WorldWideScience

Sample records for ground disposal area

  1. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    International Nuclear Information System (INIS)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H.; Serne, R.J.; Cantrell, K.J.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied

  2. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  3. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  4. Annual Status Report (FY2015) Performance Assessment for the Disposal of Low-Level Waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R. [INTERA, Inc., Austin, TX (United States); Mehta, S. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2016-02-01

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Burial Grounds (LLBGs) since September 26, 1988. These estimates area calculated using the original does methodology developed in the performance assessment (PA) analysis (WHC-EP-0645).

  5. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  6. Waste disposal into the ground

    Energy Technology Data Exchange (ETDEWEB)

    Mawson, C A

    1955-07-01

    The establishment of an atomic energy project is soon followed by the production of a variety of radioactive wastes which must be disposed of safely, quickly and cheaply. Experience has shown that much more thought has been devoted to the design of plant and laboratories than to the apparently dull problem of what to do with the wastes, but the nature of the wastes which will arise from nuclear power production calls for a change in this situation. We shall not be concerned here with power pile wastes, but disposal problems which have occurred in operation of experimental reactors have been serious enough to show that waste disposal should be considered during the early planning stages. (author)

  7. Radioactive waste disposal into the ground

    International Nuclear Information System (INIS)

    1965-01-01

    Disposal into ground has sometimes proved to be an expedient and simple method. Where ground disposal has become an established practice, the sites have so far been limited to those remote from population centres; but in other respects, such as in climate and soil conditions, their characteristics vary widely. Experience gained at these sites has illustrated the variety of problems in radioactive waste migration and the resulting pollution and environmental radiation levels that may reasonably be anticipated at other sites, whether remote from population centres or otherwise.

  8. The examination of the spread of the leachates coming out of a solid waste disposal area on the ground with geophysical and geochemical methods (Sivas, Turkey)

    Science.gov (United States)

    Özel, Sevda; Yılmaz, Ali; Emin Candansayar, M.

    2017-03-01

    This study has been conducted in the irregular solid waste disposal area in the city of Sivas. The pollution spread formed by the leachates coming out of the disposal area has been examined with geophysical and geochemical works in this study. For this reason, the spread of the leachate pollution expanding in different geological units at both sides of a creek on the ground has been examined. For this purpose, the pollution spread has been examined with the methods of Direct Current Resistivity (DCR) and Electromagnetic Conductivity (EMC) and soil analyses. In the DCR method, 2D inversion of each sounding-profile datum measured alongside the lines parallel to each other and 3D inversion of the data measured in all the lines have been used in the interpretations. Apparent conductivity map has been attained from EMC measurements. The results of heavy metal analyses in the soil samples taken alongside the Haçin Creek have been assessed with the Spider diagram method. It has been determined that the flow of the leachate from geophysical models is in a SE direction and towards Kızılırmak and it continues vertically deeper than 4 m. In addition, it has been understood that the flow direction of the leachate is inspected by the geological structures. It has been understood from the geochemical results that the pollution in the soil stems from the leachate. In this way, it has been observed that the underground and surface water resources in the territory are under the threat of the pollution occurring due to the leachate.

  9. Shallow ground disposal of radioactive wastes. A guidebook

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations.

  10. Method of ground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1991-01-01

    Rock bases are drilled to form a disposal hole, an overhanging hole and a burying hole each as a shaft. An appropriate number of canisters prepared by vitrification of high level radioactive wastes are charged in the disposal hole with a gap to the inner wall of the hole. Shock absorbers each made of bentonite are filled between each of the canisters and between the canister and the inner wall of the disposal hole, and the canisters are entirely covered with the layer of the shock absorbers. Further, plucking materials having water sealing property such as cement mortar are filled thereover. With such a constitution, in a case if water should intrude into the overhung portion, since the disposal hole is covered with the large flange portion in addition to the water sealing performance of the plucking, the shock absorbers and the canisters undergo no undesirable effects. Further, in a case if water should intrude to the disposal hole, the shock absorber layers are swollen by water absorption, to suppress the intrusion of water. (T.M.)

  11. Ground-water flow near two radioactive-waste-disposal areas at the Western New York Nuclear Service Center, Cattaraugus County, New York; results of flow simulation

    Science.gov (United States)

    Bergeron, M.P.; Bugliosi, E.F.

    1988-01-01

    Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally

  12. Disposal facility in Olkiluoto, description of above ground facilities in tunnel transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or a by vehicle along the access tunnel. (orig.)

  13. Disposal facility in olkiluoto, description of above ground facilities in lift transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or by a vehicle along the access tunnel. (orig.)

  14. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  15. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  16. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    International Nuclear Information System (INIS)

    El-Reefy, S.A.; Ali, A.

    1996-01-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab

  17. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Reefy, S A; Ali, A [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab.

  18. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  19. Composite analysis E-area vaults and saltstone disposal facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public

  20. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    International Nuclear Information System (INIS)

    CAMPBELL, L.R.

    1999-01-01

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated

  1. Investigation of radionuclide release from Solid Waste Disposal Area 3, Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Stueber, A.M.; Webster, D.A.; Munro, I.L.; Farrow, N.D.; Scott, T.G.

    1981-08-01

    Radionuclide release from Solid Waste Disposal Area (SWDA) 3 has been studied through the analysis of surface and ground waters from the local drainage areas. SWDA 3 is located in the Northwest Tributary drainage basin, a part of the White Oak Creek drainage; 90 Sr is the only radionuclide being discharged in solution in the main stream. Water-level measurements in wells around SWDA 3 suggest the presence of a ground-water divide beneath the southwestern end of the disposal area. Ground water below this area may be moving southwestward toward the Raccoon Creek drainage system. Strontium-90 activity has been detected in this watershed, discharging from a seep adjacent to a Raccoon Creek tributary stream about 640 m southwest of SWDA 3. It appears that 90 Sr is moving through ground-water flow to the northeast and to the southwest of SWDA 3 and that this direction of movement is related to bedrock structure. The trend of a line connecting the two seeps passes through the disposal area and is parallel to bedrock strike. Information from core-hole logs and televiewer logs suggests that 90 Sr in ground water may be moving through solution channels near the contact between units F and G of the Chickamauga Limestone. The apparent extent of migration of 90 Sr in bedrock has implications regarding potential underground radionuclide movement in Melton Valley

  2. Subproject L-045H 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    1991-06-01

    The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The ''300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations

  3. Acceptance criteria for disposal of radioactive wastes in shallow ground and rock cavities

    International Nuclear Information System (INIS)

    1985-01-01

    This document provides an overview of basic information related to waste acceptance criteria for disposal in shallow ground and rock cavity repositories, consisting of a discussion of acceptable waste types. The last item includes identification of those waste characteristics which may influence the performance of the disposal system and as such are areas of consideration for criteria development. The material is presented in a manner similar to a safety assessment. Waste acceptance criteria aimed at limiting the radiation exposure to acceptable levels are presented for each pathway. Radioactive wastes considered here are low-level radioactive wastes and intermediate-level radioactive wastes from nuclear fuel cycle operations and applications of radionuclides in research, medicine and industry

  4. Engineered barrier durability: An issue for disposal near populated areas

    International Nuclear Information System (INIS)

    Porter, C.L.

    1995-01-01

    Under the current national policy for disposal of low-level radioactive waste (LLW) in the United States of America, each State is required to provide disposal capacity for the LLW generated within its borders. The formation of ''Compacts'' of several States is allowed if approved by Congress. Such forced regionalization of disposal facilities based on State boundaries results in some disposal facilities being sited near populated areas at locations with less than optimum site characteristics from a disposal standpoint. To compensate for this engineered barriers are included in the proposed designs. Portland cement based concrete (PCC), which is the dominant material for disposal vault designs, is degraded via many mechanisms, most of which are related to its permeability. The numerous uncertainties associated with the long-term performance of PCC has lead to many unsuccessful attempts to obtain public acceptance of proposed disposal facilities. These unsuccessful efforts have delayed establishing disposal capacity to the point that a crisis is looming on the horizon. This paper investigates the results of on-going research into the viability of commercially available, impermeable, mass-poured construction materials as an alternative to PCC in LLW disposal vaults. The results from testing and research on two such materials, concrete made from sulfur polymer cement (SPC) and ICOM (an epoxy based concrete) are reported. Material properties and test results include strength parameters, chemical resistance, porosity, permeability, deconability, radiation damage resistance, and biodegradation. The data indicates that with these alternative materials the uncertainties in predicting service life of an engineered barrier can be reduced

  5. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    2000-03-13

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility.

  6. Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    2000-01-01

    This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility

  7. History of disposal of radioactive wastes into the ground at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Coobs, J.H.; Gissel, J.R.

    1986-10-01

    Since the beginning of operations at the Oak Ridge National Laboratory (ORNL) in 1943, shallow land burial has been used for the disposal of solid low-level radioactive waste. These wastes have originated from nearly every operating facility, and from 1955 to 1963, ORNL's solid waste storage areas were designated by the Atomic Energy Commission (AEC) as the Southern Regional Burial Ground. During this period, about one million cubic feet of solid waste from various off-site installations were buried in solid waste storage areas (SWSAs) 4 and 5. Six SWSAs have been used since land burial operations began at ORNL in early 1944. ORNL has generated liquid radioactive waste since the separation of plutonium began in 1944. The majority of these wastes are classified as process (low-level) waste and are derived from evaporator condensate and cooling water from process vessels, and from building drains and surface drainage from contaminated areas. Process wastes are monitored at sampling stations located strategicially throughout the plant, and for nearly 15 years (1944 to 1957) they were discharged directly into White Oak Creek without being treated chemically to remove radionuclides. A smaller quantity of intermediate-level wastes (ILW) originate from the radiochemical separation process and from test reactors. The collection, treatment, and methods of disposal of ILW from the years 1943 to 1981 are described. Over this period of time there was a great deal of variation in the amounts and types of radioactive liquid wastes generated.

  8. History of disposal of radioactive wastes into the ground at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Coobs, J.H.; Gissel, J.R.

    1986-10-01

    Since the beginning of operations at the Oak Ridge National Laboratory (ORNL) in 1943, shallow land burial has been used for the disposal of solid low-level radioactive waste. These wastes have originated from nearly every operating facility, and from 1955 to 1963, ORNL's solid waste storage areas were designated by the Atomic Energy Commission (AEC) as the Southern Regional Burial Ground. During this period, about one million cubic feet of solid waste from various off-site installations were buried in solid waste storage areas (SWSAs) 4 and 5. Six SWSAs have been used since land burial operations began at ORNL in early 1944. ORNL has generated liquid radioactive waste since the separation of plutonium began in 1944. The majority of these wastes are classified as process (low-level) waste and are derived from evaporator condensate and cooling water from process vessels, and from building drains and surface drainage from contaminated areas. Process wastes are monitored at sampling stations located strategicially throughout the plant, and for nearly 15 years (1944 to 1957) they were discharged directly into White Oak Creek without being treated chemically to remove radionuclides. A smaller quantity of intermediate-level wastes (ILW) originate from the radiochemical separation process and from test reactors. The collection, treatment, and methods of disposal of ILW from the years 1943 to 1981 are described. Over this period of time there was a great deal of variation in the amounts and types of radioactive liquid wastes generated

  9. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  10. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1997-01-01

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  11. Geological characterisation of potential disposal areas for radioactive waste from Risoe, Denmark

    International Nuclear Information System (INIS)

    Gravesen, P.; Binderup, M.; Nilsson, B.; Schack Pedersen, S.A.

    2011-01-01

    Low- and intermediate-level radioactive waste from the Danish nuclear research facility, Risoe, includes construction materials from the reactors, different types of contaminated material from the research projects and radioactive waste from hospitals, industry and research institutes. This material must be stored in a permanent disposal site in Denmark for at least 300 years. The latter study was conducted by the Geological Survey of Denmark and Greenland (GEUS) and the aim was to locate a sediment or rock body with low permeability down to 100-300 m below the ground surface. GEUS was given the task to locate approximately 20 potential disposal areas. The survey resulted in the selection of 22 areas throughout Denmark. Six of these areas are preferred on geological and hydrogeological criteria. (LN)

  12. Water budget for SRP burial ground area

    International Nuclear Information System (INIS)

    Hubbard, J.E.; Emslie, R.H.

    1984-01-01

    Radionuclide migration from the SRP burial ground for solid low-level waste has been studied extensively. Most of the buried radionuclides are fixed on the soil and show negligible movement. The major exception is tritium, which when leached from the waste by percolating rainfall, forms tritiated water and moves with the groundwater. The presence of tritium has been useful in tracing groundwater flow paths to outcrop. A subsurface tritium plume moving from the southwest corner of the burial ground toward an outcrop near Four Mile Creek has been defined. Groundwater movement is so slow that much of the tritium decays before reaching the outcrop. The burial ground tritium plume defined to date is virtually all in the uppermost sediment layer, the Barnwell Formation. The purpose of the study reported in this memorandum was to investigate the hypothesis that deeper flow paths, capable of carrying substantial amounts of tritium, may exist in the vicinity of the burial ground. As a first step in seeking deeper flow paths, a water budget was constructed for the burial ground site. The water budget, a materials balance used by hydrologists, is expressed in annual area inches of rainfall. Components of the water budget for the burial ground area were analyzed to determine whether significant flow paths may exist below the tan clay. Mean annual precipitation was estimated as 47 inches, with evapotranspiration, run-off, and groundwater recharge estimated as 30, 2, and 15 inches, respectively. These estimates, when combined with groundwater discharge data, suggest that 5 inches of the groundwater recharge flow above the tan clay and that 10 inches flow below the tan clay. Therefore, two-thirds of the groundwater recharge appears to follow flow paths that are deeper than those previously found. 13 references, 10 figures, 5 tables

  13. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning

  14. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  15. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  16. Controlled disposal of domestic effluent sewage in the ground to reduce fecal coliforms

    Directory of Open Access Journals (Sweden)

    Paulo Fortes Neto

    2008-12-01

    Full Text Available The indiscriminate launching in water bodies of domestic sewage without treatment, or even treated, but without appropriate disinfection, contributes with significant amount of organisms of the called "coliform group” that can carry specific illnesses agents propagated through the water. The application of effluent in the ground, instead of direct disposal in water courses, in addition to being an alternative way for the disposal of residues and biological control of pollutants, constitutes an adequate way of nutrients supply to the soil and plants. So, this work had as objective the evaluation of the reduction of fecal coliforms, after controlled applications of 60 days treated effluent in cultivated soil, by analyzing the increase of fluorescent rhizobacterias Pseudomonas fluorescens and Bacillus spp. present in the rhizospheres of different crops. The experiment was developed in field conditions in the Experimental Farm of Department of Agrarian Sciences of the University of Taubaté, municipality of Taubaté, SP. The Experimental design consisted of random blocks, with five treatments including annual crops (Oats, Barley, Triticale - a cross between wheat and rye, Black Beans and non-cultivated soil as witness - blank reference and four repetitions, totalizing 20 ground plots with area of 2 m x 1 m with 50 cm space among plots on a Dystrophic Red-Yellow Latossol. Results from the microbial analyses of rhizosphere and non-rhizosphere soil indicated that the rhizosphere of oats had denser rhizobacterias than the other crops. However, the greatest efficiency was found in the reduction of thermo-tolerant coliforms for both black beans and non-cultivated soil.

  17. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [URS Coporation

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have

  18. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Rob

    2012-01-01

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts

  19. Land suitability for waste disposal in metropolitan areas.

    Science.gov (United States)

    Baiocchi, Valerio; Lelo, Keti; Polettini, Alessandra; Pomi, Raffaella

    2014-08-01

    Site selection for waste disposal is a complex task that should meet the requirements of communities and stakeholders. In this article, three decision support methods (Boolean logic, index overlay and fuzzy gamma) are used to perform land suitability analysis for landfill siting. The study was carried out in one of the biggest metropolitan regions of Italy, with the objective of locating suitable areas for waste disposal. Physical and socio-economic information criteria for site selection were decided by a multidisciplinary group of experts, according to state-of-the-art guidelines, national legislation and local normative on waste management. The geographic information systems (GIS) based models used in this study are easy to apply but require adequate selection of criteria and weights and a careful evaluation of the results. The methodology is arranged in three steps, reflecting the criteria defined by national legislation on waste management: definition of factors that exclude location of landfills or waste treatment plants; classification of the remaining areas in terms of suitability for landfilling; and evaluation of suitable sites in relation to preferential siting factors (such as the presence of quarries or dismissed plants). The results showed that more than 80% of the provincial territory falls within constraint areas and the remaining territory is suitable for waste disposal for 0.72% or 1.93%, according to the model. The larger and most suitable sites are located in peripheral areas of the metropolitan system. The proposed approach represents a low-cost and expeditious alternative to support the spatial decision-making process. © The Author(s) 2014.

  20. Comparison and analysis of release scenarios for ground disposal of various nations

    International Nuclear Information System (INIS)

    Sakata, Sadahiro; Nakai, Kunihiro

    1985-01-01

    This report is aimed at comparing and analyzing the concept and evaluation methods of varuous foreign countries concerning their release scenarios for ground disposal of low- and high-level radioactive wastes in order to provide helpful information to be used in developing release scenarios for Japan. The groundwater release scenario and human intrusion scenario should particularly be well examined in considering shallow ground disposal of low-level wastes. Assessment of the leaching rate is important for a groundwater release scenario. Experimental data and verification tests are required to support the simplified model to be used for safety assessment. Evaluation of the radioactive nucleide inventory is also important for ground disposal of low-level wastes. An evaluation system should be established as soon as possible. For ground disposal of high-level radioactive wastes, on the other hand, it will become increasingly important to establish performance assessment models for practical evaluation of the rate of release from the engineered barrier and to collect test and verification data for suporting them. (Nogami, K.)

  1. SWSA [Solid Waste Storage Area] 6 tumulus disposal demonstration

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Clapp, R.B.

    1987-01-01

    A facility to demonstrate the above-grade disposal of solid low-level radioactive wastes (LLW) is being constructed in the Solid Waste Storage Area 6 (SWSA 6) at the Oak Ridge National Laboratory (ORNL). The demonstration facility will utilize the ''Tumulus'' technology, which basically involves sealing the waste in concrete vaults, placing the vaults on a grade level concrete pad, and covering the pad with a soil cover after vault placement is complete. Loading of the demonstration unit is scheduled to begin in June, and will continue one to one and a half years until the 28,000 ft 3 capacity is exhausted

  2. Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Gaggiani, N.G.

    1991-01-01

    The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

  3. Feasible research on VLLW disposal in control area of nuclear installation

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2013-01-01

    Based on the basic requirements on the VLLW landfill disposal specified by the national codes and standards, a on-site disposal of VLLW in the control area of nuclear installation was proposed. A detail analysis of the advantages and disadvantages about the disposal method and the problem to be solved were described. Results showed that the on-site disposal of VLLW in the control area of nuclear installation was feasible in practice. (authors)

  4. Reducing biosolids disposal costs using land application in forested areas

    International Nuclear Information System (INIS)

    Huffines, R.L.

    1995-01-01

    Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells

  5. Effects Disposal Condition and Ground Water to Leaching Rate of Radionuclides from Solidification Products

    International Nuclear Information System (INIS)

    Herlan Martono; Wati

    2008-01-01

    Effects disposal condition and ground water to leaching rate of radionuclides from solidification products have been studied. The aims of leaching test at laboratory to get the best composition of solidified products for continuous process or handling. The leaching rate of radionuclides from the many kinds of matrix from smallest to bigger are glass, thermosetting plastic, urea formaldehyde, asphalt, and cement. Glass for solidification of high level waste, thermosetting plastic and urea formaldehyde for solidification of low and intermediate waste, asphalt and cement for solidification of low and intermediate level waste. In shallow land burial, ground water rate is fast, debit is high, and high permeability, so the probability contact between solidification products and ground water is occur. The pH of ground water increasing leaching rate, but cation in the ground water retard leaching rate. Effects temperature radiation and radiolysis to solidification products is not occur. In the deep repository, ground water rate is slow, debit is small, and low permeability, so the probability contact between solidification products and ground water is very small. There are effect cooling time and distance between pits to rock temperature. Alfa radiation effects can be occur, but there is no contact between solidification products and ground water, so that there is not radiolysis. (author)

  6. Geomorphologic characteristic of low-intermediate level radioactive waste disposal land candidate at Lemahabang area

    International Nuclear Information System (INIS)

    Sucipta

    1998-01-01

    Geomorphological aspect is a factor should be considered on land evaluation for radioactive wastes disposal purpose. The aspect is important because geomorphological factors contribute on hydrological and erosion condition of the land. The objective of the study is to characterize the geomorphological condition of the land, i.e. land form, geomorphological processes, rock type, soil, surface water, ground water, vegetation and land use. The study was conducted by descriptive analyses from literature study and field geomorphological method, with evaluation as well as developed for terrain analyses. The study area can be divided industry for land from units, I.e. tuff undulating unit (land use: plantation), coastal deposits plain unit, silty sand fluvial plain unit (land use: wet rice field) and unconsolidated sand beach deposits plain unit (opened land without vegetation). Hydrologically, the study area can be divided indus tri three small river stream area (RSA). Detailed description of geomorfological condition is showed by table and geomorphological map. (author)

  7. Radioactive waste disposal areas and associated environmental surveillance data at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1979-12-01

    Environmental surveillance data have been collected around radioactive waste disposal areas for the past thirty years at Oak Ridge National Laboratory (ORNL). The wealth of data collected around the ORNL radioactive waste burial grounds is presented in this review. The purpose of this paper is to describe the solid waste burial grounds in detail along with the environmental monitoring data. The various monitoring systems are reviewed, and the liquid discharge trends are discussed. Monitoring at White Oak Dam, the last liquid control point for the Laboratory, was started in the late 1940's and is continuing. Presently, a network of five environmental monitoring stations is in operation to monitor the radionuclide content of surface waters in the White Oak Creek watershed. Facts observed during the lifetime of the disposal sites include: (1) a large amount of 106 Ru released during 1959 to 1964 due to the fact that Conasauga shale did not retain this element as well as it retained other radionuclides. (2) Large quantities of tritiated water have been released to the Clinch River in recent years, but, from a practical standpoint, little can be done to inhibit or control these releases. (3) A general downward trend in the number of curies released has been observed for all other radionuclides. A number of corrective measures that have been initiated at ORNL to reduce the radioactive liquid discharges are outlined in the paper

  8. 300 Area Treated Effluent Disposal Facility permit reopener run plan

    International Nuclear Information System (INIS)

    Olander, A.R.

    1995-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is authorized to discharge treated effluent to the Columbia River by National Pollutant Discharge Elimination System permit WA-002591-7. The letter accompanying the final permit noted the following: EPA recognizes that the TEDF is a new waste treatment facility for which full scale operation and effluent data has not been generated. The permit being issued by EPA contains discharge limits that are intended to force DOE's treatment technology to the limit of its capability.'' Because of the excessively tight limits the permit contains a reopener clause which may allow limits to be renegotiated after at least one year of operation. The restrictions for reopening the permit are as follows: (1) The permittee has properly operated and maintained the TEDF for a sufficient period to stabilize treatment plant operations, but has nevertheless been unable to achieve the limitation specified in the permit. (2) Effluent data submitted by the permittee supports the effluent limitation modifications(s). (3) The permittee has submitted a formal request for the effluent limitation modification(s) to the Director. The purpose of this document is to guide plant operations for approximately one year to ensure appropriate data is collected for reopener negotiations

  9. The significance of natural ground-water recharge in site selection for mill tailings disposal

    International Nuclear Information System (INIS)

    Stephens, D.B.

    1985-01-01

    Milling operations throughout the world have created vast amounts of waste by-products, or tailings, which are often disposed on the land surface. The wastes may be disposed behind dams, on untreated ground, or on compacted clay or synthetic liners of impoundments and trenches. Often one of the principle concerns of environmental regulatory agencies is whether seepage from the waste pile could move through the vadose zone to the water table and possibly contaminate an aquifer. The seepage may be generated by the drainage of liquids initially deposited along with the tailings or by infiltrating meteoric water which leaches soluted from the tailings. The purpose of this article is to discuss some of the commonly held assumptions regarding storage of seepage wastes in the unsaturated zone. The significance of recent studies of water movement in dry climates which pertain to tailings site selection are presented

  10. Treatment/Disposal Plan for Drummed Waste from the 300-FF-1 Operable Unit, 618-4 Burial Ground

    International Nuclear Information System (INIS)

    Lerch, J.A.

    1999-01-01

    The objective of this plan is to support selection of a safe, environmentally responsible, and cost-effective treatment and disposal method for drums containing depleted uranium metal chips submerged in oil that have been and will be excavated from the 618-4 Burial Ground. Remediation of the 300-FF-1 Operable Unit, 618-4 Burial Ground was initiated in fiscal year (FY) 1998 as an excavation and removal operation. Routine processes were established to excavate and ship contaminated soil and debris to the Environmental Restoration Disposal Facility (ERDF) for disposal

  11. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  12. Elk and Deer Study, Material Disposal Area G, Technical Area 54: Source document

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Ferenbaugh; P. R. Fresquez; M. H. Ebinger; G. J. Gonzales; P. A. Jordan

    1999-09-01

    As nuclear research has become more prevalent, environmental contamination from the disposal of radioactive waste has become a prominent issue. At Los Alamos National Laboratory (LANL) in northern New Mexico, radioactive contamination from disposal operations has raised some very specific concerns. Material Disposal Area G (Area G) is the primary low-level radioactive waste disposal site at LANL and occupies an area adjacent to land belonging to the Native American community of the Pueblo of San Ildefonso. Analyses of soil and vegetation collected from the perimeter of Area G have shown concentrations of radionuclides greater than background concentrations established for northern New Mexico. As a result, Pueblo residents had become concerned that contaminants from Area G could enter tribal lands through various ecological pathways. The residents specifically questioned the safety of consuming meat from elk and deer that forage near Area G and then migrate onto tribal lands. Consequently, this study addresses the uptake of {sup 3}H, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239}Pu, {sup 241}Am, and {sup 137}Cs by elk (Cervus elaphus) and deer (Odocoileus hemionus) that forage around the perimeter of Area G and the associated doses to the animals and to humans who consume these animals. Radionuclide uptake by and internal dose to animals was estimated using equations modified from National Council on Radiological Protection Report 76. The Residual Radiation computer code was used to estimate the external dose to animals and the dose to humans consuming meat. Soil and water concentrations from the perimeter of Area G and from background regions in northern New Mexico were averaged over 4 years (1993--1996) and used as input data for the models. Concentration estimates generated by the model correspond to the concentration range measured in actual tissue samples from elk and deer collected at LANL. The highest dose estimates for both animals (0.028 mrad/d) and humans

  13. Elk and Deer Study, Material Disposal Area G, Technical Area 54: Source document

    International Nuclear Information System (INIS)

    Ferenbaugh, J.K.; Fresquez, P.R.; Ebinger, M.H.; Gonzales, G.J.; Jordan, P.A.

    1999-01-01

    As nuclear research has become more prevalent, environmental contamination from the disposal of radioactive waste has become a prominent issue. At Los Alamos National Laboratory (LANL) in northern New Mexico, radioactive contamination from disposal operations has raised some very specific concerns. Material Disposal Area G (Area G) is the primary low-level radioactive waste disposal site at LANL and occupies an area adjacent to land belonging to the Native American community of the Pueblo of San Ildefonso. Analyses of soil and vegetation collected from the perimeter of Area G have shown concentrations of radionuclides greater than background concentrations established for northern New Mexico. As a result, Pueblo residents had become concerned that contaminants from Area G could enter tribal lands through various ecological pathways. The residents specifically questioned the safety of consuming meat from elk and deer that forage near Area G and then migrate onto tribal lands. Consequently, this study addresses the uptake of 3 H, 90 Sr, tot U, 238 Pu, 239 Pu, 241 Am, and 137 Cs by elk (Cervus elaphus) and deer (Odocoileus hemionus) that forage around the perimeter of Area G and the associated doses to the animals and to humans who consume these animals. Radionuclide uptake by and internal dose to animals was estimated using equations modified from National Council on Radiological Protection Report 76. The Residual Radiation computer code was used to estimate the external dose to animals and the dose to humans consuming meat. Soil and water concentrations from the perimeter of Area G and from background regions in northern New Mexico were averaged over 4 years (1993--1996) and used as input data for the models. Concentration estimates generated by the model correspond to the concentration range measured in actual tissue samples from elk and deer collected at LANL. The highest dose estimates for both animals (0.028 mrad/d) and humans (0.072 mrem/y) were well below

  14. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    International Nuclear Information System (INIS)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the open-quotes as low as reasonably achievableclose quotes concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes

  15. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  16. Hydrological balancing as applied to shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kobera, P.; Dlouhy, Z.

    1984-02-01

    Shallow ground repositories are suitable disposal means for low and intermediate level radioactive wastes which offer an adequate form of containment of relatively short-lived radionuclides. The majority of safety related problems are connected with occurrence of water at the site. These problems include water accumulation in the disposal modules, high water table, hydrogeological complexity, water erosion, etc. In this context a simple technique is proposed for water balancing in the region of interest which would be relatively inexpensive and could supply large amounts of pertinent information. In the paper several balancing techniques based on water and/or energy balance methods are discussed. The results of a static evaluation of long term water balance averages are presented for the regions of planned shallow ground repositories near Dukovany and Mochovce in the CSSR. Hydrological processes and elements taking part in different hydrological cycles are treated from the dynamical point of view. The calculation methods for application of the kinematic approach are briefly touched. The results may be acquired at relatively low costs

  17. Low-Level Burial Grounds dangerous waste permit application: Request for exemption from lined trench requirements and from land disposal restrictions for residual liquid at 218-E-12B Burial Ground Trench 94

    International Nuclear Information System (INIS)

    1992-10-01

    This document has been prepared and is being submitted to the respective agencies to satisfy three objectives of the US Department of Energy (DOE) Richland Field Office (DOE-RL) concerning Trench 94 of the 218-E-12B Burial Ground. The 218-E-12B Burial Ground is located in the 200 East Area of the Hanford Facility. Figure 1-1 shows the general location of the Hanford Site. The 218-E-12B Burial Ground is one of eight burial grounds included in the Low-Level Burial Grounds (LLBG), a treatment, storage and/or disposal (TSD) unit. Decommissioned, defueled naval submarine reactor compartments (SRCs) contain radioactivity caused by exposure of structural components to neutrons during normal operation of the submarines. After all the alternatives were evaluated in the US Department of the Navy 1984 environmental impact statement (EIS) (USN 1984), land burial of the SRCs was selected as the preferred disposal option. The SRCs currently are sent to Trench 94 of the 218-E-12B Burial Ground. In addition to radioactivity, the SRCs disposed in. The DOE-RL's three objectives in preparing and submitting this document are as follows. Request from Ecology an exemption from dangerous waste landfill liner and leachate collection and removal system (hereinafter referred to as liner/leachate system) requirements for Trench 94 of the 218-E-12B Burial Ground. Petition Ecology to exempt residual liquid in the SRCs from land disposal restrictions. Obtain EPA Region 10 review and comment on the request to Ecology for exemption from liner/leachate system requirements

  18. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    International Nuclear Information System (INIS)

    Ulmer, F.J.

    1995-01-01

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments

  19. Infiltration control for low-level radioactive solid waste disposal areas: an assessment

    International Nuclear Information System (INIS)

    Arora, H.S.

    1980-11-01

    The primary mode of radionuclide transport from shallow land-disposal sites for low-level wastes can be traced to infiltration of precipitation. This report examines the factors that affect surface water entry and movement in the ground and assesses available infiltration-control technology for solid-waste-disposal sites in the humid eastern portion of the United States. A survey of the literature suggests that a variety of flexible and rigid liner systems are available as barriers for the stored waste and would be effective in preventing water infiltration. Installation of near-surface seals of bentonite clay admixed with dispersive chemicals seem to offer the required durability and low permeability at a reasonable cost. The infiltration rate in a bentonite-sealed area may be further retarded by the application of dispersive chemicals that can be easily admixed with the surface soil. Because the effectiveness of a dispersive chemical for infiltration reduction is influenced by the physico-chemical properties of the soil, appropriate laboratory tests should be conducted prior to field application

  20. The ground water chemical characteristics of Beishan area-the China's potential high level radioactive waste repository

    International Nuclear Information System (INIS)

    Yang Tianxiao; Guo Yonghai

    2004-01-01

    The ground water chemical characteristics have impact on nuclide migration in high level waste repository, so the study on the ground water chemical characteristics is an important aspect in site screening and characterization. The geochemical modeling of the reaction trend between ground water and solid phase, the water-rock interaction modeling of the formation and evolution of ground water chemistry, the modeling of the reaction between ground water and nuclear waste are all carried out in this paper to study the ground water chemical characteristics in Beishan area. The study illustrates that the ground water chemical characteristics in Beishan area is favorable to the disposal of high level nuclear waste and to prevent the nuclides migration. (author)

  1. Addendum to the Composite Analysis for the E-Area Vaults and Saltstone Disposal Facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    2002-01-01

    Revision 1 of the Composite Analysis (CA) Addendum has been prepared to respond to the U.S. Department of Energy (DOE) Low-Level Waste Disposal Facilities Federal Review Group review of the CA. This addendum to the composite analysis responds to the conditions of approval. The composite analysis was performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of the Savannah River Site and contains all of the waste disposal facilities, the chemical separation facilities and associated high-level waste storage facilities, as well as numerous other sources of radioactive material

  2. Recovery and disposal of discarded tires in the Taiwan area.

    Science.gov (United States)

    Hwang, J S; Roam, G D

    1994-12-01

    Urbanization and industrialization has resulted in a vast amount of artificial water containers in Taiwan, especially discarded automobile tires. 3.5 million automobile tires and several million motorcycle tires are discarded annually. The discarded tires contaminate the environment and also become a substantial number of breeding sites for the dengue vector mosquitoes. In order to establish a sound system for the recovery and disposal of discarded tires and to control dengue fever through source reduction, it has been emphasized that users must pay for their waste. It is necessary to recover and properly dispose of these discarded tired. The commercial firms which sell or manufacture tires are therefore advised to cooperate with the Environmental Protection Administration of the Executive Yuan, R.O.C. and follow the "Regulations of Recovery and Disposal of Discarded Tires". They are requested to establish foundations for the recovery of discarded tires. Those who are willing to join should prepay a deposit or related charge by the size of tire, which is imported or locally manufactured. The foundation utilizes the deposits for the recovery and disposal of discarded tires. From 1991 to 1993 the commercial tire firms had already achieved the 80% recovery rates declared by the authorities concerned. Some of the tires, after having been recovered, were recycled in the original form and the rest were cut into small pieces for recycling after physical treatment. It should be mentioned that the Department of Environmental Protection of Kaohsiung City has collected 80 thousand discarded automobile tires to be used as ocean jetty.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM REGULATIONS UNDERGROUND MINING GENERAL PERFORMANCE STANDARDS § 717.15 Disposal of excess rock and...

  4. Information on the confinement capability of the facility disposal area at West Valley, New York

    International Nuclear Information System (INIS)

    Nicholson, T.J.; Hurt, R.D.

    1985-12-01

    This report summarizes the previous NRC research studies, NRC licensee source term data and recent DOE site investigations that deal with assessment of the radioactive waste inventory and confinement capability of the Facility Disposal Area (FDA) at West Valley, New York. The radioactive waste inventory for the FDA has a total radioactivity of about 135,000 curies (Ci) and is comprised of H-3 (9,500 Ci), Co-60 (64,000 Ci), SR-90/Y-90 (24,300 Ci), Cs-137/Ba-137m (24,400 Ci), and Pu-241 (13,300 Ci). These wastes are buried in the Lavery Till, a glacial till unit comprised of a clayey silt with very low hydraulic conductivity properties. Recent studies of a tributylphosphate-kerosene plume moving through the shallow ground-water flow system in the FDA indicate a need to better assess the fracture flow components of this system particularly the weathered and fractured Lavery Till unit. The analysis of the deeper ground-water flow system studied by the USGS and NYSGS staffs indicated relatively long pathways and travel times to the accessible environment. Mass wasting, endemic to the glacial-filled valley, contributed to the active slumping in the ravines surrounding the FDA and also need attention. 31 refs., 8 figs., 8 tabs

  5. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    Science.gov (United States)

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  6. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  7. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad; Karimi, Muhammad Akram; Salama, Khaled N.; Shamim, Atif

    2017-01-01

    disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept

  8. Source Release Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Becker, B.H.

    2002-01-01

    A source release model was developed to determine the release of contaminants into the shallow subsurface, as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation at the Idaho National Engineering and Environmental Laboratory's (INEEL) Subsurface Disposal Area (SDA). The output of the source release model is used as input to the subsurface transport and biotic uptake models. The model allowed separating the waste into areas that match the actual disposal units. This allows quantitative evaluation of the relative contribution to the total risk and allows evaluation of selective remediation of the disposal units within the SDA

  9. Estimation of doses to individuals from radionuclides disposed of in Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Fields, D.E.; Boegly, W.J. Jr.; Huff, D.D.

    1986-01-01

    A simple methodology has been applied to estimate maximum possible doses to individuals from exposure to radionuclides released from Solid Waste Storage Area No. 6. This is the only operating shallow-land disposal site for radioactive waste at the Oak Ridge National Laboratory. The methodology is based upon simple, conservative assumptions. A data base of radionuclides disposed of in trenches and auger holes was prepared, and several radionuclide transport and ingestion scenarios were considered. The results of these simulations demonstrate the potential for adverse health effects associated with this waste disposal area, and support the need for further calculations using more complete and realistic assumptions

  10. Ground motion measurement at Sefuri and Esashi area

    International Nuclear Information System (INIS)

    Sugahara, R.; Takeda, S.; Nozaki, M.; Yamaoka, H.; Yamashita, S.; Nakayama, Y.

    2008-02-01

    It is indispensable for the construction of the next-generation super high-energy accelerator to investigate the ground fluctuation and to get the information on the characteristics of ground vibration. KEK, ICEPP, and J-Power have cooperatively measured the usual tremor of various grounds. This report describes the results of the measurements carried out at the tunnel in Mise Expressway penetrating the Sefuri Mountains forming the boundary between Fukuoka and Saga prefectures and at the facility of Esashi earth tide measurement, National Astronomical Observatory. The comparison with past measurements on other area and the characteristics of wide band usual tremor of each area are also mentioned. (M.H.)

  11. Preparation of Potentially Site Candidate of Radioactive Waste Disposal in Java Island and Its Surrounding Areas

    International Nuclear Information System (INIS)

    Budi Setiawan

    2008-01-01

    Introduction plan of NPP in Indonesia raised public attentions specially for its radwaste management and its disposal activity. In the next 5 year (2007-2011) will be provided some sites for radwaste disposal, both for near surface disposal and geological disposal systems with suitable and safely based on the IAEA standard. To find out a save and suitable location, field investigation programme is needed. Prior entering into investigation programme, preliminary activities are necessary to be arranged such as secondary data collecting: identification of host rock, interest areas, objectives and investigation programmes. Through desktop study with limited references hopefully information of some areas in Java Island with widely enough, thick and exposed into surface of clay deposit indication could be obtained. Objective of the activity is to prepare important supporting data before actualize as a field survey programme. Results showed that secondary data such as rock identification, interest areas, objectives and investigation programmes are found out. (author)

  12. Edgewood Area - Aberdeen Proving Ground Five-Year Review

    Science.gov (United States)

    2008-10-01

    CLUSTER 3L IP 1995 2007 EACC3M-A WASTEWATER TREATMENT AREA-CLUSTER 3M IP 2007 EACC3M-B B-FIELD DECON- DETOX INCINERATOR-CL 3M RCRA ES-23 EXHIBIT 2...Surface debris removed and placed in plastic-lined wooden boxes, shipped to decon/ detox facility, and thermally treated for final disposal. 7.3.5

  13. Preliminary report of biological intrusion studies at the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Reynolds, T.D.; Arthur, W.J.

    1983-01-01

    As part of a larger study on the effects of biological intrusion of plants and animals into the soil cover placed over low-level radioactive wastes stored at the Idaho National Engineering Laboratory Subsurface Disposal Area (SDA), research was initiated in the summer of 1982 to determine the burrow characteristics and movement patterns of several small mammal species, and the rooting depths of various plants. The depth, length, and volume of burrows were determined for four small mammal species: deer mouse (Peromyscus maniculatus), Ord's kangaroo rat (Dipodomys ordii), montane vole (Microtus montanus), and Townsend's ground squirrel (Spermophilis townsendii). The latter species excavated the greatest mean burrow depth (39 cm), length (404 cm), and volume (14.8 1). Movement patterns of three species were determined by radiotelemetry. The mean area of use for P. maniculatus, D. ordii, and M. montanus was 2.3, 1.5, and 1.2 ha respectively. Limited data on rooting depths of various native and introduced plant species at the SDA were obtained by literature review and excavation. During FY-83, experiments will be conducted, using the information obtained from the first year of this study, to evaluate the impact of burrowing mammals and root intrusion on the integrity of the soil cover currently existing at the SDA. Details of these experimental studies are presented

  14. Importance of biota in radionuclide transport at the SL-1 radioactive waste disposal area

    International Nuclear Information System (INIS)

    Arthur, W.J.; Grant, J.C.; Markham, O.D.

    1983-01-01

    During summer 1981 and 1982, radioecological research was conducted at the Stationary Low Power Reactor-1 radioactive waste disposal area to: (1) identify vegetation, wildlife, and invertebrate species occurring at or using the area; (2) determine radionuclide concentrations in these various ecosystem components; and (3) to evaluate their respective roles in radionuclide uptake and transport through the surrounding environment. Cesium-137 concentrations detected in surface soils, small mammal excavated soils and small mammal tissues collected at the waste disposal site were significantly (P less than or equal to 0.05) greater than control area samples. Strontium-90 and 235 U analyses of SL-1 and control area samples and projections of total mass of ecosystem components in SL-1 area will be completed in summer of 1983 at which time estimates will be made on the total quantity of fission and activation radionuclides occurring in ecological media at the SL-1 waste disposal area

  15. Preparation of Radwaste Disposal Site in Jawa Island and Its Surrounding Areas

    International Nuclear Information System (INIS)

    Budi Setiawan; Teddy Sumantry; Heru Sriwahyuni; Hendra A Pratama; Nurul Efri E; Achmad Sjarmufni; Pratomo Budiman; Dadang Suganda; Soegeng Waluyo; Ari Pudyo; Dewi Susilowati; Marwoto

    2008-01-01

    The task continuation and national needs indicate the important of starting for radioactive waste disposal preparation. As the IAEA procedures for the first step are to accomplished the conceptual and planning stage of radwaste disposal siting in Jawa island. Within the plan, the Milestone, the site important factors, the potential host rock, the possible areas, the aims and the investigation programs have been defined. From the procedures which are followed hopefully in the end of the activities, suitable site(s) to be able selected for radioactive waste disposal facility in near future. (author)

  16. Cognition of high-level radioactive waste disposal in the Tokyo metropolitan area

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    2010-01-01

    In Japan, the disposal of high-level radioactive waste (HLW) produced by nuclear power generation is an urgent issue. Recently, some questionnaire surveys were conducted. Especially the surveys in the Tokyo metropolitan area which were conducted by AESJ include the fulfilling questions concerning HLW relatively. In this paper, the author shows the results of surveys by AESJ. These results show that the issue concerning HLW is not so much concern for the respondents by comparison with many kinds of issues in the society. They also show that female respondents have less understanding about HLW disposal and have more degree of anxiety against HLW and disposal than male respondents. (author)

  17. 200 Area Treated Effluent Disposal Facility operational test specification. Revision 2

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met. The technical requirements for operational testing of the 200 Area TEDF are defined by the test requirements presented in Appendix A. These test requirements demonstrate the following: pump station No.1 and associated support equipment operate both automatically and manually; pump station No. 2 and associated support equipment operate both automatically and manually; water is transported through the collection and transfer lines to the disposal ponds with no detectable leakage; the disposal ponds accept flow from the transfer lines with all support equipment operating as designed; and the control systems operate and status the 200 Area TEDF including monitoring of appropriate generator discharge parameters

  18. Special Analysis: 2017-001 Disposal of Drums Containing Enriched Uranium in Pit 38 at Technical Area 54, Area G

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-05

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. This special analysis, SA 2017-001, evaluates the potential impacts of disposing of this waste in Pit 38 at Area G based on the assumptions that form the basis of the Area G PA/CA. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3; and conclusions and recommendations are provided in Section 4.

  19. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  20. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Atchley, Adam Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Elizabeth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-24

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.

  1. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  2. Hydrogeology of the 200 Areas low-level burial grounds

    International Nuclear Information System (INIS)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976)

  3. THE POSSIBILITY OF DISPOSING OF SPENT COFFEE GROUND WITH ENERGY RECYCLING

    Directory of Open Access Journals (Sweden)

    Tomasz Ciesielczuk

    2015-09-01

    Full Text Available The current policy of waste management requires, above all, a gradual reduction of waste amount and, to a larger extent, forces us to seek new methods of waste disposal. Recycling the energy contained in biomass waste is a more and more universally applied method of thermal converting. Biomass combustion allows saving fossil fuels which fits into sustainable development. This paper checks the possibility of using spent coffee ground (SCG in energy recycling using a combustion process. This particular biomass type up to now has not been widely examined, which inclines to consider its usage as a potential additive to alternative fuels. In the study, we examined the quality of fuel, which was in a form of briquette, made of beech shavings with 10 and 25% of post-exploitation waste obtained during the process of coffee infusion. This waste, if fresh, is distinguished by its high hydration. However, after drying it may constitute a valuable additive to alternative fuels. It increases the calorific value of fuel and reduces briquettes’ hardness what contributes to reducing resistance of conveying screw in stoves.

  4. Polonium-210 in the environment around a radioactive waste disposal area and phosphate ore processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, III, W J; Markham, O D

    1984-04-01

    Polonium-210 concentrations were determined for soil, vegetation and small mammal tissues collected at a solid radioactive waste disposal area, near a phosphate ore processing plant and at two rural areas in southeastern Idaho. Polonium concentrations in media sampled near the radioactive waste disposal facility were equal to or less than values from rural area samples, indicating that disposal of solid radioactive waste at the Idaho National Engineering Laboratory Site has not resulted in increased environmental levels of polonium. Concentrations of /sup 210/Po in soils, deer mice hide and carcass samples collected near the phosphate processing plant were statistically greater than the other sampling locations; however, the mean /sup 210/Po concentration in soils and small mammal tissues from sampling areas near the phosphate plant were only four and three times greater, respectively, than control values. No statistical difference was observed for /sup 210/Po concentrations in vegetation among any of the sampling locations.

  5. Small mammal density and movement on the SL-1 disposal area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Filipovich, M.A.; Keller, B.L.

    1983-01-01

    This study was initiated to examine the population composition, density and food habits of small mammals on a radioactive waste disposal area. Population parameters of small mammals were studied at 3-month intervals on and adjacent to the SL-1 radioactive waste disposal area (1.4 ha) and a 0.3 ha control area between August 1981 and February 1982 with mark-release methods. Both areas have crested wheatgrass (Agropyron cristatum) stands surrounded by sagebrush steppe. Species composition on the SL-1 and control area was similar to that found on the Subsurface Disposal Area at the Idaho National Engineering Laboratory. Considerable use by small mammals of the perimeter of the crested wheatgrass stands was found on both the SL-1 and control area. Additionally, deer mice (Peromyscus maniculatus) and Ord's kangaroo rats (Dipodomys ordii) that frequent the crested wheatgrass stands of the SL-1 and control area were often captured over 100 m from the crested wheatgrass stands. Thus, future research efforts will focus on examining the intensity of perimeter use and food habits of rodents residing on and adjacent to the SL-1. Results of this study will be used to evaluate ecological conditions that affect small mammal use of radioactive waste disposal areas

  6. Concept and Planning of Site Preparation for Radioactive Waste Disposal in Jawa and Surrounding Area

    International Nuclear Information System (INIS)

    Heru Sriwahyuni; Sastrowardoyo, Pratomo B.; Teddy Sumantri; Dewi Susilowati; Hendra Adhi Pratama; Syarmufni, A.

    2008-01-01

    Concept and planning for radioactive waste disposal in Jawa and surrounding area have been done. These activities were part of the investigation for preparation of repository location in Jawa. In this report, the summary of previous sitting activities, the waste inventory in Radioactive Waste Technology Centre, and list of important factors for sitting on radioactive waste disposal location. Several potential areas such as Karawang, Subang, Majalengka, Rembang, Tuban, Madura will be the focus for next activities. The result will be part of activities report regarding the preparation of repository location in Jawa and surrounding area, that will be used as recommendation prior to radioactive waste management policy. (author)

  7. Brazilian low and intermediate level radioactive waste disposal and environmental conservation areas

    International Nuclear Information System (INIS)

    Uemura, George; Cuccia, Valeria

    2013-01-01

    Low and intermediate level radioactive waste should be disposed off in proper disposal facilities. These facilities must include unoccupied areas as protection barriers, also called buffer zone. Besides that, Brazilian environmental laws require that certain enterprises must preserve part of their area for environmental conservation. The future Brazilian low and intermediate level waste repository (RBMN) might be classified as such enterprise. This paper presents and discusses the main Brazilian legal framework concerning different types of conservation areas that are allowed and which of them could be applied to the buffer zones of RBMN. The possibility of creating a plant repository in the buffer zone is also discussed. (author)

  8. Effects of waste-disposal practices on ground-water quality at five poultry (broiler) farms in north-central Florida, 1992-93

    Science.gov (United States)

    Hatzell, H.H.

    1995-01-01

    Waste-disposal areas such as chicken-house floors, litter stockpiles, fields that receive applications of litter, and dead-chicken pits are potential sources of nitrates and other chemical constituents in downward-percolating recharge water. Broiler- farms in north-central Florida are concentrated in a region where the Upper Floridan aquifer is unconfined and susceptible to contamination. Eighteen monitoring wells installed at five sites were sampled quarterly from March 1992 through January 1993. Increases in median concentrations of constituents relative to an upgradient well were used to determine the source of the nitrate at two sites. At these sites, increases in the median concentrations of nitrate as nitrogen in ground water in the vicinity of waste-disposal areas at these sites were: 5.4 mg/L for one chicken house; 9.0 mg/L for a second chicken house; 2.0 mg/L for a fallow field that received an application of litter; and, 2.0 mg/L for a dead-chicken pit. At the three remaining sites where the direction of local ground-water flow could not be ascertained, the sources of concentrations of nitrate and other constituents could not be determined. However, median nitrate concentrations in the vicinity of waste-disposal areas at these sites were: 45.5 mg/L for a set of two chicken houses; 3.0 mg/L for a stockpile area; and 2.1 mg/L for a hayfield that received an application of litter. The nitrate concentration in ground water in the vicinity of a field that had previously received heavy applications of litter increased from 3.0 mg/L to 105 mg/L approximately 4 months after receiving an application of commercial fertilizer. Increases in concentrations of organic nitrogen in ground water in the vicinity of waste-disposal areas may be related to the decomposition of litter and subsequent movement with downward percolating recharge water.(USGS)

  9. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  10. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by

  11. Effect of soap industry effluents on soil and ground water in Albageir area

    International Nuclear Information System (INIS)

    Awadalla, S. O.

    2004-02-01

    This study investigates the effect on soil and ground water produced by the effluent from soap industry discharged from Alsheikh Mustafa Alamin (SMA) factory, in Albageir industrial area, located 45 Km south of Khartoum. Soil samples were taken from the periphery of the effluent pond and from 25 and 50 cm depths from pits at different distances from the pond.The samples were analyzed for the following chemical and physical characteristics PH, EC, sodium, chloride ions and their grain size, in order to investigate any possible soil degradation. The results showed that there is an increase in soil salinity and sodicity resulting from the improper discharge of the liquid waste, and from lack of treatment before the discharge. Hence, there are definitive signs for soil degradation in the study area, which could reach a high magnitude in the long.This situation could be rectified by adopting updated techniques for treatment and disposal of effluent, and by regular inspection, by the authorities in order to make sure that the regulations are not violated. Chemical and physical analyses of ground water samples showed no signs of pollution. However, if the disposal practices are not revised, the possibility of pollution in the near future is likely to occur. A package of measurements is proposed in order to curb the impact of the industry on the environment. (Author)

  12. Actinide occurrences in sediments following ground disposal of acid wastes at 216-Z-9

    International Nuclear Information System (INIS)

    Ames, L.L.

    1976-01-01

    Liquid acid wastes from a Pu recovery facility at Hanford were released to the ground via structures collectively termed trenches from 1955 through 1962. Data are presented from a study of the microdistribution of Am and Pu in samples from the 216-Z-9 trench. Solution sediment relationships and associated actinide removal mechanisms under acid conditions were studied. Core wells were drilled into the sediments in which this covered trench is located and in the immediate vicinity to obtain samples for quantitative mineralogical analysis and comparison of sediments from various depths of contaminated and noncontaminated areas. Analytical techniques are described and results are reported

  13. Subsurface contaminant transport from the liquid disposal area, CRNL

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Munch, J.H.

    1984-01-01

    This report summarizes geologic, hydrogeologic and geochemical information obtained from a detailed study of the aquifer receiving contaminated waste-waters from the Chemical Pit. Geologically, the study area features wind-deposited sand overlying a continuous lacustrine clayey silt and a bouldery basal till. Medium to coarse sands locally found at the base of the sand sequence appear to represent stream channel deposits following a buried drainage course towards Perch Lake. These channel sands significantly influence groundwater flow; 3-dimensional models will be required to mathematically simulate the system. Based on the subsurface data, calculated groundwater residence times between the infiltration pit and points of discharge to surface into the East Swamp range from 4 to 22 months. The shortest observed residence time for a non-reactive radio-nuclide is 5 months. Tritium data confirm that contamination is confined to the sands, but show that within the sand aquifer there is considerable heterogeneity in the distribution and rates of groundwater flow. Samples of contaminated groundwaters collected during this study featured increased redox potentials, increased acidity, and minor increases in some major ions relative to local uncontaminated groundwater. Extensive oxidation of the sands in contaminated portions of the aquifer may reflect much greater chemical differences in plume groundwaters in the past

  14. Hydrogeology of the 200 Areas low-level burial grounds

    International Nuclear Information System (INIS)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.

    1989-01-01

    This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text

  15. The use and disposal of greywater in the non-sewered areas of ...

    African Journals Online (AJOL)

    The main aim of this study was to investigate the use and disposal of greywater in non-sewered areas in South Africa and this included developing options for the management thereof, both in terms of reducing health and environmental risks as well as possibly providing benefits through controlled reuse. This paper reports ...

  16. Elevation of water table and various stratigraphic surfaces beneath e area low level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, Laura [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, Patti [; Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-02

    This memorandum describes work that supports revision of the Radiological Performance Assessment (PA) for the E Area Low Level Radioactive Waste Disposal Facility (LLRWDF). The work summarized here addresses portions of the PA Strategic Planning Team's recommendation #148b (Butcher and Phifer, 2016).

  17. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2000-01-01

    This report is the first revision to ''Radiological Performance Assessment for the E-Area Vaults Disposal Facility, Revision 0'', which was issued in April 1994 and received conditional DOE approval in September 1994. The title of this report has been changed to conform to the current name of the facility. The revision incorporates improved groundwater modeling methodology, which includes a large data base of site specific geotechnical data, and special Analyses on disposal of cement-based wasteforms and naval wastes, issued after publication of Revision 0

  18. Radiological performance assessment for the E-Area Vaults Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.; Hunt, P.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-04-15

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type.

  19. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.; Hunt, P.D.

    1994-01-01

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type

  20. Quantitative risk assessment of the New York State operated West Valley Radioactive Waste Disposal Area.

    Science.gov (United States)

    Garrick, B John; Stetkar, John W; Bembia, Paul J

    2010-08-01

    This article is based on a quantitative risk assessment (QRA) that was performed on a radioactive waste disposal area within the Western New York Nuclear Service Center in western New York State. The QRA results were instrumental in the decision by the New York State Energy Research and Development Authority to support a strategy of in-place management of the disposal area for another decade. The QRA methodology adopted for this first of a kind application was a scenario-based approach in the framework of the triplet definition of risk (scenarios, likelihoods, consequences). The measure of risk is the frequency of occurrence of different levels of radiation dose to humans at prescribed locations. The risk from each scenario is determined by (1) the frequency of disruptive events or natural processes that cause a release of radioactive materials from the disposal area; (2) the physical form, quantity, and radionuclide content of the material that is released during each scenario; (3) distribution, dilution, and deposition of the released materials throughout the environment surrounding the disposal area; and (4) public exposure to the distributed material and the accumulated radiation dose from that exposure. The risks of the individual scenarios are assembled into a representation of the risk from the disposal area. In addition to quantifying the total risk to the public, the analysis ranks the importance of each contributing scenario, which facilitates taking corrective actions and implementing effective risk management. Perhaps most importantly, quantification of the uncertainties is an intrinsic part of the risk results. This approach to safety analysis has demonstrated many advantages of applying QRA principles to assessing the risk of facilities involving hazardous materials.

  1. Radioactive liquid wastes discharged to ground in the 200 areas during 1985

    International Nuclear Information System (INIS)

    Aldrich, R.C.

    1986-03-01

    This document summarizes radioactive liquids discharged to the ground in the 200 areas of the Hanford site and is provided pursuant to Department of Energy (DOE) Order 5484.1A, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements.'' There are twenty-eight liquid discharge streams in the 200 areas excluding sanitary sewers. Twenty-five streams were normally or potentially contaminated with radioactive material in 1985. Two streams had no potential for radioactive contamination but were included as adjustments in this report to maintain an accurate record of the total volume of the discharges to each disposal site. One stream, the 242-S Evaporator cooling water discharge, was not used during 1985

  2. Applicability of the grounded-source airborne electromagnetics to coastal areas

    International Nuclear Information System (INIS)

    Ito, Hisatoshi; Tsukuda, Kazuhiro; Suzuki, Koichi; Kaieda, Hideshi; Kiho, Kenzo; Mogi, Toru

    2012-01-01

    Understanding geological and hydrogeological characteristics in coastal areas is an issue of paramount importance especially with regard to siting of geological disposal of nuclear wastes, whereas conventional airborne electromagnetic (AEM) surveys can reveal an electrical resistivity structure to a depth of only ∼200 m. In order to enhance the depth of investigation, we have developed a new type of AEM, grounded-electrical-source airborne transient electromagnetics (GREATEM). Here we have applied GREATEM to two coastal areas in Japan; Kujukuri, an alluvial coastal plain where thick Quaternary sediments prevail, and northwestern part of Awaji Island, where granitic rocks are dominant. It was found that the GREATEM system can reveal resistivity structure to a depth of ∼500 m and also high quality data are available just beneath the shoreline where shallow water prevails. (author)

  3. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  4. Ground-water resources of the Alma area, Michigan

    Science.gov (United States)

    Vanlier, Kenneth E.

    1963-01-01

    The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial

  5. Hanford 300 Area Treated Effluent Disposal Facility inventory at risk calculations and safety analysis

    International Nuclear Information System (INIS)

    Olander, A.R.

    1995-11-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is a wastewater treatment plant being constructed to treat the 300 Area Process Sewer and Retention Process Sewer. This document analyzes the TEDF for safety consequences. It includes radionuclide and hazardous chemical inventories, compares these inventories to appropriate regulatory limits, documents the compliance status with respect to these limits, and identifies administrative controls necessary to maintain this status

  6. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  7. Rodent movements, densities and radionuclide concentrations at a liquid radioactive waste disposal area

    International Nuclear Information System (INIS)

    Halford, D.K.

    1983-01-01

    Movements and densities of rodents at a liquid radioactive waste disposal area were studied from June to September 1981 using trap line and assessment line techniques. The average distance between points of successive capture was 42 +- 25 (SD) m for deer mice (Peromyscus maniculatus) and 37 +- 21 m for kangaroo rats (Dipodomys ordii). Densities of deer mice averaged 10.2/ha with a population estimate of 57 within the area of rodent captures. The population estimate of 4 species of small mammals at the waste pond complex was 93. Radionuclide concentrations averaged 133 +- 97 pCi/g for rodents captured inside the disposal area boundary, 18 +- 22 pCi/g for those captured outside of the dispoal area fence and 0.50 +- 0.6 pCi/g for control animals. Species captured outside of the waste area boundary had significantly lower (P 137 Cs, 134 Cs, 60 Co and 65 Zn) in rodents at the liquid waste disposal area was estimated to be about 162 nCi

  8. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    Science.gov (United States)

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  9. Hydrogeologic and chemical data for the O-Field area, Aberdeen Proving Ground, Maryland

    International Nuclear Information System (INIS)

    Nemoff, P.R.; Vroblesky, D.A.

    1989-01-01

    O-Field, located at the Edgewood area of Aberdeen Proving Ground, Maryland, was periodically used for disposal of munitions, waste chemicals, and chemical-warfare agents from World War II through the 1950's. This report includes various physical, geologic, chemical, and hydrologic data obtained from well-core, groundwater, surface water, and bottom-sediment sampling sites at and near the O-Field disposal area. The data are presented in tables and hydrographs. Three site-location maps are also included. Well-core data include lithologic logs for 11 well-cluster sites, grain-size distributions, various chemical characteristics, and confining unit characteristics. Groundwater data include groundwater chemistry, method blanks for volatile organic carbon, available data on volatile and base/neutral organics, and compilation of corresponding method blanks, chemical-warfare agents, explosive-related products, radionuclides, herbicides, and groundwater levels. Surface-water data include field-measured characteristics; concentrations of various inorganic constituents including arsenic; selected organic constituents with method blanks; detection limits of organics; and a compilation of information on corresponding acids, volatiles, and semivolatiles; and method blanks corresponding to acids, volatiles, and semivolatiles. A set of 15 water-level hydrographs for the period March 1986 through September 1987 also is included in the report. 3 refs., 18 figs., 24 tabs

  10. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  11. Review of analytical results from the proposed agent disposal facility site, Aberdeen Proving Ground

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, K.L.; Reed, L.L.; Myers, S.W.; Shepard, L.T.; Sydelko, T.G.

    1997-09-01

    Argonne National Laboratory reviewed the analytical results from 57 composite soil samples collected in the Bush River area of Aberdeen Proving Ground, Maryland. A suite of 16 analytical tests involving 11 different SW-846 methods was used to detect a wide range of organic and inorganic contaminants. One method (BTEX) was considered redundant, and two {open_quotes}single-number{close_quotes} methods (TPH and TOX) were found to lack the required specificity to yield unambiguous results, especially in a preliminary investigation. Volatile analytes detected at the site include 1, 1,2,2-tetrachloroethane, trichloroethylene, and tetrachloroethylene, all of which probably represent residual site contamination from past activities. Other volatile analytes detected include toluene, tridecane, methylene chloride, and trichlorofluoromethane. These compounds are probably not associated with site contamination but likely represent cross-contamination or, in the case of tridecane, a naturally occurring material. Semivolatile analytes detected include three different phthalates and low part-per-billion amounts of the pesticide DDT and its degradation product DDE. The pesticide could represent residual site contamination from past activities, and the phthalates are likely due, in part, to cross-contamination during sample handling. A number of high-molecular-weight hydrocarbons and hydrocarbon derivatives were detected and were probably naturally occurring compounds. 4 refs., 1 fig., 8 tabs.

  12. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report

    International Nuclear Information System (INIS)

    Roach, J.L. Jr.

    1997-12-01

    Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit number-sign 025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997

  13. Status of ground water in the 1100 Area

    International Nuclear Information System (INIS)

    Law, A.G.

    1990-12-01

    This document contains the results of monthly sampling of 1100 Area Wells and ground water monitoring. Included is a table that presents all of the results of monthly sampling and analyses between April 1989 and May 1990, for four constituents selected to be most indicative of the potential for contamination from US Department of Energy facilities. The samples were collected from the three wells near the city of Richland well field. Also included is a table that presents a listing of the analytical results from sampling and analyses of five wells between April 1989, and May 1990 in the 1100 Area. The detection limit and drinking water standards or maximum contaminant level are also listed in the tables for each constituent

  14. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  15. Preparations for Retrieval of Buried Waste at Material Disposal Area B

    International Nuclear Information System (INIS)

    Chaloupka, A.B.; Criswell, C.W.; Goldberg, M.S.; Gregory, D.R.; Worth, E.P.

    2009-01-01

    Material Disposal Area B, a hazard category 3 nuclear facility, is scheduled for excavation and the removal of its contents. Wastes and excavated soils will be characterized for disposal at approved off-site waste disposal facilities. Since there were no waste disposal records, understanding the context of the historic operations at MDA B was essential to understanding what wastes were disposed of and what hazards these would pose during retrieval. The operational history of MDA B is tied to the earliest history of the Laboratory, the scope and urgency of World War II, the transition to the Atomic Energy Commission in January 1947, and the start of the cold war. A report was compiled that summarized the development of the process chemistry, metallurgy, and other research and production activities at the Laboratory during the 1944 to 1948 time frame that provided a perspective of the work conducted; the scale of those processes; and the handling of spent chemicals and contaminated items in lieu of waste disposal records. By 1947, all laboratories had established waste disposal procedures that required laboratory and salvage wastes to be boxed and sealed. Large items or equipment were to be wrapped with paper or placed in wooden crates. Most wastes were placed in cardboard boxes and were simply piled into the active trench. Bulldozers were used to cover the material with fill dirt on a weekly basis. No effort was made to separate waste types or loads, or to compact the wastes under the soil cover. Using the historical information and a statistical analysis of the plutonium inventory, LANL prepared a documented safety analysis for the waste retrieval activities at MDA B, in accordance with DOE Standard 1120-2005, Integration of Environment, Safety, and Health into Facility Disposition Activities, and the provisions of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response. The selected hazard controls for the MDA B project consist of passive design

  16. Impact Force Applied on the Spent Nuclear Fuel Disposal Canister that Accidentally Drops and Collides onto the Ground

    International Nuclear Information System (INIS)

    Kwon, Young Joo

    2016-01-01

    In this paper, a mathematical methodology was theoretically studied to obtain the impact force caused by the collision between rigid bodies. This theoretical methodology was applied to compute the impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground. From this study, the impact force required to ensure a structurally safe canister design was theoretically formulated. The main content of the theoretical study concerns the rigid body kinematics and equation of motion during collision between two rigid bodies. On the basis of this study, a general impact theory to compute the impact force caused by the collision between two bodies was developed. This general impact theory was applied to theoretically formulate the approximate mathematical solution of the impact force that affects the spent nuclear fuel disposal canister that accidentally falls to the ground. Simultaneously, a numerical analysis was performed using the computer code to compute the numerical solution of the impact force, and the numerical result was compared with the approximate mathematical solution

  17. 76 FR 55711 - Confirmatory Order Modifying License No. SNM-2001 for the Shallow Land Disposal Area, Parks...

    Science.gov (United States)

    2011-09-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-8907; NRC-2011-0193] Confirmatory Order Modifying License No. SNM-2001 for the Shallow Land Disposal Area, Parks Township, Armstrong County, PA; Notice of... (SNM), pursuant to the terms and conditions of the aforementioned License, at the Shallow Land Disposal...

  18. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    International Nuclear Information System (INIS)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944

  19. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944.

  20. Geochemical and Geophysical Study in a Degraded Area Used for Disposal of Sludge from a Water Treatment Plant

    International Nuclear Information System (INIS)

    Moreira, R.C.A.; Nunes, S.A.; Da Silva, D.R.; Lira, C.P.; Boaventura, G.R.; Do Nascimento, C.T.C.; Moreira, R.C.A.; Pinheiro, L.A.

    2011-01-01

    The effects of disposal of sludge from water treatment plant (WTS) in area damaged by laterite extraction and its consequences to soil and groundwater were investigated. Therefore, the presence and concentration of anthropogenic elements and chemical compounds were determinated. WTS disposal's influence was characterized by electroresistivity method. The WTS's geochemical dispersion was noticed in the first meters of the non saturated zone from the lending area. Lateritic profiles were characterized due to the large variation in chemical composition between the horizons. Infiltration and percolation of rainwater through the WTS have caused migration of total dissolved solids to the groundwater. WTS's disposing area has more similarities to local preserved vegetation than to gravel bed area. WTS can be considered a noninert residue if disposed in degraded areas located in regions with similar geological and hydrochemical characteristics.

  1. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.

  2. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments

    International Nuclear Information System (INIS)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy's (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS

  3. Buried waste remote survey of the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Richardson, B.S.; Noakes, M.W.; Griebenow, B.E.; Josten, N.E.

    1991-01-01

    Burial site characterization is an important first step in the restoration of subsurface disposal sites. Testing and demonstration of technology for remote buried waste site characterization were performed at the Idaho National Engineering Laboratory (INEL) by a team from five US Department of Energy (DOE) laboratories. The US Army's Soldier Robot Interface Project (SRIP) vehicle, on loan to the Oak Ridge National Laboratory (ORNL), was used as a remotely operated sensor platform. The SRIP was equipped with an array of sensors including terrain conductivity meter, magnetometer, ground-penetrating radar (GPR), organic vapor detector, gamma-based radar detector, and spectrum analyzer. The testing and demonstration were successfully completed and provided direction for future work in buried waste site characterization

  4. Evaluation of dredged material proposed for ocean disposal from Westchester Creek project area, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-11-01

    The objective of the Westchester Creek project was to evaluate proposed dredged material from this area to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Westchester Creek was one of five waterways that the US Army Corps of Engineers- New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Westchester Creek project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, benthic acute and water-column toxicity tests, and bioaccumulation studies. Thirteen individual sediment core samples were collected from this area and analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample representing the Westchester Creek area to be dredged, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended- particulate phase (SPP) of the Westchester Creek sediment composite, was analyzed for metals, pesticides, and PCBS.

  5. Radionuclide concentrations in vegetation at radioactive-waste disposal Area G during the 1994 growing season

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Biggs, J.B.; Bennett, K.D.

    1995-01-01

    Overstory (pinon pine) and understory (grass and forb) vegetation samples were collected within and around selected points at Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-for the analysis of tritium ( 3 H), strontium ( 90 Sr), plutonium ( 238 Pu and 239 Pu), cesium ( 137 Cs), americium ( 241 Am), and total uranium. In general, most vegetation samples collected within and around Area G contained radionuclide levels in higher concentrations than vegetation collected from background areas. Tritium, in particular, was detected as high as 5,800 pCi/mL in overstory vegetation collected outside the fence just west of the tritium shafts; this suggests that tritium is migrating from this waste repository through subsurface pathways. Also, understory vegetation collected north of the transuranic (TRU) pads (outside the fence of Area G) contained the highest values of 90 Sr, 238 Pu, 239 Pu, 137 Cs, and 241 Am, and may be a result of surface holding, storage, or disposal activities

  6. Pumping evaluations with paste tailings thickened close to the surface disposal area

    OpenAIRE

    Wennberg, Thord; Sellgren, Anders

    2007-01-01

    An elevated location of a paste thickener on a ridge close to the disposal area is considered at a Swedish iron ore mine. About 0.7 Mtonnes of thickened tailings are planned to be layered as paste in the vicinity of the thickener over several years with pipeline lengths of up to 900 m after about 20 years. In order to clarify the pipeline pumping characteristics of the tailings product for volumetric solids concentration from 40 to 50%, experiments in loop systems with pipeline inner diameter...

  7. Readiness plan, Hanford 300 Area Treated Effluent Disposal Facility: Revision 1

    International Nuclear Information System (INIS)

    Storm, S.J.

    1994-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is designed for the collection, treatment, and eventual disposal of liquid waste from the 300 Area Process Sewer (PS) system. The PS currently discharges water to the 300 Area Process Trenches. Facilities supported total 54 buildings, including site laboratories, inactive buildings, and support facilities. Effluent discharges to the process sewer from within these facilities include heating, ventilation, and air conditioning systems, heat exchangers, floor drains, sinks, and process equipment. The wastewaters go through treatment processes that include iron coprecipitation, ion exchange and ultraviolet oxidation. The iron coprecipitation process is designed to remove general heavy metals. A series of gravity filters then complete the clarification process by removing suspended solids. Following the iron coprecipitation process is the ion exchange process, where a specific resin is utilized for the removal of mercury. The final main unit operation is the ultraviolet destruction process, which uses high power ultraviolet light and hydrogen peroxide to destroy organic molecules. The objective of this readiness plan is to provide the method by which line management will prepare for a Readiness Assessment (RA) of the TEDF. The self-assessment and RA will assess safety, health, environmental compliance and management readiness of the TEDF. This assessment will provide assurances to both WHC and DOE that the facility is ready to start-up and begin operation

  8. Groundwater Monitoring Plan for the Z-Area Saltstone Disposal Facility, Revision 3

    International Nuclear Information System (INIS)

    WELLS, DANIEL

    2005-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. At the time of the 1996 permit renewal, it was determined that a more robust monitoring program was needed. The draft permit required new monitoring wells within 25 feet of each active disposal cell. As an alternative, SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC), and was incorporated by reference into the Z-Area Saltstone Industrial Solid Waste Permit, No.025500-1603. The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include specific requirements for groundwater monitoring. SRS's plan for complying with those regulations is discussed below. The plan calls for a return to traditional monitoring with permanent wells. It also proposes a more technically sound monitoring list based on the actual composition of saltstone

  9. Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Larry C. Hull; Carolyn W. Bishop

    2004-01-01

    Between 1984 and 1993, MgCl 2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl - might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl - in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl - concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl - concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl - was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl - remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl - in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area

  10. Verification of best available technology for the 300 Area Treated Effluent Disposal Facility (310 Facility)

    International Nuclear Information System (INIS)

    Wagner, R.N.

    1994-01-01

    This compilation of Project L-045H reference materials documents that the 300 Area Treated Effluent Disposal Facility (TEDF, also designated the 310 Facility) was designed, built, and will be operated in accordance with the best available technology (BAT) identified in the Engineering Summary Report. The facility is intended for treatment of 300 Area process sewer wastewater. The following unit operations for 300 Area process sewer water treatment are specified as: influent receipt; iron co-precipitation and sludge handling for removal of heavy metals and initial suspended solids; ion exchanged for removal of mercury and other heavy metals; ultraviolet (UV)/peroxide treatment for destruction of organic compounds, cyanide, coliforms, sulfide, and nitrite; and effluent discharge to the Columbia River with pH monitoring/control capability

  11. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-05-19

    Large area environmental monitoring can play a crucial role in dealing with crisis situations. However, it is challenging as implementing a fixed sensor network infrastructure over large remote area is economically unfeasible. This work proposes disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept, the wireless sensing of temperature, humidity, and H2S levels are shown which are important for two critical environmental conditions namely forest fires and industrial leaks. These inkjet-printed sensors and an antenna are realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing are uniquely combined in order to realize a low-cost, fully integrated wireless sensor node.

  12. ANALISIS PRODUKTIVITAS ALAT MEKANIS, PEMAKAIAN MATERIAL SIPIL DAN BIAYA OPERASI PADA DISPOSAL AREA PT. INCO TBk.

    OpenAIRE

    Alamin, Rahmatan Lil

    2011-01-01

    Aktivitas disposal merupakan salah satu rangkaian dari aktivitas penambangan. Disposal adalah daerah pada suatu operasi tambang terbuka yang digunakan sebagai tempat membuang material kadar rendah dan/atau material bukan bijih. Material-material tersebut, merupakan material yang perlu digali dari pit demi memperoleh bijih/material kadar tinggi. PT. Inco Tbk. mempunyai dua tipe disposal aktif yang dibedakan berdasarkan faktor geometrinya, yaitu disposal tipe Finger dan disposal tipe Semi I...

  13. Ecology of carrion beetles (Nicrophorus spp.) at a solid radioactive waste disposal area

    International Nuclear Information System (INIS)

    Veith, R.D.; Keller, B.L.

    1983-01-01

    A study of the population ecology of three species of carrion beetles (Nicrophorus hecate, N. hybridus, N. marginatus) was initiated on a solid radioactive waste disposal area on the Idaho National Engineering Laboratory in June 1981. Successive mark and recapture procedures were used to document redistribution of individually numbered adults. During the first summer of research, 1410 individuals were captured in baited pitfall traps, marked, and released during three 12-day sampling periods. Eighty marked individuals were subsequently caught at sampling stations located at varied distances from the site of release, but half of the recaptures occurred within 66.2 m of this point, and a decline in number of recaptures was observed with increasing distance. Capture of beetles at trapping points was related to the prevailing wind direction. Based upon the observed densities, local populations of these species could have an important role in the organic breakdown of small mammals that die on or adjacent to the disposal area. Thus, they may also be an important vector in the redistribution of radionuclides present in small mammals taht become contaminated prior to death

  14. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  15. Measurement of flow and direction of ground water by radioactive tracers: hydrological evaluation of a waste disposal site at 'Instituto de Pesquisas Energeticas e Nucleares (IPEN)'

    International Nuclear Information System (INIS)

    Chandra, U.; Aoki, P.E.; Ramos e Silva, J.A.; Castagnet, A.C.G.

    1981-05-01

    The method of determining flow and drection of ground water by using radioactive tracers in ground water borings is described. Various parameters controlling the measurements are discussed in detail. Application of the method in studying a variety of geohydrological problems, in view of the hydrological evaluation of the waste disposal site at IPEN, is indicated. Comparison of the method with conventional pumping tests is made. (I.C.R.) [pt

  16. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    Science.gov (United States)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  17. US Department of Energy mixed waste characterization, treatment, and disposal focus area technical baseline development process

    International Nuclear Information System (INIS)

    Roach, J.A.; Gombert, D.

    1996-01-01

    The US Department of Energy (DOE) created the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet its commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA). Mixed wastes include both mixed low-level waste (MLLW) and mixed transuranic (MTRU) waste. The goal of the MWFA is to develop mixed waste treatment systems to the point of implementation by the Environmental Management (EM) customer. To accomplish this goal, the MWFA is utilizing a three step process. First, the treatment system technology deficiencies were identified and categorized. Second, these identified needs were prioritized. This resulted in a list of technical deficiencies that will be used to develop a technical baseline. The third step, the Technical Baseline Development Process, is currently ongoing. When finalized, the technical baseline will integrate the requirements associated with the identified needs into the planned and ongoing environmental research and technology development activities supported by the MWFA. Completion of this three-step process will result in a comprehensive technology development program that addresses customer identified and prioritized needs. The MWFA technical baseline will be a cost-effective, technically-defensible tool for addressing and resolving DOE's mixed waste problems

  18. Structure of domination and dynamics of activity of ground-beetles in agroecosistems of Derbent area

    OpenAIRE

    G. M. Nahibasheva; A. A. Bagomaev; R. A. Musaeva

    2008-01-01

    For the first time for area of research 61 kind of ground-beetles, concerning to 28 sorts and 13 vital  structure of ground-beetles of agroecosistems are studied. New data about structure and character biotopical are obtained distributions, seasonal dynamics of activity of ground-beetles. Phenological change prepotent of ground-beetles ofagroecosistems of Derbent area is revealed.

  19. Structure of domination and dynamics of activity of ground-beetles in agroecosistems of Derbent area

    Directory of Open Access Journals (Sweden)

    G. M. Nahibasheva

    2008-01-01

    Full Text Available For the first time for area of research 61 kind of ground-beetles, concerning to 28 sorts and 13 vital  structure of ground-beetles of agroecosistems are studied. New data about structure and character biotopical are obtained distributions, seasonal dynamics of activity of ground-beetles. Phenological change prepotent of ground-beetles ofagroecosistems of Derbent area is revealed.

  20. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Patton, T.; Benioff, P.; Biang, C.; Butler, J. [and others

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  1. Disposal of waste from the cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1992-01-01

    The report provides an overview of the methodology and technology available to load, transport and dispose of large volumes of contaminated material arising from the cleanup of areas after a nuclear accident and includes data on the planning, implementation, management and costing of such activities. To demonstrate the use of this information, three cleanup and disposal scenarios are examined, ranging from disposal in many small mounds or trenches within the contaminated area to disposal in a large facility away from the plant. As in the two companion reports, it is assumed that the population has been evacuated from the affected area. The report reviews the generic types of low level radioactive waste which are likely to arise from such a cleanup. The report does not deal with the recovery and disposal of intermediate and high level radioactive material on or near the plant site. This material will have to be recovered, packaged, transported and stored on-site or disposed of at an appropriate facility. These operations should be done by specialist teams using shielded or remotely operated equipment. Also not included are methods of in situ stabilization of contamination, for example ploughing to bury the top contaminated layer at a suitable depth. These techniques, which are likely to be widely used in part of the evacuated are, are discussed in IAEA Technical Reports Series No. 300, Vienna, 1989. 50 refs, 18 figs, 4 tabs

  2. An optimized groundwater extraction system for the toxic burning pits area of J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, J.J.; Johnson, R.L.; Patton, T.L.; Martino, L.E.

    1996-06-01

    Testing and disposal of chemical warfare agents, munitions, and industrial chemicals at the J-Field area of the Aberdeen Proving Ground (APG) have resulted in contamination of soil and groundwater. The discharge of contaminated groundwater to on-site marshes and adjacent estuaries poses a potential risk to ecological receptors. The Toxic Burning Pits (TBP) area is of special concern because of its disposal history. This report describes a groundwater modeling study conducted at J-Field that focused on the TBP area. The goal of this modeling effort was optimization of the groundwater extraction system at the TBP area by applying linear programming techniques. Initially, the flow field in the J-Field vicinity was characterized with a three-dimensional model that uses existing data and several numerical techniques. A user-specified border was set near the marsh and used as a constraint boundary in two modeled remediation scenarios: containment of the groundwater and containment of groundwater with an impermeable cap installed over the TBP area. In both cases, the objective was to extract the minimum amount of water necessary while satisfying the constraints. The smallest number of wells necessary was then determined for each case. This optimization approach provided two benefits: cost savings, in that the water to be treated and the well installation costs were minimized, and minimization of remediation impacts on the ecology of the marsh.

  3. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    International Nuclear Information System (INIS)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water

  4. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  5. Ground-water resources of the El Paso area, Texas

    Science.gov (United States)

    Sayre, Albert Nelson; Livingston, Penn Poore

    1945-01-01

    El Paso, Tex., and Ciudad Juarez, Chihuahua, Mexico, and the industries in -that area draw their water supplies from wells, most of which are from 600 to 800 feet deep. In 1906, the estimated average pumpage there was about 1,000,000 gallons a day, and by 1935 it had increased to 15,400,000 gallons a day. The water-bearing beds, consisting of sand and gravel interbedded wire clay, tie in the deep structural trough known as the Hueco bolson, between the Organ and Franklin Mountains on the west, the Hueco, Finlay, and Malone Mountains on the east, the Tularosa Basin on the north, and the mountain ranges of Mexico on the south. From the gorge above El Paso to that beginning near Fort Quitman, about 90 miles southeast .of El Paso, the Rio Grande has eroded a flat-bottomed, steepwalled valley, 6 to 8 miles wide and 225 to 350 feet deep. No other large drainage channels have been developed on the bolson. The valley is known as the El Paso Valley, and the uneroded upland part of the bolson is called the Mesa. In the lowest parts of the El Paso Valley, the water-table is nearly at the surface. The quality of the underground water in the valley varies greatly both vertically and laterally. To a depth of about 400 to 500 feet it is in general too highly mineralized for municipal use, but between about. 500 and 900 feet good water may be obtained from several beds. In the beds between 500 and 900 feet the water level in wells is in places as. much as 20 feet lower than that in the shallow beds. Beneath the Mesa the water level .varies from about 200 feet beneath the surface, where the ground elevation is least, to about 400 feet. where it is highest. The water beneath the Mesa in general is of satisfactory quality and contains less than 500 parts per million of dissolved solids. Two cones of depression in the water table have been formed by the pumping near El Paso--one m the vicinity of the Mesa well field, the other around the Montana well field in the valley. The water

  6. Development of a comprehensive source term model for the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    1997-01-01

    The first detailed comprehensive simulation study to evaluate fate and transport of wastes disposed in the Subsurface Disposal Area (SDA), at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering and Environmental Laboratory (INEEL) has recently been conducted. One of the most crucial parts of this modeling was the source term or release model. The current study used information collected over the last five years defining contaminant specific information including: the amount disposed, the waste form (physical and chemical properties) and the type of container used for each contaminant disposed. This information was used to simulate the release of contaminants disposed in the shallow subsurface at the SDA. The DUST-MS model was used to simulate the release. Modifications were made to allow the yearly disposal information to be incorporated. The modeling includes unique container and release rate information for each of the 42 years of disposal. The results from this simulation effort are used for both a groundwater and a biotic uptake evaluation. As part of this modeling exercise, inadequacies in the available data relating to the release of contaminants have been identified. The results from this modeling study have been used to guide additional data collection activities at the SDA for purposes of increasing confidence in the appropriateness of model predictions

  7. A simulation study of moisture movement in proposed barriers for the subsurface disposal area, INEL

    International Nuclear Information System (INIS)

    Magnuson, S.O.

    1993-09-01

    This document presents a simulation study that was conducted to investigate moisture movement within two engineered barriers, which are proposed for use in eventual closure of the Subsurface Disposal Area. The results of the study are intended to guide the design and implementation of field test plots that will be constructed to test the barrier designs. Discussed are the sensitivity of barrier performance to changes in the conceptual model, which was used to simulate the barriers, and to changes in hydrologic parameters, which were used to describe the materials composing the barriers. In addition, estimates are presented concerning the time required for the moisture profile within the barriers to come into equilibrium with the meteorological conditions at the surface. In addition, the performance of the barriers under conditions of supplemental precipitation and ponding is presented

  8. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1991-12-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. This document, Volume 1, identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues

  9. Using Simulated Ground Motions to Constrain Near-Source Ground Motion Prediction Equations in Areas Experiencing Induced Seismicity

    Science.gov (United States)

    Bydlon, S. A.; Dunham, E. M.

    2016-12-01

    Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified

  10. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    International Nuclear Information System (INIS)

    Brown, Theresa J.; Wirth, Sharon

    1999-01-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here

  11. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model

  12. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  13. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    Science.gov (United States)

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  14. Design, construction, and operations experience with the SWSA 6 [Solid Waste Storage Area] Tumulus Disposal Demonstration

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Van Cleve, J.E.; Wylie, A.N.; Williams, L.C.; Bolinsky, J.

    1988-01-01

    Efforts are underway at the Department of Energy facilities in Oak Ridge to improve the performance of radioactive waste disposal facilities. An engineered disposal concept demonstration involving placement of concrete encased waste on a monitored concrete pad with an earthen cover is being conducted. The design, construction, and operations experience with this project, the SWSA 6 Tumulus Disposal Demonstration, is described. 1 fig., 1 tab

  15. Estimates of relative areas for the disposal in bedded salt of LWR wastes from alternative fuel cycles

    International Nuclear Information System (INIS)

    Lincoln, R.C.; Larson, D.W.; Sisson, C.E.

    1978-01-01

    The relative mine-level areas (land use requirements) which would be required for the disposal of light-water reactor (LWR) radioactive wastes in a hypothetical bedded-salt formation have been estimated. Five waste types from alternative fuel cycles have been considered. The relative thermal response of each of five different site conditions to each waste type has been determined. The fuel cycles considered are the once-through (no recycle), the uranium-only recycle, and the uranium and plutonium recycle. The waste types which were considered include (1) unreprocessed spent reactor fuel, (2) solidified waste derived from reprocessing uranium oxide fuel, (3) plutonium recovered from reprocessing spent reactor fuel and doped with 1.5% of the accompanying waste from reprocessing uranium oxide fuel, (4) waste derived from reprocessing mixed uranium/plutonium oxide fuel in the third recycle, and (5) unreprocessed spent fuel after three recycles of mixed uranium/plutonium oxide fuels. The relative waste-disposal areas were determined from a calculated value of maximum thermal energy (MTE) content of the geologic formations. Results are presented for each geologic site condition in terms of area ratios. Disposal area requirements for each waste type are expressed as ratios relative to the smallest area requirement (for waste type No. 2 above). For the reference geologic site condition, the estimated mine-level disposal area ratios are 4.9 for waste type No. 1, 4.3 for No. 3, 2.6 for No. 4, and 11 for No. 5

  16. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  17. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    2000-01-01

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time

  18. Long-term impacts on sewers following food waste disposer installation in housing areas.

    Science.gov (United States)

    Mattsson, Jonathan; Hedström, Annelie; Viklander, Maria

    2014-01-01

    To increase biogas generation and decrease vehicle transportation of solid waste, the integration of food waste disposers (FWDs) into the wastewater system has been proposed. However, concerns have been raised about the long-term impact of the additional load of the FWDs on sewer systems. To examine the said impact, this study has used closed-circuit television inspection techniques to evaluate the status of 181 concrete pipes serving single family housing areas with a diameter of 225 mm, ranging from a 100% connection rate of households with an FWD to none. A minor study was also performed on a multi-family housing area, where mainly plastic pipes (200 mm) were used. The extent and distribution of deposits related to the ratio of FWDs, inclination and pipe sagging (backfalls) were ascertained by using linear regression and analysis of variance. The results showed that FWDs have had an impact on the level of deposits in the sewer, but this has, in turn, been of minor significance. With a high connection rate of FWDs upstream of a pipe, the extent of the total level of deposits, as well as finer sediments, was statistically determined to be greater. However, the majority of the deposits were observed to be small, which would suggest the impact of FWDs on sewer performance to be minor. As food waste not compatible with the FWD was seen in the sewers, educational campaigns could be beneficial to further lower the risks of sewer blocking.

  19. Source term development for the 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1994-04-01

    A novel method for developing a source term for radiation and hazardous material content of sludge processing equipment and barrels in a new waste water treatment facility is presented in this paper. The 300 Area Treated Effluent Disposal Facility (TEDF), located at the Hanford Site near Richland, Washington, will treat process sewer waste water from the 300 Area and discharge a permittable effluent flow into the Columbia River. A process information and hazards analysis document needed a process flowsheet detailing the concentrations of radionuclides, inorganics, and organics throughout the process, including the sludge effluent flow. A hazards analysis for a processing facility usually includes a flowsheet showing the process, materials, heat balances, and instrumentation for that facility. The flow sheet estimates stream flow quantities, activities, compositions, and properties. For the 300 Area TEDF, it was necessary to prepare the flow sheet with all of the information so that radiation doses to workers could be estimated. The noble method used to develop the 300 Area TEDF flowsheet included generating recycle factors. To prepare each component in the flowsheet, precipitation, destruction, and two recycle factors were developed. The factors were entered into a spreadsheet and provided a method of estimating the steady-state concentrations of all of the components in the facility. This report describes how the factors were developed, explains how they were used in developing the flowsheet, and presents the results of using these values to estimate radiation doses for personnel working in the facility. The report concludes with a discussion of the effect of estimates of radioactive and hazardous material concentrations on shielding design and the need for containment features for equipment in the facility

  20. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-11-01

    The Bear Creek Burial Grounds (BCBG) are located on the southwest flank of Pine Ridge ∼1.5 miles west of the Oak Ridge Y-12 Plant in Bear Creek Valley. This facility consists of several contiguous disposal sites identified as Burial Grounds A, B, C, and D. Each burial site consists of a series of trenches used for disposal of solid wastes and, in some cases, liquid wastes. Initially, the RCRA Closure/Postclosure plan for the BCBG was intended to apply to A Area, C-West, B Area, and the walk-in pits for BCBG. However, a plan was provided to include the B Area in the walk-in pits so that both areas cold be closed under one cap. The closure plan for B Area and the walk-in pits is presented in this document. The actual quantity and identity of materials is uncertain. The largest volume of material disposed in BCBG consists of uranium-contaminated industrial trash (paper, wood, steel, glass, and rubble)

  1. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  2. Review of environmental surveillance data around low-level waste disposal areas at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1979-01-01

    White Oak Creek and Melton Branch tributary surface streams flow through the Oak Ridge National Laboratory (ORNL) reservation and receive treated low-level radioactive liquid waste which originates from various Laboratory operations. The streams receive additional low-level liquid waste generated by seepage of radioactive materials from solid-waste burial grounds, hydrofracture sites, and intermediate-level liquid-waste sites. Over the years, various liquid-waste treatment and disposal processes have been employed at ORNL; some of these processes have included: settling basins, impoundment, storage tanks, evaporation, ground disposal in trenches and pits, and hydrofracture. Burial of solid radioactive waste was initiated in the early 1940's, and there are six burial grounds at ORNL with two currently in use. Monitoring at White Oak Dam, the last liquid control point for the Laboratory, was started in the late 1940's and is continuing. Presently, a network of five environmental monitoring stations is in operation to monitor the radionuclide content of surface waters in the White Oak watershed. In this paper, the solid waste burial grounds will be described in detail, and the environmental data tabulated over the past 29 years will be presented. The various monitoring systems used during the years will also be reviewed. The liquid effluent discharge trends at ORNL from the radioactive waste operations will be discussed

  3. Stormwater Pollution Prevention Plan TA-60 Roads and Grounds Facility and Associated Sigma Mesa Staging Area

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    This Stormwater Pollution Prevention Plan (SWPPP) is applicable to operations at the Technical Area -60 (TA-60) Roads and Grounds Facility and Associated Sigma Mesa Staging Area off Eniwetok Drive, in Los Alamos County, New Mexico.

  4. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  5. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and

  6. Geohydrology and ground-water quality beneath the 300 Area, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Bond, F.W.

    1979-06-01

    Ground water enters the 300 Area from the northwest, west, and southwest. However, throughout most of the 300 Area, the flow is to the east and southeast. Ground water flows to the northeast only in the southern portion of the 300 Area. Variations in level of the Columbia River affected the ground-water system by altering the level and shape of the 300 Area watertable. Large quantities of process waste water, when warmed during summer months by solar radiation or cooled during winter months by ambient air temperature, influenced the temperature of the ground water. Leaking pipes and the intentional discharge of waste water (or withdrawal of ground water) affected the ground-water system in the 300 Area. Water quality tests of Hanford ground water in and adjacent to the 300 Area showed that in the area of the Process Water Trenches and Sanitary Leaching Trenches, calcium, magnesium, sodium, bicarbonate, and sulfate ions are more dilute, and nitrate and chloride ions are more concentrated than in surrounding areas. Fluoride, uranium, and beta emitters are more concentrated in ground water along the bank of the Columbia River in the central and southern portions of the 300 Area and near the 340 Building. Test wells and routine ground-water sampling are adequate to point out contamination. The variable Thickness Transient (VTT) Model of ground-water flow in the unconfined aquifer underlying the 300 Area has been set up, calibrated, and verified. The Multicomponent Mass Transfer (MMT) Model of distribution of contaminants in the saturated regime under the 300 Area has been set up, calibrated, and tested

  7. Assessment of Westinghouse Hanford Company methods for estimating radionuclide release from ground disposal of waste water at the N Reactor sites

    International Nuclear Information System (INIS)

    1988-09-01

    This report summarizes the results of an independent assessment by Golder Associates, Inc. of the methods used by Westinghouse Hanford Company (Westinghouse Hanford) and its predecessors to estimate the annual offsite release of radionuclides from ground disposal of cooling and other process waters from the N Reactor at the Hanford Site. This assessment was performed by evaluating the present and past disposal practices and radionuclide migration data within the context of the hydrology, geology, and physical layout of the N Reactor disposal site. The conclusions and recommendations are based upon the available data and simple analytical calculations. Recommendations are provided for conducting more refined analyses and for continued field data collection in support of estimating annual offsite releases. Recommendations are also provided for simple operational and structural measures that should reduce the quantities of radionuclides leaving the site. 5 refs., 9 figs., 1 tab

  8. Areas of ground subsidence due to geofluid withdrawal

    Energy Technology Data Exchange (ETDEWEB)

    Grimsrud, G.P.; Turner, B.L.; Frame, P.A.

    1978-08-01

    Detailed information is provided on four geothermal areas with histories of subsidence. These were selected on the basis of: physical relevance of subsidence areas to high priority US geothermal sites in terms of withdrawn geofluid type, reservoir depth, reservoir geology and rock characteristics, and overburden characteristics; and data completeness, quality, and availability. The four areas are: Chocolate Bayou, Raft River Valley, Wairakei, and the Geysers. (MHR)

  9. Air monitoring data reveal previously unknown contamination at radioactive waste disposal area, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Kraig, D.H.; Conrad, R.C.

    2000-01-01

    Air monitoring at Area G, the low-level radioactive waste disposal area at Los Alamos National Laboratory, revealed increased air concentrations of 239 Pu and 241 Am at one location along the north boundary. This air monitoring location is a couple of meters north of a dirt road used to access the easternmost part of Area G. Air concentrations of 238 Pu were essentially unaffected which was puzzling because both 238 Pu and 239 Pu are present in the local, slightly contaminated soils. Air concentrations of these radionuclides increased about a factor of ten in early 1995 and remained at those levels until the first quarter of 1996. During the spring of 1996 air concentrations again increased by a factor of about ten. No other radionuclides were elevated, and no other Area G stations showed elevations of these radionuclides. After several formal meetings did not provide an adequate explanation for the elevations, a gamma-survey was performed and showed a small area of significant contamination just south of the monitor location. We found that in February 1995, a trench for a water line had been dug within a meter or so of the air stations. Then, during early 1996, the dirt road was rerouted such that its new path was directly over the unknown contamination. It appears that the trenching brought contaminated material to the surface and caused the firs rise in air concentrations and then the rerouting of the road over the contamination caused the second rise, during 1996. We also found that during 1976 and 1977 contaminated soils from the clean-up of an old processing facility had been spread over the filled pits in the vicinity of the air monitors. These soils, which were probably the source of the air contamination, were very low in 238 Pu which explains why we saw very little 238 Pu in the increased air concentrations. A layer of gravel and sand was spread over the contaminated area. Although air concentrations of 239 Pu and 241 Am dropped considerably, they have

  10. Ground water in selected areas in the Klamath Basin, Oregon

    Science.gov (United States)

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  11. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Krisman, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-07-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the acid pit and transuranic pits and trenches (TRU-PTs) at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues lated with ISV application at the SDA. The activities of the ISV Steering Committee are summarized in a three-volume report. Volume I identifies the systematic approach used to identify and prioritize the ISV technical issues and briefly discusses the methodology that will be employed to resolve these issues. Volumes 2 and 3 discuss each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTS, respectively. The three-volume report is a working document that will be updated as necessary to reflect current evaluation strategy for the ISV technology. This is Volume 3

  12. UNSAT-H infiltration model calibration at the Subsurface Disposal Area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Martian, P.

    1995-10-01

    Soil moisture monitoring data from the expanded neutron probe monitoring network located at the Subsurface Disposal Area (SDA) of the Idaho National Engineering Laboratory (INEL) were used to calibrate numerical infiltration models for 15 locations within and near the SDA. These calibrated models were then used to simulate infiltration into the SDA surficial sediments and underlying basalts for the entire operational period of the SDA (1952--1995). The purpose of performing the simulations was to obtain a time variant infiltration source term for future subsurface pathway modeling efforts as part of baseline risk assessment or performance assessments. The simulation results also provided estimates of the average recharge rate for the simulation period and insight into infiltration patterns at the SDA. These results suggest that the average aquifer recharge rate below the SDA may be at least 8 cm/yr and may be as high as 12 cm/yr. These values represent 38 and 57% of the average annual precipitation occurring at the INEL, respectively. The simulation results also indicate that the maximum evaporative depth may vary between 28 and 148 cm and is highly dependent on localized lithology within the SDA

  13. Elevation of surficial sediment/basalt contact in the Subsurface Disposal Area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1993-01-01

    The elevation of the surficial sediment/basalt contact at the Subsurface Disposal Area (SDA), within the Radioactive Waste Management Complex (RWMC) is presented to provide a data base for future remedial actions at this site. About 1,300 elevation data from published and unpublished reports, maps, and surveyors notes were compiled to generate maps and cross-sections of the surficial sediment/basalt contact. In general, an east to west trending depression exists in the south central portion of the SDA with basalt closer to land surface on the northern and southern boundaries of the SDA. The lowest elevation of the surficial sediment/basalt contact is 4,979 ft and the greatest is land surface at 5,012 ft. The median elevation of the sediment/basalt interface is 4,994 ft. The median depth to basalt in the SDA is 16 ft if land surface elevation is assumed to be 5,010 ft. The depth from land surface to the sediment/basalt interface ranges from 24 ft in the southeast corner of the SDA to less than 3 ft at the north-central boundary of the SDA

  14. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-01-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. Volume 1 identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues. This document Volume 2 and Volume 3 discusses each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTs, respectively

  15. Experimental Study on the Microstructure Evolution of Mixed Disposal Paste in Surface Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-05-01

    Full Text Available The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste backfill. This paper presents an experimental study on the internal structure evolution of pasty fluid mixed with different waste rock concentrations (10%, 30%, and 50% and cement dosages (1% and 2% under damage. To this end, a real-time computed tomography (CT scan is conducted using medical CT and a small loading device. Results show that UCS (uniaxial compressive strength increases when the amount of cement increases. Given a constant amount of cement, UCS increases first and then decreases as waste rock content increases. UCS is maximized at 551 kPa when the waste rock content is 30%. The paste body is a typical medium used to investigate initial damage, which mainly consists of microholes, pores, and microcracks. The initial damages also exhibit a high degree of random inhomogeneity. After loading, cracks are initiated and expand gradually from the original damage location until the overall damages are generated. The mesostructure evolution model of the paste body is divided into six categories, and this mesostructure is reasonable when the waste rock content is 30%.

  16. Influence of the extreme millennial values of the physical data of the natural environment on the ground and near underground. Application to waste disposal sites

    International Nuclear Information System (INIS)

    Guinle-Thenevin, I.

    1998-01-01

    This study deals with effects of extreme climatic events in France on perenniality of radioactive or toxic waste disposal coverings or of tailing storage barriers. Three phenomena are quantified: erosion or scraping produced by storm showers, ground freezing depth caused by harsh winters and ground drying resulted from arid summers. To quantify this phenomena, we need statistical evaluation of the climatic events (erosivity of rain showers, frost severity index, drought severity indices), a study of the soil characteristics (petrography, thermal and hydraulic properties) and numeric models of soils (finite elements or finite differences methods). Last but not least, each method is applied to French sites chosen for their climate and their proximity to real or possible storage. Therefore, we show critical parameters for the design of waste disposal covering which takes into account extreme climatic events. (author)

  17. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Krupka, K.M.; Serne, R.J.

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments

  18. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Serne, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.

  19. Protected area certificates: gaining ground for better ecosystem protection?

    Science.gov (United States)

    Segerstedt, Anna; Grote, Ulrike

    2015-06-01

    Protected areas are vital to sustain a number of ecosystem services. Yet, many protected areas are underfinanced and lack management effectiveness. Protected area certificates have been suggested as a way to resolve these problems. This instrument would allow land managers to certify an area if it meets certain conservation criteria. The certificates could then be sold on an international market, for example to companies and any consumers that are interested in environmental protection. Some pilot initiatives have been launched, yet little is known about future demand and features of protected area certificates. To fill this knowledge gap, we conduct a choice experiment with close to 400 long-distance tourists from Germany as a potential group of buyers. Our results indicate that the respondents have the highest willingness to pay for certificates that conserve sensitive ecosystems and in addition to this lead to poverty reduction and safeguard water resources. For other attributes such as a greenhouse gas reduction, the preferences are less significant. Overall, the results are rather homogenous irrespective of where the protected areas are located. These insights are important for the future design and marketing of protected area certificates.

  20. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Robert

    2012-01-01

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  1. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    DB Barnett

    2000-01-01

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  2. Radionuclide migration in ground water at a low-level waste disposal site: a comparison of predicted radionuclide transport modeling versus field observations

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Robertson, D.E.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1987-01-01

    At the Chalk River Nuclear Laboratories (CRNL), in Ontario, Canada, a number of LLW shallow-land burial facilities have existed for 25-30 years. These facilities are useful for testing the concept of site modelability. In 1984, CRNL and the Pacific Northwest Laboratory (PNL) established a cooperative research program to examine two disposal sites having plumes of slightly contaminated ground water for study. This report addresses the LLW Nitrate Disposal Pit site, which received liquid wastes containing approximately 1000-1500 curies of mixed fission products during 1953-54. The objective of this study is to test the regulatory requirement that a site be modeled and to use the Nitrate Disposal Pit site as a field site for testing the reliability of models in predicting radionuclide movement in ground water. The study plan was to approach this site as though it were to be licensed under the requirements of 10 CFR 61. Under the assumption that little was known about this site, a characterization plan was prepared describing the geologic, hydrologic, and geochemical information needed to assess site performance. After completion of the plan, site data generated by CRNL were selected to fill the plan data requirements. This paper describes the site hydrogeology, modeling of ground water flow, the comparison of observed and predicted radionuclide movement, and summarizes the conclusions and recommendations. 3 references, 10 figures

  3. Seismic ground motion and hazard assessment of the Greater Accra Metropolitan Area, southeastern Ghana

    International Nuclear Information System (INIS)

    Amponsah, P.E.; Banoeng-Yakubo, B.K.; Asiedu, D.; Vaccari, F.; Panza, G.F.

    2008-08-01

    The seismic ground motion of the Greater Accra Metropolitan area has been computed and the hazard zones assessed using a deterministic hybrid approach based on the modal summation and finite difference methods. The seismic ground motion along four profiles located in the Greater Accra Metropolitan Area has been modelled using the 1939 earthquake of magnitude 6.5(M L ) as the scenario earthquake. Synthetic seismic waveforms from which parameters for engineering design such as peak ground acceleration, velocity and spectral amplifications have been produced along the geological cross sections. From the seismograms computed, the seismic hazard of the metropolis, expressed in terms of peak ground acceleration and peak ground velocity have been estimated. The peak ground acceleration estimated in the study ranges from 0.14 - 0.57 g and the peak ground velocity from 9.2 - 37.1cms -1 . The presence of low velocity sediments gave rise to high peak values and amplifications. The maximum peak ground accelerations estimated are located in areas with low velocity formations such as colluvium, continental and marine deposits. Areas in the metropolis underlain by unconsolidated sediments have been classified as the maximum damage potential zone and those underlain by highly consolidated geological materials are classified as low damage potential zone. The results of the numerical simulation have been extended to all areas in the metropolis with similar geological formation. (author)

  4. Contamination of ground water as a consequence of land disposal of dye waste mixed sewage effluents: a case study of Panipat district of Haryana, India.

    Science.gov (United States)

    Dubey, S K; Yadav, Rashmi; Chaturvedi, R K; Yadav, R K; Sharma, V K; Minhas, P S

    2010-09-01

    Spatial samples of surface and ground water collected from land disposal site of dye waste mixed sewage effluents at Binjhole, in Haryana, India were analyzed to evaluate its effect on quality of pond, hand pumps and ground waters for human health and irrigation purposes. It was found that average COD and TDS of dye houses discharge (310 and 3,920 mg/L) and treated sewage (428 and 1,470 mg/L) on mixing acquired the values of 245 and 1,780 mg/L and only Pb (0.24 microg/L) was above the permissible limit for irrigation purpose. Disposal of this mixed water to village pond changes the COD and TDS to 428 and 1,470 mg/L, respectively. COD and TDS of hand pump water samples were 264 and 1,190 mg/L, where as in tube well water these values were 151 and 900 mg/L. Though the ground water contamination seemed to decrease with the increasing distance from the pond but COD, TDS and BOD values continued to be quite high in water samples drawn from the hand pumps up to a distance of 500 m from pond. However, the major cause of the concern in these waters was Pb (0.11-0.45 ppm). Crops grown with this water shows accumulation of heavy metals like Pb,Cd, Fe, Mn, Ni, Cu, and Zn but in few crops they (Zn, Pb and Cd) exceed the safe limits. Regular consumption of these crop products may lead heavy metal toxicity. It was concluded from this study that the deep seepage of effluents led to deterioration of ground water quality for drinking purposes and the well waters rendered unfit for irrigation purposes within a span of 2 years. This warrants appropriate disposal measures for sewage and dye industry effluents in order to prevent deterioration of ground water and health of human and animals.

  5. Delineating shallow ground water irrigated areas in the Atankwidi ...

    African Journals Online (AJOL)

    user

    Basin Lan Use/Land Cover (LULC) and irrigated area Mapping using. Continuous Streams of MODIS Data. Remote Sensing Environ.,. 95(3): 317-341. Neckel H, Labs D (1984). The solar radiation between 3300 and 12500. A. Solar Phys., 90: 205-258. Tucker CJ, Grant DM, Dykstra JD (2005). NASA's global orthorectified.

  6. [Arsenic contents in soil, water, and crops in an e-waste disposal area].

    Science.gov (United States)

    Yao, Chun-xia; Yin, Xue-bin; Song, Jing; Li, Chen-xi; Qian, Wei; Zhao, Qi-guo; Luo, Yong-ming

    2008-06-01

    In order to study whether disposing electronic wastes and secondary metal smelting could cause an arsenic pollution in the environment or not, Luqiao town, Taizhou City, Zhejiang Province was selected as a study area. The main purpose of this paper was to characterize arsenic contents in the local environment, including waters, sediments, soils and rice, and to assess the potential risk to humans. Additionally, the arsenic spatial distribution property and arsenic uptake-translocation rule in soil-rice system were also studied. The results showed that the average arsenic levels in the surface water and the groundwater were 8.26 microg/L and 18.52 microg/L, respectively, which did not exceed the limiting value of Chinese Environment Standards class III . Whereas,some groundwater exceeded the recommended standard by the WHO for drinking water (10 microg/L). The arsenic (on average 7.11 mg/kg) in paddy soils and arsenic (on average 6.17 mg/kg) in the vegetable garden soils were lower than the value recommended by the National Standard (level I). The average arsenic contents in brown rice and husks were 165.1 microg/kg and 144.2 microg/kg, which was also lower than the Chinese Foods Quality Standard. The arsenic contents between the corresponding soils-rice and husks-brown rice showed significantly positive correlations. By comparison, the arsenic contents of soils and husks collected around electroplating were relatively higher than most of other pollutant sources, indicating the electroplating may lead accumulation of arsenic in the paddy soil-rice system.

  7. ASSESSMENT OF GROUND WATER POLLUTION IN PARKING AREAS

    Directory of Open Access Journals (Sweden)

    Janina Piekutin

    2014-12-01

    Full Text Available Creation of rain sewer is connected with dehydration of roads and coexisting objects. The paper presents a discussion upon the issue of groundwater contamination by petroleum compounds and other pollutants from transport based on studies of groundwater within the parking lots. The study included 9 parking areas, including 7 in Bialystok, 1 in a residential area outside of Bialystok in Ignatki, and one in Kleosin. The tested waters were subject to determination of COD, total suspension, and petroleum substances expressed as a mineral oil index. The studies have shown that the concentrations of determined parameters were in most cases proportional to the larger runoffs and concentration of petroleum compounds increased with the increase of suspension. It has been shown that from part of the parking lots, the meteoric water was discharged directly into watercourses and exceeds the permissible limits regulated by the Decree.

  8. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 6. Characterization and description of areas. Sjaelland

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 5 and 6 on Zealand. (LN)

  9. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 7. Characterization and description of areas. Langeland, Taesinge and Fyn

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 7,8,9,10, and 11 on the islands Langeland, Taasinge and Funen. (LN)

  10. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 8. Characterization and description of areas. Oestjylland

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 12,13,14 and 15 in Eastern Jutland. (LN)

  11. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 4. Characterization and description of areas. Bornholm

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities and high sorption potentials of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier been focused on deep seated salt deposits and basement rocks, but the Tertiary clays were also mapped. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 2-3 more precise locations, where detailed field investigations of the geological, hydrogeological-hydrochemical and technical conditions will be performed. The present report describes areas 1 and 2 on Bornholm, East Denmark. (LN)

  12. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 9. Characterization and description of areas. Limfjorden

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes the areas 16,17,18,19,20 and 21 around Limfjorden. (LN)

  13. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 5. Characterization and description of areas. Falster and Lolland

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes areas 3 and 4 on Falster and Lolland. (LN)

  14. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 4. Characterization and description of areas. Bornholm

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities and high sorption potentials of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier been focused on deep seated salt deposits and basement rocks, but the Tertiary clays were also mapped. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 2-3 more precise locations, where detailed field investigations of the geological, hydrogeological-hydrochemical and technical conditions will be performed. The present report describes areas 1 and 2 on Bornholm, East Denmark. (LN)

  15. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 10. Characterization and description of areas. Nordjylland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes the area 22 in Northern Jutland. (LN)

  16. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 8. Characterization and description of areas. OEstjylland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 12,13,14 and 15 in Eastern Jutland. (LN)

  17. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 7. Characterization and description of areas. Langeland, Taasinge and Fyn

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, high sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas where a waste disposal potentially can be located. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 7,8,9,10, and 11 on the islands Langeland, Taasinge and Funen. (LN)

  18. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 9. Characterization and description of areas. Limfjorden

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes the areas 16,17,18,19,20 and 21 around Limfjorden. (LN)

  19. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 5. Characterization and description of areas. Falster and Lolland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological, hydrochemical and geotechnical conditions will be performed. The present report describes areas 3 and 4 on Falster and Lolland. (LN)

  20. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 6. Characterization and description of areas. Sjaelland

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by low water flow possibilities, strong sorption capacity for many radionuclides and self-sealing properties. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. The salt diapirs and the salt deposits are not included in the present study. The task is to find approximately 20 areas potentially useful for a waste disposal. The 20 areas have to be reduced to 1-3 most potential locations where detailed field investigations of the geological, hydrogeological - hydrochemical and geotechnical conditions will be performed. The present report describes the areas 5 and 6 on Zealand. (LN)

  1. Effects of uranium mining on ground water in Ambrosia Lake area, New Mexico

    International Nuclear Information System (INIS)

    Kelly, T.E.; Link, R.L.; Schipper, M.R.

    1979-01-01

    This paper discusses the impact of mining on the principal aquifer in the Ambrosia Lake area, the Westwater Canyon Member of the Morrison Formation. Loss of potentiometric head has resulted in interformational migration of ground water. This migration has produced local deterioration in chemical quality of the ground water. 7 refs

  2. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 11. Description of areas. Danish and English summary

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by choosing deposits with low water flow and high sorption potential of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks but the Tertiary clays were also mapped. The salt diapirs, salt pillows and salt deposits and deep basement rocks are not included in the present study. These rocks and deposits are situated too deep for the present study and salt deposits seem to be unstable for a disposal (e.g. German salt mines). The regional geologic survey based on existing data was concluded by selecting 22 areas in Denmark. There remains now to reduce the number of potential areas to 1-3 where detailed field studies will be performed in order to select the final location. (LN)

  3. Monitoring ground subsidence in Shanghai maglev area using two kinds of SAR data

    Science.gov (United States)

    Wu, Jicang; Zhang, Lina; Chen, Jie; Li, Tao

    2012-11-01

    Shanghai maglev is a very fast traffic tool, so it is very strict with the stability of the roadbed. However, the ground subsidence is a problem in Shanghai because of the poor geological condition and human-induced factors. So it is necessary to monitor ground subsidence in the area along the Shanghai maglev precisely and frequently. Traditionally, a precise levelling method is used to survey along the track. It is expensive and time consuming, and can only get the ground subsidence information on sparse benchmarks. Recently, the small baseline differential SAR technique plays a valuable part in monitoring ground subsidence, which can extract ground subsidence information with high spatial resolution in a wide area. In this paper, L-band ALOS PALSAR data and C-band Envisat ASAR data are used to extract ground subsidence information using the SBAS method in the Shanghai maglev area. The results show that the general pattern of ground subsidence from InSAR processing of two differential bands of SAR images is similar. Both results show that there is no significant ground subsidence on the maglev line. Near the railway line, there are a few places with subsidence rates at about -20 mm/y or even more, such as Chuansha town, the junction of the maglev and Waihuan road.

  4. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  5. Liabilities for the decommissioning and disposal in the nuclear area. Analysis and concept of reformation

    International Nuclear Information System (INIS)

    Meyer, Bettina

    2012-01-01

    The contribution under consideration examines the adequacy of the reserves for decommissioning / dismantling and disposal in order to finance long-term tasks. A reform concept is presented. The two key components of the reformation are the establishment of a public fund for the long-term obligations and a stronger insolvency protection of medium-term nuclear liabilities.

  6. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory's continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site

  7. Pollutant flows from a phosphogypsum disposal area to an estuarine environment: An insight from geochemical signatures

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-López, Rafael, E-mail: rafael.perez@dgeo.uhu.es [Department of Geology, University of Huelva, Campus ‘El Carmen’, 21071 Huelva (Spain); Macías, Francisco; Cánovas, Carlos Ruiz [Department of Geology, University of Huelva, Campus ‘El Carmen’, 21071 Huelva (Spain); Sarmiento, Aguasanta Miguel [Department of Geodynamics and Palaeontology, University of Huelva, Campus ‘El Carmen’, 21071 Huelva (Spain); Pérez-Moreno, Silvia María [Department of Applied Physics, University of Huelva, Campus ‘El Carmen’, 21071 Huelva (Spain)

    2016-05-15

    Phosphogypsum wastes from phosphate fertilizer industries are stockpiled in stacks with high contamination potential. An assessment of the environmental impact, including the use of geochemical tracers such as rare earth elements (REE) and Cl/Br ratios, was carried out in the phosphogypsum stack located at the Estuary of Huelva (SW Spain). Inside the pile, highly polluted acid pore-waters flows up to the edge of the stack, emerging as small fluvial courses, known as edge outflows, which discharge directly into the estuary. The disposal area is divided into four zones; two unrestored zones with surface ponds of industrial process water and two a priori already-restored zones. However, an extensive sampling of edge outflows conducted in the perimeter of the four zones demonstrates the high potential of contamination of the whole stack, including those zones that were supposedly restored. These solutions are characterized by a pH of 1.9 and concentrations of 6100 mg/L for P, 1970 mg/L for S, 600 mg/L for F, 200 mg/L for NH{sub 4}{sup +}, 100 mg/L for Fe, 10–30 mg/L for Zn, As and U, and 1–10 mg/L for Cr, Cu and Cd. Preliminary restoration actions and those planned for the future prioritize removal of ponded process water and cover of the phosphogypsum with artificial topsoil. These actions presuppose that the ponded process water percolates through the porous medium towards the edge up to reach the estuary. However, geochemical tracers rule out this connection and point to an estuarine origin for these leachates, suggesting a possible tidal-induced leaching of the waste pile in depth. These findings would explain the ineffectiveness of preliminary restoration measures and should be considered for the development of new action plans. - Highlights: • Acidity and contaminants from phosphogypsum leaching are released to an estuary. • Already-restored zones act as a pollution source just as unrestored zones. • Cl/Br ratios and REE patterns were suitable to assess

  8. Ground-water levels and precipitation data at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, October 1988-September 2000

    Science.gov (United States)

    Zettwoch, Douglas D.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.

  9. Environmental requirements for radioactive wastes final disposal in shallow ground repositories; Requisitos ambientais para disposicao final de rejeitos radioativos em repositorios de superficie

    Energy Technology Data Exchange (ETDEWEB)

    Raduan, Rosane Napolitano

    1994-12-31

    Low and intermediate level radioactive waste confinement have been a well know practice for about five decades. Wastes disposal in shallow ground repositories are originated in the nuclear fuel cycle and the application of isotopes in medicine, industry, research and education and other activities. An adequate choice of sites for repositories constructions is based on a criterions analysis of a series of requirements for environmental impact assessment. This analysis allows, together with physical and chemical parameters of the immobilized and packed radioactive wastes, to carry out this choice. The main objective of this work is to have an overview of principal topics that allows an environment impact analysis resulting from a controlled radioactive waste disposal. (author). 68 refs., 14 figs., 6 tabs.

  10. A convenient method for estimating the contaminated zone of a subsurface aquifer resulting from radioactive waste disposal into ground

    International Nuclear Information System (INIS)

    Fukui, Masami; Katsurayama, Kousuke; Uchida, Shigeo.

    1981-01-01

    Studies were conducted to estimate the contamination spread resulting from the radioactive waste disposal into a subsurface aquifer. A general equation, expressing the contaminated zone as a function of radioactive decay, the physical and chemical parameters of soil is presented. A distribution coefficient was also formulated which can be used to judge the suitability of a site for waste disposal. Moreover, a method for predicting contaminant concentration in groundwater at a site boundary is suggested for a heterogeneous media where the subsurface aquifer has different values of porosity, density, flow velocity, distribution coefficient and so on. A general equation was also developed to predict the distribution of radionuclides resulting from the disposal of a solid waste material. The distributions of contamination was evaluated for 90 Sr and 239 Pu which obey a linear adsorption model and a first order kinetics respectively. These equations appear to have practical utility for easily estimating groundwater contamination. (author)

  11. Compliance matrix for the mixed waste disposal facilities, Trenches 31 ampersand 34, burial ground 218-W-5

    International Nuclear Information System (INIS)

    Carlyle, D.W.

    1994-01-01

    The purpose of the Trench 31 ampersand 34 Mixed Waste Disposal Facility Compliance Matrix is to provide objective evidence of implementation of all regulatory and procedural-institutional requirements for the disposal facilities. This matrix provides a listing of the individual regulatory and procedural-institutional requirements that were addressed. Subject matter experts reviewed pertinent documents that had direct or indirect impact on the facility. Those found to be applicable were so noted and listed in Appendix A. Subject matter experts then extracted individual requirements from the documents deemed applicable and listed them in the matrix tables. The results of this effort are documented in Appendix B

  12. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site

  13. Preliminary report on the geology and ground-water supply of the Newark, New Jersey, area

    Science.gov (United States)

    Herpers, Henry; Barksdale, Henry C.

    1951-01-01

    In the Newark area, ground water is used chiefly for industrial cooling, air-conditioning, general processing, and for sanitary purposes. A small amount is used in the manufacture of beverages. Total ground-water pumpage in Newark is estimated at not less than 20,000,000 gallons daily. The Newark area is underlain by formations of Recent, Pleistocene and Triassic age, and the geology and hydrologic properties of these formations are discussed. Attention is called to the important influence of a buried valley in the rock floor beneath the Newark area on the yield of wells located within it. Data on the fluctuation of the water levels and the variation in pumpage are presented, and their significance discussed. The results of a pumping test made during the investigation were inconclusive. The beneficial results of artificially recharging the aquifers in one part of the area are described. The intrusion of salt water into certain parts of the ground-water body is described and graphically portrayed by a map showing the chloride concentration of the ground water in various parts of the City. Insofar as available data permit, the chemical quality of the ground water is discussed and records are given of the ground-water temperatures in various parts of the City. There has been marked lowering of the water table in the eastern part of the area, accompanied by salt water intrusion, indicating that the safe yield of the formations in this part of Newark has probably been exceeded. It is recommended that the study of the ground-water resources of this area be continued, and that artificial recharging of the aquifers be increased over as wide an area as possible.

  14. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 1. Data, maps, models and methods used for selection of potential areas

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. In the present study, the salt diapirs and the salt deposits are not included. The present report briefly describes the existing data collections (including databases, maps and models), that are used during the work of selection of ca. 20 potentially suitable areas. Most of the information is stored in GEUS databases: Location of boreholes, borehole data, rock sediment and ground water compounds, maps, geophysical data and much more, but information is also collected from other institutions. The methods are described in more details (chapter 6) and this description is the direct background for the selection process, the characterisation of the 20 areas and for the final selection of the 2 or 3 most potential sites. (LN)

  15. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 1. Data, maps, models and methods used for selection of potential areas

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks. Nevertheless, the Tertiary clays were mapped as well. In the present study, the salt diapirs and the salt deposits are not included. The present report briefly describes the existing data collections (including databases, maps and models), that are used during the work of selection of ca. 20 potentially suitable areas. Most of the information is stored in GEUS databases: Location of boreholes, borehole data, rock sediment and ground water compounds, maps, geophysical data and much more, but information is also collected from other institutions. The methods are described in more details (chapter 6) and this description is the direct background for the selection process, the characterisation of the 20 areas and for the final selection of the 2 or 3 most potential sites. (LN)

  16. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-04-13

    Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes

  17. Effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are identified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelerated vertical movement of moisture through the clay liner. 2 references, 8 figures

  18. The effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are indentified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelarated vertical movement of moisture through the clay liner

  19. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.; Fowler, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-12-18

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements.

  20. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.; Fowler, J.R.

    1992-01-01

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements

  1. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs

  2. Data analysis of the 1984 and 1986 soil sampling programs at Materials Disposal Area T in the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Drennon, B.J.

    1993-09-01

    An environmental surveillance program for Materials Disposal Area T (MDA-T) at Los Alamos, New Mexico is described. The waste-use history of this disposal site is described, followed by a description of the materials and methods used to analyze data from two surface soil radionuclide sampling programs performed at this disposal site. The disposal site's physical features are related to the spatial distribution of radionuclide concentration contours in an attempt to evaluate radionuclide migration mechanisms in and around the site. The usefulness of the data analysis efforts is evaluated and recommendations are made for future studies

  3. A brief analysis and description of transuranic wastes in the subsurface disposal area of the radioactive waste management complex at INEL

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Knight, J.L.

    1991-02-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area during the period 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and special-case wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and makes recommendations for future efforts at waste characterization. 20 refs., 3 figs., 17 tabs

  4. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

  5. Radiological performance assessment for the E-Area Vaults Disposal Facility. Appendices A through M

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1994-04-15

    These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file. (GHH)

  6. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    1994-01-01

    These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file

  7. Probabilistic risk assessment for the Sandia National Laboratories Technical Area V Liquid Waste Disposal System surface impoundments

    International Nuclear Information System (INIS)

    Dawson, L.A.; Eidson, A.F.

    1996-01-01

    A probabilistic risk assessment was completed for a former radioactive waste disposal site. The site, two unlined surface impoundment, was designed as part of the Liquid Waste Disposal System (LWDS) to receive radioactive effluent from nuclear reactors in Technical Area-V (TA-V) at Sandia National Laboratories/New Mexico (SNL/NM). First, a statistical comparison of site sampling results to natural background, using EPA methods, and a spatial distribution analysis were performed. Risk assessment was conducted with SNL/NM's Probabilistic Risk Evaluation and Characterization Investigation System model. The risk assessment indicated that contamination from several constituents might have been high enough to require remediation. However, further analysis based on expected site closure activities and recent EPA guidance indicated that No Further Action was acceptable

  8. Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10 -6 /day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs

  9. Disposal of solid radioactive waste of nuclear power plant

    International Nuclear Information System (INIS)

    YU Shichen.

    1986-01-01

    The contaminations of marine enviroment by the disposal of radwastes should not been expected, then ocean disposal has been stoped in some countries, and land disposal of solid radwastes should been a better method for mankind and environment protection. Ground burial near the surface is currently considered to be feasible. Storage in spent pit or in plant area also should been adapted in several countries

  10. Extraction and textural characterization of above-ground areas from aerial stereo pairs: a quality assessment

    Science.gov (United States)

    Baillard, C.; Dissard, O.; Jamet, O.; Maître, H.

    Above-ground analysis is a key point to the reconstruction of urban scenes, but it is a difficult task because of the diversity of the involved objects. We propose a new method to above-ground extraction from an aerial stereo pair, which does not require any assumption about object shape or nature. A Digital Surface Model is first produced by a stereoscopic matching stage preserving discontinuities, and then processed by a region-based Markovian classification algorithm. The produced above-ground areas are finally characterized as man-made or natural according to the grey level information. The quality of the results is assessed and discussed.

  11. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

  12. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    International Nuclear Information System (INIS)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS

  13. Radionuclide concentrations in/on vegetation at radioactive-waste disposal Area G during the 1995 growing season. Progress report

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Vold, E.L.; Naranjo, L. Jr.

    1996-01-01

    Overstory (pinon pine) and understory (grass and forb) vegetation were collected within and around selected points at Area G--a low- level radioactive solid-waste disposal facility at Los Alamos National Laboratory--for the analysis of tritium ( 3 H), strontium ( 90 Sr), plutonium ( 238 Pu and 239 Pu), cesium ( 137 Cs), and total uranium. Also, heavy metals (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and Tl) in/on vegetation were determined. In general, most (unwashed) vegetation collected within and around Area G contained 3 H, uranium, 238 Pu, and 239 Pu in higher concentrations than vegetation collected from background areas. Tritium, in particular, was detected as high as 7300 pCi mL -1 in understory vegetation collected from the west side of the transuranic (TRU) pads. The south and west ends of the tritium shaft field also contained elevated levels of 3 H in overstory, and especially in understory vegetation, as compared to background; this suggests that 3 H may be migrating from this waste repository through surface and subsurface pathways. Also, understory vegetation collected north of the TRU pads (adjacent to the fence line of Area G) contained the highest values of 238 Pu and 239 Pu as compared to background, and may be a result of surface holding, storage, and/or disposal activities

  14. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    International Nuclear Information System (INIS)

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs

  15. Flow and geochemistry along shallow ground-water flowpaths in an agricultural area in southeastern Wisconsin

    Science.gov (United States)

    Saad, D.A.; Thorstenson, D.C.

    1998-01-01

    Water-quality and geohydrologic data were collected from 19 monitor wells and a stream in an agricultural area in southeastern Wisconsin. These sites were located along a 2,700-ft transect from a local ground-water high to the stream. The transect is approximately parallel to the horizontal direction of ground-water flow at the water table. Most of the wells were installed in unconsolidated deposits at five locations along the transect and include an upgradient well nest, a midgradient well nest, a downgradient well nest, wells in the lowland area near the stream, and wells installed in the stream bottom. The data collected from this study site were used to describe the water quality and geohydrology of the area and to explain and model the variations in water chemistry along selected ground-water flowpaths.

  16. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  17. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m(sup 3)) (30 cubic yards[yd(sup 3)]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet[ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m(sup 3) (3000 yd(sup 3)) of construction-related debris

  18. InSAR observation of seasonal ground surface deformation in permafrost area near Batagay, Siberia

    Science.gov (United States)

    Yanagiya, K.; Furuya, M.

    2017-12-01

    Thawing of permafrost can lead to ground deformation. Ground deformation has been studied as a serious problem in the Arctic Ocean coastal area such as Russia for a long time, because the deformation causes damage to architectures at these areas. However, there have been no quantitative observation data, and the spatial and temporal distributions have hardly been investigated. On the other hand, by the recently global warming influence, the importance of organic carbon stored in permafrost is pointed out. Although the release of methane gas is confirmed in some thermokarst lakes, it is very difficult to observe the permafrost in a wide area by field study. Instead, it is technically possible to monitor the subsidence and uplift of the ground over the permafrost area, which could potentially make a significant contribution to the monitoring thawing process of permafrost. In this study, we attempted to detect ground deformation signal in permafrost area by remote sensing using interferometric synthetic aperture radar (InSAR). Using the data of two SAR satellites ALOS and ALOS2 launched by JAXA, we observed recent ground deformation from 2007 to 2016. Particularly recent observations of ALOS2 from 2014 to 2016 discovered distant displacements towards the LOS direction in the northeast region from the town of Batagay,Siberia. The diameter of the displacements area covers about 7.7 km. In this study, we considered that this signal is likely to be due to permafrost thawing, we also investigated the seasonal characteristics and looked back ALOS data of this area. In addition, since the high latitude area, observation results include noise due to the ionosphere, so we tried to remove the noise.

  19. Chemical hazard evaluation of material disposal area (MDA) B closure project

    Energy Technology Data Exchange (ETDEWEB)

    Laul, Jagdish C [Los Alamos National Laboratory

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  20. Outfall as a Suitable Alternative for Disposal of Municipal Wastewater in Coastal Areas

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2005-11-01

    Full Text Available Disposal of raw municipal wastewater or effluent of preliminary treatment into the sea and ocean is economically more accepted and technically more efficient than secondary treatment. In this method, the wastewater disposed at the bottom of the sea in some points from diffuser. Nowadays, lots of researchers select outfall as a suitable alternative treatment method for coastal cities. The goal of this paper was to introduce the outfall as a wastewater treatment method and its design criteria considering different characteristics of the sea such as salinity, density, temperature, stratification etc. In addition, stagnant sea and thermal stratification is reviewed. In this paper the latest information were reviewed. In this alternative the wastewater treated under dilution, mixing and natural conditions. Moreover, sensitive coastal point are preserved from different wastewater pollutants. Usually, there is no limitation regarding discharge of coliform, DO, BOD, and nutrient concentrations in initial mixing zoom. The parameters such as thermal stratification, salinity stratification, density stratification, marine flows influence design of outfall.

  1. Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Larry Hull; Carolyn Bishop

    2004-01-01

    Between 1984 and 1993, MgCl 2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl - might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl - in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl - concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl - concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl - was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl - remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl - in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area

  2. Ground water investigations in connection with planned energy wells in the Lena area, Melhus centre

    International Nuclear Information System (INIS)

    Storroe, Gaute

    2000-01-01

    In March 2000 the Norwegian Geologic Survey (NGU) was requested to carry out ground water investigations in the Lena area at Melhus centre by the firms E-Tek AS and Statoil. The background for the investigations was the plans of exploiting ground heat connected to a housing project lead by Selmer Bolig AS. The aim of the project was to document the possibilities for extracting ground heat from loose soil well(s) in the selected construction area. The needed amount of water is in the size of 50 m 3 /hour (14l/s). In addition the conditions of currents, ground water quality and possibilities for refiltering of the ground water was to be mapped. In conclusion it may be said that it most likely will be possible to meet the stipulated water requirements (50 m 3 /hour) by establishing a full scale production well within the construction area. The ground water currents in the Lena area run from north to south. The ground water surface is relatively flat with an incline of 0.1 - 0.2 % (1-2 mm/m). The possibilities for refiltering pumped water seem to be good. The conditions should be mapped more closely through refiltering tests. All of the collected ground water samples exceed the limiting values stipulated by the drinking water regulations as to alkalinity, sulphate, calcium, potassium and manganese. The tests from Obs2 and from the ''municipal well'' exceed the limits for chloride and sodium as well. This indicates that unwanted precipitations of both chalk and manganese may occur. Large quantities of sea salts (chloride and sodium) may also have a corrosive effect. Through calculations using the Ryznar's Stability Index (RSI) it is evident that the tests from Obs1 and Obs2 are in the limiting area between ''problem free water'' and ''corrosive water'', while the water from the municipal well must be characterised as very corrosive. According to information from the managing personnel there have not been registered problems with precipitations or corrosion in heat

  3. Seismic microzonation on peak ground acceleration for Sapporo area; Sapporo chiiki no seismic microzonation

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, S [Muroran Institute of Technology, Hokkaido (Japan); Vuetibau, L

    1997-10-22

    With an objective for use as fundamental information and data for measures to prevent disasters from regional earthquakes, microzonation was carried out on the Sapporo area. The present study has conducted comparisons and discussions on frequency distributions of maximum surface acceleration in the Sapporo area and the previously analyzed Muroran, Tomakomai and Obihiro areas. In the Muroran area, the frequency is distributed widely from 50 to 220 gal, while it is distributed narrowly from 110 to 170 gal in the Tomakomai area, and 90 to 160 gal in the Obihiro area. Such distributions have been formed possibly because the Muroran area has different kinds of grounds exist with hills and lowlands tangled, while the Tomakomai and Obihiro areas have nearly the same ground conditions with the topography being flat and the areas being located in an alluvial plain with soft Quaternary bed having been grown to a great thickness. The Sapporo area showed distribution close to that in the Muroran area. The maximum surface acceleration may vary even in the same mesh. This indicates that more detailed seismic microzonation is necessary to establish more effective means to prevent disasters from earthquakes. 10 refs., 4 figs., 1 tab.

  4. GROUND DEFORMATION EXTRACTION USING VISIBLE IMAGES AND LIDAR DATA IN MINING AREA

    Directory of Open Access Journals (Sweden)

    W. Hu

    2016-06-01

    Full Text Available Recognition and extraction of mining ground deformation can help us understand the deformation process and space distribution, and estimate the deformation laws and trends. This study focuses on the application of ground deformation detection and extraction combining with high resolution visible stereo imagery, LiDAR observation point cloud data and historical data. The DEM in large mining area is generated using high-resolution satellite stereo images, and ground deformation is obtained through time series analysis combined with historical DEM data. Ground deformation caused by mining activities are detected and analyzed to explain the link between the regional ground deformation and local deformation. A district of covering 200 km2 around the West Open Pit Mine in Fushun of Liaoning province, a city located in the Northeast China is chosen as the test area for example. Regional and local ground deformation from 2010 to 2015 time series are detected and extracted with DEMs derived from ZY-3 images and LiDAR point DEMs in the case study. Results show that the mean regional deformation is 7.1 m of rising elevation with RMS 9.6 m. Deformation of rising elevation and deformation of declining elevation couple together in local area. The area of higher elevation variation is 16.3 km2 and the mean rising value is 35.8 m with RMS 15.7 m, while the deformation area of lower elevation variation is 6.8 km2 and the mean declining value is 17.6 m with RMS 9.3 m. Moreover, local large deformation and regional slow deformation couple together, the deformation in local mining activities has expanded to the surrounding area, a large ground fracture with declining elevation has been detected and extracted in the south of West Open Pit Mine, the mean declining elevation of which is 23.1 m and covering about 2.3 km2 till 2015. The results in this paper are preliminary currently; we are making efforts to improve more precision results with

  5. Regulatory analysis and lessons learned from the LLRW [low-level radioactive waste] disposal area at West Valley, New York: Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The New York State Energy Research and Development Authority has sponsored a project to develop an integrated set of site management plans for the West Valley low-level radioactive waste (LLRW) disposal area. The plans were directed to upgrade the disposal area so that passive custodial care and monitoring activities would be sufficient to protect public health and safety and the environment. Tasks 5 and 6, Regulatory Analysis and Lessons Learned, are the subject of this report. The regulatory analysis identified areas of inconsistencies between the historic site operations and the current state and federal LLRW disposal regulations and guidelines. The lessons learned task identified the causes of the disposal problems at West Valley, discussed the lessons learned, and described the responses developed by the NRC and industry to the lessons learned. 85 refs., 6 figs., 19 tabs

  6. Ground-Magnetic Study Of Ijapo Area Of Akure, Ondo State, Nigeria ...

    African Journals Online (AJOL)

    Ground-magnetic survey of Ijapo area in Akure township which is situated in the western part of Nigeria and falls within the Precambrian basement complex terrain of the country was carried out with the intention of determining and establishing the geologic structures, its potential for groundwater accumulation and ...

  7. Radioactive liquid wastes discharged to ground in the 200 Areas during 1978

    International Nuclear Information System (INIS)

    Anderson, J.D.; Poremba, B.E.

    1979-01-01

    This document is issued quarterly for the purpose of summarizing the radioactive liquid wastes that have been discharged to the ground in the 200 Areas. In addition to data for 1978, cumulative data since plant startup are presented. Also, in this document is a listing of decayed activity to the various plant sites

  8. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  9. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Matoso, Erika; Cadore, Solange

    2015-01-01

    Barium can be found in waters up to 1 mg L -1 and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L -1 and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  10. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 11. Description of areas. Danish and English summary; Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 11. Omraadebeskrivelser - Description of areas. Dansk og engelsk resume

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.

    2011-07-01

    The low - and intermediate level radioactive waste from Risoe: the nuclear reactor buildings, different types of material from the research periods and waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The task is to locate and recognize sediments or rocks with low permeability which can isolate the radioactive waste from the surrounding deposits, the groundwater resources, the recipients and from human activities. The sediments or rocks shall also act as a protection if the waste disposal leaks radioactive material to the surroundings. This goal can be reached by choosing deposits with low water flow and high sorption potential of the sediments or rocks. The investigation of geological deposits as potential waste disposals for high radioactive waste from nuclear power plants has earlier focused on deep seated salt deposits and basement rocks but the Tertiary clays were also mapped. The salt diapirs, salt pillows and salt deposits and deep basement rocks are not included in the present study. These rocks and deposits are situated too deep for the present study and salt deposits seem to be unstable for a disposal (e.g. German salt mines). The regional geologic survey based on existing data was concluded by selecting 22 areas in Denmark. There remains now to reduce the number of potential areas to 1-3 where detailed field studies will be performed in order to select the final location. (LN)

  11. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing tritium from treatment of Hanford Site liquid wastes at the 200 Area Effluent Treatment Facility (ETF). Since operation of the SALDS began in December 1995, discharges of tritium have totaled {approx}304 Ci, only half of what was originally predicted for tritium quantity through 1999. Total discharge volumes ({approx}2.7E+8 L) have been commensurate with predicted volumes to date. This document reports the results of all tritium analyses in groundwater as determined from the SALDS tritium-tracking network since the first SALDS wells were installed in 1992 through July 1999, and provides interpretation of these results as they relate to SALDS operation and its effect on groundwater. Hydrologic and geochemical information are synthesized to derive a conceptual model, which is in turn used to arrive at an appropriate approach to continued groundwater monitoring at the facility.

  12. The use of an experimental device for disposal into the ground at the Centre d'Etudes Nucleaires at Saclay

    International Nuclear Information System (INIS)

    Amavis, R.; Vaccarezza, J.

    1960-01-01

    This report presents the results of the 3 H and 90 Sr percolation tests carried out with Saclay soil, both in the laboratory in the ground itself. The extrapolation using the parameters introduced by Hiester and Vermeulen, as well as by W.J. Kaufman, appear satisfactory when the soil sample is homogeneous. (author) [fr

  13. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground

    International Nuclear Information System (INIS)

    Werner, Kent; Hamren, Ulrika; Collinder, Per; Ridderstolpe, Peter

    2010-09-01

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  14. Analyses of GPR signals for characterization of ground conditions in urban areas

    Science.gov (United States)

    Hong, Won-Taek; Kang, Seonghun; Lee, Sung Jin; Lee, Jong-Sub

    2018-05-01

    Ground penetrating radar (GPR) is applied for the characterization of the ground conditions in urban areas. In addition, time domain reflectometry (TDR) and dynamic cone penetrometer (DCP) tests are conducted for the accurate analyses of the GPR images. The GPR images are acquired near a ground excavation site, where a ground subsidence occurred and was repaired. Moreover, the relative permittivity and dynamic cone penetration index (DCPI) are profiled through the TDR and DCP tests, respectively. As the ground in the urban area is kept under a low-moisture condition, the relative permittivity, which is inversely related to the electromagnetic impedance, is mainly affected by the dry density and is inversely proportional to the DCPI value. Because the first strong signal in the GPR image is shifted 180° from the emitted signal, the polarity of the electromagnetic wave reflected at the dense layer, where the reflection coefficient is negative, is identical to that of the first strong signal. The temporal-scaled GPR images can be accurately converted into the spatial-scaled GPR images using the relative permittivity determined by the TDR test. The distribution of the loose layer can be accurately estimated by using the spatial-scaled GPR images and reflection characteristics of the electromagnetic wave. Note that the loose layer distribution estimated in this study matches well with the DCPI profile and is visually verified from the endoscopic images. This study demonstrates that the GPR survey complemented by the TDR and DCP tests, may be an effective method for the characterization of ground conditions in an urban area.

  15. Work plan for focused feasibility study of the toxic burning pits area at J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Biang, C.; Benioff, P.; Martino, L.; Patton, T.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCIA). J-Field is within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA)(predecessor to the US Army Environmental Center). As part of a subsequent USATHAMA environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-0021355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in which data were collected to model groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today-

  16. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

  17. Characterization of the Hanford 300 area burial grounds. Decontamination and decommissioning regulatory issues

    International Nuclear Information System (INIS)

    Morris, F.A.; Smith, R.F.; Phillips, S.J.

    1979-03-01

    The Hanford 300 Area Burial Grounds characterization project has identified four management alternatives for disposition of the burial grounds. These alternatives are: (1) abandonment, (2) entombment, (3) perpetual care, and (4) exhumation and translocation. Major Federal statutes and regulations that could apply to management alternatives are identified along with the constraints that applicable laws could impose. This analysis includes explicit attention to the uncertainty surrounding various legal constraints. Also specified are legislative developments as well as trends in other agencies and the courts, obtained by review of legislative proceedings, statutes and regulations, that could result in legislation or policies posing additional constraints

  18. Exposure to radon in dwellings below the ground level in the area of Zagreb

    International Nuclear Information System (INIS)

    Lokobauer, N.; Franic, Z.; Sokolovic, E.; Petroci, L.; Sencar, J.; Lokner, V.

    1998-01-01

    Radon measurements were carried out in 44 dwellings at 22 locations in the area of Zagreb with the aim of establishing possible differences in radon levels between dwellings located below ground level, and those on higher floors. The measurements were performed using a Honeywell professional radon monitor both during the spring/summer and the autumn/winter seasons. Significant differences were found: for dwellings below ground level, the average annual radon activity concentration was 57±20 Bqm -3 ; for those on higher floors the value was 35±15 Bqm -3 . (A.K.)

  19. Effects of uranium mining of ground water in Ambrosia Lake area, New Mexico

    International Nuclear Information System (INIS)

    Kelly, T.E.; Link, R.L.; Schipper, M.R.

    1980-01-01

    The principal ore-bearing zone in the Ambrosia Lake area of the Grants uranium district is the Westwater Canyon Member of the Morrison Formation (Jurassic). This unit is also one of the major artesian aquifers in the region. Significant declines in the potentiometric lead within the aquifer have been recorded, although cones of depression do not appear to have spread laterally more than a few miles. Loss of potentiometric head in the Westwater Canyon Member has resulted in the interformational migration of ground water along fault zones from overlying aquifers of Cretaceous age. This migration has produced local deterioration in chemical quality of the ground water

  20. Hydrogeology, ground-water flow, and tritium movement at low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Garklavs, George; Healy, R.W.

    1986-01-01

    Groundwater flow and tritium movement are described at and near a low-level radioactive waste disposal site near Sheffield, Illinois. Flow in the shallow aquifer is confined to three basins that ultimately drain into a stripmine lake. Most of the flow from the site is through a buried, pebbly sandfilled channel. Remaining flow is toward alluvium of an existing stream. Conceptual flow models for the two largest basins are used to improve definition of flow velocity and direction. Flow velocities range from about 25 to 2,500 ft/yr. Tritium was found in all three basins. The most extensive migration of tritium is coincident with buried channel. Tritium concentrations ranged from detection level to more than 300 nanocuries/L. (USGS)

  1. Ground penetrating radar for fracture mapping in underground hazardous waste disposal sites: A case study from an underground research tunnel, South Korea

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee

    2017-06-01

    Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.

  2. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Collard, L.B.

    2000-01-01

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds

  3. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  4. Special Analysis: Updated Analysis of the Effect of Wood Products on Trench Disposal Limits at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2001-01-01

    This Special Analysis (SA) develops revised radionuclide inventory limits for trench disposal of low-level radioactive waste in the presence of wood products in the E-Area Low-Level Waste Facility. These limits should be used to modify the Waste Acceptance Criteria (WAC) for trench disposal. Because the work on which this SA is based employed data from tests using 100 percent wood products, the 40 percent limitation on wood products for trench (i.e., slit or engineered trench) disposal is not needed in the modified WAC

  5. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2a, Below-ground vaults

    International Nuclear Information System (INIS)

    Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

    1987-12-01

    The US Army Engineer Waterways Experiment Station (WES) and the US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the below-ground vault (BGV) alternative method of low-level radioactive waste (LLW) disposal. A BGV is a reinforced concrete vault (floor, walls, and roof) placed underground below the frost line, and above the water table, surrounded by filter blanket and drainage zones and covered with a low permeability earth layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the BGV structure through material quality and durability considerations. Specific design review criteria have been developed in detail for seven of the eight major categories. 59 refs., 14 figs., 2 tabs

  6. Technical specifications for waste packages conditioned in a durable confining shell, with an hydraulic binder basis, intended to a ground disposal site

    International Nuclear Information System (INIS)

    1995-06-01

    The aim of this document is to precise the general and particular conditions for the acceptance on a ground disposal site of a low- and middle-level radioactive waste package conditioned in a durable confining shell. This specification concerns the wastes that contain beta and gamma decay radionuclides and/or long life alpha decay radionuclides in higher quantities than accepted for the protective coatings. Physico-chemical and mechanical specifications are given for the wastes, the fixing material, the confining shell and the container. Accepted limits for degassing and dose rates, surface contamination, dimensions and weight are given. The agreement is delivered by the ANDRA after the package has satisfied the different mechanical, chemical, fire, moisture and radiation resistance tests. (J.S.). 1 fig., 3 tabs., 1 glossary

  7. The use and disposal of greywater in the non-sewered areas of ...

    African Journals Online (AJOL)

    2007-02-09

    Feb 9, 2007 ... Greywater has been identified as a key area of research in South Africa owing to the fact that service delivery in low-income areas largely consists of on-site dry sanitation with communal water points where greywater has the potential to create a host of environmental and health problems. The main aim of ...

  8. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  9. Geology of the Syncline Ridge area related to nuclear waste disposal, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Hoover, D.L.; Morrison, J.N.

    1980-01-01

    The Syncline Ridge area is in the western part of Yucca Flat, Nye Co., Nev. Drill holes, geophysical surveys, mapping, and laboratory studies during 1976 through 1978 were used to investigate argillite in unit J (Mississippian) of the Eleana Formation (Devonian and Mississippian) as a possible nuclear waste repository site. Argillite in unit J has a minimum stratigraphic thickness of at least 700 m. The argillite underlies most of the Syncline Ridge area east of the Eleana Range, and is overlain by Quaternary alluvium and the Tippipah Limestone of Syncline Ridge. At the edges of the Syncline Ridge area, alluvium and volcanic rocks overlie the argillite. The argillite is underlain by more than 1000 m of quartzite, siliceous argillite, and minor limestone in older units of the Eleana Formation. These older units crop out in the Eleana Range. The area is divided into southern, central, and northern structural blocks by two lateral faults. The southern and central blocks either have volumes of argillite too small for a repository site, or have irregular-shaped volumes caused by Mesozoic high-angle faults that make the structure too complex for a repository site. The northern block appears to contain thick argillite within an area of 6 to 8 km 2 . The postvolcanic history of the Syncline Ridge area indicates that the area has undergone less deformation than other areas in Yucca Flat. Most of the late Tertiary and Quaternary deformation consisted of uplift and eastward tilting in the Syncline Ridge area. Preliminary engineering geology investigations indicate that although the competency of the argillite is low, the argillite may be feasible for construction of a nuclear waste disposal facility. Physical, thermal, chemical, and mineralogical properties of the argillite appear to be within acceptable limits for a nuclear waste repository

  10. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2014-04-01

    Full Text Available Underground research laboratories (URLs, including “generic URLs” and “site-specific URLs”, are underground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW disposal. In addition to the generic URL and site-specific URL, a concept of “area-specific URL”, or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a “generic URL”, but also acts as a “site-specific URL” to some extent. Considering the current situation in China, the most suitable option is to build an “area-specific URL” in Beishan area, the first priority region for China's high-level waste repository. With this strategy, the goal to build China's URL by 2020 may be achieved, but the time left is limited.

  11. Radionuclide Concentrations in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during the 1997 Growing Season

    Energy Technology Data Exchange (ETDEWEB)

    L. Naranjo, Jr.; P. R. Fresquez; R. J. Wechsler

    1998-08-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-were analyzed for 3H, 238Pu, 239Pu, 137CS, 234U, 235U, 228AC, Be, 214Bi, 60Co, 40& 54Mn, 22Na, 214Pb and 208Tl. In general, most radionuclide concentrations, with the exception of 3Ef and ~9Pu, in soils and overstory and understory vegetation collected from within and around Area G were within upper (95'%) level background concentrations. Although 3H concentrations in vegetation from most sites were significantly higher than background (>2 pCi mL-l), concentrations decreased markedly in comparison to last year's results. The highest `H concentration in vegetation was detected from a juniper tree that was growing over tritium shaft /+150; it contained 530,000 pCi 3H mL-l. Also, as in the pas~ the transuranic waste pad area contained the highest levels of 239Pu in soils and in understory vegetation as compared to other areas at Area G.

  12. Radionuclide concentrations in soils and vegetation at radioactive-waste disposal Area G during the 1996 growing season. Progress report

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Vold, E.L.; Naranjo, L. Jr.

    1997-07-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G--a low-level radioactive solid-waste disposal facility at Los Alamos National laboratory--were analyzed for 3 H, 90 Sr, 238 Pu, 239 Pu, 137 Cs, 234 U, 235 U, 238 U, tot U, 228 Ac, 214 Bi, 60 Co, 40 K, 54 Mn, 22 Na, 214 Pb, and 208 Tl. Also, heavy metals (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and Tl) in soil and vegetation were determined. In general, most radionuclide concentrations, with the exception of 3 H and 239 Pu, in soils and washed and unwashed overstory and understory vegetation collected from within and around Area G were within upper limit background concentrations. Tritium was detected as high as 14,744 pCi mL -1 in understory vegetation collected from transuranic (TRU) waste pad number-sign 4, and the TRU waste pad area contained the highest levels of 239 Pu in soils and in understory vegetation as compared to other areas at Area G

  13. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  14. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  15. Mountain Pine Beetles, Salvage Logging, and Hydrologic Change: Predicting Wet Ground Areas

    Directory of Open Access Journals (Sweden)

    John Rex

    2013-04-01

    Full Text Available The mountain pine beetle epidemic in British Columbia has covered 18.1 million hectares of forest land showing the potential for exceptionally large-scale disturbance to influence watershed hydrology. Pine stands killed by the epidemic can experience reduced levels of evapotranspiration and precipitation interception, which can translate into an increase in soil moisture as observed by some forest practitioners during salvage logging in the epicenter of the outbreak. They reported the replacement of summer ground, dry firm soil areas, with winter ground areas identified by having wetter, less firm soils upon which forestry equipment operation is difficult or impossible before winter freeze-up. To decrease the likelihood of soil disturbance from harvesting, a set of hazard indicators was developed to predict wet ground areas in areas heavily infested by the mountain pine beetle. Hazard indicators were based on available GIS data, aerial photographs, and local knowledge. Indicators were selected by an iterative process that began with office-based selection of potential indicators, model development and prediction, field verification, and model refinement to select those indicators that explained most field data variability. Findings indicate that the most effective indicators were lodgepole pine content, understory, drainage density, soil texture, and the topographic index.

  16. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  17. Ground-water quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999-2000

    Science.gov (United States)

    Robinson, James L.

    2002-01-01

    The Black Warrior River aquifer, which is composed of the Coker, Gordo, and Eutaw Formations, supplies more than 50 percent of the ground water used for public water supply in the Mobile River Basin. The city of Montgomery, Alabama, is partially built upon a recharge area for the Black Warrior River aquifer, and is one of many major population centers that depend on the Black Warrior River aquifer for public water supply. To represent the baseline ground-water quality in the Black Warrior River aquifer, water samples were collected from 30 wells located in a low-density residential or rural setting; 9 wells were completed in the Coker Formation, 9 wells in the Gordo Formation, and 12 wells in the Eutaw Formation. To describe the ground-water quality beneath Montgomery, Alabama, water samples also were collected from 30 wells located in residential and commercial areas of Montgomery, Alabama; 16 wells were completed in the Eutaw Formation, 8 wells in alluvial deposits, and 6 wells in terrace deposits. The alluvial and terrace deposits directly overlie the Eutaw Formation with little or no hydraulic separation. Ground-water samples collected from both the rural and urban wells were analyzed for physical properties, major ions, nutrients, metals, volatile organic compounds, and pesticides. Samples from the urban wells also were analyzed for bacteria, chlorofluorocarbons, dissolved gases, and sulfur hexafluoride. Ground-water quality beneath the urban area was compared to baseline water quality in the Black Warrior River aquifer.Compared to the rural wells, ground-water samples from urban wells contained greater concentrations or more frequent detections of chloride and nitrate, and the trace metals aluminium, chromium, cobalt, copper, nickel, and zinc. Pesticides and volatile organic compounds were detected more frequently and in greater concentrations in ground-water samples collected from urban wells than in ground-water samples from rural wells.The Spearman rho

  18. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    Science.gov (United States)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  19. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    Science.gov (United States)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  20. Density, movement, and transuranic tissue inventory of small mammals at a liquid-radioactive waste disposal area

    International Nuclear Information System (INIS)

    Halford, D.K.

    1987-01-01

    Linear movement, density, and transuranic radionuclide inventory were estimated for small mammals residing at a liquid radioactive waste disposal area in southeastern Idaho. Deer mice (Peromyscus maniculatus), kangaroo rats (Dipodomys ordii), western harvest mice (Reithrodontomys megalotis), and Great Basin pocket mice (Perognathus parvus) were the predominant species. The total small mammal population within the 3.0-ha waste area was estimated to be 93. The distance between consecutive captures for all species combined averaged 41 m and ranged from 7 to 201 m. About 30% of the rodents captured inside the waste area were also captured outside its boundaries. The total population inventory of 238 Pu, /sup 239,240/Pu, 241 Am, 242 Cm, and 244 Cm was 44 pCi, 30 pCi, 19 pCi, 21 pCi, and <1 pCi, respectively. One-third, or about 35 pCi of transuranics, could be removed from the waste area by small mammals during the summer of 1981. 16 references, 3 figures, 3 tables

  1. Evaluation of dredged material proposed for ocean disposal from Red Hook/Bay Ridge project areas, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Barrows, E.S.; Borde, A.B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1996-09-01

    The objective of the Red HookIBay Ridge project was to evaluate proposed dredged material from these two areas to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Sediment samples were collected from the Red Hook/Bay Ridge project areas. Tests and analyses were conducted. The evaluation of proposed dredged material from the Red Hook/Bay Ridge project areas consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests. Twenty-four individual sediment core samples were collected from these two areas and analyzed for grain size, moisture content, and total organic carbon (TOC). Three composite sediment samples, representing Red Hook Channel and the two Bay Ridge Reaches to be dredged, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the three Red Hook Bay Ridge sediment composites, were analyzed for metals, pesticides, and PCBS. Benthic acute toxicity tests were performed. Water-column or SPP toxicity tests were performed. Bioaccumulation tests were also conducted.

  2. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez; M.W. McNaughton; M.J. Winch

    2005-10-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U for soils and {sup 3}H, {sup 238}Pu, and {sup 239,240}Pu for plants. As in previous years, the highest levels of {sup 3}H in soils and vegetation were detected at the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards.

  3. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    International Nuclear Information System (INIS)

    Fresquez, P.R.; McNaughton, M.W.; Winch, M.J.

    2005-01-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included 3 H, 238 Pu, 239,240 Pu, 241 Am, 234 U, 235 U, and 238 U for soils and 3 H, 238 Pu, and 239,240 Pu for plants. As in previous years, the highest levels of 3 H in soils and vegetation were detected at the south portion of Area G near the 3 H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards

  4. Application of isotopic techniques for study of ground water from karstic areas. 1. Origin of waters

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2000-01-01

    Environmental stable isotope method was used for study of ground water from karst of NE Dobrogea. Study area is in the vicinity of Danube Delta (declared in 1990 by UNESCO the Reserve of Biosphere) and presents scientific and ecological interest. Measurements of deuterium content of ground water show that waters are meteoric in origin, but at the same time the results showed that the water from two sampling points could not originate from local ground water and have their recharge area at high altitude and a considerable distance. According to the δD values the following categories of waters were established: - waters depleted in deuterium (δD 0 / 00 ) relative to δD values of surface and ground water in the geographic area from which they were collected. They represent most probably the intrusion of isotopically light water from high altitude sites (higher than 1000 m) through network of highly permeable karst channels. The discharge of this component of aquifer occurs both by conduct flow and by diffuse flow; - Waters tributaries to the Danube River (δD > -75 0 / 00 ) that have a small time variability of δD values; - Local infiltration waters, situated in the West side of the investigated area towards the continental platform of the Dobrogea (δD > -70 0 / 00 ). They present high time variability of δD values, due to distinct seasonal effects; - Waters originated in mixing processes between the waters with different isotopic content. The endmember one is heavier isotopic water that belongs to local recharged waters (local infiltration waters and waters tributary to Danube river) while the other endmember is the isotopically light water. (authors)

  5. Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Lopez, E.A.

    2004-01-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for 3 H, 238 Pu, 239,240 Pu, 90 Sr, 241 Am, 137 Cs, 234 U, 235 U, and 238 U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), 239,240 Pu (60%), 238 Pu (40%), and 241 Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of 137 Cs, 90 Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of 3 H in soils were detected in the southwestern portion of Area G near the 3 H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of 3 H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were 3 H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from 241 Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G

  6. Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez; E.A. Lopez

    2004-11-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup 234}U, {sup 235}U, and {sup 238}U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), {sup 239,240}Pu (60%), {sup 238}Pu (40%), and {sup 241}Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of {sup 137}Cs, {sup 90}Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of {sup 3}H in soils were detected in the southwestern portion of Area G near the {sup 3}H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of {sup 3}H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were {sup 3}H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from {sup 241}Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G.

  7. Birds of the Savannah Harbor Navigation Project, Dredged Material Disposal Areas, 19942012

    Science.gov (United States)

    2016-03-01

    These results are discussed in relation to the North American Bird Conservation Initiative, and specifically to the South Atlantic Region, where birds...5 Composition of forested areas...isolated nesting habitat in the ocean environment. The island is maintained by the USACE Savannah District, and use of this island by nesting and roosting

  8. Surface and ground waters evaluation at Brazilian Multiproposed Reactor installation area

    International Nuclear Information System (INIS)

    Stellato, Thamiris B.; Silva, Tatiane B.S.C.da; Soares, Sabrina M.V.; Faustino, Mainara G.; Marques, Joyce R.; Oliveira, Cintia C. de; Monteiro, Lucilena R.; Pires, Maria A.F.; Cotrim, Marycel E.B.

    2017-01-01

    This study evaluates six surface and ground waters physicochemical characteristics on the area of the future Brazilian Multipurpose Reactor (RMB), at Iperó/SP. One of the main goals is to establish reference values for future operation monitoring programs, as well as for environmental permits and regulation. Considering analyzed parameters, all collection points presented values within CONAMA Resolution 396/08 and 357/05 regulation limits, showing similar characteristics among collection points.Only two points groundwater (RMB-005 and RMB-006) presented higher alkalinity, total dissolved solids and conductivity. The studied area was considered in good environmental conservation condition, as far as water quality is concerned. (author)

  9. Review of DOE's proposal for Crystalline bedrock disposal of radioactive waste, north-central area

    International Nuclear Information System (INIS)

    Green, J.C.

    1986-01-01

    The DOE's Region-to-Area Screening Methodology for the Crystalline Repository Project (DOE/CH-1), the Final North-Central Region Geologic Characterization Report (DOE/CH-8(1)), and the Draft Area Recommendation Report for the Crystalline Repository Project (DOE/CH-15), with the associated maps, were reviewed. The review has focused on all general information regarding geologic topics and all site-specific data for DOE sites NC-10 and NC-3. This report contains two parts: (1) a point-by-point critique of perceived errors, omissions, or other shortcomings in each of the three documents; and (2) a discussion of the feasibility of crystalline bedrock as a suitable host medium for high-level radioactive waste

  10. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 3. Geological setting and tectonic framework in Denmark

    International Nuclear Information System (INIS)

    Schack Pedersen, S.A.; Gravesen, P.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The task for the Geological Survey of Denmark and Greenland (GEUS) is to find approximately 20 areas potentially useful for a waste disposal. These 20 areas are afterwards reduced to 2-3 most optimal locations. At these 2-3 locations, detailed field investigations of the geological, hydrogeological - hydrochemical and technical conditions will be performed. This report provides an introduction to the geological setting of Denmark with the focus on providing an overview of the distribution of various tectonic and structural features. These are considered important in the context of choosing suitable areas for the location of a disposal for radioactive waste. The geological structures, deep and shallow are important for the selection of potential disposals basically because the structures describes the geometry of the areas. Additionally, the structures provides the information about the risk of unwanted movements of the geological layers around the disposal that have to be investigated and evaluated as a part of the selection process. (LN)

  11. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 3. Geological setting and tectonic framework in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schack Pedersen, S.A.; Gravesen, P.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The task for the Geological Survey of Denmark and Greenland (GEUS) is to find approximately 20 areas potentially useful for a waste disposal. These 20 areas are afterwards reduced to 2-3 most optimal locations. At these 2-3 locations, detailed field investigations of the geological, hydrogeological - hydrochemical and technical conditions will be performed. This report provides an introduction to the geological setting of Denmark with the focus on providing an overview of the distribution of various tectonic and structural features. These are considered important in the context of choosing suitable areas for the location of a disposal for radioactive waste. The geological structures, deep and shallow are important for the selection of potential disposals basically because the structures describes the geometry of the areas. Additionally, the structures provides the information about the risk of unwanted movements of the geological layers around the disposal that have to be investigated and evaluated as a part of the selection process. (LN)

  12. PBC Triggers in Water Reservoirs, Coal Mining Areas and Waste Disposal Sites: From Newcastle to New York

    Directory of Open Access Journals (Sweden)

    Daniel Smyk

    2010-01-01

    Full Text Available Various environmental factors have been proposed as triggers of primary biliary cirrhosis (PBC, a progressive autoimmune cholestatic liver disease which is characterised by the destruction of the small intrahepatic bile ducts. Support for their pathogenic role in PBC is provided by epidemiological studies reporting familial clustering and clusters of the disease within a given geographical area. The seminal study by Triger reporting that the great majority of PBC cases in the English city of Sheffield drank water from a specific water reservoir, has been followed by studies reporting disease 'hot spots' within a restricted geographic region of the former coal mining area of Newcastle. The New York study reporting an increased risk and significant clustering of PBC cases near toxic federal waste disposal sites has added strength to the notion that environmental factors, possibly in the form of infectious agents or toxic/chemical environmental factors in areas of contaminated land, water or polluted air may play a key role in the development of the disease. This review discusses the findings of reports investigating environmental factors which may contribute to the cause of primary biliary cirrhosis.

  13. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.

  14. Source, propagation and site effects: impact on mapping strong ground motion in Bucharest area

    International Nuclear Information System (INIS)

    Radulian, R.; Kuznetsov, I.; Panza, G.F.

    2004-01-01

    Achievements in the framework of the NATO SfP project 972266 focused on the impact of Vrancea earthquakes on the security of Bucharest urban area are presented. The problem of Bucharest city security to Vrancea earthquakes is discussed in terms of numerical modelling of seismic motion and intermediate term earthquake prediction. A hybrid numerical scheme developed by Faeh et al. (1990; 1993) for frequencies up to 1 Hz is applied for the realistic modelling of the seismic ground motion in Bucharest. The method combines the modal summation for the 1D bedrock model and the finite differences for the 2D local structure model. All the factors controlling the ground motion at the site are considered: source, propagation and site effects, respectively. The input data includes the recent records provided by the digital accelerometer network developed within the Romanian-German CRC461 cooperation programme and CALIXTO'99, VRANCEA'99, VRANCEA2001 experiments. The numerical simulation proves to be a powerful tool in mapping the strong ground motion for realistic structures, reproducing acceptably from engineering point of view the observations. A new model of the Vrancea earthquake scaling is obtained and implications for the determination of the seismic motion parameters are analyzed. The role of the focal mechanism and attenuation properties upon the amplitude and spectral content of the ground motion are outlined. CN algorithm is applied for predicting Vrancea earthquakes. Finally, implications for the disaster management strategy are discussed. (authors)

  15. Uranium chemistry in stack solutions and leachates of phosphogypsum disposed at a coastal area in Cyprus.

    Science.gov (United States)

    Lysandrou, M; Pashalidis, I

    2008-02-01

    The effect of the matrix composition (main constituents) on the concentration and chemical behavior of uranium in phosphogypsum stack solutions and leachates has been investigated. Solid and aqueous samples were taken from three different sub-areas of a phosphogypsum stack at a coastal area in Vasilikos (Cyprus). The sub-areas are characterized whether by their acidity (e.g. "aged" and "non-aged" phosphogypsum) or by their salt content, originating from pulping water during wet stacking or (after deposition) from the adjacent sea. Measurements in stack solutions and leachates showed that phosphogypsum characteristics affect both, the concentration and the chemical behavior of uranium in solution. Uranium concentration in solutions of increased salinity is up to three orders of magnitude higher than in solutions of low salinity and this is attributed to the effect of ionic strength on the solubility of phosphogypsum. Modelling showed that uranium in stack solutions is predominantly present in the form of uranium(VI) phosphate complexes (e.g. UO(2)(H(2)PO(4))(2), UO(2)HPO(4)), whereas in leachates uranium(VI) fluoro complexes (e.g. UO(2)F(2), UO(2)F(3)(-)) are predominant in solution. The latter indicates that elution of uranium from phosphogypsum takes places most probably in the form of fluoro complexes. Both, effective elution by saline water and direct migration of uranium to the sea, where it forms very stable uranium(VI) carbonato complexes, indicate that the adjacent sea will be the final receptor of uranium released from Vasilikos phosphogypsum.

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-08-01

    counterweights were also removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. (4) The concrete-like material at CAS 25-08-02 contains arsenic above the FAL of 23 mg/kg. This concrete-like material was removed, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead-acid batteries were also removed, and the soil below the batteries does not contain contamination that exceeds the FAL for lead. (5) The surface soils within the main waste dump at the posted southern radioactive material area (RMA) at CAS 25-23-21 contain cesium (Cs)-137 and PCBs above the FALs of 72.9 picocuries per gram (pCi/g) and 0.74 mg/kg, respectively. The soil was removed from the RMA, and the soil that remains at this CAS does not contain contamination exceeding the FALs. (6) The surface and subsurface soils at CAS 25-25-19 do not contain contamination exceeding the FALs. In addition, lead bricks were removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. The following best management practices were implemented: (1) Housekeeping debris at CASs 02-08-02, 23-21-04, 25-08-02, 25-23-21, and 25-25-19 was removed and disposed of; (2) The open trenches at CAS 23-21-04 were backfilled; (3) The waste piles at CAS 25-08-02 were removed and the area leveled to ground surface; and (4) The remaining waste piles at the main waste dump at CAS 25-23-21 were leveled to ground surface. Therefore, NNSA/NSO provides the following recommendations: (1) No further action for CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06; (2) Closure in place with an FFACO use restriction (UR) at CAS 02-08-02 for the remaining PAH-, arsenic-, and lead-contaminated soil, and the melted lead PSM. The UR form and map have been filed in the NNSA/NSO Facility Information Management System, the FFACO database, and the NNSA/NSO CAU/CAS files; (3) No further corrective action at CAS 23-21-04, as the lead bricks

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Krauss, Mark

    2011-01-01

    counterweights were also removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. (4) The concrete-like material at CAS 25-08-02 contains arsenic above the FAL of 23 mg/kg. This concrete-like material was removed, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead-acid batteries were also removed, and the soil below the batteries does not contain contamination that exceeds the FAL for lead. (5) The surface soils within the main waste dump at the posted southern radioactive material area (RMA) at CAS 25-23-21 contain cesium (Cs)-137 and PCBs above the FALs of 72.9 picocuries per gram (pCi/g) and 0.74 mg/kg, respectively. The soil was removed from the RMA, and the soil that remains at this CAS does not contain contamination exceeding the FALs. (6) The surface and subsurface soils at CAS 25-25-19 do not contain contamination exceeding the FALs. In addition, lead bricks were removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. The following best management practices were implemented: (1) Housekeeping debris at CASs 02-08-02, 23-21-04, 25-08-02, 25-23-21, and 25-25-19 was removed and disposed of; (2) The open trenches at CAS 23-21-04 were backfilled; (3) The waste piles at CAS 25-08-02 were removed and the area leveled to ground surface; and (4) The remaining waste piles at the main waste dump at CAS 25-23-21 were leveled to ground surface. Therefore, NNSA/NSO provides the following recommendations: (1) No further action for CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06; (2) Closure in place with an FFACO use restriction (UR) at CAS 02-08-02 for the remaining PAH-, arsenic-, and lead-contaminated soil, and the melted lead PSM. The UR form and map have been filed in the NNSA/NSO Facility Information Management System, the FFACO database, and the NNSA/NSO CAU/CAS files; (3) No further corrective action at CAS 23-21-04, as the lead bricks

  18. In-situ grouting of the low-level radioactive waste disposal silos at ORNL's Solid Waste Storage Area Six

    International Nuclear Information System (INIS)

    Francis, C.W.; Farmer, C.D.; Stansfield, R.G.

    1993-07-01

    At Oak Ridge National Laboratory (ORNL), one method of solid low-level radioactive waste disposal has been disposed of in below-grade cylindrical concrete silos. Located in Solid Waste Storage Area 6 (SWSA 6), each silo measures 8 ft in diameter and 20 ft deep. Present day operations involve loading the silos with low-level radioactive waste and grouting the remaining void space with a particulate grout of low viscosity. Initial operations involving the disposal of wastes into the below-grade silos did not include the grouting process. Grouting was stated as a standard practice (in late 1988) after discovering that ∼75% of the silos accumulated water in the bottom of the silos in the ∼2 years after capping. Silo water (leachate) contained a wide range of types and concentrations of radionuclides. The migration of contaminated leachate out of the silo into adjoining soil and groundwater was considered to be a serious environmental concern. This report describes how a specially designed particulate-base grout was used to grout 54 silos previously filled with low-level radioactive waste. Grouting involved three steps: (1) silo preparation, (2) formulation and preparation of the grout mixture, and (3) injection of the grout into the silos. Thirty-five of the 54 silos grouted were equipped with a 3-in.-diam Polyvinyl Chloride (PVC) pipe used to monitor water levels in the silos. A method for rupturing the bottom section of these PVC wells was developed so that grout could be pumped to the bottom of those silos. Holes (2-in. diam) were drilled through the ∼18 in. thick concrete to fill the remaining 19 wells without the PVC monitoring wells. The formulation of grout injected into the silos was based on a Portland Type I cement, flyash, sand, and silica fume admixture. Compressive strength of grout delivered to SWSA6 during grouting operations averaged 1,808 lb/in 2 with a bulk density of 3,549 lb/yd 3

  19. Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

    1998-03-01

    In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE's needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities

  20. Cleanup Verification Package for the 618-2 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  1. Cleanup Verification Package for the 618-2 Burial Ground

    International Nuclear Information System (INIS)

    Thompson, W.S.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities

  2. Thermal-hydraulic-geochemical coupled processes around disposed high level nuclear waste in deep granite hosted geological repositories: frontier areas of advanced groundwater research in India

    International Nuclear Information System (INIS)

    Bajpai, R.K.

    2012-01-01

    Indian policy for permanent disposal of high level nuclear wastes with radionuclide having very long half lives include their immobilization in a stable matrix i.e. glasses of suitable composition, its storage in high integrity steel canisters and subsequent disposal in suitable host rock like granites at a depth of 400-500m in stable geological set up. The site for such disposal facilities are selected after vigorous assessment of their stability implying an exhaustive site selection methodology based on a large number of criteria and attributes. In India, an area of about 70000 square kilometers occupied by granites has been subjected to such evaluation for generating comprehensive database on host rock parameters. The sites selected after such intensive analysis are expected to remain immune to processes like seismicity, volcanism, faulting, uplift, erosion, flooding etc. even in distant future spanning over tens of thousands of years. Nevertheless, groundwater has emerged as the only credible pathway through which disposed waste can eventually find its way to accessible biosphere. Hence groundwater research constitutes one of the most important aspects in demonstration of safety of such disposal. The disposed waste due to continuous emission of decay heat creates high temperature field around them with resultant increase in groundwater temperature in the vicinity. Hot groundwater on reacting with steel canisters, backfill clays and cement used around the disposed canister, produces geochemical environment characterized by altered Ph, Eh and groundwater compositions. Acceleration in geochemical interaction among waste-groundwater-clay-cement-granite often results in dissolution or precipitation reactions along the groundwater flow paths i.e. fractures with resultant increase or decrease in their permeability. Thus thermal, hydraulic and geochemical processes work interdependently around the disposed waste. These coupled processes also control the release and

  3. The installation of a multiport ground-water sampling system in the 300 Area

    International Nuclear Information System (INIS)

    Gilmore, T.J.

    1989-06-01

    In 1988, the Pacific Northwest Laboratory installed a multiport groundwater sampling system in well 399-1-20, drilled north of the 300 Area on the Hanford Site in southwestern Washington State. The purpose of installing the multiport system is to evaluate methods of determining the vertical distribution of contaminants and hydraulic heads in ground water. Well 399-1-20 is adjacent to a cluster of four Resource Conservation and Recovery Act (RCRA) ground-water monitoring wells. This proximity makes it possible to compare sampling intervals and head measurements between the multiport system and the RCRA monitoring wells. Drilling and installation of the multiport system took 42 working days. Six sampling ports were installed in the upper unconfined aquifer at depths of approximately 120, 103, 86, 74, 56, and 44 feet. The locations of the sampling ports were determined by the hydrogeology of the area and the screened intervals of adjacent ground-water monitoring wells. The system was installed by backfilling sand around the sampling ports and isolating the ports with bentonite seals. The method proved adequate. For future installation, however, development and evaluation of an alternative method is recommended. In the alternative method suggested, the multiport system would be placed inside a cased and screened well, using packers to isolate the sampling zones. 4 refs., 8 figs., 1 tab

  4. Measurement of Seaward Ground Displacements on Coastal Landfill Area Using Radar Interferometry

    Science.gov (United States)

    Baek, W.-K.; Jung, H.-S.

    2018-04-01

    In order to understand the mechanism of subsidence and help reducing damage, researchers has been observed the line-of-sight subsidence on the Noksan industrial complex using SAR Interferometry(InSAR) and suggested subsidence prediction models. Although these researches explained a spatially uneven ground subsidence near the seaside, they could not have been explained the occurrence of the newly proposed seaward horizontal, especially nearly north-ward, displacement because of the geometric limitation of InSAR measurements. In this study, we measured the seaward ground displacements trend on the coastal landfill area, Noksan Industrial Complex. We set the interferometric pairs from an ascending and a descending orbits strip map data of ALOS PALSAR2. We employed InSAR and MAI stacking approaches for the both orbits respectively in order to improve the measurement. Finally, seaward deformation was estimated by retrieving three-dimensional displacements from multi-geometric displacements. As a results, maximally 3.3 and 0.7 cm/year of ground displacements for the vertical and seaward directions. In further study, we plan to generate InSAR and MAI stacking measurements with additional SAR data to mitigate tropospheric effect and noise well. Such a seaward observation approach using spaceborne radar is expected to be effective in observing the long-term movements on coastal landfill area.

  5. MEASUREMENT OF SEAWARD GROUND DISPLACEMENTS ON COASTAL LANDFILL AREA USING RADAR INTERFEROMETRY

    Directory of Open Access Journals (Sweden)

    W.-K. Baek

    2018-04-01

    Full Text Available In order to understand the mechanism of subsidence and help reducing damage, researchers has been observed the line-of-sight subsidence on the Noksan industrial complex using SAR Interferometry(InSAR and suggested subsidence prediction models. Although these researches explained a spatially uneven ground subsidence near the seaside, they could not have been explained the occurrence of the newly proposed seaward horizontal, especially nearly north-ward, displacement because of the geometric limitation of InSAR measurements. In this study, we measured the seaward ground displacements trend on the coastal landfill area, Noksan Industrial Complex. We set the interferometric pairs from an ascending and a descending orbits strip map data of ALOS PALSAR2. We employed InSAR and MAI stacking approaches for the both orbits respectively in order to improve the measurement. Finally, seaward deformation was estimated by retrieving three-dimensional displacements from multi-geometric displacements. As a results, maximally 3.3 and 0.7 cm/year of ground displacements for the vertical and seaward directions. In further study, we plan to generate InSAR and MAI stacking measurements with additional SAR data to mitigate tropospheric effect and noise well. Such a seaward observation approach using spaceborne radar is expected to be effective in observing the long-term movements on coastal landfill area.

  6. Ground-water hydrology and glacial geology of the Kalamazoo area, Michigan

    Science.gov (United States)

    Deutsch, Morris; Vanlier, K.E.; Giroux, P.R.

    1960-01-01

    along the Kalamazoo River and Portage Creek are recharged in part from these streams. Locally, however, recharge from the streams is impeded, as their bottoms have become partly sealed by silt and solid waste matter. Water levels fluctuate with seasonal and annual changes in precipitation and in response to pumping. Pumpage by the city of Kalamazoo increased from about 300 million gallons in 1880 to 4.6 billion gallons in 1957. Despite the fact that billions of gallons are pumped annually from well fields in the Axtell Creek area, water levels in this vicinity have declined only a few feet, as the discharge from the fields is approximately compensated by recharge from precipitation and surface water. Pumpage of ground water by industry in 1948 was estimated at about 14 billion gallons, but the use of ground water for industrial purposes has since declined. Aquifer tests indicate that the coefficient of transmissibility of aquifers in the area ranges from as little as 18,000 to as high as 300,000 gpd (gallons per day) per foot, and that ground water occurs under watertable and artesian conditions. The ground water is of the calcium magnesium bicarbonate type. It is generally hard to very hard and commonly contains objectionable amounts of iron. Locally, the water contains appreciable amounts of sulfate. Study of the chemical analyses of waters from the area show that all of the tributaries to the Kalamazoo River are fed primarily by ground-water discharge.

  7. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army's Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  8. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army`s Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  9. Map showing ground-water conditions in the House Rock area, Coconino County, Arizona-- 1976

    Science.gov (United States)

    Levings, G.W.; Farrar, C.D.

    1978-01-01

    The House Rock area includes about 1,500 sq mi in north-central Arizona. Ground water is present in several aquifers that are made up of one or more formations. In the Paria Plateau and Wahweap areas ground water is obtained from the N aquifer, which includes the Navajo Sandstone, Kayenta Formation, and Moenave Formation. Reported static water levels in wells range from 515 to 1,500 ft below the land surface. The chemical quality of the water in the N aquifer varies with location, and dissolved solids generally are less than 850 milligrams per liter. Several wells and test holes in the Lees Ferry area penetrate either the alluvium, Chinle Formation, Moenkopi Formation, or a combination of these. As of 1976, water from these wells was not being used because of poor chemical quality. In the southern and western parts of the area many springs discharge from te Kaibab, Redwall , and Muav Limestones. The quality of water from these formations generally is excellent. Information on the map (scale 1:125,000) includes the principal aquifer that furnishes water to individual wells and springs, depth to water, altitude of the water level, and chemical quality of the water. (Woodard-USGS)

  10. Water resources of the Park City area, Utah, with emphasis on ground water

    Science.gov (United States)

    Holmes, Walter F.; Thompson, Kendall R.; Enright, Michael

    1986-01-01

    The Park City area is a rapidly growing residential and recreational area about 30 miles east of Sal t Lake City (fig. 1). The area of study is about 140 square miles in which the principle industries are agriculture, skiing, and other recreational activities. The area once was a major lead- and silver-mining district, but no mines were active in 1984. A resumption in mining activity, however, could take place with an increase in the price of metals.The population of the Park City area is expected to increase rapidly in the near future; and the provision of an adequate water supply for the growing population, while avoiding harmful affects of development, is a major concern for local municipalities, developers, and the Utah Division of Water Rights. In addition, agricultural interests in and below the area are concerned about the effects of increased ground-water withdrawals on streamflow, which is fully appropriated by downstream users. The area also contains the proposed site for the Jordanelle dam, a part of the Bonneville unit of the central Utah Project. The damsite is near an historic mining area; and mining companies are concerned that if mining is resumed, the reservoir may create some additional dewatering problems in the mines.

  11. Geophysical investigation of trench 4, Burial Ground 218-W-4C, 200 west area

    International Nuclear Information System (INIS)

    Kiesler, J.P.

    1994-01-01

    This report contains the results of a geophysical investigation conducted to characterize Trench 4, located in Burial Ground 218-W-4C, 200 West Area. Trench 4 is where transuranic (TRU) waste is stored. The primary objective of these geophysical investigations was to determine the outer edges of the trench/modules and select locations for plate-bearing tests. The test locations are to be 5 to 8 ft. beyond the edges of the trench. Secondary objectives include differentiating between the different types of waste containers within a given trench, determining the amount of soil cover over the waste containers, and to locate the module boundaries. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were the methods selected for this investigation

  12. Ground fissures in the area of Mavropigi Village (N. Greece): Seismotectonics or mining activity?

    Science.gov (United States)

    Kalogirou, Eleni; Tsapanos, Theodoros; Karakostas, Vassilios; Marinos, Vassilios; Chatzipetros, Alexandros

    2014-12-01

    In the beginning of July 2010, a ground fissure was observed in the field near the village of Mavropigi (Northern Greece) and specifically in its NW side. Later on (early September), a second ground fissure was perceived, close and almost parallel to the first one and very close to the limits of the lignite exploitation mine (by the Public Power Corporation, PPC). It was observed that the village of Mavropigi slides away slowly towards the PPC lignite mine. Geological, seismological, as well as geotechnical survey in the field indicated that the phenomenon is related to the coal mining exploitation in the near vicinity of the village rather than to any seismotectonic activity in the surrounding area.

  13. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  14. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  15. The mixed waste focus area mercury working group: an integrated approach for mercury treatment and disposal

    International Nuclear Information System (INIS)

    Conley, T.B.; Morris, M.I.; Holmes-Burns, H.; Petersell, J.; Schwendiman, L.

    1997-01-01

    In May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG), which was established to address and resolve the issues associated with mercury- contaminated mixed wastes. Three of the first four technology deficiencies identified during the MWFA technical baseline development process were related to mercury amalgamation, stabilization, and separation/removal. The HgWG will assist the MWFA in soliciting, identifying, initiating, and managing all the efforts required to address these deficiencies. The focus of the HgWG is to better establish the mercury-related treatment needs at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. The team will initially focus on the sites with the most mercury-contaminated mixed wastes, whose representatives comprise the HgWG. However, the group will also work with the sites with less inventory to maximize the effectiveness of these efforts in addressing the mercury- related needs throughout the entire complex

  16. Geomembranes as an interim measure to control water infiltration at a low-level radioactive waste disposal area

    International Nuclear Information System (INIS)

    Weishan, M.R.; Sonntag, T.L.; Shehane, W.D.

    1997-01-01

    Using an exposed geomembrane an interim measure to cover a closed, Low-Level Radioactive Waste Disposal Area requires unique design and construction considerations. In response to a Resource Conservation and Recovery Act Administrative Consent Order, the New York State Energy Research and Development Authority (NYSERDA) used very low-density polyethylene (VLDPE) geomembrane as an interim measure to cover two soil-capped, grass-covered waste trenches to address a rapid increase in water accumulation in the trenches. Two years later, NYSERDA covered the remaining grass-covered trench caps with a reinforced ethylene interpolymer alloy (EIA-R) geomembrane to reduce water accumulation in these trenches. This paper addresses the differences in geomembrane materials and discusses the lessons learned during design, construction, and operation since installation of the covers. Discussed are the successes and obstacles regarding the use of both geomembrane materials as an exposed cover, selecting the geomembrane materials, anchoring the geomembrane from wind uplift, and mitigating the increased surface water runoff from the geomembrane covered area

  17. Stormwater Pollution Prevention Plan - TA-60 Roads and Grounds Facility and Associated Sigma Mesa Staging Area

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-60 Roads and Grounds and Associated Sigma Mesa Staging Area at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60 Roads and Grounds and Associated Sigma Mesa Staging Area. The current permit expires at midnight on June 4, 2020.

  18. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Grant Evenson

    2008-01-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct

  19. An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in Large Outdoor Areas

    Directory of Open Access Journals (Sweden)

    David Zapata

    2013-01-01

    Full Text Available There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning require the use of known maps or previous information of the environment. This work presents a system composed by a terrestrial and an aerial robot that cooperate and share sensor information in order to address those requirements. The ground robot is able to navigate in an unknown large environment aided by visual feedback from a camera on board the aerial robot. At the same time, the obstacles are mapped in real-time by putting together the information from the camera and the positioning system of the ground robot. A set of experiments were carried out with the purpose of verifying the system applicability. The experiments were performed in a simulation environment and outdoor with a medium-sized ground robot and a mini quad-rotor. The proposed robotic system shows outstanding results in simultaneous navigation and mapping applications in large outdoor environments.

  20. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  1. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  2. Recreational Trails Reduce the Density of Ground-Dwelling Birds in Protected Areas

    Science.gov (United States)

    Thompson, Bill

    2015-05-01

    Recreational disturbance associated with trails has been identified as one of the major factors causing a decline of native biodiversity within protected areas. However, despite the negative impacts that recreation can have on biodiversity, providing public access to nature is critical for the future of the conservation of biodiversity. As such, many protected area managers are looking for tools to help maintain a balance between public access and biodiversity conservation. The objectives of this study were to examine the impacts of recreational trails on forest-dwelling bird communities in eastern North America, identify functional guilds which are particularly sensitive to recreational trails, and derive guidelines for trail design to assist in managing the impacts of recreational trails on forest-dwelling birds. Trails within 24 publicly owned natural areas were mapped, and breeding bird communities were described with the use of point count surveys. The density of forest birds, particularly of those species which nest or forage on the ground, were significantly positively influenced by the amount of trail-free refuge habitat. Although management options to control trail use in non-staffed protected areas are limited, this study suggests that protected area managers could design and maintain a trail network that would minimize impacts on resident wildlife, while providing recreational opportunities for visitors, by designing their trail network to maximize the area of trail-free habitat.

  3. Recreational trails reduce the density of ground-dwelling birds in protected areas.

    Science.gov (United States)

    Thompson, Bill

    2015-05-01

    Recreational disturbance associated with trails has been identified as one of the major factors causing a decline of native biodiversity within protected areas. However, despite the negative impacts that recreation can have on biodiversity, providing public access to nature is critical for the future of the conservation of biodiversity. As such, many protected area managers are looking for tools to help maintain a balance between public access and biodiversity conservation. The objectives of this study were to examine the impacts of recreational trails on forest-dwelling bird communities in eastern North America, identify functional guilds which are particularly sensitive to recreational trails, and derive guidelines for trail design to assist in managing the impacts of recreational trails on forest-dwelling birds. Trails within 24 publicly owned natural areas were mapped, and breeding bird communities were described with the use of point count surveys. The density of forest birds, particularly of those species which nest or forage on the ground, were significantly positively influenced by the amount of trail-free refuge habitat. Although management options to control trail use in non-staffed protected areas are limited, this study suggests that protected area managers could design and maintain a trail network that would minimize impacts on resident wildlife, while providing recreational opportunities for visitors, by designing their trail network to maximize the area of trail-free habitat.

  4. Ground-water investigations of the Project Gnome area, Eddy and Lea Counties, New Mexico

    Science.gov (United States)

    Cooper, J.B.

    1962-01-01

    The U.S. Atomic Energy Commission, through the Office of Test Operations, Albuquerque Operations Office, plans to detonate a nuclear device in a massive salt bed 1,200 feet beneath the land surface. The project, known as Project Gnome, is an element of the Plowshare program--a study of peacetime applications of nuclear fission. The location of the proposed underground shot is in a sparsely-populated area in southeastern Eddy County, N. Mex., east of the Pecos River and about 25 miles southeast of the city of Carlsbad. The area is arid to Semiarid and ground water is a vital factor in the economic utilization of the land, which is primarily used for stock raising. An investigation of the Project Gnome site and surrounding area for the purposes of evaluating the ground-water resources and the possible effect upon them from the detonation of the nuclear shot was desired by the Commission. This report describes work done by the U.S. Geological Survey on behalf of the Commission and presents results of the investigation of the ground-water resources and geology of the area. The most intensive investigations were made within a 15-mile radius of the site of Project Gnome and mainly on the east side of the Pecos River. The total area of study of over 1,200 square miles includes parts of Eddy and Lea Counties, N. Mex. The Project Gnome site is in the sedimentary Delaware Basin. It is underlain by about 18,000 feet of sedimentary rocks ranging in age from Ordovician to Recent. Upper Permian evaporitic rocks, which contain the principal source of potash available in the United States, are worked in nearby mines. The potash minerals are found in a massive salt bed about 1,400 feet thick in the Salado Formation of Permian age. The land surface of the area is covered mostly by a wind-blown sand and caliche; however, rocks of the Rustler Formation of Permian age and younger rocks of Permian, Triassic, Pleistocene(?) and Recent age crop out at several localities. Solution by

  5. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia.

    Science.gov (United States)

    Fingler, Sanja; Mendaš, G; Dvoršćak, M; Stipičević, S; Vasilić, Ž; Drevenkar, V

    2017-04-01

    The frequency and mass concentrations of 13 herbicide micropollutants (triazines, phenylureas, chloroacetanilides and trifluralin) were investigated during 2014 in surface, ground and drinking waters in the area of the city of Zagreb and its suburbs. Herbicide compounds were accumulated from water by solid-phase extraction using either octadecylsilica or styrene-divinylbenzene sorbent cartridges and analysed either by high-performance liquid chromatography with UV-diode array detector or gas chromatography with mass spectrometric detection. Atrazine was the most frequently detected herbicide in drinking (84 % of samples) and ground (61 % of samples) waters in mass concentrations of 5 to 68 ng L -1 . It was followed by metolachlor and terbuthylazine, the former being detected in 54 % of drinking (up to 15 ng L -1 ) and 23 % of ground (up to 100 ng L -1 ) waters, and the latter in 45 % of drinking (up to 20 ng L -1 ) and 26 % of ground (up to 25 ng L -1 ) water samples. Acetochlor was the fourth most abundant herbicide in drinking waters, detected in 32 % of samples. Its mass concentrations of 107 to 117 ng L -1 in three tap water samples were the highest of all herbicides measured in the drinking waters. The most frequently (62 % of samples) and highly (up to 887 ng L -1 ) detected herbicide in surface waters was metolachlor, followed by terbuthylazine detected in 49 % of samples in mass concentrations of up to 690 ng L -1 , and atrazine detected in 30 % of samples in mass concentrations of up to 18 ng L -1 . The seasonal variations in herbicide concentrations in surface waters were observed for terbuthylazine, metolachlor, acetochlor, chlortoluron and isoproturon with the highest concentrations measured from April to August.

  6. Air Monitoring Leads to Discovery of New Contamination at Radioactive Waste Disposal Site (Area G) at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Kraig, D.H.; Conrad, R.C.

    1999-01-01

    Air monitoring at Area G, the low-level radioactive waste disposal area at Los Alamos National Laboratory, revealed increased air concentrations of 239 Pu and 241 Am at one location along the north boundary. This air monitoring location is a couple of meters north of a dirt road used to access the easternmost part of Area G. Air concentrations of 238 Pu were essentially unaffected, which was puzzling because the 238 Pu and 239 Pu are present in the local, slightly contaminated soils. Air concentrations of these radionuclides increased about a factor of ten in early 1995 and remained at those levels until the first quarter of 1996. During the spring of 1996 air concentrations again increased by a factor of about ten. No other radionuclides were elevated and no other Area G stations showed elevations of these radionuclides. After several formal meetings didn't provide an adequate cause for the elevations, a gamma survey was performed and showed a small area of significant contamination just south of the monitor location. We found in February, 1995, a trench for a water line had been dug within a meter of so of the air stations. Then, during early 1996, the dirt road was rerouted such that its new path was directly over the unknown contamination. It appears that the trenching brought contaminated material to the surface and caused the first rise in air concentrations and then the rerouting of the road over the contamination caused the second rise, during 1996. We also found that during 1976 and 1977 contaminated soils from the clean-up of an old processing facility had been spread over the filled pits in the vicinity of the air monitors. These soils were very low in 238Pu which explains why we saw very little 238 Pu in the increased air concentrations. A layer of gravel and sand was spread over the contaminated area. Although air concentrations of 239 Pu and 241 Am dropped considerably, the y have not returned to pre-1995 levels

  7. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing high levels of tritium from treatment of Hanford Site liquid wastes. Only the SALDS proximal wells (699-48-77A, 699-48-77C, and 699-48-77D) have been affected by tritium from the facility thus far; the highest activity observed (2.1E+6 pCi/L) occurred in well 699-48-77D in February 1998. Analytical results of groundwater geochemistry since groundwater monitoring began at the SALDS indicate that all constituents with permit enforcement limits have been below those limits with the exception of one measurement of total dissolved solids (TDS) in 1996. The revised groundwater monitoring sampling and analysis plan eliminates chloroform, acetone, tetrahydrofuran, benzene, and ammonia as constituents. Replicate field measurements will replace laboratory measurements of pH for compliance purposes. A deep companion well to well 699-51-75 will be monitored for tritium deeper in the uppermost aquifer.

  8. Ground water lifting in the remote and arid areas of Egypt using solar photovoltaic pumps

    International Nuclear Information System (INIS)

    Younes, M.A.

    2006-01-01

    An experimental study has been carried out at Mechanical and Electrical Research Institute, Qenater (300 N, 310 E), Egypt on a 2000 WP solar photovoltaic (PV) water pump. The main objective is to investigate the feasibility of utilizing solar energy in ground water lifting. A solar PV pumping system has been constructed as a prototype for a large-scale photovoltaic project in south of Egypt. Solar potential at the remote and arid areas of Egypt is discussed. Installation and operation factors as a function of environmental conditions are presented. Performance of the water pump has been evaluated. The water discharge and system efficiency has been estimated and presented. The changes in water discharge and system efficiency with change in solar radiation has been measured and presented. Preliminary results show that there is a huge potential and real-ability for solar PV submersible water pumping in the remote and arid areas of Egypt

  9. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    Science.gov (United States)

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  10. Satellite versus ground-based estimates of burned area: A comparison between MODIS based burned area and fire agency reports over North America in 2007

    Science.gov (United States)

    Stephane Mangeon; Robert Field; Michael Fromm; Charles McHugh; Apostolos Voulgarakis

    2015-01-01

    North American wildfire management teams routinely assess burned area on site during firefighting campaigns; meanwhile, satellite observations provide systematic and global burned-area data. Here we compare satellite and ground-based daily burned area for wildfire events for selected large fires across North America in 2007 on daily timescales. In a sample of 26 fires...

  11. Projected tritium releases from F ampersand H Area Seepage Basins and the Solid Waste Disposal Facilities to Fourmile Branch

    International Nuclear Information System (INIS)

    Looney, B.B.; Haselow, J.S.; Lewis, C.M.; Harris, M.K.; Wyatt, D.E.; Hetrick, C.S.

    1993-01-01

    A large percentage of the radioactivity released to the environment by operations at the Savannah River Site (SRS) is due to tritium. Because of the relative importance of the releases of tritium from SRS facilities through the groundwater to the environment, periodic evaluation and documentation of the facility operational status, proposed corrective actions, and projected changes/reductions in tritium releases are justified. Past, current, and projected tritium releases from the F and H Area Seepage Basins and the Solid Waste Disposal Facilities (SWDF) to Fourmile Branch are described. Each section provides a brief operational history along with the current status and proposed corrective actions. A conceptual model and quantitative estimates of tritium release from the facilities into the groundwater and the environment are developed. Tritium releases from the F and H Area Seepage Basins are declining and will be further reduced by the implementation of a groundwater corrective action required by the Resource Conservation and Recovery Act (RCRA). Tritium releases from the SWDF have been relatively stable over the past 10 years. It is anticipated that SWDF tritium releases to Fourmile Branch will remain approximately at current levels for at least 10--20 years. Specific characterization activities are recommended to allow an improved projection of tritium flux and to assist in developing plans for plume mitigation. SRS and the South Carolina Department of Health and Environmental Control are developing groundwater corrective action plans for the SWDF. Portions of the SWDF are also regulated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Reduction of tritium flux is one of the factors considered in the development of the RCRA/CERCLA groundwater corrective action. The final section of the document presents the sum of the projected tritium fluxes from these facilities to Fourmile Branch

  12. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA, HANFORD, WASHINGTON

    International Nuclear Information System (INIS)

    Petersen, S.W.

    2010-01-01

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM(reg s ign) system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m (328 ft) and 200 m (656 ft)) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  13. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  14. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion

    Science.gov (United States)

    Hirata, N.; Sato, H.; Koketsu, K.; Umeda, Y.; Iwata, T.; Kasahara, K.

    2003-12-01

    Introduction: After the 1995 Kobe earthquake, the Japanese government increased its focus and funding of earthquake hazards evaluation, studies of man-made structures integrity, and emergency response planning in the major urban centers. A new agency, the Ministry of Education, Science, Sports and Culture (MEXT) has started a five-year program titled as Special Project for Earthquake Disaster Mitigation in Urban Areas (abbreviated to Dai-dai-toku in Japanese) since 2002. The project includes four programs: I. Regional characterization of the crust in metropolitan areas for prediction of strong ground motion. II. Significant improvement of seismic performance of structure. III. Advanced disaster management system. IV. Investigation of earthquake disaster mitigation research results. We will present the results from the first program conducted in 2002 and 2003. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion: A long-term goal is to produce map of reliable estimations of strong ground motion. This requires accurate determination of ground motion response, which includes a source process, an effect of propagation path, and near surface response. The new five-year project was aimed to characterize the "source" and "propagation path" in the Kanto (Tokyo) region and Kinki (Osaka) region. The 1923 Kanto Earthquake is one of the important targets to be addressed in the project. The proximity of the Pacific and Philippine Sea subducting plates requires study of the relationship between earthquakes and regional tectonics. This project focuses on identification and geometry of: 1) Source faults, 2) Subducting plates and mega-thrust faults, 3) Crustal structure, 4) Seismogenic zone, 5) Sedimentary basins, 6) 3D velocity properties We have conducted a series of seismic reflection and refraction experiment in the Kanto region. In 2002 we have completed to deploy seismic profiling lines in the Boso peninsula (112 km) and the

  15. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-01-01

    are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction

  16. Cell Mergers and Their Impact on Cloud-to-Ground Lightning Over the Houston Area

    Science.gov (United States)

    Gauthier, Michael L.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    A previous hypothesis advanced from observational studies such as METROMEX suggests that the intensity, frequency, and organization of cumulus convection may be impacted by the forcing of enhanced merger activity downstream of urban zones. A resulting corollary is that cities may exert an indirect anthropogenic forcing of parameters related to convection and associated phenomena such as lightning and precipitation. This paper investigates the urban merger hypothesis by examining the role of convective cell mergers on the existence and persistence of the Houston lightning "anomaly", a local maximum in cloud-to-ground (CG) lightning activity documented to exist over and east of Houston. Using eight summer seasons of peak columnar radar reflectivity, CG lightning data and a cell-tracking algorithm, a two-dimensional cell merger climatology is created for portions of eastern Texas and Louisiana. Results from the tracking and analysis of over 3.8 million cells indicate that merger-driven enhancements in convection induce a positive response (O 46%) in ground-flash densities throughout the domain, with areas of enhanced lightning typically being co-located with areas of enhanced merger activity. However, while mergers over the Houston area (relative to elsewhere in the domain) do result in more vigorous convective cells that produce larger CG flash densities, we find that CG lightning contributions due to mergers are distributed similarly throughout the domain. Hence while we demonstrate that cell mergers do greatly impact the production of lightning, the urban cell merger hypothesis does not uniquely explain the presence of a local lightning maximum near and downstream of Houston.

  17. New particle formation at ground level and in the vertical column over the Barcelona area

    Science.gov (United States)

    Minguillón, M. C.; Brines, M.; Pérez, N.; Reche, C.; Pandolfi, M.; Fonseca, A. S.; Amato, F.; Alastuey, A.; Lyasota, A.; Codina, B.; Lee, H.-K.; Eun, H.-R.; Ahn, K.-H.; Querol, X.

    2015-10-01

    The vertical profiles (up to 975 m a.s.l.) of ultrafine and micronic particles across the planetary boundary layer and the free troposphere over a Mediterranean urban environment were investigated. Measurements were carried out using a tethered balloon equipped with a miniaturized condensation particle counter, a miniaturized optical particle counter, a micro-aethalometer, a rotating impactor, and meteorological instrumentation. Simultaneous ground measurements were carried out at an urban and a regional background site. New particle formation episodes initiating in the urban area were observed under high insolation conditions. The precursors were emitted by the city and urban photochemically-activated nucleation occurred both at high atmospheric levels (tens to hundreds of meters) and at ground level. The new particle formation at ground level was limited by the high particulate matter concentrations recorded during the morning traffic rush hours that increase the condensation sink and prevent new particle formation, and therefore restricted to midday and early afternoon. The aloft new particle formation occurred earlier as the thermally ascending polluted air mass was diluted. The regional background was only affected from midday and early afternoon when sea and mountain breezes transported the urban air mass after particle growth. These events are different from most new particle formation events described in literature, characterized by a regionally originated nucleation, starting early in the morning in the regional background and persisting with a subsequent growth during a long period. An idealized and simplified model of the spatial and time occurrence of these two types of new particle formation episodes into, around and over the city was elaborated.

  18. Availability of ground water in the Blackstone River area Rhode Island and Massachusetts

    Science.gov (United States)

    Johnston, Herbert E.; Dickerman, David C.

    1974-01-01

    The Blackstone River study area covers 83 square miles of northern Rhode Island and 5 square miles of adjacent Massachusetts (fig. 1). It includes parts of the Blackstone, Moshassuck, and Tenmile River basins, and a coastal area that drains to the brackish Seekonk and Providence Rivers. In Rhode Island, all or parts of the suburban towns of Cumberland, Lincoln, North Smithfield, and Smithfield and all or parts of the cities of Central Falls, East Povidence, Pawtucket, Providence, and Woonsocket are within the study area. Also included are parts of the towns Attleboro and North Attleborough in Massachusetts. In 1970, total population was about 240,000, which was equivalent to about one-fourth of the total population of Rhode Island. Fresh water usage in 1970 by public-supply systems and self-supplied industry was about 33 mgd (million gallons per day), which was equal to 22 percent of total fresh water use in Rhode Island for all purposes except generation of electric power (fig. 2). Anticipated increases in population and per capita water requirements are likely to cause the demand for water to more than double within the next 50 years. A significant part of this demand can be met from wells that tap the principal streams. This aquifer yielded an average of 10 mgd in 1970 and is capable of sustaining a much higher yield. The primary objectives of the study were to determine and map the saturated thickness and transmissivity of the stratified-drift aquifer and to assess the potential sustained yield of those parts of the aquifer favorable for large-scale development of water. A secondary objective was to describe ground-water quality and to evaluate the impact of induced infiltration of polluted stream water on the quality of native ground water. This report is based on analysis of drillers' records of more than 700 wells and borings which include 462 lithologic logs; 35 specific-capacity determinations; 12 aquifer tests, including detailed tests at two sites to

  19. The Remediation of Hanford's Last Low-Level Waste Burial Grounds in the 300 Area: 618-7 and 618-1

    International Nuclear Information System (INIS)

    Haass, M.J.

    2009-01-01

    Under the U.S. Department of Energy's (DOE) River Corridor Closure Project, Washington Closure Hanford (WCH) has completed remediation of more than seven low-level waste (LLW) burial grounds in the 300 Area of the Hanford Site. The records of decision for the burial grounds required excavation, characterization, and transport of contaminated material to a Resource Conservation and Recovery Act of 1976-compliant hazardous waste landfill. This paper discusses the challenges and lessons learned from remediating the last two major burial grounds in the 300 Area: 618-7 and 618-1. The 618-7 Burial Ground was in operation from 1960 through 1973, during which it received waste from the production of Zircaloy (zirconium alloy) jacketed metallic uranium fuel rods and thoria targets for the production of uranium-233. Its major remediation challenges included the recovery, characterization, and disposal of 550 drums and disposal of two compressed gas cylinders that were suspected to contain highly toxic chemicals. Approximately 100 of the drums contained Zircaloy metal turnings that could be pyrophoric under certain conditions. Remediation activities were completed in December 2008. The 618-1 Burial Ground was in operation from 1945 (i.e., the beginning of Hanford operations) through 1951. It received waste from 300 Area laboratories that conducted experimental work associated with World War II and Cold War era processes for fuel fabrication and the production of plutonium. Some of the wastes were associated with highly radioactive irradiated material. Remediation of this burial ground is still in progress and is expected to be completed by June 2009. Information presented in this paper will be an aid to those involved in the planning, design, and remediation of burial grounds located on the DOE complex. (authors) Remediation of the 618-7 Burial Ground was completed in December 2008; the 618-1 Burial Ground is proceeding without incident and is expected to be completed in June

  20. Design of the disposal facility 2012

    International Nuclear Information System (INIS)

    Saanio, T.; Ikonen, A.; Keto, P.; Kirkkomaeki, T.; Kukkola, T.; Nieminen, J.; Raiko, H.

    2013-11-01

    The spent nuclear fuel accumulated from the nuclear power plants in Olkiluoto in Eurajoki and in Haestholmen in Loviisa will be disposed of in Olkiluoto. A facility complex will be constructed at Olkiluoto, and it will include two nuclear waste facilities according to Government Degree 736/2008. The nuclear waste facilities are an encapsulation plant, constructed to encapsulate spent nuclear fuel and a disposal facility consisting of an underground repository and other underground rooms and above ground service spaces. The repository is planned to be excavated to a depth of 400 - 450 meters. Access routes to the disposal facility are an inclined access tunnel and vertical shafts. The encapsulated fuel is transferred to the disposal facility in the canister lift. The canisters are transferred from the technical rooms to the disposal area via central tunnel and deposited in the deposition holes which are bored in the floors of the deposition tunnels and are lined beforehand with compacted bentonite blocks. Two parallel central tunnels connect all the deposition tunnels and these central tunnels are inter-connected at regular intervals. The solution improves the fire safety of the underground rooms and allows flexible backfilling and closing of the deposition tunnels in stages during the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level. ONKALO is designed and constructed so that it can later serve as part of the repository. The goal is that the first part of the disposal facility will be constructed under the building permit phase in the 2010's and operations will start in the 2020's. The fuel from 4 operating reactors as well the fuel from the fifth nuclear power plant under construction, has been taken into account in designing the disposal facility. According to the information from TVO and Fortum, the amount of the spent nuclear fuel is 5,440 tU. The disposal facility is being excavated

  1. In situ analysis of soil at an open burning/open detonation disposal facility: J-Field, Aberdeen Proving Ground, Maryland

    International Nuclear Information System (INIS)

    Martino, L.; Cho, E.; Wrobel, J.

    1994-01-01

    Investigators have used a field-portable X-Ray Fluorescence (XRF) Analyzer to screen soils for a suite of metals indicative of the open burning and open detonation (OB/OD) activities that occurred at the J-Field site at Aberdeen Proving Ground, Maryland. The field XRF results were incorporated into a multiphase investigation of contaminants at the Toxic Burning Pits Area of Concern at J-Field. The authors determined that the field-portable XRF unit used for the study and the general concept of field XRF screening are invaluable tools for investigating an OB/OD site where intrusive sampling techniques could present unacceptable hazards to site workers

  2. The physical and aesthetic quality of ground water in rural areas of Lahore district

    International Nuclear Information System (INIS)

    Salik, M.; Mahmood, K.; Sadiq, M.

    2009-01-01

    Physical and aesthetic parameters of drinking water include total dissolved solids, electrical conductivity (EC), taste, odour, colour and turbidity, Although these parameters are not considered to be harmful for health, but they do effect the look and taste of the water, and may cause it to be undrinkable by some people. Addressing these water quality problems is therefore important and all have relatively simple solutions. A study was conducted in twenty villages of Lahore district to, assess the physical and aesthetic quality of ground water. It was observed that in rural area ground water is used for domestic and drinking purpose. Therefore, tube wells water samples were twenty villages were collected, Bore depths .ranged from 60 to 380 feet. Three water samples were collected from each of twenty villages and were analyzed for total dissolved solids, electrical conductivity (EC), taste, odour, colour and turbidity, Analysis showed that regarding colour, odour and taste all, water samples were fit. Considering World Health Organization permissible limit for turbidity (5 Nephlometric Turbidity Unit) all the water samples were fit. Regarding total dissolved solids, 33.3 % water samples were unfit while, 64.7 % were fit considering the WHO criteria (1000 mill). Regarding pH. 7.5 % of water samples were unfit for drinking and only 25 % water samples fall within safe limit. Considering all the parameters, 10 samples (16.6 %) were fit and remaining 50 samples were unfit out of total 60 water samples. (author)

  3. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 2. Characterization of low permeable and fractured sediments and rocks in Denmark

    International Nuclear Information System (INIS)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.; Laier, T.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. In Denmark, many different kinds of fine-grained sediments and crystalline rocks occur from the ground surface down to 300 meters depth. Therefore, the possible geological situations include sediments and rocks of different composition and age. These situations are geographical distributed over large areas of Denmark. These sediments and rocks are shortly described based on existing information and include five different major types of sediments and rocks: 1: Crystalline granite and gneiss of Bornholm (because these rock types are host for waste disposals in many other countries). 2: Sandstone and shale from Bornholm (as these sediments are rela- tively homogeneous although they have fracture permeability). 3: Chalk and limestone (because these sediments may act as low permeable seals, but in most areas they act as groundwater reservoirs). 4: Fine-grained Tertiary clay deposits (as these sediments have a low permeability, are widely distributed and can reach large thicknesses). 5: Quaternary glacial, interglacial and Holocene clay deposits. These sediments are distributed all over Denmark. Following the descriptions of the geologic deposits, the areas below (including several possible locations for waste disposal sites) are selected for further investigation. The Precambrian basement rocks of Bornholm could be host rocks for the disposal. The rock types for further evaluation will be: Hammer Granite, Vang Granite, Roenne Granite, Bornholm gneiss, Paradisbakke Migmatite and Alminding Granite. In the Roskilde Fjord area around Risoe, a combination of Paleocene clays, meltwater clay and clayey till could be interesting. The area is partly included in the OSD area in North Sjaelland but

  4. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 2. Characterization of low permeable and fractured sediments and rocks in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.; Laier, T.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. In Denmark, many different kinds of fine-grained sediments and crystalline rocks occur from the ground surface down to 300 meters depth. Therefore, the possible geological situations include sediments and rocks of different composition and age. These situations are geographical distributed over large areas of Denmark. These sediments and rocks are shortly described based on existing information and include five different major types of sediments and rocks: 1: Crystalline granite and gneiss of Bornholm (because these rock types are host for waste disposals in many other countries). 2: Sandstone and shale from Bornholm (as these sediments are rela- tively homogeneous although they have fracture permeability). 3: Chalk and limestone (because these sediments may act as low permeable seals, but in most areas they act as groundwater reservoirs). 4: Fine-grained Tertiary clay deposits (as these sediments have a low permeability, are widely distributed and can reach large thicknesses). 5: Quaternary glacial, interglacial and Holocene clay deposits. These sediments are distributed all over Denmark. Following the descriptions of the geologic deposits, the areas below (including several possible locations for waste disposal sites) are selected for further investigation. The Precambrian basement rocks of Bornholm could be host rocks for the disposal. The rock types for further evaluation will be: Hammer Granite, Vang Granite, Roenne Granite, Bornholm gneiss, Paradisbakke Migmatite and Alminding Granite. In the Roskilde Fjord area around Risoe, a combination of Paleocene clays, meltwater clay and clayey till could be interesting. The area is partly included in the OSD area in North Sjaelland but

  5. Geology and ground water of the Luke area, Maricopa County, Arizona

    Science.gov (United States)

    Stulik, Ronald S.; Twenter, F.R.

    1964-01-01

    Luke Air Force Base, in the Salt River Valley in central Arizona. is within an intermontane basin--the Phoenix basin--in the Basin and Range lowlands province. The Luke area, the subject of this study, extends beyond the limits of the base. Ground-water resources of the Luke area were studied to determine the possibility of developing a water supply of optimum quantity and quality to supplement the base supply. Several wells drilled for this purpose, prior to the study, either produced an inadequate supply of water or produced ware-that had a high dissolved-solids content. The Phoenix basin is filled with unconsolidated to semiconsolidated Tertiary and Quaternary sedimentary rocks that are referred to as valley fill. Although its total thickness is unknown, 2,784 feet of valley fill--primarily consisting of clay, silt, sand, and gravel--has been penetrated. Percentage-distribution maps of fine-grained materials indicate a gross-facies pattern and a selective depositional area of the valley-fill materials. The maps also indicate that the areal distribution of fine-grained materials increases with depth. In general, the better producing wells, regardless of depth, are in areas where tee valley fill is composed of less than 60 percent fine-grained materials. The water table in the area is declining because large quantities of water are withdrawn and recharge is negligible. The decline near Luke Air Force Base during the period 1941-61 was about 150 feet. Ground water was moving generally southwest in the spring of 1961. Locally, changes in the direction of movement indicate diversion toward two major depressions. The dissolved-solids content of the ground water ranged from about 190 to 6,300 ppm. The highest concentration of dissolved solids is in water from the southern part of the area and seems to come from relatively shallow depths; wells in the northern part generally yield water of good quality. After a reconnaissance of the area, the U.S. Geological Survey

  6. Ground-water exploration in Al Marj area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Newport, T.G.; Haddor, Yousef

    1963-01-01

    The present report, based largely on fieldwork during 1959-61, describes the results of reconnaissance hydrogeologic studies and exploratory drilling to evaluate the general water-bearing properties of the rocks and the availability of groundwater supplies for irrigation, stock, and village uses in Al Marj area. These studies and the drilling were conducted under the auspices of the U.S. Operations Mission of the International Cooperation Administration. Al Marj area, located in the Province of Cyrenaica on the southern coast of the Mediterranean Sea, contains a land area of about 6,770 square kilometers. Along the Mediterranean shore is a narrow coastal plain that rises evenly to the base of an escarpment that forms the seaward front of an undulating plateau known as. Al Jabal al Akhgiar. The climate is semiarid; seasonal rainfall occurs during the winter months. Owing to orographic effects, the rainfall is somewhat higher in the Jabal than in the coastal plain. The average annual rainfall ranges from about 250 millimeters in the coastal plain to 450 millimeters on the Jabal. All the streams (wadis) of the area are ephemeral and flow only in response to heavy rains of the winter season. From a drainage divide on the Jabal some streams flow north and northwest toward the sea and the others, south and southeast to the interior desert. Solution features, such as limestone sink holes, are common in the coastal plain and a large solution depression occurs near Al Marj. The rocks of A1 Marj area consist predominantly of limestone and some sandstone and shale; they range from Cretaceous to Miocene age. On the coastal plain Miocene limestone is locally mantled by Quaternary alluvial, beach and lagoonal deposits. The Miocene and older beds have a regional southerly dip. These rocks are broken by northeast-trending normal faults in the coastal and inland escarpments. The ground-water reservoir is contained chiefly in fractures, bedding planes, and solution openings in the

  7. Ground-penetrating radar investigations conducted in the 100 areas, Hanford Site: Fiscal Year 1992

    International Nuclear Information System (INIS)

    Bergstrom, K.A.

    1994-01-01

    During Fiscal Year 1992, the Geophysics Group conducted forty- five Ground-Penetrating Radar (GPR) surveys in the 100 Areas (Figure 1) - Objectives for the investigations varied, from locating cribs, trenches and septic systems to helping site boreholes. The results of each investigation were delivered to clients in the form of a map that summarized the interpretation of a given site. No formal reports were prepared. The purpose of this document is to show where and why each of the surveys was conducted. The data and interpretation of each survey are available by contacting the Westinghouse Hanford Company, Geophysics Group. A map showing the location and basic parameters of each survey can be found in the Appendices of this report

  8. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  9. Expectable Earthquakes and their ground motions in the Van Norman Reservoirs Area

    Science.gov (United States)

    Wesson, R.L.; Page, R.A.; Boore, D.M.; Yerkes, R.F.

    1974-01-01

    The upper and lower Van Norman dams, in northwesternmost San Fernando Valley about 20 mi (32 km) northwest of downtown Los Angeles, were severely damaged during the 1971 San Fernando earthquake. An investigation of the geologic-seismologic setting of the Van Norman area indicates that an earthquake of at least M 7.7 may be expected in the Van Norman area. The expectable transitory effects in the Van Norman area of such an earthquake are as follows: peak horizontal acceleration of at least 1.15 g, peak velocity of displacement of 4.43 ft/sec (135 cm/sec), peak displacement of 2.3 ft (70 cm), and duration of shaking at accelerations greater than 0.05 g, 40 sec. A great earthquake (M 8+) on the San Andreas fault, 25 mi distant, also is expectable. Transitory effects in the Van Norman area from such an earthquake are estimated as follows: peak horizontal acceleration of 0.5 g, peak velocity of 1.97 ft/sec (60 cm/sec), displacement of 1.31 ft (40 cm), and duration of shaking at accelerations greater than 0.05 g, 80 sec. The permanent effects of the expectable local earthquake could include simultaneous fault movement at the lower damsite, the upper damsite, and the site proposed for a replacement dam halfway between the upper and lower dams. The maximum differential displacements due to such movements are estimated at 16.4 ft (5 m) at the lower damsite and about 9.6 ft (2.93 m) at the upper and proposed damsites. The 1971 San Fernando earthquake (M 6?) was accompanied by the most intense ground motions ever recorded instrumentally for a natural earthquake. At the lower Van Norman dam, horizontal accelerations exceeded 0.6 g, and shaking greater than 0.25 g lasted for about 13 see; at Pacoima dam, 6 mi (10 km) northeast of the lower dam, high-frequency peak horizontal accelerations of 1.25 g were recorded in two directions, and shaking greater than 0.25 g lasted for about 7 sec. Permanent effects of the earthquake include slope failures in the embankments of the upper

  10. Distinct roles of the cortical layers of area V1 in figure-ground segregation.

    Science.gov (United States)

    Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R

    2013-11-04

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Sinkhole development resulting from ground-water withdrawal in the Tampa area, Florida

    Science.gov (United States)

    Sinclair, William C.

    1982-01-01

    The area of municipal well fields on the Gulf Coastal Plain north of tampa, Fla., is densely pitted with natural sinkholes and sinkhole lakes that have resulted from collapse of surficial sand and clay into solution cavities in the underlying carbonate rocks of the Floridan aquifer. Although solution of the underlying rocks is the ultimate cause of sinkholes, some have been induced by abrupt changes in ground-water levels caused by pumping. Declines in water levels cause loss of support to the bedrock roofs over cavities and to surficial material overlying openings in the top of bedrock. The volume of calcium, magnesium , and carbonate (the constituents of limestone and dolomite) in solution in the water withdrawn from four well fields near Tampa totaled about 240,000 cubic feet in 1978. Most induced solution takes place at the limestone surface however, and the area of induced recharge is so extensive that the effect of induced limestone solution on sinkhole development is negligible. Alinement of established sinkholes along joint patterns in the bedrock suggests that a well along these lineations might have direct hydraulic connection with a zone of incipient sinkholes. Therefore, pumping of large-capacity wells along such lineations would increase the probability of sinkhole development. Although sinkholes generally form abruptly in the study area, local changes such as vegetative stress, ponding of rainfall, misalinement of structures, and turbidity in well water are all indications that percollapse subsidence may be taking place. (USGS)

  12. Seismic ground motion characteristics in the Bucharest area: source and site effects contribution

    International Nuclear Information System (INIS)

    Grecu, B.; Popa, M.; Radulian, M.

    2003-01-01

    The contribution of source vs. site effects on the seismic ground motion in Bucharest is controversial as the previous studies showed. The fundamental period of resonance for the sedimentary cover is emphasized by ambient noise and earthquake measurements, if the spectral ratio method (Nakamura, 1989) is applied (Bonjer et al., 1989). On the other hand, the numerical simulations (Moldoveanu et al., 2000.) and acceleration spectra analysis (Sandi et al., 2001) brought into the light the determinant role of the source effects. We considered all the available instrumental data related to Vrancea earthquakes recorded in Bucharest area to find how the source and site properties control the peak ground motion peculiarities. Our main results are summarized as follows: 1. The resonant period of oscillation, related to the shallow sediment layer, is practically present in all the H/V spectral ratios, no matter we consider ambient noise or earthquakes of any size. This argues in favor of the crucial role played by the sedimentary cover and proves that the ratio method is reasonably removing the source effects. However, the absolute spectra are completely different for earthquakes below and above magnitude 7, namely amplitudes in the range of 1-2 s periods are negligible in the first case, and predominant in the second one. It looks like the resonant amplification by the sedimentary cover becomes effective only for the largest earthquakes (M > 7), when the source radiation coincides with the fundamental resonance range. We conclude that the damage in Bucharest is dramatically amplified when the earthquake size is above a critical value (M ≅ 7); 2. Our analysis shows a rather weak variability of the peak motion values and spectral amplitudes over the study area, in agreement with the relatively small variability of the shallow structure topography. (authors)

  13. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    French, Sean B.; Christensen, Candace; Jennings, Terry L.; Jaros, Christopher L.; Wykoff, David S.; Crowell, Kelly J.; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  14. Engineering geological conditions of the Loviisa power plant area relating to the final disposal of reactor waste

    International Nuclear Information System (INIS)

    Anttila, Pekka

    1988-12-01

    The bedrock in the study area consists of Precambrian rapakivi granite with its varieties. The rock type is mostly fresh and strong. Alteration and weathering of the rock material occurs only in association with the fracturing. Fracture properties - orientation, aperture, hydraulic conductivity, filling and weathering - have been treated with respect to final disposal and siting of the repository. The results achieved have been compared with corresponding results obtained in Finland and other countries. Two vertical and one horizontal or gently dipping fracture sets typical of granitic rocks are present, the last mentioned of which are dominant. The hydraulic conductivity of the fractures varies greatly, generally between k=10 -9 and 10 -5 m/s, owing to, e.g. the state of stress in the rock, cementation and filling of the fractures. According to the sorption tests, weathering of the fracture surfaces as well as the filling material of the fractures has been found to increase remarkably the sorption capacity of the rock mass. A three-dimensional engineering geological model has been prepared of the bedrock. According to the model, three gently dipping fracture zones divide the rock mass into different zones of intact and broken rock. The zones are considered as hydraulic units, for which hydraulic conductivity and effective porosity were determined. In the fracture zones the values for these are in the order of k = 10 -6 m/s and 0 = 4 . 10 -3 average. In the intact rock zones, the corresponding values are generally one decade less. The study area has two separate groundwater zones in the bedrock. The surface parat of the groundwater is fresh, with relic seawater of the Baltic Sea below; its salinity reaches some 1% at the maximum. The main fracture zones seem to determine the groundwater level and flow. The water flow is mainly concentrated to the fresh groundwater zone, the saline groundwater being nearly stagnant. The construction properties of the bedrock have

  15. Modeling of thermal evolution of near field area around single pit mode nuclear waste canister disposal in soft rocks

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Verma, A.K.; Maheshwar, Sachin

    2016-01-01

    Soft rocks like argillites/shales are under consideration worldwide as host rock for geological disposal of vitrified as well as spent fuel nuclear waste. The near field around disposed waste canister at 400-500m depth witnesses a complex heat field evolution due to varying thermal characteristics of rocks, coupling with hydraulic processes and varying intensity of heat flux from the canister. Smooth heat dissipation across the rock is desirable to avoid buildup of temperature beyond design limit (100 °C) and resultant micro fracturing due to thermal stresses in the rocks and intervening buffer clay layers. This also causes enhancement of hydraulic conductivity of the rocks, radionuclide transport and greater groundwater ingress towards the canister. Hence heat evolution modeling constitutes an important part of safety assessment of geological disposal facilities

  16. Storage and disposal of medicines by academics from health area from a public university of Paraná

    Directory of Open Access Journals (Sweden)

    Lenita Nunes Piveta

    2015-11-01

    Full Text Available Medicines are indispensable tools for the health establishment and care is required in their storage and disposal. This study aimed to verify the form of storage and disposal of medicines by students from the Health SciencesDepartment of a public university in Paraná. A cross-sectional study was conducted with students of Nursing, Pharmacy and Medicine courses from UniversidadeEstadual de Londrina, Paraná, Brazil, through the application of a self-report study. The data collection was performed in the University’s classrooms during the months of May to June of 2014, resulting in 564 students surveyed. It was considered proper disposal when the student referred to disposing the expired or inappropriate for use products in locations that make the collection of these products. The students interviewed had a mean age of 21.0 years (Standart Deviation: 3.3; 74.1% of the total were female. The bedroom was the main location quoted for storage of medicines (47.8% most of them keep the medicines out of reach of children (82.6%. Regarding the verification of the expiration date 60.1% of the students do this practice. Most of (64.5% keeps the remains of treatments for future use, and household waste (63.0% was the main mentioned location for the disposal of those who are expired. Only 20.7% discarded the medicines correctly. The study population stores the products correctly, however, most are largely unaware of the disposal locations. Therefore, it is necessary to promote awareness and guidance for the future professionals.

  17. Environmental radiation monitoring plan for depleted uranium and beryllium areas, Yuma Proving Ground

    International Nuclear Information System (INIS)

    Ebinger, M.H.; Hansen, W.R.

    1994-01-01

    This Environmental Radiation Monitoring Plan (ERM) discusses sampling soils, vegetation, and biota for depleted uranium (DU) and beryllium (Be) at Yuma Proving Ground (YPG). The existing ERM plan was used and modified to more adequately assess the potential of DU and Be migration through the YPG ecosystem. The potential pathways for DU and Be migration are discussed and include soil to vegetation, soil to animals, vegetation to animals, animals to animals, and animals to man. Sample collection will show DU deposition and will be used to estimate DU migration. The number of samples from each area varies and depends on if the firing range of interest is currently used for DU testing (GP 17A) or if the range is not used currently for DU testing (GP 20). Twenty to thirty-five individual mammals or lizards will be sampled from each transect. Air samples and samples of dust in the air fall will be collected in three locations in the active ranges. Thirty to forty-five sediment samples will be collected from different locations in the arroys near the impact areas. DU and Be sampling in the Hard Impact and Soft Impact areas changed only slightly from the existing ERM. The modifications are changes in sample locations, addition of two sediment transport locations, addition of vegetation samples, mammal samples, and air sampling from three to five positions on the impact areas. Analysis of samples for DU or total U by inductively-coupled mass spectroscopy (ICP/MS), cc spectroscopy, neutron activation analysis (NAA), and kinetic phosphorimetric analysis (KPA) are discussed, and analysis for Be by ICP/MS are recommended. Acquiring total U (no isotope data) from a large number of samples and analysis of those samples with relatively high total U concentrations results in fewer isotopic identifications but more information on U distribution. From previous studies, total U concentrations greater than about 3 times natural background are usually DU by isotopic confirmation

  18. A Review of Radioactive Waste Disposal to the Ground at Hanford; Etude sur l'Elimination dans le Sol des Dechets Radioactifs a Hanford; 041e 0411 0417 0414 ; Evacuacion de Desechos Radiactivos en el Subsuelo de Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, D. W.; Lindbroth, C. E.; Nelson, J. L.; Ames, Jr., L. L. [Hanford Laboratories, Hanford Atomic Products Operation, General Electric Company, Richland WA (United States)

    1960-07-01

    The disposal of radioactive wastes to the ground from the Hanford separations plants is summarized ; volumes of wastes and contained curies discharged to swamps, trenches, and cribs are presented. Significant literature on ion- exchange studies using Hanford soils is reviewed. A field experiment with a model crib is described; preliminary findings indicate that spreading a waste solution below a disposal facility may be of greater benefit in disposal operations than previously assumed. Further studies with the calcite-phosphate reaction are reported; significant variables which affect Sr{sup +2} removal are calcite surface area, pH of the influent, flow rate, temperature and phosphate ion concentration. Bone-seeking radioisotopes are also removed from F- solutions when contact is made with calcite. The zeolite clinoptilolite shows high selectivity for Cs{sup +} even in the presence of increased Na{sup +} concentration. The effect of the large-scale ground disposal operation at Hanford is described by means of a map and geological cross-sections showing areas and volumes of ground and ground water contamination. (author) [French] Les auteurs donnent un apercu de l'elimination dans le sol des dechets radioactifs des usines de separation des isotopes de Hanford ; ils indiquent les quantites de dechets - et de curies - qui sont evacuees dans des marecages, des tranchees et des coffres. Ils passent en revue des etudes importantes qui ont ete publiees sur les proprietes d'echangeurs d'ions des sols de Hanford. Ils decrivent une experience pratique faite avec un coffre modele; il ressort des resultats preliminaires que le fait de repandre une solution de dechets au-dessous d'une installation d'evacuation pourrait etre beaucoup plus avantageux pour les operations d'evacuation que l'on n'avait cru precedemment. Les auteurs signalent d'autres etudes fondees sur la reaction calcite-phosphate ; parmi les variables importantes qui influent sur l'elimination du Sr{sup ++}, il

  19. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  20. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  1. Evaluation of ground level concentration of pollutant due to gas flaring by computer simulation: A case study of Niger - Delta area of Nigeria

    Directory of Open Access Journals (Sweden)

    A. S. ABDULKAREEM

    2005-01-01

    Full Text Available The disposal of associated gases through flaring has been a major problem for the Nigerian oil and gas industries and most of theses gases are flared due to the lack of commercial out lets. The resultant effects of gas flaring are the damaging effect of the environment due to acid rain formation, green house effect, global warming and ozone depletion.This writes up is aimed at evaluating ground level concentration of CO2, SO2, NO2 and total hydrocarbon (THC, which are product of gas flared in oil producing areas. Volumes of gas flared at different flow station were collected as well as geometrical parameters. The results of simulation of model developed based on the principles of gaseous dispersion by Gaussian showed a good agreement with dispersion pattern.The results showed that the dispersion pattern of pollutants at ground level depends on the volume of gas flared, wind speed, velocity of discharge and nearness to the source of flaring. The results shows that continuous gas flaring irrespective of the quantity deposited in the immediate environment will in long run lead to change in the physicochemical properties of soil.

  2. Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City Metropolitan Area

    Science.gov (United States)

    de la Rosa, D. A.; Velasco, A.; Rosas, A.; Volke-Sepúlveda, T.

    The daily municipal solid waste (MSW) generation in the Mexico City Metropolitan Area (MCMA) is the highest nationwide (˜26000 ton day -1); this amount is discarded in sanitary landfills and controlled dumps. Information about the type and concentration of potential pollutants contained in landfill gas (LFG) from these MSW disposal sites is limited. This study intends to generate information about the composition of LFG from five MSW disposal sites with different operational characteristics and stages, in order to identify their contribution as potential pollutant sources of total gaseous mercury (TGM) and volatile organic compounds (VOCs). Important methane (CH 4) contents (>55%) in LFG were registered at three of the five sites, while two sites were found in semi-aerobic conditions (CH 4clay cover. High values of the TGM air/LFG ratio were also related to external TGM sources of influence, as a landfill in operation stage located at a highly industrialized area.

  3. Investigation of methods for physical characteristics of atmospheric aerosols and ground dust fractions on radioactive contaminated areas

    International Nuclear Information System (INIS)

    Artem'ev, O.I.; Osintsev, A.Yu.; Gaziev, Ya.I.; Gordeev, S.K.

    2005-01-01

    The paper presents data about current situation and trends to develop investigation methods for physical characteristics of atmospheric aerosols and ground dust fractions that are observed on the former Semipalatinsk Test Site area and adjacent regions. It was considered one of the options for comprehensive collection of radioactive aerosols as fallout within control area of atmospheric contamination and underlying surface with aerosol products of the man-caused dusting on the former STS area to determine rates of 'dry' deposition and ground-based activity concentration contained in these products of radionuclides at different distances from place of dusting. (author)

  4. 2-D Electrical Resistivity Tomography (ERT) Assessment of Ground Failure in Urban Area

    Science.gov (United States)

    Nordiana, M. M.; Bery, A. A.; Taqiuddin, Z. M.; Jinmin, M.; Abir, I. A.

    2018-04-01

    This study was carried out to assess the foundation defects around an urban area in Selangor, Malaysia using 2-D electrical resistivity tomography (ERT). The affected structure is a three storey houses and having severe foundation-based cracks. Six 2-D ERT survey lines with 5 m minimum electrode spacing using Pole-dipole array were executed parallel to building’s wall. Four boreholes were conducted to identify the depth to competent layer to verify the 2-D ERT results. Inversion model of 2-D resistivity show that the study area consists of two main zones. The first zone is a low resistivity value (resistivity values of 100-1000 Ωm at 20-70 m depth. The second zone is the granite bedrock of more than 3500 Ωm with depth greater than 70 m. These results were complimented and confirmed by borehole records. The ERT and borehole record suggest that the clay, sand, saturated zone, highly weathered zone and boulders at foundation depths may lead to ground movements which affected the stability of the building.

  5. Basic investigation and analysis for preferred host rocks and natural analogue study area with reference to high level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Ryul; Park, J. K.; Hwang, D. H.; Lee, J. H.; Yun, H. S.; Kim, D. Y.; Park, H. S.; Koo, S. B.; Cho, J. D.; Kim, K. E. [Korea Inst. of Geology, Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The purpose of this study is basic investigation and analysis for preferred host rocks and natural analogue study area to develope underground disposal technique of high level radioactive waste in future. The study has been done for the crystalline rocks(especially granitic rocks) with emphasis of abandoned metallic mines and uranium ore deposits, and for the geological structure study by using gravity and aeromagnetic data. 138 refs., 54 tabs., 130 figs. (author)

  6. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Science.gov (United States)

    2010-07-01

    ... responsible for the Underground Injection Control Program. You may call the Safe Drinking Water Hotline at 1... INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class V Injection Wells § 144.87 How does... Water Source Assessment and Protection Program in your area. You may call the Safe Drinking Water...

  7. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.

    1979-10-01

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport

  8. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.

    1979-10-01

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport.

  9. Ground-water data, 1969-77, Vandenberg Air Force Base area, Santa Barbara County, California

    Science.gov (United States)

    Lamb, Charles E.

    1980-01-01

    The water supply for Vandenberg Air Force Base is obtained from wells in the Lompoc Plain, San Antonio Valley, and Lompoc Terrace groundwater basins. Metered pumpage during the period 1969-77 from the Lompoc Plain decreased from a high of 3,670 acre-feet in 1969 to a low of 2,441 acre-feet in 1977, while pumpage from the San Antonio Valley increased from a low of 1 ,020 acre-feet in 1969 to a high of 1,829 acre-feet in 1977. Pumpage from the Lompoc Terrace has remained relatively constant and was 187 acre-feet in 1977. In the Barka Slough area of the San Antonio Valley, water levels in four shallow wells declined during 1976 and 1977. Water levels in observation wells in the two aquifers of the Lompoc Terrace ground-water basin fluctuated during the period, but show no long term trends. Chemical analyses or field determinations of temperature and specific conductance were made of 219 water samples collected from 53 wells. In the Lompoc Plain the dissolved-solids concentration in all water samples was more than 625 milligrams per liter, and in most was more than 1,000 milligrams per liter. The manganese concentration in analyzed samples equaled or exceeded the recommended limit of 50 micrograms per liter for public water supplies. Dissolved-solids concentrations increased with time in water samples from two wells east of the Air Force Base in San Antonio Valley. In the base well-field area, concentrations of dissolved solids ranged from 290 to 566 milligrams per liter. Eight analyses show manganese at or above the recommended limit of 50 milligrams per liter. In the Lompoc Terrace area dissolved-solids concentrations ranged from 470 to 824 milligrams per liter. Five new supply wells, nine observation wells, and two exploratory/observation wells were drilled on the base during the period 1972-77. (USGS)

  10. Evaluation and proposed study of potential ground-water supplies, Gallup area, New Mexico

    Science.gov (United States)

    Hiss, William L.

    1975-01-01

    The ground-water potential of 5 areas in central-western New Mexico within 85 miles (135 km) of Gallup, N. Mex. was evaluated by reviewing the published literature, inspecting aerial and space photographs, and interviewing ranchers and personnel employed by well-drilling and mineral-exploration companies by telephone. The San Andres Limestone and underlying Glorieta Sandstone of Permian age are the oldest aquifers capable of yielding water of a quality suitable for municipal use. Extreme local variations in hydraulic conductivity and water quality reflect a karstic topography developed on the San Andres Limestone prior to burial by Upper Triassic sediments. The San Andres Limestone and Glorieta Sandstone form an important aquifer in the Grants-Bluewater area where yields of as much as 2,200 gallons per minute (140 l/s) have been obtained. Yields from wells completed in the San Andres-Glorieta aquifer on the Chaco slope and in the Gallup sag-Mogollon slope on the northeast and southeast flanks, respectively, of the Zuni uplift will be much less than those prevailing in the Grants-Bluewater area. Water quality in the San Andres Limestone and Glorieta Sandstone deteriorates with distance away from the axis of the Zuni uplift. Sandstones of Triassic, Jurassic, and Cretaceous age are potential aquifers wherever they are present. Yields to wells tapping these aquifers are generally less than 200 gallons per minute (13 l/s) due to the relatively low hydraulic conductivity. Wells tapping alluvium of Late Cenozoic age along the Rio San Jose and Puerco River and interbedded volcanics and alluvium elsewhere in the area generally yield less than 100 gallons per minute (6 l/s) of water. Tributaries ,of the Rio San Jose that have eroded canyons into Paleozoic and Mesozoic rocks east of the Continental Divide and south of the eastern part of the Zuni uplift have been repeatedly displaced and (or) covered by Quaternary volcanic rocks. The exact location, extent, and depth of

  11. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Fitzmaurice, T. M.

    2000-01-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10 5 cubic meters (8.12 x 10 6 cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and repair

  12. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and

  13. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    Science.gov (United States)

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  14. Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    Science.gov (United States)

    Brooks, Joseph L.; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon

    2012-01-01

    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG. PMID:22947116

  15. Map showing ground-water conditions in the Kaibito and Tuba City areas, Coconino and Navajo counties, Arizona, 1978

    Science.gov (United States)

    Farrar, C.D.

    1978-01-01

    The Kaibito and Tuba City areas include about 2,500 square miles in north-central Arizona. Ground water is obtained from the N aquifer and from alluvium. The N aquifer consists of Navajo Sandstone, Kayenta Formation, Moenave Formation, and the Lukachukai Member of the Wingate Sandstone. The main source of ground water is the Navajo Sandstone. Ground-water development has been slight in the areas. In 1977 the estimated ground-water withdrawals were about 350 acre-feet in the Kaibito area and 650 acre-feet in the Tuba City area. Water levels ranged from flowing at the land surface to 1,360 feet below the land surface. The chemical quality of the water in the N aquifer does not vary greatly in the areas. Dissolved-solids concentrations in the water range from 101 to 669 milligrams per liter but generally are less than 300 milligrams per liter. Along some of the valleys in the Kaibito and Tuba City areas, the alluvium yields water to many shallow dug wells. The water levels generally are from 5 to 15 feet below the land surface. Dissolved-solids concentrations in water from the alluvium usually are less than 600 milligrams per liter. Information shown on the map (scale 1:125,000) includes depth to water, altitude of the water level, and specific conductance and fluoride concentrations. (Woodard-USGS)

  16. Contamination source review for Building E2370, Edgewood Area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    O`Reilly, D.P.; Glennon, M.A.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from this review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, and geophysical investigation. This report provides the results of the contamination source review for Building E2370. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  17. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    Science.gov (United States)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  18. 7Be content and its seasonal regulation in the ground air around Hangzhou area

    International Nuclear Information System (INIS)

    Jiang Rangrong

    1995-01-01

    In twice investigations around Hangzhou, it is indicated that 7 Be concentration in the ground air is averagely 5.9 mBq/m 3 which is 130% higher than that in Germany reported by UNSCEAR. The highest level is in autumn-winter over a year reaching 7.7 mBq/m 3 ; the next is in spring reaching 6.2 mBq/m 3 ; the middle is 5.7 mBq/m 3 in early summer approaching to the yearly average level; and the lowest in a year is in summer-autumn that is 3.8 mBq/m 3 . It presents a decreasing regulation from autumn-winter to summer-autumn of the next year, and is basically consistent with the seasonal variation of the rainfall in Hangzhou area, but does not present the variation reported by UNSCEAR that it was the highest in spring and the lowest in late autumn basing on 7 Be falling down from the stratosphere. It shows that the process of rainfall is the main reason effecting 7 Be content in the air. Comparing to 222 Rn, the annual absorption dose produced by 7 Be can be neglected

  19. Contamination source review for Building E3236, Edgewood Area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Smits, M.P.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and review of available records regarding underground storage tanks associated with each building. This report provides the results of the contamination source review for Building E3236. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot- scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  20. Ground magnetic exploration for radioactive minerals in Missikat area eastern desert of Egypt

    International Nuclear Information System (INIS)

    Sadek, H.S.; Soliman, S.A.; Abdelhady, H.M.; Elsayed, H.I.

    1988-01-01

    The airborne radiometric surveys and subsequent geological investigations proved the occurrence of uranium mineralization in jasperoid vein which cuts across the pink granites of Gebel El Missikat. The Missikat granites are intruded in older granodiorite and diorite exposures where the whole system is intersected by a system of faults and sheers. The relationship between the different structures and the origin of mineralization is not yet understood. The present study is the first step in a systematic approach of subsurface geophysical exploration for the mineral deposits. Ground magnetic survey was conducted along more than 25 lines across the jasperoid vein and separated at 50m while the magnetic measurements were taken at stations spaced 20m apart. The collected data has been reduced and analysed automatically using appropriate advanced software. The interpretation of the resultant magnetic contour map and profiles reveals the subsurface configuration of the different lithologic units in the area. Most of the granodiorites, exposed due west, are just roof pendants where they are underlain by the Missikat granite pluton. In addition it was possible to map the subsurface contacts between the granites and other geologic units beneath the Wadi Alluvium. The structural interpretation of magnetic data succeeded to distinguish additional fault lines and shear zones in the area. In this respect, a system of NE shears parallel to the mineralized vein, was distinguished by the associated weak magnetic anomalies. The anomalies resulting from the vein and shears suggest wider repetition of the mineralization and in addition, they can be used to distinguish the locations of increasing mineral potential in depth. Such locations are recommended for further geophysical exploration using more effective, however, expensive methods such as induced polarization (IP), self potential (SP) and miseala mass. The recommended exploration can be used for precise determination of the

  1. Characterization of the Hanford 300 Area Burial Grounds. Task III: fluid transport and modeling

    International Nuclear Information System (INIS)

    Gee, G.W.; Simmons, C.S.

    1979-08-01

    In Task III, Fluid Transport and Modeling, a computer model was developed and applied to the 300 Area Burial Grounds to analyze the influence of potential evaporation and rainfall patterns on drainage. The model describes one-dimensional unsaturated flow. Fluid transport equations were evaluated to describe the driving forces of fluid flow. The data indicate that the major processes are evaporative drying, capillarity, and gravity flow. Thermally induced transport does not appear significant in the subsurface sediments of the area. Several empirical evaporation methods are available for assessing potential evaporation/evapotranspiration. Four methods were used with the unsaturated flow model. Ultimately, the Blaney-Criddle method was chosen for subsequent simulation examples because it relies only on the climatic data available and gave results comparable to the other methods tested. Simulations showed that a dry layer formation is important in controlling the soil-water balance in the profile. The surface dry layer acts as a mulch to retard the evaporative water losses and increase water storage. The most important climatic factor in determining drainage appears to be yearly rainfall distribution. When rainfall is distributed in fall or winter, during periods of low potential evaporation, both water storage and drainage are increased. Summer showers, on the other hand, were shown to add little to the annual water storage. Rainfall occurring in one year influences the subsequent annual drainage for several succeeding years because of annual changes in water storage capacity and the transient nature of unsaturated flow in the storage zone. 47 figures, 9 tables

  2. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  3. Modified ground-truthing: an accurate and cost-effective food environment validation method for town and rural areas.

    Science.gov (United States)

    Caspi, Caitlin Eicher; Friebur, Robin

    2016-03-17

    A major concern in food environment research is the lack of accuracy in commercial business listings of food stores, which are convenient and commonly used. Accuracy concerns may be particularly pronounced in rural areas. Ground-truthing or on-site verification has been deemed the necessary standard to validate business listings, but researchers perceive this process to be costly and time-consuming. This study calculated the accuracy and cost of ground-truthing three town/rural areas in Minnesota, USA (an area of 564 miles, or 908 km), and simulated a modified validation process to increase efficiency without comprising accuracy. For traditional ground-truthing, all streets in the study area were driven, while the route and geographic coordinates of food stores were recorded. The process required 1510 miles (2430 km) of driving and 114 staff hours. The ground-truthed list of stores was compared with commercial business listings, which had an average positive predictive value (PPV) of 0.57 and sensitivity of 0.62 across the three sites. Using observations from the field, a modified process was proposed in which only the streets located within central commercial clusters (the 1/8 mile or 200 m buffer around any cluster of 2 stores) would be validated. Modified ground-truthing would have yielded an estimated PPV of 1.00 and sensitivity of 0.95, and would have resulted in a reduction in approximately 88 % of the mileage costs. We conclude that ground-truthing is necessary in town/rural settings. The modified ground-truthing process, with excellent accuracy at a fraction of the costs, suggests a new standard and warrants further evaluation.

  4. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Naval Station Mayport, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    Ground-water flow through the surficial aquifer system at Naval Station Mayport near Jacksonville, Florida, was simulated with a two-layer finite-difference model as part of an investigation conducted by the U.S. Geological Survey. The model was calibrated to 229 water-level measurements from 181 wells during three synoptic surveys (July 17, 1995; July 31, 1996; and October 24, 1996). A quantifiable understanding of ground-water flow through the surficial aquifer was needed to evaluate remedial-action alternatives under consideration by the Naval Station Mayport to control the possible movement of contaminants from sites on the station. Multi-well aquifer tests, single-well tests, and slug tests were conducted to estimate the hydraulic properties of the surficial aquifer system, which was divided into three geohydrologic units?an S-zone and an I-zone separated by a marsh-muck confining unit. The recharge rate was estimated to range from 4 to 15 inches per year (95 percent confidence limits), based on a chloride-ratio method. Most of the simulations following model calibration were based on a recharge rate of 8 inches per year to unirrigated pervious areas. The advective displacement of saline pore water during the last 200 years was simulated using a particle-tracking routine, MODPATH, applied to calibrated steady-state and transient models of the Mayport peninsula. The surficial aquifer system at Naval Station Mayport has been modified greatly by natural and anthropogenic forces so that the freshwater flow system is expanding and saltwater is being flushed from the system. A new MODFLOW package (VAR1) was written to simulate the temporal variation of hydraulic properties caused by construction activities at Naval Station Mayport. The transiently simulated saltwater distribution after 200 years of displacement described the chloride distribution in the I-zone (determined from measurements made during 1993 and 1996) better than the steady-state simulation. The

  5. Health assessment of children and adolescents living in a residential area of production for the disposal of rocket fuel: according to the results of the medical examination

    Directory of Open Access Journals (Sweden)

    Uiba V.V.

    2014-12-01

    Full Text Available Aim: to determine the real prevalence separate nosological forms in the child population living in residential zone installations for the disposal of rocket fuel. Materials and methods. By mobile teams of pediatric physicians there was conducted a comprehensive medical examination of 1621 children in the area of the site location for disposal of rocket engines solid fuel. Results. The surveyed contingent of the most common diseases of the endocrine system, disorders of nutrition and metabolism (21.2% of diagnoses, diseases of the musculoskeletal and connective tissue (19.2 percent, as well as individual symptoms, signs and deviations from the norm by 14.4%. Conclusion. Data indicating the pronounced impact of adverse environmental factors, not identified.

  6. Hydro-geochemical and isotopic composition of ground water in Helwan area

    Directory of Open Access Journals (Sweden)

    W.M. Salem

    2015-12-01

    The environmental stable isotopes oxygen and hydrogen (18O, and deuterium were studied and used to identify the sources of recharge. The studied ground waters are enriched in D and 18O and the isotopic features suggest that most of the ground water recharged indirectly after evaporation prior to infiltration from irrigation return water as well as the contribution from Nile water.

  7. Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area

    Science.gov (United States)

    Tadiboyina, Ravisankar; Ptsrk, Prasada Rao

    2016-01-01

    In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…

  8. Remote and terrestrial ground monitoring techniques integration for hazard assessment in mountain areas

    Science.gov (United States)

    Chinellato, Giulia; Kenner, Robert; Iasio, Christian; Mair, Volkmar; Mosna, David; Mulas, Marco; Phillips, Marcia; Strada, Claudia; Zischg, Andreas

    2014-05-01

    adding value and information to the whole monitoring survey. The test sites are currently observed by an original integrated methodology specifically developed within the aim of the project. The integrated monitoring design includes reference targets for the different monitoring systems placed together on the same point or rigid foundation, to facilitate the comparison of the data and, in the operational use, to be able to switch consistently from one to the other system. The principal goal of the project is to define a shared procedure to select scalable technologies, best practices and institutional action plans more adequate to deal with different sort of hazard related to ground displacement, in densely populated mountain areas containing recreational and critical infrastructures. Keywords: integrated monitoring, multi-temporal interferometry, artificial reflectors; mass movement, SloMove.eu

  9. Ground-water in the Teresina-Campo Maior area, Piaui, Brazil

    Science.gov (United States)

    Rodis, Harry G.; Suszczynski, Edison F.

    1972-01-01

    The Teresina-Campo Maior area lies in a presently developing farming and grazing region near the margin of drought-prone northeast Brazil where irrigated farming offers the best potential for economic development. The area comprises 9,700 square kilometers largely of catinga-covered tabular uplands which are drained by the perennial Rio Parnatba. The climate is hot and humid most of the year but with distinct wet and dry seasons. Temperature extremes range from 20?C to 39?C and the annum rainfall averages 1,200 millimeters. The area's ground-water reservoir is contained chiefly in sandstone aquifers of six westward-dipping sedimentary rock formations, all part of the Maranhao sedimentary basin. The youngest of these formations, namely the Piaut (Pennsylvarian), Poti (Mississippian), Longa (Upper Devonian), and Cabecas (Middle Devoniar), contain the principal aquifers. Precipitation is the primary source of recharge to these aquifers and is more than sufficient to replenish current withdrawals from wells. Underlying the principal aquifers are the untapped Pimenteiras and Serra Grande Formations (both Lower Devonian) which in areas adjacent to the report area are moderately good to excellent water producers. These aquifers are recharged principally by lateral inflow from the east. Water also occurs in the alluvial deposits (Quaternary) underlying the flood plain of the Rio Parnatba but recurrent and uncontrolled flooding at present (1966) precludes their development. Of little economic importance, because they lie above the zone of saturation, are the thin erosional remnants of the Pastos Bons (Upper Triassic), Matuca, and Pedra de Fogo (both Permian) Formations. There are in the report area about 200 drilled wells most of which are pumped with power-driven engines. The wells range from 40 to 500 meters deep but most do not exceed 150 meters, and practically all are completed open hole. Yields range from 500 liters per day for 6-inch-diameter domestic wells to 240

  10. Radioactive characterization of leachates and efflorescences in the neighbouring areas of a phosphogypsum disposal site as a preliminary step before its restoration

    International Nuclear Information System (INIS)

    Gázquez, M.J.; Mantero, J.; Mosqueda, F.; Bolívar, J.P.; García-Tenorio, R.

    2014-01-01

    After the recent closure of certain phosphoric acid plants located in the South-West of Spain, it has been decided to restore a big extension (more than six hundred hectares) of salt-marshes, where some million tonnes of phosphogypsum (PG), the main by-product generated by these plants, had been disposed of. This PG is characterized by its content of high activity concentrations of several radionuclides from the uranium series, mainly 226 Ra, 210 Pb, and 210 Po and, to a lesser extent, U-isotopes. The PG disposal area can be considered as a potential source of radionuclides into their nearby environment, through the waters which percolate from them and through the efflorescences formed in their surroundings. For this reason, a detailed radioactive characterization of the mentioned waters and efflorescences has been considered essential for a proper planning of the restoration tasks to be applied in the near future in the zone. To this end, U-isotopes, 234 Th, 230 Th, 226 Ra, 210 Pb and 210 Po activity concentrations have been determined by applying both alpha-particle and gamma-ray spectrometric techniques to selected water and efflorescence aliquots collected in the area. The analysis of the obtained results has enabled to obtain information about the geochemical behaviour in the area of the different radionuclides analyzed; and the conclusion to be drawn that, in the restoration plan under preparation, both the prohibition of outflowing waters from the disposal area to the neighbouring salt-marshes, and the removal of all the efflorescences now disseminated in their surroundings are essential. - Highlights: • A radioactive analysis of efflorescences and leaching water has been carried out. • Water contains very high concentrations of radionuclides from the uranium series. • Efflorescence shows a high activity concentrations of 238 U and 210 Pb. • This information is essential for the future restoration of a phosphogypsum piles

  11. Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington

    Science.gov (United States)

    Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.

    2008-01-01

    Low dissolved oxygen concentrations in the waters of Hood Canal threaten marine life in late summer and early autumn. Oxygen depletion in the deep layers and landward reaches of the canal is caused by decomposition of excess phytoplankton biomass, which feeds on nutrients (primarily nitrogen compounds) that enter the canal from various sources, along with stratification of the water column that prevents mixing and replenishment of oxygen. Although seawater entering the canal is the largest source of nitrogen, ground-water discharge to the canal also contributes significant quantities, particularly during summer months when phytoplankton growth is most sensitive to nutrient availability. Quantifying ground-water derived nutrient loads entering an ecologically sensitive system such as Hood Canal is a critical component of constraining the total nutrient budget and ultimately implementing effective management strategies to reduce impacts of eutrophication. The amount of nutrients entering Hood Canal from ground water was estimated using traditional and indirect measurements of ground-water discharge, and analysis of nutrient concentrations. Ground-water discharge to Hood Canal is variable in space and time because of local geology, variable hydraulic gradients in the ground-water system adjacent to the shoreline, and a large tidal range of 3 to 5 meters. Intensive studies of ground-water seepage and hydraulic-head gradients in the shallow, nearshore areas were used to quantify the freshwater component of submarine ground-water discharge (SGD), whereas indirect methods using radon and radium geochemical tracers helped quantify total SGD and recirculated seawater. In areas with confirmed ground-water discharge, shore-perpendicular electrical resistivity profiles, continuous electromagnetic seepage-meter measurements, and continuous radon measurements were used to visualize temporal variations in ground-water discharge over several tidal cycles. The results of these

  12. Ground-water flow and water quality in the Upper Floridan aquifer, southwestern Albany area, Georgia, 1998-2001

    Science.gov (United States)

    Warner, Debbie; Lawrence, Stephen J.

    2005-01-01

    During 1997, the Dougherty County Health Department sampled more than 700 wells completed in the Upper Floridan aquifer in Dougherty County, Georgia, and determined that nitrate as nitrogen (hereinafter called nitrate) concentrations were above 10 milligrams per liter (mg/L) in 12 percent of the wells. Ten mg/L is the Georgia primary drinking-water standard. The ground-water flow system is complex and poorly understood in this predominantly agricultural area. Therefore, the U.S. Geological Survey (USGS) - in cooperation with Albany Water, Gas and Light Commission - conducted a study to better define ground-water flow and water quality in the Upper Florida aquifer in the southwestern Albany area, Georgia. Ground-water levels were measured in the southwestern Albany area, Georgia, during May 1998 and March 1999 (spring), and October 1998 and September 1999 (fall). Groundwater levels measured in 75 wells open only to the Upper Floridan aquifer were used to construct potentiometric-surface maps for those four time periods. These maps show that ground water generally flows from northwest to southeast at gradients ranging from about 2 to greater than 10 feet per mile. During spring and fall 1998, ground-water levels were high and mounding of the potentiometric surface occurred in the central part of the study area, indicating a local recharge area. Water levels declined from December through February, and by March 1999 the mound in the potentiometric surface had dissipated. Of the 75 wells in the potentiometric network, 24 were selected for a water-quality network. These 24 wells and 1 spring were sampled during fall 1998 and spring 1999. Samples were analyzed for major chemical constituents, selected minor constituents, selected nutrients, and chlorofluorocarbons (CFC). Water-quality field measurements - such as water temperature, pH, specific conductance (SC), and dissolved oxygen (DO) - were taken at each well. During August 2000, a ground-water sample was collected

  13. Support technologies to cater for rockbursts and falls of ground in the immediate face area, volume 1.

    CSIR Research Space (South Africa)

    Daehnk, A

    2000-03-01

    Full Text Available Final Project Report Support technologies to cater for rockbursts and falls of ground in the immediate face area Volume I A. Daehnke, E. Acheampong, N. Reddy, K.B. Le Bron and A.T. Haile Research agency: CSIR Mining Technology Project number: GAP...

  14. Specific structure, sexual parity and seasonal dynamics of separate kinds of ground-beetles of Tljaratinskiy area of Daghestan

    Directory of Open Access Journals (Sweden)

    M. H. Imanmirzaev

    2008-01-01

    Full Text Available As a result of carried out research in fauna of ground-beetles of Tljaratinskiy area it is revealed 87 kinds concerning 24 sorts. The sexual parity is established and seasonal dynamics of prepotent kinds is certain.

  15. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  16. Main areas of work of the German Radiation Protection Office (BfS). Final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kleemann, U.

    2006-01-01

    The Federal Ministry for Environment, Nature Conservation and Reactor Safety (BMU) formulated twelve questions which are in principle relevant to all host rock formations and require clarification in any case. The task of the BfS was to compile a comparison of different host rock formations on the basis of the answers given to these twelve questions for the individual projects. The main focus was on whether these safety-related questions merit different answers for different host rock formations and whether this has an impact on the requirements to be placed on final disposal concepts

  17. Ground-water geology of the coastal zone, Long Beach-Santa Ana area, California

    Science.gov (United States)

    Poland, J.F.; Piper, A.M.

    1956-01-01

    This paper is the first chapter of a comprehensive report on the ground-water features in the southern part of the coastal plain in Los Angeles and Orange Counties, Calif., with special reference to the effectiveness of the so-called coastal barrier--the Newport-Inglewood structural zone--in restraining landwar,-1 movement of saline water. The coastal plain in Los Angeles and Orange Counties, which covers some 775 square miles, sustains a large urban and rural population, diverse industries, and intensive agricultural developments. The aggregate ground-water withdrawal in 1945 was about 400,000 acre-feet a year, an average of about 360 million gallons a day. The dominant land-form elements are a central lowland plain with tongues extending to the coast, bordering highlands and foothills, and a succession of low hills and mesas aligned northwestward along the coastal edge of the central low- land plain. These low hills and mesas are the land-surface expression of geologic structure in the Newport-Inglewood zone. The highland areas that border the inland edge of the coastal plain are of moderate altitude and relief; most of the ridge crests range from 1,400 to 2,500 feet in altitude, but Santiago Peak in the Santa Ana Mountains attains a height of 5,680 feet above sea level. From these highlands the land surface descends across foothills and aggraded alluvial aprons to the central lowland, Downey Plain, here defined as the surface formed by alluvial aggradation during the post-Pleistocene time of rising base level. The Newport-Inglewood belt of hills and plains (mesas) has a maximum relief of some 500 feet but is widely underlain at a depth of about 30 feet by a surface of marine plantation. As initially formed in late Pleistocene time that surface was largely a featureless plain. Thus the present land-surface forms within the Newport-Inglewood belt measure the earth deformation that has occurred there since late Pleistocene time and so are pertinent with respect to

  18. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    Science.gov (United States)

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  19. Radioactive liquid wastes discharged to ground in the 200 areas during 1974

    International Nuclear Information System (INIS)

    Anderson, J.D.

    1975-01-01

    Radioactive liquid wastes discharged to ground during 1974 and since startup within the Production and Waste Management control zone are summarized in tabular form. Estimates of the radioactivity discharged to individual ponds, cribs, and retention sites are also summarized. (LK)

  20. Ground water in Delhi area, problems and prospects under fast urbanisation- a nuclear aided study

    International Nuclear Information System (INIS)

    Mookerjee, P.; Datta, P.S.; Chandrasekharan, H.; Tyagi, S.K.; Singh, R.V.

    1994-01-01

    The work presented in this paper constitutes a peep into the components of urbanization in the two decades which affected the quality and availability of ground water in the Delhi territory. The recharge studies conducted in Delhi villages employing oxygen 18 and tritium tagging have been described with a view to focus attention on the sustainability of the ground water potential. 1 fig., 1 tab

  1. Ground Deformation Detection Using China’s ZY-3 Stereo Imagery in an Opencast Mining Area

    OpenAIRE

    Wenmin Hu; Lixin Wu; Wei Zhang; Bin Liu; Jiaxing Xu

    2017-01-01

    Detection and extraction of mining-induced ground deformation can be used to understand the deformation process and space distribution and to estimate the deformation laws and trends. This study focuses on the application of ground deformation detection and extraction combined with digital surface model (DSM), derived from China’s ZiYuan-3 (ZY-3) satellite stereo imagery and the advanced spaceborne thermal emission and reflection radiometer global digital elevation model (ASTER GDEM) data. A ...

  2. Geology and ground-water hydrology of the Mokelumne area, California

    Science.gov (United States)

    Piper, A.M.; Gale, H.S.; Thomas, H.E.; Robinson, T.W.

    1939-01-01

    western margin of the Mokelumne area, according to an estimate based upon projecting the slope of the Arroyo Seco pediment westward beneath the Victor plain. The Mokelumne area lies on the fertile central plain along the Mokelumne River about the city of Lodi, in northern San Joaquin County, and has been intensively developed for the cultivation of grapes, deciduous fruits, and other crops. Of necessity its great productiveness is maintained by irrigation. Extensive irrigation from wells began about 1907 and has increased steadily until in 1932 about 50,000 acres (80 percent of the area) was watered in that manner. The specific question at issue is the extent to which the supply of ground water and hence the productiveness of the area are dependent upon the water flowing in the Mokelumne River and the extent to which that productiveness may be influenced by regulation of the stream--:in particular, by the substantial regulation of the river that is accomplished by the Pardee Dam of the East Bay Municipal Utility District, which began to function in March 1929. The depth of 1,447 irrigation wells in five townships in the central part of the area (T. 3 N., Rs. 6 and 7 E., and T. 4 N., Rs. 6 to 8 E.) ranges from 20 to 910 feet. About half the wells bottom within a 100-foot zone whose base is 75 feet below the projected Arroyo Seco pediment; essentially that zone constitutes the Victor formation. Only 6 percent of the wells bottom within the next lower 25-

  3. Consideration of the restoring plan in subsidence prone areas through the development of ground stability assessment techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kwang-Soo; Kim, Im-Ho; Baek, Sang-Ho [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This report consists of 2 subjects. (1) Consideration of the restoring plan in subsidence prone areas through the development of ground stability assessment techniques : The number of mines at rest as well as closed have abruptly increased since the 1980's, which has caused subsidence problems around the mined areas. To protect such places from damage due to subsidence, it is necessary to develop the assessment techniques of ground stability and make restoration plan. To achieve this goal, the site investigation should have been conducted before the subsidence events occurred, but ground behaviors around the places where a vertical movement is expected and recognised in advance before the occurrence of the subsidence events. In this study ground stability analysis for the area surrounding the Moo-Geuk Mine, located close to a city, was conducted and the measurements were recorded. The objectives of the present study include, the development of a risk assessment technique for the subsidence using GIS tool, an evaluation of the numerical methods related to the site investigation and the ground stability analysis, the application of the numerical tools to the present problems. (2) Integration of coal mine data and use of remote sensing in investigation of coal mine area : This study attempt to integrate the previous geological and mining data to avoid confusions often occurred when accessing source data. And the investigation of underground mining place using remote sensing method is the other effort to assure the geographic locations of mining places as well as to find out unknown mining place. The sample region for examining the remote sensing method is the Chungnam coal field, which locates in the middle western part of South Korea. Detailed investigation was held on the Seongju area, locating north eastern part of the coal field. (author). 54 refs., tabs., figs.

  4. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence

  5. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-05-15

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  6. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    International Nuclear Information System (INIS)

    L. V. Street

    2007-01-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility

  7. Ground-water quality in agricultural areas, Anoka Sand Plain Aquifer, east-central Minnesota, 1984-90

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.

    1995-01-01

    Ground-water quality in the Anoka Sand Plain aquifer was studied as part of the multiscale Management Systems Evaluation Area (MSEA) study by collecting water samples from shallow wells during August through November 1990. The sampling was conducted to: (1) aid in selection of the MSEA research area; (2) facilitate comparison of results at the MSEA research area to the regional scale; and (3) evaluate changes in ground-water quality in the Anoka Sand Plain aquifer since a previous study during 1984 through 1987. Samples were collected from 34 wells screened in the upper 6 meters of the surficial aquifer and located in cultivated agricultural areas. Water temperature, pH, specific conductance, and presence or absence of triazine herbicides were determined at all sites and samples from selected wells were analyzed for concentrations of dissolved oxygen, alkalinity, major cations and anions, nutrients, and selected herbicides and herbicide metabolites. The results of the study indicate that the water-quality of some shallow ground water in areas of predominantly agricultural land use has been affected by applications of nitrogen fertilizers and the herbicide atrazine.

  8. R/V Endeavor cruise EN-024. Seabed Disposal Program: North Atlantic study area MPG-III 35030'N 61000'W, June 30--July 11, 1978. Final report

    International Nuclear Information System (INIS)

    Heath, G.R.; Laine, E.P.

    1978-09-01

    During 7 days in the vicinity of 35 0 30'N, 61 0 00'W (Seabed Disposal Program mid-late, mid-gyre study area MPG-III) we carried out 1830 km of subbottom acoustic profiling and 2 camera lowerings, and took 7 standard piston cores, 3 large diameter piston cores, 9 large diameter gravity cores and 2 dredge hauls of surface sediment. Pore fluids were extracted from 3 gravity cores and 1 piston core and on-board physical property measurements were made on 2 large diameter piston cores and 1 large diameter gravity core. These data and samples will be used to assess the lateral homogeneity and recent geologic history of the area, as well as to compare the sorption and physical barrier properties of the sediments with deposits from the MPG I and II areas in the Pacific

  9. Monitoring particulate matters in urban areas in Malaysia using remote sensing and ground-based measurements

    Science.gov (United States)

    Kanniah, K. D.; Kamarul Zaman, Nurul Amalin Fatihah; Lim, H. Q.; Reba, Mohd Nadzri Md.

    2014-10-01

    Monitoring particulate matter less than 10 μm (PM10) near the ground routinely is critical for Malaysia for emergency management because Malaysia receives considerable amount of pollutants from both local and trans-boundary sources. Nevertheless, aerosol data covering major cities over a large spatial extent and on a continuous manner are limited. Thus, in the present study we aimed to estimate PM10 at 5 km spatial scale using AOD derived from MERIS sensor at 3 metropolitan cities in Malaysia. MERIS level 2 AOD data covering 5 years (2007-2011) were used to develop an empirical model to estimate PM10 at 11 locations covering Klang valley, Penang and Johor Bahru metropolitan cities. This study is different from previous studies conducted in Malaysia because in the current study we estimated PM10 by considering meteorological parameters that affect aerosol properties, including atmospheric stability, surface temperature and relative humidity derived from MODIS data and our product will be at ~5 km spatial scale. Results of this study show that the direct correlation between monthly averaged AOD and PM10 yielded a low and insignificant relationship (R2= 0.04 and RMSE = 7.06μg m-3). However, when AOD, relative humidity, land surface temperature and k index (atmospheric stability) were combined in a multiple linear regression analysis the correlation coefficient increased to 0.34 and the RMSE decreased to 8.91μg m-3. Among the variables k- index showed highest correlation with PM 10 (R2=0.35) compared to other variables. We further improved the relationship among PM10 and the independent variables using Artificial Neural Network. Results show that the correlation coefficient of the calibration dataset increased to 0.65 with low RMSE of 6.72μg m-3. The results may change when we consider more data points covering 10 years (2002- 2011) and enable the construction of a local model to estimate PM10 in urban areas in Malaysia.

  10. Evaluation of ground freezing for environmental restoration at waste area grouping 5, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Gates, D.D.

    1995-09-01

    A study to evaluate the feasibility of using ground freezing technology to immobilize tritium contaminants was performed as part of the Waste Area Grouping (WAG) 6 Technology Demonstrations initiated by the WAG 6 Record of Agreement. The study included a review of ground freezing technology, evaluation of this technology for environmental restoration, and identification of key technical issues. A proposed ground freezing demonstration for containment of tritium at a candidate Oak Ridge National Laboratory site was developed. The planning requirements for the demonstration were organized into seven tasks including site selection, site characterization, conceptual design, laboratory evaluation, demonstration design, field implementation, and monitoring design. A brief discussion of each of these tasks is provided. Additional effort beyond the scope of this study is currently being directed to the selection of a demonstration site and the identification of funding

  11. In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas

    International Nuclear Information System (INIS)

    1994-02-01

    This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided

  12. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  13. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  14. Cleanup Verification Package for the 118-F-2 Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.; Anselm, K.A.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-2 Burial Ground. This burial ground, formerly called Solid Waste Burial Ground No. 1, was the original solid waste disposal site for the 100-F Area. Eight trenches contained miscellaneous solid waste from the 105-F Reactor and one trench contained solid waste from the biology facilities

  15. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    Science.gov (United States)

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  16. Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation

    NARCIS (Netherlands)

    Self, M.W.; van Kerkoerle, T; Super, H.; Roelfsema, P.R.

    2013-01-01

    Background: What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage

  17. Distinct roles of the cortical layers of area v1 in figure-ground segregation

    NARCIS (Netherlands)

    Self, Matthew W.; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R.

    2013-01-01

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward,

  18. Texture Segregation Causes Early Figure Enhancement and Later Ground Suppression in Areas V1 and V4 of Visual Cortex.

    Science.gov (United States)

    Poort, Jasper; Self, Matthew W; van Vugt, Bram; Malkki, Hemi; Roelfsema, Pieter R

    2016-10-01

    Segregation of images into figures and background is fundamental for visual perception. Cortical neurons respond more strongly to figural image elements than to background elements, but the mechanisms of figure-ground modulation (FGM) are only partially understood. It is unclear whether FGM in early and mid-level visual cortex is caused by an enhanced response to the figure, a suppressed response to the background, or both.We studied neuronal activity in areas V1 and V4 in monkeys performing a texture segregation task. We compared texture-defined figures with homogeneous textures and found an early enhancement of the figure representation, and a later suppression of the background. Across neurons, the strength of figure enhancement was independent of the strength of background suppression.We also examined activity in the different V1 layers. Both figure enhancement and ground suppression were strongest in superficial and deep layers and weaker in layer 4. The current-source density profiles suggested that figure enhancement was caused by stronger synaptic inputs in feedback-recipient layers 1, 2, and 5 and ground suppression by weaker inputs in these layers, suggesting an important role for feedback connections from higher level areas. These results provide new insights into the mechanisms for figure-ground organization. © The Author 2016. Published by Oxford University Press.

  19. Ground subsidence and associated ground fracturing in urban areas: InSAR monitoring of active tectonic structures (Ciudad Guzman, Colima Graben - Mexico)

    Science.gov (United States)

    Bignami, C.; Brunori, C.; Zucca, F.; Groppelli, G.; Norini, G.; Hernandez, N. D.; Stramondo, S.

    2013-12-01

    This study focuses on the observation of a creeping phenomenon that produces subsidence of the Zapotlan basin and ground fracturing in correspondence of the Ciudad Guzmàn (Jalisco - Mexico). The September 21, 2012, the Ciudad Guzmàn has been struck by a phenomenon of ground fracturing of about 1.5 km of length. This event caused the deformation of the roads and the damage of 30 houses, of which eight have been declared uninhabitable. The alignment of fractures is coincident with the escarpments produced in September 19, 1985, in the Ciudad Guzman urban area, when a strong earthquake, magnitude 8.1, struck the Mexican area, causing the deaths of at least 10,000 people and serious damage in Mexico City. In Ciudad Guzmán, about 60% of the buildings were destroyed, with about 50 loss of life. The city is located in the Zapotlan basin (northern Colima graben), a wide tectonic depression where the depth of the infilling sediments is about 1 km. This subsidence cannot be measured outside the urbanized area, but it can be considered as a deformation mechanism of the central part of the basin. In order to detect and mapping the spatio-temporal features of the processes that led to this event, we applied InSAR multi-temporal techniques to analyze a dataset of ENVISAT satellite SAR images, acquired in a time span between 2003-2010. InSAR techniques detect a subsidence of the north-western part of Ciudad Guzmàn of about 15 mm/yr in the time interval 2003-2010. The displacement occurred in September 21, 2012, was detected using two RadarSAT2 acquisitions (2012-03-22 and 2013-03-17). The explanation of surface movements based on interferometric results, ground data and geological field observations, allowed confirming surface effect due to the overexploitation of the aquifers and highlights a subsidence due to anthropogenic causes coupled to buried tectonic structures.

  20. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  1. 33 Shafts Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Monk, Thomas H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-22

    This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package were developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).

  2. Effects of 1992 farming systems on ground-water quality at the management systems evaluation area near Princeton, Minnesota

    Science.gov (United States)

    Delin, G.N.; Landon, M.K.; Lamb, J.A.; Dowdy, R.H.

    1995-01-01

    The Management Systems Evaluation Area (MSEA) program was a multiscale, interagency initiative to evaluate the effects of agricultural systems on water quality in the midwest corn belt. The primary objective of the Minnesota MSEA was to evaluate the effects of ridge-tillage practices in a corn and soybean farming system on ground-water quality. The 65-hectare Minnesota MSEA was located in the Anoka Sand Plain near the town of Princeton, Minnesota. Three fanning systems were evaluated: corn-soybean rotation with ridge-tillage (areas B and D), sweet corn-potato rotation (areas A and C), and field corn in consecutive years (continuous corn; area E). Water samples were collected four different times per year from a network of 22 multiport wells and 29 observation wells installed in the saturated zone beneath and adjacent to the cropped areas.

  3. A New Recursive Filtering Method of Terrestrial Laser Scanning Data to Preserve Ground Surface Information in Steep-Slope Areas

    Directory of Open Access Journals (Sweden)

    Mi-Kyeong Kim

    2017-11-01

    Full Text Available Landslides are one of the critical natural hazards that cause human, infrastructure, and economic losses. Risk of catastrophic losses due to landslides is significant given sprawled urban development near steep slopes and the increasing proximity of large populations to hilly areas. For reducing these losses, a high-resolution digital terrain model (DTM is an essential piece of data for a qualitative or a quantitative investigation of slopes that may lead to landslides. Data acquired by a terrestrial laser scanning (TLS, called a point cloud, has been widely used to generate a DTM, since a TLS is appropriate for detecting small- to large-scale ground features on steep slopes. For an accurate DTM, TLS data should be filtered to remove non-ground points, but most current algorithms for extracting ground points from a point cloud have been developed for airborne laser scanning (ALS data and not TLS data. Moreover, it is a challenging task to generate an accurate DTM from a steep-slope area by using existing algorithms. For these reasons, we developed an algorithm to automatically extract only ground points from the point clouds of steep terrains. Our methodology is focused on TLS datasets and utilizes the adaptive principal component analysis–triangular irregular network (PCA-TIN approach. Our method was applied to two test areas and the results showed that the algorithm can cope well with steep slopes, giving an accurate surface model compared to conventional algorithms. Total accuracy values of the generated DTMs in the form of root mean squared errors are 1.84 cm and 2.13 cm over the areas of 5252 m2 and 1378 m2, respectively. The slope-based adaptive PCA-TIN method demonstrates great potential for TLS-derived DTM construction in steep-slope landscapes.

  4. Seismic VSP and HSP surveys on preliminary investigation areas in Finland for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Keskinen, J.; Cosma, C.; Heikkinen, P.

    1992-10-01

    Seismic reflection surveys in boreholes were carried out for Teollisuuden Voima Oy at five sites in Finland (Eurajoki Olkiluoto, Hyrynsalmi Veitsivaara, Konginkangas Kivetty, Kuhmo Romuvaara and Sievi Syyry). The vertical Seismic Profiling (VSP) surveys were a part of the investigation programme for the final disposal of spent nuclear fuel. The purpose was to detect fractured zones, lithological contacts and other anomalies in the structure of the rockmass and to determine their position and orientation. Horizontal Seismic Profiling (HSP) was used at the Olkiluoto site, additionally to VSP. The data has been organized in profiles containing seismograms recorded from the same shotpoint (shot gathers). One of the most powerful processing methods used with this project has been the Image Space Filtering, a new technique, which has been developed (in the project) for seismic reflection studies in crystalline rock. The method can be applied with other rock types where steeply inclined or vertical anomalies are of interest. It acts like a multichannel filter, enhancing the reflected events and also as an interpretation tool, to estimate the strength and position of the reflectors. This approach has been of great help in emphasizing the weak reflections from uneven and sometimes vanishing interfaces encountered in crystalline

  5. Physico-chemical analysis of ground water samples of coastal areas of south Chennai in the post-Tsunami scenario.

    Science.gov (United States)

    Rajendran, A; Mansiya, C

    2015-11-01

    The study of changes in ground water quality on the east coast of chennai due to the December 26, 2004 tsunami and other subsequent disturbances is a matter of great concern. The post-Tsunami has caused considerable plant, animal, material and ecological changes in the entire stretch of chennai coastal area. Being very close to sea and frequently subjected to coastal erosion, water quality has been a concern in this coastal strip, and especially after the recent tsunami this strip seems to be more vulnerable. In the present investigation, ten ground water samples were collected from various parts of south chennai coastal area. Physico-chemical parameters such as pH, temperature, Biochemical oxygen demand (BOD), Dissolved oxygen (DO), total solids; turbidity and fecal coliform were analyzed. The overall Water quality index (WQI) values for all the samples were found to be in the range of 68.81-74.38 which reveals a fact that the quality of all the samples is only medium to good and could be used for drinking and other domestic uses only after proper treatment. The long term adverse impacts of tsunami on ground water quality of coastal areas and the relationships that exist and among various parameters are carefully analyzed. Local residents and corporation authorities have been made aware of the quality of their drinking water and the methods to conserve the water bodies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Environmentally Friendly Solution to Ground Hazards in Design of Bridges in Earthquake Prone Areas Using Timber Piles

    Science.gov (United States)

    Sadeghi, H.

    2015-12-01

    Bridges are major elements of infrastructure in all societies. Their safety and continued serviceability guaranties the transportation and emergency access in urban and rural areas. However, these important structures are subject to earthquake induced damages in structure and foundations. The basic approach to the proper support of foundations are a) distribution of imposed loads to foundation in a way they can resist those loads without excessive settlement and failure; b) modification of foundation ground with various available methods; and c) combination of "a" and "b". The engineers has to face the task of designing the foundations meeting all safely and serviceability criteria but sometimes when there are numerous environmental and financial constrains, the use of some traditional methods become inevitable. This paper explains the application of timber piles to improve ground resistance to liquefaction and to secure the abutments of short to medium length bridges in an earthquake/liquefaction prone area in Bohol Island, Philippines. The limitations of using the common ground improvement methods (i.e., injection, dynamic compaction) because of either environmental or financial concerns along with the abundance of timber in the area made the engineers to use a network of timber piles behind the backwalls of the bridge abutments. The suggested timber pile network is simulated by numerical methods and its safety is examined. The results show that the compaction caused by driving of the piles and bearing capacity provided by timbers reduce the settlement and lateral movements due to service and earthquake induced loads.

  7. Ground water conditions and the relation to uranium deposits in the Gas Hills area, Fremont and Natrona Counties, Wyoming

    International Nuclear Information System (INIS)

    Marks, L.Y.

    1978-03-01

    As ground water apparently leaches, transports, and deposits uranium in the Gas Hills area, central Wyoming, it is important to understand its distribution, movement, and relation to geology and ore bodies. Water table maps were prepared of the Wind River Basin; the most detailed work was in the Gas Hills area. The water table in the Gas Hills area slopes downward to the northwest, ranges in depth from near the ground surface to more than 200 feet, and has seasonal fluctuation of about five feet. Perched water tables and artesian conditions occur locally. The oxidized-unoxidized rock contact is probably roughly parallel to the water table, and averages about 25 feet above it; although locally the two surfaces are considerably farther apart and the oxidized-unoxidized contact may be below the water table. In many places the gradient of the water table changes near the contact between rocks of different permeability. It is conformable with the structure at some anticlines and its gradient changes abruptly near some faults. Most above-normal concentrations of uranium occur at local water table depressions or at water table terraces where the gradient of the water table flattens. At these places, the uraniferous ground water is slowed and is in contact with the reducing agents in the rocks for a relatively long time. This may allow reduction of soluble transported uranium (U +6 ) to insoluble U +4 ) so that uranium is precipitated

  8. Evaluation of shallow ground water use in command area of Dhoro Naro minor, Nawabshah

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2002-01-01

    Water supply data shows that the average supply of canal water to minor has been reduced to 30.9 cusecs (1.5 mm/day), which is about 41% (1.19mm/day) short of design supply due to water shortage in the system. To deal with water-short period and increase cultivation, the farmers (water users) have installed around 100 tube wells (from which 90 are functioning) to extract shallow ground water up to a depth of 40-50 feet (12.2-15.24m) having average discharge of tube well is 0.78 cusees (22 litres/sec). The water quality measured of these tube wells ranges between 371-8,858 PPM (0.58-13.9 dS/m). On average 3 hours/acre/week running of private tube wells contributes 0.5 mm/day to over come the shortage of water, which has resulted in 32% cropping intensity against 38% of design cropping intensity in spite of 41% short of designed supply of surface water. Moreover, the water table depth has gone down to an average depth of about 9.5 feet from the ground surface. Study has suggested that the pumping of these tube wells needs to be optimized to keep to water table depth up to 6 feet so as deterioration of shallow ground water be minimized and land be protected from secondary soil salinization. (author)

  9. Predictive Models of Duration of Ground Delay Programs in New York Area Airports

    Science.gov (United States)

    Kulkarni, Deepak

    2011-01-01

    Initially planned GDP duration often turns out to be an underestimate or an overestimate of the actual GDP duration. This, in turn, results in avoidable airborne or ground delays in the system. Therefore, better models of actual duration have the potential of reducing delays in the system. The overall objective of this study is to develop such models based on logs of GDPs. In a previous report, we described descriptive models of Ground Delay Programs. These models were defined in terms of initial planned duration and in terms of categorical variables. These descriptive models are good at characterizing the historical errors in planned GDP durations. This paper focuses on developing predictive models of GDP duration. Traffic Management Initiatives (TMI) are logged by Air Traffic Control facilities with The National Traffic Management Log (NTML) which is a single system for automated recoding, coordination, and distribution of relevant information about TMIs throughout the National Airspace System. (Brickman, 2004 Yuditsky, 2007) We use 2008-2009 GDP data from the NTML database for the study reported in this paper. NTML information about a GDP includes the initial specification, possibly one or more revisions, and the cancellation. In the next section, we describe general characteristics of Ground Delay Programs. In the third section, we develop models of actual duration. In the fourth section, we compare predictive performance of these models. The final section is a conclusion.

  10. Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste

    International Nuclear Information System (INIS)

    1975-05-01

    Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements

  11. The estimation of areas of ground that may be contaminated after an accidental release of pollutant to the atmosphere

    International Nuclear Information System (INIS)

    Corbett, J.O.

    1979-01-01

    A method is developed for calculating the area of ground contaminated above a prescribed level after an accidental release of radioactivity or any other pollutant to the atmosphere. Numerical calculations are made for a wide range of releases, atmospheric conditions and rates of wet and dry deposition. It is shown that high atmospheric stability and rain both tend to maximize the area of significant contamination for most of the plausible range of releases. However, for very large hypothetical releases, dry conditions with an unstable atmosphere spread significant contamination furthest afield. (author)

  12. Isotopic composition of water in a deep unsaturated zone beside a radioactive-waste disposal area near Beatty, Nevada

    Science.gov (United States)

    Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.

  13. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  14. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlement agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.

  15. Ground penetrating radar measurements at the ONKALO research tunnel and eastern part of the Olkiluoto investigation area at July 2006

    International Nuclear Information System (INIS)

    Sipola, V.; Tarvainen, A.-M.

    2007-04-01

    Ground Penetrating Radar (GPR) measurements were carried out at ONKALO research site in summer 2006. Measurements included 400 metres of measurements inside ONKALO access tunnel and about 1800 metres of measurements on the ground, at the eastern parts of Olkiluoto investigation area. The purpose of the measurements done inside the access tunnel was to investigate, whether it would be possible to locate deformation structures or long fractures in the rock mass below the tunnel. The purpose of the measurements made on top of the ground was to investigate, whether it would be possible to locate glacio-isostatic faults from the soils. A secondary target was to try and locate the rock surface. The chosen part of ONKALO tunnel was measured using five different frequencies, which enabled comparing the results to each other. It also enabled getting a higher resolution picture of the top rock, than what would have been possible using only one low-frequency antenna. The on-the-ground measurements were measured using only one frequency. (orig.)

  16. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    Energy Technology Data Exchange (ETDEWEB)

    L. V. Street

    2007-04-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

  17. Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas

    International Nuclear Information System (INIS)

    Bocchetti, Raffaella; Fattorini, Daniele; Pisanelli, Barbara; Macchia, Simona; Oliviero, Lisa; Pilato, Fabiano; Pellegrini, David; Regoli, Francesco

    2008-01-01

    Remobilization of chemicals from contaminated sediments is a major risk associated with dredging and disposal operations in harbour areas. In this work caged mussels, Mytilus galloprovincialis, were chosen as bioindicator organisms to reveal the impact and recovery of organisms from these activities in the harbour of Piombino (Tuscany, Italy) where approximately 100,000 m 3 of sediments were removed and disposed in a local confined disposal facility (CDF). Organisms were deployed before, during and after the end of operations, selecting sites differently impacted by these activities. Temporal changes in environmental bioavailability and biological effects of pollutants were assessed by integrating analyses of trace metals and polycyclic aromatic hydrocarbons (PAHs) accumulated in tissues of caged mussels with a wide array of biomarkers reflecting exposure to specific classes of pollutants and different levels of cellular unbalance or toxicity. Such biological responses included levels of metallothioneins, activity of acyl CoA oxidase (AOX) as a marker of peroxisome proliferation, oxidative stress biomarkers (content of glutathione, enzymatic activities of catalase, glutathione S-transferases, glutathione reductase, glutathione peroxidases), total oxyradical scavenging capacity (TOSC) toward peroxyl and hydroxyl radicals, lysosomal membrane stability and genotoxic effects measured as DNA strand breaks and frequency of micronuclei. Obtained results indicated that a general disturbance was already present in the whole harbour area and especially in the inner site before the beginning of operations, when caged mussels exhibited a significant accumulation of PAHs and Pb, lower TOSC values and higher levels of both lysosomal and genotoxic damages. Bioavailability of trace metals and PAHs markedly increased during dredging activities with values up to 40 μg/g for Pb and up to 2200 ng/g for PAHs in tissues of caged mussels, a significant inhibition of antioxidant

  18. Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas

    Energy Technology Data Exchange (ETDEWEB)

    Bocchetti, Raffaella; Fattorini, Daniele; Pisanelli, Barbara [Istituto di Biologia e Genetica, Universita Politecnica delle Marche, Via Ranieri Monte d' Ago, 60100 Ancona (Italy); Macchia, Simona; Oliviero, Lisa; Pilato, Fabiano; Pellegrini, David [Istituto Centrale per la Ricerca Scientifica e Tecnologica Applicata al Mare (ICRAM), Viale Nazario Sauro 4, 57128 Livorno (Italy); Regoli, Francesco [Istituto di Biologia e Genetica, Universita Politecnica delle Marche, Via Ranieri Monte d' Ago, 60100 Ancona (Italy)], E-mail: f.regoli@univpm.it

    2008-09-29

    Remobilization of chemicals from contaminated sediments is a major risk associated with dredging and disposal operations in harbour areas. In this work caged mussels, Mytilus galloprovincialis, were chosen as bioindicator organisms to reveal the impact and recovery of organisms from these activities in the harbour of Piombino (Tuscany, Italy) where approximately 100,000 m{sup 3} of sediments were removed and disposed in a local confined disposal facility (CDF). Organisms were deployed before, during and after the end of operations, selecting sites differently impacted by these activities. Temporal changes in environmental bioavailability and biological effects of pollutants were assessed by integrating analyses of trace metals and polycyclic aromatic hydrocarbons (PAHs) accumulated in tissues of caged mussels with a wide array of biomarkers reflecting exposure to specific classes of pollutants and different levels of cellular unbalance or toxicity. Such biological responses included levels of metallothioneins, activity of acyl CoA oxidase (AOX) as a marker of peroxisome proliferation, oxidative stress biomarkers (content of glutathione, enzymatic activities of catalase, glutathione S-transferases, glutathione reductase, glutathione peroxidases), total oxyradical scavenging capacity (TOSC) toward peroxyl and hydroxyl radicals, lysosomal membrane stability and genotoxic effects measured as DNA strand breaks and frequency of micronuclei. Obtained results indicated that a general disturbance was already present in the whole harbour area and especially in the inner site before the beginning of operations, when caged mussels exhibited a significant accumulation of PAHs and Pb, lower TOSC values and higher levels of both lysosomal and genotoxic damages. Bioavailability of trace metals and PAHs markedly increased during dredging activities with values up to 40 {mu}g/g for Pb and up to 2200 ng/g for PAHs in tissues of caged mussels, a significant inhibition of antioxidant

  19. Assessment of ground-water contamination by coal-tar derivatives, St. Louis Park area, Minnesota

    Science.gov (United States)

    Hult, M.F.

    1984-01-01

    Operation of a coal-tar distillation and wood-preserving facility in St. Louis Park, Minnesota, during 1918-72 contaminated ground water with coal-tar derivatives and inorganic chemicals. Coal-tar derivatives entered the groundwater system through three major paths: (1) Spills and drippings that percolated to the water table, (2) surface runoff and plant process water that was discharged to wetlands south of the former plant site, and (3) movement of coal tar directly into bedrock aquifers through a multiaquifer well on the site.

  20. Potential suitable areas of giant ground sloths dropped before its extinction in South America

    DEFF Research Database (Denmark)

    Lima-Ribeiro, Matheus Souza; Varela, Sara; Nogues, David Bravo

    2012-01-01

    of the climate preferences through time for the two species and modeled their potential distributions at last glacial maximum (LGM, 21 ky BP) and mid-Holocene (6 ky BP) using Bioclimatic Envelope Modeling (BEM), fossil records and paleoclimatic simulations. The model predictions showed a drastic reduction......Here we analyze the effects that climatic changes through last ice age had on the potential distributions and extinction risk dynamics of two extinct species of South American giant ground sloths, Eremotherium laurillardi and Megatherium americanum. We tested the assumption of stability...

  1. Analysis on regional hydrogeological condition of Beishan preselected area for high level radioactive waste disposal repository in Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Liu Shufen; Lu Chuanhe

    2004-01-01

    Based on the field investigation which has been carried out in the Beishan preselected area for high level radioactive waste repository in Gansu province during the last few years and the previous hydrogeological investigation results, the different groundwater types are divided initially and the hydrogeological features of different water-bearing media are described in this paper. Meanwhile, the preliminary evaluation of the regional hydrogeological condition of the study area is carried out. (author)

  2. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  3. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. Annexes

    International Nuclear Information System (INIS)

    2011-12-01

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30 th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The general report and the present annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful

  4. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. General report

    International Nuclear Information System (INIS)

    2011-12-01

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30 th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The present report and its annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful discussion

  5. An appraisal of ground water for irrigation in the Wadena area, central Minnesota

    Science.gov (United States)

    Lindholm, F.G.

    1970-01-01

    The Wadena area is part of a large sandy plain in central Minnesota whose soils have low water-holding capacity. Drought conditions which adversely affect plant growth frequently occur in the summer when moisture is most needed. To reduce the risk of crop failure in the area supplemental irrigation is on the increase.

  6. Evaluation of building fundamental periods and effects of local geology on ground motion parameters in the Siracusa area, Italy

    Science.gov (United States)

    Panzera, Francesco; D'Amico, Sebastiano; Lombardo, Giuseppe; Longo, Emanuela

    2016-07-01

    The Siracusa area, located in the southeastern coast of Sicily (Italy), is mainly characterized by the outcropping of a limestone formation. This lithotype, which is overlain by soft sediments such as sandy clays and detritus, can be considered as the local bedrock. Records of ambient noise, processed through spectral ratio techniques, were used to assess the dynamic properties of a sample survey of both reinforced concrete and masonry buildings. The results show that experimental periods of existing buildings are always lower than those proposed by the European seismic code. This disagreement could be related to the role played by stiff masonry infills, as well as the influence of adjacent buildings, especially in downtown Siracusa. Numerical modeling was also used to study the effect of local geology on the seismic site response of the Siracusa area. Seismic urban scenarios were simulated considering a moderate magnitude earthquake (December 13th, 1990) to assess the shaking level of the different outcropping formations. Spectral acceleration at different periods, peak ground acceleration, and velocity were obtained through a stochastic approach adopting an extended source model code. Seismic ground motion scenario highlighted that amplification mainly occurs in the sedimentary deposits that are widespread to the south of the study area as well as on some spot areas where coarse detritus and sandy clay outcrop. On the other hand, the level of shaking appears moderate in all zones with outcropping limestone and volcanics.

  7. Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities

    International Nuclear Information System (INIS)

    Hackley, K.C.; Liu, C.L.; Trainor, D.

    1999-01-01

    The major source of methane (CH 4 ) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH 4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH 4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH 4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments.Isotopic analyses included δ 13 C, δD, 14 C, and 3 H on select CH 4 samples and δD and δ 18 O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had δ 13 C values from -79 to -82per thousand, typical of natural 'drift gas' generated by microbial CO 2 -reduction. The CH 4 from the shallow lacustrine deposits had δ 13 C values from -63 to -76per thousand, interpreted as a mixture between CH 4 generated by microbial fermentation and the CO 2 -reduction processes within the subsurface sediments. The δD values of all the CH 4 samples were quite negative ranging from -272 to -299per thousand. Groundwater sampled from the deeper zones also showed quite negative δD values that explained the light δD observed for the CH 4 . Radiocarbon analyses of the CH 4 showed decreasing 14 C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH 4 detected in the till deposits of this site was microbial CH 4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH 4 from the shallow piezometers was more variable and the possibility of some

  8. Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities

    Science.gov (United States)

    Hackley, Keith C.; Liu, Chao-Li; Trainor, D.

    1999-01-01

    The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments. Isotopic analyses included ??13C, ??D, 14C, and 3H on select CH4 samples and ??D and ??18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had ??13C values from -79 to -82???, typical of natural 'drift gas' generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had ??13C values from -63 to -76???, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The ??D values of all the CH4 samples were quite negative ranging from -272 to -299???. Groundwater sampled from the deeper zones also showed quite negative ??D values that explained the light ??D observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the fill deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely

  9. Spatial distribution of ground-level urban background O3 concentrations in the Metropolitan Area of Buenos Aires, Argentina

    International Nuclear Information System (INIS)

    Pineda Rojas, Andrea L.; Venegas, Laura E.

    2013-01-01

    In this work, a recently developed urban-scale atmospheric dispersion model (DAUMOD-GRS) is applied to evaluate the ground-level ozone (O 3 ) concentrations resulting from anthropogenic area sources of NO x and VOC in the Metropolitan Area of Buenos Aires (MABA). The statistical comparison of model results with observations (including new available data from seventeen sites) shows a good model performance. Estimated summer highest diurnal O 3 1-h concentrations in the MABA vary between 15 ppb in the most urbanised area and 53 ppb in the suburbs. All values are below the air quality standard. Several runs are performed to evaluate the impact of possible future emission reductions on O 3 concentrations. Under all hypothetical scenarios, the maximum diurnal O 3 1-h concentration obtained for the area is slightly reduced (up to 4%). However, maximum diurnal O 3 concentrations could increase at some less urbanised areas of MABA depending on the relative reductions of the emissions of NO x and VOC. -- Highlights: ► A recently developed air quality model reproduces well observed O 3 levels in MABA. ► Modelled summer maximum diurnal O 3 concentrations vary in the area between 15 and 53 ppb. ► All hourly values are below the air quality standard (120 ppb). ► Possible future emission reductions would have small impact on the highest level. -- The distribution of summer maximum diurnal ground-level O 3 concentrations in the Metropolitan Area of Buenos Aires is evaluated applying a recently developed simple urban air quality model

  10. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  11. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, R.; Malkumus, D. [Pacific Nuclear, Inc. (United States); Sonntag, T. [New York State Energy Research and Development Authority, NY (United States); Sundquist, J. [Ecology and Environment, Inc. (United States)

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  12. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey

    Science.gov (United States)

    Fisher, Irene; Phillips, Patrick J.; Colella, Kaitlyn; Fisher, Shawn C.; Tagliaferri, Tristen N.; Foreman, William T.; Furlong, Edward T.

    2016-01-01

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24–32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  13. Determination of fluoride source in ground water using petrographic studies in Dashtestan area, south of Iran

    Science.gov (United States)

    Battaleb-Looie, Sedigheh; Moore, Farid, ,, Dr.

    2010-05-01

    The groundwater occurs in Dashtestan area, contains a high level of fluoride. Since groundwater is vastly used for drinking and irrigation purposes, the local residents are at high risk of fluoride toxicity, as already evidenced by the occurrence of dental Fluorosis in many residents. 35 surface and groundwater samples were collected in September, 2009. The results show that in 23 samples the fluoride concentration is above the permissible level (1.5ppm). Petrographic study of lithological units in the catchment area indicates that mica minerals are the most probable source of fluoride content in the study area.

  14. Experimental research on dispersion parameters of ground water around the area of CIAE

    International Nuclear Information System (INIS)

    Yu Jun

    1993-01-01

    The dispersion are important parameters in modeling the migration of pollutant in the ground water. Due to the complexity of geological media, variant dispersion is expected according to the difference of the geological media. Three parts are included in physical simulation in the laboratory column, tracer experiment in the field and the prediction of dispersion using the stochastic model. Experimental results show that the dispersion obtained in the column are three orders of magnitude smaller than that obtained in the field. Using the field values of conductivity and stochastic theory, the calculated asymptotic longitudinal and lateral dispersion are 370 and 0.45 meters respectively and the correlation length is 400 meters approximately. Using the dispersion obtained from the formula in the paper can enhance the precision of the model prediction, the distance heeded to reach the Fick's dispersion is 6 km approximately

  15. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Ground water surface elevations

    International Nuclear Information System (INIS)

    Shevenell, L.; Switek, J.

    1992-02-01

    The purpose of this document is to provide a summary and interpretation of hydraulic head measurements obtained from wells surrounding the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin sites at the US Department of Energy Y-12 Plant in Oak Ridge, Tennessee. Periodic water level observations are presented using hydrographs and water table contour maps based on data obtained from quarterly sampling during calendar year 1991. Generalized, preliminary interpretation of results are presented. The two sites covered by this report have interim status under the provisions of the Resource Conservation and Recovery Act (RCRA). A subset of the wells at each rate are used for groundwater monitoring purposes under the requirements of RCRA. A discussion of the up-gradient and down-gradient directions for each of the sites is included

  16. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  17. Low level tank waste disposal study

    International Nuclear Information System (INIS)

    Mullally, J.A.

    1994-01-01

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site

  18. Monitoring of polycyclic aromatic hydrocarbons in a produced water disposal area in the Potiguar Basin, Brazilian equatorial margin.

    Science.gov (United States)

    Lourenço, Rafael André; de Oliveira, Fábio Francisco; de Souza, João Maximino; Nudi, Adriana Haddad; de Luca Rebello Wagener, Ângela; de Fátima Guadalupe Meniconi, Maria; Francioni, Eleine

    2016-09-01

    The Potiguar Basin has oil and gas production fields offshore and onshore. All treated produced water (PW) from these fields is discharged through submarine outfalls. Although polycyclic aromatic hydrocarbons (PAHs) are minor constituents of PW, their input into the marine ecosystem is environmentally critical due to potential ecological hazards. A 2-year monitoring program was conducted in the vicinity of the outfalls to evaluate PAH bioaccumulation in marine life from PW discharges. The study was performed using transplanted bivalves Crassostrea brasiliana and semipermeable membrane devices (SPMDs) to measure PAH concentrations via bioaccumulation and in seawater. The bioaccumulation of PAH in transplanted bivalves reached up to 1105 ng g(-1) in the vicinity of the monitored outfall. Significantly lower PAH concentrations were found in the reference area in comparison to the studied area around the outfalls. Time-integrated PAH concentrations in seawater ranged from 38 to 0.3 ng L(-1) near the outfalls and from 10 ng L(-1) to not detected in the reference area. Both measurement techniques were found to be effective for determining a gradient of descending PAH concentrations from the outfalls. In addition, this study also evaluated the bioavailability of PAH for local marine biota and provided information about the influence of PW discharges on the water quality of marine ecosystems.

  19. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-01-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE's needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities

  20. The composition of the ground water in bedrock in the precambrian shield areas of Finland and other countries

    International Nuclear Information System (INIS)

    Hyyppae, J.

    1986-11-01

    The main properties of the composition of the ground water contained in the Precambrian bedrock of Finland are presented on the basis of the results of analyses of some 1750 water samples taken from bored wells and a few mines. They show that, with a few exceptions, the waters of bored wells are bicarbonate waters, in which the average total amount of dissolved substances diminishes according to their geographical location as one moves from the coastal areas toward estern and northern Finland. The influence of the mineral composition of the bedrock appears most distinctly in the rapakivi areas, where the average fluoride content of the ground water varies between 1.5 and 2.0 mg/l and is thus ten times the corresponding content prevailing in areas characterized by other types of rocks. Ground waters containing from 439 to 18.000 mg/l of chloride have also been met with in Finnish bedrock and the location of the sampling site of 38 samples is given together with the general nature of their chemical composition as well as the results of the determinations of the stable (δ ''2H, δ ''1''8O, δ ''3''4S, δ ''1''3C) and radioactive (''3H, ''1''4C) isotopes of a number of samples. The saline waters are mostly located in the region covered 6000-7500 years ago by the Littorina Sea. On the other hand, the isotopic composition of many saline waters corresponds to that of rainwater fallen during climatic conditions colder than the present. The most saline waters have been met with deep down in mines and deep boreholes, also, for example, far from the region covered by the Littorina Sea. The saline waters contained in Finnish bedrock usually release gas, which in some cases consists mainly of nitrogen but in some places includes significant amounts of methane. In addition, helium is one of the constituents

  1. Natural radioactivity of ground water in some areas in Aden governorate South of Yemen region

    International Nuclear Information System (INIS)

    Harb, S.; El-Kamel, A.H.; Zahran, A.M.; Abbady, A.A.; Ahmed, F.A.

    2013-01-01

    This paper presents the concentrations of naturally occurring radionuclides 226 Ra, 232 Th and 40 K measured in groundwater samples collected from Aden governorate South of Yemen region using gamma spectroscopy. A total of 37 groundwater samples were collected from four areas in Aden governorate. The average activity concentrations for groundwater from Beer Ahmed area were 1.60 Bq/L, 1.25 Bq/L and 16.90 Bq/L for 226 Ra, 232 Th and 40 K respectively and from Beer Fadle area were 1.45 Bq/L, 0.87 Bq/L and 19.8 Bq/L for 226 Ra, 232 Th and 40 K, respectively, while that for groundwater samples from Daar-saad area were 1.27 Bq/L, 1.18 Bq/L and 18.28 Bq/L for 226 Ra, 232 Th and 40 K, respectively and Al-Masabian area were 1.55 Bq/L, 1.421 Bq/L and 19.03 Bq/L for 226 Ra, 232 Th and 40 K respectively. Furthermore, annual effective dose equivalent of ingestion of these waters was calculated. The results showed that the annual dose obtained in the present study was much higher than the recommended value (0.1 mSv/year) as reported by WHO. The results were compared with those for drinking water. (author)

  2. Disposable Multi-Sensor Unattended Ground Sensor Systems for Detecting Personnel (Systemes de detection multi-capteurs terrestres autonome destines a detecter du personnel)

    Science.gov (United States)

    2015-02-01

    the set of DCT coefficients for all the training data corresponding to the people. Then, the matrix ][ pX can be written as: ][][][ −+ −= ppp XXX ...deployed on two types of ground conditions. This included ARL multi-modal sensors, video and acoustic sensors from the Universities of Memphis and...Mississippi, SASNet from Canada, video from Night Vision Laboratory and Pearls of Wisdom system from Israel operated in conjunction with ARL personnel. This

  3. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2010-08-01

    Full Text Available The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB (and thus carbon content of vegetation and leaf area index (LAI and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a undisturbed forest growth and (b a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size. The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91% if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60% between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a

  4. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    Science.gov (United States)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the

  5. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  6. The migration of the radionuclide 3 H in unsaturated soil from the disposal in the final repository for low and medium active waste in Saligny area

    International Nuclear Information System (INIS)

    Toma, A.D.

    2002-01-01

    The functioning of the Cernavoda Nuclear Power Plant will generate low and medium active waste which will be contaminated with long-life fission products (U, Pu, Np, Am), radioactive carbon ( 14 C) and tritium ( 3 H), which through their radiochemical characteristics and their influence upon the environment and people, request special attention regarding their storage and disposal. Based on the geological and mineralogical research regarding the location of a repository for low and medium active waste, Saligny area near the Cernavoda Nuclear Power Plant was chosen. The repository will be located in loess, seated on sedimentary formations with insertions of clay patches. The main target of the research is to obtain some experimental data necessary for the evaluation of the migration of the radionuclide 3 H (resulting from Cernavoda Nuclear Power Plant) in unsaturated soils in Saligny area. From the analysis of the test data obtained in the laboratory for the determination of the migration parameters of the radionuclide 3 H in the material of the geological formation of Saligny area it results that there is a direct correlation between the values of these parameters and the basic mineralogical component - clay - of the soil sample. (authors)

  7. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  8. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  9. Mixed Waste Focus Area Working Group: An Integrated Approach to Mercury Waste Treatment and Disposal. Revision 1

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1997-01-01

    May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG). The HgWG was established to address and resolve the issues associated with Mercury- contaminated mixed wastes (MWs). During the initial technical baseline development process of the MWFA, three of the top four technology deficiencies identified were related to (1) amalgamation, (2) stabilization, and (3) separation and removal for the treatment of mercury and mercury-contaminated mixed waste (MW). The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these needs

  10. Plastic Debris Occurrence, Convergence Areas and Fin Whales Feeding Ground in the Mediterranean Marine Protected Area Pelagos Sanctuary: A Modeling Approach

    Directory of Open Access Journals (Sweden)

    Maria Cristina Fossi

    2017-05-01

    Full Text Available The Mediterranean Sea is greatly affected by marine litter. In this area, research on the impact of plastic debris (including microplastics on biota, particularly large filter-feeding species such as the fin whale (Balaenoptera physalus, is still in its infancy. We investigated the possible overlap between microplastic, mesoplastic and macrolitter accumulation areas and the fin whale feeding grounds in in a pelagic Specially Protected Area of Mediterranean Importance (SPAMI: the Pelagos Sanctuary. Models of ocean circulation and fin whale potential habitat were merged to compare marine litter accumulation with the presence of whales. Additionally, field data on microplastics, mesoplastics, and macrolitter abundance and cetacean presence were simultaneously collected. The resulting data were compared, as a multi-layer, with the simulated distribution of plastic concentration and the whale habitat model. These data showed a high occurrence of microplastics (mean: 0.082 items/m2, STD ± 0.079 items/m2 spatial distribution agreed with our modeling results. Areas with high microplastic density significantly overlapped with areas of high macroplastic density. The most abundant polymer detected in all the sampling sites was polyethylene (PE, suggesting fragmentation of larger packaging items as the primary source. To our knowledge, this is the first study in the Pelagos Sanctuary in which the simulated microplastic distribution has been confirmed by field observations. The overlap between the fin whale feeding habitat and the microplastic hot spots is an important contribution for risk assessment of fin whale exposure to microplastics.

  11. Determination of BTEX in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Matoso, Erika; Oliveira, Rando M. de; Segre, Nádia

    2017-01-01

    The mixture of the monocyclic aromatic compounds benzene, toluene, ethylbenzene and xylene isomers is defined as BTEX. The presence of BTEX in the environment is regularly associated with petroleum and its byproducts leakages or industrial effluent discharge. BTEX may cause serious problems to human and animal health. Human exposure to these aromatic compounds can lead to eye and skin irritation, central nervous system weakening and bone marrow depression. According to World Health Organization (WHO) benzene can cause cancer development. A new unit process in Centro Experimental Aramar (CEA) using BTEX-containing products will be launched shortly. Therefore, BTEX monitoring will be necessary since effluents release in Brazil is controlled by CONAMA regulations. Besides, as these compounds has never been evaluated in CEA, it is important to provide knowledge on the current BTEX concentration, in order to establish pre-operational values in CEA region and nearby. The CONAMA regulations for BTEX in superficial waters sets very low limits (such as 0,002 mg L- 1 for toluene and 0,005 mg L-1 for benzene). For this reason, it was developed in this work an analytical method by Headspace-GC-MS to achieve these values. The figures of merit determined were limit of detection (LOD), limit of quantification (LOQ), precision and accuracy. BTEX was analyzed in superficial waters from three different sampling points at Ipanema River and ground water collected in eight different sampling points. All sampling points were located a ratio 10 km radius from CEA. (author)

  12. Determination of BTEX in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika; Oliveira, Rando M. de; Segre, Nádia, E-mail: ematoso@hotmail.com [Centro Tecnológico da Marinha em São Paulo (CEA/CTMSP), Iperó, SP (Brazil). Centro Experimental Aramar

    2017-07-01

    The mixture of the monocyclic aromatic compounds benzene, toluene, ethylbenzene and xylene isomers is defined as BTEX. The presence of BTEX in the environment is regularly associated with petroleum and its byproducts leakages or industrial effluent discharge. BTEX may cause serious problems to human and animal health. Human exposure to these aromatic compounds can lead to eye and skin irritation, central nervous system weakening and bone marrow depression. According to World Health Organization (WHO) benzene can cause cancer development. A new unit process in Centro Experimental Aramar (CEA) using BTEX-containing products will be launched shortly. Therefore, BTEX monitoring will be necessary since effluents release in Brazil is controlled by CONAMA regulations. Besides, as these compounds has never been evaluated in CEA, it is important to provide knowledge on the current BTEX concentration, in order to establish pre-operational values in CEA region and nearby. The CONAMA regulations for BTEX in superficial waters sets very low limits (such as 0,002 mg L- 1 for toluene and 0,005 mg L-1 for benzene). For this reason, it was developed in this work an analytical method by Headspace-GC-MS to achieve these values. The figures of merit determined were limit of detection (LOD), limit of quantification (LOQ), precision and accuracy. BTEX was analyzed in superficial waters from three different sampling points at Ipanema River and ground water collected in eight different sampling points. All sampling points were located a ratio 10 km radius from CEA. (author)

  13. Selecting ground-motion models developed for induced seismicity in geothermal areas

    Science.gov (United States)

    Edwards, Benjamin; Douglas, John

    2013-11-01

    We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysis.

  14. Analysis of the karst aquifer structure of the Lamalou area (Herault, France) with ground penetrating radar

    International Nuclear Information System (INIS)

    Al-Fares, W.; Bakalowicz, M.; Guerin, R.; Dukhan, M.

    2004-01-01

    The study site at Lamalou karst spring Hortus karst plateau) is situated 40 km north of Montpellier in France. It consists of a limestone plateau, drained by a karst conduit discharging as a spring. This conduit extends for a few dozen meters in fractured and karstified limestone rocks, 15 to 70 m below the surface. The conduit is accessible from the surface. The main goal of this study is to analyze the surface part of the karst and to highlight the karstic features and among them the conduit, and to test the performances of ground penetrating radar (GPR) in a karstic environment. This method thus appears particularly well adapted to the analysis of the near-surface (<30 m in depth) structure of a karst, especially when clayey coating or soil that absorbs and attenuates the radar is rare and discontinuous. A GPR pulse EKKO 100 (Sensors and Software) was used on the site with a 50 MHz antenna frequency. The results highlight structures characterizing the karstic environment: The epikarst, bedding planes, fractured and karstified zones, compact and massive rock and karrens, a typical karst landform. One of the sections revealed in detail the main conduit located at a depth of 20 m, and made it possible to determine its geometry. This site offers possibilities of validation of GPR data by giving direct access to the karstic conduit and through two cored boreholes. These direct observations confirm the interpretation of all the GPR sections. (author

  15. Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy

    NARCIS (Netherlands)

    Homolova, L.; Malenovsky, Z.; Hanus, J.; Tomaskova, I.; Dvoráková, M.; Pokorny, R.

    2007-01-01

    The leaf area index (LAI) of three monocultures of Norway spruce (Picea abies (L.) Karst), different in age and structure, was measured by means of two indirect optical techniques of LAI field mapping: 1/ plant canopy analyser LAI-2000, and 2/ digital hemispherical photographs (DHP). The supportive

  16. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

    2012-07-01

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable

  17. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including pr