of material preparation. In the paper are presented initial tests of machining properties of the EN AB-AlSi9Mg silumin subjected to heat treatment. Machinability measurements of the investigated alloy were performed with use of reboring method with constant force of feed. It enabled determination of an effect of heat treatment on machining properties of the investigated alloy. A further investigation shall be connected with determination of optimal parameters of solutionizing and ageing treatments in aspects of improvement of both mechanical properties and its machinability.

  4. A Study on the Improvement Effect and Field Applicability of the Deep Soft Ground by Ground Heating Method

    Directory of Open Access Journals (Sweden)

    Mincheol Park

    2018-05-01

    Full Text Available The soft ground in coastal areas should be treated when it needs to be used for the sustainably developed of urban or industrial complex constructions. The ground heating method for soft ground improvement was applied in Eastern Europe in the 1960s, but it was not widely used due to economic and environmental problems. The author developed a device for improving soft ground using an electric heating pipe. This paper investigates the improvement effect and field application of deep soft ground by the ground heating method using the electric heating pipe. Ground heating increases the temperature of the deep soft ground and increases the tip resistance of the static electronic piezo-cone penetration test. Additionally, the pressure of the pore water decreases because the pore water is evaporated due to the ground heating. As a result of the experiment, it was verified that there was an improvement in the effect of deep soft ground by the ground heating method. With ground heating for 96 h, the tip resistance was increased by 61% at a point 0.35 m horizontally away from the electric heat pipe, 22% at 0.97 m, and 2% at 1.31 m. As a result of the field test, it was found that there were no problems in the power supply of the diesel generator and the control panel. It was easy to install the electric heating pipes in the deep soft ground. However, due to boring, the ground was disturbed and water vapor was discharged through this gap. To minimize the discharge of water vapor, it is necessary to drive the electric heating pipe.

  5. Effects of ground insulation and greenhouse microenvironment on ...

    African Journals Online (AJOL)

    A study was conducted at Egerton University, Njoro, Kenya to establish the potential of plastic digester to produce biogas under natural and greenhouse microenvironment. The specific objectives were to evaluate the effects of greenhouse and ground insulation on the rate and quality of biogas generation. A greenhouse ...

  6. Wing in Ground Effect over a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Valentin Adrian Jean BUTOESCU

    2018-06-01

    Full Text Available A vortex method has been used to investigate the effect of a wavy ground on the aerodynamic forces acting on a wing that flies in its proximity. The air is considered inviscid and incompressible. The problem is obviously unsteady, and the solutions were found numerically.

  7. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    Directory of Open Access Journals (Sweden)

    Dmitry Kolomenskiy

    Full Text Available Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.

  8. Effects prediction guidelines for structures subjected to ground motion

    International Nuclear Information System (INIS)

    1975-07-01

    Part of the planning for an underground nuclear explosion (UNE) is determining the effects of expected ground motion on exposed structures. Because of the many types of structures and the wide variation in ground motion intensity typically encountered, no single prediction method is both adequate and feasible for a complete evaluation. Furthermore, the nature and variability of ground motion and structure damage prescribe effects predictions that are made probabilistically. Initially, prediction for a UNE involves a preliminary assessment of damage to establish overall project feasibility. Subsequent efforts require more detailed damage evaluations, based on structure inventories and analyses of specific structures, so that safety problems can be identified and safety and remedial measures can be recommended. To cover this broad range of effects prediction needs for a typical UNE project, three distinct but interrelated methods have been developed and are described. First, the fundamental practical and theoretical aspects of predicting the effects of dynamic ground motion on structures are summarized. Next, experimentally derived and theoretically determined observations of the behavior of typical structures subjected to ground motion are presented. Then, based on these fundamental considerations and on the observed behavior of structures, the formulation of the three effects prediction procedures is described, along with guidelines regarding their applicability. Example damage predictions for hypothetical UNEs demonstrate these procedures. To aid in identifying the vibration properties of complex structures, one chapter discusses alternatives in vibration testing, instrumentation, and data analysis. Finally, operational guidelines regarding data acquisition procedures, safety criteria, and remedial measures involved in conducting structure effects evaluations are discussed. (U.S.)

  9. Effect of machining parameters on surface integrity of silicon carbide ceramic using end electric discharge milling and mechanical grinding hybrid machining

    International Nuclear Information System (INIS)

    Ji, Renjie; Liu, Yonghong; Zhang, Yanzhen; Cai, Baoping; Li, Xiaopeng; Zheng, Chao

    2013-01-01

    A novel hybrid process that integrates end electric discharge (ED) milling and mechanical grinding is proposed. The process is able to effectively machine a large surface area on SiC ceramic with good surface quality and fine working environmental practice. The polarity, pulse on-time, and peak current are varied to explore their effects on the surface integrity, such as surface morphology, surface roughness, micro-cracks, and composition on the machined surface. The results show that positive tool polarity, short pulse on-time, and low peak current cause a fine surface finish. During the hybrid machining of SiC ceramic, the material is mainly removed by end ED milling at rough machining mode, whereas it is mainly removed by mechanical grinding at finish machining mode. Moreover, the material from the tool can transfer to the workpiece, and a combination reaction takes place during machining.

  10. Effect of some types of machining processes on beryllium fatigue strength properties

    International Nuclear Information System (INIS)

    Armbruster, M.

    1977-01-01

    The aim of this work, which is sponsored by the French D.G.R.S.T., is to determine a machining process giving both the highest tensile strength and the highest fatigue limit to beryllium parts. A comparison is made of the effects of : mechanical machining, electro discharge machining, electro-chemical machining, electrolytical and chemical polishing, glass shot peening, on the mechanical strength and fatigue limits of samples taken from hot pressed and extruded rods and from cast ingot sheets, either notched or not as required. Complementary examinations are performed principally by fractographic study. The results show that for beryllium, electrochemical machining followed by glass shot peening gives the best results; however mechanical machining with electrolytical polishing followed by glass shot peening are also satisfactory. (author)

  11. The effects of a nutrition education intervention on vending machine sales on a university campus.

    Science.gov (United States)

    Brown, Mary V; Flint, Matthew; Fuqua, James

    2014-01-01

    To determine the effects of a nutrition information intervention on the vending machine purchases on a college campus. Five high-use vending machines were selected for the intervention, which was conducted in the fall of 2011. Baseline sales data were collected in the 5 machines prior to the intervention. At the time of the intervention, color-coded stickers were placed near each item selection to identify less healthy (red), moderately healthy (yellow), and more healthy (green) snack items. Sales data were collected during the 2-week intervention. Purchases of red- and yellow-stickered foods were reduced in most of the machines; moreover, sales of the green-stickered items increased in all of the machines. The increased purchases of healthier snack options demonstrate encouraging patterns that support more nutritious and healthy alternatives in vending machines.

  12. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    Science.gov (United States)

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc .) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  13. Effects of pole flux distribution in a homopolar linear synchronous machine

    Science.gov (United States)

    Balchin, M. J.; Eastham, J. F.; Coles, P. C.

    1994-05-01

    Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.

  14. SLG(Single-Line-to-Ground Fault Location in NUGS(Neutral Un-effectively Grounded System

    Directory of Open Access Journals (Sweden)

    Zhang Wenhai

    2018-01-01

    Full Text Available This paper reviews the SLG(Single-Line-to-Ground fault location methods in NUGS(Neutral Un-effectively Grounded System, including ungrounded system, resonant grounded system and high-resistance grounded system which are widely used in Northern Europe and China. This type of fault is hard to detect and location because fault current is the sum of capacitance current of the system which is always small(about tens of amperes. The characteristics of SLG fault in NUGS and the fault location methods are introduced in the paper.

  15. A Functional Correspondence between Monadic Evaluators and Abstract Machines for Languages with Computational Effects

    DEFF Research Database (Denmark)

    Ager, Mads Sig; Danvy, Olivier; Midtgaard, Jan

    2005-01-01

    We extend our correspondence between evaluators and abstract machines from the pure setting of the lambda-calculus to the impure setting of the computational lambda-calculus. We show how to derive new abstract machines from monadic evaluators for the computational lambda-calculus. Starting from (1......) a generic evaluator parameterized by a monad and (2) a monad specifying a computational effect, we inline the components of the monad in the generic evaluator to obtain an evaluator written in a style that is specific to this computational effect. We then derive the corresponding abstract machine by closure......-converting, CPS-transforming, and defunctionalizing this specific evaluator. We illustrate the construction first with the identity monad, obtaining the CEK machine, and then with a lifting monad, a state monad, and with a lifted state monad, obtaining variants of the CEK machine with error handling, state...

  16. Armature reaction effects on HTS field winding in HTS machine

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS feld winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque....

  17. Effects of Long-Duration Ground Motions on Liquefaction Hazards

    Science.gov (United States)

    Greenfield, Michael W.

    Soil liquefaction during past earthquakes has caused extensive damage to buildings, bridges, dam, pipelines and other elements of infrastructure. Geotechnical engineers use empirical observations from earthquake case histories in conjunction with soil mechanics to predict the behavior of liquefiable soils. However, current empirical databases are insufficient to evaluate the behavior of soils subject to long-duration earthquakes, such as a possible Mw = 9.0 Cascadia Subduction Zone earthquake. The objective of this research is to develop insight into the triggering and effects of liquefaction due to long-duration ground motions and to provide recommendations for analysis and design. Recorded ground motions from 21 case histories with surficial evidence of liquefaction showed marked differences in soil behavior before and after liquefaction was triggered. In some cases, strong shaking continued for several minutes after the soil liquefied, and a variety of behaviors were observed including dilation pulses, continued softening due to soil fabric degradation, and soil stiffening due to pore pressure dissipation and drainage. Supplemental field and laboratory investigations were performed at three sites that liquefied during the 2011 Mw = 9.0 Tohoku earthquake. The recorded ground motions and field investigation data were used in conjunction with laboratory observations, analytical models, and numerical models to evaluate the behavior of liquefiable soils subjected to long-duration ground motions. Observations from the case histories inspired a framework to predict ground deformations based on the differences in soil behavior before and after liquefaction has triggered. This framework decouples the intensity of shaking necessary to trigger liquefaction from the intensity of shaking that drives deformation by identifying the time when liquefaction triggers. The timing-based framework promises to dramatically reduce the uncertainty in deformation estimates compared to

  18. Effect of microstructure and cutting speed on machining behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Telrandhe, Sagar V.; Mishra, Sushil; Saxena, Ashish K. [Indian Institute of Technology Bombay, Mumbai (India)

    2017-05-15

    Machining of aerospace and biomedical grade titanium alloys has always been a challenge because of their low conductivity and elastic modulus. Different machining methods and parameters have been adopted for high precision machining of titanium alloys. Machining of titanium alloys can be improved by microstructure optimization. The present study focuses on the effect of microstructure on ma- chinability of Ti6Al4V alloys at different cutting speeds. Samples were subjected to different annealing conditions resulting in different grain sizes and local micro-strains (misorientation). Cutting forces were significantly reduced after annealing; consequently, sub-surface residual stresses were reduced. Deformation twinning was also observed on samples annealed at a higher temperature due to larger grain size. Initial strain free grains and deformation twinning during machining reduces the cutting force at higher cutting speed.

  19. Nitrogen mediates above-ground effects of ozone but not below-ground effects in a rhizomatous sedge

    International Nuclear Information System (INIS)

    Jones, M.L.M.; Hodges, G.; Mills, G.

    2010-01-01

    Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha -1 yr -1 . Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen x ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation. - Nitrogen alters threshold of ozone-induced senescence, but not below-ground resource allocation.

  20. The effect of automated teller machines on banks' services in Nigeria

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... work is to find out the effects of Automated Teller Machines (ATM) on Bank's services. ... used by successful organizations for gaining competitive advantage over others.

  1. Mechanism of crud migration into the fuelling machine and its effects

    International Nuclear Information System (INIS)

    Sie, T.

    2003-01-01

    'Full text:' The objective of this paper is to summarize the opinion of experts on the mechanism of crud deposit formation and its migration into the fueling machine. Also to point out the negative effects of crud on the performance of the fueling machine head and the head overhaul / maintenance program in general. There are numerous moving/rotating components (ball screws, linear and rotating bearings, mechanical gears, mechanical seals, etc.) inside the fueling machine. By design, all these are lubricated by D2O. Because of the delicate nature of the moving components, crud contaminated D2O is obviously not a good choice of lubricant. Crud causes poor performance of the FM drive systems, premature wear of the mechanical seals, and other internal components. Due to the fuelling machine's role in maintaining reactor power and safety related functions, it is of extreme importance that the performance of the fueling machine is controlled. Major field functional failures must be prevented. In the extreme case the effect of the crud contaminated D2O could lead to a major functional failure while the fueling machine is locked on channel or has irradiated fuel on board. The next worse scenario is intolerably frequent process stops, thus requiring costly and premature fuelling machine overhaul / repairs with its associated negative effects: maintenance cost, radiation exposure, reduced fueling rates, and major upsets to the general head overhaul schedule. (author)

  2. Effects of digital human-machine interface characteristics on human error in nuclear power plants

    International Nuclear Information System (INIS)

    Li Pengcheng; Zhang Li; Dai Licao; Huang Weigang

    2011-01-01

    In order to identify the effects of digital human-machine interface characteristics on human error in nuclear power plants, the new characteristics of digital human-machine interface are identified by comparing with the traditional analog control systems in the aspects of the information display, user interface interaction and management, control systems, alarm systems and procedures system, and the negative effects of digital human-machine interface characteristics on human error are identified by field research and interviewing with operators such as increased cognitive load and workload, mode confusion, loss of situation awareness. As to the adverse effects related above, the corresponding prevention and control measures of human errors are provided to support the prevention and minimization of human errors and the optimization of human-machine interface design. (authors)

  3. Hovering performance of Anna's hummingbirds (Calypte anna) in ground effect.

    Science.gov (United States)

    Kim, Erica J; Wolf, Marta; Ortega-Jimenez, Victor Manuel; Cheng, Stanley H; Dudley, Robert

    2014-09-06

    Aerodynamic performance and energetic savings for flight in ground effect are theoretically maximized during hovering, but have never been directly measured for flying animals. We evaluated flight kinematics, metabolic rates and induced flow velocities for Anna's hummingbirds hovering at heights (relative to wing length R = 5.5 cm) of 0.7R, 0.9R, 1.1R, 1.7R, 2.2R and 8R above a solid surface. Flight at heights less than or equal to 1.1R resulted in significant reductions in the body angle, tail angle, anatomical stroke plane angle, wake-induced velocity, and mechanical and metabolic power expenditures when compared with flight at the control height of 8R. By contrast, stroke plane angle relative to horizontal, wingbeat amplitude and wingbeat frequency were unexpectedly independent of height from ground. Qualitative smoke visualizations suggest that each wing generates a vortex ring during both down- and upstroke. These rings expand upon reaching the ground and present a complex turbulent interaction below the bird's body. Nonetheless, hovering near surfaces results in substantial energetic benefits for hummingbirds, and by inference for all volant taxa that either feed at flowers or otherwise fly close to plant or other surfaces. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Criteria of the effectiveness of a liaison center for the machine building industry

    International Nuclear Information System (INIS)

    Hofer, P.; Wolff, H.; Franzen, D.

    1977-06-01

    The study aimed at working out a catalogue of criteria for the effective work of a liaison center for the machine building industry within the planned system of information and documentation of the German Government. By selecting this objective, the investigation methodically demanded a continuous change between theoretical analysis (study of literature, analytical deduction of the framework for a user-oriented information system) and empirical observation of information behaviour in the machine building industry (personal interviews with enterprises and important information sources for the machine building industries). An information system keyed to the information needs of the machine building industry must cover three main phases: Collection and documentation of information, selecting and procuring the needed information as well as encouraging and consulting the clients on the use of information. These different tasks complement one another, they correspond to different functions within enterprises: management, staff, and information function. Central point of a liaison center must be the task of selecting the required information (making information available, selling good information, analysing the information needs of clients), completed by fields of activity in documenting information (specifically for the machine building industry) and consulting clients on the use of information (agency for contacts, drawing the clients' attention to the complexity of machine building problems). A concrete catalogue of criteria for an effective conception of a liaison center for the machine building industry has been worked out. (orig.) [de

  5. Effect of heat treatments on machinability of gold alloy with age-hardenability at intraoral temperature.

    Science.gov (United States)

    Watanabe, I; Baba, N; Watanabe, E; Atsuta, M; Okabe, T

    2004-01-01

    This study investigated the effect of heat treatment on the machinability of heat-treated cast gold alloy with age-hardenability at intraoral temperature using a handpiece engine with SiC wheels and an air-turbine handpiece with carbide burs and diamond points. Cast gold alloy specimens underwent various heat treatments [As-cast (AC); Solution treatment (ST); High-temperature aging (HA), Intraoral aging (IA)] before machinability testing. The machinability test was conducted at a constant machining force of 0.784N. The three circumferential speeds used for the handpiece engine were 500, 1,000 and 1,500 m/min. The machinability index (M-index) was determined as the amount of metal removed by machining (volume loss, mm(3)). The results were analyzed by ANOVA and Scheffé's test. When an air-turbine handpiece was used, there was no difference in the M-index of the gold alloy among the heat treatments. The air-turbine carbide burs showed significantly (pmachinability of the gold alloy using the air-turbine handpiece. The heat treatments had a small effect on the M-index of the gold alloy machined with a SiC wheel for a handpiece engine.

  6. Criteria of the effectiveness of a liaison center for the machine building industry

    International Nuclear Information System (INIS)

    Hofer, P.; Wolff, H.; Franzen, D.; Schlichting, J.; Weidig, I.

    1978-04-01

    The study aimed at working out a catalogue of criteria for the effective work of a liaison center for the machine building industry within the planned system of information and documentation of the German Government. By selecting this objective, the investigation methodically demanded a continuous change between theoretical analysis (study of literature, analytical deduction of the framework for a user-oriented information system) and empirical observation of information behaviour in the machine building industry (personal interviews with enterprises and important information sources for the machine building industries). An information system keyed to the information needs of the machine building industry must cover three main phases: Collection and documentation of information, selecting and procuring the needed information as well as encouraging and consulting the clients on the use of information. These different tasks complement one another, they correspond to different functions within enterprises: management, staff, and information function. Central point of a liaison center must be the task of selecting the required information (making information available, selling good information, analysing the information needs of clients), completed by fields of activity in documenting information (specifically for the machine building industry) and consulting clients on the use of information (agency for contacts, drawing the client's attention to the complexity of machine building problems). A concrete catalogue of criteria for an effective conception of a liaison center for the machine building industry has been worked out. (orig.) [de

  7. Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy

    Science.gov (United States)

    Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel

    2018-04-01

    Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.

  8. AC Losses and Their Thermal Effect in High Temperature Superconducting Machines

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2015-01-01

    In transient operations or fault conditions, high temperature superconducting (HTS) machines suffer AC losses which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate AC losses and their thermal effect in HTS machines is presented....... The method consists of three sub-models that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an AC loss model which has...

  9. AC Losses and Their Thermal Effect in High-Temperature Superconducting Machines

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2016-01-01

    In transient operations or fault conditions, hightemperature superconducting (HTS) machines suffer ac losses, which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate ac losses and their thermal effect in HTS machines is presented....... The method consists of three submodels that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an ac loss model that has a homogeneous...

  10. Effect of camber and thickness on the aerodynamic properties of an airfoil in ground proximity

    International Nuclear Information System (INIS)

    Rad, M.; Kazemi, F. J.

    2001-01-01

    A linear vortex panel method is extended to include the effect of ground proximity on the aerodynamic properties of two dimensional airfoils. The image method is used to model the ground effect. According to the results, lift coefficient of an airfoil may increase or decrease in ground effect based on a combinative effect of its camber, thickness, angle of attack and ground clearance. Airfoils with different section parameters are analysed and their relative effectiveness are compared

  11. Effects on ground motion related to spatial variability

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.

    1987-01-01

    Models of the spectral content and the space-time correlation structure of strong earthquake ground motion are combined with transient random vibration analysis to yield site-specific response spectra that can account for the effect of local spatial averaging of the ground motion across a rigid foundation of prescribed size. The methodology is presented with reference to sites in eastern North America, although the basic approach is applicable to other seismic regions provided the source and attenuation parameters are regionally adjusted. Parameters in the spatial correlation model are based on data from the SMART-I accelerograph array, and the sensitivity of response spectra reduction factors with respect to these parameters is examined. The starting point of the analysis is the Fourier amplitude spectrum of site displacement expresses as a function of earthquake source parameters and source-to-site distance. The bedrock acceleration spectral density function at a point, derived from the displacement spectrum, is modified to account for anelastic attenuation, and where appropriate, for local soil effects and/or local spatial averaging across a foundation. Transient random vibration analysis yields approximate analytical expressions for median ground motion amplitudes and median response spectra of an earthquake defined in terms of its spectral density function and strong motion duration. The methodology is illustrated for three events characterized by their m b magnitude and epicentral distance. The focus in this paper is on the stochastic response prediction methodology enabling explicit accounting for strong motion duration and the effect of local spatial averaging on response spectra. The numerical examples enable a preliminary assessment of the reduction of response spectral amplitudes attributable to local spatial averaging across rigid foundations of different sizes. 36 refs

  12. Effect of machining parameters on surface finish of Inconel 718 in end milling

    Directory of Open Access Journals (Sweden)

    Sarkar Bapi

    2017-01-01

    Full Text Available Surface finish is an important criteria in machining process and selection of proper machining parameters is important to obtain good surface finish. In the present work effects of the machining parameters in end milling of Inconel 718 were investigated. Central composite design was used to design the total number of experiments. A Mathematical model for surface roughness has been developed using response surface methodology. In this study, the influence of cutting parameters such as cutting speed, feed rate and depth of cut on surface roughness was analyzed. The study includes individual effect of cutting parameters on surface roughness as well as their interaction. The analysis of variance (ANOVA was employed to find the validity of the developed model. The results show that depth of cut mostly affected the surface roughness. It is also observed that surface roughness values are comparable in both dry and wet machining conditions.

  13. Reversing the attention effect in figure-ground perception.

    Science.gov (United States)

    Huang, Liqiang; Pashler, Harold

    2009-10-01

    Human visual perception is sometimes ambiguous, switching between different perceptual structures, and shifts of attention sometimes favor one perceptual structure over another. It has been proposed that, in figure-ground segmentation, attention to certain regions tends to cause those regions to be perceived as closer to the observer. Here, we show that this attention effect can be reversed under certain conditions. To account for these phenomena, we propose an alternative principle: The visual system chooses the interpretation that maximizes simplicity of the attended regions.

  14. Specimen Machining for the Study of the Effect of Swelling on CGR in PWR Environment.

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    This report describes the preparation of ten specimens to be used for the study of the effect of swelling on the propagation of irradiation assisted stress corrosion cracking cracks. Four compact tension specimens, four microscopy plates and two tensile specimens were machined from a AISI 304 material that was irradiated up to 33 dpa. The specimens had been machined such as to represent the behavior of materials with 3.7%swelling and <2% swelling.

  15. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  16. The Employment Effects of High-Technology: A Case Study of Machine Vision. Research Report No. 86-19.

    Science.gov (United States)

    Chen, Kan; Stafford, Frank P.

    A case study of machine vision was conducted to identify and analyze the employment effects of high technology in general. (Machine vision is the automatic acquisition and analysis of an image to obtain desired information for use in controlling an industrial activity, such as the visual sensor system that gives eyes to a robot.) Machine vision as…

  17. The effect of cutting conditions on power inputs when machining

    Science.gov (United States)

    Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.

    2016-08-01

    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.

  18. The Effect of Unreliable Machine for Two Echelons Deteriorating Inventory Model

    Directory of Open Access Journals (Sweden)

    I Nyoman Sutapa

    2014-01-01

    Full Text Available Many researchers have developed two echelons supply chain, however only few of them consider deteriorating items and unreliable machine in their models In this paper, we develop an inventory deteriorating model for two echelons supply chain with unreliable machine. The unreliable machine time is assumed uniformly distributed. The model is solved using simple heuristic since a closed form model can not be derived. A numerical example is used to show how the model works. A sensitivity analysis is conducted to show effect of different lost sales cost in the model. The result shows that increasing lost sales cost will increase both manufacture and buyer costs however buyer’s total cost increase higher than manufacture’s total cost as manufacture’s machine is more unreliable.

  19. Effect of Ground Waste Concrete Powder on Cement Properties

    Directory of Open Access Journals (Sweden)

    Xianwei Ma

    2013-01-01

    Full Text Available The paste/mortar attached to the recycled aggregate decreases the quality of the aggregate and needs to be stripped. The stripped paste/mortar is roughly 20% to 50% in waste concrete, but relevant research is very limited. In this paper, the effects of ground waste concrete (GWC powder, coming from the attached paste/mortar, on water demand for normal consistency, setting time, fluidity, and compressive strength of cement were analyzed. The results show that the 20% of GWC powder (by the mass of binder has little effect on the above properties and can prepare C20 concrete; when the sand made by waste red clay brick (WRB replaces 20% of river sand, the strength of the concrete is increased by 17% compared with that without WRB sand.

  20. Flow structures around a flapping wing considering ground effect

    Science.gov (United States)

    Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung

    2013-07-01

    Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.

  1. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  2. The Effect of Consolidation on TBM Shield Loading in Water-Bearing Squeezing Ground

    Science.gov (United States)

    Ramoni, M.; Anagnostou, G.

    2011-01-01

    Jamming or overstressing of the shield due to ground pressure are potential problems for tunnel boring machine (TBM) tunnelling in squeezing ground. The risk of shield jamming depends essentially on the deformation rate of the ground in the vicinity of the working face. The time-dependency of the ground response to the excavation is associated with its rheological properties as well as with the transient consolidation process that takes place around the opening in the case of a low-permeability saturated ground. The present paper focuses on the second mechanism and investigates the interaction between the advancing shield, tunnel lining and consolidating ground by means of transient numerical analyses. For a given set of geotechnical conditions and a given TBM configuration, the load exerted by the ground upon the shield during TBM operation decreases with increasing gross advance rate. During a long break in operations, the ground pressure may increase significantly, thereby necessitating a higher thrust force to overcome shield skin friction and restart the TBM. It is interesting to note that a high advance rate reduces the risk of shield jamming not only during TBM advance, but is also favourable with respect to any subsequent long standstills.

  3. Simulation study on effects of machine imperfections in the KEK B-factory

    International Nuclear Information System (INIS)

    Koiso, Haruyo; Funakoshi, Yoshihiro

    1994-01-01

    Effects of machine imperfections in a low beta lattice with noninterleaved sextupoles are studied with computer simulations. Misalignments of quadrupoles and sextupoles significantly degrade the dynamic aperture and the vertical-to-horizontal emittance ratio. However, orbit corrections at sextupoles effectively recover both the dynamic aperture and the emittance ratio. (author)

  4. Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hocheng, H.; Chou, C.Y.; Deng, C.S.

    2003-01-01

    In this work the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. A new damage variable was used to study the EDM damage. The workpiece surface and re-solidified layers were examined by a scanning electron microscopy. Surface roughness was determined with a surface profilometer. The residual stress acting on the EDM specimen was measured by the X-ray diffraction technique. Experimental results indicate that the thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process introduces tensile residual stress on the machined surface. The EDM damage leads to strength degradation

  5. EFFECT OF SILICON CONTENT ON MACHINABILITY OF Al-Si ALLOYS

    Directory of Open Access Journals (Sweden)

    Birol Akyüz

    2016-09-01

    Full Text Available In this study the effect of the change in the amount of Silicon (Si occuring in Al-Si alloys on mechanical and machinability properties of the alloy was investigated. The change in mechanical properties and microstructure, which depends on the increase in Si percentage, and the effects of this change on Flank Build-up (FBU, wear on the cutting edge, surface roughness, and machinability were also studied. Alloys in different ratios of Si (i.e. 2 to 12 wt %, were employed in the study. The specimens for tests were obtained by casting into metal moulds. The results obtained from experimental studies indicate improved mechanical properties and machinability, depending on the rise in Si percentage in Al-Si alloys. It is also observed that the increase in Si percentage enhanced surface quality.

  6. An Effective Mechanism for Virtual Machine Placement using Aco in IAAS Cloud

    Science.gov (United States)

    Shenbaga Moorthy, Rajalakshmi; Fareentaj, U.; Divya, T. K.

    2017-08-01

    Cloud computing provides an effective way to dynamically provide numerous resources to meet customer demands. A major challenging problem for cloud providers is designing efficient mechanisms for optimal virtual machine Placement (OVMP). Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits. In order to provide appropriate resources to the clients an optimal virtual machine placement algorithm is proposed. Virtual machine placement is NP-Hard problem. Such NP-Hard problem can be solved using heuristic algorithm. In this paper, Ant Colony Optimization based virtual machine placement is proposed. Our proposed system focuses on minimizing the cost spending in each plan for hosting virtual machines in a multiple cloud provider environment and the response time of each cloud provider is monitored periodically, in such a way to minimize delay in providing the resources to the users. The performance of the proposed algorithm is compared with greedy mechanism. The proposed algorithm is simulated in Eclipse IDE. The results clearly show that the proposed algorithm minimizes the cost, response time and also number of migrations.

  7. Effect of electrode shape on grounding resistances - Part 1

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Dahlin, Torleif

    2016-01-01

    Electrode grounding resistance is a major factor affecting measurement quality in electric resistivity tomography (ERT) measurements for cryospheric applications. Still, little information is available on grounding resistances in the geophysical literature, mainly because it is difficult to measure....... The focus-one protocol is a new method for estimating single electrode grounding resistances by measuring the resistance between a single electrode in an ERT array and all the remaining electrodes connected in parallel. For large arrays, the measured resistance is dominated by the grounding resistance...... of the electrode under test, the focus electrode. We have developed an equivalent circuit model formulation for the resistance measured when applying the focus-one protocol. Our model depends on the individual grounding resistances of the electrodes of the array, the mutual resistances between electrodes...

  8. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  9. Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations.

    Science.gov (United States)

    Torkzaban, Bahareh; Kayvanjoo, Amir Hossein; Ardalan, Arman; Mousavi, Soraya; Mariotti, Roberto; Baldoni, Luciana; Ebrahimie, Esmaeil; Ebrahimi, Mansour; Hosseini-Mazinani, Mehdi

    2015-01-01

    Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data. In this study, we developed a new combined approach of data analysis using microsatellite marker data from our previous studies of olive populations using machine learning algorithms. Herein, 267 olive accessions of various origins including 21 reference cultivars, 132 local ecotypes, and 37 wild olive specimens from the Iranian plateau, together with 77 of the most represented Mediterranean varieties were investigated using a finely selected panel of 11 microsatellite markers. We organized data in two '4-targeted' and '16-targeted' experiments. A strategy of assaying different machine based analyses (i.e. data cleaning, feature selection, and machine learning classification) was devised to identify the most informative loci and the most diagnostic alleles to represent the population and the geography of each olive accession. These analyses revealed microsatellite markers with the highest differentiating capacity and proved efficiency for our method of clustering olive accessions to reflect upon their regions of origin. A distinguished highlight of this study was the discovery of the best combination of markers for better differentiating of populations via machine learning models, which can be exploited to distinguish among other biological populations.

  10. Effect of machining on the deformability of steel in surface-active medium at lower temperatures

    International Nuclear Information System (INIS)

    Gusti, E.Ya.; Babej, Yu.I.

    1977-01-01

    The effect of some machining methods of carbon steel, chromium steel, and chromium nickel steel, and that of low temperatures on the principle characteristics of formability during impact bending in air and a surface-active environment have been studied. The temperature decrease from the ambient to -80 deg is shown to reduce steel formability as evaluated by deflection (f) and to increase the forming force. The variation of these characteristics with lowering temperature, however, is greatly affected by machining process conditions. The FRHT (Friction-Hardening Treatment) on the white layer assures minimum ductility losses, and increases steel strength at low temperatures both in air and in the surface-active environment

  11. Optimizing placements of ground-based snow sensors for areal snow cover estimation using a machine-learning algorithm and melt-season snow-LiDAR data

    Science.gov (United States)

    Oroza, C.; Zheng, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2016-12-01

    We present a structured, analytical approach to optimize ground-sensor placements based on time-series remotely sensed (LiDAR) data and machine-learning algorithms. We focused on catchments within the Merced and Tuolumne river basins, covered by the JPL Airborne Snow Observatory LiDAR program. First, we used a Gaussian mixture model to identify representative sensor locations in the space of independent variables for each catchment. Multiple independent variables that govern the distribution of snow depth were used, including elevation, slope, and aspect. Second, we used a Gaussian process to estimate the areal distribution of snow depth from the initial set of measurements. This is a covariance-based model that also estimates the areal distribution of model uncertainty based on the independent variable weights and autocorrelation. The uncertainty raster was used to strategically add sensors to minimize model uncertainty. We assessed the temporal accuracy of the method using LiDAR-derived snow-depth rasters collected in water-year 2014. In each area, optimal sensor placements were determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys was compared to 100 configurations of sensors selected at random. We found the accuracy of the model from the proposed placements to be higher and more consistent in each remaining survey than the average random configuration. We found that a relatively small number of sensors can be used to accurately reproduce the spatial patterns of snow depth across the basins, when placed using spatial snow data. Our approach also simplifies sensor placement. At present, field surveys are required to identify representative locations for such networks, a process that is labor intensive and provides limited guarantees on the networks' representation of catchment independent variables.

  12. Effect of different machining processes on the tool surface integrity and fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chuan Liang [College of Mechanical and Electrical Engineering, Nanchang University, Nanchang (China); Zhang, Xianglin [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-08-15

    Ultra-precision grinding, wire-cut electro discharge machining and lapping are often used to machine the tools in fine blanking industry. And the surface integrity from these machining processes causes great concerns in the research field. To study the effect of processing surface integrity on the fine blanking tool life, the surface integrity of different tool materials under different processing conditions and its influence on fatigue life were thoroughly analyzed in the present study. The result shows that the surface integrity of different materials was quite different on the same processing condition. For the same tool material, the surface integrity on varying processing conditions was quite different too and deeply influenced the fatigue life.

  13. Effect of power quality on windings temperature of marine induction motors. Part I: Machine model

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime Univ., Dept. of Ship Electrical Power Engineering, Morska Str. 83, 81-225 Gdynia (Poland)

    2009-10-15

    Marine induction machines are exposed to various power quality disturbances appearing simultaneously in ship power systems: frequency and voltage rms value deviation, voltage unbalance and voltage waveform distortions. As a result, marine induction motors can be seriously overheated due to lowered supply voltage quality. Improvement of the protection of marine induction machines requires an appropriate method of power quality assessment and modification of the power quality regulations of ship classification societies. This paper presents an analytical model of an induction cage machine supplied with voltage of lowered quality, used in part II of the work (effect of power quality on windings temperature of marine induction motors. Part II. Results of investigations and recommendations for related regulations) for power quality assessment in ship power systems, and for justification of the new power quality regulations proposal. The presented model is suitable for implementation in an on-line measurement system. (author)

  14. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  15. Breaking Habits: The Effect of The French Vending Machine Ban on School Snacking and Sugar Intakes

    Science.gov (United States)

    Capacci, Sara; Mazzocchi, Mario; Shankar, Bhavani

    2018-01-01

    This paper estimates the effect of the 2005 vending machine ban in French secondary schools on nutrient intakes and on the frequency of morning snacking at school. Using data before and after the ban, and exploiting the discontinuity associated with the age-dependent exposure to the ban, we specify a difference-in-differences regression…

  16. Effectiveness and resolution of tests for evaluating the performance of cutting fluids in machining aerospace alloys

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Axinte, Dragos A.

    2008-01-01

    The paper discusses effectiveness and resolution of five cutting tests (turning, milling, drilling, tapping, VIPER grinding) and their quality output measures used in a multi-task procedure for evaluating the performance of cutting fluids when machining aerospace materials. The evaluation takes...

  17. Effects of different ground surface on rye habit and yield

    International Nuclear Information System (INIS)

    Doroszewski, A.

    1995-01-01

    Rye was sown in pots imbeded into the ground, in non-competitive conditions. Plot differed only with kinds of ground surfaces (grass, bare soil) which affected the spectral composition of reflected sunlight. Plants growing on the ground covered with grass received more radiation in the range of far red than plants growing on bare soil. The plants from both plots reacted differently to the environmental conditions by creating different habits. Main shoots of rye growing in the neighbourhood of grass had been much taller than the rye growing on the bare soil; its internodes were longer and its heads heavier and heads had more grain

  18. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.

    Science.gov (United States)

    Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence

    2017-10-25

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  19. Effect of different parameters on machining of SiC/SiC composites via pico-second laser

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weinan; Zhang, Ruoheng [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Wang, Chunhui; Wang, Jing [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 10068 (China); Cheng, Laifei [Science and technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2016-02-28

    Graphical abstract: - Highlights: • The highlights of the manuscript include the following two aspects. • First, we found that the different machining modes (helical line scanning and single ring line scanning) and processing power of machining have remarkable effect on the surface morphology of the machined area, such as the shape, depth and the formation of different surface structures. • Secondly, we investigated that the debris consisted of C, Si and O was observed on the machined surface. • Some of the Si–C bonds of the SiC matrix and fibers would be transformed into Si–O bonds after machined, depending on the processing power. - Abstract: Pico-second laser plays an important role in modern machining technology, especially in machining high hardness materials. In this article, pico-second laser was utilized for irradiation on SiC/SiC composites, and effects of different processing parameters including the machining modes and laser power were discussed in detail. The results indicated that the machining modes and laser power had great effect on machining of SiC/SiC composites. Different types of surface morphology and structure were observed under helical line scanning and single ring line scanning, and the analysis of their formulation was discussed in detail. It was believed that the machining modes would be responsible to the different shapes of machining results at the same parameters. The processing power shall also influence the surface morphology and quality of machining results. In micro-hole drilling process, large amount of debris and fragments were observed within the micro-holes, and XPS analysis showed that there existed Si–O bonds and Si–C bonds, indicating that the oxidation during processing was incomplete. Other surface morphology, such as pores and pits were discussed as well.

  20. Effects of energy development on ground water quality: an overview and preliminary assessment

    International Nuclear Information System (INIS)

    Parker, W.M. III; Yin, S.C.L.; Davis, M.J.; Kutz, W.J.

    1981-07-01

    A preliminary national overview of the various effects on ground water quality likely to result from energy development. Based on estimates of present and projected energy-development activities, those regions of the country are identified where ground water quality has the potential for being adversely affected. The general causes of change in ground water quality are reviewed. Specific effects on ground water quality of selected energy technologies are discussed, and some case-history material is provided. A brief overview of pertinent legislation relating to the protection and management of ground water quality is presented. Six methodologies that have some value for assessing the potential effects on ground water quality of energy development activities are reviewed. A method of identifying regions in the 48 contiguous states where there is a potential for ground water quality problems is described and then applied

  1. Experimental Investigation of a Lift Augmented Ground Effect Platform

    National Research Council Canada - National Science Library

    Igue, Roberto T

    2005-01-01

    .... Lift, torque and efficiency were measured and calculated for each setting. Pressure and velocity information was also collected at specific points around the craft when operating at different heights above ground...

  2. On the ground state for fractional quantum hall effect

    International Nuclear Information System (INIS)

    Jellal, A.

    1998-09-01

    In the present letter, we investigate the ground state wave function for an explicit model of electrons in an external magnetic field with specific inter-particle interactions. The excitation states of this model are also given. (author)

  3. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Yu; Holz, Daniel E. [University of Chicago, Chicago, Illinois 60637 (United States); Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik [LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2017-01-20

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  4. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    International Nuclear Information System (INIS)

    Chen, Hsin-Yu; Holz, Daniel E.; Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  5. Instrumented impact testing machine with reduced specimen oscillation effects

    International Nuclear Information System (INIS)

    Rintamaa, R.; Rahka, K.; Wallin, K.

    1984-07-01

    Owing to small and inexpensive specimens the Charpy impact test is widely used in quality control and alloy development. Limitations in power reactor survellance capsules it is also widely used for safety analysis purposes. Instrumenting the tup and computerizing data acquisition, makes dynamic fracture mechanics data measurement possible and convenient. However, the dynamic effects (inertia forces, specimen oscillations) in the impact test cause inaccuracies in the recorded load-time diagram and hence diminish the reliability of the calculated dynamic fracture mechanics parameters. To decrease inaccuracies a new pendulum type of instrumented impact test apparatus has been developed and constructed in the Metals Laboratory of the Technical Research Centre of Finland. This tester is based on a new principle involving inverted test geometry. The purpose of the geometry inversion is to reduce inertia load and specimen oscillation effects. Further, the new impact tester has some other novel features: e.g. the available initia impact energy is about double compared to the conventional standard (300 J) impact tester allowing the use of larger (10 x 20 x 110 mm) bend specimens than normal Charpy specimens. Also, the rotation asix in the three point bending is nearly stationary making COD-measurements possible. An experimental test series is described in which the inertia effects and specimen oscillations are compared in the conventional and new impact tester utilizing Charpy V-notch specimens. Comparison of the two test geometries is also made with the aid of an analytical model using finite element method (FEM) analysis. (author)

  6. Machines vs. ensembles: effective MAPK signaling through heterogeneous sets of protein complexes.

    Directory of Open Access Journals (Sweden)

    Ryan Suderman

    Full Text Available Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in network evolution. The capacity of ensembles to signal effectively

  7. Effect of Machine Geometry on Higher Harmonics Content in Air-Gap Magnetic Field of Synchronous Reluctance Machine

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Chomát, Miroslav; Doležel, Ivo

    2001-01-01

    Roč. 176, č. 1500 (2001), s. 259-266 ISSN 0072-4688 R&D Projects: GA ČR GA102/01/0181 Keywords : synchronous reluctance machine * torque pulsation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  8. Tunnel boring machine applications

    International Nuclear Information System (INIS)

    Bhattacharyya, K.K.; McDonald, R.; Saunders, R.S.

    1992-01-01

    This paper reports that characterization of Yucca Mountain for a potential repository requires construction of an underground Exploratory Studies Facility (ESF). Mechanical excavating methods have been proposed for construction of the ESF as they offer a number of advantages over drilling and blasting at the Yucca Mountain site, including; less ground disturbance and therefore a potential for less adverse effects on the integrity of the site, creation of a more stable excavation cross section requiring less ground support, and an inherently safer and cleaner working environment. The tunnel boring machine (TBM) provides a proven technology for excavating the welded and unwelded Yucca Mountain tuffs. The access ramps and main underground tunnels form the largest part of the ESF underground construction work, and have been designed for excavation by TBM

  9. Electric-Discharge Machining Techniques for Evaluating Tritium Effects on Materials

    International Nuclear Information System (INIS)

    Morgan, M.J.

    2003-01-01

    In this investigation, new ways to evaluate the long-term effects of tritium on the structural properties of components were developed. Electric-discharge machining (EDM) techniques for cutting tensile and fracture toughness samples from tritium exposed regions of returned reservoirs were demonstrated. An existing electric discharge machine was used to cut sub-size tensile and fracture toughness samples from the inside surfaces of reservoir mockups. Tensile properties from the EDM tensile samples were similar to those measured using full-size samples cut from similar stock. Although the existing equipment could not be used for machining tritium-exposed hardware, off-the shelf EDM units are available that could. With the right equipment and the required radiological controls in place, similar machining and testing techniques could be used to directly measure the effects of tritium on the properties of material cut from reservoir returns. Stress-strain properties from tritium-exposed reservoirs would improve finite element modeling of reservoir performance because the data would be representative of the true state of the reservoir material in the field. Tensile data from samples cut directly from reservoirs would also complement existing shelf storage and burst test data of the Life Storage Program and help answer questions about a specific reservoir's processing history and properties

  10. Ways to increase the effectiveness of using computers and machine programs

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, R T; Bagautdinov, G M; Kovalenko, Yu M

    1979-01-01

    An analysis is conducted of the statistical data about the operation of the computers of the computer center of the Tatar Scientific Research and Design Institute for Oil. Exposing the reasons which impact on the effectiveness of the use of the computers and the machine programs through an expert questionnaire, an ''effectiveness tree'' is compiled. Formulated are organizational measures for the executor (the computer center), the user and management and the senior leadership, which are required in order to successfully use the computers.

  11. The effect of the earth's rotation on ground water motion.

    Science.gov (United States)

    Loáiciga, Hugo A

    2007-01-01

    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  12. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  13. Effects of shielding coatings on the anode shaping process during counter-rotating electrochemical machining

    Science.gov (United States)

    Wang, Dengyong; Zhu, Zengwei; Wang, Ningfeng; Zhu, Di

    2016-09-01

    Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 mm. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.

  14. Effect of electric discharge machining on the fatigue life of Inconel 718

    Science.gov (United States)

    Jeelani, S.; Collins, M. R.

    1988-01-01

    The effect of electric discharge machining on the fatigue life of Inconel 718 alloy at room temperature was investigated. Data were generated in the uniaxial tension fatigue mode at ambient temperature using flat 3.175 mm thick specimens. The specimens were machined on a wire-cut electric discharge machine at cutting speeds ranging from 0.5 to 2 mm per minute. The specimens were fatigued at a selected stress, and the resulting fatigue lives compared with that of the virgin material. The surfaces of the fatigued specimens were examined under optical and scanning electron microscopes, and the roughness of the surfaces was measured using a standard profilometer. From the results of the investigation, it was concluded that the fatigue life of the specimens machined using EDM decreased slightly as compared with that of the virgin material, but remained unchanged as the cutting speed was changed. The results are explained using data produced employing microhardness measurements, profilometry, and optical and scanning microscopy.

  15. Advice taking from humans and machines: an fMRI and effective connectivity study

    Directory of Open Access Journals (Sweden)

    Kimberly Goodyear

    2016-11-01

    Full Text Available With new technological advances, advice can come from different sources such as machines or humans, but how individuals respond to such advice and the neural correlates involved need to be better understood. We combined functional MRI and multivariate Granger causality analysis with an X-ray luggage-screening task to investigate the neural basis and corresponding effective connectivity involved with advice utilization from agents framed as experts. Participants were asked to accept or reject good or bad advice from a human or machine agent with low reliability (high false alarm rate. We showed that unreliable advice decreased performance overall and participants interacting with the human agent had a greater depreciation of advice utilization during bad advice compared to the machine agent. These differences in advice utilization can be perceivably due to reevaluation of expectations arising from association of dispositional credibility for each agent. We demonstrated that differences in advice utilization engaged brain regions that may be associated with evaluation of personal characteristics and traits (precuneus, posterior cingulate cortex, temporoparietal junction and interoception (posterior insula. We found that the right posterior insula and left precuneus were the drivers of the advice utilization network that were reciprocally connected to each other and also projected to all other regions. Our behavioral and neuroimaging results have significant implications for society because of progressions in technology and increased interactions with machines.

  16. THE EFFECT OF IMPLEMENTATION MAINTENANCE CARDS IN PERFORMANCE OF MACHINES IN SELECTED PRODUCTION COMPANY

    Directory of Open Access Journals (Sweden)

    Michał ZASADZIEŃ

    2015-10-01

    Full Text Available Intelligent development should become an inherent part of the policy of each enterprise which wants to develop and maintain its position on the competitive market. The article presents investigations related to the implementation of one of Total Productive Maintenance system elements. Reasons for introducing a new procedure for circulating information about machine inspections and overhauls planned, the major element of which are work sheets for key machines taking part in the production process, have been presented. The effectiveness of the new procedure was subjected to analysis by comparing particular machines’ work times and downtimes before and after the implementation of new procedures. The conducted research revealed an increased effectiveness of machines’ work, which resulted from shortened down-times, especially the duration of a failure.

  17. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    Science.gov (United States)

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. © 2015 The Author(s).

  18. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host–parasite interactions

    Science.gov (United States)

    Tao, Leiling; Gowler, Camden D.; Ahmad, Aamina; Hunter, Mark D.; de Roode, Jacobus C.

    2015-01-01

    Host–parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host–parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host–parasite systems. PMID:26468247

  19. The effect of linear guide representation for topology optimization on a five-axis milling machine

    OpenAIRE

    Yüksel, Esra; Yuksel, Esra

    2017-01-01

    Topology optimization is a countermeasure to obtain lightweight and stiff structures for machine tools. Topology optimizations are applied at component level due to computational limitations, therefore linear guides’ rolling elements are underestimated in most of the cases. Stiffness of the entire assembly depends on the least stiff components which are identified as linear guides in the current literature. In this study, effects of linear guide’s representation in virtual environment are inv...

  20. Effects of machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites

    Science.gov (United States)

    Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.

    2017-10-01

    This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.

  1. Effect of Different Ground Scenarios on Flow Structure of a Rotor At Hover Condition

    Science.gov (United States)

    Kocak, Goktug; Nalbantoglu, Volkan; Yavuz, Mehmet Metin

    2017-11-01

    The ground effect of a scaled model rotor at hover condition was investigated experimentally in a confined environment. Different ground effect scenarios including full, partial, and inclined conditions, compared to out of ground condition, were characterized qualitatively and quantitatively using laser illuminated smoke visualization and Laser Doppler Anemometry measurements. The results indicate that the presence of the ground affects the flow regime near the blade tip by changing the spatial extent and the path of the vortex core. After the impingement of the wake to the ground, highly unsteady and turbulent wake is observed. Both the mean and the root mean square of the induced velocity increase toward the blade tip. In line with this, the spectral power of the dominant frequency in the velocity fluctuations significantly increases toward the blade tip. All these observations are witnessed in all ground effect conditions tested in the present study. Considering the inclined ground effect in particular, it is observed that the mean induced velocities of the high side (mountain) are higher compared to the velocities of the low side (valley) in contrast to the general trend observed in the present study where the ground effect reduces the induced velocity.

  2. Effect of machining parameters on surface textures in EDM of Fe-Mn-Al alloy

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hou, Max Ti-Kuang

    2007-01-01

    In this work, the surface characteristics caused by EDM were analyzed by means of the atomic force microscopy (AFM) technique. An empirical model of Fe-Mn-Al alloy was proposed based on the experimental data. A qualitative energy dispersive spectroscopic analyzer was used to measure the chemical composition of the specimen. Surface hardness was determined with a microhardness tester. Experimental results indicate that the EDM process causes a ridged surface and induces machining damage in the surface layer, and increases the surface roughness. The depth of micro-cracks, micro-voids and machined damage increase with an increase in the amount of pulsed current and pulse-on duration. The effect of the magnitude of the pulse-on duration on the surface texture of the specimen is more significant than the pulsed current. Furthermore, the AFM method reveals the 3D surface textures of the EDM specimen with a nanometer scale

  3. Effect of microstructure on mechanical properties and machinability of spheroidal graphite cast iron

    International Nuclear Information System (INIS)

    Kubota, Satoru; Iio, Chinori; Yamaguchi, Shoji; Naito, Daiki; Tomota, Yo; Stefanus, Harjo

    2013-01-01

    Tensile properties, fatigue strength and machinability of spheroidal graphite cast irons with different microstructures were studied. Work-hardening and tensile strength increased with increasing pearlite volume fraction. In situ neutron diffraction during tensile deformation revealed that phase stresses and intergranular stresses are generated with deformation resulting in high work-hardening and high tensile strength with increasing pearlite volume fraction. It was found that graphite grains bear almost no stress, and strongly influence fatigue crack initiation as well as propagation. Therefore graphite refinement is very effective to realize high fatigue strength. The tool life for cutting becomes shorter with increasing pearlite volume fraction. The balance of mechanical properties and machinability was considered. (author)

  4. Evaluation of the effectiveness of training on a machine with a variable-cam.

    Science.gov (United States)

    Urbanik, Czesław; Staniszewski, Michał; Mastalerz, Andrzej; Karczewska, Magdalena; Lutosławska, Grażyna; Iwańska, Dagmara; Madej, Anna; Ostrowska, Elżbieta; Gwarek, Lucyna; Tkaczyk, Joanna

    2013-01-01

    The aim of the study was to assess the effectiveness of the training of elbow flexors through the use of 2 machines, one of which was equipped with a disc plate of constant radius, the other one with a variable-cam having a radius adjustable to muscle strength. The experiment included 45 men divided into 3 equal groups: training group A (variable-cam), training group B (circle), and control group C. The training lasted for 8 weeks, 3 times a week. In order to control the effects, the values of peak torque and power of the flexor muscles of the elbow were isokinetically measured for the angular velocities of 30°/s and 60°/s. Also taken were anthropometric measurements of the arm and the creatine kinase (CK) activity in the blood plasma. As a result of the training, significant increases of biomechanical values were noted only in group A: power increased over 20%, the peak torque over 14%. After the training, significant increases of arm circumference in the relaxed position were noted in group A (17 mm), as well as in group B (11 mm). Also, some changes in CK activity were observed between Monday and Friday in a training week. On the basis of the experimental measurements, it may be ascertained that training elbow flexor muscles on a machine with a variable-cam is more efficient for increases in strength and power, as well as for some anthropometric parameters, than training on a machine with a disc plate.

  5. Effects of fluid flow on heat transfer in large rotating electrical machines

    International Nuclear Information System (INIS)

    Lancial, Nicolas

    2014-01-01

    EDF operates a large number of electrical rotating machines in its electricity generation capacity. Thermal stresses which affect them can cause local heating, sufficient to damage their integrity. The present work contributes to provide methodologies for detecting hot spots in these machines, better understanding the topology of rotating flows and identifying their effects on heat transfer. Several experimental scale model were used by increasing their complexity to understand and validate the numerical simulations. A first study on a turbulent wall jet over a non-confined backward-facing step (half-pole hydro-generator) notes significant differences compared to results from confined case: both of them are present in an hydro-generator. A second study was done on a small confined rotating scale model to determinate the effects of a Taylor-Couette-Poiseuille on temperature distribution and position of hot spots on the heated rotor, by studying the overall flow regimes flow. These studies have helped to obtain a reliable method based on conjugate heat transfer (CHT) simulations. Another method, based on FEM coupled with the use of an inverse method, has been studied on a large model of hydraulic generator so as to solve the computation time issue of the first methodology. It numerically calculates the convective heat transfer from temperature measurements, but depends on the availability of experimental data. This work has also developed new no-contact measurement techniques as the use of a high-frequency pyrometer which can be applied on rotating machines for monitoring temperature. (author)

  6. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  7. Effect of Electrical Discharge Machining on Stress Concentration in Titanium Alloy Holes.

    Science.gov (United States)

    Hsu, Wei-Hsuan; Chien, Wan-Ting

    2016-11-24

    Titanium alloys have several advantages, such as a high strength-to-weight ratio. However, the machinability of titanium alloys is not as good as its mechanical properties. Many machining processes have been used to fabricate titanium alloys. Among these machining processes, electrical discharge machining (EDM) has the advantage of processing efficiency. EDM is based on thermoelectric energy between a workpiece and an electrode. A pulse discharge occurs in a small gap between the workpiece and electrode. Then, the material from the workpiece is removed through melting and vaporization. However, defects such as cracks and notches are often detected at the boundary of holes fabricated using EDM and the irregular profile of EDM holes reduces product quality. In this study, an innovative method was proposed to estimate the effect of EDM parameters on the surface quality of the holes. The method combining the finite element method and image processing can rapidly evaluate the stress concentration factor of a workpiece. The stress concentration factor was assumed as an index of EDM process performance for estimating the surface quality of EDM holes. In EDM manufacturing processes, Ti-6Al-4V was used as an experimental material and, as process parameters, pulse current and pulse on-time were taken into account. The results showed that finite element simulations can effectively analyze stress concentration in EDM holes. Using high energy during EDM leads to poor hole quality, and the stress concentration factor of a workpiece is correlated to hole quality. The maximum stress concentration factor for an EDM hole was more than four times that for the same diameter of the undamaged hole.

  8. Factors Contributing to Cognitive Absorption and Grounded Learning Effectiveness in a Competitive Business Marketing Simulation

    Science.gov (United States)

    Baker, David Scott; Underwood, James, III; Thakur, Ramendra

    2017-01-01

    This study aimed to establish a pedagogical positioning of a business marketing simulation as a grounded learning teaching tool and empirically assess the dimensions of cognitive absorption related to grounded learning effectiveness in an iterative business simulation environment. The method/design and sample consisted of a field study survey…

  9. Effects Disposal Condition and Ground Water to Leaching Rate of Radionuclides from Solidification Products

    International Nuclear Information System (INIS)

    Herlan Martono; Wati

    2008-01-01

    Effects disposal condition and ground water to leaching rate of radionuclides from solidification products have been studied. The aims of leaching test at laboratory to get the best composition of solidified products for continuous process or handling. The leaching rate of radionuclides from the many kinds of matrix from smallest to bigger are glass, thermosetting plastic, urea formaldehyde, asphalt, and cement. Glass for solidification of high level waste, thermosetting plastic and urea formaldehyde for solidification of low and intermediate waste, asphalt and cement for solidification of low and intermediate level waste. In shallow land burial, ground water rate is fast, debit is high, and high permeability, so the probability contact between solidification products and ground water is occur. The pH of ground water increasing leaching rate, but cation in the ground water retard leaching rate. Effects temperature radiation and radiolysis to solidification products is not occur. In the deep repository, ground water rate is slow, debit is small, and low permeability, so the probability contact between solidification products and ground water is very small. There are effect cooling time and distance between pits to rock temperature. Alfa radiation effects can be occur, but there is no contact between solidification products and ground water, so that there is not radiolysis. (author)

  10. Effects of Cascaded Voltage Collapse and Protection of Many Induction Machine Loads upon Load Characteristics Viewed from Bulk Transmission System

    Science.gov (United States)

    Kumano, Teruhisa

    As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.

  11. Effects of space weather on high-latitude ground systems

    Science.gov (United States)

    Pirjola, Risto

    Geomagnetically induced currents (GIC) in technological systems, such as power grids, pipelines, cables and railways, are a ground manifestation of space weather. The first GIC observations were already made in early telegraph equipment more than 150 years ago. In power networks, GIC may saturate transformers with possible harmful consequences extending even to a collapse of the whole system or to permanent damage of transformers. In pipelines, GIC and the associated pipe-to-soil voltages may enhance corrosion or disturb surveys associated with corrosion control. GIC are driven by the geoelectric field induced by a geomagnetic variation at the Earth’s surface. The electric and magnetic fields are primarily produced by ionospheric currents and secondarily affected by the ground conductivity. Of great importance is the auroral electrojet with other rapidly varying currents indicating that GIC are a particular high-latitude problem. In this paper, we summarize the GIC research done in Finland during about 25 years, and discuss the calculation of GIC in a given network. Special attention is paid to modelling a power system. It is shown that, when considering GIC at a site, it is usually sufficient to take account for a smaller grid in the vicinity of the particular site. Modelling GIC also provides a basis for developing forecasting and warning methods of GIC.

  12. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    Science.gov (United States)

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  13. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  14. The effects of subcutaneous injection of nicotine on osseointegration of machined and anodized implants in rabbits.

    Science.gov (United States)

    Linden, Maria Salete Sandini; Bittencourt, Marcos Eugênio de; Carli, João Paulo De; Miyagaki, Daniela Cristina; Santos, Pâmela Letícia Dos; Paranhos, Luiz Renato; Groppo, Francisco Carlos; Ramacciato, Juliana Cama

    2018-01-01

    To evaluate the influence of subcutaneous injection nicotine in osseointegration process on different implant surfaces. Twenty-two male rabbits were distributed into two groups according to the subcutaneous injections: (1) nicotine 3 mg/day/kg and (2) 0.9 % NaCI 3 mL/day/kg, three times a day; subgroups were then designated-machined and anodized implants were placed in the right and left tibia bones, respectively. The animals were submitted euthanasia after periods of eight weeks to determine nicotine and cotinine levels, alkaline phosphatase and biomechanical analysis. The plasmatic levels of nicotine and cotinine were 0.5 ± 0.28 ng/mL and 9.5 ± 6.51 ng/mL, respectively. The alkaline phosphatase analyses in blood levels in control group were observed 40.8 ± 11.88 UI/L and 40.75 ± 12.46 UI/L, for the surfaces machined and anodized, respectively. In the test group was observed levels 37.9 ± 4.84 UI/L, for both implant surfaces. No significant differences were observed between control and test groups and between the implant surfaces regarding alkaline phosphatase blood levels. For biomechanics, no significant differences were observed in control group between the machined (25±8.46 Ncm) or anodized (31.2 ± 6.76 Ncm) implants. However, the treatment with nicotine induced higher torque than control in both machined (38.3 ± 13.52 Ncm) and anodized (35.5 ± 14.17 Ncm) implants, with p = 0.0024 and p = 0.0121, respectively. Subcutaneous injection of nicotine following implant insertion didn't have effect on osseointegration, independently from the implant surface.

  15. The effects of alcohol expectancy and intake on slot machine gambling behavior.

    Science.gov (United States)

    Sagoe, Dominic; Mentzoni, Rune Aune; Leino, Tony; Molde, Helge; Haga, Sondre; Gjernes, Mikjel Fredericson; Hanss, Daniel; Pallesen, Ståle

    2017-06-01

    Background and aims Although alcohol intake and gambling often co-occur in related venues, there is conflicting evidence regarding the effects of alcohol expectancy and intake on gambling behavior. We therefore conducted an experimental investigation of the effects of alcohol expectancy and intake on slot machine gambling behavior. Methods Participants were 184 (females = 94) individuals [age range: 18-40 (mean = 21.9) years] randomized to four independent conditions differing in information/expectancy about beverage (told they received either alcohol or placebo) and beverage intake [actually ingesting low (target blood alcohol concentration [BAC]  0.40 mg/L; ≈0.80 mg/L) amounts of alcohol]. All participants completed self-report questionnaires assessing demographic variables, subjective intoxication, alcohol effects (stimulant and sedative), and gambling factors (behavior and problems, evaluation, and beliefs). Participants also gambled on a simulated slot machine. Results A significant main effect of beverage intake on subjective intoxication and alcohol effects was detected as expected. No significant main or interaction effects were detected for number of gambling sessions, bet size and variation, remaining credits at termination, reaction time, and game evaluation. Conclusion Alcohol expectancy and intake do not affect gambling persistence, dissipation of funds, reaction time, or gambling enjoyment.

  16. Effective Cost Mechanism for Cloudlet Retransmission and Prioritized VM Scheduling Mechanism over Broker Virtual Machine Communication Framework

    OpenAIRE

    Raj, Gaurav; Setia, Sonika

    2012-01-01

    In current scenario cloud computing is most widely increasing platform for task execution. Lot of research is going on to cut down the cost and execution time. In this paper, we propose an efficient algorithm to have an effective and fast execution of task assigned by the user. We proposed an effective communication framework between broker and virtual machine for assigning the task and fetching the results in optimum time and cost using Broker Virtual Machine Communication Framework (BVCF). ...

  17. The effect of high-frequency ground motion on the MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Bhan, S.; Dunbar, S.

    1989-06-01

    The effect of high-frequency ground motion on structures and equipment in nuclear reactors is examined by subjecting simple linear models to selected recorded ground motions which exhibit low and high frequencies. Computed damage measures indicate that high-frequency short-duration ground motion, such as that observed in eastern North America, have a minimal effect on structures with low natural frequencies. Response spectra of high-frequency ground motion indicate that higher forces are induced in structures with high natural frequencies as compared to those induced by low-frequency ground motion. However, reported observations of earthquake damage in eastern North America suggest that high-frequency ground motion causes little of no damage to structures. This may be due to the energy absorption capability of structures. It is concluded that the response spectrum representative of ground motion observed in eastern North America may give an over-conservative measure of the response of structures with high natural frequencies, since it does not account for the typically observed short duration of high-frequency ground motion and for the energy absorption capability of structures. Detailed nonlinear analysis of specific structures with high natural frequencies should be performed to better predict the actual response. Recommendations for a nonlinear analysis of typical structures with high natural frequencies are made

  18. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping; Sessler, A.M.

    1993-01-01

    In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  19. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping

    1993-01-01

    In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  20. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, J.; Li, X.P.

    1993-01-01

    In order to employ the Molecular Dynamics method, commonly used in condensed matter physics, the authors have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. They include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  1. Effect of Forging Allowance Value on the Power Consumption of Machining Process

    Directory of Open Access Journals (Sweden)

    L. D. Mal'kova

    2015-01-01

    Full Text Available The paper aim is to develop and study possible energy-efficiency measures for machined forgings drawing on analysis of the impact of the allowance for machining and its scatter.The most sophisticated option to take into consideration the effect of the cut depth is the work-piece machining in which the forging allowance value results from the blank production.Research of power consumption was conducted for turning the cylindrical surface of 144 mm length and  1,5 33 0,5   diameter on forgings of the work-pieces "screw of steering control" made from steel 60PP. A radial dimension allowance at said cylindrical surface at six points of the five sections was sized to assess the allowance value dispersion. The size of the sample measurements at the control points was n = 600. Statistic processing has shown normal law of distribution and sample homogeneity.To analyze the results of experiments was calculated a range of allowances for this workpiece. Calculated minimum and maximum allowance per one side for rough lathing were, respectively, 0.905 mm and 1.905mm. It was found that 77% points under control lie in calculated range of allowance values. And there are no points out of the range on lesser side that proves a lack of rejects; but there are points out of the range on the bigger side, that will require additional costs for machining the specified surface, including the cost of electricity.There were three power consumption calculations based on factory- recommended duty: for processing the entire sample of forgings with an average allowance, for machining forgings allowances of which are within the recommended design range of allowance, and for processing the entire sample of forgings with a minimum value of allowance.It was found that elimination of allowance values which are outside the recommended range enables to reduce the power consumption, at least, by 6%, and the overall power consumption for processing the measured forgings

  2. Effect of EDTA and phosphoric Acid pretreatment on the bonding effectiveness of self-etch adhesives to ground enamel.

    Science.gov (United States)

    Ibrahim, Ihab M; Elkassas, Dina W; Yousry, Mai M

    2010-10-01

    This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9-1.0), intermediary strong AdheSE (pH=1.6-1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel.

  3. Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds

    Directory of Open Access Journals (Sweden)

    Mengxuan Gao

    2017-02-01

    Full Text Available Various biological factors have been implicated in convulsive seizures, involving side effects of drugs. For the preclinical safety assessment of drug development, it is difficult to predict seizure-inducing side effects. Here, we introduced a machine learning-based in vitro system designed to detect seizure-inducing side effects. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices, while 14 drugs were bath-perfused at 5 different concentrations each. For each experimental condition, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs that induced seizure-like events and identified diphenhydramine, enoxacin, strychnine and theophylline as “seizure-inducing” drugs, which indeed were reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to detect the seizure-inducing side effects of preclinical drugs.

  4. The effect of crack branching on the residual lifetime of machine components containing stress corrosion cracks

    International Nuclear Information System (INIS)

    Magdowski, R.M.; Uggowitzer, P.J.; Speidel, M.O.

    1985-01-01

    A comparison is presented of theoretical, numerical and experimental investigations concerning the effect of crack branching on the reduction of stress intensity at the tip of single cracks. The results indicate that the division of a single crack into n branches reduces the stress intensity at the branch tips by a factor of about 1/√n. This permits branched cracks to grow to larger depths before becoming critical. The implication is that longer residual lifetimes and longer operating times between inspections can be calculated for machine components with growing branched stress corrosion cracks. (author)

  5. A note on resource allocation scheduling with group technology and learning effects on a single machine

    Science.gov (United States)

    Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu

    2017-09-01

    In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.

  6. Effects of insecticides intended for Ceutorhynchus napi Gyll. control in oilseed rape on ground beetles

    Directory of Open Access Journals (Sweden)

    Sivčev Lazar

    2017-01-01

    Full Text Available The effects of insecticides that are commonly used for conventional and integrated oilseed rape (OSR management on ground beetles were studied. Monitoring of harmful species showed that only insecticides intended against Ceutorhynchus napi should be applied. There were no differences in beetle numbers and phenology of settling of C. napi in the OSR fields that received different management practices. The type of OSR management has a primary and significant impact on ground beetles abundance. Early in the spring, ground beetles settled more massively on the non-tilled OSR field with abundant weed cover and mulch on soil surface. However, there were no significant differences in species richness between the OSR fields managed differently. A total of 22 species were recorded. Early in the spring, the granivorous ground beetles Amara aenea (47.3% and Harpalus distinguendus (32.5% were dominant. When insecticides were applied, immigration of ground beetles began, so that their adverse effect was minimal. In both management systems the number of ground beetles and their diversity increased after spraying. In conclusion, no significant harmful effects of the insecticides on ground beetles were detected in OSR fields managed in two different ways.

  7. The effect of cinnamon bark (Cinnamomum burmanii) essential oil microcapsules on vacuumed ground beef quality

    Science.gov (United States)

    Brilliana, I. N.; Manuhara, G. J.; Utami, R.; Khasanah, L. U.

    2017-04-01

    Ground beef has a short shelf life because it is susceptible to damage due to microbial contamination and lipid oxidation. So some sort of preservation method such as refrigerated storage, vacuum packaging or natural preservative addition is needed to extend the shelf life of ground beef. A natural preservative that can be used as a food preservative is the cinnamon bark (Cinnamomum burmanii) essential oil microcapsules. The aim of the research was to determine the influence of a cinnamon bark essential oil microcapsules (0%;0.5% and 1% w/w of the ground beef) on the Total Plate Count (TPC), Thiobarbituric Acid (TBA), pH and color of ground beef during refrigerated storage (4±1°C). The result showed that cinnamon bark essential oil microcapsules affected the TPC, TBA, pH and color of ground beef. The addition of the cinnamon bark essential oil microcapsules on ground beef can inhibit microbial growth, inhibit lipid oxidation, inhibit discoloration and lowering pH of fresh ground beef during refrigerated storage compared to the control sample. The higher of the microcapsules were added, the higher the inhibition of microbial growth, lipid oxidation and discoloration of ground beef, indicating better preservation effects.

  8. Machine Shop Grinding Machines.

    Science.gov (United States)

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  9. Active machine learning-driven experimentation to determine compound effects on protein patterns.

    Science.gov (United States)

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-02-03

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance.

  10. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    International Nuclear Information System (INIS)

    Zhao, Yanhua; Sun, Jie; Li, Jianfeng

    2014-01-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La 2 O 3 mixed powder. The effect of La 2 O 3 on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La 2 O 3 on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La 2 O 3 content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La 2 O 3 are improved significantly; and (c) the machining vibrations of laser cladding layer with La 2 O 3 are obviously reduced and the chatter is effectively avoided occurring

  11. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanhua, E-mail: zhaoyanhua_007@163.com [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Sun, Jie, E-mail: sunjie@sdu.edu.cn [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Li, Jianfeng [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-12-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La{sub 2}O{sub 3} mixed powder. The effect of La{sub 2}O{sub 3} on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La{sub 2}O{sub 3} on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La{sub 2}O{sub 3} content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La{sub 2}O{sub 3} are improved significantly; and (c) the machining vibrations of laser cladding layer with La{sub 2}O{sub 3} are obviously reduced and the chatter is effectively avoided occurring.

  12. An Empirical Overview of the No Free Lunch Theorem and Its Effect on Real-World Machine Learning Classification.

    Science.gov (United States)

    Gómez, David; Rojas, Alfonso

    2016-01-01

    A sizable amount of research has been done to improve the mechanisms for knowledge extraction such as machine learning classification or regression. Quite unintuitively, the no free lunch (NFL) theorem states that all optimization problem strategies perform equally well when averaged over all possible problems. This fact seems to clash with the effort put forth toward better algorithms. This letter explores empirically the effect of the NFL theorem on some popular machine learning classification techniques over real-world data sets.

  13. Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review

    Directory of Open Access Journals (Sweden)

    Kaya Eren

    2017-12-01

    Full Text Available Nickel based superalloys offer high strength, corrosion resistance, thermal stability and superb thermal fatigue properties. However, they have been one of the most difficult materials to machine due to these properties. Although we are witnessing improved machining strategies with the developing machining, tooling and inspection technologies, machining of nickel based superalloys is still a challenging task due to in-process strains and post process part quality demands.

  14. Integrative relational machine-learning for understanding drug side-effect profiles.

    Science.gov (United States)

    Bresso, Emmanuel; Grisoni, Renaud; Marchetti, Gino; Karaboga, Arnaud Sinan; Souchet, Michel; Devignes, Marie-Dominique; Smaïl-Tabbone, Malika

    2013-06-26

    Drug side effects represent a common reason for stopping drug development during clinical trials. Improving our ability to understand drug side effects is necessary to reduce attrition rates during drug development as well as the risk of discovering novel side effects in available drugs. Today, most investigations deal with isolated side effects and overlook possible redundancy and their frequent co-occurrence. In this work, drug annotations are collected from SIDER and DrugBank databases. Terms describing individual side effects reported in SIDER are clustered with a semantic similarity measure into term clusters (TCs). Maximal frequent itemsets are extracted from the resulting drug x TC binary table, leading to the identification of what we call side-effect profiles (SEPs). A SEP is defined as the longest combination of TCs which are shared by a significant number of drugs. Frequent SEPs are explored on the basis of integrated drug and target descriptors using two machine learning methods: decision-trees and inductive-logic programming. Although both methods yield explicit models, inductive-logic programming method performs relational learning and is able to exploit not only drug properties but also background knowledge. Learning efficiency is evaluated by cross-validation and direct testing with new molecules. Comparison of the two machine-learning methods shows that the inductive-logic-programming method displays a greater sensitivity than decision trees and successfully exploit background knowledge such as functional annotations and pathways of drug targets, thereby producing rich and expressive rules. All models and theories are available on a dedicated web site. Side effect profiles covering significant number of drugs have been extracted from a drug ×side-effect association table. Integration of background knowledge concerning both chemical and biological spaces has been combined with a relational learning method for discovering rules which explicitly

  15. The effect of social demographic factors, snack consumption and vending machine use on oral health of children living in London.

    Science.gov (United States)

    Maliderou, M; Reeves, S; Noble, C

    2006-10-07

    To investigate the effect of socio-economic status, sugar, snack consumption and vending machine use on the prevalence and severity of caries (DMF) in children. An observational study was carried out in a dental practice in inner city London. Sixty children were asked to complete a questionnaire and a three day food and drink diary. After a dental examination the number of decayed (D), missing (M) or filled (F) teeth provided a DMF score. Anova and Pearsons correlations were used to analyse the data statistically. Children from social groups I and II consumed significantly less (P vending machine less often than children from other social groups. Children from Social groups I, II and III had significantly lower DMF scores. The average DMF from social group I children was 0.5 +/- 0.6, whilst group IV children had the greatest incidence and a DMF of 4.6 +/- 0.8. Significant correlations were identified between DMF and sugar, confectionery and crisp consumption and vending machine use, and a negative correlation between DMF and vegetable consumption. Socio-economic status and access to vending machines were found to have a significant effect on sugar intakes, foods choices, and dental health. The removal of vending machines from schools or at least installing 'healthy' vending machines is recommended. Health promotion programmes that account for social groups and snacking habits that are cost effective are required.

  16. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    International Nuclear Information System (INIS)

    Cravotta, C.A. III

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (< 5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only

  17. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  18. TFTR grounding scheme and ground-monitor system

    International Nuclear Information System (INIS)

    Viola, M.

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) grounding system utilizes a single-point ground. It is located directly under the machine, at the basement floor level, and is tied to the building perimeter ground. Wired to this single-point ground, via individual 500 MCM insulated cables, are: the vacuum vessel; four toroidal field coil cases/inner support structure quadrants; umbrella structure halves; the substructure ring girder; radial beams and columns; and the diagnostic systems. Prior to the first machine operation, a ground-loop removal program was initiated. It required insulation of all hangers and supports (within a 35-foot radius of the center of the machine) of the various piping, conduits, cable trays, and ventilation systems. A special ground-monitor system was designed and installed. It actively monitors each of the individual machine grounds to insure that there are no inadvertent ground loops within the machine structure or its ground and that the machine grounds are intact prior to each pulse. The TFTR grounding system has proven to be a very manageable system and one that is easy to maintain

  19. TU-H-CAMPUS-JeP2-03: Machine-Learning-Based Delineation Framework of GTV Regions of Solid and Ground Glass Opacity Lung Tumors at Datasets of Planning CT and PET/CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, K; Arimura, H; Jin, Z; Yabuuchi, H; Sasaki, T; Honda, H; Sasaki, M [Kyushu University, Fukuoka, Fukuoka (Japan); Kuwazuru, J [Saiseikai Fukuoka General Hospital, Fukuoka, Fukuoka (Japan); Shioyama, Y [Saga Heavy Ion Medical Accelerator in Tosu, Tosu, Saga (Japan)

    2016-06-15

    Purpose: In radiation treatment planning, delineation of gross tumor volume (GTV) is very important, because the GTVs affect the accuracies of radiation therapy procedure. To assist radiation oncologists in the delineation of GTV regions while treatment planning for lung cancer, we have proposed a machine-learning-based delineation framework of GTV regions of solid and ground glass opacity (GGO) lung tumors following by optimum contour selection (OCS) method. Methods: Our basic idea was to feed voxel-based image features around GTV contours determined by radiation oncologists into a machine learning classifier in the training step, after which the classifier produced the degree of GTV for each voxel in the testing step. Ten data sets of planning CT and PET/CT images were selected for this study. The support vector machine (SVM), which learned voxel-based features which include voxel value and magnitudes of image gradient vector that obtained from each voxel in the planning CT and PET/CT images, extracted initial GTV regions. The final GTV regions were determined using the OCS method that was able to select a global optimum object contour based on multiple active delineations with a level set method around the GTV. To evaluate the results of proposed framework for ten cases (solid:6, GGO:4), we used the three-dimensional Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs delineated by radiation oncologists and the proposed framework. Results: The proposed method achieved an average three-dimensional DSC of 0.81 for ten lung cancer patients, while a standardized uptake value-based method segmented GTV regions with the DSC of 0.43. The average DSCs for solid and GGO were 0.84 and 0.76, respectively, obtained by the proposed framework. Conclusion: The proposed framework with the support vector machine may be useful for assisting radiation oncologists in delineating solid and GGO lung tumors.

  20. Ground-Wave Propagation Effects on Transmission Lines through Error Images

    Directory of Open Access Journals (Sweden)

    Uribe-Campos Felipe Alejandro

    2014-07-01

    Full Text Available Electromagnetic transient calculation of overhead transmission lines is strongly influenced by the natural resistivity of the ground. This varies from 1-10K (Ω·m depending on several media factors and on the physical composition of the ground. The accuracy on the calculation of a system transient response depends in part in the ground return model, which should consider the line geometry, the electrical resistivity and the frequency dependence of the power source. Up to date, there are only a few reports on the specialized literature about analyzing the effects produced by the presence of an imperfectly conducting ground of transmission lines in a transient state. A broad range analysis of three of the most often used ground-return models for calculating electromagnetic transients of overhead transmission lines is performed in this paper. The behavior of modal propagation in ground is analyzed here into effects of first and second order. Finally, a numerical tool based on relative error images is proposed in this paper as an aid for the analyst engineer to estimate the incurred error by using approximate ground-return models when calculating transients of overhead transmission lines.

  1. The effect of machining parameters on surface roughness during turning of stainless steel

    International Nuclear Information System (INIS)

    El-Belazi, Khalid M.

    1991-03-01

    Surface roughness is a direct consequence of the cutting tool action, its assessment and control represent an effective way by which the machining process can be studied. The control of surface roughness has become increasingly important during the last thirty years, because the quality of surface is extremely important for machined components that have been designed to stand to static and cyclic loads. This work has two major goals. The first is to develop a new theoretical model based on the assumption that the shape of the cutting tool nose is elliptical to evaluate the surface roughness parameters. The second is to investigate the effect of cutting speed, feed rate, overhang length, tool nose radius (circular sharp), and depth of cut on surface roughness of turned surfaces of austenitic stainless steel grade 12X18H10T. It was found from the theoretical part that the surface roughness values obtained from the elliptical model are much better than those obtained from the other models. It was found from the experimental work that the surface roughness values increase by increasing cutting speed, feed rate, depth of cut, and overhang length, and fluctuates when using cutting tools with various nose radii, during turning of the above mentioned steel by using a brazed carbide cutting tool. (author)

  2. Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach.

    Directory of Open Access Journals (Sweden)

    Dhanya Menoth Mohan

    Full Text Available The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs. Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to measure significant differences in the likability ratings among the three prime affect types; the results showed a strong shift in the likeness judgment for the images in the positively primed condition compared to the other two. The acquired EEGs were examined to assess the difference in brain activity associated with the three different conditions. The consistent results obtained confirmed the overall priming effect on participants' explicit ratings. In addition, machine learning algorithms such as support vector machines (SVMs, and AdaBoost classifiers were applied to infer the prime affect type from the ERPs. The highest classification rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and average-trial multi-class further emphasize that the ERPs encode information about the different kinds of primes.

  3. Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach.

    Science.gov (United States)

    Mohan, Dhanya Menoth; Kumar, Parmod; Mahmood, Faisal; Wong, Kian Foong; Agrawal, Abhishek; Elgendi, Mohamed; Shukla, Rohit; Ang, Natania; Ching, April; Dauwels, Justin; Chan, Alice H D

    2016-01-01

    The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs). Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to measure significant differences in the likability ratings among the three prime affect types; the results showed a strong shift in the likeness judgment for the images in the positively primed condition compared to the other two. The acquired EEGs were examined to assess the difference in brain activity associated with the three different conditions. The consistent results obtained confirmed the overall priming effect on participants' explicit ratings. In addition, machine learning algorithms such as support vector machines (SVMs), and AdaBoost classifiers were applied to infer the prime affect type from the ERPs. The highest classification rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and average-trial multi-class further emphasize that the ERPs encode information about the different kinds of primes.

  4. Investigation of Effect of Machine Layout on Productivity and Utilization Level: What If Simulation Approach

    Directory of Open Access Journals (Sweden)

    Islam Faisal Bourini

    2018-03-01

    Full Text Available Designing and selecting the material handling system is a vital factor for any production line, and as result for the whole manufacturing system. Poor design and unsuitable handling equipment may increase the risk of having bottlenecks, longer production time and as a result the higher total production cost. One of the useful and effective tools are using “what if” simulation techniques. However, this technique needs effective simulation software. The main objective for this research is to simulate different types of handling system using what if scenario. To achieve the objective of the research, Delmia Quest software has been used to simulate two different systems: manual system and conveyers system for the same production line and analyses the differences in terms of utilization and production rate. The results obtained have been analysed and appraised to induce the bottleneck locations, productivity and utilizations of the machines and material handling systems used in the design system. Finally, the best model have been developed to increase the productivity, utilizations of the machines, material handling systems and to minimize the bottleneck locations.

  5. Bidirectional extreme learning machine for regression problem and its learning effectiveness.

    Science.gov (United States)

    Yang, Yimin; Wang, Yaonan; Yuan, Xiaofang

    2012-09-01

    It is clear that the learning effectiveness and learning speed of neural networks are in general far slower than required, which has been a major bottleneck for many applications. Recently, a simple and efficient learning method, referred to as extreme learning machine (ELM), was proposed by Huang , which has shown that, compared to some conventional methods, the training time of neural networks can be reduced by a thousand times. However, one of the open problems in ELM research is whether the number of hidden nodes can be further reduced without affecting learning effectiveness. This brief proposes a new learning algorithm, called bidirectional extreme learning machine (B-ELM), in which some hidden nodes are not randomly selected. In theory, this algorithm tends to reduce network output error to 0 at an extremely early learning stage. Furthermore, we find a relationship between the network output error and the network output weights in the proposed B-ELM. Simulation results demonstrate that the proposed method can be tens to hundreds of times faster than other incremental ELM algorithms.

  6. Study on the effect of thermal property of metals in ultrasonic-assisted laser machining

    International Nuclear Information System (INIS)

    Lee, Hu Seung; Kim, Gun Woo; Park, Jong Eun; Cho, Sung Hak; Yang, Min Yang; Park, Jong Kweon

    2015-01-01

    The laser machining process has been proposed as an advanced process for the selective fabrication of electrodes without a mask. In this study, we adapt laser machining to metals that have different thermal properties. Based on the results, the metals exhibit a different surface morphology, heat-affected zone (HAZ), and a recast layer around the machined surface according to their thermal conductivity, boiling point, and thermal diffusivity. Then, we apply ultrasonic-assisted laser machining to remove the recast layer. The ultrasonic-assisted laser machining exhibits a better surface quality in metals with higher diffusivity than those having lower diffusivity

  7. Coldness production and heat revalorization: particular machines; Production de froid et revalorisation de la chaleur: machines particulieres

    Energy Technology Data Exchange (ETDEWEB)

    Feidt, M. [Universite Henri Poincare - Nancy-1, 54 - Nancy (France)

    2003-10-01

    The machines presented in this article are not the common reverse cycle machines. They use some systems based on different physical principles which have some consequences on the analysis of cycles: 1 - permanent gas machines (thermal separators, pulse gas tube, thermal-acoustic machines); 2 - phase change machines (mechanical vapor compression machines, absorption machines, ejection machines, adsorption machines); 3 - thermoelectric machines (thermoelectric effects, thermodynamic model of a thermoelectric machine). (J.S.)

  8. Using Overall Equipment Effectiveness indicator to measure the level of planned production time usage of sewing machine

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2014-12-01

    Full Text Available The chapter presents the results of utilization of the OEE indicator to measure the level of operating time usage of sewing machine production of air bags. The idea of an OEE indictor, which is a key metrics in Total Productive Maintenance (TPM program, is presented. The goals and benefits of its calculation are included. The research object – KL 110 air bags sewing machine - what for the machine is used. The calculation of TPM indicators for the analysed machine is presented. The calculation of TPM indicators was undertaken over a period of six months of the machine’s working time. It was indicated that the overall effectiveness of the machine is at a level of 65,7%, the time losses were 34,3%. Most of the losses were related to low performance. Only Availability indicator reaches a word class level, if other indicators such as Performance, Quality and OEE should be improved, their value should be increased. Activities to improve the effectiveness of the machine utilization were determined.

  9. Effect of Earth Ground and Environment on Body-Centric Communications in the MHz Band

    Directory of Open Access Journals (Sweden)

    Katsuyuki Fujii

    2012-01-01

    Full Text Available Body area network (BAN research, which uses the human body as a transmission channel, has recently attracted considerable attention globally. Zimmerman first advocated the idea in 1995. Illustrations of the electric field streamlines around the human body and wearable devices with electrodes were drawn. In the pictures, the electrodes of the wearable devices constitute a closed circuit with the human body and the earth ground. However, analysis of the circuit has not been conducted. In this study, we model the human body shunted to earth ground in a radio anechoic chamber to analyze the electric field strength around it and clarify the effect of earth ground during BAN run time. The results suggest that earth ground has little influence on the human body and wearable devices. Only when the human body is directly grounded, the electric field near the feet area will decrease. The input impedance of the transmitter is approximately the same, and the received open-circuit voltage and current of the receiver are also the same. In addition, we elucidate that stable communications can be established by developing a closed circuit using earth ground as return path. When the external electronic devices and human body are shunted to earth ground, the received open-circuit voltage and current increase.

  10. Contextual effects on perceived contrast: figure-ground assignment and orientation contrast.

    Science.gov (United States)

    Self, Matthew W; Mookhoek, Aart; Tjalma, Nienke; Roelfsema, Pieter R

    2015-02-02

    Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual areas increase their firing rate when responding to a figure compared to responding to the background. We hypothesized that similar changes in neural firing would take place in early visual areas of the human visual system, leading to changes in the perception of low-level visual features. In this study, we investigated whether contrast perception is affected by figure-ground assignment using stimuli similar to those in the electrophysiological studies in monkeys. We measured contrast discrimination thresholds and perceived contrast for Gabor probes placed on figures or the background and found that the perceived contrast of the probe was increased when it was placed on a figure. Furthermore, we tested how this effect compared with the well-known effect of orientation contrast on perceived contrast. We found that figure-ground assignment and orientation contrast produced changes in perceived contrast of a similar magnitude, and that they interacted. Our results demonstrate that figure-ground assignment influences perceived contrast, consistent with an effect of figure-ground assignment on activity in early visual areas of the human visual system. © 2015 ARVO.

  11. Hemodynamic effects of microgravity and their ground-based simulations

    Science.gov (United States)

    Lobachik, V. I.; Abrosimov, S. V.; Zhidkov, V. V.; Endeka, D. K.

    Hemodynamic effects of simulated microgravity were investigated, in various experiments, using radioactive isotopes, in which 40 healthy men, aged 35 to 42 years, took part. Blood shifts were evaluated qualitatively and quantitatively. Simulation studies included bedrest, head-down tilt (-5° and -15°), and vertical water immersion, it was found that none of the methods could entirely simulate hemodynamic effects of microgravity. Subjective sensations varied in a wide range. They cannot be used to identify reliably the effects of real and simulated microgravity. Renal fluid excretion in real and simulated microgravity was different in terms of volume and time. The experiments yielded data about the general pattern of circulation with blood displaced to the upper body.

  12. The Effect of Operational Cutting Parameters on Nitinol-60 in Wire Electrodischarge Machining

    Directory of Open Access Journals (Sweden)

    Ali Akbar LotfiNeyestanak

    2013-01-01

    Full Text Available Shape memory alloys are a kind of active materials, which have significant characteristics in comparison with other alloys. Since these materials are applicable in different fields such as aerospace, automobile industry, medicine, and dentistry, the effects of wire electrodischarge machining on the properties of these alloys have been studied. In this paper, changes in the shape recovery ability and microhardness of the machined surface of Nitonol-60 shape memory alloy have been studied considering recasting and formation of resolidificated layer on the shape memory alloy surface. XRD and EDXA analyses of the surface layer of the sample besides a microscopic study of the shape memory alloy layer by SEM and a study of the changes in mechanical properties of the surface layer were done by performing microhardness and tension tests on the work piece surface. Considering the surface layer, reversible strain has been studied according to the shape recovery percentage of Nitinol-60 shape memory alloy. Results show that the surface layer formed on the surface of the samples has caused changes in both physical and mechanical properties of the cut surface because of the penetration of the separated materials in comparison with deeper layers of the piece.

  13. Effect of abiotic and biotic stress factors analysis using machine learning methods in zebrafish.

    Science.gov (United States)

    Gutha, Rajasekar; Yarrappagaari, Suresh; Thopireddy, Lavanya; Reddy, Kesireddy Sathyavelu; Saddala, Rajeswara Reddy

    2018-03-01

    In order to understand the mechanisms underlying stress responses, meta-analysis of transcriptome is made to identify differentially expressed genes (DEGs) and their biological, molecular and cellular mechanisms in response to stressors. The present study is aimed at identifying the effect of abiotic and biotic stress factors, and it is found that several stress responsive genes are common for both abiotic and biotic stress factors in zebrafish. The meta-analysis of micro-array studies revealed that almost 4.7% i.e., 108 common DEGs are differentially regulated between abiotic and biotic stresses. This shows that there is a global coordination and fine-tuning of gene regulation in response to these two types of challenges. We also performed dimension reduction methods, principal component analysis, and partial least squares discriminant analysis which are able to segregate abiotic and biotic stresses into separate entities. The supervised machine learning model, recursive-support vector machine, could classify abiotic and biotic stresses with 100% accuracy using a subset of DEGs. Beside these methods, the random forests decision tree model classified five out of 8 stress conditions with high accuracy. Finally, Functional enrichment analysis revealed the different gene ontology terms, transcription factors and miRNAs factors in the regulation of stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Grounded Theory of Effective Reading by Profoundly Deaf Adults

    Science.gov (United States)

    Silvestri, Julia; Wang, Ye

    2018-01-01

    The purpose of the study was to uncover and describe psycholinguistic and sociocognitive factors facilitating effective reading by signing adults who are profoundly deaf and do not use hearing technology. The sample comprised four groups, each consisting of 15 adults, for a total of 60 participants. The four groups were "deaf…

  15. Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach

    Directory of Open Access Journals (Sweden)

    Andrea N. Onodera

    2017-02-01

    Full Text Available Background Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Methods Twenty-seven experienced male runners (63 ± 44 km/week run ran in four-shoe design that combined two resilience-cushioning materials (low and high and two uppers (minimalist and structured. Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features. Results The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16% biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. Discussion The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects

  16. Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: a machine learning approach.

    Science.gov (United States)

    Onodera, Andrea N; Gavião Neto, Wilson P; Roveri, Maria Isabel; Oliveira, Wagner R; Sacco, Isabel Cn

    2017-01-01

    Resilience of midsole material and the upper structure of the shoe are conceptual characteristics that can interfere in running biomechanics patterns. Artificial intelligence techniques can capture features from the entire waveform, adding new perspective for biomechanical analysis. This study tested the influence of shoe midsole resilience and upper structure on running kinematics and kinetics of non-professional runners by using feature selection, information gain, and artificial neural network analysis. Twenty-seven experienced male runners (63 ± 44 km/week run) ran in four-shoe design that combined two resilience-cushioning materials (low and high) and two uppers (minimalist and structured). Kinematic data was acquired by six infrared cameras at 300 Hz, and ground reaction forces were acquired by two force plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features from the complete kinematic and kinetic time series and from 42 discrete variables that had better discriminate the four shoes studied. For that analysis, we built an input data matrix of dimensions 1,080 (10 trials × 4 shoes × 27 subjects) × 1,254 (3 joints × 3 planes of movement × 101 data points + 3 vectors forces × 101 data points + 42 discrete calculated kinetic and kinematic features). The applied feature selection by information gain and artificial neural networks successfully differentiated the two resilience materials using 200(16%) biomechanical variables with an accuracy of 84.8% by detecting alterations of running biomechanics, and the two upper structures with an accuracy of 93.9%. The discrimination of midsole resilience resulted in lower accuracy levels than did the discrimination of the shoe uppers. In both cases, the ground reaction forces were among the 25 most relevant features. The resilience of the cushioning material caused significant effects on initial heel impact, while the effects of different uppers were distributed along the

  17. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  18. Analysis of Ground Effects on Aerodynamic Characteristics of Aerofoils Using Boundary Layer Approximation

    Science.gov (United States)

    Takahashi, Yuji; Kikuchi, Masanori; Hirano, Kimitaka

    A study of a new high-speed zero-emission transportation “Aerotrain” is being carried out in Tohoku University and the University of Miyazaki. Because the aerotrain utilizes the ground effect, research on the aerofoil section, which can harness the ground effect effectively, is important. The aerotrain moves along a U-shaped guideway, which has a ground and sidewalls, so it has many viscous interference elements. In an analysis of the ground effects on the aerodynamic characteristics of aerofoils, the boundary layers on the aerofoil surface must be considered. At first, velocity distributions on the surfaces of aerofoils in potential flows are computed using the vortex method, then the momentum integration equations of the boundary layer are solved with experimental formulas. This procedure has the following advantages: modifications of the aerofoil section are easy because it is not necessary to make complicated computational grids, boundary layer transition and separation can be predicted using empirical procedures. The aerodynamic characteristics of four types of aerofoil sections are investigated to clarify the relationship between aerofoil sections and ground effects. Computational results are compared with experimental results obtained using a towing wind tunnel to verify computational precisions. In addition, aerofoil characteristics at an actual cruise speed are analyzed.

  19. In situ study of the effect of ground source heat pump on shallow ground-water quality in the late Pleistocene terrace area of Tokyo, Japan

    Science.gov (United States)

    Takemura, T.; Uemura, K.; Akiba, Y.; Ota, M.

    2015-12-01

    The implementation of ground source heat pump (GSHP) systems has rapidly increased around the world, since they reduce carbon dioxide emissions and save electric energy. The GSHP system transfer heat into the geosphere zone when air conditioners are used to cool rooms or buildings. However, the effects of temperature increase on the quality of underground water has yet to be fully investigated. In order to reduce the risks of ground-water pollution by the installed GSHPs, it is important to evaluate the effect of temperature change on the ground-water quality. In this study, we installed a closed loop GSHP system on a heat exchange well along with a monitoring well drilled to measure ground-water quality and temperature. The monitoring well was drilled at 0.1cm away from the heat exchange well. We observed that changes of temperature in the heat exchange well affected the water quality, especially turbidity, in gravelly layer.

  20. New food safety law: effectiveness on the ground.

    Science.gov (United States)

    Drew, Christa A; Clydesdale, Fergus M

    2015-01-01

    The demand for safety in the US food supply from production to consumption necessitates a scientific, risk-based strategy for the management of microbiological, chemical, and physical hazards in food. The key to successful management is an increase in systematic collaboration and communication and in enforceable procedures with all domestic and international stakeholders. The enactment of the Food Safety Modernization Act (FSMA) aims to prevent or reduce large-scale food-borne illness outbreaks through stricter facility registration and records standards, mandatory prevention-based controls, increased facility inspections in the United States and internationally, mandatory recall authority, import controls, and increased consumer communication. The bill provisions are expected to cost $1.4 billion over the next four years. Effective implementation of the FSMA's 50 rules, reports, studies, and guidance documents in addition to an increased inspection burden requires further funding appropriations. Additional full-time inspectors and unprecedented foreign compliance is necessary for the full and effective implementation of the FSMA.

  1. [A new machinability test machine and the machinability of composite resins for core built-up].

    Science.gov (United States)

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  2. Ground-Water Hydrology and Projected Effects of Ground-Water Withdrawals in the Sevier Desert, Utah

    OpenAIRE

    United States Geological Survey

    1983-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mount...

  3. Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Lee, Kyoung Soo; Lee, Seong Ho; Park, Chi Yong; Yang, Jun Seok; Lee, Jeong Geun; Park, Jai Hak

    2011-01-01

    Primary water stress corrosion cracking has occurred in dissimilar weld areas in nuclear power plants. Residual stress is a driving force in the crack. Residual stress may be generated by weld or surface machining. Residual stress due to surface machining depends on the machining method, e.g., milling, grinding, or EDM. The stress is usually distributed on or near the surface of the material. We present the measured residual stress for machining on SA 508 and austenitic stainless steels such as TP304 and F316. The residual stress can be tensile or compressive depending on the machining method. The depth and the magnitude of the residual stress depend on the material and the machining method

  4. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  5. Effect of operational conditions of electroerosion machining on the surface microgeometry parameters of steels and alloys

    International Nuclear Information System (INIS)

    Foteev, N.K.

    1976-01-01

    Studies the influence of pulse duration and a series of operating conditions of a ShGI-40-440 spark-machining generator on changes in the basic surface microgeometry characteristics of components of stainless steel 1Kh18N10T, steel St 45 and hard alloy T14K8. The microgeometry characteristics of spark-machined surfaces differ significantly from the corresponding characteristics of surfaces machined by cutting and vibro-rolling

  6. A Comparison of the Effects of K-Anonymity on Machine Learning Algorithms

    OpenAIRE

    Hayden Wimmer; Loreen Powell

    2014-01-01

    While research has been conducted in machine learning algorithms and in privacy preserving in data mining (PPDM), a gap in the literature exists which combines the aforementioned areas to determine how PPDM affects common machine learning algorithms. The aim of this research is to narrow this literature gap by investigating how a common PPDM algorithm, K-Anonymity, affects common machine learning and data mining algorithms, namely neural networks, logistic regression, decision trees, and Baye...

  7. Sequential Ground Motion Effects on the Behavior of a Base-Isolated RCC Building

    Directory of Open Access Journals (Sweden)

    Zhi Zheng

    2017-01-01

    Full Text Available The sequential ground motion effects on the dynamic responses of reinforced concrete containment (RCC buildings with typical isolators are studied in this paper. Although the base isolation technique is developed to guarantee the security and integrity of RCC buildings under single earthquakes, seismic behavior of base-isolated RCC buildings under sequential ground motions is deficient. Hence, an ensemble of as-recorded sequential ground motions is employed to study the effect of including aftershocks on the seismic evaluation of base-isolated RCC buildings. The results indicate that base isolation can significantly attenuate the earthquake shaking of the RCC building under not only single earthquakes but also seismic sequences. It is also found that the adverse aftershock effect on the RCC can be reduced due to the base isolation applied to the RCC. More importantly, the study indicates that disregarding aftershocks can induce significant underestimation of the isolator displacement for base-isolated RCC buildings.

  8. Physical grounds for biological effect of laser radiation

    International Nuclear Information System (INIS)

    Rubinov, A N

    2003-01-01

    A new approach to the understanding of biological activity caused by low-intensity laser radiation, in which coherence is a factor of paramount importance, has been developed. It is based on the dipole interaction of gradient laser fields with cells, organelles and membranes. The laser intensity gradients in an object arise due to the interference of the light scattered by the tissue with the incident light beam (speckle formation). Apart from speckles, different types of light spatial modulation can be created deliberately using different schemes for beam interference. It is shown that gradient laser fields may cause spatial modulation of the concentration of particles and increase their 'partial temperature'. This paper presents the results of experimental observation of trapping of different types of particles, including human lymphocytes, in the interference fields of the He-Ne laser. The sweep-net effect on particles of different sizes on moving the laser field is demonstrated and crystal-like self-organization of particles in the laser gradient field is observed. The influence of gradient laser fields on erythrocyte rouleaus, on the apoptosis of human lymphocytes as well as on their chromosome aberrations is demonstrated. It may be concluded from the experimental studies that the influence of an interference laser field with a rightly chosen period can stimulate the repair system of a cell, increasing its viability

  9. Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps

    International Nuclear Information System (INIS)

    Law, Ying Lam E.; Dworkin, Seth B.

    2016-01-01

    Highlights: • Long term ground temperature response is explored using finite element methods. • Simulation method is validated against experimental and analytical data. • Temperature changes at a fast rate in the first few years and slows down gradually. • ASHRAE recommended separation distances are not always sufficient. • Thermal accumulation occurs at the centre of borehole field. - Abstract: Ground source heat pumps (GSHPs) are an environmentally friendly alternative to conventional heating and cooling systems because of their high efficiency and low greenhouse gas emissions. The ground acts as a heat sink/source for the excess/required heat inside a building for cooling and heating modes, respectively. However, imbalance in heating and cooling needs can change ground temperature over the operating duration. This increase/decrease in ground temperature lowers system efficiency and causes the ground to foul—failing to accept or provide more heat. In order to ensure that GSHPs can operate to their designed conditions, thermal modelling is required to simulate the ground temperature during system operation. In addition, the borehole field layout can have a major impact on ground temperature. In this study, four buildings were studied—a hospital, fast-food restaurant, residence, and school, each with varying borehole configurations. Boreholes were modelled in a soil volume using finite-element methods and heating and cooling fluxes were applied to the borehole walls to simulate the GSHP operation. 20 years of operation were modelled for each building for 2 × 2, 4 × 4, and 2 × 8 borehole configurations. Results indicate that the borehole separation distance of 6 m, recommended by ASHRAE, is not always sufficient to prevent borehole thermal interactions. Benefits of using a 2 × 8 configuration as opposed to a 4 × 4 configuration, which can be observed because of the larger perimeter it provides for heat to dissipate to surrounding soil were

  10. Influence of surface mining on ground water (effects and possibilities of prevention)

    Energy Technology Data Exchange (ETDEWEB)

    Libicki, J

    1977-01-01

    This article analyzes the negative impact of surface mining on ground water. The effects of water depression on water supply for households and industry, and for vegetation and agriculture are evaluated. The negative impact of lowering the ground water level under various water conditions are analyzed: (1) vegetation is supplied with water only by rainfall, (2) vegetation is supplied with water in some seasons by rainfall and in some by ground water, and (3) vegetation uses ground water only. The impact of deteriorating water supply on forests is discussed. Problems connected with storage of waste materials in abandoned surface mines are also discussed. The influence of black coal ash and waste material from coal preparation plants on ground water is analyzed: penetration of some elements and chemical compounds to the ground water and its pollution. Some preventive measures are proposed: injection of grout in the bottom and walls of storage areas to reduce their permeability (organic resins can also be used but they are more expensive). The distance between injection boreholes should be 15 to 20 m. Covering the bottom of the storage area with plastic sheets can also be applied.

  11. Effect of surface loading on the hydro-mechanical response of a tunnel in saturated ground

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2016-09-01

    Full Text Available The design of underground spaces in urban areas must account not only for the current overburden load but also for future surface loads, such as from construction of high-rise buildings above underground structures. In saturated ground, the surface load will generate an additional mechanical response through stress changes and ground displacement, as well as a hydraulic response through pore pressure changes. These hydro-mechanical (H-M changes can severely influence tunnel stability. This paper examines the effect of surface loading on the H-M response of a typical horseshoe-shaped tunnel in saturated ground. Two tunnel models were created in the computer code Fast Lagrangian Analysis of Continua (FLAC. One model represented weak and low permeability ground (stiff clay, and the other represented strong and high permeability ground (weathered granite. Each of the models was run under two liner permeabilities: permeable and impermeable. Two main cases were compared. In Case 1, the surface load was applied 10 years after tunnel construction. In Case 2, the surface load was applied after the steady state pore pressure condition was achieved. The simulation results show that tunnels with impermeable liners experienced the most severe influence from the surface loading, with high pore pressures, large inward displacement around the tunnels, and high bending moments in the liner. In addition, the severity of the response increased toward steady state. This induced H-M response was worse for tunnels in clay than for those in granite. Furthermore, the long-term liner stabilities in Case 1 and Case 2 were similar, indicating that the influence of the length of time between when the tunnel was completed and when the surface load was applied was negligible. These findings suggest that under surface loading, in addition to the ground strength, tunnel stability in saturated ground is largely influenced by liner permeability and the long-term H-M response of

  12. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  13. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    International Nuclear Information System (INIS)

    Ahn, D.U.; Nam, K.C.

    2004-01-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid

  14. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The objective of this US Bureau of Mines hydrologic-subsidence investigation was to evaluate the effects of longwall mining on the local ground water regime through field monitoring and numerical modeling. Field data were obtained from multiple-position borehole extensometers (MPBXs) that were used to measure subsurface displacements. Survey monuments were installed to measure mining-induced surface deformations. Numerous drawdown and recovery tests were performed to characterized hydrologic properties of the overburden strata. Coreholes were drilled above the study area to determine lithologic and strength characteristics of the overburden strata using the rock samples collected. Electronic recorders were installed on all monitoring wells to continuously monitor ground water levels in coordination with mining of the longwall panels. A combined finite element model of the deformation of overlying strata, and its influence on ground water flow was used to define the change in local and regional water budgets. The predicted effects of the postmining ground water system determined by the model correlated well with field data collected from the fieldsite. Without an infiltration rate added to the model, a static decrease of 3.0 m (10 ft) in water level would occur due to mining of both longwall panels and if an infiltration rate was inputted in the model, no predicted long-term effects would occur to the ground water system

  15. Aerodynamic characteristics of NACA 4412 airfoil section with flap in extreme ground effect

    Directory of Open Access Journals (Sweden)

    Alex E. Ockfen

    2009-09-01

    Full Text Available Wing-in-Ground vehicles and aerodynamically assisted boats take advantage of increased lift and reduced drag of wing sections in the ground proximity. At relatively low speeds or heavy payloads of these craft, a flap at the wing trailing-edge can be applied to boost the aerodynamic lift. The influence of a flap on the two-dimensional NACA 4412 airfoil in viscous ground-effect flow is numerically investigated in this study. The computational method consists of a steady-state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed using computer program Fluent. The code is validated against published experimental and numerical results of unbounded flow with a flap, as well as ground-effect motion without a flap. Aerodynamic forces are calculated, and the effects of angle of attack, Reynolds number, ground height, and flap deflection are presented for a split and plain flap. Changes in the flow introduced with the flap addition are also discussed. Overall, the use of a flap on wings with small attack angles is found to be beneficial for small flap deflections up to 5% of the chord, where the contribution of lift augmentation exceeds the drag increase, yielding an augmented lift-to-drag ratio.

  16. Effect of cutting parameters on sustainable machining performance of coated carbide tool in dry turning process of stainless steel 316

    Science.gov (United States)

    Bagaber, Salem A.; Yusoff, Ahmed Razlan

    2017-04-01

    The manufacturing industry aims to produce many products of high quality with relatively less cost and time. Different cutting parameters affect the machining performance of surface roughness, cutting force, and material removal rate. Nevertheless, a few studies reported on the effects of sustainable factors such as power consumed, cycle time during machining, and tool life on the dry turning of AISI 316. The present study aims to evaluate the machining performance of coated carbide in the machining of hard steel AISI 316 under the dry turning process. The influence of cutting parameters of cutting speed, feed rate, and depth of cut with their five (5) levels is established by a central composite design. Highly significant parameters were determined by analysis of variance (ANOVA), and the main effects of power consumed and time during machining, surface roughness, and tool wear were observed. Results showed that the cutting speed was proportional to power consumption and tool wear. Meanwhile, insignificant to surface roughness, feed rate most significantly affected surface roughness and power consumption followed by depth of cut.

  17. Calculation of force and power during bench throws using a Smith machine: the importance of considering the effect of counterweights.

    Science.gov (United States)

    Kobayashi, Y; Narazaki, K; Akagi, R; Nakagaki, K; Kawamori, N; Ohta, K

    2013-09-01

    For achieving accurate and safe measurements of the force and power exerted on a load during resistance exercise, the Smith machine has been used instead of free weights. However, because some Smith machines possess counterweights, the equation for the calculation of force and power in this system should be different from the one used for free weights. The purpose of this investigation was to calculate force and power using an equation derived from a dynamic equation for a Smith machine with counterweights and to determine the differences in force and power calculated using 2 different equations. One equation was established ignoring the effect of the counterweights (Method 1). The other equation was derived from a dynamic equation for a barbell and counterweight system (Method 2). 9 female collegiate judo athletes performed bench throws using a Smith machine with a counterweight at 6 different loading conditions. Barbell displacement was recorded using a linear position transducer. The force and power were subsequently calculated by Methods 1 and 2. The results showed that the mean and peak power and force in Method 1 were significantly lower relative to those of Method 2 under all loading conditions. These results indicate that the mean and peak power and force during bench throwing using a Smith machine with counterweights would be underestimated when the calculations used to determine these parameters do not account for the effect of counterweights. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Evaluation of high frequency ground motion effects on the seismic capacity of NPP equipments

    International Nuclear Information System (INIS)

    Choi, In Kil; Seo, Jeong Moon; Choun, Young Sun

    2003-04-01

    In this study, the uniform hazard spectrum for the example Korean nuclear power plants sites were developed and compared with various response spectra used in past seismic PRA and SMA. It shows that the high frequency ground motion effects should be considered in seismic safety evaluations. The floor response spectra were developed using the direct generation method that can develop the floor response spectra from the input response spectrum directly with only the dynamic properties of structures obtained from the design calculation. Most attachment of the equipments to the structure has a minimum distortion capacity. This makes it possible to drop the effective frequency of equipment to low frequency before it is severely damaged. The results of this study show that the high frequency ground motion effects on the floor response spectra were significant, and the effects should be considered in the SPRA and SMA for the equipments installed in a building. The high frequency ground motion effects are more important for the seismic capacity evaluation of functional failure modes. The high frequency ground motion effects on the structural failure of equipments that attached to the floor by welding can be reduced by the distortion capacity of welded anchorage

  19. Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge

    Directory of Open Access Journals (Sweden)

    Swagata Banerjee Basu

    2011-01-01

    Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.

  20. Sieving Effect of Sorting Machine with Vibration Table Type on Cacao Pod Based Compost

    Directory of Open Access Journals (Sweden)

    Siswoyo Soekarno

    2009-10-01

    Full Text Available Cacao pod is the biggest part (70% of weight of Cacao, which was not optimaly utilized.Cacao podis one of organic material that can be functioned as an organic fertilizer, such as compost. When utilizedwith right proportion, organic fertilizer is safe for plants and not degrades the soil composition. Compostingprocess is one of utilization form of Cacao pod. The size reduction of cacao pod in the organic fertilizerprocess would help to accelerate the composting process. Smaller particle size would faster interacting withenvironment, so the composting process would be well accelerated if compared to the material with biggersize. Chopping machine of Cacao pod is used to cut the biomass to be small particle in order to be able tobe utilized as some important necessity, i.e. fertilizer or farm animals feed. However, Varies compost sizewas one of the problems faced in the composting process. Therefore, the sorting process was needed tobe done after chopping process, so the compost size became uniform and fulfill the user demand. Thisresearch was aimed at knowing the slope effect of sorting machine and rotation speed (RPM. The methodused in analyzing the results of this research was comparing the treatment factors, which are shown withhistogram. As the super small size of compost recommended for applying in the fertilizing process, so theoptimum treatment combination for having high mass fraction of SS compost grade was achieved at 12oslope of sieve table and 1400 RPM motor rotation speed. As bigger the particle densities of the compostsize as smaller the compost porosity. Mass loss was very low at all treatment combination with the valuearound 0.43-1.33%, so the sieving efficiency can be said very high.

  1. Effects of Copper and Sulfur Additions on Corrosion Resistance and Machinability of Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Soon Tae; Park, Yong Soo; Kim, Hyung Joon

    1999-01-01

    Effects of Cu and S on corrosion resistance and machinability of austenitic stainless steel were investigated using immersion test, metallographic examination, Auger surface analysis and tool life test with single point turning tools. Corrosion resistance of the experimental Cu containing alloys in 18.4N H 2 SO 4 at 80 ∼ 120 .deg. C and 3N HCl at 40 .deg. C decreased as S content increased. However, one of the experimental alloys (Fe- 18%Cr- 21%Ni-3.2%Mo- 1.6%W- 0.2%N- 3.1%Cu- 0.091%S) showed general and pitting corrosion resistance equivalent to that of CW12MW in highly concentrated SO 4 2- environment. The alloy also showed pitting corrosion resistance superior to super stainless steel such as 654SMO in Cl - environment. The reasons why the increase in S content deteriorated the corrosion resistance were first, that the number and size of (Mn, Cr)S sulfides having corrosion resistance lower than that of matrix increased, leading to pitting corrosion and second, that rapid dissolution of the matrix around the pits was caused by adsorbed S. However, the alloy containing 3.1 %Cu and 0.091 % S maintained high general and pitting corrosion resistance due to heavily enriched noble Cu through selective dissolution of active Fe and Ni. The tool life for 3.1 % Cu + 0.091 % S added alloy was about four times that of 0.06%Cu + 0.005% S added alloy due to high shear strain rate generated by Cu addition giving easy cross slip of dislocation, lubrication of ductile (Mn, Cr)S sulfides adhering to tool crater surface and low cutting force resulting from thin continuous sulfides formed in chips during machining

  2. Effectiveness of Podcasts as Laboratory Instructional Support: Learner Perceptions of Machine Shop and Welding Students

    Science.gov (United States)

    Lauritzen, Louis Dee

    2014-01-01

    Machine shop students face the daunting task of learning the operation of complex three-dimensional machine tools, and welding students must develop specific motor skills in addition to understanding the complexity of material types and characteristics. The use of consumer technology by the Millennial generation of vocational students, the…

  3. Machine performance and its effects on experiments in JT-60U

    International Nuclear Information System (INIS)

    Kondo, I.

    1995-01-01

    The operational results of JT-60U were reviewed in light of the strategy made at the design stage. The operational plan for better confinement shifted from that of low q to high poloidal beta plasma configuration with higher q value according to the revealed machine properties. Some technical and operational skills helped bring about the recent results out of the machine. (orig.)

  4. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  5. Effect of the Cutting Tool Geometry on the Tool Wear Resistance When Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2017-12-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  6. Effect of the Cutting Tool Geometry on the Tool Wear Resistance when Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2018-03-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  7. A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications

    Directory of Open Access Journals (Sweden)

    Yujun Shi

    2018-01-01

    Full Text Available This paper proposes a novel dual-permanent-magnet-excited (DPME machine. It employs two sets of permanent magnets (PMs. One is on the rotor, the other is on the stator with PM arrays. When compared with the existing DPME machines, not all of the PMs are located in the slots formed by the iron teeth. Specifically, the radially magnetized PMs in the arrays are located under the short iron teeth, while the tangentially magnetized PMs are located in the slots formed by the long stator iron teeth and the radially magnetized PMs. Each long stator iron tooth is sandwiched by two tangentially magnetized PMs with opposite directions, thus resulting in the flux strengthening effect. The simulation analysis indicates that the proposed machine can offer large back EMF with low THD and large torque density with low torque ripple when compared with Machine I from a literature. Meanwhile, by comparison, the proposed machine has great potential in improving the power factor and efficiency.

  8. Mitigation of ground motion effects in linear accelerators via feed-forward control

    Directory of Open Access Journals (Sweden)

    J. Pfingstner

    2014-12-01

    Full Text Available Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders. Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2, ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.

  9. Effects of Accretionary Prisms on 3-D Long-Period Ground Motion Simulations

    Science.gov (United States)

    Guo, Y.; Koketsu, K.; Miyake, H.

    2014-12-01

    The accretionary prism along the subduction zones such as the Middle America trench or the Nankai trough is considered as an important factor affecting the generation and propagation of long-period ground motions. In Japan, the great earthquake along the Nankai subduction zone which is expected to occur in the near future can generate large long-period ground motions in the metropolitan areas such as Osaka, Nagoya and Tokyo. To investigate the effect of accretionary prism on long-period ground motions, we performed simulations of long-period ground motions for the event (Mw 7.1) that occurred off the Kii peninsula, Japan, at 10:07 on 5 September 2004 (UTC). Our simulation model ranged from the Kinki region to the Kanto region, and included the Osaka, Nobi and Kanto basin. We calculated long-period ground motions for four types of 3-D velocity structure models: (a) model with the accretionary prism (reference model), (b) model where accretionary prism has different 3-D geometry from the reference model, (c) model with the accretionary prism whose velocity, density and Q-value are shifted, (d) model without the accretionary prism. We compared the waveforms calculated for these models and concluded that the accretionary prism along the Nankai subduction zone plays roles in reducing the amplitude of direct waves and extending the duration of coda waves. This is attributed to the trap effect of accretionary prism. Our simulation also suggested that, the edge geometry along the landward side of accretionary prism has major effects on the processes of generation and propagation of long-period ground motions.

  10. Effects of Outdoor School Ground Lessons on Students' Science Process Skills and Scientific Curiosity

    Science.gov (United States)

    Ting, Kan Lin; Siew, Nyet Moi

    2014-01-01

    The purpose of this study was to investigate the effects of outdoor school ground lessons on Year Five students' science process skills and scientific curiosity. A quasi-experimental design was employed in this study. The participants in the study were divided into two groups, one subjected to the experimental treatment, defined as…

  11. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP

    NARCIS (Netherlands)

    Pereira, G.K.R.; Amaral, M.; Cesar, P.F.; Bottino, M.C.; Kleverlaan, C.J.; Valandro, L.F.

    2015-01-01

    This study evaluated the effects of low-temperature aging on the surface topography, phase transformation, biaxial flexural strength, and structural reliability of a ground Y-TZP ceramic. Disc-shaped specimens were manufactured and divided according to two factors: "grinding" - without grinding

  12. Comparative effects of commercial lime (CaCO 3 ) and ground ...

    African Journals Online (AJOL)

    Greenhouse study was carried out to investigate the comparative effect of commercial lime (CaCO3) and ground eggshell on the uptake of calcium and dry matter yield of maize in an ultisol of Southeastern Nigeria using maize (variety Oba supper 92) as the test crop. The soil was acidic and deficient in N, O.C., K, Ca and ...

  13. THE EFFECT OF OZONE ON BELOW-GROUND CARBON ALLOCATION IN WHEAT

    Science.gov (United States)

    Short term 14CO2 pulse and chase experiments were conducted in order to investigate the effect ozone on below-ground carbon allocation in spring wheat seedlings (Triticum aestivumL. ?ANZA'). Wheat seedlings were grown in a sand-hydroponic system and exposed to either high ozone ...

  14. Effects of air pollution and simulated acid rain on the ground vegetation of coniferous forests

    International Nuclear Information System (INIS)

    Rodenkirchen, H.

    1993-01-01

    Descriptive and experimental studies on the ground vegetation of coniferous forests in Bavaria indicated the following phenomena: a. In N-limited pine forests recent eutrophication effects occur. b. The structure of the moss layer in coniferous forests sensitively reacts to very acid throughfall water (pH [de

  15. 2.5D Simulation of basin-edge effects on the ground motion ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated ... Figure 1. 3-D and 2.5-D radial, transverse and vertical components of the radiation for .... sedimentary basin deserve a particular attention.

  16. Leading Effective Educational Technology in K-12 School Districts: A Grounded Theory

    Science.gov (United States)

    Hill, Lara Gillian C.

    2011-01-01

    A systematic grounded theory qualitative study was conducted investigating the process of effectively leading educational technology in New Jersey public K-12 school districts. Data were collected from educational technology district leaders (whether formal or non-formal administrators) and central administrators through a semi-structured online…

  17. Effects of carbaryl-bran bait on trap-catch and seed predation by ground beetles

    Science.gov (United States)

    Carbaryl-bran bait is effective against grasshoppers without many impacts on non-target organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species composition a...

  18. Effects of river restoration on riparian ground beetles (Coleoptera Carabidae) in Europe

    NARCIS (Netherlands)

    Januschke, Kathrin; Verdonschot, R.C.M.

    2016-01-01

    Studies addressing the effects of river and floodplain restoration on riparian ground beetles mainly focus on single river sections or regions. We conducted a large-scale study of twenty paired restored and degraded river sections throughout Europe. It was tested (i) if restoration had an overall

  19. Ground-based forest harvesting effects on soil physical properties and Douglas-fir growth.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Richard E. Miller; Harry W. Anderson; Barry L. Flaming

    2005-01-01

    Soil properties and forest productivity can be affected by heavy equipment used for harvest and site preparation but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based logging on soil physical properties and subsequent Douglas-fir [Pseudotsuga menziesii (Mirb) Franco] growth on a highly...

  20. The watercolor effect: a new principle of grouping and figure-ground organization.

    Science.gov (United States)

    Pinna, Baingio; Werner, John S; Spillmann, Lothar

    2003-01-01

    The watercolor effect is perceived when a dark (e.g., purple) contour is flanked by a lighter chromatic contour (e.g., orange). Under these conditions, the lighter color will assimilate over the entire enclosed area. This filling-in determines figure-ground organization when it is pitted against the classical Gestalt factors of proximity, good continuation, closure, symmetry, convexity, as well as amodal completion, and past experience. When it is combined with a given Gestalt factor, the resulting effect on figure-ground organization is stronger than for each factor alone. When the watercolor effect is induced by a dark red edge instead of an orange edge, its figural strength is reduced, but still stronger than without it. Finally, when a uniform surface is filled physically using the color of the orange fringe, figure-ground organization is not different from that for the purple contour only. These findings show that the watercolor effect induced by the edge could be an independent factor, different from the classical Gestalt factors of figure-ground organization. Copyright 2002 Elsevier Science Ltd.

  1. Communication, concepts and grounding.

    Science.gov (United States)

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Radon and thoron emanation measurements and the effect of ground water

    International Nuclear Information System (INIS)

    Carriveau, G.W.; Harbottle, G.

    1980-01-01

    In the past, corrections for annual dose rate calculations have used a qualitative approach to the effect of ground water saturation and radon and thoron loss. An example is presented of how this correction can now be precisely determined using natural gamma-ray activities to determine the amount of emanation from ceramic sherds and soil, both in a dry state and saturated with ground water. The experimental data also provide information concerning disequilibria in 234 Th and 226 Ra regions of the decay series. Additionally, approximate values of uranium and thorium concentrations (sufficiently accurate for authenticity work) are provided

  3. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.

    1983-03-01

    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  4. Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Yusuf Kaynak

    2018-05-01

    Full Text Available This experimental study focuses on various cooling strategies and lubrication-assisted cooling strategies to improve machining performance in the turning process of AISI 4140 steel. Liquid nitrogen (LN2 and carbon dioxide (CO2 were used as cryogenic coolants, and their performances were compared with respect to progression of tool wear. Minimum quantity lubrication (MQL was also used with carbon dioxide. Progression of wear, including flank and nose, are the main outputs examined during experimental study. This study illustrates that carbon dioxide-assisted cryogenic machining alone and with minimum quantity lubrication does not contribute to decreasing the progression of wear within selected cutting conditions. This study also showed that carbon dioxide-assisted cryogenic machining helps to increase chip breakability. Liquid nitrogen-assisted cryogenic machining results in a reduction of tool wear, including flank and nose wear, in the machining process of AISI 4140 steel material. It was also observed that in the machining process of this material at a cutting speed of 80 m/min, built-up edges occurred in both cryogenic cooling conditions. Additionally, chip flow damage occurs in particularly dry machining.

  5. THE EFFECT OF PLASTICIZER ON MECHANICAL PROPERTIES OF THE CEMENT PASTE WITH FINE GROUND RECYCLED CONCRETE

    Directory of Open Access Journals (Sweden)

    Jaromír Hrůza

    2017-11-01

    Full Text Available This article deals with the usage of recycled concrete, which arises from the demolition of concrete structures. The work is focused on the development of mechanical properties (Young's modulus, compressive and flexural strength depending amount of plasticizer in the mixture. In the experiment were prepared three sets of samples with different amounts of plasticizer (0, 0.5 and 1.0 wt. % of cement. Each pair always contained reference samples (only cement and 35 wt. % of fine ground recycled concrete. One of the main reasons for the use of finely ground recycled concrete was a certain substitution of cement in the mixture, which is the most expensive component. Development of Young's modulus was measured by the nondestructive method. The aim of the experiment was to determine the effect of plasticizer on the resulting physical and mechanical properties of cement pastes with fine ground recycled concrete.

  6. Effect of high-extraction coal mining on surface and ground waters

    International Nuclear Information System (INIS)

    Kendorski, F.S.

    1993-01-01

    Since first quantified around 1979, much new data have become available. In examining the sources of data and the methods and intents of the researchers of over 65 case histories, it became apparent that the strata behaviors were being confused with overlapping vertical extents reported for the fractured zones and aquiclude zones depending on whether the researcher was interested in water intrusion into the mine or in water loss from surface or ground waters. These more recent data, and critical examination of existing data, have led to the realization that the former Aquiclude Zone defined for its ability to prevent or minimize the intrusion of ground or surface waters into mines has another important character in increasing storage of surface and shallow ground waters in response to mining with no permanent loss of waters. This zone is here named the Dilated Zone. Surface and ground waters can drain into this zone, but seldom into the mine, and can eventually be recovered through closing of dilations by mine subsidence progression away from the area, or filling of the additional void space created, or both. A revised model has been developed which accommodates the available data, by modifying the zones as follows: collapse and disaggregation extending 6 to 10 times the mined thickness above the panel; continuous fracturing extending approximately 24 times the mined thickness above the panel, allowing temporary drainage of intersected surface and ground waters; development of a zone of dilated, increased storativity, and leaky strata with little enhanced vertical permeability from 24 to 60 times the mined thickness above the panel above the continuous fracturing zone, and below the constrained or surface effects zones; maintenance of a constrained but leaky zone above the dilated zone and below the surface effects zone; and limited surface fracturing in areas of extension extending up to 50 ft or so beneath the ground surface. 119 ref., 5 figs., 2 tabs

  7. Increased effects of machining damage in beryllium observed at high strain rates

    International Nuclear Information System (INIS)

    Beitscher, S.; Brewer, A.W.; Corle, R.R.

    1980-01-01

    Tensile tests at both low and high strain rates, and also impact shear tests, were performed on a weldable grade powder-source beryllium. Impact energies increased by a factor of 2 to 3 from the as-machined level after etching or annealing. Similar increases in the ductility from machining damage removal were observed from the tensile data at the higher strain rate (10 s -1 ) while an insignificant increase in elongation was measured at the lower strain rate (10 -4 s -1 ). High strain-rate tests appear to be more sensitive and reliable for evaluating machining practice and damage removal methods for beryllium components subjected to sudden loads. 2 tables

  8. MLSOIL and DFSOIL - computer codes to estimate effective ground surface concentrations for dose computations

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Kocher, D.C.; Killough, G.G.; Miller, C.W.

    1984-11-01

    This report is a user's manual for MLSOIL (Multiple Layer SOIL model) and DFSOIL (Dose Factors for MLSOIL) and a documentation of the computational methods used in those two computer codes. MLSOIL calculates an effective ground surface concentration to be used in computations of external doses. This effective ground surface concentration is equal to (the computed dose in air from the concentration in the soil layers)/(the dose factor for computing dose in air from a plane). MLSOIL implements a five compartment linear-transfer model to calculate the concentrations of radionuclides in the soil following deposition on the ground surface from the atmosphere. The model considers leaching through the soil as well as radioactive decay and buildup. The element-specific transfer coefficients used in this model are a function of the k/sub d/ and environmental parameters. DFSOIL calculates the dose in air per unit concentration at 1 m above the ground from each of the five soil layers used in MLSOIL and the dose per unit concentration from an infinite plane source. MLSOIL and DFSOIL have been written to be part of the Computerized Radiological Risk Investigation System (CRRIS) which is designed for assessments of the health effects of airborne releases of radionuclides. 31 references, 3 figures, 4 tables

  9. Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.

    Science.gov (United States)

    Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon

    2015-09-01

    [Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.

  10. Ground effects on the stability of separated flow around an airfoil at low Reynolds numbers

    Science.gov (United States)

    He, Wei; Yu, Peng; Li, Larry K. B.

    2017-11-01

    We perform a BiGlobal stability analysis on the separated flow around a NACA 4415 airfoil at low Reynolds numbers (Re = 300 - 1000) and a high angle of attack α =20° with a focus on the effect of the airfoil's proximity to a moving ground. The results show that the most dominant perturbation is the Kelvin-Helmholtz mode and that this traveling mode becomes less unstable as the airfoil approaches the ground, although this stabilizing effect diminishes with increasing Reynolds number. By performing a Floquet analysis, we find that this ground effect can also stabilize secondary instabilities. This numerical-theoretical study shows that the ground can have a significant influence on the stability of separated flow around an airfoil at low Reynolds numbers, which could have implications for the design of micro aerial vehicles and for the understanding of natural flyers such as insects and birds. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501.

  11. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool

    Directory of Open Access Journals (Sweden)

    Kaining Shi

    2016-01-01

    Full Text Available Magnesium alloy has attracted more attentions due to its excellent mechanical properties. However, in process of dry cutting operation, many problems restrict its further development. In this article, the effect of cutting parameters on machinabilities of magnesium alloy is explored under dry milling condition. This research is an attempt to investigate the impact of cutting speed at multiple feed rates on cutting force and surface roughness, while a statistical analysis is adopted to determine the influential intensities accurately. The results showed that cutting force is affected by the positively constant intensity from feed rate and the increasingly negative intensity from cutting speed. In contrast, surface roughness is determined by the gradually increasing negative tendency from feed rate and the positive effect with constant intensity from cutting speed. Within the range of the experiments, feed rate is the leading contribution for cutting force while the cutting speed is the dominant factor for surface roughness according to the absolute intensity values. Meanwhile, the trends of influencing intensities between cutting force and surface roughness are opposite. Besides, it is also found that in milling magnesium alloy, chip morphology is highly sensitive to cutting speed while the chip quality mainly depends on feed rate.

  12. Effects of the sliding rehabilitation machine on balance and gait in chronic stroke patients - a controlled clinical trial.

    Science.gov (United States)

    Byun, Seung-Deuk; Jung, Tae-Du; Kim, Chul-Hyun; Lee, Yang-Soo

    2011-05-01

    To investigate the effects of a sliding rehabilitation machine on balance and gait in chronic stroke patients. A non-randomized crossover design. Inpatient rehabilitation in a general hospital. Thirty patients with chronic stroke who had medium or high falling risk as determined by the Berg Balance Scale. Participants were divided into two groups and underwent four weeks of training. Group A (n = 15) underwent training with the sliding rehabilitation machine for two weeks with concurrent conventional training, followed by conventional training only for another two weeks. Group B (n = 15) underwent the same training in reverse order. The effect of the experimental period was defined as the sum of changes during training with sliding rehabilitation machine in each group, and the effect of the control period was defined as those during the conventional training only in each group. Functional Ambulation Category, Berg Balance Scale, Six-Minute Walk Test, Timed Up and Go Test, Korean Modified Barthel Index, Modified Ashworth Scale and Manual Muscle Test. Statistically significant improvements were observed in all parameters except Modified Ashworth Scale in the experimental period, but only in Six-Minute Walk Test (P rehabilitation machine may be a useful tool for the improvement of balance and gait abilities in chronic stroke patients.

  13. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  14. The Effect of Si Morphology on Machinability of Al-Si Alloys

    Directory of Open Access Journals (Sweden)

    Muhammet Uludağ

    2015-12-01

    Full Text Available Many of the cast parts require some sort of machining like milling, drilling to be used as a finished product. In order to improve the wear properties of Al alloys, Si is added. The solubility of Si in Al is quite low and it has a crystallite type structure. It behaves as particulate metal matrix composite which makes it an attractive element. Thus, the wear and machinability properties of these type of alloys depend on the morphology of Si in the matrix. In this work, Sr was added to alter the morphology of Si in Al-7Si and Al-12Si. Cylindrical shaped samples were cast and machinability characteristics of Sr addition was studied. The relationship between microstructure and machinability was evaluated.

  15. Effectiveness of Hamstring Knee Rehabilitation Exercise Performed in Training Machine vs. Elastic Resistance Electromyography Evaluation Study

    DEFF Research Database (Denmark)

    Jakobsen, M. D.; Sundstrup, E.; Andersen, C. H.

    2014-01-01

    Objective The aim of this study was to evaluate muscle activity during hamstring rehabilitation exercises performed in training machine compared with elastic resistance. Design Six women and 13 men aged 28-67 yrs participated in a crossover study. Electromyographic (EMG) activity was recorded...... inclinometers. Results Training machines and elastic resistance showed similar high levels of muscle activity (biceps femoris and semitendinosus peak normalized EMG >80%). EMG during the concentric phase was higher than during the eccentric phase regardless of exercise and muscle. However, compared with machine.......001) during hamstring curl performed with elastic resistance (7.58 +/- 0.08) compared with hamstring curl performed in a machine (5.92 +/- 0.03). Conclusions Hamstring rehabilitation exercise performed with elastic resistance induces similar peak hamstring muscle activity but slightly lower EMG values at more...

  16. Effect of Rake Angle During Machining of Micro Grooves on Electroless Nickel Plated Die Materials

    International Nuclear Information System (INIS)

    Rezaur Rahman, K.M.; Rahman, M.

    2005-01-01

    This study attempts to evaluate the performance of two single crystal diamond tools with different rake angle (0 0 and -15 0 ) during micro grooving on electroless nickel plated die materials. It was found that the 0 0 rake diamond tool has superior performance compared to the -15 0 rake angle tool. The negative rake tool experienced very high thrust force, and severe chipping on the flank face was evident after a short cutting distance of 3.13 km. On the other hand, the 0 0 rake tool machined satisfactorily up to 50 km without any significant tool wear. While machining with the -15 0 rake tool, significant change in surface roughness with spindle speed was observed compared to the 0 0 rake tool. With increasing infeed rate variation in surface roughness was evident only with the -15 0 rake tool. Steep change in roughness with machining distance was also observed while machining with the negative rake tool. (authors)

  17. Rise of the machines: the effects of labor-saving innovations on jobs and wages

    OpenAIRE

    Andy Feng; Georg Graetz

    2015-01-01

    Job polarization the rise in employment shares of high and low skill jobs at the expense of middle skill jobs occurred in the US not just recently, but also in the late nineteenth and early twentieth centuries. We argue that in each case polarization resulted from increased automation, and provide a theoretical explanation. In our model, firms deciding whether to employ machines or workers in a given task weigh the cost of using machines, which is increasing in the complexity (in an engineeri...

  18. Study of the Effect of Material Machinability on Quality of Surface Created by Abrasive Water Jet

    Czech Academy of Sciences Publication Activity Database

    Klichová, Dagmar; Klich, Jiří

    2016-01-01

    Roč. 149, č. 149 (2016), s. 177-182 E-ISSN 1877-7058. [International Conference on Manufacturing Engineering and Materials, ICMEM 2016. Nový Smokovec, 06.06.2016-10.06.2016] R&D Projects: GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : machinability * surface roughness * abrasive water jet * study of quality * aluminium alloy * optical profilometer Subject RIV: JQ - Machines ; Tools http://www.sciencedirect.com/science/article/pii/S1877705816311614

  19. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Faunt, C.C.

    1997-01-01

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs

  20. Antibacterial effect of lactoferricin B on Escherichia coli O157:H7 in ground beef.

    Science.gov (United States)

    Venkitanarayanan, K S; Zhao, T; Doyle, M P

    1999-07-01

    The antibacterial activity of lactoferricin B on enterohemorrhagic Escherichia coli O157:H7 in 1% peptone medium and ground beef was studied at 4 and 10 degrees C. In 1% peptone medium, 50 and 100 microg of lactoferricin B per ml reduced E. coli O157:H7 populations by approximately 0.7 and 2.0 log CFU/ml, respectively. Studies comparing the antibacterial effect of lactoferricin B on E. coli O157:H7 in 1% peptone at pH 5.5 and 7.2 did not reveal any significant difference (P > 0.5) at the two pH values. Lactoferricin B (100 microg/g) reduced E. coli O157:H7 population in ground beef by about 0.8 log CFU/g (P 0.5) was observed in the total plate count between treatment and control ground beef samples stored at 4 and 10 degrees C. The antibacterial effect of lactoferricin B on E. coli O157:H7 observed in this study is not of sufficient magnitude to merit its use in ground beef for controlling the pathogen.

  1. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  2. The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys.

    Science.gov (United States)

    Ntasi, Argyro; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2010-12-01

    The aim of the present study was to evaluate the effect of Electro Discharge Machining (EDM) on the corrosion resistance of two types of dental alloys used for fabrication of implant retained superstructures. Two groups of specimens were prepared from a Co-Cr (Okta-C) and a grade II cpTi (Biotan) alloys respectively. Half of the specimens were subjected to EDM with Cu electrodes and the rest were conventionally finished (CF). The corrosion resistance of the alloys was evaluated by anodic polarization in Ringer's solution. Morphological and elemental alterations before and after corrosion testing were studied by SEM/EDX. Six regions were analyzed on each surface before and after corrosion testing and the results were statistically analyzed by paired t-test (a=0.05). EDM demonstrated inferior corrosion resistance compared to CF surfaces, the latter being passive in a wider range of potential demonstrating higher polarization resistance and lower I(corr) values. Morphological alterations were found before and after corrosion testing for both materials tested after SEM analysis. EDX showed a significant decrease in Mo, Cr, Co, Cu (Co-Cr) and Ti, Cu (cpTi) after electrochemical testing plus an increase in C. According to the results of this study the EDM procedure decreases the corrosion resistance of both the alloys tested, increasing thus the risk of possible adverse biological reactions. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  4. Tests of the gravitational redshift effect in space-born and ground-based experiments

    Science.gov (United States)

    Vavilova, I. B.

    2018-02-01

    This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.

  5. [Card-based age control mechanisms at tobacco vending machines. Effect and consequences].

    Science.gov (United States)

    Schneider, S; Meyer, C; Löber, S; Röhrig, S; Solle, D

    2010-02-01

    Until recently, 700,000 tobacco vending machines provided uncontrolled access to cigarettes for children and adolescents in Germany. On January 1, 2007, a card-based electronic locking device was attached to all tobacco vending machines to prevent the purchase of cigarettes by children and adolescents under 16. Starting in 2009, only persons older than 18 are able to buy cigarettes from tobacco vending machines. The aim of the present investigation (SToP Study: "Sources of Tobacco for Pupils" Study) was to assess changes in the number of tobacco vending machines after the introduction of these new technical devices (supplier's reaction). In addition, the ways smoking adolescents make purchases were assessed (consumer's reaction). We registered and mapped the total number of tobacco points of sale (tobacco POS) before and after the introduction of the card-based electronic locking device in two selected districts of the city of Cologne. Furthermore, pupils from local schools (response rate: 83%) were asked about their tobacco consumption and ways of purchase using a questionnaire. Results indicated that in the area investigated the total number of tobacco POSs decreased from 315 in 2005 to 277 in 2007. The rates of decrease were 48% for outdoor vending machines and 8% for indoor vending machines. Adolescents reported circumventing the card-based electronic locking devices (e.g., by using cards from older friends) and using other tobacco POSs (especially newspaper kiosks) or relying on their social network (mainly friends). The decreasing number of tobacco vending machines has not had a significant impact on cigarette acquisition by adolescent smokers as they tend to circumvent the newly introduced security measures.

  6. Effects of saturation and contrast polarity on the figure-ground organization of color on gray.

    Science.gov (United States)

    Dresp-Langley, Birgitta; Reeves, Adam

    2014-01-01

    Poorly saturated colors are closer to a pure gray than strongly saturated ones and, therefore, appear less "colorful."Color saturation is effectively manipulated in the visual arts for balancing conflicting sensations and moods and for inducing the perception of relative distance in the pictorial plane. While perceptual science has proven quite clearly that the luminance contrast of any hue acts as a self-sufficient cue to relative depth in visual images, the role of color saturation in such figure-ground organization has remained unclear. We presented configurations of colored inducers on gray "test" backgrounds to human observers. Luminance and saturation of the inducers was uniform on each trial, but varied across trials. We ran two separate experimental tasks. In the relative background brightness task, perceptual judgments indicated whether the apparent brightness of the gray test background contrasted with, assimilated to, or appeared equal (no effect) to that of a comparison background with the same luminance contrast. Contrast polarity and its interaction with color saturation affected response proportions for contrast, assimilation and no effect. In the figure-ground task, perceptual judgments indicated whether the inducers appeared to lie in front of, behind, or in the same depth with the background. Strongly saturated inducers produced significantly larger proportions of foreground effects indicating that these inducers stand out as figure against the background. Weakly saturated inducers produced significantly larger proportions of background effects, indicating that these inducers are perceived as lying behind the backgrounds. We infer that color saturation modulates figure-ground organization, both directly by determining relative inducer depth, and indirectly, and in interaction with contrast polarity, by affecting apparent background brightness. The results point toward a hitherto undocumented functional role of color saturation in the genesis of

  7. Source, propagation and site effects: impact on mapping strong ground motion in Bucharest area

    International Nuclear Information System (INIS)

    Radulian, R.; Kuznetsov, I.; Panza, G.F.

    2004-01-01

    Achievements in the framework of the NATO SfP project 972266 focused on the impact of Vrancea earthquakes on the security of Bucharest urban area are presented. The problem of Bucharest city security to Vrancea earthquakes is discussed in terms of numerical modelling of seismic motion and intermediate term earthquake prediction. A hybrid numerical scheme developed by Faeh et al. (1990; 1993) for frequencies up to 1 Hz is applied for the realistic modelling of the seismic ground motion in Bucharest. The method combines the modal summation for the 1D bedrock model and the finite differences for the 2D local structure model. All the factors controlling the ground motion at the site are considered: source, propagation and site effects, respectively. The input data includes the recent records provided by the digital accelerometer network developed within the Romanian-German CRC461 cooperation programme and CALIXTO'99, VRANCEA'99, VRANCEA2001 experiments. The numerical simulation proves to be a powerful tool in mapping the strong ground motion for realistic structures, reproducing acceptably from engineering point of view the observations. A new model of the Vrancea earthquake scaling is obtained and implications for the determination of the seismic motion parameters are analyzed. The role of the focal mechanism and attenuation properties upon the amplitude and spectral content of the ground motion are outlined. CN algorithm is applied for predicting Vrancea earthquakes. Finally, implications for the disaster management strategy are discussed. (authors)

  8. Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method

    Directory of Open Access Journals (Sweden)

    Murahari Kolli

    2015-12-01

    Full Text Available In this paper, Taguchi method was employed to optimize the surfactant and graphite powder concentration in dielectric fluid for the machining of Ti-6Al-4V using Electrical Discharge Machining (EDM. The process parameters such as discharge current, surfactant concentration and powder concentration were changed to explore their effects on Material Removal Rate (MRR, Surface Roughness (SR, Tool wear rate (TWR and Recast Layer Thickness (RLT. Detailed analysis of structural features of machined surface was carried out using Scanning Electron Microscope (SEM to observe the influence of surfactant and graphite powder on the machining process. It was observed from the experimental results that the graphite powder and surfactant added dielectric fluid significantly improved the MRR, reduces the SR, TWR and RLT at various conditions. Analysis of Variance (ANOVA and F-test of experimental data values related to the important process parameters of EDM revealed that discharge current and surfactant concentration has more percentage of contribution on the MRR and TWR whereas the SR, and RLT were found to be affected greatly by the discharge current and graphite powder concentration.

  9. Effect of prior machining deformation on the development of tensile residual stresses in weld-fabricated nuclear components

    International Nuclear Information System (INIS)

    Prevey, P.S.; Mason, P.W.; Hornbach, D.J.; Molkenthin, J.P.

    1996-01-01

    Austenitic alloy weldments in nuclear systems may be subject to stress-corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x-ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside-diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line-broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside-diameter surface in a narrow region adjacent to the weld heat-affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding

  10. Effect on Shear Strength of Machining Methods in Pinus nigra Arnold Bonded with Polyurethane and Polyvinyl Acetate Adhesives

    Directory of Open Access Journals (Sweden)

    Murat Kılıç

    2016-06-01

    Full Text Available Specimens taken from Pinus nigra Arnold were subject to surfacing techniques by being cut with a circular saw, planed with a thickness machine, and sanded with a calibrating sanding machine (with P80 grit sandpaper. First, their surface roughness values were measured; then, the specimens were processed in the machines in a radial and tangential process. Afterwards, the change in shear strength (adhesiveness resistance was analyzed as a result of bonding with various adhesive types (PVAc, PU and pressure applications (0.45 N/mm² or 0.9 N/mm². Approximately 600 specimens were prepared with the purpose of identifying the effect of variables on the bonding performance, and they were subjected to shear testing. The greatest shear strength achieved for both the tangential and radial surfaces in terms of cutting was observed in specimens processed in the thickness machine, on which polyvinyl acetate adhesive and 0.9 N/mm². pressure were applied. Specimens bonded with polyvinyl acetate adhesive displayed higher shear strength in general in comparison to those bonded with polyurethane for both tangential and radial surfaces.

  11. Analysed potential of big data and supervised machine learning techniques in effectively forecasting travel times from fused data

    Directory of Open Access Journals (Sweden)

    Ivana Šemanjski

    2015-12-01

    Full Text Available Travel time forecasting is an interesting topic for many ITS services. Increased availability of data collection sensors increases the availability of the predictor variables but also highlights the high processing issues related to this big data availability. In this paper we aimed to analyse the potential of big data and supervised machine learning techniques in effectively forecasting travel times. For this purpose we used fused data from three data sources (Global Positioning System vehicles tracks, road network infrastructure data and meteorological data and four machine learning techniques (k-nearest neighbours, support vector machines, boosting trees and random forest. To evaluate the forecasting results we compared them in-between different road classes in the context of absolute values, measured in minutes, and the mean squared percentage error. For the road classes with the high average speed and long road segments, machine learning techniques forecasted travel times with small relative error, while for the road classes with the small average speeds and segment lengths this was a more demanding task. All three data sources were proven itself to have a high impact on the travel time forecast accuracy and the best results (taking into account all road classes were achieved for the k-nearest neighbours and random forest techniques.

  12. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals

    Directory of Open Access Journals (Sweden)

    Jianfu Zhang

    2015-09-01

    Full Text Available Potassium dihydrogen phosphate is an important optical crystal. However, high-precision processing of large potassium dihydrogen phosphate crystal workpieces is difficult. In this article, surface roughness and subsurface damage characteristics of a (001 potassium dihydrogen phosphate crystal surface produced by traditional and rotary ultrasonic machining are studied. The influence of process parameters, including spindle speed, feed speed, type and size of sintered diamond wheel, ultrasonic power, and selection of cutting fluid on potassium dihydrogen phosphate crystal surface integrity, was analyzed. The surface integrity, especially the subsurface damage depth, was affected significantly by the ultrasonic power. Metal-sintered diamond tools with high granularity were most suitable for machining potassium dihydrogen phosphate crystal. Cutting fluid played a key role in potassium dihydrogen phosphate crystal machining. A more precise surface can be obtained in machining with a higher spindle speed, lower feed speed, and using kerosene as cutting fluid. Based on the provided optimized process parameters for machining potassium dihydrogen phosphate crystal, a processed surface quality with Ra value of 33 nm and subsurface damage depth value of 6.38 μm was achieved.

  13. Effect of surface machining on corrosion behavior of SA182-304 in simulated

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wang Jianqiu; Han Enhou; Ke Wei

    2015-01-01

    Different machining processes of mechanical parts can cause surface damage layers with different levels. The surface deformed layer can affect the corrosion behavior and service life of these mechanical parts a lot during the following service process. As a result, it is a key issue for the fabrication of the mechanical parts with long life that the selection of proper machining parameters and the removal of surface damage. The purpose of this study is to study the influence of different turning parameters on the corrosion behavior of nuclear grade SA182-304 stainless steel widely used in the advanced pressured water reactors (PWRs). 6 kinds of samples with different surface state are prepared by a lathe with different machining parameters, such as the feed, cutting speed and back engagement of the cutting edge. The high temperature and high pressure immersion test of these samples in the simulated PWR primary watershows that machining processes can affect the microstructure and chemical composition of the formed surface oxide scales a lot. According to the experimental results, the proper machining parameters for the studied SA182-304 are suggested. (authors)

  14. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  15. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    Science.gov (United States)

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  16. The effect of water on the ground nesting habits of the giant tropical ant, Paraponera clavata

    OpenAIRE

    Elahi, Robin

    2005-01-01

    The large predatory ant, Paraponera clavata, exerts measurable top-down effects in wet and moist Neotropical forests, and therefore its distribution has potential ecological implications. To determine how water affects the presence of this important predator, the ground nesting ecology of P. clavata was examined with respect to various habitat characteristics. Four hectares of disturbed Costa Rican lowland rain forest were surveyed for ant colonies to determine nest distribution patterns in w...

  17. Research progress in mutational effects of aerospace on crop and ground simulation on aerospace environment factors

    International Nuclear Information System (INIS)

    Liu Luxiang; Wang Jing; Zhao Linshu; Guo Huijun; Zhao Shirong; Zheng Qicheng; Yang Juncheng

    2004-01-01

    In this paper, the current status of aerospace botany research in aboard was briefly introduced. The research progress of mutational effects of aerospace on crop seed and its application in germplasm enhancement and new variety development by using recoverable satellite techniques in China has been reviewed. The approaches and its experimental advances of ground simulation on aerospace environmental factors were analyzed at different angles of particle biology, physical field biology and gravity biology

  18. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    Science.gov (United States)

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  19. Statistical Models to Assess the Health Effects and to Forecast Ground Level Ozone

    Czech Academy of Sciences Publication Activity Database

    Schlink, U.; Herbath, O.; Richter, M.; Dorling, S.; Nunnari, G.; Cawley, G.; Pelikán, Emil

    2006-01-01

    Roč. 21, č. 4 (2006), s. 547-558 ISSN 1364-8152 R&D Projects: GA AV ČR 1ET400300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : statistical models * ground level ozone * health effects * logistic model * forecasting * prediction performance * neural network * generalised additive model * integrated assessment Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.992, year: 2006

  20. The watercolor effect: A new principle of grouping and figure-ground organization

    OpenAIRE

    Pinna, B; Werner, JS; Spillmann, L

    2003-01-01

    The watercolor effect is perceived when a dark (e.g., purple) contour is flanked by a lighter chromatic contour (e.g., orange). Under these conditions, the lighter color will assimilate over the entire enclosed area. This filling-in determines figure-ground organization when it is pitted against the classical Gestalt factors of proximity, good continuation, closure, symmetry, convexity, as well as amodal completion, and past experience. When it is combined with a given Gestalt factor, the res...

  1. Face machines

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-06-01

    The article surveys latest equipment available from the world`s manufacturers of a range of machines for tunnelling. These are grouped under headings: excavators; impact hammers; road headers; and shields and tunnel boring machines. Products of thirty manufacturers are referred to. Addresses and fax numbers of companies are supplied. 5 tabs., 13 photos.

  2. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  3. Machine Learning.

    Science.gov (United States)

    Kirrane, Diane E.

    1990-01-01

    As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)

  4. Nonplanar machines

    International Nuclear Information System (INIS)

    Ritson, D.

    1989-05-01

    This talk examines methods available to minimize, but never entirely eliminate, degradation of machine performance caused by terrain following. Breaking of planar machine symmetry for engineering convenience and/or monetary savings must be balanced against small performance degradation, and can only be decided on a case-by-case basis. 5 refs

  5. The effect of track load correlation on ground-borne vibration from railways

    Science.gov (United States)

    Ntotsios, Evangelos; Thompson, David; Hussein, Mohammed

    2017-08-01

    In predictions of ground-borne vibration from railways, it is generally assumed that the unevenness profile of the wheel and rail is fully correlated between the two rails and the two wheels of an axle. This leads to identical contact forces at the two rails and can allow further simplifications of the vehicle model, the track model and the track/ground interface conditions. In the present paper, the level of correlation of the track loading at the wheel/rail interface due to rail unevenness and its influence on predictions of ground vibration is investigated. The extent to which the unevenness of the two rails is correlated has been estimated from measurements of track geometry obtained with track recording vehicles for four different tracks. It was found that for wavelengths longer than about 3 m the unevenness of the two rails can be considered to be strongly correlated and in phase. To investigate the effect of this on ground vibration, an existing model expressed in the wavenumber-frequency domain is extended to include separate inputs on the two rails. The track is modelled as an infinite invariant linear structure resting on an elastic stratified half-space. This is excited by the gravitational loading of a passing train and the irregularity of the contact surfaces between the wheels and the rails. The railway model is developed in this work to be versatile so that it can account or discard the effect of load correlations on the two rails beside the effects of variation of the tractions across the width of the track-ground interface and the vehicle sprung mass, as well as the roll motion of the sleepers and the axle. A comparative analysis is carried out on the influence of these factors on the response predictions using numerical simulations. It is shown that, when determining the vibration in the free field, it is important to include in the model the traction variation across the track-ground interface and the non-symmetrical loading at the two rails that

  6. [Assemblage effect of ground arthropod community in desert steppe shrubs with different ages].

    Science.gov (United States)

    Liu, Ren-Tao; Zhu, Fan; Chai, Yong-Qing

    2014-01-01

    Taking the 6-, 15-, 24- and 36-year-old Caragana intermedia shrubs in desert steppe as a subject, an investigation on soil properties and ground arthropod community was carried out under the shrub and in the open to probe into the assemblage effect of ground arthropod community in desert steppe shrubs with different ages. The results were as follows: 1) In the 6-year-old shrubland, significant differences were only found in soil physical properties (soil texture, soil moisture and electrical conductivity) between the microhabitats under shrub and in the open. Beginning from the 15-year-old shrubland, however, soil organic matter and nutrition (N, P) increased significantly. 2) A total of 27 groups were captured in the studied sites which dominated by Carabidae, Tenebrionidae and Formicidae. From 6- to 15-year-old shrubland, the number of dominant groups decreased while that of common groups increased for the ground arthropod community under the shrub. From 15- to 24- and 36-year-old shrubland, the difference between the microhabitats under the shrub and in the open decreased firstly, and then increased. Some special groups appeared under the shrub in the 36-year-old shrubland, and dung beetles became dominant. 3) In the 6- and 24-year-old shrublands, there were no significant differences in group richness, abundance, and diversity index between the microhabitats under the shrub and in the open. As for the 15- and 36-year-old shrublands, however, significant differences were observed. 4) The shrub age had a stronger effect on the distribution of ground arthropods living under the shrubs compared to that in the open. The changes in soil texture, pH and electrical conductivity could significantly influence on the distribution of ground arthropods under the shrub, also in the open to some degree. It was suggested that the development of shrubland had strong impact on assemblage effect of ground arthropods, which was closely correlated with the stand age and would

  7. LHC Report: machine development

    CERN Multimedia

    Rogelio Tomás García for the LHC team

    2015-01-01

    Machine development weeks are carefully planned in the LHC operation schedule to optimise and further study the performance of the machine. The first machine development session of Run 2 ended on Saturday, 25 July. Despite various hiccoughs, it allowed the operators to make great strides towards improving the long-term performance of the LHC.   The main goals of this first machine development (MD) week were to determine the minimum beam-spot size at the interaction points given existing optics and collimation constraints; to test new beam instrumentation; to evaluate the effectiveness of performing part of the beam-squeezing process during the energy ramp; and to explore the limits on the number of protons per bunch arising from the electromagnetic interactions with the accelerator environment and the other beam. Unfortunately, a series of events reduced the machine availability for studies to about 50%. The most critical issue was the recurrent trip of a sextupolar corrector circuit –...

  8. Effect of combined stator winding on reduction of higher spatial harmonics in induction machine

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Bendl, Jiří; Chomát, Miroslav

    2017-01-01

    Roč. 99, č. 1 (2017), s. 161-169 ISSN 0948-7921 R&D Projects: GA ČR GA13-35370S; GA ČR(CZ) GA16-07795S Institutional support: RVO:61388998 Keywords : AC machines * multi-phase induction machines * symmetrical components of instantaneous values Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 0.569, year: 2016 http://www.scilit.net/article/10.1007/s00202-016-0409-y

  9. Development of effective tool for iterative design of human machine interfaces in nuclear power plant

    International Nuclear Information System (INIS)

    Nakagawa, Takashi; Matsuo, Satoko; Yoshikawa, Hidekazu; Wu, Wei; Kameda, Akiyuki; Fumizawa, Motoo

    2000-01-01

    The authors have developed SEAMAID, which is a Simulation-based Evaluation and Analysis support system for MAn-machine Interface Design (SEAMAID) in the domain of nuclear power plants. The SEAMAID simulated the interaction between an operator and human machine interfaces (HMI), and supports to evaluate the HMI by using the simulation results. In this paper, a case study of evaluation for conventional center control room design was conducted. The authors were confirmed that SEAMAID is a useful tool for improvements of HMI design (J.P.N.)

  10. The effect of TWD estimation error on the geometry of machined surfaces in micro-EDM milling

    DEFF Research Database (Denmark)

    Puthumana, Govindan; Bissacco, Giuliano; Hansen, Hans Nørgaard

    In micro EDM (electrical discharge machining) milling, tool electrode wear must be effectively compensated in order to achieve high accuracy of machined features [1]. Tool wear compensation in micro-EDM milling can be based on off-line techniques with limited accuracy such as estimation...... and statistical characterization of the discharge population [3]. The TWD based approach permits the direct control of the position of the tool electrode front surface. However, TWD estimation errors will generate a self-amplifying error on the tool electrode axial depth during micro-EDM milling. Therefore....... The error propagation effect is demonstrated through a software simulation tool developed by the authors for determination of the correct TWD for subsequent use in compensation of electrode wear in EDM milling. The implemented model uses an initial arbitrary estimation of TWD and a single experiment...

  11. Factors affecting the laser processing of wood, 2: Effects of material parameters on machinability

    International Nuclear Information System (INIS)

    Arai, T.; Hayashi, D.

    1994-01-01

    Material parameters of wood were investigated. Factors relating to the workpiece include cutting direction, specific gravity, and components of the wood such as resin-like materials. Also studies of the effects of irregular tissue on machinability were made. The interactions between laser beam and materials are often greatly complex. They depend on the characteristics of the laser beam, the thermal constants of the woods, and the optical surface properties of the woods. Therefore, high quality beam mode and carefully selected materials were used. The following laser cutting properties became clear after studying the experimental results. Slow speed cutting and softwoods make slight differences, regarding cutting section and fiber direction. However, it can beconsidered that there is not very much change except in cross-section. Because of the high power density of laser, cutting speed makes no big difference. The irregular tissue of wood cannot maintain normal cutting speed and accuracy. The factor of genuine density eta, which is thought to be entirely independent of each specific gravity, is definedas the concept of density in general. It can be obtained by applying a simple rule, that is, the eta is the ratio of r(u)/rho(s) where rho(s) is the wood substance as the characteristic value of wood, and r(u)is specific gravity. An experimental formula shows that the depth of cut decreases in proportion to the value of eta. However, in the strict sense of the word, data of wood material as a natural resources mustbe treated qualitatively, because there are deviations from regularity due to various reasons. (author)

  12. Effect of Ankle Joint Contact Angle and Ground Contact Time on Depth Jump Performance.

    Science.gov (United States)

    Phillips, Joshua H; Flanagan, Sean P

    2015-11-01

    Athletes often need to both jump high and get off the ground quickly, but getting off the ground quickly can decrease the vertical ground reaction force (VGRF) impulse, impeding jump height. Energy stored in the muscle-tendon complex during the stretch-shortening cycle (SSC) may mitigate the effects of short ground contact times (GCTs). To take advantage of the SSC, several coaches recommend "attacking" the ground with the foot in a dorsiflexed (DF) position at contact. However, the efficacy of this technique has not been tested. This investigation tested the hypotheses that shorter GCTs would lead to smaller vertical depth jump heights (VDJH), and that this difference could be mitigated by instructing the athletes to land in a DF as opposed to a plantar flexed (PF) foot position. Eighteen healthy junior college athletes performed depth jumps from a 45-cm box onto force platforms under instruction to achieve one of the 2 objectives (maximum jump height [hmax] or minimal GCT [tmin]), with one of the 2 foot conditions (DF or PF). These variations created 4 distinct jump conditions: DF-hmax, DF-tmin, PF-hmax, and PF-tmin. For all variables examined, there were no significant interactions. For all 4 conditions, the ankle was PF during landing, but the DF condition was 28.87% less PF than the PF condition. The tmin conditions had a 23.48% shorter GCT than hmax. There were no significant main effects for jump height. The peak impact force for tmin was 22.14% greater than hmax and 19.11% greater for DF compared with PF conditions. A shorter GCT did not necessitate a smaller jump height, and a less PF foot did not lead to improvements in jump height or contact time during a depth jump from a 45-cm box. The same jump height was attained in less PF and shorter GCT conditions by larger impact forces. To decrease contact time while maintaining jump height, athletes should be instructed to "get off the ground as fast as possible." This cue seems to be more important than foot

  13. Effects of drought and prolonged winter on Townsend's ground squirrel demography in shrubsteppe habitats

    Science.gov (United States)

    Van Horne, Beatrice; Olson, Gail S.; Schooley, Robert L.; Corn, Janelle G.; Burnham, Kenneth P.

    1997-01-01

    During a mark–recapture study of Townsend's ground squirrels (Spermophilus townsendii) on 20 sites in the Snake River Birds of Prey National Conservation Area, Idaho, in 1991 through 1994, 4407 animals were marked in 17639 capture events. This study of differences in population dynamics of Townsend's ground squirrels among habitats spanned a drought near the extreme of the 130-yr record, followed by prolonged winter conditions.Townsend's ground squirrels have a short active season (≈4 mo) in which to reproduce and store fat for overwintering. Their food consists largely of succulent grasses and forbs in this dry shrubsteppe and grassland habitat. The drought in the latter half of the 1992 active season produced early drying of Sandberg's bluegrass (Poa secunda) and was associated with low adult and juvenile body masses prior to immergence into estivation/hibernation. The following prolonged winter was associated with late emergence of females in 1993. Early-season body masses of adults were low in 1993 relative to 1992, whereas percentage of body fat in males was relatively high. These weather patterns in spring 1992 and winter 1993 also resulted in reduced adult persistence through the ≈7-mo inactive period, especially for adult females, and near-zero persistence of >1200 juveniles. Consequently, densities of Townsend's ground squirrels across the 20 livetrap sites declined.The demographic effects of drought and prolonged winter lasted at least through the subsequent breeding season. Adult females that survived these weather extremes produced fewer emergent young per female than did adult females prior to the event. Prior to the drought/prolonged winter, yearling female body masses were higher than, or indistinguishable from, those of adults. Females produced in 1993 had lower body masses as yearlings than did adult females.Demographic response to the drought and prolonged winter varied with habitat; ground squirrels in sagebrush habitat showed less decline

  14. The effect of short ground vegetation on terrestrial laser scans at a local scale

    Science.gov (United States)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  15. Effect of packaging materials on the quality of irradiated ground spices

    International Nuclear Information System (INIS)

    Saputra, T.S.; Maha, Munsiah; Purwanto, Z.I.

    1985-01-01

    These experiments were carried out to determine the suitable packaging materials to be used for irradiated ground spices produced in Indonesia. The materials used were white pepper (Piper album), black pepper (Piper nigrum) nutmeg (Myristica fragrans), turmeric (Curcuma domestica), and ginger (Zangiber officinale R.) packaged in transparent polypropylene bottles, in pouches made of cellophane-aluminum foil and lithopaper-polyethylene laminates. The samples were irradiated at 5 kGy, stored at ambient conditions, and then examined every 3 months from 0 up to 9 months of storage. The parameters observed were total bacterial counts, total moulds and yeast counts, water activity (Aw), moisture content, and organoleptic scores of the samples. Piperine content of white pepper and black pepper, colour of turmeric extract, and rancidity of ginger were also determined. The results showed that the packaging materials used had no significant effect on bacterial load of the samples. Prolonged storage, however, could reduce the microbial load of the ground spices. Irradiation at 5 kGy could effectively increase the hygienic condition as well as storage life of the ground spices under investigation without affecting their organoleptic properties. (author). 8 refs

  16. Effects of load on ground reaction force and lower limb kinematics during concentric squats.

    Science.gov (United States)

    Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos

    2005-10-01

    The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.

  17. The effects of dorso-lumbar motion restriction on the ground reaction force components during running.

    Science.gov (United States)

    Morley, Joseph J; Traum, Edward

    2016-04-01

    The effects of restricting dorso-lumbar spine mobility on ground reaction forces in runners was measured and assessed. A semi-rigid cast was used to restrict spinal motion during running. Subjects ran across a force platform at 3.6 m/s, planting the right foot on the platform. Data was collected from ten running trials with the cast and ten without the cast and analysed. Casted running showed that the initial vertical heel strike maximum was increased (p running (p running results in measurable and repeatable alterations in ground reaction force components. Alterations in load transfer due to decreased spinal motion may be a factor contributing to selected injuries in runners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of cutting parameters and machining environments on surface roughness in hard turning using design of experiment

    Science.gov (United States)

    Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan

    2016-07-01

    Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.

  19. Study on the effect of testing machine rigidity on strength and ductility temperature dependences obtained

    International Nuclear Information System (INIS)

    Krashchenko, V.P.; Statsenko, V.E.; Rudnitskij, N.P.

    1984-01-01

    Investigation procedures are described for rigidity of testing machines and mechanical properties of tantalum and nickel in the temperature range 293-1873K. Temperature dependences are presented for strength characteristics of the investigated materials obtained with the use of installations of different rigidity. Dependence analysis is carried out and recommendations are given as to the characteristics application

  20. Swiss ball abdominal crunch with added elastic resistance is an effective alternative to training machines

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus D; Andersen, Christoffer H

    2012-01-01

    crunches in training machine (27±3.7 vs 65±3.8% nEMG respectively, Pinfluence the findings. CONCLUSION: Crunches on a Swiss ball with added elastic resistance induces high rectus abdominis activity accompanied by low hip flexor...

  1. Effect of Neutral Grounding Protection Methods for Compensated Wind/PV Grid-Connected Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Nurettin Çetinkaya

    2017-01-01

    Full Text Available The effects of the wind/PV grid-connected system (GCS can be categorized as technical, environmental, and economic impacts. It has a vital impact for improving the voltage in the power systems; however, it has some negative effects such as interfacing and fault clearing. This paper discusses different grounding methods for fault protection of High-voltage (HV power systems. Influences of these grounding methods for various fault characteristics on wind/PV GCSs are discussed. Simulation models are implemented in the Alternative Transient Program (ATP version of the Electromagnetic Transient Program (EMTP. The models allow for different fault factors and grounding methods. Results are obtained to evaluate the impact of each grounding method on the 3-phase short-circuit fault (SCF, double-line-to-ground (DLG fault, and single-line-to-ground (SLG fault features. Solid, resistance, and Petersen coil grounding are compared for different faults on wind/PV GCSs. Transient overcurrent and overvoltage waveforms are used to describe the fault case. This paper is intended as a guide to engineers in selecting adequate grounding and ground fault protection schemes for HV, for evaluating existing wind/PV GCSs to minimize the damage of the system components from faults. This research presents the contribution of wind/PV generators and their comparison with the conventional system alone.

  2. Cerrado ground-dwelling ants (Hymenoptera: Formicidae as indicators of edge effects

    Directory of Open Access Journals (Sweden)

    Carlos Roberto F. Brandão

    2011-06-01

    Full Text Available Large-scale agricultural production in Brazil preferentially occupies plateaus reclaimed from areas originally covered by Cerrado (savanna. Depending on the region, a percentage of the pristine vegetation coverage must be preserved by law, resulting in the creation of fragmented legal Cerrado reserves. The geometry of these relatively small legal reserves creates new habitat edges and ecotones, whose effects on the invertebrate fauna are poorly understood. This study aimed to assess the effects of abrupt edges resulting from soy production on ground-dwelling ant assemblages in the Brazilian Cerrado. The study sites are located within the Amazon region, in the state of Maranhão, northern Brazil, but were covered by Cerrado on a relatively low plateau, irregularly inter-spaced with gallery forests along streams. We compared species richness and species composition of ground-dwelling ants along eight transects set 0, 50, 100, 150, 200, and 250 m into the sensu stricto Cerrado and 50 and 100 m into the soy field. The collecting periods covered the wet and dry seasons. Effects on ant species richness were non-significant, although composition of the assemblages was significantly affected by edge effects, which were, in part, found to be species specific. We hypothesize that edge effects are probably greater than estimated because of the shape and complexity of reserves. Consideration of edge effects in the Cerrado Biome should enable the design of appropriate reserve sizes and shapes to meet conservation goals.

  3. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  4. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The effects of longwall mining on the local ground water regime are determined through field monitoring and numerical modeling. Field displacement data were obtained from multiple-position borehole extensometer (MPBX's) and survey monuments, combined with hydraulic drawdown and recovery tests completed both pre- and post-mining. Despite the development of significant mining induced displacements, the resulting effect on long-term water budgets was surprisingly small. Coupled flow-deformation modeling of the site was able to adequately define the post-mining mechanical and hydraulic response, including resulting conductivity magnitudes and water budgets. 6 refs., 5 figs., 2 tabs

  5. Effect of tellurium on machinability and mechanical property of CuAlMnZn shape memory alloy

    International Nuclear Information System (INIS)

    Liu Na; Li Zhou; Xu Genying; Feng Ze; Gong Shu; Zhu Lilong; Liang Shuquan

    2011-01-01

    Highlights: → A novel free-machining Cu-7.5Al-9.7Mn-3.4Zn-0.3Te (wt.%) shape memory alloy has been developed. → The size of dispersed particles with richer Te is 2-5 μm. → The CuAlMnZnTe alloy has good machinability which approached that of BZn15-24-1.5 due to the addition of Te. → Its shape memory property keeps the same as that of CuAlMnZn alloy with free Te. → The CuAlMnZn shape memory alloy with and without Te both have good ductile as annealed at 700 deg. C for 15 min. - Abstract: The microstructure transition, shape memory effect, machinability and mechanical property of the CuAlMnZn alloy with and without Te have been studied using X-ray diffraction analysis, chips observation and scanning electron microscopy (SEM), tensile strength test and differential scanning calorimeter (DSC), and semi-quantitative shape memory effect (SME) test. The particles with richer Te dispersedly distributed in grain interior and boundary with size of 2-5 μm. After the addition of Te, the CuAlMnZnTe alloy machinability has been effectively increased to approach that of BZn15-24-1.5 and its shape memory property remains the same as the one of CuAlMnZn alloy. The CuAlMnZn shape memory alloys with and without Te both have good ductility as annealed at 700 deg. C for 15 min.

  6. A Forging Hardness Dispersion Effect on the Energy Consumption of Machining

    Directory of Open Access Journals (Sweden)

    L. D. Mal'kova

    2015-01-01

    Full Text Available The aim of the work is to evaluate a hardness dispersion of forgings to be further machined, and analyse the impact of this dispersion on the resulting power consumption when cutting.The paper studies the hardness values of three kinds of parts for automotive manufacturing. Sample of each part was n = 100 pieces. Analysis of measurements showed that 46% - 93% of parts meet requirements for a range defined by the work-piece working drawing. It was found that hardness of one batch of forgings is under dispersion, which distribution is governed by the normal law.The work provides calculations for machining the external cylindrical surfaces of the considered parts. In the context of calculating are adopted parameters of the enterprise-processing rate. It is found that power consumption of machining because of the dispersion values of the work-piece hardness is a function of the random BH variable and it itself is a random variable. Two types of samples are considered, namely: the full sample and that of the values that meet requirements for hardness. The coefficient of variation for samples that meet the technical requirements for hardness is lower than for the full samples, so their average value is more reliable characteristic of a set. It was also found that to ensure a reliable prediction of power consumption in designing the manufacturing processes it is necessary to reduce a tolerance range of workpiece hardness to the limit.The work gives a comparative evaluation of electric power consumption per unit cylindrical surface of the parts under consideration. A relative change in the electric power consumed at the minimum and maximum levels of the hardness value was introduced as an evaluation criterion. It is found that with changing hardness of machined work-pieces within the tolerance, the change in power consumption in machining the unit surface reaches 16% while in the case its being out of the specified range it does 47%.

  7. Study on effect of tool electrodes on surface finish during electrical discharge machining of Nitinol

    Science.gov (United States)

    Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba

    2018-03-01

    Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.

  8. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  9. Effects of saturation and contrast polarity on the figure-ground organization of color on grey

    Directory of Open Access Journals (Sweden)

    Birgitta eDresp

    2014-10-01

    Full Text Available Poorly saturated colors are closer to a pure grey than strongly saturated hues and, therefore, appear less colorful. Color saturation is effectively manipulated in the visual arts for balancing conflicting sensations and moods and for inducing the perception of relative distance in the pictorial plane. While perceptual science has proven quite clearly that the luminance contrast of any hue acts as a self-sufficient cue to relative depth in visual images, the role of color saturation in such figure-ground organization has remained unclear. We presented configurations of colored inducers on grey ‘test’ backgrounds to human observers. Luminance and saturation of the inducers was uniform on each trial, but varied across trials. We ran two separate experimental tasks. In the relative background brightness task, perceptual judgments indicated whether the apparent brightness of the grey test background contrasted with, assimilated to, or appeared equal (no effect to that of a comparison background with the same luminance contrast. Contrast polarity and its interaction with color saturation affected response proportions for contrast, assimilation and no effect. In the figure-ground task, perceptual judgments indicated whether the inducers appeared to lie in front of, behind, or in the same depth with the background. Strongly saturated inducers produced larger proportions of foreground effects indicating that these inducers stand out as figure against the background. Weakly saturated inducers produced significantly larger proportions of background effects, indicating that these inducers are perceived as lying behind the backgrounds. We infer that color saturation modulates figure-ground organization, both directly by determining relative inducer depth, and indirectly, and in interaction with contrast polarity, by affecting apparent background brightness.

  10. The effect of the use of a TNF-alpha inhibitor in hypothermic machine perfusion on kidney function after transplantation.

    Science.gov (United States)

    Diuwe, Piotr; Domagala, Piotr; Durlik, Magdalena; Trzebicki, Janusz; Chmura, Andrzej; Kwiatkowski, Artur

    2017-08-01

    One of the most important problems in transplantation medicine is the ischemia/reperfusion injury of the organs to be transplanted. The aim of the present study was to assess the effect of tumor necrosis factor-alpha (TNF-alpha) inhibitor etanercept on the machine perfusion hypothermia of renal allograft kidney function and organ perfusion. No statistically significant differences were found in the impact of the applied intervention on kidney machine perfusion during which the average flow and vascular resistance were evaluated. There were no statistically significant differences in the occurrence of delayed graft function (DGF). Fewer events in patients who received a kidney from the etanercept treated Group A compared to the patients who received a kidney from the control Group B were observed when comparing the functional DGF and occurrence of acute rejection episodes, however, there was no statistically significant difference. In summary, no effect of treatment with etanercept an inhibitor of TNF-alpha in a hypothermic machine perfusion on renal allograft renal survival and its perfusion were detected in this study. However, treatment of the isolated organ may be important for the future of transplantation medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effect of the ground state correlations in the density distribution and zero point fluctuations

    International Nuclear Information System (INIS)

    Barranco, F.; Broglia, R.A.

    1985-01-01

    The existence of collective vibrations in the spectrum implies that the description of the ground state in an independent particle model must be corrected. This is because of the zero point fluctuations induced by the collective vibrations, so that ground state correlations have to be included. These are taken into account via the diagrammatic expansion of the Nuclear Field Theory, giving place to a renormalization in the different properties of the ground state. As far as the density distribution is concerned, in a NFT consistent calculation, the largest contributions arise from diagrams that cannot be expressed in terms of backward going amplitudes of the phonon RPA wave function. For a given multipolarity the main correction comes from the low lying state. The giant resonance is of smaller relevance since it lies at larger energies in the response function. The octupole modes give the dominant contribution, and the effect in average becomes smaller as the multipolarity increases. These results agree quite well with those obtained taking into account the zero point fluctuations of the nuclear surface in the collective model with the Esbensen and Bertsch prescription, which the authors use to explain the anomalous behaviour of the mean square radii of the Calcium isotopes

  12. Ground state magnetization of conduction electrons in graphene with Zeeman effect

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, F., E-mail: federico.escudero@uns.edu.ar [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Ardenghi, J.S., E-mail: jsardenhi@gmail.com [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Sourrouille, L., E-mail: lsourrouille@yahoo.es [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Jasen, P., E-mail: pvjasen@uns.edu.ar [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina)

    2017-05-01

    In this work we address the ground state magnetization in graphene, considering the Zeeman effect and taking into account the conduction electrons in the long wavelength approximation. We obtain analytical expressions for the magnetization at T=0 K, where the oscillations given by the de Haas van Alphen (dHvA) effect are present. We find that the Zeeman effect modifies the magnetization by introducing new peaks associated with the spin splitting of the Landau levels. These peaks are very small for typical carrier densities in graphene, but become more important for higher densities. The obtained results provide insight of the way in which the Zeeman effect modifies the magnetization, which can be useful to control and manipulate the spin degrees of freedom. - Highlights: • The magnetization has peaks whenever the last energy level changes discontinuously. • The peaks amplitude depends on the electron density. • The Zeeman effect introduces new peaks in the magnetization.

  13. Fundamentals of machine design

    CERN Document Server

    Karaszewski, Waldemar

    2011-01-01

    A forum of researchers, educators and engineers involved in various aspects of Machine Design provided the inspiration for this collection of peer-reviewed papers. The resultant dissemination of the latest research results, and the exchange of views concerning the future research directions to be taken in this field will make the work of immense value to all those having an interest in the topics covered. The book reflects the cooperative efforts made in seeking out the best strategies for effecting improvements in the quality and the reliability of machines and machine parts and for extending

  14. Dissociation of color and figure-ground effects in the watercolor illusion.

    Science.gov (United States)

    Von der Heydt, Rüdiger; Pierson, Rachel

    2006-01-01

    Two phenomena can be observed in the watercolor illusion: illusory color spreading and figure-ground organization. We performed experiments to determine whether the figure-ground effect is a consequence of the color illusion or due to an independent mechanism. Subjects were tested with displays consisting of six adjacent compartments--three that generated the illusion alternating with three that served for comparison. In a first set of experiments, the illusory color was measured by finding the matching physical color in the alternate compartments. Figureness (probability of 'figure' responses, 2AFC) of the watercolor compartments was then determined with and without the matching color in the alternate compartments. The color match reduced figureness, but did not abolish it. There was a range of colors in which the watercolor compartments dominated as figures over the alternate compartments although the latter appeared more saturated in color. In another experiment, the effect of tinting alternate compartments was measured in displays without watercolor illusion. Figureness increased with color contrast, but its value at the equivalent contrast fell short of the figureness value obtained for the watercolor pattern. Thus, in both experiments, figureness produced by the watercolor pattern was stronger than expected from the color effect, suggesting independent mechanisms. Considering the neurophysiology, we propose that the color illusion follows from the principles of representation of surface color in the visual cortex, while the figure-ground effect results from two mechanisms of border ownership assignment, one that is sensitive to asymmetric shape of edge profile, the other to consistency of color borders.

  15. Machine Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  16. Machine Translation

    Indian Academy of Sciences (India)

    Research Mt System Example: The 'Janus' Translating Phone Project. The Janus ... based on laptops, and simultaneous translation of two speakers in a dialogue. For more ..... The current focus in MT research is on using machine learning.

  17. Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey

    Science.gov (United States)

    Gok, Elcin; Chávez-García, Francisco J.; Polat, Orhan

    2014-04-01

    We present a site effect study for the city of Izmir, Western Anatolia, Turkey. Local amplification was evaluated using state-of-practice tools. Ten earthquakes recorded at 16 sites were analysed using spectral ratios relative to a reference site, horizontal-to-vertical spectral ratios, and an inversion scheme of the Fourier amplitude spectra of the recorded S-waves. Seismic noise records were also used to estimate site effects. The different estimates are in good agreement among them, although a basic uncertainty of a factor of 2 seems difficult to decrease. We used our site effect estimates to predict ground motion in Izmir for a possible M6.5 earthquake close to the city using stochastic modelling. Site effects have a large impact on PSV (pseudospectral velocity), where local amplification increases amplitudes by almost a factor of 9 at 1 Hz relative to the firm ground condition. Our results allow identifying the neighbourhoods of Izmir where hazard mitigation measurements are a priority task and will also be useful for planning urban development.

  18. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  19. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    OpenAIRE

    Chao-Ching Ho; Dung-Sheng Wu

    2018-01-01

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was p...

  20. Effect of PID Power System Stabilizer for a Synchronous Machine in Simulink Environment

    International Nuclear Information System (INIS)

    Yi, Tan Qian; Kasilingam, Gowrishankar; Raguraman, Raman

    2013-01-01

    This paper presents the use of Proportional-Integral-Derivative (PID) Controller with power system stabilizer (PSS) in a single machine infinite bus system. A PSS is used to generate supplementary damping control signals for an excitation system in order to damp out low frequency oscillations (LFO) of an electric power system. The paper is modelled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under a wide range of operating conditions. The functional blocks of PID controller with PSS are generated and the simulation studies are conducted based on different test cases to observe the dynamic performance of the power system. Analysis in this paper reveals that the PID-PSS gives better dynamic performance as compared to that of conventional power system stabilizer and also the optimal gain settings of PID PSS obtained at normal operating condition works well to other operating condition without much deterioration of the dynamic responses.

  1. A rich solution spray as a refining method in a small capacity, single effect, solar assisted absorption machine with the pair NH3/H2O: Experimental results

    International Nuclear Information System (INIS)

    Mendes, L.F.; Collares-Pereira, M.; Ziegler, F.

    2007-01-01

    Ammonia vapour refining is a common procedure in ammonia-water absorption machines. A solar assisted single effect absorption machine that uses the pair ammonia-water was developed and tested. Its desorber has a built-in adiabatic refining column constituted by a rich solution spray. The refining method proved its feasibility. The spray provided a more or less constant ammonia vapour enrichment of about 1% which is enough for the working temperature ranges of this type of machine. It was also verified that the refining effect of the spray is almost independent of the refrigerant vapour and solution mass flow rates

  2. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  3. Investigation into the effect of fixturing systems on the design of condition monitoring for machining operations

    OpenAIRE

    Abbas, JK

    2013-01-01

    The global market competition has drawn the manufacturer’s attention on automated manufacturing processes using condition monitoring systems. These systems have been used for improving product quality, eliminating inspection, and enhancing manufacturing productivity. Fixtures are essential devices in machining processes to hold the tool or workpiece, hence they are influenced directly by the stability of the cutting tool. Therefore, tool and fixturing faults play an important part in the inac...

  4. An Effective Performance Analysis of Machine Learning Techniques for Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Vinitha DOMINIC

    2015-03-01

    Full Text Available Machine learning techniques will help in deriving hidden knowledge from clinical data which can be of great benefit for society, such as reduce the number of clinical trials required for precise diagnosis of a disease of a person etc. Various areas of study are available in healthcare domain like cancer, diabetes, drugs etc. This paper focuses on heart disease dataset and how machine learning techniques can help in understanding the level of risk associated with heart diseases. Initially, data is preprocessed then analysis is done in two stages, in first stage feature selection techniques are applied on 13 commonly used attributes and in second stage feature selection techniques are applied on 75 attributes which are related to anatomic structure of the heart like blood vessels of the heart, arteries etc. Finally, validation of the reduced set of features using an exhaustive list of classifiers is done.In parallel study of the anatomy of the heart is done using the identified features and the characteristics of each class is understood. It is observed that these reduced set of features are anatomically relevant. Thus, it can be concluded that, applying machine learning techniques on clinical data is beneficial and necessary.

  5. [Effects of cutting and reseeding on the ground-dwelling arthropod community in Caragana intermedia forest in desert steppe].

    Science.gov (United States)

    Liu, Ren-Tao; Chai, Yong-Qing; Yang, Xin-Guo; Song, Nai-Ping; Wang, Xin-Yun; Wang, Lei

    2013-01-01

    Taking a 25-year-old Caragana intermedia forest in desert steppe as test object, an investigation was conducted on the ground-dwelling arthropod community in cutting and no-cutting stands with and without reseeding, aimed to understand the effects of cutting, reseeding and their interaction on the individual number and group richness of ground-dwelling arthropod in C. intermedia forest. There were significantly lower number and richness of ground-dwelling arthropod in the open spaces than under the shrubs in the no-cutting and no-reseeding stands. Cutting, reseeding and both of them could significantly increase the number and richness of ground-dwelling arthropod in the open spaces, but not under the shrubs, compared with no cutting or reseeding. Consequently, there were no significant differences in the distribution of ground-dwelling arthropod in the open spaces and under the shrubs in the cutting, reseeding, or cutting and reseeding stands. Further, there was a similar buffer effect between cutting and reseeding on the ground-dwelling arthropod. No significant differences were observed in the ground-dwelling arthropod distribution, between cutting stand and reseeding stand, between cutting stand and cutting and reseeding stand, and between reseeding stand and cutting and reseeding stand. It was suggested that cutting, reseeding, or both of them could significantly improve the ground-dwelling arthropod diversity especially in the open spaces, being beneficial for the restoration of degraded grassland ecosystem and the rational management on artificial C. intermedia forest in desert steppe.

  6. Effect of ground paprika and its oleoresin on marinated chicken breast meat quality

    Directory of Open Access Journals (Sweden)

    Jokanović Marija R.

    2011-01-01

    Full Text Available The still-marinating process is a simplified technology used to tenderize and to improve the flavour, colour and juiciness of meat products. The effects of marinade type, addition of ground paprika (P or paprika oleoresin (O, on the instrumental and sensory properties of cooked marinated chicken fillets were investigated. It was observed that marinade uptake was greater (P > 0.05 for the fillets marinated with paprika oleoresin. Cooking loss was lowest for experimental group O, and signifycantly lower (P<0.05 comparing to control group. Determined L

  7. Effect of feeding spent coffee grounds on the feedlot performance and carcass quality of fattening pigs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, S S; Chawla, J S

    1986-01-01

    Twelve fattening pigs of large white Yorkshire breed, divided into three equal groups, were fed isonitrogenous concentrate mixture containing 0, 10 and 15% spent coffee grounds (SCG) for 70 days. The crude fibre and ether extract content increased while that of nitrogen-free extract decreased with the increase in the level of SCG. The daily live weight gain and the feed conversion efficiency were depressed significantly at a 15% level of SCG. However, the inclusion of SCG in the rations did not have any adverse effect on carcass quality. It was concluded that SCG at 10% can be included in the ration of pigs safely without affecting their health. 10 references.

  8. Numerical Study of a Long-Lived, Isolated Wake Vortex in Ground Effect

    Science.gov (United States)

    Proctor, Fred H.

    2014-01-01

    This paper examines a case observed during the 1990 Idaho Falls Test program, in which a wake vortex having an unusually long lifetime was observed while in ground effect. A numerical simulation is performed with a Large Eddy Simulation model to understand the response of the environment in affecting this event. In the simulation, it was found that one of the vortices decayed quickly, with the remaining vortex persisting beyond the time-bound of typical vortex lifetimes. This unusual behavior was found to be related to the first and second vertical derivatives of the ambient crosswind.

  9. Reliable cost effective technique for in situ ground stress measurements in deep gold mines.

    CSIR Research Space (South Africa)

    Stacey, TR

    1995-07-01

    Full Text Available on these requirements, an in situ stress measurement technique which will be practically applicable in the deep gold mines, has been developed conceptually. Referring to the figure on the following page, this method involves: • a borehole-based system, using... level mines have not been developed. 2 This is some of the background to the present SIMRAC research project, the title ofwhich is “Reliable cost effective technique for in-situ ground stress measurements in deep gold mines”. A copy of the research...

  10. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    Science.gov (United States)

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  11. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  12. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    Science.gov (United States)

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  13. A grounded theory study on the role of differentiated instruction in effective middle school science teaching

    Science.gov (United States)

    Jones, Brian Kirby

    The purpose of this grounded theory study was to develop a model explaining the role of differentiated instruction (DI) in effective middle school science teaching. The study examined the best teaching practices and differentiated elements from eight general education middle school science teachers, all scoring at the highest level of a teaching effectiveness measure on their evaluations, through a collection of observational, interview, survey, and teaching artifact data. The data were analyzed through the methodology of a systematic grounded theory qualitative approach using open, axial, and selective coding to develop a model describing how and to what degree effective middle school science teachers differentiated their best teaching practices. The model that emerged from the data shows instruction as a four-phase process and highlights the major elements of best practices and DI represented at each phase. The model also depicts how teachers narrowed the scope of their differentiating strategies as instruction progressed. The participants incorporated DI into their pedagogies, though in different degrees at each phase, and primarily by using variety to present concepts with multiple types of instruction followed by a series of sense-making activities related to several learning modalities. Teachers scaffolded students carefully, using informal and formal assessment data to inform future instructional decisions and especially their plans to reteach or extend on a concept. The model is intended to provide insight into the value of DI for middle school science teaching.

  14. Experimental Investigation of the Aerodynamic Ground Effect of a Tailless Lambda-Shaped UCAV with Wing Flaps

    National Research Council Canada - National Science Library

    Mostaccio, Jason T

    2006-01-01

    .... The following study extends the existing database by analyzing the inherent aerodynamic behavior that is produced by employing trailing edge flap deflections while flying in-ground-effect (IGE...

  15. Effect of music therapy on oncologic staff bystanders: a substantive grounded theory.

    Science.gov (United States)

    O'Callaghan, Clare; Magill, Lucanne

    2009-06-01

    Oncologic work can be satisfying but also stressful, as staff support patients and families through harsh treatment effects, uncertain illness trajectories, and occasional death. Although formal support programs are available, no research on the effects of staff witnessing patients' supportive therapies exists. This research examines staff responses to witnessing patient-focused music therapy (MT) programs in two comprehensive cancer centers. In Study 1, staff were invited to anonymously complete an open-ended questionnaire asking about the relevance of a music therapy program for patients and visitors (what it does; whether it helps). In Study 2, staff were theoretically sampled and interviewed regarding the personal effects of witnessing patient-centered music therapy. Data from each study were comparatively analyzed according to grounded theory procedures. Positive and negative cases were evident and data saturation arguably achieved. In Study 1, 38 staff unexpectedly described personally helpful emotional, cognitive, and team effects and consequent improved patient care. In Study 2, 62 staff described 197 multiple personal benefits and elicited patient care improvements. Respondents were mostly nursing (57) and medical (13) staff. Only three intrusive effects were reported: audibility, initial suspicion, and relaxation causing slowing of work pace. A substantive grounded theory emerged applicable to the two cancer centers: Staff witnessing MT can experience personally helpful emotions, moods, self-awarenesses, and teamwork and thus perceive improved patient care. Intrusive effects are uncommon. Music therapy's benefits for staff are attributed to the presence of live music, the human presence of the music therapist, and the observed positive effects in patients and families. Patient-centered oncologic music therapy in two cancer centers is an incidental supportive care modality for staff, which can reduce their stress and improve work environments and perceived

  16. Monitoring Effect of Fire on Ant Assemblages in Brazilian Rupestrian Grasslands: Contrasting Effects on Ground and Arboreal Fauna

    Directory of Open Access Journals (Sweden)

    Diego Anjos

    2017-06-01

    Full Text Available Fire is one of the most relevant ecological disturbances in nature. Little is known about the effects of fire on biodiversity in ecosystems like rupestrian grasslands, which share characteristics with savanna and forest biomes. Brazilian rupestrian grasslands are part of an endangered ecosystem that has been modified by anthropogenic fire events that have become more intense in recent decades. In this study, we evaluated the effects of fire on ground and arboreal ant assemblages through a two-year monitoring program (24 monthly samplings. We found that fire does not change cumulative species richness after 24 months, and that fire does not affect mean ant richness, abundance, and species composition in arboreal ants. On the other hand, fire increased mean ground ant species richness and abundance, and caused a significant change in species composition. Our results indicate a weak and beneficial effect of fire only for ground ant communities, which generally agrees with results from other studies in Brazilian savannas. Taken together, results from these studies may be useful for improvement of fire suppression policy in fire-prone habitats in Brazil.

  17. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance.

    Science.gov (United States)

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi

    2017-07-27

    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway.

  18. Study of two-dimensional flow by triangular unstructured grid around airfoil with dynamic ground effect

    International Nuclear Information System (INIS)

    Haghbin, S.; Farahat, S.

    2004-01-01

    In this paper, the numerical solution of two-dimensional incompressible viscid flow by triangular unstructured grid around airfoil with dynamic ground effect and by using geometric conservation law (GCL) has been represented. In this analysis, after the mesh generation for physical model, for the purpose of adaption of meshes with physical condition, the mesh adaption method has been used. Also, for increasing the speed of results convergence, the Multigrid method has been applied to the solver of governing equations. Because of the movement of meshes in this analysis, by using a spring simulation, the generated meshes have been moved and in every time step for the purpose of controlling the quality of meshes, by considering the EquiAngle Skew coefficient (EAS) and the volume of each mesh, the meshes that had a large EAS and a volume more than and less than defined maximum and minimum value, have been removed and then regenerated. Also, because the continuity and momentum conservations law were insufficient to work with these moving grids, the geometric conservation law was combined with the other conservation laws and a general equation was obtained for the dynamic meshes. For solving this general equation, the Simple Algorithm has been used. According to the results, the dynamic ground effect causes unsteadiness and also the Lift coefficient is increased vibrationally. And with respect to the type of airfoil, the Drag coefficient can decrease or increase vibrationally. (author)

  19. Effects of dietary fermented spent coffee ground on nutrient digestibility and nitrogen utilization in sheep.

    Science.gov (United States)

    Choi, Yongjun; Rim, Jong-Su; Na, Youngjun; Lee, Sang Rak

    2018-03-01

    The objective of the study was to determine the effect of fermented spent coffee ground (FSCG) on nutrient digestibility and nitrogen utilization in sheep. Fermentation of spent coffee ground (SCG) was conducted using Lactobacillus plantrum . Fermentation was performed at moisture content of 70% and temperature of 39°C with anaerobic air tension for 48 h. Four adult rams (initial body weight = 56.8±0.4 kg) were housed in a respiration-metabolism chamber and the treatments were: i) control (Basal diet; 0% SCG or FSCG), ii) 10% level of SCG, iii) 10% level of FSCG, and iv) 20% level of FSCG in 4×4 Latin square design. Each dietary experiment period lasted for 18-d with a 14-d of adaptation period and a 4-d of sample collection period. In SCG fermentation experimental result, acid detergent insoluble nitrogen (ADIN) concentration of FSCG (64.5% of total N) was lower than that of non-fermented SCG (78.8% of total N). Digestibility of dry matter and organic matter was similar among treatment groups. Although crude protein (CP) digestibility of the control was greater than FSCG groups (pdigestibility and nitrogen retention than non-fermented 10% SCG group (pdigestibility, thereby increasing CP digestibility and nitrogen utilization in sheep. Fermentation using microorganisms in feed ingredients with low digestibility could have a positive effect on improving the quality of raw feed.

  20. Study of two-dimensional flow by triangular unstructured grid around airfoil with dynamic ground effect

    Energy Technology Data Exchange (ETDEWEB)

    Haghbin, S.; Farahat, S. [Sistan and Baluchestan Univ., Dept. of Mechanical Engineering, Zahedan (Iran, Islamic Republic of)]. E-mail: sadegh_haghbin@yahoo.com

    2004-07-01

    In this paper, the numerical solution of two-dimensional incompressible viscid flow by triangular unstructured grid around airfoil with dynamic ground effect and by using geometric conservation law (GCL) has been represented. In this analysis, after the mesh generation for physical model, for the purpose of adaption of meshes with physical condition, the mesh adaption method has been used. Also, for increasing the speed of results convergence, the Multigrid method has been applied to the solver of governing equations. Because of the movement of meshes in this analysis, by using a spring simulation, the generated meshes have been moved and in every time step for the purpose of controlling the quality of meshes, by considering the EquiAngle Skew coefficient (EAS) and the volume of each mesh, the meshes that had a large EAS and a volume more than and less than defined maximum and minimum value, have been removed and then regenerated. Also, because the continuity and momentum conservations law were insufficient to work with these moving grids, the geometric conservation law was combined with the other conservation laws and a general equation was obtained for the dynamic meshes. For solving this general equation, the Simple Algorithm has been used. According to the results, the dynamic ground effect causes unsteadiness and also the Lift coefficient is increased vibrationally. And with respect to the type of airfoil, the Drag coefficient can decrease or increase vibrationally. (author)

  1. Suppression of Adverse Effects of GIC Using Controlled Variable Grounding Resistor

    Science.gov (United States)

    Abuhussein, A.; Ali, M. H.

    2016-12-01

    Geomagnetically induced current (GIC) has a harmful impact on power systems, with a large footprint. Mitigation strategies for the GIC are required to protect the integrity of the power system. To date, the adverse effects of GIC are being mitigated by either operational procedures or grounding fixed capacitors (GFCs). The operational procedures are uncertain, reduce systems' reliability, and increase energy losses. On the other hand, GFCs, incur voltage spikes, increase the transformer cost substantially, and require protection circuitry. This study investigates new possible approaches to cope with GIC, by using a controlled variable grounding resistor (CVGR), without interfering with the system's normal operation. In addition, the new techniques help suppress unsymmetrical faults in the power network. The controllability of the grounding resistor is applied using three different techniques: (1) a Parallel switch that is controlled by PI regulated duty cycle, (2) a Parallel switch that is triggered by a preset values in a look-up-table (LUT), and (3) a Mechanical resistor varied by a Fuzzy logic controller (FLC). The experimental results were obtained and validated using the MATLAB/SIMULINK software. A hypothetical power system that consists of a generator, a 765kv, 500 km long transmission lines connecting between a step-up, Δ-Yn, transformer, and a step-down, Yn-Δ, transformer, is considered. The performance of the CVGR is compared with that of the GFC under the cases of GIC event and unsymmetrical faults. From the simulation results, the following points are concluded: The CVGR effectively suppresses the GIC flowing in the system. Consequently, it protects the transformers from saturation and the rest of the system from collapsing. The CVGR also reduces the voltage and power swings associated with unsymmetrical faults and blocks the zero sequence current flowing through the neutral of the transformer. The performance of the CVGR surpasses that of the GFC in

  2. Effect of Heat Treatment on Machining Properties of the AlSi9Cu3(Fe Alloy

    Directory of Open Access Journals (Sweden)

    Wieroński P.

    2016-09-01

    Full Text Available Automation of machining operations, being result of mass volume production of components, imposes more restrictive requirements concerning mechanical properties of starting materials, inclusive of machinability mainly. In stage of preparation of material, the machinability is influenced by such factors as chemical composition, structure, mechanical properties, plastic working and heat treatment, as well as a factors present during machining operations, as machining type, cutting parameters, material and geometry of cutting tools, stiffness of the system: workpiece – machine tool – fixture and cutting tool.

  3. Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality.

    Science.gov (United States)

    Tremonte, Patrizio; Tipaldi, Luca; Succi, Mariantonietta; Pannella, Gianfranco; Falasca, Luisa; Capilongo, Valeria; Coppola, Raffaele; Sorrentino, Elena

    2014-01-01

    In Italy, the sale of raw milk from vending machines has been allowed since 2004. Boiling treatment before its use is mandatory for the consumer, because the raw milk could be an important source of foodborne pathogens. This study fits into this context with the aim to evaluate the microbiological quality of 30 raw milk samples periodically collected (March 2013 to July 2013) from 3 vending machines located in Molise, a region of southern Italy. Milk samples were stored for 72 h at 4 °C and then subjected to different treatments, such as boiling and microwaving, to simulate domestic handling. The results show that all the raw milk samples examined immediately after their collection were affected by high microbial loads, with values very close to or even greater than those acceptable by Italian law. The microbial populations increased during refrigeration, reaching after 72 h values of about 8.0 log cfu/mL for Pseudomonas spp., 6.5 log cfu/mL for yeasts, and up to 4.0 log cfu/mL for Enterobacteriaceae. Boiling treatment, applied after 72 h to refrigerated milk samples, caused complete decontamination, but negatively affected the nutritional quality of the milk, as demonstrated by a drastic reduction of whey proteins. The microwave treatment at 900 W for 75 s produced microbiological decontamination similar to that of boiling, preserving the content in whey proteins of milk. The microbiological characteristics of raw milk observed in this study fully justify the obligation to boil the raw milk from vending machines before consumption. However, this study also showed that domestic boiling causes a drastic reduction in the nutritional value of milk. Microwave treatment could represent a good alternative to boiling, on the condition that the process variables are standardized for safe domestic application. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Machine Protection

    International Nuclear Information System (INIS)

    Zerlauth, Markus; Schmidt, Rüdiger; Wenninger, Jörg

    2012-01-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012

  5. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  6. Machine Protection

    CERN Document Server

    Zerlauth, Markus; Wenninger, Jörg

    2012-01-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012.

  7. Machine Protection

    Energy Technology Data Exchange (ETDEWEB)

    Zerlauth, Markus; Schmidt, Rüdiger; Wenninger, Jörg [European Organization for Nuclear Research, Geneva (Switzerland)

    2012-07-01

    The present architecture of the machine protection system is being recalled and the performance of the associated systems during the 2011 run will be briefly summarized. An analysis of the causes of beam dumps as well as an assessment of the dependability of the machine protection systems (MPS) itself is being presented. Emphasis will be given to events that risked exposing parts of the machine to damage. Further improvements and mitigations of potential holes in the protection systems will be evaluated along with their impact on the 2012 run. The role of rMPP during the various operational phases (commissioning, intensity ramp up, MDs...) will be discussed along with a proposal for the intensity ramp up for the start of beam operation in 2012.

  8. Effects of irradiation on trans fatty acids formation in ground beef

    International Nuclear Information System (INIS)

    Brito, M.S.; Villavicencio, A.L.C.H.; Mancini-filho, Jorge

    2002-01-01

    In order to give the consumer the assurance that meat processed by irradiation is a safe product, a great deal of research has been developed in the world. The effect of irradiation on the hygienic quality of meat and meat products is considered as related to the control of meat-borne parasites of humans; elimination of pathogens from fresh meat and poultry; and elimination of pathogens from processed meat. Lipid oxidation and associated changes are the major causes of the quality deterioration of meat during storage. Irradiation of lipids induces the production of free radicals, which react with oxygen, leading to the formation of carbonyls, responsible for alterations in food nutritional and sensorial characteristics. Trans fatty acids are present in ground beef and can also be formed during its processing. Interestingly, the trans fatty acids, due to their chemical and physical characteristics, show more resistance to the oxidizing process. This property motivated us to investigate the level of the trans fatty acids, as well as the level of oxidation in irradiated ground beef. Irradiation of ground beef was performed by gamma rays from a 60 Co source. The applied radiation doses were 0; 1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0 and 8.0 kGy. Lipid peroxidation in terms of TBA number and carbonyl content was monitored during storage. The sample characteristics and trans fatty acids composition were measured, following irradiation and after 60 and 90 days of storage at -10 deg. C

  9. Effects of Different Lifting Cadences on Ground Reaction Forces during the Squat Exercise

    Science.gov (United States)

    Bentley, Jason R.; Amonette, William E.; Hagan, R. Donald

    2008-01-01

    The purpose of this investigation was to determine the effect of different cadences on the ground reaction force (GRF(sub R)) during the squat exercise. It is known that squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF(sub R). It was hypothesized that faster squat cadences will result in greater peak GRF(sub R). METHODS: Six male subjects (30.8+/-4.4 y, 179.5+/-8.9 cm, 88.8+/-13.3 kg) with previous squat experience performed three sets of three squats using three different cadences (FC = 1 sec descent/1 sec ascent; MC = 3 sec descent/1 sec ascent; SC = 4 sec descent/2 sec ascent) with barbell mass equal to body mass. Ground reaction force was used to calculate inertial force trajectories of the body plus barbell (FI(sub system)). Forces were normalized to body mass. RESULTS: Peak GRF(sub R) and peak FI(sub system) were significantly higher in FC squats compared to MC (p=0.0002) and SC (p=0.0002). Range of GRF(sub R) and FI(sub system) were also significantly higher in FC compared to MC (psquat cadences result in significantly greater peak GRF(sub R) due to the inertia of the system. GRF(sub R) was more dependent upon decent cadence than on ascent cadence. PRACTICAL APPLICATION: This study demonstrates that faster squat cadences produce greater ground reaction forces. Therefore, the use of faster squat cadences might enhance strength and power adaptations to long-term resistance exercise training. Key Words: velocity, weight training, resistive exercise

  10. Topsoil and fertilizer effects on ground cover growth on calcareous minesoils

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.

    1997-01-01

    Canopy cover and above ground biomass of herbaceous species was measured in four studies for five years (1989-1993) in southeastern Ohio; on Central Ohio Coal Company's Muskingum Mine, 5 km South of Cumberland. Three studies compared graded cast overburden, standard graded topsoil (30 cm depth), and ripped topsoil. The fourth study lacked the ripped topsoil treatment. In 1987 two studies were seeded with both a standard and a modified mixture of grass and legume species, and two studies used the modified mix only. A nitrogen rate study used 45, 90 or 135 kg/ha of N applied on two occasions, and a phosphorus fertilizer study used rock phosphate amendment at 0, 1120, or 2240 kg/ha and triple superphosphate amendment at 0, 280, or 560 kg/ha. Based on one clipping per year, overall average biomass (Mg/ha dry weight) was slightly greater on standard topsoil (3.34), and ripped topsoil (3.30) than on cast overburden (3.09). Biomass did not differ significantly (p=0.05) on standard topsoil versus cast overburden for 15 of 19 comparisons. Legume biomass (Mg/ha, measured for 3 or 4 years) averaged 0.84 on standard topsoil, 0.75 on ripped topsoil, and 1.16 on cast overburden. In three studies, legume biomass was 50% higher on cast overburden than the topsoils, but differences among the soil surfaces were decreasing by 50% higher on cast overburden than the topsoils, but differences among the soil surfaces were decreasing by 1993. Nitrogen fertilizer increased ground cover only in the year when fertilizer was applied. Phosphorus fertilizer treatments had no significant effects. Ground cover showed no signs of deterioration during the last measurements in 1993. Observations in 1995 indicated dense canopy cover on all soil surfaces with substantial invasion by goldenrods (Solidago spp.) only on topsoils. 16 refs., 4 tabs

  11. Teletherapy machine

    International Nuclear Information System (INIS)

    Panyam, Vinatha S.; Rakshit, Sougata; Kulkarni, M.S.; Pradeepkumar, K.S.

    2017-01-01

    Radiation Standards Section (RSS), RSSD, BARC is the national metrology institute for ionizing radiation. RSS develops and maintains radiation standards for X-ray, beta, gamma and neutron radiations. In radiation dosimetry, traceability, accuracy and consistency of radiation measurements is very important especially in radiotherapy where the success of patient treatment is dependent on the accuracy of the dose delivered to the tumour. Cobalt teletherapy machines have been used in the treatment of cancer since the early 1950s and India had its first cobalt teletherapy machine installed at the Cancer Institute, Chennai in 1956

  12. Effect of 8 weeks of free-weight and machine-based strength training on strength and power performance

    OpenAIRE

    Wirth Klaus; Keiner Michael; Hartmann Hagen; Sander Andre; Mickel Christoph

    2016-01-01

    Abstract The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ? 2.5 years; body height: 181.0 ? 6.8 cm; body mass: 80.2 ? 8.9 kg) joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were...

  13. The effect of aluminium added filter on mean glandular dose using mammography machine in MINT Medical Physics Laboratory

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Wan Hazlinda Ismail; Abd Aziz Mhd Ramli

    2005-01-01

    The effect of various thickness of aluminium added filter on mean glandular dose in mammography is investigated for a standard breast phantom, 4.2 cm Perspex. A mammography machine in Medical Physics Laboratory MINT, Bennett Model DMF-150 is used to provide radiation in various kV range under clinical condition. The mean glandular dose on the phantom were measured based on technique recommended by AAPM protocol (1990) report no 29. The mean glandular dose was found reducing with increasing thickness of added filter. A more detail results of this study is presented in this paper. (Author)

  14. Atmospheric effect on the ground-based measurements of broadband surface albedo

    Directory of Open Access Journals (Sweden)

    T. Manninen

    2012-11-01

    Full Text Available Ground-based pyranometer measurements of the (clear-sky broadband surface albedo are affected by the atmospheric conditions (mainly by aerosol particles, water vapour and ozone. A new semi-empirical method for estimating the magnitude of the effect of atmospheric conditions on surface albedo measurements in clear-sky conditions is presented. Global and reflected radiation and/or aerosol optical depth (AOD at two wavelengths are needed to apply the method. Depending on the aerosol optical depth and the solar zenith angle values, the effect can be as large as 20%. For the cases we tested using data from the Cabauw atmospheric test site in the Netherlands, the atmosphere caused typically up to 5% overestimation of surface albedo with respect to corresponding black-sky surface albedo values.

  15. Seismic ground motion characteristics in the Bucharest area: source and site effects contribution

    International Nuclear Information System (INIS)

    Grecu, B.; Popa, M.; Radulian, M.

    2003-01-01

    The contribution of source vs. site effects on the seismic ground motion in Bucharest is controversial as the previous studies showed. The fundamental period of resonance for the sedimentary cover is emphasized by ambient noise and earthquake measurements, if the spectral ratio method (Nakamura, 1989) is applied (Bonjer et al., 1989). On the other hand, the numerical simulations (Moldoveanu et al., 2000.) and acceleration spectra analysis (Sandi et al., 2001) brought into the light the determinant role of the source effects. We considered all the available instrumental data related to Vrancea earthquakes recorded in Bucharest area to find how the source and site properties control the peak ground motion peculiarities. Our main results are summarized as follows: 1. The resonant period of oscillation, related to the shallow sediment layer, is practically present in all the H/V spectral ratios, no matter we consider ambient noise or earthquakes of any size. This argues in favor of the crucial role played by the sedimentary cover and proves that the ratio method is reasonably removing the source effects. However, the absolute spectra are completely different for earthquakes below and above magnitude 7, namely amplitudes in the range of 1-2 s periods are negligible in the first case, and predominant in the second one. It looks like the resonant amplification by the sedimentary cover becomes effective only for the largest earthquakes (M > 7), when the source radiation coincides with the fundamental resonance range. We conclude that the damage in Bucharest is dramatically amplified when the earthquake size is above a critical value (M ≅ 7); 2. Our analysis shows a rather weak variability of the peak motion values and spectral amplitudes over the study area, in agreement with the relatively small variability of the shallow structure topography. (authors)

  16. Vibratory Machining Effect on the Properties of the Aaluminum Alloys Surface

    Directory of Open Access Journals (Sweden)

    Bańkowski D.

    2017-12-01

    Full Text Available The article presents an example of finishing treatment for aluminum alloys with the use of vibration machining, with loose abrasive media in a closed tumbler. For the analysis of selected properties of the surface layer prepared flat samples of aluminum alloy PA6/2017 in the state after recrystallization. The samples in the first stage were subjected to a treatment of deburring using ceramic media. In a second step polishing process performed with a strengthening metal media. In addition, for comparative purposes was considered. only the case of metal polishing. The prepared samples were subjected to hardness tests and a tangential tensile test. As a result of finishing with vibratory machining, it was possible to remove burrs, flash, rounding sharp edges, smoothing and lightening the surface of objects made. The basic parameters of the surface geometry were obtained using the Talysurf CCI Lite - Taylor Hobson optical profiler. As a result of the tests it can be stated that the greatest reduction of surface roughness and mass loss occurs in the first minutes of the process. Mechanical tests have shown that the most advantageous high values of tensile strength and hardness are obtained with two-stage vibration treatment, - combination of deburring and polishing. Moreover the use of metal media resulted in the strengthening of the surface by pressure deburring with metal media.

  17. Effect of reinforcement on the cutting forces while machining metal matrix composites–An experimental approach

    Directory of Open Access Journals (Sweden)

    Ch. Shoba

    2015-12-01

    Full Text Available Hybrid metal matrix composites are of great interest for researchers in recent years, because of their attractive superior properties over traditional materials and single reinforced composites. The machinabilty of hybrid composites becomes vital for manufacturing industries. The need to study the influence of process parameters on the cutting forces in turning such hybrid composite under dry environment is essentially required. In the present study, the influence of machining parameters, e.g. cutting speed, feed and depth of cut on the cutting force components, namely feed force (Ff, cutting force (Fc, and radial force (Fd has been investigated. Investigations were performed on 0, 2, 4, 6 and 8 wt% Silicon carbide (SiC and rice husk ash (RHA reinforced composite specimens. A comparison was made between the reinforced and unreinforced composites. The results proved that all the cutting force components decrease with the increase in the weight percentage of the reinforcement: this was probably due to the dislocation densities generated from the thermal mismatch between the reinforcement and the matrix. Experimental evidence also showed that built-up edge (BUE is formed during machining of low percentage reinforced composites at high speed and high depth of cut. The formation of BUE was captured by SEM, therefore confirming the result. The decrease of cutting force components with lower cutting speed and higher feed and depth of cut was also highlighted. The related mechanisms are explained and presented.

  18. The effect of electric discharge machined notches on the fracture toughness of several structural alloys

    International Nuclear Information System (INIS)

    Joyce, J.A.; Link, R.E.

    1993-09-01

    Recent computational studies of the stress and strain fields at the tip of very sharp notches have shown that the stress and strain fields are very weakly dependent on the initial geometry of the notch once the notch has been blunted to a radius that is 6 to 10 times the initial root radius. It follows that if the fracture toughness of a material is sufficiently high so that fracture initiation does not occur in a specimen until the crack-tip opening displacement (CTOD) reaches a value from 6 to 10 times the size of the initial notch tip diameter, then the fracture toughness will be independent of whether a fatigue crack or a machined notch served as the initial crack. In this experimental program the fracture toughness (J Ic and J resistance (J-R) curve, and CTOD) for several structure alloys was measured using specimens with conventional fatigue cracks and with EDM machined notches. The results of this program have shown, in fact, that most structural materials do not achieve initiation CTOD values on the order of 6 to 10 times the radius of even the smallest EDM notch tip presently achievable. It is found furthermore that tougher materials do not seem to be less dependent on the type of notch tip present. Some materials are shown to be much more dependent on the type of notch tip used, but no simple pattern is found that relates this observed dependence to the material strength toughness, or strain hardening rate

  19. Effects of 60Co γ-rays irradiation on seed growth of ground-cover chrysanthemum

    International Nuclear Information System (INIS)

    Ge Weiya; Wang Tiantian; Yang Shuhua; Zhao Ying; Ge Hong; Chen Lin

    2011-01-01

    The seeds of ground-cover chrysanthemum were used to study the effects of different doses of 60 Co γ-rays irradiation(10-50 Gy) on seed germination and physiological characteristics. The results showed that the rate of seed germination and seedling survival decreased significantly with the irradiation doses. With the increase of irradiation dose to above 20 Gy, the content of malondialdehyde (MDA) and activity of peroxidase (POD) in seedlings significantly increased. The similar trends were found in the activities of superoxide dismutase (SOD) and glutathione reductase (GR). Catalase (CAT) activity increased at doses lower than 20 Gy, and then decreased at the higher doses, whereas ascorbate peroxidase (APX) activity did not alter except for 40 Gy. It is concluded that the suitable irradiation dose of mutation breeding is 20 Gy for the seeds of ground-cover chrysanthemum. Although 60 Co γ-rays irradiation resulted in damage of membrane lipid peroxidation in the survival seedlings, the increased activity of CAT and POD could protect them against the damage. (authors)

  20. Mean flow characteristics of two-dimensional wings in ground effect

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2012-06-01

    Full Text Available The present study numerically investigates the aerodynamic characteristics of two-dimensional wings in the vicinity of the ground by solving two-dimensional steady incompressible Navier-Stokes equations with the turbulence closure model of the realizable k-ε model. Numerical simulations are performed at a wide range of the normalized ground clearance by the chord length (0.1≤h/C ≤ 1.25 for the angles of attack (0° ≤ α ≤ 10° in the pre-stall regime at a Reynolds number (Re of 2×106 based on free stream velocity U∞ and the chord length. As the physical model of this study, a cambered airfoil of NACA 4406 has been selected by a performance test for various airfoils. The maximum lift-to-drag ratio is achieved at α = 4° and h/C = 0.1. Under the conditions of α = 4° and h/C = 0.1, the effect of the Reynolds number on the aerodynamic characteristics of NACA 4406 is investigated in the range of 2× 10 5 ≤ Re ≤ 2× 109. As Re increases, Cl and Cd augments and decreases, respectively, and the lift-to-drag ratio increases linearly.

  1. Simulation analyses of vibration tests on pile-group effects using blast-induced ground motions

    International Nuclear Information System (INIS)

    Takayuki Hashimoto; Kazushige Fujiwara; Katsuichirou Hijikata; Hideo Tanaka; Kohji Koyamada; Atsushi Suzuki; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site to promote better understanding of the dynamic behavior of pile-supported structures, especially pile-group effects. Two test structures were constructed in an excavated pit. One structure was supported on 25 tubular steel piles and the other on 4. The test pit was backfilled with sand of an appropriate grain size distribution to ensure good compaction. Ground motions induced by large-scale blasting operations were used as excitation forces for the tests. The 3D Finite Element Method (3D FEM)and a Genetic Algorithm (GA) were employed to identify the shear wave velocities and damping factors of the compacted sand, especially of the surface layer. A beam-interaction spring model was employed to simulate the test results of the piles and the pile-supported structures. The superstructure and pile foundation were modeled by a one-stick model comprising lumped masses and beam elements. The pile foundations were modeled just as they were, with lumped masses and beam elements to simulate the test results showing that, for the 25-pile structure, piles at different locations showed different responses. It was confirmed that the analysis methods employed were very useful for evaluating the nonlinear behavior of the soil-pile-structure system, even under severe ground motions. (authors)

  2. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  3. The effect of water on the ground nesting habits of the giant tropical ant, Paraponera clavata.

    Science.gov (United States)

    Elahi, Robin

    2005-11-18

    The large predatory ant, Paraponera clavata, exerts measurable top-down effects in wet and moist Neotropical forests, and therefore its distribution has potential ecological implications. To determine how water affects the presence of this important predator, the ground nesting ecology of P. clavata was examined with respect to various habitat characteristics. Four hectares of disturbed Costa Rican lowland rain forest were surveyed for ant colonies to determine nest distribution patterns in wet and dry habitat; significantly more colonies were found in dry habitat. Seventeen of 19 nests built on slopes of > 5 degrees inclination were positioned on the downward side of the tree, possibly using the trunk as a shield against runoff during rain showers. Moisture and pH inside nests were significantly different from adjacent soil. These results suggest that water influences the ground nesting habits of P. clavata, thus ecological differences between comparatively wet and dry portions of tropical forests may arise from the relative abundance of this ant species.

  4. Embodiment of abstract categories in space… grounding or mere compatibility effects? The case of politics.

    Science.gov (United States)

    Farias, Ana Rita; Garrido, Margarida V; Semin, Gün R

    2016-05-01

    In two experiments, the role played by stimulus response compatibility in driving the spatial grounding of abstract concepts is examined. In Experiment 1, participants were asked to classify politics-related words appearing to the left or the right side of a computer monitor as socialist or conservative. Responses were given by pressing vertically aligned keys and thus orthogonal to the spatial information that may have been implied by the words. Responses given by left or right index finger were counterbalanced. In Experiment 2, a lexical decision task, participants categorized political words or non-words presented to the left or the right auditory channels, by pressing the top/bottom button of a response box. The response category labels (word or non-word) were also orthogonal to the spatial information that may have been implied by the stimulus words. In both experiments, responses were faster when socialism-related words were presented on the left and conservatism-related words were presented on the right, irrespective of the reference of the response keys or labels. Overall, our findings suggest that the spatial grounding of abstract concepts (or at least politics-related ones) is independent of experimentally driven stimulus-response compatibility effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of insecticide exposure on movement and population size estimates of predatory ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Prasifka, Jarrad R; Lopez, Miriam D; Hellmich, Richard L; Prasifka, Patricia L

    2008-01-01

    Estimates of arthropod population size may paradoxically increase following insecticide applications. Research with ground beetles (Coleoptera: Carabidae) suggests that such unusual results reflect increased arthropod movement and capture in traps rather than real changes in population size. However, it is unclear whether direct (hyperactivity) or indirect (prey-mediated) mechanisms produce increased movement. Video tracking of Scarites quadriceps Chaudior indicated that brief exposure to lambda-cyhalothrin or tefluthrin increased total distance moved, maximum velocity and percentage of time moving. Repeated measurements on individual beetles indicated that movement decreased 240 min after initial lambda-cyhalothrin exposure, but increased again following a second exposure, suggesting hyperactivity could lead to increased trap captures in the field. Two field experiments in which ground beetles were collected after lambda-cyhalothrin or permethrin application attempted to detect increases in population size estimates as a result of hyperactivity. Field trials used mark-release-recapture methods in small plots and natural carabid populations in larger plots, but found no significant short-term (<6 day) increases in beetle trap captures. The disagreement between laboratory and field results suggests mechanisms other than hyperactivity may better explain unusual changes in population size estimates. When traps are used as a primary sampling tool, unexpected population-level effects should be interpreted carefully or with additional data less influenced by arthropod activity.

  6. Effect of soap industry effluents on soil and ground water in Albageir area

    International Nuclear Information System (INIS)

    Awadalla, S. O.

    2004-02-01

    This study investigates the effect on soil and ground water produced by the effluent from soap industry discharged from Alsheikh Mustafa Alamin (SMA) factory, in Albageir industrial area, located 45 Km south of Khartoum. Soil samples were taken from the periphery of the effluent pond and from 25 and 50 cm depths from pits at different distances from the pond.The samples were analyzed for the following chemical and physical characteristics PH, EC, sodium, chloride ions and their grain size, in order to investigate any possible soil degradation. The results showed that there is an increase in soil salinity and sodicity resulting from the improper discharge of the liquid waste, and from lack of treatment before the discharge. Hence, there are definitive signs for soil degradation in the study area, which could reach a high magnitude in the long.This situation could be rectified by adopting updated techniques for treatment and disposal of effluent, and by regular inspection, by the authorities in order to make sure that the regulations are not violated. Chemical and physical analyses of ground water samples showed no signs of pollution. However, if the disposal practices are not revised, the possibility of pollution in the near future is likely to occur. A package of measurements is proposed in order to curb the impact of the industry on the environment. (Author)

  7. Stability evaluation of ground considering dynamic vertical ground motion. Pt. 3. Effect of dynamic vertical motions on sliding safety factor of foundation ground and surrounding slope in nuclear power plant

    International Nuclear Information System (INIS)

    Ishikawa, Hiroyuki; Sato, Hiroaki; Kawai, Tadashi; Kanatani, Mamoru

    2003-01-01

    In this report, time differences of the peak accelerations between horizontal and vertical motions were investigated based on the earthquake records on the rock sites and analytical studies were carried out in order to investigate the effect of them to the fluctuations of the minimum sliding safety factors of the foundation ground and surrounding slope of nuclear power plants. Summaries of this report were as follows; (1) Maximum time difference of the peak accelerations between horizontal and vertical motions on the rock sites was approximately 10 seconds in the earthquakes within the epicenter distance of 100 km. (2) Analytical studies that employed the equivalent linear analysis with horizontal and vertical input motions were carried out against the representative models and ground properties of the foundation grounds and surrounding slopes in nuclear power plants. The combinations of the horizontal and vertical motions were determined from the above-mentioned investigation results based on the actual earthquake records. It was revealed that the fluctuations of the minimum sliding safety factors were not seriously affected by the time difference of the peak accelerations between horizontal and vertical motions. (author)

  8. Machine testning

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with a laboratory exercise of 3 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercise includes a series of tests carried out by the student on a conventional and a numerically controled lathe, respectively. This document...

  9. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    Science.gov (United States)

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  10. Distributed Modelling of Stormflow Generation: Assessing the Effect of Ground Cover

    Science.gov (United States)

    Jarihani, B.; Sidle, R. C.; Roth, C. H.; Bartley, R.; Wilkinson, S. N.

    2017-12-01

    Understanding the effects of grazing management and land cover changes on surface hydrology is important for water resources and land management. A distributed hydrological modelling platform, wflow, (that was developed as part of Deltares's OpenStreams project) is used to assess the effect of land management practices on runoff generation processes. The model was applied to Weany Creek, a small catchment (13.6 km2) of the Burdekin Basin, North Australia, which is being studied to understand sources of sediment and nutrients to the Great Barrier Reef. Satellite and drone-based ground cover data, high resolution topography from LiDAR, soil properties, and distributed rainfall data were used to parameterise the model. Wflow was used to predict total runoff, peak runoff, time of rise, and lag time for several events of varying magnitudes and antecedent moisture conditions. A nested approach was employed to calibrate the model by using recorded flow hydrographs at three scales: (1) a hillslope sub-catchment: (2) a gullied sub-catchment; and the 13.6 km2 catchment outlet. Model performance was evaluated by comparing observed and predicted stormflow hydrograph attributes using the Nash Sutcliffe efficiency metric. By using a nested approach, spatiotemporal patterns of overland flow occurrence across the catchment can also be evaluated. The results show that a process-based distributed model can be calibrated to simulate spatial and temporal patterns of runoff generation processes, to help identify dominant processes which may be addressed by land management to improve rainfall retention. The model will be used to assess the effects of ground cover changes due to management practices in grazed lands on storm runoff.

  11. Effect of gender, cadence, and water immersion on ground reaction forces during stationary running.

    Science.gov (United States)

    de Brito Fontana, Heiliane; Haupenthal, Alessandro; Ruschel, Caroline; Hubert, Marcel; Ridehalgh, Colette; Roesler, Helio

    2012-05-01

    Controlled laboratory study. To analyze the vertical and anteroposterior components of the ground reaction force during stationary running performed in water and on dry land, focusing on the effect of gender, level of immersion, and cadence. Stationary running, as a fundamental component of aquatic rehabilitation and training protocols, is little explored in the literature with regard to biomechanical variables, which makes it difficult to determine and control the mechanical load acting on the individuals. Twenty-two subjects performed 1 minute of stationary running on land, immersed to the hip, and immersed to the chest at 3 different cadences: 90 steps per minute, 110 steps per minute, and 130 steps per minute. Force data were acquired with a force plate, and the variables were vertical peak (Fy), loading rate (LR), anterior peak (Fx anterior), and posterior peak (Fx posterior). Data were normalized to subjects' body weight (BW) and analyzed using repeated-measures analysis of variance. Fy ranged from 0.98 to 2.11 BW, LR ranged from 5.38 to 11.52 BW/s, Fx anterior ranged from 0.07 to 0.14 BW, and Fx posterior ranged from 0.06 to 0.09 BW. The gender factor had no effect on the variables analyzed. A significant interaction between level of immersion and cadence was observed for Fy, Fx anterior, and Fx posterior. On dry land, Fy increased with increasing cadence, whereas in water this effect was seen only between 90 steps per minute and the 2 higher cadences. The higher the level of immersion, the lower the magnitude of Fy. LR was reduced under both water conditions and increased with increasing cadence, regardless of the level of immersion. Ground reaction forces during stationary running are similar between genders. Fy and LR are lower in water, though the values are increased at higher cadences.

  12. Evaluation of dynamic properties, local site effects and design ground motions: recent advances

    International Nuclear Information System (INIS)

    Sitharam, T.G.; Vipin, K.S.; James, Naveen

    2011-01-01

    Evidences from past earthquakes clearly shows that the damages due to an earthquake and its severity at a site are controlled mainly by three factors i.e., earthquake source and path characteristics, local geological and geotechnical characteristics, structural design and quality of the construction. Seismic ground response at a site is strongly influenced by local geological and soil conditions. The exact information of the geological, geomorphological and geotechnical data along with seismotectonic details are necessary to evaluate the ground response. The geometry of the subsoil structure, the soil type, the lateral discontinuities and the surface topography will also influence the site response at a particular location. In the case of a nuclear power plant, the details obtained from the site investigation will have multiple objectives: (i) for the effective design of the foundation (ii) assessment of site amplification (iii) for liquefaction potential evaluation. Since the seismic effects on the structure depend fully on the site conditions and assessment of site amplification. The first input required in evaluation of geotechnical aspect of seismic hazard is the rock level peak horizontal acceleration (PHA) values. The surface level acceleration values need to be calculated based on the site conditions and site amplification values. This paper discusses various methods for evaluating the site amplification values, dynamic soil properties, different field and laboratory tests required and various site classification schemes. In addition to these aspects, the evaluation of liquefaction potential of the site is also presented. The paper highlights on the latest testing methods to evaluate dynamic properties (shear modulus and damping ratio) of soils and techniques for estimating local site effects. (author)

  13. The antimicrobial effects of chopped garlic in ground beef and raw meatball (ciğ köfte).

    Science.gov (United States)

    Aydin, Ali; Bostan, Kamil; Erkan, Mehmet Emin; Bingöl, Bariş

    2007-03-01

    This study was carried out to investigate the antimicrobial effects of chopped garlic in ground beef and raw meatball (çig köfte), which is a traditional food product eaten raw. Fresh minced ground beef and raw meatball batter prepared with traditional methods were separated into groups. Chopped and crushed garlic was added to each batch in order to reach various concentrations from 0% to 10%. The ground beef samples were stored at refrigerator and ambient temperatures. The raw meatball samples were only stored at room temperature. All samples were analyzed in order to determine the microbial counts at the 2(nd), 6(th), 12(th), and 24(th) hours of storage. Garlic addition decreased the microbial growth in some ground beef samples kept either at room temperature or in the refrigerator. However, microbial growth increased in some ground beef samples kept in similar conditions. The difference was found in samples kept in the refrigerator for 24 hours in terms of total aerobic mesophilic bacteria and coliform bacteria when garlic used at 10%. The effects of garlic on the microbial growth of both coliforms and Staphylococcus/Micrococcus in the samples kept at room temperature were increased. The yeast and mold counts in ground beef samples kept in any condition were not affected by garlic addition. However, the addition of garlic to the raw meatball mix decreased the microbial count, in terms of total aerobic mesophilic bacteria and yeast and mold counts, when the garlic was added at 5% or 10% (P meatball caused a permanent decrease in yeast and mold count, unlike in ground beef. The results of this study indicate that the chopped garlic has a slowing-down effect on microbiological growth in ground meat depending on the garlic concentration, but this effect was not at an expected level even at the highest concentration, because potential antimicrobial agents in chopped garlic were probably insufficiently extracted.

  14. Identifying effective actions to guide volunteer-based and nationwide conservation efforts for a ground-nesting farmland bird

    OpenAIRE

    Santangeli, Andrea; Arroyo, Beatriz; Millon, Alexandre; Bretagnolle, Vincent

    2015-01-01

    Modern farming practices threaten wildlife in different ways, and failure to identify the complexity of multiple threats acting in synergy may result in ineffective management. To protect ground-nesting birds in farmland, monitoring and mitigating impacts of mechanical harvesting is crucial. Here, we use 6 years of data from a nationwide volunteer-based monitoring scheme of the Montagu's harrier, a ground-nesting raptor, in French farmlands. We assess the effectiveness of alternative nest pro...

  15. Machine rates for selected forest harvesting machines

    Science.gov (United States)

    R.W. Brinker; J. Kinard; Robert Rummer; B. Lanford

    2002-01-01

    Very little new literature has been published on the subject of machine rates and machine cost analysis since 1989 when the Alabama Agricultural Experiment Station Circular 296, Machine Rates for Selected Forest Harvesting Machines, was originally published. Many machines discussed in the original publication have undergone substantial changes in various aspects, not...

  16. Probability distribution of machining center failures

    International Nuclear Information System (INIS)

    Jia Yazhou; Wang Molin; Jia Zhixin

    1995-01-01

    Through field tracing research for 24 Chinese cutter-changeable CNC machine tools (machining centers) over a period of one year, a database of operation and maintenance for machining centers was built, the failure data was fitted to the Weibull distribution and the exponential distribution, the effectiveness was tested, and the failure distribution pattern of machining centers was found. Finally, the reliability characterizations for machining centers are proposed

  17. Combining structural modeling with ensemble machine learning to accurately predict protein fold stability and binding affinity effects upon mutation.

    Directory of Open Access Journals (Sweden)

    Niklas Berliner

    Full Text Available Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases.

  18. Joint punching and frequency effects on practical magnetic characteristics of electrical steels for high-speed machines

    Science.gov (United States)

    Kedous-Lebouc, A.; Messal, O.; Youmssi, A.

    2017-03-01

    Mechanical punching of electrical steels causes a degradation of their magnetic characteristics which can extend several millimeters from the cut edge. So, in the field of industrial applications, particularly that of small electrical machines, the stator core made of rigid and thin teeth would be subject to more losses. Thus, this topic of the effect of punching has to be submitted to further deep characterization and development in order to give some insight into the different mechanisms. In this framework, this paper evaluates the combined effect of punching and frequency on the magnetization curve and iron losses in thin SiFe and CoFe soft magnetic sheets. These alloys are typically suitable for the manufacture of high-speed electrical machines used in on board applications (aircraft power generators, automotive, etc). Two SiFe alloys and a CoFe alloy have been investigated. First, different rectangular samples of variable width (15, 10, 5, 3 mm) have been industrially punched. Then, a dedicated magnetic characterization has been made, using basically a mini-Epstein frame. Measurements have been performed from 50 Hz to 1 kHz and from 0.3 T to near saturation. Both rolling and transverse directions have been considered. Finally, a first attempt to predict the degradation due to the punching is presented. A useful description of the magnetic permeability as a function of B and f is given and the degradation parameters are estimated based on the knowledge of the reference permeability.

  19. Joint punching and frequency effects on practical magnetic characteristics of electrical steels for high-speed machines

    Energy Technology Data Exchange (ETDEWEB)

    Kedous-Lebouc, A. [Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France — CNRS, G2Elab, F-38000 Grenoble (France); Messal, O., E-mail: oualid.messal@g2elab.grenoble-inp.fr [Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France — CNRS, G2Elab, F-38000 Grenoble (France); Youmssi, A. [Université de N’gaoundéré, BP. 455 N’Gaoundéré (Cameroon)

    2017-03-15

    Mechanical punching of electrical steels causes a degradation of their magnetic characteristics which can extend several millimeters from the cut edge. So, in the field of industrial applications, particularly that of small electrical machines, the stator core made of rigid and thin teeth would be subject to more losses. Thus, this topic of the effect of punching has to be submitted to further deep characterization and development in order to give some insight into the different mechanisms. In this framework, this paper evaluates the combined effect of punching and frequency on the magnetization curve and iron losses in thin SiFe and CoFe soft magnetic sheets. These alloys are typically suitable for the manufacture of high-speed electrical machines used in on board applications (aircraft power generators, automotive, etc). Two SiFe alloys and a CoFe alloy have been investigated. First, different rectangular samples of variable width (15, 10, 5, 3 mm) have been industrially punched. Then, a dedicated magnetic characterization has been made, using basically a mini-Epstein frame. Measurements have been performed from 50 Hz to 1 kHz and from 0.3 T to near saturation. Both rolling and transverse directions have been considered. Finally, a first attempt to predict the degradation due to the punching is presented. A useful description of the magnetic permeability as a function of B and f is given and the degradation parameters are estimated based on the knowledge of the reference permeability.

  20. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, Agnieszka J., E-mail: a.bednarska@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland)

    2009-05-15

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  1. The Role of Figure-Ground in the Corner Enhancement Effect

    Directory of Open Access Journals (Sweden)

    Mai Mohamed Helmy

    2012-05-01

    Full Text Available The appearance of a new object in the visual field captures visual attention. Moreover, detection is faster for a probe presented in a region adjacent to the corner of a stimulus, compared to a probe adjacent to the straight edge. This corner enhancement effect is believed to show that probes near corners receive enhanced processing (Cole et al 2007, Attention, Perception and Psychophysics 69, 400–412. We tested the corner effect for convex and concave corners for surfaces arranged in depth. We used coloured regions with cast shadows to specify foreground and background and a square stimulus that could be perceived as either an object or a hole (a figure-ground reversal. The probe was a small red line that could appear near a corner or a straight edge 100 msec after the stimulus onset. We asked the participants to discriminate the orientation of the probe (horizontal or vertical. The corner effect was found for both convex (Experiment 1 and concave (Experiment 2 vertices but only when the probe was near the corner of the foreground surface (the pattern reversed for objects and holes. In Experiment 3 we tested a situation in which the probe was perceived as a small object not located on any surface—ie, a floating probe. The corner effect disappeared when the probe was not attached to any specific surface. In summary, the corner enhancement effect was present only when the probe was on the surface that owned the corner.

  2. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    International Nuclear Information System (INIS)

    Bednarska, Agnieszka J.; Laskowski, Ryszard

    2009-01-01

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  3. Effect Of Additive Solar Oil On High Temperature Corrosion Resistance Of Diesel Machines

    International Nuclear Information System (INIS)

    Dani, Mohammad; H, Bagyo; Minsyahril, B.

    2004-01-01

    It has been done the study of thermal gravimetric analyse (TGA) accompanied with magnetic suspension balance (MSB) on the diesel machine of sample A (HV = 256.78 kgf/mm 2 , ρ = 6.65-7.16 g/cm 3 ) and sample B (HV 166.67 kgf/mm 2 , ρ= 5.39-5.57 g/cm 3 ). The samples were oxidized at 900 o C for 24 hours in the variation of with and without additives (Diesel Booster + Amylum Nitrate; DBANI and Diesel Booster;DB) in solar oil of 1: 1500. The samples were, then, characterized by X-Ray Diffraction (crystal structures) and Scanning Electron Microscope (microstructures). The result shows that the Fe 2 O 3 layers spread out over the sample surfaces and the oxidant grain boundaries are very compacted

  4. Effects of ground state correlations on the structure of odd-mass spherical nuclei

    International Nuclear Information System (INIS)

    Mishev, S.; Voronov, V. V.

    2008-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the quasiparticle and phonon operators, used to describe them, are built of fermions and as a consequence they are not ideal bosons. The correct treatment of this problem requires calculation of the exact commutators between the quasiparticle and phonon operators and in this way to take into account the Pauli principle corrections. In addition to the correlations due to the quasiparticle interaction in the ground-state influence the single-particle fragmentation as well. In this article, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned above. As an illustration of our approach, calculations of the structure of the low-lying states in the odd-mass nuclei 131-137 Ba have been performed

  5. Galvanic coupling effects for module-mounting elements of ground-mounted photovoltaic power station

    Directory of Open Access Journals (Sweden)

    Pierozynski Boguslaw

    2017-12-01

    Full Text Available This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.

  6. Health effects of digital textbooks on school-age children: a grounded theory approach.

    Science.gov (United States)

    Seomun, Gyeongae; Lee, Jung-Ah; Kim, Eun-Young; Im, Meeyoung; Kim, Miran; Park, Sun-A; Lee, Youngjin

    2013-10-01

    This qualitative study used the grounded theory approach to analyze digital textbook-related health experiences of school-age children. In-depth interviews were held with 40 elementary school students who had used digital textbooks for at least a year. Data analysis revealed a total of 56 concepts, 20 subcategories, and 11 categories related to digital textbook health issues, the central phenomena being "health-related experiences." Students' health-related experiences were classified into "physical" and "psychological" symptoms. Adverse health effects related to digital textbook usage were addressed via both "student-led" and "instructor-led" coping strategies. Students' coping strategies were often inefficient, but instructor-led strategies seemed to prevent health problems. When health issues were well managed, students tended to accept digital textbooks as educational tools. Our findings suggest that students can form healthy computer habits if digital textbook usage is directed in a positive manner.

  7. Study of intense pulse irradiation effects on silicon targets considered as ground matter for optical detectors

    International Nuclear Information System (INIS)

    Muller, O.

    1994-12-01

    This study aim was centered on morphological and structural alterations induced by laser irradiation on silicon targets considered as ground matter for optical detectors. First we recalled the main high light intensity effects on the condensed matter. Then we presented the experimental aspects. The experimental studies were achieved on two sample types: SiO 2 /Si and Si. Two topics were studied: the defect chronology according to wavelength and pulse length, and the crystalline quality as well as the structure defects of irradiated zones by Raman spectroscopy. Finally, irradiation of Si targets by intense pulsed beams may lead to material fusion. This phenomenon is particularly easy when the material is absorbent, when the pulse is short and when the material is superficially oxidized. (MML). 204 refs., 93 figs., 21 tabs., 1 appendix

  8. Ground reaction forces and frictional demands during stair descent: effects of age and illumination.

    Science.gov (United States)

    Christina, Kathryn A; Cavanagh, Peter R

    2002-04-01

    Stair descent is an inherently risky and demanding task that older adults often encounter in everyday life. It is believed that slip between the foot or shoe sole and the stair surface may play a role in stair related falls, however, there are no reports on slip resistance requirements for stair descent. The aim of this study was to determine the required coefficient of friction (RCOF) necessary for safe stair descent in 12 young and 12 older adults, under varied illuminance conditions. The RCOF during stair descent was found to be comparable in magnitude and time to that for overground walking, and thus, with adequate footwear and dry stair surfaces, friction does not appear to be a major determinant of stair safety. Illuminance level had little effect on the dependent variables quantified in this study. However, the older participants demonstrated safer strategies than the young during stair descent, as reflected by differences in the ground reaction forces and lower RCOF.

  9. Single machine total completion time minimization scheduling with a time-dependent learning effect and deteriorating jobs

    Science.gov (United States)

    Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping

    2012-05-01

    In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.

  10. A novel design and driving strategy for a hybrid electric machine with torque performance enhancement both taking reluctance and electromagnetic attraction effects into account

    International Nuclear Information System (INIS)

    Huang, W.-N.; Chen, W.-P.; Teng, C.-C.; Chen, M.-P.

    2006-01-01

    A novel design, the hybrid electric machine, that owns improved competence for the output torque regulation as well as enlarged power density comparing to the conventional brushless machines by making use of the simultaneous performance overlapping concept based on magnetism is proposed in this paper. The developed design concept is focused on electric machine structure and its counterpart drive for applying two main magnetic-power transmitting paths by combination of both features of magnetic tendencies of flux generation that may flow in the path with minimum reluctance and direction owning the electromagnetic motive attraction. The verifications demonstrate that the outputted torque owns effective improvement by the presented concept of the electric machine based on the equivalent 3-hp frame than the conventional brushless motors

  11. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  12. Effect of changing polarity of graphite tool/ Hadfield steel workpiece couple on machining performances in die sinking EDM

    Directory of Open Access Journals (Sweden)

    Özerkan Haci Bekir

    2017-01-01

    Full Text Available In this study, machining performance ouput parameters such as machined surface roughness (SR, material removal rate (MRR, tool wear rate (TWR, were experimentally examined and analyzed with the diversifying and changing machining parameters in (EDM. The processing parameters (input par. of this research are stated as tool material, peak current (I, pulse duration (ton and pulse interval (toff. The experimental machinings were put into practice by using Hadfield steel workpiece (prismatic and cylindrical graphite electrodes with kerosene dielectric at different machining current, polarity and pulse time settings. The experiments have shown that the type of tool material, polarity (direct polarity forms higher MRR, SR and TWR, current (high current lowers TWR and enhances MRR, TWR and pulse on time (ton=48□s is critical threshold value for MRR and TWR were influential on machining performance in electrical discharge machining.

  13. Perceptual representation and effectiveness of local figure?ground cues in natural contours

    OpenAIRE

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure–ground segregation. Although previous studies have reported local contour features that evoke figure–ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural cont...

  14. Electric machines

    CERN Document Server

    Gross, Charles A

    2006-01-01

    BASIC ELECTROMAGNETIC CONCEPTSBasic Magnetic ConceptsMagnetically Linear Systems: Magnetic CircuitsVoltage, Current, and Magnetic Field InteractionsMagnetic Properties of MaterialsNonlinear Magnetic Circuit AnalysisPermanent MagnetsSuperconducting MagnetsThe Fundamental Translational EM MachineThe Fundamental Rotational EM MachineMultiwinding EM SystemsLeakage FluxThe Concept of Ratings in EM SystemsSummaryProblemsTRANSFORMERSThe Ideal n-Winding TransformerTransformer Ratings and Per-Unit ScalingThe Nonideal Three-Winding TransformerThe Nonideal Two-Winding TransformerTransformer Efficiency and Voltage RegulationPractical ConsiderationsThe AutotransformerOperation of Transformers in Three-Phase EnvironmentsSequence Circuit Models for Three-Phase Transformer AnalysisHarmonics in TransformersSummaryProblemsBASIC MECHANICAL CONSIDERATIONSSome General PerspectivesEfficiencyLoad Torque-Speed CharacteristicsMass Polar Moment of InertiaGearingOperating ModesTranslational SystemsA Comprehensive Example: The ElevatorP...

  15. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  16. Genesis machines

    CERN Document Server

    Amos, Martyn

    2014-01-01

    Silicon chips are out. Today's scientists are using real, wet, squishy, living biology to build the next generation of computers. Cells, gels and DNA strands are the 'wetware' of the twenty-first century. Much smaller and more intelligent, these organic computers open up revolutionary possibilities. Tracing the history of computing and revealing a brave new world to come, Genesis Machines describes how this new technology will change the way we think not just about computers - but about life itself.

  17. The Effect of Vibration during Friction Stir Welding on Corrosion Behavior, Mechanical Properties, and Machining Characteristics of Stir Zone

    Directory of Open Access Journals (Sweden)

    Sajad Fouladi

    2017-10-01

    Full Text Available Different methods have been applied to refine various characteristics of the zone (or nugget obtained by friction stir welding (FSW. In the current research, joining components are vibrated normal to the weld line during FSW to refine the zone microstructure. This process is described as friction stir vibration welding (FSVW. The effect of FSVW on mechanical properties, corrosion behavior, and machining characteristics of the zone are investigated. Al5052 alloy specimens are welded using FSW and FSVW processes and their different characteristics are compared and discussed. The results show that the strength and ductility of the welded parts increase when the vibration is applied. The outcomes also show that corrosion resistance of the nugget for FSV-welded specimens is lower than FS welded samples, and machining force of the former specimens is higher than the latter ones. These are related to smaller grain size in the zone of FSV-welded specimens compared to FS welded parts. Smaller grain size leads to a greater volume fraction of grain boundaries and, correspondingly, higher strength and hardness, as well as lower corrosion resistance.

  18. Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines

    Science.gov (United States)

    Mu, Quanyi; Dunn, Conner K.; Wang, Lei; Dunn, Martin L.; Qi, H. Jerry; Wang, Tiejun

    2017-04-01

    Recent developments in soft materials and 3D printing are promoting the rapid development of novel technologies and concepts, such as 4D printing and soft machines, that in turn require new methods for fabricating conductive materials. Despite the ubiquity of silver nanoparticles (NPs) in the conducting electrodes of printed electronic devices, their potential use in stretchable conductors has not been fully explored in 4D printing and soft machines. This paper studies the effect of thermal cure conditions on conductivity and electro-mechanical behaviors of silver ink by the direct ink write (DIW) printing approach. We found that the electro-mechanical properties of silver wires can be tailored by controlling cure time and cure temperature to achieve conductivity as well as stretchability. For the silver NP ink we used in the experiments, silver wires cured at 80 °C for 10-30 min have conductivity >1% bulk silver, Young’s modulus printed silver ink patterns on the surface of 3D printed polymer parts, with the future goal of constructing fully 3D printed arbitrarily formed soft and stretchable devices and of applying them to 4D printing. We demonstrated a fully printed functional soft-matter sensor and a circuit element that can be stretched by as much as 45%.

  19. Effect of vanadium of mechanical behavior, machinability and wear resistance of aluminium grain refined by Ti+B

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Hamid, A.A.A.

    1999-01-01

    It is well established that aluminum and its alloys are industrially grain refined by adding either Ti or Ti-B to improve their mechanical behavior and surface finish. In a previous paper, it was found that the grain refining efficiency of aluminum master alloys containing Ti or Ti+B was enhanced by addition of small amounts of other elements including vanadium. V. Therefore, it is anticipated that such an element will improve mechanical behavior, machinability and wear resistance of aluminum and its alloys. In this paper, the effect of vanadium addition, up to 0.3% on mechanical behavior is investigated. Machinability was assessed under different cutting conditions: speed, feed and depth of cut and finally the wear resistance was determined at different loads and speeds. The results indicated that improvement in hardness and mechanical strength were achieved by the addition of V that addition of more than 0.2%V resulted in little or no improvement. Similarly, addition of V resulted in improvement of surface quality under the different cutting conditions of speed, feed and depth of cut, and resistance to wear. However addition of more than 0.2% V resulted in increase of wear rate and change of wear mechanisms. (author)

  20. Effect of Micro Electrical Discharge Machining Process Conditions on Tool Wear Characteristics: Results of an Analytic Study

    DEFF Research Database (Denmark)

    Puthumana, Govindan; P., Rajeev

    2016-01-01

    Micro electrical discharge machining is one of the established techniques to manufacture high aspect ratio features on electrically conductive materials. This paper presents the results and inferences of an analytical study for estimating theeffect of process conditions on tool electrode wear...... characteristicsin micro-EDM process. A new approach with two novel factors anticipated to directly control the material removal mechanism from the tool electrode are proposed; using discharge energyfactor (DEf) and dielectric flushing factor (DFf). The results showed that the correlation between the tool wear rate...... (TWR) and the factors is poor. Thus, individual effects of each factor on TWR are analyzed. The factors selected for the study of individual effects are pulse on-time, discharge peak current, gap voltage and gap flushing pressure. The tool wear rate decreases linearly with an increase in the pulse on...

  1. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    Science.gov (United States)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  2. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults.

    Science.gov (United States)

    Magistrelli, Ashley; Chezem, Jo Carol

    2012-11-01

    In healthy normal-weight adults, cinnamon reduces blood glucose concentration and enhances insulin sensitivity. Insulin resistance, resulting in increased fasting and postprandial blood glucose and insulin levels, is commonly observed in obese individuals. The objective of the study was to compare declines in postprandial glycemic response in normal-weight and obese subjects with ingestion of 6 g ground cinnamon. In a crossover study, subjects consumed 50 g available carbohydrate in instant farina cereal, served plain or with 6 g ground cinnamon. Blood glucose concentration, the main outcome measure, was assessed at minutes 0, 15, 30, 45, 60, 90, and 120. Repeated-measures analysis of variance evaluated the effects of body mass index (BMI) group, dietary condition, and time on blood glucose. Paired t-test assessed blood glucose at individual time points and glucose area under the curve (AUC) between dietary conditions. Thirty subjects between the ages of 18 and 30 years, 15 with BMIs between 18.5 and 24.9 and 15 with BMIs of 30.0 or more, completed the study. There was no significant difference in blood glucose between the two BMI groups at any time point. However, in a combined analysis of all subjects, the addition of cinnamon to the cereal significantly reduced 120-minute glucose AUC (P=0.008) and blood glucose at 15 (P=0.001), 30 (Pblood glucose was significantly higher with cinnamon consumption (Pglucose response in normal weight and obese adults. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  3. Tunnel Face Stability and the Effectiveness of Advance Drainage Measures in Water-Bearing Ground of Non-uniform Permeability

    Science.gov (United States)

    Zingg, Sara; Anagnostou, Georg

    2018-01-01

    Non-uniform permeability may result in complex hydraulic head fields with potentially very high hydraulic gradients close to the tunnel face, which may be adverse for stability depending on the ground strength. Pore pressure relief by drainage measures in advance of the tunnel excavation improves stability, but the effectiveness of drainage boreholes may be low in the case of alternating aquifers and aquitards. This paper analyses the effects of hydraulic heterogeneity and advance drainage quantitatively by means of limit equilibrium computations that take account of the seepage forces acting upon the ground in the vicinity the tunnel face. The piezometric field is determined numerically by means of steady-state, three-dimensional seepage flow analyses considering the heterogeneous structure of the ground and a typical advance drainage scheme consisting of six axial boreholes drilled from the tunnel face. A suite of stability analyses was carried out covering a wide range of heterogeneity scales. The computational results show the effect of the orientation, thickness, location, number and permeability ratio of aquifers and aquitards and provide valuable indications about potentially critical situations, the effectiveness of advance drainage and the adequate arrangement of drainage boreholes. The paper shows that hydraulic heterogeneity results in highly variable face behaviour, even if the shear strength of the ground is constant along the alignment, but ground behaviour is considerably less variable in the presence of advance drainage measures.

  4. Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice.

    Science.gov (United States)

    Chao, Che-Yi; Yin, Mei-Chin

    2009-03-01

    The antibacterial effects of roselle calyx aqueous and ethanol extracts and protocatechuic acid against food spoilage bacteria Salmonella typhimurium DT104, Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus were examined. Minimal inhibitory concentrations of roselle calyx aqueous and ethanol extracts and protocatechuic acid against these bacteria were in the range of 112-144, 72-96, and 24-44 microg/mL, respectively. Protocatechuic acid content in roselle calyx aqueous and ethanol extracts was 2.8 +/- 0.7 and 11.9 +/- 1.2 mg/g, respectively. Antibacterial activity of roselle calyx ethanol extract and protocatechuic acid was not affected by heat treatments from 25 degrees to 75 degrees C and 25 degrees to 100 degrees C, respectively. After 3 days storage at 25 degrees C, the addition of roselle calyx extracts and protocatechuic acid exhibited dose-dependent inhibitory effects against test bacteria in ground beef and apple juice, in which the roselle calyx ethanol extract showed greater antibacterial effects than the aqueous extract. These data suggest that roselle calyx ethanol extract and protocatechuic acid might be potent agents as food additives to prevent contamination from these bacteria.

  5. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer

    Science.gov (United States)

    Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui

    2018-06-01

    Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.

  6. Effect of hydroelastic coupling on the response of a nuclear reactor to ground acceleration

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Skinner, D.A.

    1977-01-01

    The dynamical characteristics of a nuclear reactor vessel and its internal components is affected by the coolant inside the vessel. Recent studies in flow-induced vibration of reactor internal components show that the effect of the entrapped coolant can be properly accounted for by adding a 'hydrodynamic mass' matrix to the physical mass of the fluid structure system. In the past few years, analytical expressions for this hydrodynamic mass matrix have been derived, usually under greatly simplifying assumptions on the geometry of the structure. Typical examples are slender-cylinder and simply-supported-cylinder assumptions. While expressions derived based on these assumptions can still bring out the general characteristics of hydroelastic coupling of structure, their application to seismic analysis of reactor components is limited because these structutres, even though generally cylindrical, are usually neither slender nor simply supported. This paper presents an anlytical and experimental study of the effects of hydroelastic coupling on the seismic response of a reactor vessel and its internal components. The hydrodynamic mass matrix for cylindrical shell structures with arbitrary D/l ratios. Two specific examples are included to illustrate the effect of hydroelastic coupling on the response of a PWR to ground acceleration. (Auth.)

  7. Natural selection for earlier male arrival to breeding grounds through direct and indirect effects in a migratory songbird

    NARCIS (Netherlands)

    Velmala, William; Helle, Samuli; Ahola, Markus P.; Klaassen, M.R.J.; Lehikoinen, Esa; Rainio, Kalle; Sirkia, Paivi M.; Laaksonen, Toni

    2015-01-01

    For migratory birds, the earlier arrival of males to breeding grounds is often expected to have fitness benefits. However, the selection differential on male arrival time has rarely been decomposed into the direct effect of male arrival and potential indirect effects through female traits. We

  8. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 11: Computer-Aided Manufacturing & Advanced CNC, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    Science.gov (United States)

    Texas State Technical Coll., Waco.

    This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…

  9. Effects of payment method on work control, work risk and work-related musculoskeletal health among sewing machine operators

    Directory of Open Access Journals (Sweden)

    R. Nawawi

    2015-12-01

    Full Text Available Effects of payment method on work control, work risk and work-related musculoskeletal health among sewing machine operators R. Nawawi1, B.M. Deros1*, D.D.I. Daruis2, A. Ramli3, R.M. Zein4 and L.H. Joseph3 1Dept. of Mechanical and Materials Engineering Faculty of Engineering & Built Environment Universiti Kebangsaan Malaysia, Malaysia *Email: hjbaba@ukm.edu.my 2Faculty of Engineering, Universiti Pertahanan Nasional Malaysia, Malaysia 3Department of Physiotherapy Faculty of Science, Lincoln University College, Malaysia 4Department of Consultation, Research & Development, National Institute of Occupational Safety and Health (NIOSH, Malaysia ABSTRACT This study aimed to identify payment method and its effects on work control, work risk and work-related musculoskeletal health among Malaysian sewing machine operators. The study sample comprised 337 sewing machine operators (male, n=122, female, n=215; aged between 18-54 years old; mean 30.74±8.44 from four different garment-making companies in Malaysia. They were being paid via time rate wages (n=246 and piece rate wages (n=91. Data was collected through Nordic Musculoskeletal Questionnaire and pen-and-paper assessment via Rapid Upper Limb Assessment (RULA. From the study, the piece rate wage group was found to take fewer breaks, had high work production demands, worked at a faster pace and experienced more exhaustion and pressure due to increasing work demands as compared to the time rate group. They were also observed working with higher physical exposure such as repetitive tasks, awkward static postures, awkward grips and hand movements, pulling, lifting and pushing as compared to those in the time rate wage group. The final RULA scores was also higher from the piece rate wage group (72.53% RULA score 7 which indicated higher work risks among them. The study found that the type of wage payment was significantly associated with work risks (p=0.036, df=1 and WRMSD at the shoulder, lower back

  10. Effect of Electric Discharge Machining on Material Removal Rate and White Layer Composition

    Directory of Open Access Journals (Sweden)

    SHAHID MEHMOOD

    2017-01-01

    Full Text Available In this study the MRR (Material Removal Rate of the aerospace grade (2024 T6 aluminum alloy 2024 T6 has been determined with copper electrode and kerosene oil is used as dielectric liquid. Discharge energy is controlled by electric current while keeping Pulse-ON time and Pulse-OFF time as constant. The characteristics of the EDMed (Electric Discharge Machined surface are discussed. The sub-surface defect due to arcing has been explained. As the surface material of tool electrode and workpiece melts simultaneously and there are chances of the contamination of both surfaces by the contents of each other. Therefore, the EDS (Energy Dispersive Spectroscopy of the white layer and base material of the workpiece was performed by SEM (Scanning Electron Microscope at the discharge currents of 3, 6 and 12 amperes. It was conformed that the contamination of the surface of the workpiece material occurred by carbon, copper and oxygen contents. The quantitative analysis of these contents with respect to the discharge current has been presented in this paper.

  11. Effects of optimism on gambling in the rat slot machine task.

    Science.gov (United States)

    Rafa, Dominik; Kregiel, Jakub; Popik, Piotr; Rygula, Rafal

    2016-03-01

    Although gambling disorder is a serious social problem in modern societies, information about the behavioral traits that could determine vulnerability to this psychopathology is still scarce. In this study, we used a recently developed ambiguous-cue interpretation ​(ACI)​ paradigm to investigate whether 'optimism' and 'pessimism' as behavioral traits may determine the gambling-like behavior of rodents. In a series of ACI tests (cognitive bias screening), we identified rats that displayed 'pessimistic' and 'optimistic' traits. Subsequently, using the rat slot machine task (rSMT), we investigated if the 'optimistic'/'pessimistic' traits could determine the crucial feature of gambling-like behavior that has been investigated in rats and humans: the ​interpretation of 'near-miss' outcomes as a positive (i.e., win) situation. We found that 'optimists' did not interpret 'near-miss', 'near loss', or 'clear win' as win trials more often than ​their 'pessimistic' ​conspecifics; however, the 'optimists' were statistically more likely to reach for a reward in the hopeless 'clear loss' situation. This agrees with human studies and provides a platform for modeling interactions between behavioral traits and gambling in animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Contextual effects on perceived contrast : Figure-ground assignment and orientation contrast

    NARCIS (Netherlands)

    Self, Matthew W; Mookhoek, Aart; Tjalma, Nienke; Roelfsema, Pieter R

    2015-01-01

    Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual

  13. Contextual effects on perceived contrast: Figure-ground assignment and orientation contrast

    NARCIS (Netherlands)

    Self, M.W.; Mookhoek, A.; Tjalma, N.; Roelfsema, P.R.

    2015-01-01

    Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual

  14. Effects of uranium mining on ground water in Ambrosia Lake area, New Mexico

    International Nuclear Information System (INIS)

    Kelly, T.E.; Link, R.L.; Schipper, M.R.

    1979-01-01

    This paper discusses the impact of mining on the principal aquifer in the Ambrosia Lake area, the Westwater Canyon Member of the Morrison Formation. Loss of potentiometric head has resulted in interformational migration of ground water. This migration has produced local deterioration in chemical quality of the ground water. 7 refs

  15. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    International Nuclear Information System (INIS)

    Dowding, Colin; Lawrence, Jonathan

    2010-01-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2 . This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over 'n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  16. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    Science.gov (United States)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  17. [Effects of submarine topography and water depth on distribution of pelagic fish community in minnan-taiwan bank fishing ground].

    Science.gov (United States)

    Fang, Shuimei; Yang, Shengyun; Zhang, Chengmao; Zhu, Jinfu

    2002-11-01

    According to the fishing record of the light-seine information vessel in Minnan-Taiwan bank ground during 1989 to 1999, the effects of submarine topography and water depth on distribution of pelagic fish community in Minnan-Taiwan bank fishing ground was studied. The results showed that the pelagic fish distributed concentratively, while the submarine topography and water depth varied widely, but in different fishing regions, the distribution of pelagic fishes was uneven. The distribution of fishing yield increased from north to south, and closed up from sides of the bank to south or north in the regions. Pelagic fish distributed mainly in mixed water in the southern Taiwan Strait, and in warm water in the Taiwan Strait. The central fishing grounds were at high salt regions. Close gathering regions of pelagic fish or central fishing ground would be varied with the seasonal variation of mixed water in the southern Taiwan Strait and warm water in the Taiwan Strait. Central fishing ground was not only related to submarine topography and water depth, but also related to wind direction, wind-power and various water systems. In the fishing ground, the gathering depth of pelagic fish was 30-60 m in spring and summer, and 40-80 m in autumn and winter.

  18. Effect of coated and uncoated ground flaxseed addition on rheological, physical and sensory properties of Taftoon bread.

    Science.gov (United States)

    Roozegar, M H; Shahedi, M; Keramet, J; Hamdami, N; Roshanak, S

    2015-08-01

    Flaxseed is used to fortify bread. In order to reduce cyanogenic glycosides compounds of flaxseed, ground flaxseed was incubated at 30 °C and heated in a kitchen microwave oven. The cyanogenic compounds of flaxseed were reduced to 13.4 %. Treated ground flaxseed was coated with Arabic gum solution containing ascorbic acid and hydrogenated fat and was stored at 25 °C for 80 days in order to prevent oxidation of flaxseed oil. Results showed that oxidation in coated samples was lower than that in control samples and that there was a significant difference between them (p < 0.01). Coated and uncoated ground flaxseed was added to wheat flour in 5, 15 and 25 % levels in order to produce fortified Taftoon bread. Rheological, physical and organoleptic tests were carried out in order to evaluate dough and bread properties. Results showed that with increasing coated and uncoated ground flaxseed percentages, a decrease in water absorption and an increase in stability, dough development and relaxation time of dough occurred. The lowest water absorption was observed by adding 25 % coated ground flaxseed with hydrogenated fat. The highest dough development and dough stability time were observed by adding 25 % coated ground flaxseed with Arabic gum. Results indicated that coated and uncoated ground flaxseed has a good effect on decreasing the staling rate compared to the control bread. Results of organoleptic test showed that bread with 5 and 15 % coated and uncoated ground flaxseed had better acceptability.

  19. Graded effects in hierarchical figure-ground organization: reply to Peterson (1999).

    Science.gov (United States)

    Vecera, S P; O'Reilly, R C

    2000-06-01

    An important issue in vision research concerns the order of visual processing. S. P. Vecera and R. C. O'Reilly (1998) presented an interactive, hierarchical model that placed figure-ground segregation prior to object recognition. M. A. Peterson (1999) critiqued this model, arguing that because it used ambiguous stimulus displays, figure-ground processing did not precede object processing. In the current article, the authors respond to Peterson's (1999) interpretation of ambiguity in the model and her interpretation of what it means for figure-ground processing to come before object recognition. The authors argue that complete stimulus ambiguity is not critical to the model and that figure-ground precedes object recognition architecturally in the model. The arguments are supported with additional simulation results and an experiment, demonstrating that top-down inputs can influence figure-ground organization in displays that contain stimulus cues.

  20. Effects of slip-induced changes in ankle movement on muscle activity and ground reaction forces during running acceleration

    DEFF Research Database (Denmark)

    Ketabi, Shahin; Kersting, Uwe G.

    2013-01-01

    Ground contact in running is always linked to a minimum amount of slipping, e.g., during the early contact phase when horizontal forces are high compared to vertical forces. Studies have shown altered muscular activation when expecting slips [2-4]. It is not known what the mechanical effect of su...... of such slip episodes are on joint loading or performance. The aim of the present study was to examine the effect of changes in ankle movement on ankle joint loading, muscle activity, and ground reaction forces during linear acceleration....

  1. The Bearingless Electrical Machine

    Science.gov (United States)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  2. Effects of velocity and weight support on ground reaction forces and metabolic power during running.

    Science.gov (United States)

    Grabowski, Alena M; Kram, Rodger

    2008-08-01

    The biomechanical and metabolic demands of human running are distinctly affected by velocity and body weight. As runners increase velocity, ground reaction forces (GRF) increase, which may increase the risk of an overuse injury, and more metabolic power is required to produce greater rates of muscular force generation. Running with weight support attenuates GRFs, but demands less metabolic power than normal weight running. We used a recently developed device (G-trainer) that uses positive air pressure around the lower body to support body weight during treadmill running. Our scientific goal was to quantify the separate and combined effects of running velocity and weight support on GRFs and metabolic power. After obtaining this basic data set, we identified velocity and weight support combinations that resulted in different peak GRFs, yet demanded the same metabolic power. Ideal combinations of velocity and weight could potentially reduce biomechanical risks by attenuating peak GRFs while maintaining aerobic and neuromuscular benefits. Indeed, we found many combinations that decreased peak vertical GRFs yet demanded the same metabolic power as running slower at normal weight. This approach of manipulating velocity and weight during running may prove effective as a training and/or rehabilitation strategy.

  3. The ground level event 70 on december 13, 2006 and related effective doses at aviation altitudes

    International Nuclear Information System (INIS)

    Matthia, D.; Heber, B.; Reitz, G.; Sihver, L.; Berger, T.; Meier, M.

    2009-01-01

    The 70. ground level event in the records of the Neutron Monitor network occurred on 13 December 2006 reaching a maximum count rate increase at the Oulu station of more than 90% during the 5 min interval 3.05-3.10 UTC. Thereafter, count rates gradually decreased registering increases of a few per cent above the galactic cosmic ray background after a few hours. The primary proton spectrum during the first 6 h after the onset of the event is characterised in this work by fitting the energy and angular distribution by a power law in rigidity and a linear dependence in the pitch angle using a minimisation technique. The results were obtained by analysing the data from 28 Neutron Monitor stations. At very high northern and southern latitudes, the effective dose rates were estimated to reach values of 25-30 μSv h -1 at atmospheric depth of 200 g cm -2 during the maximum of the event. The increase in effective dose during north atlantic and polar flights was estimated to be in the order of 20%. (authors)

  4. Characterizing the Effects of Micro Electrical Discharge Machining Parameters on Material Removal Rate during Micro EDM Drilling of Tungsten Carbide (WC-Co)

    Science.gov (United States)

    Hourmand, Mehdi; Sarhan, Ahmed A. D.; Sayuti, Mohd

    2017-10-01

    Micro-dies, molds and miniaturized products can be manufactured using micro EDM process. In this research, EDM machine and on-machine fabricated CuW micro-electrode were utilized to produce the micro holes in WC-16%Co. The effects of voltage, current, pulse ON time, pulse OFF time, capacitor and rotating speed on Material removal rate (MRR) during micro EDM drilling of WC-16% Co was analyzed using fractional factorial design method. ANOVA analysis shows that increasing current, rotating speed, capacitor and decreasing voltage and pulse ON time lead to the amplify in MRR. It was found that out of all the factors, current and capacitor had the most significant effect on MRR, while the effect of capacitor was more than current. Eventually, it can be concluded that micro holes can be produced using EDM machine.

  5. Human-Machine Communication

    International Nuclear Information System (INIS)

    Farbrot, J.E.; Nihlwing, Ch.; Svengren, H.

    2005-01-01

    New requirements for enhanced safety and design changes in process systems often leads to a step-wise installation of new information and control equipment in the control room of older nuclear power plants, where nowadays modern digital I and C solutions with screen-based human-machine interfaces (HMI) most often are introduced. Human factors (HF) expertise is then required to assist in specifying a unified, integrated HMI, where the entire integration of information is addressed to ensure an optimal and effective interplay between human (operators) and machine (process). Following a controlled design process is the best insurance for ending up with good solutions. This paper addresses the approach taken when introducing modern human-machine communication in the Oskarshamn 1 NPP, the results, and the lessons learned from this work with high operator involvement seen from an HF point of view. Examples of possibilities modern technology might offer for the operators are also addressed. (orig.)

  6. Chatter and machine tools

    CERN Document Server

    Stone, Brian

    2014-01-01

    Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.

  7. Machine learning approaches to diagnosis and laterality effects in semantic dementia discourse.

    Science.gov (United States)

    Garrard, Peter; Rentoumi, Vassiliki; Gesierich, Benno; Miller, Bruce; Gorno-Tempini, Maria Luisa

    2014-06-01

    Advances in automatic text classification have been necessitated by the rapid increase in the availability of digital documents. Machine learning (ML) algorithms can 'learn' from data: for instance a ML system can be trained on a set of features derived from written texts belonging to known categories, and learn to distinguish between them. Such a trained system can then be used to classify unseen texts. In this paper, we explore the potential of the technique to classify transcribed speech samples along clinical dimensions, using vocabulary data alone. We report the accuracy with which two related ML algorithms [naive Bayes Gaussian (NBG) and naive Bayes multinomial (NBM)] categorized picture descriptions produced by: 32 semantic dementia (SD) patients versus 10 healthy, age-matched controls; and SD patients with left- (n = 21) versus right-predominant (n = 11) patterns of temporal lobe atrophy. We used information gain (IG) to identify the vocabulary features that were most informative to each of these two distinctions. In the SD versus control classification task, both algorithms achieved accuracies of greater than 90%. In the right- versus left-temporal lobe predominant classification, NBM achieved a high level of accuracy (88%), but this was achieved by both NBM and NBG when the features used in the training set were restricted to those with high values of IG. The most informative features for the patient versus control task were low frequency content words, generic terms and components of metanarrative statements. For the right versus left task the number of informative lexical features was too small to support any specific inferences. An enriched feature set, including values derived from Quantitative Production Analysis (QPA) may shed further light on this little understood distinction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effects of ground fires on element dynamics in mountainous coniferous forest in Germany

    Directory of Open Access Journals (Sweden)

    Kerstin Näthe

    2012-09-01

    Full Text Available Disturbances such as fires are a natural phenomenon of forested ecosystems, having a different impact on (micro- climate (e.g. emissions of gases and aerosols, ecology (destruction of flora and fauna and nutrient cycles especially in the soils. Forest fires alter the spatial distribution (forest floor vs. mineral soil, binding forms (organic vs. inorganic and availability (water solubility of organic substances and nutrients. The effects of fires on chemical, biological and physical soil properties in forested ecosystems have been intensively studied in the last decades, especially in the Mediterranean area and North America. However, differences in fire intensity, forest type (species, age and location (climate, geological substrate, nutrient status lead to divergent results. Furthermore, only a few case studies focused on the effects of ground fires in hilly landscapes, on the vertical and lateral water-driven fluxes of elements (C, N, nutrients, as well as on the input of fire-released terrestrial nutrients into aquatic ecosystems. Thus, this study will evaluate the effects of low-severity fires on nutrient cycling in a coniferous forest in a hilly landscape connected to an aquatic system. At three spatially independent sites three paired plots (control and manipulated were chosen at a forested site in Thuringia, Germany. All plots are similar in the vegetation cover and pedogenetic properties.In relation to control sites, this study will examine the effects of low-severity fires on:a the mobilization of organic carbon and nutrients (released from ash material and the forest floor via leachate and erosion paths,b the binding form (inorganic/organic of elements and organic compounds, and c the particle size fraction (DOM/POM of elements and organic compounds.The goal of this study is a better understanding of the impact of forest fires on element cycling and release in a hilly landscape connected to an aquatic system, supposedly driven by

  9. Storytelling machines for video search

    NARCIS (Netherlands)

    Habibian, A.

    2016-01-01

    We study a fundamental question for developing storytelling machines: what vocabulary is suited for machines to tell the story of a video? We start by manually specifying the vocabulary concepts and their annotations. In order to effectively handcraft the vocabulary, we empirically study what are

  10. Man Machine Systems in Education.

    Science.gov (United States)

    Sall, Malkit S.

    This review of the research literature on the interaction between humans and computers discusses how man machine systems can be utilized effectively in the learning-teaching process, especially in secondary education. Beginning with a definition of man machine systems and comments on the poor quality of much of the computer-based learning material…

  11. A two-dimensional model of the pressing section of a paper machine including dynamic capillary effects

    KAUST Repository

    Iliev, Oleg P.

    2013-05-15

    Paper production is a problem with significant importance for society; it is also a challenging topic for scientific investigation. This study is concerned with the simulation of the pressing section of a paper machine. A two-dimensional model is developed to account for the water flow within the pressing zone. A Richards-type equation is used to describe the flow in the unsaturated zone. The dynamic capillary pressure-saturation relation is adopted for the paper production process. The mathematical model accounts for the coexistence of saturated and unsaturated zones in a multilayer computational domain. The discretization is performed by the MPFA-O method. Numerical experiments are carried out for parameters that are typical of the production process. The static and dynamic capillary pressure-saturation relations are tested to evaluate the influence of the dynamic capillary effect. © 2013 Springer Science+Business Media Dordrecht.

  12. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  13. Representational Machines

    DEFF Research Database (Denmark)

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...... possibilities, and genre distinctions. Presenting several distinct ways of producing space photographically, this book opens a new and important field of inquiry for photography research....

  14. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  15. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    Elkhoraibi, T.; Hashemi, A.; Ostadan, F.

    2014-01-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  16. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    Energy Technology Data Exchange (ETDEWEB)

    Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.

    2014-04-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  17. Aqueous cutting fluid for machining fissionable materials

    Science.gov (United States)

    Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley

    1984-01-01

    The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.

  18. Mastering machine learning with scikit-learn

    CERN Document Server

    Hackeling, Gavin

    2014-01-01

    If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

  19. Effect of ship structure and size on grounding and collision damage distributions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    2000-01-01

    It has been argued that a major shortcoming in the International Maritime Organization (IMO) Interim Guidelines for Approval of Alternative Methods of Design and Construction of Oil Tankers in Collision and Grounding is that grounding and collision damages normalized by the main dimensions...... are expressed in simple expressions involving structural dimensions and the building material of the ships. The study shows that the density distribution for collision and grounding damages normalized by the main dimensions of the ship depends on the size of the ship. A larger ship has a higher probability...

  20. Design, Construction and Evaluation of a Row Crop Thinning Machine

    Directory of Open Access Journals (Sweden)

    M Gol Mohammadi

    2014-04-01

    Full Text Available Equipment availability is necessary in the development of Agriculture mechanization. Crop thinning is one of the most important stages in row crop production which is laborious and costly. The objective of this project is design and construction of a row crop thinning machine. Four main system units are plant sensors, ground sensors, control and thinning platforms. In this machine the unwanted plants on the rows are randomly removed by employing a pneumatically system. A blade on a vertical arm with pendulum motion removes the plant from the rows. The machine control system consists of an arm and a blade which is activated by a double acting cylinder and equipped with a relay and a timer. The pneumatic cylinder is controlled via a solenoid valve. Laboratory tests were conducted to validate the machine performance. Some other preliminary tests also were performed for optimization of parameters such as cinematic index and cutting length of blades. The laboratory tests (totally 9 tests were performed with a constant forward speed and three levels of plant density, using artificial plants. The data were analyzed using SPSS software. The results show that satisfactory performance of the machine is achieved when the plant density is moderate i.e. the thinning performance reduces with higher plant distance in the row. The other effective variable on machine performance is the adjustment of sensor sensitivity, which is used to distinguish between week and strong plants. In general the machine performance is sensitive to plant shape and morphology, plant distribution pattern in the field, growing stage of the plants, time of thinning and the effectiveness of previous weeding operations

  1. [Effects of topography on the diversity and distribution pattern of ground plants in karst montane forests in Southwest Guangxi, China].

    Science.gov (United States)

    Yuan, Tie-Xiang; Zhang, He-Ping; Ou, Zhi-Yang; Tan, Yi-Bo

    2014-10-01

    Covariance analysis, curve-fitting, and canonical correspondence analysis (CCA) were used to explore the effects of topographic factors on the plant diversity and distribution patterns of ground flora with different growth forms in the karst mountains of Southwest Guangxi, China. A total of 152 ground plants were recorded. Among them, 37 species were ferns, 44 species herbs, 9 species lianas, and 62 species shrubs. Covariance analysis revealed that altitude significantly correlated with the individual number and richness of ground plants, and slope aspect had a significant effect on richness. Statistical analyses showed a highly significant nonlinear correlation between the individual number or richness of ground plants and altitude. Results of CCA revealed that slope aspect had a significant effect on the distribution pattern of ferns, and slope had a significant effect on the distribution patterns of herbs, lianas and shrubs. Ferns were more sensitive than herbs, lianas and shrubs to changes in heat and soil water caused by aspect. The effect of slope was stronger than that of elevation on soil water and nutrients, and it was the most important topographic factor that affected the distribution patterns of herbs, lianas and shrubs in this region.

  2. Electricity of machine tool

    International Nuclear Information System (INIS)

    Gijeon media editorial department

    1977-10-01

    This book is divided into three parts. The first part deals with electricity machine, which can taints from generator to motor, motor a power source of machine tool, electricity machine for machine tool such as switch in main circuit, automatic machine, a knife switch and pushing button, snap switch, protection device, timer, solenoid, and rectifier. The second part handles wiring diagram. This concludes basic electricity circuit of machine tool, electricity wiring diagram in your machine like milling machine, planer and grinding machine. The third part introduces fault diagnosis of machine, which gives the practical solution according to fault diagnosis and the diagnostic method with voltage and resistance measurement by tester.

  3. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  4. Quantifying the effect of riming on snowfall using ground-based observations

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Ground-based observations of ice particle size distribution and ensemble mean density are used to quantify the effect of riming on snowfall. The rime mass fraction is derived from these measurements by following the approach that is used in a single ice-phase category microphysical scheme proposed for the use in numerical weather prediction models. One of the characteristics of the proposed scheme is that the prefactor of a power law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent does not change. To derive the rime mass fraction, a mass-dimensional relation representative of unrimed snow is also determined. To check the validity of the proposed retrieval method, the derived rime mass fraction is converted to the effective liquid water path that is compared to microwave radiometer observations. Since dual-polarization radar observations are often used to detect riming, the impact of riming on dual-polarization radar variables is studied for differential reflectivity measurements. It is shown that the relation between rime mass fraction and differential reflectivity is ambiguous, other factors such as change in median volume diameter need also be considered. Given the current interest on sensitivity of precipitation to aerosol pollution, which could inhibit riming, the importance of riming for surface snow accumulation is investigated. It is found that riming is responsible for 5% to 40% of snowfall mass. The study is based on data collected at the University of Helsinki field station in Hyytiälä during U.S. Department of Energy Biogenic Aerosols Effects on Clouds and Climate (BAECC) field campaign and the winter 2014/2015. In total 22 winter storms were analyzed, and detailed analysis of two events is presented to illustrate the study.

  5. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  6. Effects of gamma radiation on biomass production of ground vegetation under broadleaved forests of northern Wisconsin

    International Nuclear Information System (INIS)

    Zavitkovski, J.; Salmonson, B.J.

    1977-01-01

    Effects of gamma irradiation (10,000-Ci 137 Cs source) for one growing season on biomass production of ground vegetation under northern Wisconsin aspen and maple-aspen-birch forests and on an abandoned logging road were evaluated during and 1 year after irradiation. No significant changes in production were determined during the irradiation year. One year later three distinct zones--semidevastated, herbaceous, and original forest--developed along the radiation gradient. Biomass production under forest canopies decreased significantly in the semidevastated zone, increased significantly in the herbaceous zone (primarily responding to additional light), and remained unchanged under the original forest. Logging-road vegetation responded similarly, but the changes were restricted within higher radiation doses. At comparable levels of radiation, production of species of the logging-road vegetation was affected less than that of species under forest canopies. Such a trend was predictable from the generally smaller interphase chromosome volumes of the species on the logging road and from their ability to survive in severe habitats

  7. Effect of oil extracted from coffee grounds in the radiolytic stabilization of PVC

    International Nuclear Information System (INIS)

    Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S.

    2013-01-01

    Commercial Poly(vinyl chloride) (PVC) containing oil extracted from coffee grounds (OCG) at concentrations of 0.50; 1.00 and 1.50 wt% were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature and air atmosphere. The viscosity-average molar mass (M v ) was measured for PVC systems without and with oil. Decreases in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of OCG at 0.5 wt% into PVC matrix irradiated at dose of 25 kGy decreased the number of main chain scissions and was calculated a protection index of 67% in PVC matrix. Results about the free radical scavenger action of the OCG were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Decrease of 7% of Young's modulus value and a decrease of 31.5% on the elongation at break value were recorded for PVC films exposed to gamma irradiation. However, no significant changes were recorded in mechanical properties of PVC with OCG. (author)

  8. Effect of oil extracted from coffee grounds in the radiolytic stabilization of PVC

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S., E-mail: aquino@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2013-07-01

    Commercial Poly(vinyl chloride) (PVC) containing oil extracted from coffee grounds (OCG) at concentrations of 0.50; 1.00 and 1.50 wt% were investigated. The samples were irradiated with gamma radiation ({sup 60}Co) at room temperature and air atmosphere. The viscosity-average molar mass (M{sub v}) was measured for PVC systems without and with oil. Decreases in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of OCG at 0.5 wt% into PVC matrix irradiated at dose of 25 kGy decreased the number of main chain scissions and was calculated a protection index of 67% in PVC matrix. Results about the free radical scavenger action of the OCG were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Decrease of 7% of Young's modulus value and a decrease of 31.5% on the elongation at break value were recorded for PVC films exposed to gamma irradiation. However, no significant changes were recorded in mechanical properties of PVC with OCG. (author)

  9. Effect of Nigella Sativa Linn (Ranunculaceae ground seed extract on Carrageenan induced inflammation in rats

    Directory of Open Access Journals (Sweden)

    Saima Parveen

    2011-01-01

    Full Text Available Nigella sativa Linn (Family: Ranunculaceae Bengali name “kalo jera” is used as spice in Bengali foods. Native to Western Asia, Turkey, Iraq and Egypt, the black seed oil has been valued for its health benefits for centuries. This plant has been used in traditional medicine for the treatment of stomach aches, asthma, bronchitis, coughs, fevers, tumour and as a tonic. The dried and grounded seed was extracted with ethanol and the extract was evaluated for anti-inflammatory activity in carrageenan induced rat paw edema model. The extracts were administered orally at the doses of 250 and 500 mg/kg body weight, and statistically significant (p<0.05 anti-inflammatory effects were observed in a dose dependant manner. The extract showed 28.75% and 43.79% inhibition of inflammation at the doses of 250 and 500 mg/kg body weight after first hour of the carrageenan administration which was comparable to that of standard drugs aspirin 40.52% and hydrocortisone 47.71% respectively. The result of this study supported the traditional medicinal uses of this seed. Ibrahim Med. Coll. J. 2011; 5(1: 22-24

  10. Ground Motions Simulations and Site Effects in the Quito Basin (Ecuador)

    Science.gov (United States)

    Courboulex, F.; Castro-Cruz, D.; Laurendeau, A.; Bonilla, L. F.; Bertrand, E.; Mercerat, D.; Alvarado, A. P.

    2017-12-01

    The city of Quito (3M inhabitants), capital of Ecuador has been damaged several times in the past by large earthquakes. It is built on the hanging-wall of an active reverse fault, constituting a piggy-back basin. The deep structure of this basin and its seismic response remains badly known. We first use the recordings of 170 events on 18 accelerometers from the Quito permanent network and perform spectral ratio analysis. We find that the southern part of Quito shows strong site amplification at low frequency ( 0.35 Hz). Yet, high frequency ( 5 Hz) amplifications also exist, but exhibit a complex spatial variability. We then propose a new calibrated method based on empirical Green's functions (EGF) to simulate the ground motions due to a future earthquake in Quito. The idea is to use the results of a global database of source time functions (i.e., the SCARDEC database, Vallée and Douet, 2016; Courboulex et al., 2016) to define the average values and the variability of the stress-drop ratio parameter, which strongly affects the resulting simulations. We test the method on a Mw 7.8 event, similar in location and focal mechanism to the Pedernales earthquake that occurred on April 16th 2016 on the subduction zone. For this aim, we use the recordings of 6 aftershocks of magnitude 5.6 to 6.2 as EGF's. The predicted Fourier spectra, peak values and response spectra we obtain are in good agreement with real data from the 2016 event recorded on the Quito network. With the constraints we impose on stress-drop ratios, we expect that the simulated ground motions be representative of the variability of other Pedernales-type events that could occur in the future. Our results also well reproduce the low frequency site effects amplification in the south of the basin. This amplification could be particularly dangerous in the case of a mega subduction earthquake, like the one that struck Ecuador in 1906.

  11. Effect of utilizing unground and ground normal and black rice husk ...

    Indian Academy of Sciences (India)

    SYAMSUL BAHRI

    2018-03-10

    Mar 10, 2018 ... Keywords. Rice husk ash; high-strength concrete; grinding; particle size; durability; low-cost material. .... which may be subjected to some minor contamination from soil ground. ...... oil fuel ash and rice husk–bark ash. Constr.

  12. Effects of Permafrost and Seasonally Frozen Ground on the Seismic Response of Transportation Infrastructure Sites

    Science.gov (United States)

    2010-02-01

    This interdisciplinary project combined seismic data recorded at bridge sites with computer models to identify how highway bridges built on permanently and seasonally frozen ground behave during an earthquake. Two sites one in Anchorage and one in...

  13. Single event effect ground test results for a fiber optic data interconnect and associated electronics

    International Nuclear Information System (INIS)

    LaBel, K.A.; Hawkins, D.K.; Cooley, J.A.; Stassinopoulos, E.G.; Seidleck, C.M.; Marshall, P.; Dale, C.; Gates, M.M.; Kim, H.S.

    1994-01-01

    As spacecraft unlock the potential of fiber optics for spaceflight applications, system level bit error rates become of concern to the system designer. The authors present ground test data and analysis on candidate system components

  14. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    International Nuclear Information System (INIS)

    1995-01-01

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed

  15. Comparison of effects of machine performance parameters and energy indices of soybean production in conservation and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    A Sharifi

    2016-09-01

    Full Text Available Introduction Nowadays, agricultural systems are seeking economic, ecological and bioenvironmental goals for production of agricultural crops with protection and sustainability of the environment. Therefore, there is need to extend sustainable agricultural systems such as conservation agriculture. One of the principles of conservation agriculture is conservation tillage. Conservation tillage is a kind of tillage that retains crop residues on the soil surface or mixes it with soil using related machines. It could also affect on machine performance parameters. Energy consumption for producing one kilogram crop could be studied for conservation tillage. Several researchers have conducted studies on this issue for production of different crops including wheat, sunflower and forage crops. This study conducted to assess machine performance parameters and energy indices of conservation tillage systems for soybean cultivation in Golestan province. Materials and Methods This study was conducted to investigate the effects of conservation tillage systems on machine performance and energy indices in soybean production at the Gorgan research station of Golestan Agricultural and Natural Resource Research Center in 2012. The precipitation was 450 mm. Soil texture was silty clay loam. Treatments were four tillage methods, including no-till using row crop direct planter, no-till using grain direct drill, conventional tillage usin a disk harrow with working depth of 10-15 cm and minimum tillage using chisel packer with a working depth of 20 cm. Machine performance parameters and energy indices studied in a farm covered by wheat residues in a randomized complete block design (RCBD with four treatments and four replications. Machine performance parameters consisted of field efficiency, field capacity, total field capacity and planting uniformity index were measured. Energy indices such as energy ratio, energy productivity, energy intensity and net energy gain were

  16. The Effects of Opposition and Gender on Knee Kinematics and Ground Reaction Force during Landing from Volleyball Block Jumps

    Science.gov (United States)

    Hughes, Gerwyn; Watkins, James; Owen, Nick

    2010-01-01

    The aim of this study was to examine the effect of opposition and gender on knee kinematics and ground reaction force during landing from a volleyball block jump. Six female and six male university volleyball players performed two landing tasks: (a) an unopposed and (b) an opposed volleyball block jump and landing. A 12-camera motion analysis…

  17. Simulation of spatially varying ground motions including incoherence, wave‐passage and differential site‐response effects

    DEFF Research Database (Denmark)

    Konakli, Katerina; Der Kiureghian, Armen

    2012-01-01

    A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....

  18. Effects and interactions of gallic acid, eugenol and temperature on thermal inactivation of Salmonella spp. in ground chicken

    Science.gov (United States)

    The combined effects of heating temperature (55 to 65C), gallic acid (0 to 2.0%), and eugenol (0 to 2.0%) on thermal inactivation of Salmonella in ground chicken were assessed. Thermal death times were determined in bags submerged in a heated water bath maintained at various set temperatures, follo...

  19. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Science.gov (United States)

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  20. Effect of physical and mechanical properties of cassava tubers on the performance of an automated peeling machine

    Directory of Open Access Journals (Sweden)

    O.C. Ademosun

    2012-12-01

    Full Text Available Peeling of cassava tuber at all levels is still largely carried out manually; however, this work is presented with a view to investigate the effect of physical and mechanical properties of cassava tubers on mechanical peeling and hence provides a basis for cassava peeling mechanization. These properties include size of the tuber, tl, proportion by weight of peel, wp, average moisture content of the peel, map, peel thickness, tp, tuber diameter, td, tuber surface taper angle, α, peel penetration force, F, and peel shearing stress, ts. The results showed that for Slmhf; tl ranged from 140-460mm, wp ranged from 13.12-20.06%, map was 76.27%, tp ranged from 1.62-4.34mm, td ranged from 31.08-136.63mm, α ranged from 9.03-23.130, F ranged from 0.17-1.85N/mm, ts ranged from 0.85-9.25N/mm2 and quality performance of the machine, QPE, for this tuber ranged from 70.82-96.21%. Similarly, for Ssmlf; tl ranged from 125-362mm, wp ranged from 10.52-16.66%, map was 70.97%, tp ranged from 1.22-4.12mm, td ranged from 18.86-99.29mm, α ranged from 5.20-12.290, F ranged from 0.13-1.54N/mm, ts ranged from 0.65-7.70N/mm2 and quality performance of the machine, QPE, for this tuber ranged from 67.27-92.25 %. The results confirm influence of physico-mechanical properties of cassava tuber on mechanical peeling.

  1. Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available Accurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014 191-203

  2. High-pressure coolant effect on the surface integrity of machining titanium alloy Ti-6Al-4V: a review

    Science.gov (United States)

    Liu, Wentao; Liu, Zhanqiang

    2018-03-01

    Machinability improvement of titanium alloy Ti-6Al-4V is a challenging work in academic and industrial applications owing to its low thermal conductivity, low elasticity modulus and high chemical affinity at high temperatures. Surface integrity of titanium alloys Ti-6Al-4V is prominent in estimating the quality of machined components. The surface topography (surface defects and surface roughness) and the residual stress induced by machining Ti-6Al-4V occupy pivotal roles for the sustainability of Ti-6Al-4V components. High-pressure coolant (HPC) is a potential choice in meeting the requirements for the manufacture and application of Ti-6Al-4V. This paper reviews the progress towards the improvements of Ti-6Al4V surface integrity under HPC. Various researches of surface integrity characteristics have been reported. In particularly, surface roughness, surface defects, residual stress as well as work hardening are investigated in order to evaluate the machined surface qualities. Several coolant parameters (including coolant type, coolant pressure and the injection position) deserve investigating to provide the guidance for a satisfied machined surface. The review also provides a clear roadmap for applications of HPC in machining Ti-6Al4V. Experimental studies and analysis are reviewed to better understand the surface integrity under HPC machining process. A distinct discussion has been presented regarding the limitations and highlights of the prospective for machining Ti-6Al4V under HPC.

  3. The Effect of the Rolling Direction, Temperature, and Etching Time on the Photochemical Machining of Monel 400 Microchannels

    Directory of Open Access Journals (Sweden)

    Deepakkumar H. Patil

    2016-01-01

    Full Text Available The present paper describes the effect of the rolling direction on the quality of microchannels manufactured using photochemical machining (PCM of Monel 400. Experiments were carried out to fabricate microchannels along and across the rolling direction to investigate the effect of the grain orientation on microchannel etching. The input parameters considered were channel width and rolling direction, whereas the depth of etch was the response parameters. Different channels of widths of 60, 100, 150, 200, and 250 μm were etched. The effects of the etching time and temperature of the etchant solution on the undercut and depth of the microchannels were studied. For good quality microchannels, the effects of spinning time, spinning speed, exposure time, and photoresist film strength were also taken into consideration. Optimized values of the above were used for the experimentation. The results show that the depth of etch of the microchannel increases more along the rolling direction than across the rolling direction. The channel width and depth are significantly affected by the etching time and temperature. The proposed study reports an improvement in the quality of microchannels produced using PCM.

  4. Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; San Juan, C.A.

    1999-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation

  5. Analysis of Effects of Cutting Parameters of Wire Electrical Discharge Machining on Material Removal Rate and Surface Integrity

    International Nuclear Information System (INIS)

    Tonday, H. R.; Tigga, A. M.

    2016-01-01

    As wire electrical discharge machining is pioneered as a vigorous, efficient and precise and complex nontraditional machining technique, research is needed in this area for efficient machining. In this paper, the influence of various input factors of wire electrical discharge machining (WEDM) on output variable has been analyzed by using Taguchi technique and analysis of variance. The design of experiments has been done and by applying L8 orthogonal arrays method and experiments have been conducted and collected required data. The objectives of the research are to maximize the material removal rate and to minimize the surface roughness value (Ra). Surface morphology of machined workpiece has been obtained and examined by employing scanning electron microscopy (SEM) technique. (paper)

  6. Effect of biomaterials and working pressure of a briquetting machine on physical characteristics and energy consumption of briquette production

    Directory of Open Access Journals (Sweden)

    Niedziółka Ignacy

    2018-01-01

    Full Text Available The paper presents an analysis of the influence of biomaterials and working pressure of a briquetting machine on physical characteristics and energy consumption of briquette production. The following types of biomaterials were used in the study: rape, oat and maize straw. Hydraulic piston briquetting machine JUNIOR manufactured by Deta Polska was used for briquetting. During the briquetting process, the working pressures of briquetting machine were 20, 26 and 32 MPa. Depending on the type of biomaterial used and the assumed working pressure of briquetting machine, produced briquettes differed in terms of both their physical characteristics and energy consumption. Based on the analysis of the obtained results, it was found that physical characteristics and energy consumption during briquette production were influenced by such factors as the type of compacted material, its fragmentation as well as granulometric composition and working pressure of the briquetting machine used.

  7. Analysis of Effects of Cutting Parameters of Wire Electrical Discharge Machining on Material Removal Rate and Surface Integrity

    Science.gov (United States)

    Tonday, H. R.; Tigga, A. M.

    2016-02-01

    As wire electrical discharge machining is pioneered as a vigorous, efficient and precise and complex nontraditional machining technique, research is needed in this area for efficient machining. In this paper, the influence of various input factors of wire electrical discharge machining (WEDM) on output variable has been analyzed by using Taguchi technique and analysis of variance. The design of experiments has been done and by applying L8 orthogonal arrays method and experiments have been conducted and collected required data. The objectives of the research are to maximize the material removal rate and to minimize the surface roughness value (Ra). Surface morphology of machined workpiece has been obtained and examined by employing scanning electron microscopy (SEM) technique.

  8. Effects of Technological Parameters and Fishing Ground on Quality Attributes of Thawed, Chilled Cod Fillets Stored in Modified Atmosphere Packaging

    DEFF Research Database (Denmark)

    Bøknæs, Niels; Østerberg, Carsten; Sørensen, Rie

    2001-01-01

    . The parameters investigated were: (1) packaging in modified atmosphere during frozen storage, (2)frozen storage period and temperature, (3),fishing ground and chill storage temperature, together with (4) the addition of trimethylamine oxide (TMAO) and sodium chloride (NaCl) to cod fillets before freezing......Effects were studied of various technological parameters and fishing ground on quality attributes of thawed, chilled cod fillets stored in modified atmosphere packaging Frozen fillets of Baltic Sea and Barents Sea cod, representing two commercial fishing grounds, were used as raw material...... of Baltic Sea cod. Therefore, addition of trimethylamine oxide and NaCl to Baltic Sea cod fillets was evaluated and shown to protect P, phosphoreum against fro::en storage inactivation and this explained the observed differences in growth of the spoilage bacteria and trimethylamine production between thawed...

  9. Research of the Effectiveness of Using Air and Ground Low-grade Heat for Buildings Heating in Different Regions of Russia

    Directory of Open Access Journals (Sweden)

    Vasilyev G.P.

    2016-01-01

    Full Text Available The article presents the results of research on zoning of the Russian Federation based on efficiency of utilization of the low-grade heat of ground and air as well as combinations thereof for heating buildings. When modeling thermal behavior of geothermal HHS in the climatic conditions of various regions of the Russian Federation we considered the effect of long-term recovery of geothermal heat on the thermal behavior of the ground, as well as the effect of the ground pore water phase transitions on the operational efficiency of geothermal heat pump heating systems. The zoning took into account temperature drop of the ground mass caused by many years of heat recovery from the ground. Ground temperatures expected for the 5th year of geothermal HHS operation were used as design ground mass temperatures.

  10. Probabilistic seismic hazard assessment for the effect of vertical ground motions on seismic response of highway bridges

    Science.gov (United States)

    Yilmaz, Zeynep

    Typically, the vertical component of the ground motion is not considered explicitly in seismic design of bridges, but in some cases the vertical component can have a significant effect on the structural response. The key question of when the vertical component should be incorporated in design is answered by the probabilistic seismic hazard assessment study incorporating the probabilistic seismic demand models and ground motion models. Nonlinear simulation models with varying configurations of an existing bridge in California were considered in the analytical study. The simulation models were subjected to the set of selected ground motions in two stages: at first, only horizontal components of the motion were applied; while in the second stage the structures were subjected to both horizontal and vertical components applied simultaneously and the ground motions that produced the largest adverse effects on the bridge system were identified. Moment demand in the mid-span and at the support of the longitudinal girder and the axial force demand in the column are found to be significantly affected by the vertical excitations. These response parameters can be modeled using simple ground motion parameters such as horizontal spectral acceleration and vertical spectral acceleration within 5% to 30% error margin depending on the type of the parameter and the period of the structure. For a complete hazard assessment, both of these ground motion parameters explaining the structural behavior should also be modeled. For the horizontal spectral acceleration, Abrahamson and Silva (2008) model was used within many available standard model. A new NGA vertical ground motion model consistent with the horizontal model was constructed. These models are combined in a vector probabilistic seismic hazard analyses. Series of hazard curves developed and presented for different locations in Bay Area for soil site conditions to provide a roadmap for the prediction of these features for future

  11. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  12. Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level

    Science.gov (United States)

    Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki

    2017-10-01

    Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.

  13. Machine Protection

    International Nuclear Information System (INIS)

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an interlock system providing the glue between these systems. The most recent accelerator, the LHC, will operate with about 3 × 10 14 protons per beam, corresponding to an energy stored in each beam of 360 MJ. This energy can cause massive damage to accelerator equipment in case of uncontrolled beam loss, and a single accident damaging vital parts of the accelerator could interrupt operation for years. This article provides an overview of the requirements for protection of accelerator equipment and introduces the various protection systems. Examples are mainly from LHC, SNS and ESS

  14. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  15. End effect braking force reduction in high-speed single-sided linear induction machine

    International Nuclear Information System (INIS)

    Shiri, Abbas; Shoulaie, Abbas

    2012-01-01

    Highlights: ► A new analytical equation to model the end effect braking force of SLIM is derived. ► Equations for efficiency, power factor and output thrust are analytically derived. ► The effect of design variables on the performance of the motor is analyzed. ► An optimization method is employed to minimize the end effect braking force (EEBF). ► The results show that EEBF is minimized by appropriate selection of motor parameters. - Abstract: Linear induction motors have been widely employed in industry because of their simple structure and low construction cost. However, they suffer from low efficiency and power factor. In addition, existence of so called end effect influences their performance especially in high speeds. The end effect deteriorates the performance of the motor by producing braking force. So, in this paper, by using Duncan equivalent circuit model, a new analytical equation is proposed to model end effect braking force. Employing the proposed equation and considering all phenomena involved in the single-sided linear induction motor, a simple design procedure is presented and the effect of different design variables on the performance of the motor is analyzed. A multi-objective optimization method based on genetic algorithm is introduced to maximize efficiency and power factor, as well as to minimize the end effect braking force, simultaneously. Finally, to validate the optimization results, 2D finite element method is employed.

  16. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    Science.gov (United States)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  17. The effect of regional variation of seismic wave attenuation on the strong ground motion from earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D H; Bernreuter, D L

    1981-10-01

    Attenuation is caused by geometric spreading and absorption. Geometric spreading is almost independent of crustal geology and physiographic region, but absorption depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high frequency waves, absorption does not affect ground motion at distances less than about 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States is similar to that in the western United States. Beyond the near field, differences in ground motion can best be accounted for by differences in attenuation caused by differences in absorption. The stress drop of eastern earthquakes may be higher than for western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. But we believe this factor is of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. The characteristics of strong ground motion in the conterminous United States are discussed in light of these considerations, and estimates are made of the epicentral ground motions in the central and eastern United States. (author)

  18. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    Science.gov (United States)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  19. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  20. Machine terms dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-15

    This book gives descriptions of machine terms which includes machine design, drawing, the method of machine, machine tools, machine materials, automobile, measuring and controlling, electricity, basic of electron, information technology, quality assurance, Auto CAD and FA terms and important formula of mechanical engineering.

  1. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    Science.gov (United States)

    Irtaza, Hassan; Agarwal, Ashish

    2018-02-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  2. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    Science.gov (United States)

    Irtaza, Hassan; Agarwal, Ashish

    2018-06-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  3. Effects of different concentrations of ground oak acorn on growth performance, blood parameters and carcass characteristics of goat kids

    DEFF Research Database (Denmark)

    Froutan, Eisa; Azizi, Osman; Sadeghi, Ghorbanali

    2015-01-01

    The objective of the present study was to evaluate the effect of different levels of ground oak acorn on growth performance, blood parameters and carcass characteristics. Twenty-four goat kids averaging 16.93 1.25 kg initial bodyweight were randomly assigned to four experimental diets in a comple...... without any adverse effects on growth performance and carcass characteristics. At this level of acorns, the goats received low concentrations of hydrolysable tannins (11 g/kg DM) in their diet....

  4. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    Science.gov (United States)

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  5. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2018-03-01

    Full Text Available Spark-assisted chemical engraving (SACE is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  6. Application of full-face round by the sequential blasting machine in tunnel excavation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.D.; Park, B.K.; Lee, S.E.; Lim, H.U.

    1995-12-31

    Many methods and techniques have been developed to reduce ground vibrations. Some of them are an adoption of electric millisecond detonators with a sequential blasting machine and an improvement of initiating system with an adequate number of delay intervals. To reduce the level of ground vibration in tunnel excavation, the sequential blasting machine (S.B.M.) with decisecond detonators was adopted. A total of 134 blasts was recorded at various sites and the results were analyzed. The distances blast-to-structures were ranged from 20.3 to 42.0 meter, where charge weights were varied from 0.25 to 0.75kg per delay. It is proved that the sequential blasting in tunnel excavation is very effective to control ground vibration.

  7. Study on the Effect of Steel Wheel and Ground on Single Steel Vibratory Roller

    Science.gov (United States)

    Li, Jiabo; You, Guanghui; Qiao, Jiabin; Ye, Min; Guo, Jin; Zhang, Hongyang

    2018-03-01

    In the compacting operation of single drum vibratory roller, the forces acting on the foundation of drum include the weight of the drum, the weight of the frame, the exciting force and so on. Based on the theoretical study of ground mechanics, this paper analyzes and calculates the forces acting on the steel wheel and the ground, and obtains the distribution of the laminar stress in the ground when the working plane vibrates. Derive the formula of dynamic compressive stress and static compressive stress in the foundation during vibration compaction. Through the compaction test of the soil trough of 20T single drum roller, the compressive stress data of the soil hydraulic field are obtained. The data of the dynamic compressive stress and the static compressive stress of each layer during the third compaction are obtained, and the theoretical research is verified.

  8. Effects of altered sagittal trunk orientation on kinetic pattern in able-bodied walking on uneven ground

    Directory of Open Access Journals (Sweden)

    Soran Aminiaghdam

    2017-07-01

    Full Text Available Studies of disturbed human locomotion often focus on the dynamics of the gait when either posture, movement or surface is perturbed. Yet, the interaction effects of variation of trunk posture and ground level on kinetic behaviour of able-bodied gait have not been explored. For 12 participants we investigated the kinetic behaviour, as well as velocity and contact time, across four steps including an unperturbed step on level ground, pre-perturbation, perturbation (10-cm drop and post-perturbation steps while walking with normal speed with four postures: regular erect, with 30°, 50° and maximal sagittal trunk flexion (70°. Two-way repeated measures ANOVAs detected significant interactions of posture×step for the second peak of the vertical ground reaction force (GRF, propulsive impulse, contact time and velocity. An increased trunk flexion was associated with a systematic decrease of the second GRF peak during all steps and with a decreased contact time and an increased velocity across steps, except for the perturbation step. Pre-adaptations were more pronounced in the approach step to the drop in regular erect gait. With increased trunk flexion, walking on uneven ground exhibited reduced changes in GRF kinetic parameters relative to upright walking. It seems that in trunk-flexed gaits the trunk is used in a compensatory way during the step-down to accommodate changes in ground level by adjusting its angle leading to lower variations in centre of mass height. Exploitation of this mechanism resembles the ability of small birds in adjusting their zig-zag-like configured legs to cope with changes in ground level.

  9. Effects of the addition of functional electrical stimulation to ground level gait training with body weight support after chronic stroke.

    Science.gov (United States)

    Prado-Medeiros, Christiane L; Sousa, Catarina O; Souza, Andréa S; Soares, Márcio R; Barela, Ana M F; Salvini, Tania F

    2011-01-01

    The addition of functional electrical stimulation (FES) to treadmill gait training with partial body weight support (BWS) has been proposed as a strategy to facilitate gait training in people with hemiparesis. However, there is a lack of studies that evaluate the effectiveness of FES addition on ground level gait training with BWS, which is the most common locomotion surface. To investigate the additional effects of commum peroneal nerve FES combined with gait training and BWS on ground level, on spatial-temporal gait parameters, segmental angles, and motor function. Twelve people with chronic hemiparesis participated in the study. An A1-B-A2 design was applied. A1 and A2 corresponded to ground level gait training using BWS, and B corresponded to the same training with the addition of FES. The assessments were performed using the Modified Ashworth Scale (MAS), Functional Ambulation Category (FAC), Rivermead Motor Assessment (RMA), and filming. The kinematics analyzed variables were mean walking speed of locomotion; step length; stride length, speed and duration; initial and final double support duration; single-limb support duration; swing period; range of motion (ROM), maximum and minimum angles of foot, leg, thigh, and trunk segments. There were not changes between phases for the functional assessment of RMA, for the spatial-temporal gait variables and segmental angles, no changes were observed after the addition of FES. The use of FES on ground level gait training with BWS did not provide additional benefits for all assessed parameters.

  10. Perceptual representation and effectiveness of local figure-ground cues in natural contours.

    Science.gov (United States)

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure-ground segregation. Although previous studies have reported local contour features that evoke figure-ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure-ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure-ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure-ground perception with natural contours when the other cues coexist with equal probability including contradictory cases.

  11. Perceptual representation and effectiveness of local figure–ground cues in natural contours

    Science.gov (United States)

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure–ground segregation. Although previous studies have reported local contour features that evoke figure–ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure–ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure–ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure–ground perception with natural contours when the other cues coexist with equal probability including contradictory cases. PMID:26579057

  12. Perceptual Representation and Effectiveness of Local Figure-Ground Cues in Natural Contours

    Directory of Open Access Journals (Sweden)

    Ko eSakai

    2015-11-01

    Full Text Available A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure-ground segregation. Although previous studies have reported local contour features that evoke figure-ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure-ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure-ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure-ground perception with natural contours when the other cues coexist with equal probability including contradictory cases.

  13. The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Susan G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-02-01

    A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.

  14. Effects of uranium mining of ground water in Ambrosia Lake area, New Mexico

    International Nuclear Information System (INIS)

    Kelly, T.E.; Link, R.L.; Schipper, M.R.

    1980-01-01

    The principal ore-bearing zone in the Ambrosia Lake area of the Grants uranium district is the Westwater Canyon Member of the Morrison Formation (Jurassic). This unit is also one of the major artesian aquifers in the region. Significant declines in the potentiometric lead within the aquifer have been recorded, although cones of depression do not appear to have spread laterally more than a few miles. Loss of potentiometric head in the Westwater Canyon Member has resulted in the interformational migration of ground water along fault zones from overlying aquifers of Cretaceous age. This migration has produced local deterioration in chemical quality of the ground water

  15. Near-Source Ground Motion and its Effects on Flexible Buildings

    OpenAIRE

    Hall, John F.; Heaton, Thomas H.; Halling, Marvin W.; Wald, David J.

    1995-01-01

    Occurrence of large earthquakes close to cities in California is inevitable. The resulting ground shaking will subject buildings in the near-source region to large, rapid displacement pulses which are not represented in design codes. The simulated Mw7.0 earthquake on a blind-thrust fault used in this study produces peak ground displacement and velocity of 200 cm and 180 cm/sec, respectively. Over an area of several hundred square kilometers in the near-source region, flexible frame and base-i...

  16. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    Science.gov (United States)

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  17. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  18. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  19. The Effects of Pop-up Harm Minimisation Messages on Electronic Gaming Machine Gambling Behaviour in New Zealand.

    Science.gov (United States)

    Palmer du Preez, Katie; Landon, Jason; Bellringer, Maria; Garrett, Nick; Abbott, Max

    2016-12-01

    In New Zealand a simple pop-up message feature that provides gambling session information and forces a break in play is mandatory on all electronic gaming machines in all venues (EGMs). Previous research has demonstrated small effects of more sophisticated pop-up messages tested predominantly in laboratory environments. The present research examined gambler engagement with and views on the New Zealand pop-up messages and on the relationship between pop-up messages and EGM expenditure. A sample of gamblers was recruited at casino and non-casino (pub) EGM venues. Most participants were aware of pop-up messages (57 %) and many saw them often (38 %). Among gamblers who reported seeing pop-up messages, half read the message content, and a quarter believed that pop-up messages helped them control the amount of money they spend on gambling. Participants who reported being likely to stop gambling in response to pop-up messages spent significantly less money on gambling when variables that were independently associated with EGM expenditure were controlled for. A modest harm minimisation effect of the pop-up message feature that has been operating in New Zealand for 5 years was evident. Suggestions for improvement of the harm minimisation potential of the current pop-up message feature are discussed.

  20. Machine learning topological states

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.