WorldWideScience

Sample records for ground deformation hydrothermal

  1. Typhoon-Induced Ground Deformation

    Science.gov (United States)

    Mouyen, M.; Canitano, A.; Chao, B. F.; Hsu, Y.-J.; Steer, P.; Longuevergne, L.; Boy, J.-P.

    2017-11-01

    Geodetic instruments now offer compelling sensitivity, allowing to investigate how solid Earth and surface processes interact. By combining surface air pressure data, nontidal sea level variations model, and rainfall data, we systematically analyze the volumetric deformation of the shallow crust at seven borehole strainmeters in Taiwan induced by 31 tropical cyclones (typhoons) that made landfall to the island from 2004 to 2013. The typhoon's signature consists in a ground dilatation due to air pressure drop, generally followed by a larger ground compression. We show that this compression phase can be mostly explained by the mass loading of rainwater that falls on the ground and concentrates in the valleys towards the strainmeter sensitivity zone. Further, our analysis shows that borehole strainmeters can help quantifying the amount of rainwater accumulating and flowing over a watershed during heavy rainfalls, which is a useful constraint for building hydrological models.

  2. Rock deformation in hydrothermal systems: the nature of fractures in plutons and their host rocks. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Norton, D.

    1981-11-01

    The purpose of this program is to accumulate the types of field data which are important for the analysis of magma-hydrothermal systems. The structural effects of thermal processes were identified in order to distinguish the thermally induced deformations from the deformations that occurred subsequent to complete cooling of the system. Mapping techniques were developed to record the structural data on the ground from local domains characteristic of larger areas in the magma chamber, and in the air from low-angle oblique aerial photography of the entire region. The ground system is complete and preliminary testing is currently being carried out to verify the method. The results indicate that granitic crystalline rocks have no structural resistance to thermal perturbations. If nuclear wastes are to be stored in granite, precautionary buffers would have to be incorporated into the system. A total of 30 fossil magma chambers have been studied over the past 2 years. An extensive set of fracture imagery has been collected, together with information related to the geological history of the plutons. Fossil magma chambers in Arizona, Utah, California, Washington, Montana, and British Columbia have been studied.

  3. Ground ice and hydrothermal ground motions on aufeis plots of river valleys

    Directory of Open Access Journals (Sweden)

    V. R. Alekseev

    2015-01-01

    Full Text Available Localized groundwater outflow and layered freezing of them in forms of large ice clusters on the surface creates specific conditions for energy and mass exchange in the «atmosphere–soil–lithosphere» system. In winter, the soil temperature profile is essentially deformed due to heat emission by the aufeis layer of water at its freezing that forms a specific thermocline layer. Deformation of the temperature profile, gradually decreasing, moves down the cross-section and disappearing at the interface between frozen and thawed rocks. Magnitude and number of the temperature deviations from a «normal» state depends on the heat storage of the aufeis-forming waters and on the number of outflows at a given point. The thermocline formation changes conditions of freezing for underlying ground layers together with mechanism of ice saturation of them, and that results in formation of two-layer ice-ground complexes (IGC which differ drastically from cryogenic features in adjacent parts of the valley. Analysis of genetic characteristics and relation of components of the surface and subsurface layers allowed identification of seven types of the aufeis IGC: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressureinjection, and fissure-vein. Yearly formation and destruction of aufeises and subsurface ices is accompanied by a sequence of particularly hazardous geodynamical phenomena, among which the most important are winter flooding of territories, layered freezing of water, ground heaving, thermokarst, and thermoerosion. Combination of these processes may cause a rapid (often unexpected reconfiguration of channels of both surface and subsurface runoff, abrupt uplifts and subsidences of the surface, and decompaction and «shaking-up» of seasonally thawing and seasonally freezing rocks, which may create exceptionally unfavorable conditions for construction and operation of engineering structures. Aufeis plots

  4. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  5. Ground state properties of exotic nuclei in deformed medium mass region

    International Nuclear Information System (INIS)

    Manju; Chatterjee, R.; Singh, Jagjit; Shubhchintak

    2017-01-01

    The dipole moment, size of the nucleus and other ground state properties of deformed nuclei 37 Mg and 31 Ne are presented. Furthermore with this deformed wave function the electric dipole strength distribution for deformed nuclei 37 Mg and 31 Ne is calculated. This will allow us to investigate the two dimensional scaling phenomenon with two parameters: quadrupole deformation and separation energy

  6. Ground Deformation Detection Using China’s ZY-3 Stereo Imagery in an Opencast Mining Area

    OpenAIRE

    Wenmin Hu; Lixin Wu; Wei Zhang; Bin Liu; Jiaxing Xu

    2017-01-01

    Detection and extraction of mining-induced ground deformation can be used to understand the deformation process and space distribution and to estimate the deformation laws and trends. This study focuses on the application of ground deformation detection and extraction combined with digital surface model (DSM), derived from China’s ZiYuan-3 (ZY-3) satellite stereo imagery and the advanced spaceborne thermal emission and reflection radiometer global digital elevation model (ASTER GDEM) data. A ...

  7. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    Science.gov (United States)

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  8. Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards.

  9. Hydrothermal Gold Mineralization and Structural Controls near May ...

    African Journals Online (AJOL)

    Mickiale

    Structural data suggests four phases of deformations and NE-SW trending foliation is ... Hawzein area and reported presence of hydrothermal gold and base metal ..... coarse mafic and plagioclase minerals in fine grained ground mass matrix ...

  10. Case study on ground surface deformation induced by CO2 injection into coal seam

    International Nuclear Information System (INIS)

    Li Hong; Tang Chun'an

    2010-01-01

    To monitor a geomechanical response of injecting CO 2 into relatively shallow coal seams, tiltmeters were set as an array to cover the ground surface area surrounding the injection well, and to measure the ground deformation during a well fracturing stimulation and a short-term CO 2 injection test. In this paper, an attempt to establish a quantitative relationship between the in-situ coal swelling and the corresponding ground deformation was made by means of numerical simulation study. (authors)

  11. GROUND DEFORMATION EXTRACTION USING VISIBLE IMAGES AND LIDAR DATA IN MINING AREA

    Directory of Open Access Journals (Sweden)

    W. Hu

    2016-06-01

    Full Text Available Recognition and extraction of mining ground deformation can help us understand the deformation process and space distribution, and estimate the deformation laws and trends. This study focuses on the application of ground deformation detection and extraction combining with high resolution visible stereo imagery, LiDAR observation point cloud data and historical data. The DEM in large mining area is generated using high-resolution satellite stereo images, and ground deformation is obtained through time series analysis combined with historical DEM data. Ground deformation caused by mining activities are detected and analyzed to explain the link between the regional ground deformation and local deformation. A district of covering 200 km2 around the West Open Pit Mine in Fushun of Liaoning province, a city located in the Northeast China is chosen as the test area for example. Regional and local ground deformation from 2010 to 2015 time series are detected and extracted with DEMs derived from ZY-3 images and LiDAR point DEMs in the case study. Results show that the mean regional deformation is 7.1 m of rising elevation with RMS 9.6 m. Deformation of rising elevation and deformation of declining elevation couple together in local area. The area of higher elevation variation is 16.3 km2 and the mean rising value is 35.8 m with RMS 15.7 m, while the deformation area of lower elevation variation is 6.8 km2 and the mean declining value is 17.6 m with RMS 9.3 m. Moreover, local large deformation and regional slow deformation couple together, the deformation in local mining activities has expanded to the surrounding area, a large ground fracture with declining elevation has been detected and extracted in the south of West Open Pit Mine, the mean declining elevation of which is 23.1 m and covering about 2.3 km2 till 2015. The results in this paper are preliminary currently; we are making efforts to improve more precision results with

  12. Tracking hydrothermal feature changes in response to seismicity and deformation at Mud Volcano thermal area, Yellowstone

    Science.gov (United States)

    Diefenbach, A. K.; Hurwitz, S.; Murphy, F.; Evans, W.

    2013-12-01

    The Mud Volcano thermal area in Yellowstone National Park comprises many hydrothermal features including fumaroles, mudpots, springs, and thermal pools. Observations of hydrothermal changes have been made for decades in the Mud Volcano thermal area, and include reports of significant changes (the appearance of new features, increased water levels in pools, vigor of activity, and tree mortality) following an earthquake swarm in 1978 that took place beneath the area. However, no quantitative method to map and measure surface feature changes through time has been applied. We present an analysis of aerial photographs from 1954 to present to track temporal changes in the boundaries between vegetated and thermally barren areas, as well as location, extent, color, clarity, and runoff patterns of hydrothermal features within the Mud Volcano thermal area. This study attempts to provide a detailed, long-term (>50 year) inventory of hydrothermal features and change detection at Mud Volcano thermal area that can be used to identify changes in hydrothermal activity in response to seismicity, uplift and subsidence episodes of the adjacent Sour Creek resurgent dome, or other potential causes.

  13. Ground state shape and crossing of near spherical and deformed bands in 182Hg

    International Nuclear Information System (INIS)

    Ma, W.C.; Ramayya, A.V.; Hamilton, J.H.; Robinson, S.J.; Barclay, M.E.; Zhao, K.; Cole, J.D.; Zganjar, E.F.; Spejewski, E.H.

    1983-01-01

    The energy levels of 182 Hg have been identified for the first time through comparison of in-beam studies of the reactions 156 154 Gd( 32 S,4n) 184 182 Hg. Levels up to 12 + in 182 Hg were established from γ-γ coincidence and singles measurement. The data establish that the ground state shape is near spherical, and that the ground band is crossed by a well deformed band at 4 + . In contrast to IBA model predictions that the deformed band will rise in energy in 182 Hg compared to 184 Hg, the energies of the deformed levels in 182 Hg continue to drop. 7 references

  14. Ground deformation at collapse calderas: influence of host rock lithology and reservoir multiplicity

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, A; Gottsmann, J [Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen' s Road, BS8 1RJ, Bristol (United Kingdom)], E-mail: A.GeverTraver@bristol.ac.uk

    2008-10-01

    A variety of source mechanisms have been proposed to account for observed caldera deformation. Here we present a systematic set of new results from numerical forward modelling using a Finite Element Method. which provides a link between measured ground deformation and the inaccessible deformation source. We simulate surface displacements due to pressure changes in a shallow oblate reservoir overlain by host rock with variable mechanical properties. We find that the amplitude and wavelength of resultant ground deformation is dependent on the distribution of mechanically stiff and soft lithologies and their relative distribution above a reservoir. In addition, we note an influence of layering on the critical ratio of horizontal over vertical displacements, a criterion employed to discriminate between different finite source geometries.

  15. Ground-State Band and Deformation of the Z = 102 Isotope N 254

    International Nuclear Information System (INIS)

    Reiter, P.; Khoo, T.L.; Lister, C.J.; Seweryniak, D.; Ahmad, I.; Alcorta, M.; Carpenter, M.P.; Cizewski, J.A.; Davids, C.N.; Gervais, G.; Greene, J.P.; Henning, W.F.; Janssens, R.V.; Lauritsen, T.; Siem, S.; Sonzogni, A.A.; Sullivan, D.; Uusitalo, J.; Wiedenhoever, I.; Amzal, N.; Butler, P.A.; Chewter, A.J.; Greenlees, P.T.; Herzberg, R.; Jones, G.D.; Cizewski, J.A.; Ding, K.Y.; Fotiades, N.; Fox, J.D.; Korten, W.; Leino, M.; Vetter, K.; Siem, S.

    1999-01-01

    The ground-state band of the Z=102 isotope 254 No has been identified up to spin 14, indicating that the nucleus is deformed. The deduced quadrupole deformation, β=0.27 , is in agreement with theoretical predictions. These observations confirm that the shell-correction energy responsible for the stability of transfermium nuclei is partly derived from deformation. The survival of 254 No up to spin 14 means that its fission barrier persists at least up to that spin. copyright 1999 The American Physical Society

  16. Nonspherical atomic ground-state densities and chemical deformation densities from x-ray scattering

    International Nuclear Information System (INIS)

    Ruedenberg, K.; Schwarz, W.H.E.

    1990-01-01

    Presuming that chemical insight can be gained from the difference between the molecular electron density and the superposition of the ground-state densities of the atoms in a molecule, it is pointed out that, for atoms with degenerate ground states, an unpromoted ''atom in a molecule'' is represented by a specific ensemble of the degenerate atomic ground-state wave functions and that this ensemble is determined by the anisotropic local surroundings. The resulting atomic density contributions are termed oriented ground state densities, and the corresponding density difference is called the chemical deformation density. The constraints implied by this conceptual approach for the atomic density contributions are formulated and a method is developed for determining them from x-ray scattering data. The electron density of the appropriate promolecule and its x-ray scattering are derived, the determination of the parameters of the promolecule is outlined, and the chemical deformation density is formulated

  17. Ground movement and deformation due to dewatering and open pit excavation

    International Nuclear Information System (INIS)

    Liu, B.; Yang, J.; Zhang, J.

    1996-01-01

    In the application of stochastic medium theory, it is assumed that ground movement process has the property of Markov Process. Based on superposition principle and rock consolidation principle, the ground movement and deformation due to dewatering and open pit excavation can be calculated. The comparison between the field measurements in Morwell Open Pit, Latrobe Valley (Victoria, Australia) and the calculated results shows the validity of the method in this paper. 5 refs

  18. The design procedures on brick building against surface ground deformations due to mining and earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, J.; Yang, S. (China University of Mining and Technology (China))

    1992-05-01

    By analysing the effects of ground motion and deformation on surface buildings, and drawing on the experience of damages caused by the Tangshan and Chenhai earthquakes, the authors discuss the design of brick and concrete buildings which are protected against the damaging effects of both earthquakes and mining activities. 5 figs.

  19. InSAR observation of seasonal ground surface deformation in permafrost area near Batagay, Siberia

    Science.gov (United States)

    Yanagiya, K.; Furuya, M.

    2017-12-01

    Thawing of permafrost can lead to ground deformation. Ground deformation has been studied as a serious problem in the Arctic Ocean coastal area such as Russia for a long time, because the deformation causes damage to architectures at these areas. However, there have been no quantitative observation data, and the spatial and temporal distributions have hardly been investigated. On the other hand, by the recently global warming influence, the importance of organic carbon stored in permafrost is pointed out. Although the release of methane gas is confirmed in some thermokarst lakes, it is very difficult to observe the permafrost in a wide area by field study. Instead, it is technically possible to monitor the subsidence and uplift of the ground over the permafrost area, which could potentially make a significant contribution to the monitoring thawing process of permafrost. In this study, we attempted to detect ground deformation signal in permafrost area by remote sensing using interferometric synthetic aperture radar (InSAR). Using the data of two SAR satellites ALOS and ALOS2 launched by JAXA, we observed recent ground deformation from 2007 to 2016. Particularly recent observations of ALOS2 from 2014 to 2016 discovered distant displacements towards the LOS direction in the northeast region from the town of Batagay,Siberia. The diameter of the displacements area covers about 7.7 km. In this study, we considered that this signal is likely to be due to permafrost thawing, we also investigated the seasonal characteristics and looked back ALOS data of this area. In addition, since the high latitude area, observation results include noise due to the ionosphere, so we tried to remove the noise.

  20. Finite element modeling of ground deformation and gravity field at Mt. Etna

    Directory of Open Access Journals (Sweden)

    G. Ganci

    2008-06-01

    Full Text Available An elastic 3-D axi-symmetric model based on Finite Element Method (FEM is proposed to compute ground deformation and gravity changes caused by overpressure sources in volcanic areas. The numerical computations are focused on the modeling of a complex description of Mt Etna in order to evaluate the effect of topography, medium heterogeneities and source geometries. Both ground deformation and gravity changes are investigated by solving a coupled numerical problem considering a simplified ground surface profile and a multi-layered crustal structure inferred from seismic tomography. The role of the source geometry is also explored taking into account spherical and ellipsoidal volumetric sources. The comparison between numerical results and those predicted by analytical solutions disclosed significant discrepancies. These differences constrain the applicability of simple spherical source and homogeneous half-space hypotheses, which are usually implicitly assumed when analytical solutions are applied.

  1. Comparison of Small Baseline Interferometric SAR Processors for Estimating Ground Deformation

    Directory of Open Access Journals (Sweden)

    Wenyu Gong

    2016-04-01

    Full Text Available The small Baseline Synthetic Aperture Radar (SAR Interferometry (SBI technique has been widely and successfully applied in various ground deformation monitoring applications. Over the last decade, a variety of SBI algorithms have been developed based on the same fundamental concepts. Recently developed SBI toolboxes provide an open environment for researchers to apply different SBI methods for various purposes. However, there has been no thorough discussion that compares the particular characteristics of different SBI methods and their corresponding performance in ground deformation reconstruction. Thus, two SBI toolboxes that implement a total of four SBI algorithms were selected for comparison. This study discusses and summarizes the main differences, pros and cons of these four SBI implementations, which could help users to choose a suitable SBI method for their specific application. The study focuses on exploring the suitability of each SBI module under various data set conditions, including small/large number of interferograms, the presence or absence of larger time gaps, urban/vegetation ground coverage, and temporally regular/irregular ground displacement with multiple spatial scales. Within this paper we discuss the corresponding theoretical background of each SBI method. We present a performance analysis of these SBI modules based on two real data sets characterized by different environmental and surface deformation conditions. The study shows that all four SBI processors are capable of generating similar ground deformation results when the data set has sufficient temporal sampling and a stable ground backscatter mechanism like urban area. Strengths and limitations of different SBI processors were analyzed based on data set configuration and environmental conditions and are summarized in this paper to guide future users of SBI techniques.

  2. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    Science.gov (United States)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  3. Observations of coupled seismicity and ground deformation at El Hierro Island (2011-2014)

    Science.gov (United States)

    Gonzalez, P. J.

    2015-12-01

    New insights into the magma storage and evolution at oceanic island volcanoes are now being achieved using remotely sensed space geodetic techniques, namely satellite radar interferometry. Differential radar interferometry is a technique tracking, at high spatial resolution, changes in the travel-time (distance) from the satellites to the ground surface, having wide applications in Earth sciences. Volcanic activity usually is accompanied by surface ground deformation. In many instances, modelling of surface deformation has the great advantage to estimate the magma volume change, a particularly interesting parameter prior to eruptions. Jointly interpreted with petrology, degassing and seismicity, it helps to understand the crustal magmatic systems as a whole. Current (and near-future) radar satellite missions will reduce the revisit time over global sub-aerial volcanoes to a sub-weekly basis, which will increase the potential for its operational use. Time series and filtering processing techniques of such streaming data would allow to track subsurface magma migration with high precision, and frequently update over vast areas (volcanic arcs, large caldera systems, etc.). As an example for the future potential monitoring scenario, we analyze multiple satellite radar data over El Hierro Island (Canary Islands, Spain) to measure and model surface ground deformation. El Hierro has been active for more than 3 years (2011 to 2014). Initial phases of the unrest culminated in a submarine eruption (late 2011 - early 2012). However, after the submarine eruption ended, its magmatic system still active and affected by pseudo-regular energetic seismic swarms, accompanied by surface deformation without resumed eruptions. Such example is a great opportunity to understand the crustal magmatic systems in low magma supply-rate oceanic island volcanoes. This new approach to measure surface deformation processes is yielding an ever richer level of information from volcanology to

  4. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  5. Using Ground Radar Interferometry for Precise Determining of Deformation and Vertical Deflection of Structures

    Science.gov (United States)

    Talich, Milan

    2017-12-01

    The paper describes possibilities of the relatively new technics - ground based radar interferometry for precise determining of deformation of structures. Special focus on the vertical deflection of bridge structures and on the horizontal movements of high-rise buildings and structural objects is presented. The technology of ground based radar interferometry can be used in practice to the contactless determination of deformations of structures with accuracy up to 0.01 mm in real time. It is also possible in real time to capture oscillations of the object with a frequency up to 50 Hz. Deformations can be determined simultaneously in multiple places of the object, for example a bridge structure at points distributed on the bridge deck at intervals of one or more meters. This allows to obtain both overall and detailed information about the properties of the structure during the dynamic load and monitoring the impact of movements either individual vehicles or groups. In the case of high-rise buildings, it is possible to monitor the horizontal vibration of the whole object at its different height levels. It is possible to detect and determine the compound oscillations that occur in some types of buildings. Then prevent any damage or even disasters in these objects. In addition to the necessary theory basic principles of using radar interferometry for determining of deformation of structures are given. Practical examples of determining deformation of bridge structures, water towers reservoirs, factory chimneys and wind power plants are also given. The IBIS-S interferometric radar of the Italian IDS manufacturer was used for the measurements.

  6. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-05-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring

  7. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-01-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring

  8. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344).

    Science.gov (United States)

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  9. Analytical magmatic source modelling from a joint inversion of ground deformation and focal mechanisms data

    Science.gov (United States)

    Cannavo', Flavio; Scandura, Danila; Palano, Mimmo; Musumeci, Carla

    2014-05-01

    Seismicity and ground deformation represent the principal geophysical methods for volcano monitoring and provide important constraints on subsurface magma movements. The occurrence of migrating seismic swarms, as observed at several volcanoes worldwide, are commonly associated with dike intrusions. In addition, on active volcanoes, (de)pressurization and/or intrusion of magmatic bodies stress and deform the surrounding crustal rocks, often causing earthquakes randomly distributed in time within a volume extending about 5-10 km from the wall of the magmatic bodies. Despite advances in space-based, geodetic and seismic networks have significantly improved volcano monitoring in the last decades on an increasing worldwide number of volcanoes, quantitative models relating deformation and seismicity are not common. The observation of several episodes of volcanic unrest throughout the world, where the movement of magma through the shallow crust was able to produce local rotation of the ambient stress field, introduces an opportunity to improve the estimate of the parameters of a deformation source. In particular, during these episodes of volcanic unrest a radial pattern of P-axes of the focal mechanism solutions, similar to that of ground deformation, has been observed. Therefore, taking into account additional information from focal mechanisms data, we propose a novel approach to volcanic source modeling based on the joint inversion of deformation and focal plane solutions assuming that both observations are due to the same source. The methodology is first verified against a synthetic dataset of surface deformation and strain within the medium, and then applied to real data from an unrest episode occurred before the May 13th 2008 eruption at Mt. Etna (Italy). The main results clearly indicate as the joint inversion improves the accuracy of the estimated source parameters of about 70%. The statistical tests indicate that the source depth is the parameter with the highest

  10. Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control.

    Science.gov (United States)

    Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi

    2017-05-05

    Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at -700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m.

  11. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  12. Study of the crater deformation of the CODELCO/Andina mine using the satellite and ground data

    Science.gov (United States)

    Caverlotti-Silva, M. A.; Arellano-Baeza, A. A.

    2011-12-01

    The correct monitoring of the subsidence of the craters related to the underground mine exploitation is one of the most important endeavors of the satellite remote sensing. The ASTER and LANDSAT satellite images have been used to study the deformation of the crater of the CODELCO/Andina mine, Valparaiso Region, Chile. The high-resolution satellite images were used to detect changes in the lineament patterns related to the subsidence. These results were compared with the ground deformation extracted from the GPS and topography station networks. It was found that sudden changes in the lineament patterns appear when the ground deformation overcomes a definite threshold.

  13. Non-Gaussian ground-state deformations near a black-hole singularity

    Science.gov (United States)

    Hofmann, Stefan; Schneider, Marc

    2017-03-01

    The singularity theorem by Hawking and Penrose qualifies Schwarzschild black holes as geodesic incomplete space-times. Albeit this is a mathematically rigorous statement, it requires an operational framework that allows us to probe the spacelike singularity via a measurement process. Any such framework necessarily has to be based on quantum theory. As a consequence, the notion of classical completeness needs to be adapted to situations where the only adequate description is in terms of quantum fields in dynamical space-times. It is shown that Schwarzschild black holes turn out to be complete when probed by self-interacting quantum fields in the ground state and in excited states. The measure for populating quantum fields on hypersurfaces in the vicinity of the black-hole singularity goes to zero towards the singularity. This statement is robust under non-Gaussian deformations of and excitations relative to the ground state. The physical relevance of different completeness concepts for black holes is discussed.

  14. Probabilistic analysis of deformed mode of engineering constructions’ soil-cement grounds

    Directory of Open Access Journals (Sweden)

    Vynnykov Yuriy

    2017-01-01

    Full Text Available The results of the analysis of probabilistic methods that are used to assess the deformed state of the foundations of engineering structures are presented. A finite element analysis of the stress-strain state of the “man made soil ground – foundation – structure” system was carried out. A method for probabilistic calculation using the finite element method is proposed. On a real example, the level of reliability of a design decision based on a deterministic calculation is estimated by probabilistic calculation. On the basis of the statistic data obtained by imitational modeling, the probability of failure and no-failure operation of the structure regarding the absolute value of settlement and regarding the value of tilt against the reinforcement ratio of soft soil grounds settlements was determined. The probability of failure regarding the value of tilt against the reinforcement ratio was taken (15 to 25%, which is 0.03 – 0.05.

  15. Ionospheric errors compensation for ground deformation estimation with new generation SAR

    Science.gov (United States)

    Gomba, Giorgio; De Zan, Francesco; Rodriguez Gonzalez, Fernando

    2017-04-01

    Synthetic aperture radar (SAR) and interferometric SAR (InSAR) measurements are disturbed by the propagation velocity changes of microwaves that are caused by the high density of free electrons in the ionosphere. Most affected are low-frequency (L- or P-band) radars, as the recently launched ALOS-2 and the future Tandem-L and NISAR, although higher frequency (C- or X-band) systems, as the recently launched Sentinel-1, are not immune. Since the ionosphere is an obstacle to increasing the precision of new generation SAR systems needed to remotely measure the Earth's dynamic processes as for example ground deformation, it is necessary to estimate and compensate ionospheric propagation delays in SAR signals. In this work we discuss about the influence of the ionosphere on interferograms and the possible correction methods with relative accuracies. Consequently, the effect of ionospheric induced errors on ground deformation measurements prior and after ionosphere compensation will be analyzed. Examples will be presented of corrupted measurements of earthquakes and fault motion along with the corrected results using different methods.

  16. Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador

    Science.gov (United States)

    Neuberg, Jürgen W.; Collinson, Amy S. D.; Mothes, Patricia A.; Ruiz, Mario C.; Aguaiza, Santiago

    2018-01-01

    Cyclic seismicity and ground deformation patterns are observed on many volcanoes worldwide where seismic swarms and the tilt of the volcanic flanks provide sensitive tools to assess the state of volcanic activity. Ground deformation at active volcanoes is often interpreted as pressure changes in a magmatic reservoir, and tilt is simply translated accordingly into inflation and deflation of such a reservoir. Tilt data recorded by an instrument in the summit area of Tungurahua volcano in Ecuador, however, show an intriguing and unexpected behaviour on several occasions: prior to a Vulcanian explosion when a pressurisation of the system would be expected, the tilt signal declines significantly, hence indicating depressurisation. At the same time, seismicity increases drastically. Envisaging that such a pattern could carry the potential to forecast Vulcanian explosions on Tungurahua, we use numerical modelling and reproduce the observed tilt patterns in both space and time. We demonstrate that the tilt signal can be more easily explained as caused by shear stress due to viscous flow resistance, rather than by pressurisation of the magmatic plumbing system. In general, our numerical models prove that if magma shear viscosity and ascent rate are high enough, the resulting shear stress is sufficient to generate a tilt signal as observed on Tungurahua. Furthermore, we address the interdependence of tilt and seismicity through shear stress partitioning and suggest that a joint interpretation of tilt and seismicity can shed new light on the eruption potential of silicic volcanoes.

  17. Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations

    Science.gov (United States)

    Graizer, V.

    2017-12-01

    Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt

  18. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhong; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach – temporarily coherent point (TCP) InSAR (TCPInSAR) – to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6 mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms.

  19. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    Science.gov (United States)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    , carbonate and quartz to form veins and breccia but did not generate significant volumes of iron ore. Ore stage 4 involved Mesozoic(?) to recent supergene oxidation and hydration in a weathering environment reaching down to depths of ˜100 to maximum 200 m below surface. Supergene ore formation involved goethite replacement of dolomite and quartz as well as martitisation. Important `ground preparation' for supergene modification and upgrade were mainly the formation of steep D1 to D4 structures, steep BIF/basalt margins and particularly the syn-D1 to syn-D2 carbonate alteration of BIF that is most susceptible to supergene dissolution. The Windarling deposits are structurally controlled, supergene-modified hydrothermal iron ore systems that share comparable physical, chemical and ore-forming characteristics to other iron ore deposits in the Yilgarn Craton (e.g. Koolyanobbing, Beebyn in the Weld Range, Mt. Gibson). However, the remarkable variety in pre-, syn- and post-deformational ore textures (relative to D1 and D2) has not been described elsewhere in the Yilgarn and are similar to the ore deposits in high-strain zones, such as of Brazil (Quadrilátero Ferrífero or Iron Quadrangle) and Nigeria. The overall similarity of alteration stages, i.e. the sequence of hydrothermal carbonate introduction and hypogene leaching, with other greenstone belt-hosted iron ore deposits supports the interpretation that syn-orogenic BIF alteration and upgrade was crucial in the formation of hypogene-supergene iron ore deposits in the Yilgarn Craton and possibly in other Archean/Paleoproterozoic greenstone belt settings worldwide.

  20. Integrated monitoring system for ground deformation hazard assessment in Telese Terme (Benevento province, Italy)

    Science.gov (United States)

    Tessitore, S.; Castiello, G.; Fedi, M.; Florio, G.; Fuschini, V.; Ramondini, M.; Calcaterra, D.

    2012-04-01

    TeleseTerme plain is characterized by a very articulated stratigraphy (levels of travertine, fluvial-marshy and pyroclastic deposits), that allows the occurrence of underground water circulation with overlapping aquifers. These aquifers are locally in pressure and, because of chemical characteristics and physical properties of the water, they may activate processes of accelerated travertine's corrosion; the consequence is the formation of cavity along the ground water's preferential flow paths, and the activation of subsidence and sinkholes phenomena. In particular test area includes two zones, where in 2002 and 2006 occurred two sinkholes events, classified as "piping sinkholes". The hazard evaluation was carried out trhought an integrated monitoring system, based on "traditional" techniques conduced "in situ", as geological-geomorphological and geophysical (microgravity) surveys, integrated by the most innovative techniques of Remote sensing interferometry(Advanced DInSAR Interferometry Techniques). The last allow to evaluate the ground deformation, characterized by a predominantvertical component (typical deformation of sinkholes and subsidence phenomena), and are well suited to operate a continuous and long monitoring ofvery extended areas. Through an initial analysis of the Permanent Scatterers available in the Telese municipality, we found the envelopes of the areal that contain PS with negative and positive mean velocities; these velocities showed the presence of a possible phenomenon of subsidence detected by ERS and ENVISAT satellites. Through interferometric processing of ENVISAT images, the soil deformations of 2002-2010 year sare evaluated and compared with the data obtainedby survey took "in situ" during the same period. The knowledge of the deformation's evolution of the area made it possible to organize a more focused future monitoring through traditional techniques of relief (with the help of geophysical methodologies). Since the zone affected by

  1. Calculation of ground state deformation of even-even rare-earth nuclei in sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1995-01-01

    The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation

  2. SBAS Analysis of Induced Ground Surface Deformation from Wastewater Injection in East Central Oklahoma, USA

    Directory of Open Access Journals (Sweden)

    Elizabeth Loesch

    2018-02-01

    Full Text Available The state of Oklahoma has experienced a dramatic increase in the amount of measurable seismic activities over the last decade. The needs of a petroleum-driven world have led to increased production utilizing various technologies to reach energy reserves locked in tight formations and stimulate end-of-life wells, creating significant amounts of undesirable wastewater ultimately injected underground for disposal. Using Phased Array L-band Synthetic Aperture Radar (PALSAR data, we performed a differential Synthetic Aperture Radar Interferometry (InSAR technique referred to as the Small BAseline Subset (SBAS-based analysis over east central Oklahoma to identify ground surface deformation with respect to the location of wastewater injection wells for the period of December 2006 to January 2011. Our results show broad spatial correlation between SBAS-derived deformation and the locations of injection wells. We also observed significant uplift over Cushing, Oklahoma, the largest above ground crude oil storage facility in the world, and a key hub of the Keystone Pipeline. This finding has significant implications for the oil and gas industry due to its close proximity to the zones of increased seismicity attributed to wastewater injection. Results southeast of Drumright, Oklahoma represent an excellent example of the potential of InSAR, identifying a fault bordered by an area of subduction to the west and uplift to the east. This differentiated movement along the fault may help explain the lack of any seismic activity in this area, despite the large number of wells and high volume of fluid injected.

  3. Mineralogical, IR-spectral and geochemical monitoring of hydrothermal alteration in a deformed and metamorphosed Jurassic VMS deposit at Arroyo Rojo, Tierra del Fuego, Argentina

    Science.gov (United States)

    Biel, C.; Subías, I.; Acevedo, R. D.; Yusta, I.; Velasco, F.

    2012-04-01

    The Arroyo Rojo Zn-Pb-Cu volcanogenic massive sulfide deposit is the main deposit of the Fin del Mundo District in the Fuegian Andes, Argentina. This deposit is hosted by a Middle Jurassic volcanic and volcanoclastic sequence forming the Lemaire Formation. The latter consists, from the base up, of the following: rhyolitic and dacitic porphyritic rocks, ignimbrite, tuff, and flow. It is underlain by a pre-Jurassic basement and overlain by the hyaloclastic andesites of the Yahgán Formation. The Arroyo Rojo consists of stacked lenticular lenses that are associated with disseminated mineralization in both the footwall and the hanging wall. The internal structure of the ore lenses is marked by the occurrence of massive, semi-massive and banded facies, along with stringer and brecciated zones and minor ore disseminations. The mineral assemblage comprises mainly pyrite and sphalerite, with minor amounts of galena and chalcopyrite and rare pyrrhotite, arsenopyrite, tetrahedrite and bournonite. The ores and the volcanic host rocks have metamorphosed to greenschist facies and were overprinted by a penetrative tectonic foliation, which led to the development of mylonitic, and cataclastic textures, recrystallization and remobilization. Primary depositional characteristics and regional and hydrothermal alteration patterns were preserved despite deformation and metamorphism. Therefore, primary banding was preserved between facies boundaries. In addition, some remnants of magmatic origin are recognizable in preserved phenocrysts and volcaniclastic phenoclasts. Most of the volcanic and volcaniclastic rocks of the host sequence show a rhyolitic to rhyo-dacitic composition. Regional seafloor alteration, characterized by the presence of clinozoisite, Fe-chlorite and titanite, along with quartz and albite, is partially obliterated by hydrothermal alteration. The hydrothermal alteration is stratabound with the following assemblages, which developed from the base to top: (1) Quartz

  4. PSP SAR interferometry monitoring of ground and structure deformations applied to archaeological sites

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla

    2017-04-01

    Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs

  5. Deformation at longyao ground fissure and its surroundings, north China plain, revealed by ALOS PALSAR PS-InSAR

    Science.gov (United States)

    Yang, Chengsheng; Lu, Zhong; Zhang, Qin; Zhao, Chaoying; Peng, Jianbing; Ji, Lingyun

    2018-05-01

    The Longyao ground fissure (LGF) is the longest and most active among more than 1000 ground fissures on the North China Plain. There have been many studies on the formation mechanism of the LGF, due to its scientific importance and its potential for damage to the environment. These studies have been based on both regional tectonic analysis and numerical simulations. In order to provide a better understanding of the formation mechanism, the deformation of the crack and its surrounding environment should be taken into consideration. In this paper, PS-InSAR technology was employed to assess the ground deformation of LGF and its surrounding area, using L-band ALOS-1 PALSAR images from 2007 to 2011. The characteristics of ground deformation, relationships between fissure activity and surrounding faults and groundwater exploitation were analyzed. This study shows that the north side of Longyao fault (LF) is uplifting while the south side is subsiding. This provides the tectonic conditions responsible for the activity of the ground fissure. Local groundwater exploitation also plays an important role in the development of ground fissures. InSAR observations were modeled to infer the loading depth (-2.8 km) and the slip rate (31.1 mm/yr) of LF.

  6. Pattern of ground deformation in Kathmandu valley during 2015 Gorkha Earthquake, central Nepal

    Science.gov (United States)

    Ghimire, S.; Dwivedi, S. K.; Acharya, K. K.

    2016-12-01

    The 25th April 2015 Gorkha Earthquake (Mw=7.8) epicentered at Barpak along with thousands of aftershocks released seismic moment nearly equivalent to an 8.0 Magnitude earthquake rupturing a 150km long fault segment. Although Kathmandu valley was supposed to be severely devastated by such major earthquake, post earthquake scenario is completely different. The observed destruction is far less than anticipated as well as the spatial pattern is different than expected. This work focuses on the behavior of Kathmandu valley sediments during the strong shaking by the 2015 Gorkha Earthquake. For this purpose spatial pattern of destruction is analyzed at heavily destructed sites. To understand characteristics of subsurface soil 2D-MASW survey was carried out using a 24-channel seismograph system. An accellerogram recorded by Nepal Seismological Center was analyzed to characterize the strong ground motion. The Kathmandu valley comprises fluvio-lacustrine deposit with gravel, sand, silt and clay along with few exposures of basement rocks within the sediments. The observations show systematic repetition of destruction at an average interval of 2.5km mostly in sand, silt and clay dominated formations. Results of 2D-MASW show the sites of destruction are characterized by static deformation of soil (liquefaction and southerly dipping cracks). Spectral analysis of the accelerogram indicates maximum power associated with frequency of 1.0Hz. The result of this study explains the observed spatial pattern of destruction in Kathmandu valley. This is correlated with the seismic energy associated with the frequency of 1Hz, which generates an average wavelength of 2.5km with an average S-wave velocity of 2.5km/s. The cumulative effect of dominant frequency and associated wavelength resulted in static deformation of surface soil layers at an average interval of 2.5km. This phenomenon clearly describes the reason for different scenario than that was anticipated in Kathmandu valley.

  7. Integrated 3D Geological Modeling to Gain Insight in the Effects of Hydrothermal Alteration on Post-Ore Deformation Style and Strain Localization in the Flin Flon Volcanogenic Massive Sulfide Ore System

    Directory of Open Access Journals (Sweden)

    Ernst Schetselaar

    2017-12-01

    Full Text Available 3D geological modeling of lithogeochemical and geological data provides insight into the role of the sulfide ore horizon and associated footwall hydrothermal alteration in localizing shear strain in the Flin Flon volcanogenic massive sulfide deposits, Canada, as deformation evolved from brittle-ductile to ductile regimes during collisional stages of the 1.9–1.8 Ga Trans-Hudson orogeny. 3D spatial characterization of hydrothermal alteration based on the Ishikawa index (AI and normative corundum percentages outline sericite + chlorite-rich high strain zones, consisting of Al-enriched and Na-depleted felsic and mafic volcanic rocks in the footwall of the sulfide ore horizon. The hydrothermal vent complex, from which these sheared alteration zones originated, was stacked together with the ore horizon by W-vergent thrust faults during an early collisional deformation regime, imbricating molasse-type clastic sediments with the ore-hosting volcanic and volcaniclastic rocks of the Flin Flon arc assemblage. Chlorite-rich planar zones marked by high values of the Carbonate–chlorite–pyrite index (CCPI are laterally more extensive and outline a later system of ductile shear zones, in which phyllosilicates, quartz and chalcopyrite in stringer zones localized shear strain and enhanced transposition of the hydrothermal vent stockwork. The contrasting deformation styles of these two thrusting events and their localization within the ore horizon and hydrothermal vent stockwork have important implications for vectoring towards undiscovered ore in this mature mining camp that are possibly also relevant to other strongly deformed VMS ore systems.

  8. Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): the result of long-term oxidized hydrothermal alteration during strike-slip deformation

    Science.gov (United States)

    Ballouard, C.; Poujol, M.; Mercadier, J.; Deloule, E.; Boulvais, P.; Baele, J. M.; Cuney, M.; Cathelineau, M.

    2018-06-01

    In the French Armorican Variscan belt, most of the economically significant hydrothermal U deposits are spatially associated with peraluminous leucogranites emplaced along the south Armorican shear zone (SASZ), a dextral lithospheric scale wrench fault that recorded ductile deformation from ca. 315 to 300 Ma. In the Pontivy-Rostrenen complex, a composite intrusion, the U mineralization is spatially associated with brittle structures related to deformation along the SASZ. In contrast to monzogranite and quartz monzodiorite (3 3), the leucogranite samples are characterized by highly variable U contents ( 3 to 27 ppm) and Th/U ratios ( 0.1 to 5) suggesting that the crystallization of magmatic uranium oxide in the more evolved facies was followed by uranium oxide leaching during hydrothermal alteration and/or surface weathering. U-Pb dating of uranium oxides from the deposits reveals that they mostly formed between ca. 300 and 270 Ma. In monzogranite and quartz monzodiorite, apatite grains display magmatic textures and provide U-Pb ages of ca. 315 Ma reflecting the time of emplacement of the intrusions. In contrast, apatite grains from the leucogranite display textural, geochemical, and geochronological evidences for interaction with U-rich oxidized hydrothermal fluids contemporaneously with U mineralizing events. From 300 to 270 Ma, infiltration of surface-derived oxidized fluids leached magmatic uranium oxide from fertile leucogranite and formed U deposits. This phenomenon was sustained by brittle deformation and by the persistence of thermal anomalies associated with U-rich granitic bodies.

  9. Joint Terrestrial and Aerial Measurements to Study Ground Deformation: Application to the Sciara Del Fuoco at the Stromboli Volcano (Sicily

    Directory of Open Access Journals (Sweden)

    Alessandro Bonforte

    2016-05-01

    Full Text Available The 2002–2003 Stromboli eruption triggered the failure of part of the Sciara del Fuoco slope, which generated a tsunami that struck the island and the northern coastline of Sicily. The Sciara del Fuoco is a very steep slope where all lava flows from the craters’ emplacement; most lateral eruptions usually take place from fissures propagating in this sector of the volcano. The eruption went on to produce a lava field that filled the area affected by the landslide. This in turn led to further instability, renewing the threat of another slope failure and a potentially related tsunami. This work describes a new joint approach, combining surveying data and aerial image correlometry methods, to study the motion of this unstable slope. The combination has the advantage of very precise surveying measurements, which can be considered the ground truth to constrain the very-high-resolution aerial photogrammetric data, thereby obtaining highly detailed and accurate ground deformation maps. The joint use of the two methods can be very useful to obtain a more complete image of the deformation field for monitoring dangerous and/or rather inaccessible places. The proposed combined methodology improves our ability to study and assess hazardous processes associated with significant ground deformation.

  10. Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°-15°N: The role of magmatic injections and hydrothermal alteration

    Science.gov (United States)

    Picazo, Suzanne; Cannat, Mathilde; Delacour, AdéLie; EscartíN, Javier; RouméJon, StéPhane; Silantyev, Sergei

    2012-09-01

    Outcrops of deeply derived ultramafic rocks and gabbros are widespread along slow spreading ridges where they are exposed in the footwall of detachment faults. We report on the microstructural and petrological characteristics of a large number of samples from ultramafic exposures in the walls of the Mid-Atlantic Ridge (MAR) axial valley at three distinct locations at lat. 13°N and 14°45'N. One of these locations corresponds to the footwall beneath a corrugated paleo-fault surface. Bearing in mind that dredging and ROV sampling may not preserve the most fragile lithologies (fault gouges), this study allows us to document a sequence of deformation, and the magmatic and hydrothermal history recorded in the footwall within a few hundred meters of the axial detachment fault. At the three sampled locations, we find that tremolitic amphiboles have localized deformation in the ultramafic rocks prior to the onset of serpentinization. We interpret these tremolites as hydrothermal alteration products after evolved gabbroic rocks intruded into the peridotites. We also document two types of brittle deformation in the ultramafic rocks, which we infer could produce the sustained low magnitude seismicity recorded at ridge axis detachment faults. The first type of brittle deformation affects fresh peridotite and is associated with the injection of the evolved gabbroic melts, and the second type affects serpentinized peridotites and is associated with the injection of Si-rich hydrothermal fluids that promote talc crystallization, leading to strain localization in thin talc shear zones. We also observed chlorite + serpentine shear zones but did not identify samples with serpentine-only shear zones. Although the proportion of magmatic injections in the ultramafic rocks is variable, these characteristics are found at each investigated location and are therefore proposed as fundamental components of the deformation in the footwall of the detachment faults associated with denudation of

  11. Delineating shallow Neogene deformation structures in northeastern Pará State using Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Dilce F. Rossetti

    2003-06-01

    Full Text Available The geological characterization of shallow subsurface Neogene deposits in northeastern Pará State using Ground Penetrating Radar (GPR revealed normal and reverse faults, as well as folds, not yet well documented by field studies. The faults are identified mostly by steeply-dipping reflections that sharply cut the nearby reflections causing bed offsets, drags and rollovers. The folds are recognized by reflections that are highly undulating, configuring broad concave and convex-up features that are up to 50 m wide and 80 to 90 ns deep. These deformation structures are mostly developed within deposits of Miocene age, though some of the faults might continue into younger deposits as well. Although the studied GPR sections show several diffractions caused by trees, differential degrees of moisture, and underground artifacts, the structures recorded here can not be explained by any of these ''noises''. The detailed analysis of the GPR sections reveals that they are attributed to bed distortion caused by brittle deformation and folding. The record of faults and folds are not widespread in the Neogene deposits of the Bragantina area. These GPR data are in agreement with structural models, which have proposed a complex evolution including strike-slip motion for this area from the Miocene to present.A caracterização geológica de depósitos neógenos ocorrentes em sub-superfície rasa no nordeste do Estado do Pará, usando Radar de Penetração no Solo (GPR, revelou a presença de falhas normais e reversas, bem como dobras, ainda não documentadas em estudos de campo prévios. As falhas são identificadas por reflexões inclinadas que cortam bruscamente reflexões vizinhas, causando freqüentes deslocamentos de camadas. As dobras são reconhecidas por reflexões fortemente ondulantes, configurando feições côncavas e convexas que medem até 50 m de amplitude e 80 a 90 m de profundidade. Estas estruturas deformacionais desenvolvem-se, principalmente

  12. Ground-state properties of axially deformed Sr isotopes in Skyrme-Hartree-Fock-Bogolyubov method

    International Nuclear Information System (INIS)

    Yilmaz, A.H.; Bayram, T.; Demirci, M.; Engin, B.; Bayram, T.

    2010-01-01

    Binding energies, the mean-square nuclear radii, neutron radii, quadrupole moments and deformation parameters to axially deformed Strontium isotopes were evaluated using Hartree-Fock-Bogolyubov method. Shape coexistence was also discussed. The results were compared with experimental data and some estimates obtained within some nuclear models. The calculations were performed for SIy4 set of Skyrme forces and for wide range of the neutron numbers of Sr isotopes

  13. Ground deformation monitoring using RADARSAT-2 DInSAR-MSBAS at the Aquistore CO2 storage site in Saskatchewan (Canada)

    Science.gov (United States)

    Czarnogorska, M.; Samsonov, S.; White, D.

    2014-11-01

    The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in southeastern Saskatchewan, Canada. Several monitoring techniques were employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) technique, GPS, tiltmeters and piezometers. The targeted CO2 injection zones are within the Winnipeg and Deadwood formations located at > 3000 m depth. An array of monitoring techniques was employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) with established corner reflectors, GPS, tiltmeters and piezometers stations. We used airborne LIDAR data for topographic phase estimation, and DInSAR product geocoding. Ground deformation maps have been calculated using Multidimensional Small Baseline Subset (MSBAS) methodology from 134 RADARSAT-2 images, from five different beams, acquired during 20120612-20140706. We computed and interpreted nine time series for selected places. MSBAS results indicate slow ground deformation up to 1 cm/year not related to CO2 injection but caused by various natural and anthropogenic causes.

  14. Deformed Shape Calculation of a Full-Scale Wing Using Fiber Optic Strain Data from a Ground Loads Test

    Science.gov (United States)

    Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance

    2011-01-01

    A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included

  15. Measuring structure deformations of a composite glider by optical means with on-ground and in-flight testing

    Science.gov (United States)

    Bakunowicz, Jerzy; Święch, Łukasz; Meyer, Ralf

    2016-12-01

    In aeronautical research experimental data sets of high quality are essential to verify and improve simulation algorithms. For this reason the experimental techniques need to be constantly refined. The shape, movement or deformation of structural aircraft elements can be measured implicitly in multiple ways; however, only optical, correlation-based techniques are able to deliver direct high-order and spatial results. In this paper two different optical metrologies are used for on-ground preparation and the actual execution of in-flight wing deformation measurements on a PW-6U glider. Firstly, the commercial PONTOS system is used for static tests on the ground and for wind tunnel investigations to successfully certify an experimental sensor pod mounted on top of the test bed fuselage. Secondly, a modification of the glider is necessary to implement the optical method named image pattern correlation technique (IPCT), which has been developed by the German Aerospace Center DLR. This scientific technology uses a stereoscopic camera set-up placed inside the experimental pod and a stochastic dot matrix applied to the area of interest on the glider wing to measure the deformation of the upper wing surface in-flight. The flight test installation, including the preparation, is described and results are presented briefly. Focussing on the compensation for typical error sources, the paper concludes with a recommended procedure to enhance the data processing for better results. Within the presented project IPCT has been developed and optimized for a new type of test bed. Adapted to the special requirements of the glider, the IPCT measurements were able to deliver a valuable wing deformation data base which now can be used to improve corresponding numerical models and simulations.

  16. Exploring deformation scenarios in Timanfaya volcanic area (Lanzarote, Canary Islands) from GNSS and ground based geodetic observations

    Science.gov (United States)

    Riccardi, U.; Arnoso, J.; Benavent, M.; Vélez, E.; Tammaro, U.; Montesinos, F. G.

    2018-05-01

    We report on a detailed geodetic continuous monitoring in Timanfaya volcanic area (TVA), where the most intense geothermal anomalies of Lanzarote Island are located. We analyze about three years of GNSS data collected on a small network of five permanent stations, one of which at TVA, deployed on the island, and nearly 20 years of tiltmeter and strainmeter records acquired at Los Camelleros site settled in the facilities of the Geodynamics Laboratory of Lanzarote within TVA. This study is intended to contribute to understanding the active tectonics on Lanzarote Island and its origin, mainly in TVA. After characterizing and filtering out the seasonal periodicities related to "non-tectonic" sources from the geodetic records, a tentative ground deformation field is reconstructed through the analysis of both tilt, strain records and the time evolution of the baselines ranging the GNSS stations. The joint interpretation of the collected geodetic data show that the area of the strongest geothermal anomaly in TVA is currently undergoing a SE trending relative displacement at a rate of about 3 mm/year. This area even experiences a significant subsidence with a maximum rate of about 6 mm/year. Moreover, we examine the possible relation between the observed deformations and atmospheric effects by modelling the response functions of temperature and rain recorded in the laboratory. Finally, from the retrieval of the deformation patterns and the joint analysis of geodetic and environmental observations, we propose a qualitative model of the interplaying role between the hydrological systems and the geothermal anomalies. Namely, we explain the detected time correlation between rainfall and ground deformation because of the enhancement of the thermal transfer from the underground heat source driven by the infiltration of meteoric water.

  17. 4D imaging of the source of ground deformation at Campi Flegrei caldera (Italy) during recent unrest episodes

    Science.gov (United States)

    D'Auria, L.; Giudicepietro, F.; Martini, M.; Lanari, R.

    2011-12-01

    Campi Flegrei caldera, has been affected in recent decades by three episodes of significant ground uplift. After the last crisis (1982-84), which was accompanied by strong seismicity, the ground has shown a general descending trend, occasionally interrupted by minor uplift episodes, together with low-magnitude volcano-tectonic and long-period seismicity. We assume that the source of minor ground deformations consists in a diffuse volumetric source, related to both thermoelastic and poroelastic strain. This is a reasonable assumption considering that Campi Flegrei are known to host a geothermal reservoir. We have inverted a DInSAR dataset spanning the interval 1995-2008. Results show that the geometry of the source is much more complex than previously recognized and, most important, it shows significant temporal variations, within few months. The deformation source, of the analyzed uplift episodes, starts with a volumetric expansion centered at a depth of about 5 km. The position of this volume is close to the caldera rims. Later the expansion migrates upward, reaching the surface along preferred paths, leading to the Solfatara area, located almost at the center of the caldera. This area is well known for its powerful geothermal emissions. During the upward migration, seismic long-period sources are activated. Their location is consistent with the path identified by the inversion of the DInSAR dataset. We infer, that this dynamics is linked to the injection of hot fluid batches, along the caldera rims and their upward migration, following preferential high permeability paths. Furthermore we have identified an injection episode which has not been previously recognized. The deformation source remains at depth slowly waning in few years. We show how this conceptual framework fits well with the observed geodetic, seismic and geochemical data.

  18. Splitting of ISGMR strength in the light-mass nucleus 24Mg due to ground-state deformation

    Directory of Open Access Journals (Sweden)

    Y.K. Gupta

    2015-09-01

    Full Text Available The isoscalar giant monopole resonance (ISGMR strength distribution in 24Mg has been determined from background-free inelastic scattering of 386-MeV α particles at extreme forward angles, including 0∘. The ISGMR strength distribution has been observed for the first time to have a two-peak structure in a light-mass nucleus. This splitting of ISGMR strength is explained well by microscopic theory in terms of the prolate deformation of the ground state of 24Mg.

  19. Observation of ground deformation associated with hydraulic fracturing and seismicity in the Western Canadian Sedimentary Basin

    Science.gov (United States)

    Kubanek, J.; Liu, Y.; Harrington, R. M.; Samsonov, S.

    2017-12-01

    In North America, the number of induced earthquakes related to fluid injection due to the unconventional recovery of oil and gas resources has increased significantly within the last five years. Recent studies demonstrate that InSAR is an effective tool to study surface deformation due to large-scale wastewater injection, and highlight the value of surface deformation monitoring with respect to understanding evolution of pore pressure and stress at depth - vital parameters to forecast fault reactivation, and thus, induced earthquakes. In contrast to earthquakes related to the injection of large amounts of wastewater, seismic activity related to the hydraulic fracturing procedure itself was, until recently, considered to play a minor role without significant hazard. In the Western Canadian Sedimentary Basin (WCSB), however, Mw>4 earthquakes have recently led to temporary shutdown of industrial injection activity, causing multi-million dollar losses to operators and raising safety concerns with the local population. Recent studies successfully utilize seismic data and modeling to link seismic activity with hydraulic fracturing in the WCSB. Although the study of surface deformation is likely the most promising tool for monitoring integrity of a well and to derive potential signatures prior to moderate or large induced events, InSAR has, to date, not been utilized to detect surface deformation related to hydraulic fracturing and seismicity. We therefore plan to analyze time-series of SAR data acquired between 1991 to present over two target sites in the WCSB that will enable the study of long- and short-term deformation. Since the conditions for InSAR are expected to be challenging due to spatial and temporal decorrelation, we have designed corner reflectors that will be installed at one target site to improve interferometric performance. The corner reflectors will be collocated with broadband seismometers and Trimble SeismoGeodetic Systems that simultaneously measure

  20. Lifetime measurements of the first 2+ states in 104,106Zr: Evolution of ground-state deformations

    Directory of Open Access Journals (Sweden)

    F. Browne

    2015-11-01

    Full Text Available The first fast-timing measurements from nuclides produced via the in-flight fission mechanism are reported. The lifetimes of the first 2+ states in 104,106Zr nuclei have been measured via β-delayed γ-ray timing of stopped radioactive isotope beams. An improved precision for the lifetime of the 21+ state in 104Zr was obtained, τ(21+=2.90−20+25 ns, as well as a first measurement of the 21+ state in 106Zr, τ(21+=2.60−15+20 ns, with corresponding reduced transition probabilities of B(E2;21+→0g.s.+=0.39(2 e2b2 and 0.31(1 e2b2, respectively. Comparisons of the extracted ground-state deformations, β2=0.39(1 (104Zr and β2=0.36(1 (106Zr with model calculations indicate a persistence of prolate deformation. The data show that 104Zr is the most deformed of the neutron-rich Zr isotopes measured so far.

  1. The implications of gas slug ascent in a stratified magma for acoustic and ground deformation source mechanisms in Strombolian eruptions

    Science.gov (United States)

    Capponi, Antonio; Lane, Stephen J.; James, Mike R.

    2017-06-01

    The interpretation of geophysical measurements at active volcanoes is vital for hazard assessment and for understanding fundamental processes such as magma degassing. For Strombolian activity, interpretations are currently underpinned by first-order fluid dynamic models which give relatively straightforward relationships between geophysical signals and gas and magma flow. However, recent petrological and high-speed video evidence has indicated the importance of rheological stratification within the conduit and, here, we show that under these conditions, the straightforward relationships break down. Using laboratory analogue experiments to represent a rheologically-stratified conduit we characterise the distinct variations in the shear stress exerted on the upper sections of the flow tube and in the gas pressures measured above the liquid surface, during different degassing flow configurations. These signals, generated by varying styles of gas ascent, expansion and burst, can reflect field infrasonic measurements and ground motion proximal to a vent. The shear stress signals exhibit timescales and trends in qualitative agreement with the near-vent inflation-deflation cycles identified at Stromboli. Therefore, shear stress along the uppermost conduit may represent a plausible source of near-vent tilt, and conduit shear contributions should be considered in the interpretation of ground deformation, which is usually attributed to pressure sources only. The same range of flow processes can produce different experimental infrasonic waveforms, even for similar masses of gas escape. The experimental data resembled infrasonic waveforms acquired from different vents at Stromboli associated with different eruptive styles. Accurate interpretation of near-vent ground deformation, infrasonic signal and eruptive style therefore requires detailed understanding of: a) spatiotemporal magma rheology in the shallow conduit, and b) shallow conduit geometry, as well as bubble

  2. Spatiotemporal seismic velocity change in the Earth's subsurface associated with large earthquake: contribution of strong ground motion and crustal deformation

    Science.gov (United States)

    Sawazaki, K.

    2016-12-01

    It is well known that seismic velocity of the subsurface medium changes after a large earthquake. The cause of the velocity change is roughly attributed to strong ground motion (dynamic strain change), crustal deformation (static strain change), and fracturing around the fault zone. Several studies have revealed that the velocity reduction down to several percent concentrates at the depths shallower than several hundred meters. The amount of velocity reduction correlates well with the intensity of strong ground motion, which indicates that the strong motion is the primary cause of the velocity reduction. Although some studies have proposed contributions of coseismic static strain change and fracturing around fault zone to the velocity change, separation of their contributions from the site-related velocity change is usually difficult. Velocity recovery after a large earthquake is also widely observed. The recovery process is generally proportional to logarithm of the lapse time, which is similar to the behavior of "slow dynamics" recognized in laboratory experiments. The time scale of the recovery is usually months to years in field observations, while it is several hours in laboratory experiments. Although the factor that controls the recovery speed is not well understood, cumulative strain change due to post-seismic deformation, migration of underground water, mechanical and chemical reactions on the crack surface could be the candidate. In this study, I summarize several observations that revealed spatiotemporal distribution of seismic velocity change due to large earthquakes; especially I focus on the case of the M9.0 2011 Tohoku earthquake. Combining seismograms of Hi-net (high-sensitivity) and KiK-net (strong motion), geodetic records of GEONET and the seafloor GPS/Acoustic ranging, I investigate contribution of the strong ground motion and crustal deformation to the velocity change associated with the Tohoku earthquake, and propose a gross view of

  3. Mismatch Between Interseismic Ground Deformation and Paleoseismic/Paleogeodetic Observations, Humboldt Bay, Northern California, Cascadia Subduction Zone

    Science.gov (United States)

    Patton, J. R.; Williams, T. B.; Leroy, T. H.; Anderson, J. K.; Weldon, R. J.; Gilkerson, W.

    2011-12-01

    Observations made by Plafker in Chile (1960) and Alaska (1964) show that vertical deformation during earthquakes is generally opposite in sense of motion compared to interseismic deformation. This elastic rebound theory drives estimates of potential coseismic deformation on the Cascadia subduction zone (CSZ). Similar to other coastal marshes along the CSZ, paleoseismic investigations around Humboldt Bay reveal evidence of coseismic subsidence for the past 4 ka. Tide gage data obtained from NOAA tide gages, as well as 'campaign' style tide gages, are used to infer interseismic ground deformation. Tide gage data from Crescent City and Humboldt Bay are compared to each other and also compared to estimates of eustatic sea-level rise to estimate rates of land-level change. Earthscope and USGS GPS permanent site data are also used to evaluate vertical interseismic deformation in this region. These rates of land-level change are then compared to paleoseismic proxies for vertical land-level change. Cores collected for master's theses research at Humboldt State University were used to compile an earthquake history for the Humboldt Bay region. Some cores in Mad River and Hookton sloughs were used to evaluate magnitudes of coseismic subsidence by comparing diatom and foraminiferid assemblages associated with lithologic contacts (paleogeodesy). Minimum estimates of paleosubsidence for earthquakes range from 0.3 to 2.6 meters. Subtracting eustatic sea-level rise (~2.3 mm/yr, 1977-2010) from Crescent City (CC) and North Spit (NS) relative sea-level rates reveals that CC is uplifting at ~3mm/yr and NS is subsiding at ~2.5 mm/yr. GPS vertical deformation reveals similar rates of ~3 mm/yr of uplift and ~2 mm/yr of subsidence in these two locations. GPS based subsidence rates show a gradient of subsidence between Trinidad (in the north) to Cape Mendocino (in the south). The spatial region of ongoing subsidence reveals the depth of locking of the CSZ fault (differently from previous

  4. Geometric Aspects of Ground Augmentation of Satellite Networks for the Needs of Deformation Monitoring

    Science.gov (United States)

    Protaziuk, Elżbieta

    2016-06-01

    Satellite measurements become competitive in many tasks of engineering surveys, however, in many requiring applications possibilities to apply such solutions are still limited. The possibility to widely apply satellite technologies for displacements measurements is related with new challenges; the most important of them relate to increasing requirements concerning the accuracy, reliability and continuity of results of position determination. One of the solutions is a ground augmentation of satellite network, which intention is to improve precision of positioning, ensure comparable accuracy of coordinates and reduce precision fluctuations over time. The need for augmentation of GNSS is particularly significant in situations: where the visibility of satellites is poor because of terrain obstacles, when the determined position is not precise enough or a satellites constellation does not allow for reliable positioning. Ground based source/sources of satellite signal placed at a ground, called pseudosatellites, or pseudolites were intensively investigated during the last two decades and finally were developed into groundbased, time-synchronized transceivers, that can transmit and receive a proprietary positioning signal. The paper presents geometric aspects of the ground based augmentation of the satellite networks using various quality measures of positioning geometry, which depends on access to the constellation of satellites and the conditions of the observation environment. The issue of minimizing these measures is the key problem that allows to obtain the position with high accuracy. For this purpose, the use of an error ellipsoid is proposed and compared with an error ellipse. The paper also describes the results of preliminary accuracy analysis obtained at test area and a comparison of various measures of the quality of positioning geometry.

  5. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    Science.gov (United States)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  6. Locally distributed ground deformation in an area of potential phreatic eruption, Midagahara volcano, Japan, detected by single-look-based InSAR time series analysis

    Science.gov (United States)

    Kobayashi, Tomokazu

    2018-05-01

    Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.

  7. New insights into the 2012 Emilia (Italy) seismic sequence through advanced numerical modeling of ground deformation InSAR measurements

    Science.gov (United States)

    Tizzani, P.; Castaldo, R.; Solaro, G.; Pepe, S.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Samsonov, S.; Lanari, R.; Sansosti, E.

    2013-05-01

    We provide new insights into the two main seismic events that occurred in 2012 in the Emilia region, Italy. We extend the results from previous studies based on analytical inversion modeling of GPS and RADARSAT-1 InSAR measurements by exploiting RADARSAT-2 data. Moreover, we benefit from the available large amount of geological and geophysical information through finite element method (FEM) modeling implemented in a structural-mechanical context to investigate the impact of known buried structures on the modulation of the ground deformation field. We find that the displacement pattern associated with the 20 May event is consistent with the activation of a single fault segment of the inner Ferrara thrust, in good agreement with the analytical solution. In contrast, the interpretation of the 29 May episode requires the activation of three different fault segments and a block roto-translation of the Mirandola anticline. The proposed FEM-based methodology is applicable to other seismic areas where the complexity of buried structures is known and plays a fundamental role in the modulation of the associated surface deformation pattern.

  8. Interfacial characterization of soil-embedded optical fiber for ground deformation measurement

    International Nuclear Information System (INIS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin; She, Jun-Kuan

    2014-01-01

    Recently fiber-optic sensing technologies have been applied for performance monitoring of geotechnical structures such as slopes, foundations, and retaining walls. However, the validity of measured data from soil-embedded optical fibers is strongly influenced by the properties of the interface between the sensing fiber and the soil mass. This paper presents a study of the interfacial properties of an optical fiber embedded in soil with an emphasis on the effect of overburden pressure. Laboratory pullout tests were conducted to investigate the load-deformation characteristics of a 0.9 mm tight-buffered optical fiber embedded in soil. Based on a tri-linear interfacial shear stress-displacement relationship, an analytical model was derived to describe the progressive pullout behavior of an optical fiber from soil matrix. A comparison between the experimental and predicted results verified the effectiveness of the proposed pullout model. The test results are further interpreted and discussed. It is found that the interfacial bond between an optical fiber and soil is prominently enhanced under high overburden pressures. The apparent coefficients of friction of the optical fiber/soil interface decrease as the overburden pressure increases, due to the restrained soil dilation around the optical fiber. Furthermore, to facilitate the analysis of strain measurement, three working states of a soil-embedded sensing fiber were defined in terms of two characteristic displacements. (paper)

  9. INSAR AND FINITE ELEMENT ANALYSIS OF GROUND DEFORMATION AT LAKE URMIA CAUSEWAY (LUC, NORTHWEST IRAN

    Directory of Open Access Journals (Sweden)

    R. Shamshiri

    2013-09-01

    Full Text Available Precise long-term deformation monitoring of causeways and bridges is of vital task for maintenance and management work related to transportation safety. In this study, we analyse the settlement of Lake Urmia Causeway (LUC, northwest Iran, using observations from InSAR and Finite Element Model (FEM simulation. For InSAR processing, we analyse 58 SAR images of ENVISAT, ALOS and TerraSAR-X (TSX using the SBAS technique to assess the settlement of embankments in the years 2003–2013. The InSAR results show deflation on both embankments with a peak velocity of > 5 cm/year in the satellite Line Of Sight (LOS direction. The InSAR observations are then used to construct a settlement compaction model for the cross section at the distance of 4 km from the most western edge of the causeway, using a 2D Finite Element Model. Our FEM results suggest that settlement of the embankments will continue in the future due to consolidation phenomenon.

  10. Ground deformation source model at Kuchinoerabu-jima volcano during 2006-2014 as revealed by campaign GPS observation

    Science.gov (United States)

    Hotta, Kohei; Iguchi, Masato

    2017-12-01

    We analyzed campaign Global Positioning System observation data in Kuchinoerabu-jima during 2006-2014. Most benchmarks located around Shin-dake crater showed crater-centered radial horizontal displacements. Horizontal displacements at western rim of the Shin-dake crater were tended to be larger compared to those at eastern rim. In addition, benchmark KUC14 which locates near the cliff at Furu-dake showed westward horizontal displacement rather than crater-centered radial (southward) one. Meanwhile, small displacements were detected at the benchmarks located at the foot of Kuchinoerabu-jima. We modeled the observed displacements applying a finite element method. We set entire FE domain as 100 × 100 × 50 km3. We set top of the domain as a free surface, and sides and bottom to be fixed boundaries. Topography was introduced in the area within Kuchinoerabu-jima using digital elevation model data provided by Kagoshima prefecture and elevation information from Google earth, and elevation of the outside area was assumed to be sea level. We assumed a stratified structure based on a one-dimensional P-wave velocity structure. We applied a vertical spheroid source model and searched optimal values of horizontal location, depth, equatorial and polar radiuses, and internal pressure change of the source using the forward modeling method. A spherical source with a radius of 50 m was obtained beneath the Shin-dake crater at a depth of 400 m above sea level. The internal pressure increase of 361 MPa yields its volume increase of 31,700 m3. Taking effects of topography and heterogeneity of ground into account allowed reproduction of overall deformation in Kuchinoerabu-jima. The location of deformation source coincides with hypocenters of shallow volcano-tectonic (VT) earthquakes and the aquifer estimated from a two-dimensional resistivity model by audio-frequency magnetotellurics method. The obtained deformation source may be corresponding to the pressurized aquifer, and shallow VT

  11. Mapping Hydrothermal Alteration Zones at a Sediment-Hosted Gold Deposit - Goldstrike Mining District, Utah, Using Ground-Based Hyperspectral Imaging

    Science.gov (United States)

    Krupnik, D.; Khan, S.; Crockett, M.

    2017-12-01

    Understanding the origin, genesis, as well as depositional and structural mechanisms of gold mineralization as well as detailed mapping of gold-bearing mineral phases at centimeter scale can be useful for exploration. This work was conducted in the Goldstrike mining district near St. George, UT, a structurally complex region which contains Carlin-style disseminated gold deposits in permeable sedimentary layers near high-angle fault zones. These fault zones are likely a conduit for gold-bearing hydrothermal fluids, are silicified, and are frequently gold-bearing. Alteration patterns are complex, difficult to distinguish visually, composed of several phases, and vary significantly over centimeter to meter scale distances. This makes identifying and quantifying the extent of the target zones costly, time consuming, and discontinuous with traditional geochemical methods. A ground-based hyperspectral scanning system with sensors collecting data in the Visible Near Infrared (VNIR) and Short-Wave Infrared (SWIR) portions of the electromagnetic spectrum are utilized for close-range outcrop scanning. Scans were taken of vertical exposures of both gold-bearing and barren silicified rocks (jasperoids), with the intent to produce images which delineate and quantify the extent of each phase of alteration, in combination with discrete geochemical data. This ongoing study produces mineralogical maps of surface minerals at centimeter scale, with the intent of mapping original and alteration minerals. This efficient method of outcrop characterization increases our understanding of fluid flow and alteration of economic deposits.

  12. Monitoring ground deformation of cultural heritage sites using UAVs and geodetic techniques: the case study of Choirokoitia, JPI PROTHEGO project

    Science.gov (United States)

    Themistocleous, Kyriacos; Danezis, Chris; Mendonidis, Evangelos; Lymperopoulou, Efstathia

    2017-10-01

    This paper presents the integrated methods using UAVs and geodetic techniques to monitor ground deformation within the Choirokoitia UNESCO World Heritage Site in Cyprus. The Neolithic settlement of Choirokoitia, occupied from the 7th to the 4th millennium B.C., is one of the most important prehistoric sites in the eastern Mediterranean. The study is conducted under the PROTHEGO (PROTection of European Cultural HEritage from GeO-hazards) project, which is a collaborative research project funded in the framework of the Joint Programming Initiative on Cultural Heritage and Global Change (JPICH) - Heritage Plus in 2015-2018 (www.prothego.eu) and through the Cyprus Research Promotion Foundation. PROTHEGO aims to make an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage, and uses novel space technology based on radar interferometry to retrieve information on ground stability and motion in the 400+ UNESCO's World Heritage List monuments and sites of Europe. The field measurements collected at the Choirokoitia site will be later compared with SAR data to verify micro-movements in the area to monitor potential geo-hazards. The site is located on a steep hill, which makes it vulnerable to rock falls and landslides.

  13. PSI Analysis of Ground Deformations Along the South-Western Coast of the Gulf of Gdansk (Poland)

    Science.gov (United States)

    Czarnogorska, Magdalena; Graniczny, Marek; Uscinowicz, Szymon; Nutricato, Raffaele; Triggiani, Saverio; Nitti, David Oscar; Bovenga, Fabio; Wasowski, Janusz

    2010-03-01

    We use over 40 descending ERS-1/2 SLC (Frame = 2511 , Track = 36) images from the period 1995 - 2001 and the SPINUA (Stable Point Interferometry over Un- urbanised Areas) Persistent Scatterers Interferometry (PSI) processing technique to study Earth surface deformations along the SW coast of the Gulf of Gdansk, along the SE part of the Baltic Sea.The area of interest (AOI) includes few cities and several towns, villages and harbours. The low lying coastal areas of the SW part of the Gulf of Gdansk are at risk of floods and marine erosion. It is expected that this problem can be exacerbated by the ongoing sea level rise and possibly by crustal movements (subsidence) reported in the literature.The PSI results, however, did not reveal the presence of a regional scale, spatially consistent pattern of displacements. It is likely that any crustal deformations in the AOI simply do not exceed +-2 mm/year, which is the velocity threshold we assumed to distinguish between moving and non-moving radar targets. Nevertheless, significant downward displacements, amounting to several mm/year, are locally present in the coastal zone east of Gdansk that belongs to the Vistula river delta-alluvial plain system, as well as in the inland area west of the cities of Gdansk and Sopot. It is apparent that in all these cases the movements reflect mainly differential settlements of buildings and engineering infrastructure, which have recently been built in the areas including clay-rich, compressible sediments. Indeed, one of the highest subsidence rates (- 12 mm/year) was observed in the Gdansk petroleum refinery constructed on alluvial sediments. Thus the anthropogenic loading and consolidation of the recent deposits can locally be an important factor causing ground settlements. Importantly, for the most part the urban areas of the main cities (Gdansk, Gdynia and Sopot) result to be stable.

  14. Real-time Inversion of Tsunami Source from GNSS Ground Deformation Observations and Tide Gauges.

    Science.gov (United States)

    Arcas, D.; Wei, Y.

    2017-12-01

    Over the last decade, the NOAA Center for Tsunami Research (NCTR) has developed an inversion technique to constrain tsunami sources based on the use of Green's functions in combination with data reported by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems. The system has consistently proven effective in providing highly accurate tsunami forecasts of wave amplitude throughout an entire basin. However, improvement is necessary in two critical areas: reduction of data latency for near-field tsunami predictions and reduction of maintenance cost of the network. Two types of sensors have been proposed as supplementary to the existing network of DART®systems: Global Navigation Satellite System (GNSS) stations and coastal tide gauges. The use GNSS stations to provide autonomous geo-spatial positioning at specific sites during an earthquake has been proposed in recent years to supplement the DART® array in tsunami source inversion. GNSS technology has the potential to provide substantial contributions in the two critical areas of DART® technology where improvement is most necessary. The present study uses GNSS ground displacement observations of the 2011 Tohoku-Oki earthquake in combination with NCTR operational database of Green's functions, to produce a rapid estimate of tsunami source based on GNSS observations alone. The solution is then compared with that obtained via DART® data inversion and the difficulties in obtaining an accurate GNSS-based solution are underlined. The study also identifies the set of conditions required for source inversion from coastal tide-gauges using the degree of nonlinearity of the signal as a primary criteria. We then proceed to identify the conditions and scenarios under which a particular gage could be used to invert a tsunami source.

  15. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  16. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Science.gov (United States)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  17. Hydrothermal systems and volcano geochemistry

    Science.gov (United States)

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  18. Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation

    Science.gov (United States)

    Sanchez-Alfaro, Pablo; Reich, Martin; Arancibia, Gloria; Pérez-Flores, Pamela; Cembrano, José; Driesner, Thomas; Lizama, Martin; Rowland, Julie; Morata, Diego; Heinrich, Christoph A.; Tardani, Daniele; Campos, Eduardo

    2016-09-01

    In this study, we unravel the physical, chemical and mineralogical evolution of the active Tolhuaca geothermal system in the Andes of southern Chile. We used temperature measurements in the deep wells and geochemical analyses of borehole fluid samples to constrain present-day fluid conditions. In addition, we reconstructed the paleo-fluid temperatures and chemistry from microthermometry and LA-ICP-MS analysis of fluid inclusions taken from well-constrained parageneses in vein samples retrieved from a 1000 m borehole core. Based on core logging, mineralogical observations and fluid inclusions data we identify four stages (S1-S4) of progressive hydrothermal alteration. An early heating event (S1) was followed by the formation of a clay-rich cap in the upper zone (propylitic alteration assemblage at greater depth (S2). Boiling, flashing and brecciation occurred later (S3), followed by a final phase of fluid mixing and boiling (S4). The evolution of hydrothermal alteration at Tolhuaca has produced a mineralogical, hydrological and structural vertical segmentation of the system through the development of a low-permeability, low-cohesion clay-rich cap at shallow depth. The quantitative chemical analyses of fluid inclusions and borehole fluids reveal a significant change in chemical conditions during the evolution of Tolhuaca. Whereas borehole (present-day) fluids are rich in Au, B and As, but Cu-poor (B/Na 100.5, As/Na 10- 1.1, Cu/Na 10- 4.2), the paleofluids trapped in fluid inclusions are Cu-rich but poor in B and As (B/Na 10- 1, As/Na 10- 2.5, Cu/Na 10- 2.5 in average). We interpret the fluctuations in fluid chemistry at Tolhuaca as the result of transient supply of metal-rich, magmatically derived fluids where As, Au and Cu are geochemically decoupled. Since these fluctuating physical and chemical conditions at the reservoir produced a mineralogical vertical segmentation of the system that affects the mechanical and hydrological properties of host rock, we explored

  19. The 2011 volcanic crisis at El Hierro (Canary Islands): monitoring ground deformation through tiltmeter and gravimetric observations

    Science.gov (United States)

    Arnoso, J.; Montesinos, F. G.; Benavent, M.; Vélez, E. J.

    2012-04-01

    and shallow earthquakes happened, producing in some cases large tilt variations of tens of µrad. By other side, in 2003 we established a control gravity network that was measured again in 2004 and 2008. After the beginning of the eruption on October 2011, we have carried out gravity measurements in various points of the network as well as other new points to attain more accurate control of the possible variations of gravity or/and altitude. Gravity data are still under study although some results about observed gravity changes could reflect the ground deformations pattern according to tiltmeter records and GPS measurements, or a change in the subsurface mass distribution as consequence of the new emplacement the magmatic material in the area with volcanic and seismic activity.

  20. Persistent Scatterer Interferometry analysis of ground deformation in the Po Plain (Piacenza-Reggio Emilia sector, Northern Italy): seismo-tectonic implications

    Science.gov (United States)

    Antonielli, Benedetta; Monserrat, Oriol; Bonini, Marco; Cenni, Nicola; Devanthéry, Núria; Righini, Gaia; Sani, Federico

    2016-08-01

    This work aims to explore the ongoing tectonic activity of structures in the outermost sector of the Northern Apennines, which represents the active leading edge of the thrust belt and is dominated by compressive deformation. We have applied the Persistent Scatterer Interferometry (PSI) technique to obtain new insights into the present-day deformation pattern of the frontal area of the Northern Apennine. PSI has proved to be effective in detecting surface deformation of wide regions involved in low tectonic movements. We used 34 Envisat images in descending geometry over the period of time between 2004 and 2010, performing about 300 interferometric pairs. The analysis of the velocity maps and of the PSI time-series has allowed to observe ground deformation over the sector of the Po Plain between Piacenza and Reggio Emilia. The time-series of permanent GPS stations located in the study area, validated the results of the PSI technique, showing a good correlation with the PS time-series. The PS analysis reveals the occurrence of a well-known subsidence area on the rear of the Ferrara arc, mostly connected to the exploitation of water resources. In some instances, the PS velocity pattern reveals ground uplift (with mean velocities ranging from 1 to 2.8 mm yr-1) above active thrust-related anticlines of the Emilia and Ferrara folds, and part of the Pede-Apennine margin. We hypothesize a correlation between the observed uplift deformation pattern and the growth of the thrust-related anticlines. As the uplift pattern corresponds to known geological features, it can be used to constrain the seismo-tectonic setting, and a working hypothesis may involve that the active Emilia and Ferrara thrust folds would be characterized by interseismic periods possibly dominated by aseismic creep.

  1. Hydrothermal Processes

    Science.gov (United States)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  2. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel; Biggs, Juliet; Wicks, Charles; McNutt, Steve

    2010-01-01

    Starting soon after the 1997 eruption at Okmok volcano and continuing until the start of the 2008 eruption, magma accumulated in a storage zone centered ~3.5 km beneath the caldera floor at a rate that varied with time. A Mogi-type point pressure source or finite sphere with a radius of 1 km provides an adequate fit to the deformation field portrayed in time-sequential interferometric synthetic aperture radar images. From the end of the 1997 eruption through summer 2004, magma storage increased by 3.2–4.5 × 107 m3, which corresponds to 75–85% of the magma volume erupted in 1997. Thereafter, the average magma supply rate decreased such that by 10 July 2008, 2 days before the start of the 2008 eruption, magma storage had increased by 3.7–5.2 × 107 m3 or 85–100% of the 1997 eruption volume. We propose that the supply rate decreased in response to the diminishing pressure gradient between the shallow storage zone and a deeper magma source region. Eventually the effects of continuing magma supply and vesiculation of stored magma caused a critical pressure threshold to be exceeded, triggering the 2008 eruption. A similar pattern of initially rapid inflation followed by oscillatory but generally slowing inflation was observed prior to the 1997 eruption. In both cases, withdrawal of magma during the eruptions depressurized the shallow storage zone, causing significant volcano-wide subsidence and initiating a new intereruption deformation cycle.

  3. 2014-2016 Mt. Etna Ground deformation imaged by SISTEM approach using GPS and SENTINEL-1A/1B TOPSAR data

    Science.gov (United States)

    Bonforte, Alessandro; Guglielmino, Francesco; Puglisi, Giuseppe

    2017-04-01

    In the frame of the EC FP7 MED-SUV project (call FP7 ENV.2012.6.4-2), and thanks to the GEO-GSNL initiative, GPS data and SENTINEL 1A/1B TOPSAR acquired on Mt. Etna between October 2014 and November 2016 were analyzed. The SENTINEL data were used in order to combine and integrate them with GPS, and detail the ground deformation recorded by GPS on Mt. Etna, during the last two-year's volcanic activity. The Sentinel data were processed by GAMMA software, using a spectral diversity method and a procedure able to co-register the SENTINEL pairs with extremely high precision (processing, a new software architecture based on the hypervisor virtualization technology for the x64 versions of Windows has been implemented. The DInSAR results are analysed and successively used as input for the time series analysis using the StaMPS package. On December 28, 2014 eruptive activity resumed at Mt. Etna with a fire fountain activity feeding two lava flows spreading on the eastern and south-western upper flanks of the volcano, producing evident deformation at the summit of the volcano. GPS displacements and Sentinel-1A ascending interferogram were calculated in order to image the ground deformation pattern accompanying the eruption. The ground deformation pattern has been perfectly depicted by the GPS network, mainly affecting the uppermost part of the volcano edifice, with a strong decay of the deformation, according to a very shallow and strong dyke intrusion. The Sentinel 1A SAR data, covering the similar time spanning, confirmed that most of displacements are related to the dike intrusion, and evidenced a local gravity-driven motion of the western wall of the Valle del Bove, probably related to the dike intrusion. To monitor the temporal successive evolution of ground deformation, we performed an A-DInSAR SENTINEL analysis using the Small BAseline Subset (SBAS) approach included with the StaMPS processing package. The April 2015-December 2015, SBAS Time series, shown a volcano

  4. Caldera unrest driven by CO2-induced drying of the deep hydrothermal system.

    Science.gov (United States)

    Moretti, R; Troise, C; Sarno, F; De Natale, G

    2018-05-29

    Interpreting volcanic unrest is a highly challenging and non-unique problem at calderas, since large hydrothermal systems may either hide or amplify the dynamics of buried magma(s). Here we use the exceptional ground displacement and geochemical datasets from the actively degassing Campi Flegrei caldera (Southern Italy) to show that ambiguities disappear when the thermal evolution of the deep hydrothermal system is accurately tracked. By using temperatures from the CO 2 -CH 4 exchange of 13 C and thermodynamic analysis of gas ascending in the crust, we demonstrate that after the last 1982-84 crisis the deep hydrothermal system evolved through supercritical conditions under the continuous isenthalpic inflow of hot CO 2 -rich gases released from the deep (~8 km) magma reservoir of regional size. This resulted in the drying of the base of the hot hydrothermal system, no more buffered along the liquid-vapour equilibrium, and excludes any shallow arrival of new magma, whose abundant steam degassing due to decompression would have restored liquid-vapour equilibrium. The consequent CO 2 -infiltration and progressive heating of the surrounding deforming rock volume cause the build-up of pore pressure in aquifers, and generate the striking temporal symmetry that characterizes the ongoing uplift and the post-1984 subsidence, both originated by the same but reversed deformation mechanism.

  5. The role of thermo-rheological properties of the crust beneath Ischia Island (Southern Italy) in the modulation of the ground deformation pattern

    Science.gov (United States)

    Castaldo, R.; Gola, G.; Santilano, A.; De Novellis, V.; Pepe, S.; Manzo, M.; Manzella, A.; Tizzani, P.

    2017-09-01

    In this paper we develop a model of the ground deformation behaviour occurred at Ischia Island (Southern Italy) in the 1992-2010 time period. The model is employed to investigate the forces and physical parameters of the crust controlling the subsidence of the Island. To this aim, we integrate and homogenize in a Finite Element (FE) environment a large amount of data derived from several and different observation techniques (i.e., geological, geophysical and remote sensing). In detail, the main steps of the multiphysics model are: (i) the generation of a 3D geological model of the crust beneath the Island by merging the available geological and geophysical information; (ii) the optimization of a 3D thermal model by exploiting the thermal measurements available in literature; (iii) the definition of the 3D Brittle/Ductile transition by using the temperature distribution of the crust and the physical information of the rocks; (iv) the optimization of the ground deformation velocity model (that takes into account the rheological stratification) by considering the spatial and temporal information detected via satellite multi-orbit C-Band SAR (Synthetic Aperture Radar) measurements acquired during the 1992-2010 time period. The achieved results allow investigating the physical process responsible for the observed ground deformation pattern. In particular, they reveal how the rheology modulates the spatial and temporal evolution of the long-term subsidence phenomenon, highlighting a coupling effect of the viscosities of the rocks and the gravitational loading of the volcano edifice. Moreover, the achieved results provide a very detailed and realistic velocity field image of the subsurface crust of the Ischia Island Volcano.

  6. Ground deformation monitoring using RADARSAT-2 DInSAR-MSBAS at the Aquistore CO2 storage site in Saskatchewan (Canada)

    OpenAIRE

    Czarnogorska, M.; Samsonov, S.; White, D.

    2014-01-01

    The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in s...

  7. Monitoring Ground Deformation of Subway Area during the Construction Based on the Method of Multi-Temporal Coherent Targets Analysis

    Science.gov (United States)

    Zhang, L.; Wu, J.; Zhao, J.; Yuan, M.

    2018-04-01

    Multi-temporal coherent targets analysis is a high-precision and high-spatial-resolution monitoring method for urban surface deformation based on Differential Synthetic Aperture Radar (DInSAR), and has been successfully applied to measure land subsidence, landslide and strain accumulation caused by fault movement and so on. In this paper, the multi-temporal coherent targets analysis is used to study the settlement of subway area during the period of subway construction. The eastern extension of Shanghai Metro Line. 2 is taking as an example to study the subway settlement during the construction period. The eastern extension of Shanghai Metro Line. 2 starts from Longyang Road and ends at Pudong airport. Its length is 29.9 kilometers from east to west and it is a key transportation line to the Pudong Airport. 17 PalSAR images during 2007 and 2010 are applied to analyze and invert the settlement of the buildings nearby the subway based on the multi-temporal coherent targets analysis. But there are three significant deformation areas nearby the Line 2 between 2007 and 2010, with maximum subsidence rate up to 30 mm/y in LOS. The settlement near the Longyang Road station and Chuansha Town are both caused by newly construction and city expansion. The deformation of the coastal dikes suffer from heavy settlement and the rate is up to -30 mm/y. In general, the area close to the subway line is relatively stable during the construction period.

  8. The Development and Delivery of On-Demand RADARSAT Constellation Mission Ground Deformation Products Based on Advanced Insar Technology

    Science.gov (United States)

    Samsonov, S. V.; Feng, W.

    2017-12-01

    InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.

  9. Effect of hydrostatic pressure in the ground state on the perturbed elastic deformable bodies in first post-Newtonian approximation

    International Nuclear Information System (INIS)

    Song Guoxuan

    2009-01-01

    Based on the dynamical equations for a nonrotating elastic deformable astronomical body in the first post-Newtonian approximation of Einstein's theory of gravity, we re-examined the boundary(junction) conditions and have proven that a term, which is missing in the customary boundary(junction) conditions, is found. This term is induced by the existence of initial equilibrium hydrostatic pressure. A physical explanation of this term is given in the Newtonian approximation as well. By using the correcting boundary conditions the relation of the free spherically symmetrical radial oscillation frequency of a nonrotating homogeneously and isotropically elastic sphere with constant density is derived.

  10. Learning about Hydrothermal Volcanic Activity by Modeling Induced Geophysical Changes

    Directory of Open Access Journals (Sweden)

    Gilda M. Currenti

    2017-05-01

    Full Text Available Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical, which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e., deformation, gravity, and magnetic fields to hydrothermal activity on the basis of a sound geological framework (e.g., distribution and pathways of the flows, the presence of fractured zones, caprock. A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii the elastostatic equation for the deformation field and (iii the Poisson's equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that, being above the accuracies of

  11. Argentine hydrothermal panorama

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    An attempt is made to give a realistic review of Argentine thermal waters. The topics discussed are the characteristics of the hydrothermal resources, classification according to their mineral content, hydrothermal flora and fauna, uses of hydrothermal resources, hydrothermal regions of Argentina, and meteorology and climate. A tabulation is presented of the principal thermal waters. (JSR)

  12. The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio

    2016-08-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  13. Contention between supply of hydrothermal fluid and conduit obstruction: inferences from numerical simulations

    Science.gov (United States)

    Tanaka, Ryo; Hashimoto, Takeshi; Matsushima, Nobuo; Ishido, Tsuneo

    2018-05-01

    We investigate a volcanic hydrothermal system using numerical simulations, focusing on change in crater temperature. Both increases and decreases in crater temperature have been observed before phreatic eruptions. We follow the system's response for up to a decade after hydrothermal fluid flux from the deep part of the system is increased and permeability is reduced at a certain depth in a conduit. Our numerical simulations demonstrate that: (1) changes in crater temperature are controlled by the magnitude of the increase in hydrothermal fluid flux and the degree of permeability reduction; (2) significant increases in hydrothermal flux with decreases in permeability induce substantial pressure changes in shallow depths in the edifice and decreases in crater temperature; (3) the location of maximum pressure change differs between the mechanisms. The results of this study imply that it is difficult to predict eruptions by crater temperature change alone. One should be as wary of large eruptions when crater temperature decreases as when crater temperature increases. It is possible to clarify the implications of changes in crater temperature with simultaneous observation of ground deformation.

  14. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  15. Mass transfer processes in a post eruption hydrothermal system: Parameterisation of microgravity changes at Te Maari craters, New Zealand

    Science.gov (United States)

    Miller, Craig A.; Currenti, Gilda; Hamling, Ian; Williams-Jones, Glyn

    2018-05-01

    Fluid transfer and ground deformation at hydrothermal systems occur both as a precursor to, or as a result of, an eruption. Typically studies focus on pre-eruption changes to understand the likelihood of unrest leading to eruption; however, monitoring post-eruption changes is important for tracking the return of the system towards background activity. Here we describe processes occurring in a hydrothermal system following the 2012 eruption of Upper Te Maari crater on Mt Tongariro, New Zealand, from observations of microgravity change and deformation. Our aim is to assess the post-eruption recovery of the system, to provide a baseline for long-term monitoring. Residual microgravity anomalies of up to 92 ± 11 μGal per year are accompanied by up to 0.037 ± 0.01 m subsidence. We model microgravity changes using analytic solutions to determine the most likely geometry and source location. A multiobjective inversion tests whether the gravity change models are consistent with the observed deformation. We conclude that the source of subsidence is separate from the location of mass addition. From this unusual combination of observations, we develop a conceptual model of fluid transfer within a condensate layer, occurring in response to eruption-driven pressure changes. We find that depressurisation drives the evacuation of pore fluid, either exiting the system completely as vapour through newly created vents and fumaroles, or migrating to shallower levels where it accumulates in empty pore space, resulting in positive gravity changes. Evacuated pores then collapse, causing subsidence. In addition we find that significant mass addition occurs from influx of meteoric fluids through the fractured hydrothermal seal. Long-term combined microgravity and deformation monitoring will allow us to track the resealing and re-pressurisation of the hydrothermal system and assess what hazard it presents to thousands of hikers who annually traverse the volcano, within 2 km of the

  16. The unrest of S. Miguel volcano (El Salvador, CA): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, A.; Hernandez, D.; Gutiérrez, E.; Handal, L.; Polío, C.; Rapisarda, S.; Scarlato, P.

    2015-10-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of S. Miguel, erupted suddenly with explosive force, forming a more than 9 km high column and projecting ballistic projectiles as far as 3 km away. Pyroclastic Density Currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multi-parametric mobile network comprising seismic, geodetic and geochemical sensors, designed to cover all the volcano flanks from the lowest to the highest possible altitudes, and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were co-located into multi-parametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  17. Integration of Ground-based Magnetics and Vertical Deformation Measurements for the Characterization of the San Andreas Fault at the Durmid Hill Region, California

    Science.gov (United States)

    Alvarez, K.; Polet, J.

    2017-12-01

    The Durmid Hill region is located near the termination of the San Andreas Fault (SAF) at Bombay Beach. This section of the fault has not experienced any major earthquakes for at least the last three centuries. During a 6 year study, Sylvester et al. (1993) collected vertical deformation measurements at Durmid Hill from monuments they installed along a 2.37 km leveling line normal to the SAF. They concluded that interseismic processes account for most of the growth at Durmid Hill and estimated more than 9 mm of uplift within the leveling line, with uniform tilt at distances greater than 500 m from the fault. Langenheim et al. (2014) created a model based on ground-based magnetic data that they collected in the same area and found a complex magnetic structure with a broad band magnetic anomaly present on the northeast side of SAF and a prominent magnetic high along the main mapped trace of the SAF. A primary objective of our study is to reoccupy the leveling line from Sylvester et al. (1993), across the SAF at Durmid Hill. Additionally, we will utilize subsurface geophysical techniques to enhance our understanding of the fault geometry along the southernmost end of the SAF and its relationship to the aseismic deformation at Durmid Hill. Elevation profiles are measured using Nikon Nivo 5C total stations and magnetic field intensity measurements are made by a GSM-19TGW v7.0 walking magnetometer, with a VLF (Very Low requency) attachment. We will present preliminary results from data sets gathered in March and May of 2017, as well as additional surveys that will be carried out in October and November. The preliminary maps produced from the results of the first magnetic surveys show two significant and distinct magnetic anomalies consistent with earlier studies. Initial monument elevation comparisons could only be made for monuments located at the north-eastern end of the leveling line, at a distance of about 1.5 km behind Bat Cave Buttes. There appear to be sections of

  18. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the

  19. Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion

    Science.gov (United States)

    Kenda, Balthasar; Lognonné, Philippe; Spiga, Aymeric; Kawamura, Taichi; Kedar, Sharon; Banerdt, William Bruce; Lorenz, Ralph; Banfield, Don; Golombek, Matthew

    2017-10-01

    We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10-100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells' theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10-20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.

  20. Activation of the SIGRIS monitoring system for ground deformation mapping during the Emilia 2012 seismic sequence, using COSMO-SkyMed InSAR data

    Directory of Open Access Journals (Sweden)

    Stefano Salvi

    2012-10-01

    designed to provide the DPC with value-added information products in the different phases of the seismic cycle. During earthquake emergencies, its goal is to rapidly provide decision-support products, such as validated ground-displacement maps and seismic source models. This study reports the details of the activation of the SIGRIS system in the case of the Emilia sequence. It provides a description of the COSMO-SkyMed datasets and processing procedures, as well as selected interferometric results for the coseismic and post-seismic ground deformation. […

  1. q-Deformed Kink solutions

    International Nuclear Information System (INIS)

    Lima, A.F. de

    2003-01-01

    The q-deformed kink of the λφ 4 -model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. (author)

  2. Ground Deformation and Sources geometry of the 2016 Central Italy Earthquake Sequence Investigated through Analytical and Numerical Modeling of DInSAR Measurements and Structural-Geological Data

    Science.gov (United States)

    Solaro, G.; Bonano, M.; Boncio, P.; Brozzetti, F.; Castaldo, R.; Casu, F.; Cirillo, D.; Cheloni, D.; De Luca, C.; De Nardis, R.; De Novellis, V.; Ferrarini, F.; Lanari, R.; Lavecchia, G.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; Tizzani, P.; Zinno, I.

    2017-12-01

    The 2016 Central Italy seismic sequence started on 24th August with a MW 6.1 event, where the intra-Apennine WSW-dipping Vettore-Gorzano extensional fault system released a destructive earthquake, causing 300 casualties and extensive damage to the town of Amatrice and surroundings. We generated several interferograms by using ALOS and Sentinel 1-A and B constellation data acquired on both ascending and descending orbits to show that most displacement is characterized by two main subsiding lobes of about 20 cm on the fault hanging-wall. By inverting the generated interferograms, following the Okada analytical approach, the modelling results account for two sources related to main shock and more energetic aftershock. Through Finite Element numerical modelling that jointly exploits DInSAR deformation measurements and structural-geological data, we reconstruct the 3D source of the Amatrice 2016 normal fault earthquake which well fit the main shock. The inversion shows that the co-seismic displacement area was partitioned on two distinct en echelon fault planes, which at the main event hypocentral depth (8 km) merge in one single WSW-dipping surface. Slip peaks were higher along the southern half of the Vettore fault, lower along the northern half of Gorzano fault and null in the relay zone between the two faults; field evidence of co-seismic surface rupture are coherent with the reconstructed scenario. The following seismic sequence was characterized by numerous aftershocks located southeast and northwest of the epicenter which decreased in frequency and magnitude until the end of October, when a MW 5.9 event occurred on 26th October about 25 km to the NW of the previous mainshock. Then, on 30th October, a third large event of magnitude MW 6.5 nucleated below the town of Norcia, striking the area between the two preceding events and filling the gap between the previous ruptures. Also in this case, we exploit a large dataset of DInSAR and GPS measurements to investigate

  3. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  4. THE STRESS-STRAIN STATE OF AN INFINITELY LONG ELASTIC ARRAYS OF DIFFERENT WIDTHS AND LIMITED THICKNESS ON THE HARD GROUND WHEN THEY HAVE FLAT DEFORMATION

    Directory of Open Access Journals (Sweden)

    I. K. Badalakha

    2009-12-01

    Full Text Available The article presents the results of solving several problems of a flat deformation of elastic infinitely long massifs of different width and limited thickness. Various cases of conditions at the massif/base contact. The relationships between stressed and strained states previously suggested by the author, which differ from the generalized Hooke’s law, are used in the solutions.

  5. Meteorite Impact "Earthquake" Features (Rock Liquefaction, Surface Wave Deformations, Seismites) from Ground Penetrating Radar (GPR) and Geoelectric Complex Resistivity/Induced Polarization (IP) Measurements, Chiemgau (Alpine Foreland, Southeast Germany)

    Science.gov (United States)

    Ernstson, K.; Poßekel, J.

    2017-12-01

    Densely spaced GPR and complex resistivity measurements on a 30,000 square meters site in a region of enigmatic sinkhole occurrences in unconsolidated Quaternary sediments have featured unexpected and highlighting results from both a meteorite impact research and an engineering geology point of view. The GPR measurements and a complex resistivity/IP electrical imaging revealed extended subrosion depressions related with a uniformly but in various degrees of intensity deformed loamy and gravelly ground down to at least 10 m depth. Two principle observations could be made from both the GPR high-resolution measurements and the more integrating resistivity and IP soundings with both petrophysical evidences in good complement. Subrosion can be shown to be the result of prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Funnel-shaped structures with diameters up to 25 m near the surface and reaching down to the floating ground water level at 10 m depth were measured. GPR radargrams could trace prominent gravelly-material transport bottom-up within the funnels. Seen in both GPR tomography and resistivity/IP sections more or less the whole investigated area is overprinted by wavy deformations of the unconsolidated sediments with wavelengths of the order of 5 - 10 m and amplitudes up to half a meter, likewise down to 10 m depth. Substantial earthquakes are not known in this region. Hence, the observed heavy underground disorder is considered the result of the prominent earthquake shattering that must have occurred during the Holocene (Bronze Age/Celtic era) Chiemgau meteorite impact event that produced a 60 km x 30 km sized crater strewn field directly hosting the investigated site. Depending on depth and size of floating aquifers local concentrations of rock liquefaction and seismic surface waves (probably LOVE waves) to produce the wavy deformations could develop, when the big

  6. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  7. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  8. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July-August 2008

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel

    2010-01-01

    A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ∼3 km below sea level (bsl), which began immediately after Okmok's previous eruption in 1997. In this paper we use data from several radar satellites and advanced interferometric synthetic aperture radar (InSAR) techniques to produce a suite of 2008 coeruption deformation maps. Most of the surface deformation that occurred during the eruption is explained by deflation of a Mogi-type source located beneath the center of the caldera and 2–3 km bsl, i.e., essentially the same source that inflated prior to the eruption. During the eruption the reservoir deflated at a rate that decreased exponentially with time with a 1/e time constant of ∼13 days. We envision a sponge-like network of interconnected fractures and melt bodies that in aggregate constitute a complex magma storage zone beneath Okmok caldera. The rate at which the reservoir deflates during an eruption may be controlled by the diminishing pressure difference between the reservoir and surface. A similar mechanism might explain the tendency for reservoir inflation to slow as an eruption approaches until the pressure difference between a deep magma production zone and the reservoir is great enough to drive an intrusion or eruption along the caldera ring-fracture system.

  9. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  10. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  11. Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system?

    Science.gov (United States)

    Armaş, Iuliana; Mendes, Diana A.; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana

    2017-03-01

    The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992-2010 from ERS-1/-2 and ENVISAT, and 2011-2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements.

  12. An Overview of Thermal Measurements (IR) at the Summit of Piton de la Fournaise Active Volcano and Inferences on the Structure and Dynamics of its Hydrothermal System

    Science.gov (United States)

    Fontaine, F.; Peltier, A.; Kowalski, P.; Di Muro, A.; Villeneuve, N.; Ferrazzini, V.; Staudacher, T.

    2017-12-01

    Piton de la Fournaise, located on La Réunion Island in the South East Indian Ocean, is one of the most active basaltic volcanoes (hotspot) of the world with a mean eruption frequency 100×106 m3) on the island, led to the formation of a 400-m-deep, 1000-m-large, funnel-shaped summit caldera. Since then, the floor and inner flanks of this summit depression hosting hot grounds and active fumaroles, are monitored using an infra-red camera device permanently installed on the caldera rim.This thermal dataset constitutes the first opportunity to understand the structure and dynamics of the hydrothermal system and its ability to relay deep-seated heat and mass perturbations. We present in this communication an overview of this thermal datasets focusing on ground/fumaroles temperature evolution during volcanic crisis and rest periods and analyzing correlations with the other permanently acquired data such as the temporal evolution of gas geochemistry (CO2, SO2, H2S), ground deformation and micro-seismic activity. We finally propose a conceptual model of fluid flow architecture within the edifice which paves the way for future quantitative models of hydrothermal heat and mass transfers.

  13. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  14. Geophysical Images of the Shallow Hydrothermal Degassing at Solfatara (Phlegrean Fields, Italy)

    Science.gov (United States)

    Byrdina, S.; Vandemeulebrouck, J.; Cardellini, C.; Chiodini, G.; Legaz, A.; Camerlynck, C.; Lebourg, T.

    2014-12-01

    We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the extension of the hydrothermal plume at a high enough resolution for a quantitative modeling. ERT inversion results show Solfatara as a globally conductive structure, with resistivity in the range 1-200 Ohmm. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of Bocca Grande suggests a significant downward flow of condensing liquid water. Comparison between spatial variations of resistivity and gas flux indicates that resistivity changes at depth are related to gas saturation and fluid temperature. These variations delineate two plume structures: a liquid-dominated conductive plume below Fangaia mud-pool and a gas-dominated plume below Bocca Grande fumarole. The geometry of the Fangaia liquid-saturated plume is also imaged by a high resolution 3-D resistivity model. In order to estimate the permeability, we propose a 2-D axis-symmetric numerical model coupling Richards's equation for fluid flow in conditions of partial saturation with the resistivity calculation as function of saturation only. Alternatively, we apply the Dupuit equation to estimate the permeability of the shallow layer. Using these two approaches, we obtain the permeability of the shallow layer below Fangaia which ranges between (2 - 4) 10-14 m 2.

  15. Geologic evolution of the Lost City Hydrothermal Field

    Science.gov (United States)

    Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.

    2016-02-01

    The Lost City Hydrothermal Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. Hydrothermal activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. Hydrothermal activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of hydrothermal flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current hydrothermal activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.

  16. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  17. New Visualization Techniques to Analyze Ultra-High Resolution Four-dimensional Surface Deformation Imagery Collected With Ground-based Tripod LiDAR

    Science.gov (United States)

    Kreylos, O.; Bawden, G. W.; Kellogg, L. H.

    2005-12-01

    We are developing a visualization application to display and interact with very large (tens of millions of points) four-dimensional point position datasets in an immersive environment such that point groups from repeated Tripod LiDAR (Light Detection And Ranging) surveys can be selected, measured, and analyzed for land surface change using 3D~interactions. Ground-based tripod or terrestrial LiDAR (T-LiDAR) can remotely collect ultra-high resolution (centimeter to subcentimeter) and accurate (± 4 mm) digital imagery of the scanned target, and at scanning rates of 2,000 (x, y, z, i) (3D~position~+ intensity) points per second over 7~million points can be collected for a given target in an hour. We developed a multiresolution point set data representation based on octrees to display large T-LiDAR point cloud datasets at the frame rates required for immersive display (between 60 Hz and 120 Hz). Data inside an observer's region of interest is shown in full detail, whereas data outside the field of view or far away from the observer is shown at reduced resolution to provide context. Using 3D input devices at the University of California Davis KeckCAVES, users can navigate large point sets, accurately select related point groups in two or more point sets by sweeping regions of space, and guide the software in deriving positional information from point groups to compute their displacements between surveys. We used this new software application in the KeckCAVES to analyze 4D T-LiDAR imagery from the June~1, 2005 Blue Bird Canyon landslide in Laguna Beach, southern California. Over 50~million (x, y, z, i) data points were collected between 10 and 21~days after the landslide to evaluate T-LiDAR as a natural hazards response tool. The visualization of the T-LiDAR scans within the immediate landslide showed minor readjustments in the weeks following the primarily landslide with no observable continued motion on the primary landslide. Recovery and demolition efforts across the

  18. Hydrothermally grown zeolite crystals

    International Nuclear Information System (INIS)

    Durrani, S.K.; Qureshi, A.H.; Hussain, M.A.; Qazi, N.K.

    2009-01-01

    The aluminium-deficient and ferrosilicate zeolite-type materials were synthesized by hydrothermal process at 150-170 degree C for various periods of time from the mixtures containing colloidal reactive silica, sodium aluminate, sodium hydroxide, iron nitrate and organic templates. Organic polycation templates were used as zeolite crystal shape modifiers to enhance relative growth rates. The template was almost completely removed from the zeolite specimens by calcination at 550 degree C for 8h in air. Simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) was performed to study the removal of water molecules and the amount of organic template cations occluded inside the crystal pore of zeolite framework. The 12-13% weight loss in the range of (140-560 degree C) was associated with removal of the (C/sub 3/H/sub 7/)/sub 4/ N+ cation and water molecules. X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) techniques were employed to study the structure, morphology and surface features of hydrothermally grown aluminium-deficient and ferrosilicate zeolite-type crystals. In order to elucidate the mode of zeolite crystallization the crystallinity and unit cell parameters of the materials were determined by XRD, which are the function of Al and Fe contents of zeolites. (author)

  19. Hydrothermal effects on montmorillonite

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.

    1988-06-01

    Hydrothermal effects on montmorillonite clay are usually taken to have the form of conversion of this clay mineral to other species, such as illite, disregarding microstructural alteration and cementation caused by precipitation of silica and other compounds. The report is focussed on identification of the primary processes that are involved in such alteration, the release of silica and the microstructural changes associated with heating being of major interest. In the first test phase, Na montmorillonite in distilled water was investigated by XRD, rheology tests and electron microscopy after heating to 60-225 0 C for 0.01 to 1 year. The preliminary conclusions are that heating produces contraction of the particle network to form dense 'branches', the effect being most obvious at the highest temperature but of significance even at 60-100 0 C. Release of substantial amounts of silica gas been documented for temperatures exceeding 150 0 and precipitation of silica was observed on cooling after the hydrothermal testing under the closed conditions that prevailed throughout the tests. The precipitates, which appeared to be amorphous and probably consisted of hydrous silica gels, were concluded to have increased the mechanical strength and caused some brittleness, particularly of the dense clays. The nature of the silica release, which is assumed to be associated with beidellitization, may be closely related to an unstable state of a certain fraction of tetrahedral silica at heat-inducted transfer between two different crystal modes of montmorillonite. (orig.)

  20. Hydrothermal conditions around a radioactive waste repository

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1981-12-01

    Numerical solutions for the hydrothermal conditions around a hard rock repository for nuclear fuel waste are presented. The objective of the present investigation is to illustrate in principle the effect of heat released from a hypothetical radioactive waste repository with regard to anisotropy in the rock permeability. Permeability and porosity are assumed to be constant or to decrease exponentially with depth. The hypothetical repository is situated below a horizontal ground surface or below the crest of a hill, and it is assumed that the water table follows the topography. Major interest in the analysis is directed towards the influence of anisotropy in the permeability on the flow patterns and travel times for water particles, being traced from the repository to the ground surface. The presented results show that anisotropy in the permeability may have a significant influence on the flow conditions around the repository and subsequently also on the travel times from the repository. (Authors)

  1. Geochemical characterisation of Taal volcano-hydrothermal system and temporal evolution during continued phases of unrest (1991-2017)

    Science.gov (United States)

    Maussen, Katharine; Villacorte, Edgardo; Rebadulla, Ryan R.; Maximo, Raymond Patrick; Debaille, Vinciane; Bornas, Ma. Antonia; Bernard, Alain

    2018-02-01

    Taal volcano (Luzon Island, Philippines) has last erupted in 1977 but has known some periods of increased activity, characterised by seismic swarms, ground deformation, increased carbon dioxide flux and in some cases temperature anomalies and the opening of fissures. We studied major, trace element and sulphur and strontium isotopic composition of Taal lake waters and hot springs over a period of 25 years to investigate the geochemical evolution of Taal volcano's hydrothermal system and its response to volcanic unrest. Long-term evolution of Main Crater Lake (MCL) composition shows a slow but consistent decrease of acidity, SO4, Mg, Fe and Al concentrations and a trend from light to heavy sulphate, consistent with a general decrease of volcanic gases dissolving in the hydrothermal system. Na, K and Cl concentrations remain constant indicating a non-volcanic origin for these elements. Sulphate and strontium isotopic data suggest this neutral chloride-rich component represents input of geothermal water into Taal hydrothermal system. A significant deviation from the long-term baseline can be seen in two samples from 1995. That year, pH dropped from 2.6 to 2.2, F, Si and Fe concentrations increased and Na, K and Cl concentrations decreased. Sulphate was depleted in 34S and temperature was 4 °C above baseline level at the time of sampling. We attribute these changes to the shallow intrusion of a degassing magma body during the unrest in 1991-1994. More recent unrest periods have not caused significant changes in the geochemistry of Taal hydrothermal waters and are therefore unlikely to have been triggered by shallow magma intrusion. A more likely cause for these events is thus pressurisation of the hydrothermal reservoir by increasing degassing from a stagnant magma reservoir. Our study indicates that new magmatic intrusions that might lead to the next eruption of Taal volcano are expected to change the geochemistry of MCL in the same way as in 1994-1995, with the most

  2. Nanogeochemistry of hydrothermal magnetite

    Science.gov (United States)

    Deditius, Artur P.; Reich, Martin; Simon, Adam C.; Suvorova, Alexandra; Knipping, Jaayke; Roberts, Malcolm P.; Rubanov, Sergey; Dodd, Aaron; Saunders, Martin

    2018-06-01

    Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide-apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X-Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3-2.3 wt%; CaO, bdl-0.9 wt%; MgO, 0.02-2.5 wt%; TiO2, 0.1-0.4 wt%; MnO, 0.04-0.2 wt%; Na2O, bdl-0.4 wt%; and K2O, bdl-0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2-3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.

  3. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  4. Graphene ground states

    Science.gov (United States)

    Friedrich, Manuel; Stefanelli, Ulisse

    2018-06-01

    Graphene is locally two-dimensional but not flat. Nanoscale ripples appear in suspended samples and rolling up often occurs when boundaries are not fixed. We address this variety of graphene geometries by classifying all ground-state deformations of the hexagonal lattice with respect to configurational energies including two- and three-body terms. As a consequence, we prove that all ground-state deformations are either periodic in one direction, as in the case of ripples, or rolled up, as in the case of nanotubes.

  5. Fine structure in deformed proton emitting nuclei

    International Nuclear Information System (INIS)

    Sonzogni, A. A.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Carpenter, M. P.; Ressler, J. J.; Schwartz, J.; Uusitalo, J.; Walters, W. B.

    1999-01-01

    In a recent experiment to study the proton radioactivity of the highly deformed 131 Eu nucleus, two proton lines were detected. The higher energy one was assigned to the ground-state to ground-state decay, while the lower energy, to the ground-state to the 2 + state decay. This constitutes the first observation of fine structure in proton radioactivity. With these four measured quantities, proton energies, half-life and branching ratio, it is possible to determine the Nilsson configuration of the ground state of the proton emitting nucleus as well as the 2 + energy and nuclear deformation of the daughter nucleus. These results will be presented and discussed

  6. Monitoring Volcano Deformation in the Northernmost Andes with ALOS InSAR Time-Series

    Science.gov (United States)

    Morales Rivera, A. M.; Amelung, F.

    2014-12-01

    Satellite-based Interferometric Synthetic Aperture Radar (InSAR) is well known to be used as a volcano monitoring tool, providing the opportunity to conduct local and regional surveys to detect and measure volcanic deformation. The signals detected by InSAR on volcanoes can be related to various phenomena, such as volume changes in magmatic reservoirs, compaction of recent deposits, changes in hydrothermal activity, and flank instability. The InSAR time-series method has well documented examples of these phenomena, including precursory inflation of magma reservoirs months prior to volcanic eruptions, proving its potential for early warning systems. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA), which acquired a global L-band data set of nearly 20 acquisitions during 2007-2011, to make an InSAR time-series analysis using the Small Baseline method (SBAS). Our analysis covers all of the volcanoes in Colombia, Ecuador, and Peru that are cataloged by the Global Volcanism Program. We present results showing time-dependent ground deformation on an near the volcanoes, and present kinematic models to constrain the characteristics of the magmatic sources for the cases in which the deformation is likely related to changes in magma reservoir pressurization.

  7. InSAR analysis for detecting the route of hydrothermal fluid to the surface during the 2015 phreatic eruption of Hakone Volcano, Japan

    Science.gov (United States)

    Doke, Ryosuke; Harada, Masatake; Mannen, Kazutaka; Itadera, Kazuhiro; Takenaka, Jun

    2018-04-01

    Although the 2015 Hakone Volcano eruption was a small-scale phreatic eruption with a discharged mass of only about 100 tons, interferometric synthetic aperture radar successfully detected surface deformations related to the eruption. Inversion model of the underground hydrothermal system based on measured ground displacements by ALOS-2/PALSAR-2 images showed that a crack opened at an elevation of about 530-830 m, probably at the time of the eruption. A geomorphological analysis detected several old NW-SE trending fissures, and the open crack was located just beneath one of the fissures. Thus, the crack that opened during the 2015 eruption could have been a preexisting crack that formed during a more voluminous hydrothermal eruption. In addition, the inversion model implies that a sill deflation occurred at an elevation of about 225 m, probably at the time of the eruption. The deflation of sill-like body represents a preexisting hydrothermal reservoir at an elevation of 100-400 m, which intruded fluid in the open crack prior to eruption. The volume changes of the open crack and the sill were calculated to be 1.14 × 105 m3 (inflation) and 0.49 × 105 m3 (deflation), respectively. A very local swelling (about 200 m in diameter) was also detected at the eruption center 2 months before the eruption. The local swelling, whose rate in satellite line-of-sight was 0.7-0.9 cm/day during May 2015 and declined in June, had been monitored until the time of the eruption, when its uplift halted. This was modeled as a point pressure source at an elevation of about 900 m (at a depth of about 80-90 m from the ground surface) and is considered to be a minor hydrothermal reservoir just beneath the fumarolic field. Our analysis shows that the northernmost tip of the open crack reached within 200 m of the surface. Thus, it is reasonable to assume that the hydrothermal fluid in the open crack found a way to the surface and formed the eruption.[Figure not available: see fulltext.

  8. Hydrothermal Growth of Polyscale Crystals

    Science.gov (United States)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  9. Analysis of recent surface deformation at Ischia Island Volcano (South Italy) via multi-platform monitoring systems

    Science.gov (United States)

    Manzo, Mariarosaria; De Martino, Prospero; Castaldo, Raffaele; De Luca, Claudio; Dolce, Mario; Scarpato, Giovanni; Tizzani, Pietro; Zinno, Ivana; Lanari, Riccardo

    2017-04-01

    Ischia Island is a densely populated volcanic area located in the North-Western sector of the Gulf of Napoli (South Italy), whose activity is characterized by eruptions (the last one occurred in 1302 A.D.), earthquakes (the most disastrous ones occurred in 1881 and in 1883), fumarolic-hydrothermal manifestations and ground deformation. In this work we carry out the surface deformation time-series analysis occurring at the Island by jointly exploiting data collected via two different monitoring systems. In particular, we take advantage from the large amount of periodic and continuous geodetic measurements collected by the GPS (campaign and permanent) stations deployed on the Island and belonging to the INGV-OV monitoring network. Moreover, we benefit from the large, free and open archive of C-band SAR data acquired over the Island by the Sentinel-1 constellation of the Copernicus Program, and processed via the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS) algorithm [Berardino et al., 2002]. We focus on the 2014-2017 time period to analyze the recent surface deformation phenomena occurring on the Island, thus extending a previous study, aimed at investigating the temporal evolution of the ground displacements affecting the Island and limited to the 1992-2003 time interval [Manzo et al., 2006]. The performed integrated analysis provides relevant spatial and temporal information on the Island surface deformation pattern. In particular, it reveals a rather complex deformative scenario, where localized phenomena overlap/interact with a spatially extended deformation pattern that involves many Island sectors, with no evidence of significant uplift phenomena. Moreover, it shows a good agreement and consistency between the different kinds of data, thus providing a clear picture of the recent dynamics at Ischia Island that can be profitably exploited to deeply investigate the physical processes behind the observed

  10. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  11. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  12. Hydrothermal systems on Mars: an assessment of present evidence

    Science.gov (United States)

    Farmer, J. D.

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  13. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  14. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  15. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  16. Bunionette deformity.

    Science.gov (United States)

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  17. COSMO-SkyMed sensor constellation and GPS data to study the source responsible of ground deformation beneath the urban area of Naples (Southern Italy) in 2012-2013.

    Science.gov (United States)

    Pepe, Susi

    2016-04-01

    To understand uplift phenomenon occurred during the April 2012 - January 2013 time interval at Campi Flegrei caldera, we exploited the displacement time series obtained by processing 90 SAR images acquired from the COSMO-SkyMed sensor constellation along ascending orbits via the well-known DInSAR algorithm referred to as SBAS algorithm, and the measurements provided by 14 continuous GPS stations deployed within the caldera and belonging to the permanent INGV-OV monitoring network. In particular, the caldera has shown a rapid uplift of about 6 cm with a peak rate of about 3 cm/month in December 2012. This event led the Italian Civil Protection to raise the alert level of the volcano from green to yellow. Using a novel geodetic inversion technique we imaged the kinematics of the intrusion of a magmatic sill beneath the town of Pozzuoli at a depth of about 3100 m. The retrieved kinematics was then used as input to infer the dynamics of the sill intrusion using a recently developed numerical model. The best fit obtained by non-linear inverse approach that consider a time-varying deformation field is a penny-shaped source located at a depth of 3100 m. To study the detail of the intrusion process we have applied a geodetic imaging technique to determine the spatial and temporal kinematics of the ground deformation source in the selected period. The retrieved temporal pattern of the source geometry reflects that of a growing sill that, at the end of the considered period, has a roughly elliptical geometry with an extension of about 6 km in the EW direction and about 4 km in the NS one. The maximum aperture of the sill is of about 30 cm at its center. To understand the dynamics of this phenomenon we used a numerical model of the emplacement of a magmatic sill, to fit the retrieved geometry. The parameters to be determined are: the average magma viscosity, the amount of magma already present in the sill before the 2012-2013 episode and the magma injection rate. Results show

  18. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  19. Hydrothermal precipitation of artificial violarite

    DEFF Research Database (Denmark)

    Jørgensen, W. H.; Toftlund, H.; Warner, T. E.

    2012-01-01

    The nonstoichiometric nickel-ore mineral, violarite, (Ni,Fe)3S4 was prepared as a phase-pure fine powder by a comparatively quick hydrothermal method from an aqueous solution of iron(II) acetate, nickel(II) acetate and DL-penicillamine in an autoclave at 130 °C for 45 h. Powder-XRD showed that th...

  20. Deformation properties of lead isotopes

    International Nuclear Information System (INIS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF 0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180 Pb and 184 Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF 0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF 0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  1. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  2. Deformed Fredkin spin chain with extensive entanglement

    Science.gov (United States)

    Salberger, Olof; Udagawa, Takuma; Zhang, Zhao; Katsura, Hosho; Klich, Israel; Korepin, Vladimir

    2017-06-01

    We introduce a new spin chain which is a deformation of the Fredkin spin chain and has a phase transition between bounded and extensive entanglement entropy scaling. In this chain, spins have a local interaction of three nearest neighbors. The Hamiltonian is frustration-free and its ground state can be described analytically as a weighted superposition of Dyck paths that depends on a deformation parameter t. In the purely spin 1/2 case, whenever t\

  3. 'Static' octupole deformation at high spin

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1985-01-01

    Rotational bands characterized by spin states of alternating parity p=(-1) I connected by enhanced E1 transitions have recently been observed in several nuclei from the Ra-Th region. They can be interpreted by means of a reflection asymmetric mean field theory. The interplay between octupole deformation and rotation is briefly discussed. For nuclei with ground state octupole deformation a transition to a reflection symmetric shape is expected around I=22. (orig.)

  4. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ferreira, Nildemar A.M.; Rumbao, Ana Carolina S. Coutinho; Lazar, Dolores R.R.; Ussui, Valter

    2009-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150°C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  5. Zinc stannate nanostructures: hydrothermal synthesis

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Dutta, Joydeep

    2011-01-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature. (topical review)

  6. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, W.K.; Ferreira, N.A.M.; Lazar, D.R.R.; Ussui, V.; Rumbao, A.C.S.

    2011-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150 deg C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  7. Vision in hydrothermal vent shrimp.

    OpenAIRE

    Chamberlain, S C

    2000-01-01

    Bresiliid shrimp from hydrothermal vents on the Mid-Atlantic Ridge have non-imaging eyes adapted for photodetection in light environments of very low intensity. Comparison of retinal structures between both vent shrimp and surface-dwelling shrimp with imaging eyes, and between juvenile and adult vent shrimp, suggests that vent shrimp have evolved from ancestors that lived in a light environment with bright cyclic lighting. Whether the vent shrimp live in swarms and have large dorsal eyes or l...

  8. Effect of hydrothermal treatment on light transmission of translucent zirconias.

    Science.gov (United States)

    Putra, Armand; Chung, Kwok-Hung; Flinn, Brian D; Kuykendall, Tuesday; Zheng, Cheng; Harada, Kosuke; Raigrodski, Ariel J

    2017-09-01

    Studies of the light transmission of translucent zirconias after hydrothermal treatment are limited. The purpose of this in vitro study was to evaluate the effect of hydrothermal treatment on the light transmission of translucent zirconias for monolithic restorations. Four commercially available zirconia products, BruxZir Anterior Solid Zirconia (BruxAnt, BA), Lava Plus High Translucency (LPHT), Katana Zirconia Super Translucent (KST), and Katana Zirconia Ultra Translucent (KUT) were assessed and 1 type of lithium disilicate, e.max Press LT (LDLT) was used as a control. Plate specimens, 20×20×1 mm (n=80) for the translucency assessment were sectioned from postsintered zirconia bulk materials and ground with a #400-grit diamond wheel and coolant. The specimens were placed under hydrothermal conditions of 134°C at 0.2 MPa (n=5 per group at 0, 5, 50, and 100 hours). Percentage of total transmittance of light (T t %) of each specimen was measured using a spectrophotometer with an integrating sphere. X-ray diffraction analyses were used to measure tetragonal-monoclinic phase transformation. Surfaces were examined by scanning electron microscopy and energy dispersive spectrometry. Data were analyzed using 2-way ANOVA followed by the Tukey test (α=.05). The T t % ranged from 6.5% to 28.3%. Group LDLT obtained significantly higher transmittance than other tested groups, whereas groups KST and KUT had significantly higher T t % than groups BA and LPHT (Phydrothermal treatment for all tested translucent zirconias and a lithium disilicate glass-ceramic control. Hydrothermal treatment had minimal effects on the translucency of translucent zirconias. The tetragonal-monoclinic phase transformation rate of translucent zirconias was found to be low, except in group LPHT. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Hydrothermal performance of catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.; Dumesic, James A.; Pagan-Torres, Yomaira J.

    2018-04-10

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  10. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    Science.gov (United States)

    Escartin, Javier

    2016-04-01

    less studied, similar hydrothermal systems are found elsewhere associated to other central volcanoes along the ridge axis (e.g., Menez Gwenn at the Mid-Atlantic Ridge and Soria Mornia or Troll Wall at the Arctic Ridges). Long-lived hydrothermal activity plays an important role in controlling the thermal structure of the lithosphere and its accretion at and near-axis, and also determining the distribution and biogeography of vent communities. Along slow-spreading segments, long-lived hydrothermal activity can be provided both by volcanic systems (e.g., Lucky Strike) and tectonic systems (oceanic detachment faults). While magmatic and hydrothermal activity is relatively well understood now in volcanic systems (e.g., Lucky Strike), tectonic systems (oceanic detachment faults) require further integrated studies to constrain the links between long-lived localization of deformation along oceanic detachment faults, hydrothermal activity, and origin and nature of off-axis heat sources animating hydrothermal circulation.

  11. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  12. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  14. rights reserved Geophysical Identification of Hydrothermally Altered ...

    African Journals Online (AJOL)

    ADOWIE PERE

    the pole to the magnetic data aided in mapping of various hydrothermally altered structures that may favour gold mineralisation. The interpretation of the aero data set has enhanced a lot of ... water serves as a concentrating, transporting and depositing agent through faults (structures) to the earth's surface. Hydrothermal ...

  15. Radiogeochemical features of hydrothermal metasomatic formations

    International Nuclear Information System (INIS)

    Plyushchev, E.V.; Ryabova, L.A.; Shatov, V.V.

    1978-01-01

    Considered are the most general peculiarities of uranium and thorium distributions in hydrothermal-metasomatic formations of three levels of substance formation: 1) in hydrothermal minerals; 2) in natural associations of these minerals (in the altered rocks, metasomatites, ores, etc.); 3) ordened series of zonally and in stage conjugated hydrothermal-metasomatic formations. Statistically stable recurrence of natural combinations of hydrothermal-metasomatic formations points out conjugation of their formation in the directed evolution in the general hydrothermal process. Series of metasomatic formations, the initial members of which are potassium metasomatites, mostly result in accumulation up to industrial concentrations of radioactive elements in final members of these formations. Development of midlow-temperature propylitic alterations in highly radiative rocks causes the same accumulation

  16. Intermetallic alloys: Deformation, mechanical and fracture behaviour

    International Nuclear Information System (INIS)

    Dogan, B.

    1988-01-01

    The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)

  17. Tectonics, hydrothermal zoning, and uranium in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Gabelman, J W

    1961-01-01

    The geological features of the Peruvian Andes are discussed in some detail. The geologic history of the Andrean tectonics was found to be virtually the same as that represented in both North and South American Cordillera. The study indicated that Andrean hydrothermal mineralization occurred intermittently but in close time relation with accompanying deformations from the late Cretaceous or early Tertiary up to the present. The mineralization cycle is discussed as it relates to several metals, particularly uranium. Uranium is believed to occupy the same several temperature--environmental positions in the Andes that it does throughout the rest of the western hemisphere Cordillera. Even though uranium is present in minor quantities in several high-to-moderate-temperature environments, the bulk of uranium present in the cycle is believed to precipitate in the subepithermal environment.

  18. Identifying bubble collapse in a hydrothermal system using hiddden Markov models

    Science.gov (United States)

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  19. Deformation properties of lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E., E-mail: saper43-7@mail.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-01-15

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron

  20. A thermoelectric cap for seafloor hydrothermal vents

    International Nuclear Information System (INIS)

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun

    2016-01-01

    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  1. Seawater bicarbonate removal during hydrothermal circulation

    Science.gov (United States)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  2. A noninvasive method for measuring the velocity of diffuse hydrothermal flow by tracking moving refractive index anomalies

    Science.gov (United States)

    Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier

    2010-10-01

    Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.

  3. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  4. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  5. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau

    Science.gov (United States)

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.

    2017-11-20

    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  6. Canny edge-based deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-07

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  7. On Grounding of Fast Ships

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Pedersen, Preben Terndrup

    1997-01-01

    The paper deals with analysis of grounding of high-speed crafts. It is the purpose to present a comprehensive mathematical model for calculation of the overall dynamic ship response during grounding. This procedure is applied to derive the motions, the time varying sectional forces and the local...... loads during grounding on plane, sloping, sandy bottoms for six different designs of fast monohull ships made from steel, aluminium or GRP sandwich materials. The results show that the effect of the hull flexibility is to reduce the overall dynamic sectional loads on the hull girder. The considered...... numerical examples also indicate that, even with impact speeds of 40 knots against a 1:10 sloping bottom, the global strength of the hull girder is not exceeded by the grounding induced loads.For the local deformation of high-speed ship hulls at the point of contact with the ground, the paper presents...

  8. Hydrothermal pretreatments of macroalgal biomass for biorefineries

    DEFF Research Database (Denmark)

    Ruiz, Héctor A.; Rodríguez-Jasso, Rosa M.; Aguedo, Mario

    2015-01-01

    in accordance with the integrated biorefineries. Furthermore, biorefinery concept requires processes that allow efficient utilization of all components of the biomass. The pretreatment step in a biorefinery is often based on hydrothermal principles of high temperatures in aqueous solution. Therefore...

  9. rights reserved Geophysical Identification of Hydrothermally Altered

    African Journals Online (AJOL)

    ADOWIE PERE

    Geophysical Identification of Hydrothermally Altered Structures That Favour .... aircraft. Total line kilometers of 36,500 were covered in the survey. Magnetic ... tie lines occur at about 2000 metres interval in the ... visual inspection of the map.

  10. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  11. An improved hydrothermal diamond anvil cell

    Science.gov (United States)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  12. Hydrothermal industrialization: direct heat development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  13. Anyons, deformed oscillator algebras and projectors

    International Nuclear Information System (INIS)

    Engquist, Johan

    2009-01-01

    We initiate an algebraic approach to the many-anyon problem based on deformed oscillator algebras. The formalism utilizes a generalization of the deformed Heisenberg algebras underlying the operator solution of the Calogero problem. We define a many-body Hamiltonian and an angular momentum operator which are relevant for a linearized analysis in the statistical parameter ν. There exists a unique ground state and, in spite of the presence of defect lines, the anyonic weight lattices are completely connected by the application of the oscillators of the algebra. This is achieved by supplementing the oscillator algebra with a certain projector algebra.

  14. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  15. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  16. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  17. GROUND SUBSIDENCE MONITORING WITH MT-InSAR AND MECHANISM INVERSION OVER XI’AN, CHINA

    Directory of Open Access Journals (Sweden)

    M. M. Peng

    2018-04-01

    Full Text Available The ancient Xi’an, China, has been suffering severe land subsidence and ground fissure hazards since the 1960s, which has affected the safety of Subways. Multi-sensor SAR data are conducted to monitor the latest complex ground deformation and its influence on subway line No.3 over Xi’an. Annual deformation rates have been retrieved to reveal the spatiotemporal evolution of ground subsidence in Xi’an city from 2013 to 2017. Meanwhile, the correlation between land subsidence and ground fissures are analyzed by retrieving the deformation differences in both sides of the fissures. Besides, the deformation along subway line No. 3 is analyzed, and the fast deformation section is quantitatively studied. Finally, a flat lying sill model with distributed contractions is implemented to model the InSAR deformation over YHZ subsidence center, which manifests that the ground deformation is mainly caused by groundwater withdrawal.

  18. Hydrothermal synthesis of cathode materials

    Science.gov (United States)

    Chen, Jiajun; Wang, Shijun; Whittingham, M. Stanley

    A number of cathodes are being considered for the next generation of lithium ion batteries to replace the expensive LiCoO 2 presently used. Besides the layered oxides, such as LiNi yMn yCo 1-2 yO 2, a leading candidate is lithium iron phosphate with the olivine structure. Although this material is inherently low cost, a manufacturing process that produces electrochemically active LiFePO 4 at a low cost is also required. Hydrothermal reactions are one such possibility. A number of pure phosphates have been prepared using this technique, including LiFePO 4, LiMnPO 4 and LiCoPO 4; this method has also successfully produced mixed metal phosphates, such as LiFe 0.33Mn 0.33Co 0.33PO 4. Ascorbic acid was found to be better than hydrazine or sugar at preventing the formation of ferric ions in aqueous media. When conductive carbons are added to the reaction medium excellent electrochemical behavior is observed.

  19. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    that nanoparticles have cylindrical shape and crystalline nature of nanoparticles was confirmed by SAED patterns. Down- conversion (DC) luminescent properties of doped NaLaF4 were also .... Figure 1 shows the XRPD patterns of undoped NaLaF4 and .... which can be assigned to the transitions from the 7F6 ground.

  20. Characterising hydrothermal fluid pathways beneath Aluto volcano, Main Ethiopian Rift, using shear wave splitting

    Science.gov (United States)

    Nowacki, Andy; Wilks, Matthew; Kendall, J.-Michael; Biggs, Juliet; Ayele, Atalay

    2018-05-01

    Geothermal resources are frequently associated with silicic calderas which show evidence of geologically-recent activity. Hence development of geothermal sites requires both an understanding of the hydrothermal system of these volcanoes, as well as the deeper magmatic processes which drive them. Here we use shear wave splitting to investigate the hydrothermal system at the silicic peralkaline volcano Aluto in the Main Ethiopian Rift, which has experienced repeated uplift and subsidence since at least 2004. We make over 370 robust observations of splitting, showing that anisotropy is confined mainly to the top ∼3 km of the volcanic edifice. We find up to 10% shear wave anisotropy (SWA) is present with a maximum centred at the geothermal reservoir. Fast shear wave orientations away from the reservoir align NNE-SSW, parallel to the present-day minimum compressive stress. Orientations on the edifice, however, are rotated NE-SW in a manner we predict from field observations of faults at the surface, providing fluid pressures are sufficient to hold two fracture sets open. These fracture sets may be due to the repeated deformation experienced at Aluto and initiated in caldera formation. We therefore attribute the observed anisotropy to aligned cracks held open by over-pressurised gas-rich fluids within and above the reservoir. This study demonstrates that shear wave splitting can be used to map the extent and style of fracturing in volcanic hydrothermal systems. It also lends support to the hypothesis that deformation at Aluto arises from variations of fluid pressures in the hydrothermal system. These constraints will be crucial for future characterisation of other volcanic and geothermal systems, in rift systems and elsewhere.

  1. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  2. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  3. Extreme hydrothermal conditions at an active plate-bounding fault

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  4. Extreme hydrothermal conditions at an active plate-bounding fault.

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  5. Deformation analysis of shallow penetration in clay

    Science.gov (United States)

    Sagaseta, C.; Whittle, A. J.; Santagata, M.

    1997-10-01

    A new method of analysis is described for estimating the deformations and strains caused by shallow undrained penetration of piles and caissons in clay. The formulation combines previous analyses for steady, deep penetration, with methods used to compute soil deformations due to near-surface ground loss, and is referred to as the Shallow Strain Path Method (SSPM). Complete analytical solutions for the velocity and strain rates are given for a planar wall, an axisymmetric, closed-ended pile and unplugged, open-ended pile geometries. In these examples, the analyses consider a single source penetrating through the soil at a constant rate, generating a family of penetrometers with rounded tips, referred to as simple wall, pile and tube geometries. Soil deformations and strains are obtained by integrating the velocity and strain rates along the particle paths.The transition from shallow to deep penetration is analysed in detail. Shallow penetration causes heave at the ground surface, while settlements occur only in a thin veneer of material adjacent to the shaft and in a bulb-shaped region around the tip. The size of this region increases with the embedment depth. Deformations inside an open-ended pile/caisson are affected significantly by details of the simple tube wall geometry.

  6. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  7. Inferences on the hydrothermal system beneath the resurgent dome in Long Valley Caldera, east-central California, USA, from recent pumping tests and geochemical sampling

    Science.gov (United States)

    Farrar, Christopher D.; Sorey, Michael L.; Roeloffs, Evelyn; Galloway, Devin L.; Howle, James F.; Jacobson, Ronald

    2003-10-01

    Quaternary volcanic unrest has provided heat for episodic hydrothermal circulation in the Long Valley caldera, including the present-day hydrothermal system, which has been active over the past 40 kyr. The most recent period of crustal unrest in this region of east-central California began around 1980 and has included periods of intense seismicity and ground deformation. Uplift totaling more than 0.7 m has been centered on the caldera's resurgent dome, and is best modeled by a near-vertical ellipsoidal source centered at depths of 6-7 km. Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7-10 km beneath the resurgent dome and a deeper source ˜15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. The Long Valley Exploration Well (LVEW), completed in 1998 on the resurgent dome, penetrates to a depth of 3 km directly above this shallower source, but bottoms in a zone of 100°C fluid with zero vertical thermal gradient. Although these results preclude extrapolations of temperatures at depths below 3 km, other information obtained from flow tests and fluid sampling at this well indicates the presence of magmatic volatiles and fault-related permeability within the metamorphic basement rocks underlying the volcanic fill. In this paper, we present recently acquired data from LVEW and compare them with information from other drill holes and thermal springs in Long Valley to delineate the likely flow paths and fluid system properties under the resurgent dome. Additional information from mineralogical assemblages in core obtained from fracture zones in LVEW documents a previous period of more vigorous and energetic fluid circulation beneath the resurgent dome. Although this system apparently died off as a result of mineral deposition and cooling (and/or deepening) of magmatic heat sources, flow testing and tidal

  8. Basin scale permeability and thermal evolution of a magmatic hydrothermal system

    Science.gov (United States)

    Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.

    2013-12-01

    Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids

  9. Hydrothermal processing of radioactive combustible waste

    International Nuclear Information System (INIS)

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-01-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO 2 and H 2 O, with 30 wt.% H 2 O 2 as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture

  10. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

    2014-01-01

    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  11. Hydrothermal processing of transuranic contaminated combustible waste

    International Nuclear Information System (INIS)

    Buelow, S.J.; Worl, L.; Harradine, D.; Padilla, D.; McInroy, R.

    2001-01-01

    Experiments at Los Alamos National Laboratory have demonstrated the usefulness of hydrothermal processing for the disposal of a wide variety of transuranic contaminated combustible wastes. This paper provides an overview of the implementation and performance of hydrothermal treatment for concentrated salt solutions, explosives, propellants, organic solvents, halogenated solvents, and laboratory trash, such as paper and plastics. Reaction conditions vary from near ambient temperatures and pressure to over 1000degC and 100 MPa pressure. Studies involving both radioactive and non-radioactive waste simulants are discussed. (author)

  12. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  13. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  14. On the octupole deformation in Ra-Th region

    International Nuclear Information System (INIS)

    Rozmej, P.; Boening, K.; Sobiczewski, A.

    1986-03-01

    The problem of the existence of a stable octupole deformation in Ra-Th region has been reinvestigated using a Nilsson single-particle potential with a newly fitted set of parameters, which reproduce the spins of the ground states of odd-A nuclei. In the energy surfaces, calculated for 222 Ra and 222 Th, the octupole deformed minima, separated by the barriers of 150 KeV and 210 keV, respectively, have been obtained. (orig.)

  15. Micrometric deformation imaging at W-Band with GBSAR

    OpenAIRE

    Martínez, Arturo; Aguasca Solé, Alberto; Lort Cuenca, Marc; Broquetas Ibars, Antoni

    2017-01-01

    The paper presents the experimental evaluation of 94 GHz CW-FM Radar that can be configured as a Ground Based SAR (Synthetic Aperture Radar) for high resolution imaging and deformation control. This system has been designed to obtain and analyze data of deformations on different types of bodies, being able to detect range changes of the order of micrometers. After indoor testing and validation measurements, several experimental results obtained in different scenarios are presented. Finall...

  16. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  17. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    Science.gov (United States)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  18. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  19. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    Science.gov (United States)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids

  20. Treatment of urban sludge by hydrothermal carbonization.

    Science.gov (United States)

    Xu, Xiwei; Jiang, Enchen

    2017-08-01

    Urban sludge was treated by Hydrothermal carbonization (HTC). The effect of hydrothermal carbonization temperature, mixing with or without catalysts on solid products yield, heavy metal contents, turbidity and COD value was evaluated. The result showed solid products yield decreased from 92.04% to 52.65% when the temperature increased from 180 to 300°C. And the Cu, Zn, and Pb contents under exchangeable states decreased and reached discharge standard. Addition of FeCl 3 or Al(OH) 3 resulted in a significant increase in the exchangeable states of Zn, Pb, Cr, and Cd and decrease in their residual states. The turbidity and COD value of hydrothermal liquid decreased from 450° to 175°, and 13 to 6.8g/L, with increasing hydrothermal temperature. Comparison with HTC, solid productivity from low-temperature pyrolysis is higher. The exchangeable states of Cu, Zn, and Cr exceeded the limiting values. Our results show HTC can facilitate transforming urban sludge into no-pollution and energy-rich products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  2. Hydrothermal synthesis, structure and characterization of new ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Hydrothermal; crystal structure; solid electrolyte; iron (III) pyrophosphate. 1. Introduction ... tion, structure and electrical conductivity and the higher values of ..... type cavity structure. Acknowledgements. The authors would like to express their thanks to DST,. New Delhi, for financial assistance under the projects.

  3. Hydrothermal synthesis of a new ethylenediammonium intercalated ...

    Indian Academy of Sciences (India)

    Unknown

    Vanadyl phosphate; hydrothermal synthesis; intercalation; single crystal ... presence of 'en'.7–15 In all these solids en molecules occur in suitable ... all the cases, the mixture was transferred to a 45 ml Teflon lined Parr acid digestion .... position cannot be fully occupied at the same time as it will lead to a P-P distance of.

  4. Valorization of Furfural Residue by Hydrothermal Carbonization

    DEFF Research Database (Denmark)

    Yue, Fen; Zhang, Jia; Pedersen, Christian Marcus

    2017-01-01

    Furfural residue (FR) is a low-cost by-product generated in the furfural production from corncobs, which is mainly composed of cellulose and lignin. In this report, hydrothermal carbonization (HTC) of deashed FR was conducted at various reaction temperatures (200, 220 and 240 °C) and reaction times...

  5. Phase Transformation of Hydrothermally Synthesized Nanoparticle ...

    African Journals Online (AJOL)

    Mild hydrothermal hydrolysis of TiCl4 produces nanorods of the rutile phase of titanium dioxide in high yield, while in the presence of organic acids (citric, acetic, D-tartaric and benzoic acids) anatase is the only product. The effect of these organic acids on the products of the hydrolysis reaction as well as the reaction kinetics ...

  6. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Science.gov (United States)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  7. Some aspects of reflection asymmetric deformations in nuclei

    International Nuclear Information System (INIS)

    Olanders, P.

    1984-10-01

    The nuclear shape in the intrinsic frame is studied using the Strutinsky method. Various potentials (Nilsson, folded Yukawa and Woods-Saxon) are used for the microscopic part, and the macroscopic part is described as a liquid drop with either a sharp or a smooth surface. Special attention is paid to the possibility of octupole deformed ground states. The consequences of octupole deformations for the rotational behaviour are investigated using the cranking model. It is particularly shown that octupole deformation may supress the backbending in some nuclei. (author)

  8. Anhydrite precipitation in seafloor hydrothermal systems

    Science.gov (United States)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  9. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  10. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  11. Microseismicity of Blawan hydrothermal complex, Bondowoso, East Java, Indonesia

    Science.gov (United States)

    Maryanto, S.

    2018-03-01

    Peak Ground Acceleration (PGA), hypocentre, and epicentre of Blawan hydrothermal complex have been analysed in order to investigate its seismicity. PGA has been determined based on Fukushima-Tanaka method and the source location of microseismic estimated using particle motion method. PGA ranged between 0.095-0.323 g and tends to be higher in the formation that containing not compacted rocks. The seismic vulnerability index region indicated that the zone with high PGA also has a high seismic vulnerability index. This was because the rocks making up these zones were inclined soft and low-density rocks. For seismic sources around the area, epicentre and hypocentre, have estimated base on seismic particle motion method of single station. The stations used in this study were mobile stations identified as BL01, BL02, BL03, BL05, BL06, BL07 and BL08. The results of the analysis particle motion obtained 44 points epicentre and the depth of the sources about 15 – 110 meters below ground surface.

  12. Organic sulfur metabolisms in hydrothermal environments.

    Science.gov (United States)

    Rogers, Karyn L; Schulte, Mitchell D

    2012-07-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. © 2012 Blackwell Publishing Ltd.

  13. Voltammetric Investigation Of Hydrothermal Iron Speciation

    Directory of Open Access Journals (Sweden)

    Charlotte eKleint

    2016-05-01

    Full Text Available Hydrothermal vent fluids are highly enriched in iron (Fe compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world`s surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE - AdCSV with salicylaldoxime (SA as the artificial ligand. Our results for total dissolved Fe (dFe in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1% and 11.8% being chemically labile. Iron binding ligand concentrations ([L] were found in µM level with strong conditional stability constants up to log K[L],Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.

  14. Hydrothermal systems in small ocean planets.

    Science.gov (United States)

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  15. Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals

    Science.gov (United States)

    Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine

    2018-06-01

    This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.

  16. Synthesis of boehmite by hydrothermal treatment used as inorganic binder for alumina powder

    International Nuclear Information System (INIS)

    Lima, M.B.; Tercini, M.B.; Yoshimura, H.N.

    2012-01-01

    Presently, due to the concerns with the environment, it has been developed studies to replace the organic binder by an inorganic binder for forming of ceramic powders, in order to avoiding the generation of polluting gases during sintering (firing). A potential alternative is the use of boehmite, produced by hydrothermal treatment on the surfaces of the alumina powder, previously ground in a ball mill using zirconia milling media to produce hydrated phases on alumina powder which are converted to boehmite. In the treated alumina powders, it was observed the formation of boehmite phase by X-ray diffraction analysis and Fourier transformed infrared (FTIR) spectroscopy, demonstrating the efficiency of boehmite formation during the hydrothermal treatment at 150°C for 3 hours.(author)

  17. Surface deformation time-series analysis at Ischia Island (South Italy) carried out via multi-platform monitoring systems

    Science.gov (United States)

    Manzo, Mariarosaria; Del Gaudio, Carlo; De Martino, Prospero; Ricco, Ciro; Tammaro, Umberto; Castaldo, Raffaele; Tizzani, Pietro; Lanari, Riccardo

    2014-05-01

    Ischia Island, located at the North-Western corner of the Gulf of Napoli (South Italy), is a volcanic area, whose state of activity is testified from eruptions (the last one occurred in 1302), earthquakes (the most disastrous in 1881 and 1883), hydrothermal manifestations and ground deformation. In this work we present the state of the art of the Ischia Island ground deformation phenomena through the joint analysis of data collected via different monitoring methodologies (leveling, GPS, and Differential SAR Interferometry) during the last twenty years. In particular, our analysis benefits from the large amount of periodic and continuous geodetic measurements collected by the 257 leveling benchmarks and the 20 (17 campaign and 3 permanent) GPS stations deployed on the island. Moreover, it takes advantage from the large archives of C-band SAR data (about 300 ascending and descending ERS-1/2 and ENVISAT images) acquired over the island since 1992 and the development of the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS). The latter, allows providing space-time information on the ground displacements measured along the radar line of sight (LOS), and thanks to the availability of multi-orbit SAR data, permits to discriminate the vertical and east-west components of the detected displacements. Our integrated analysis reveals a complex deformative scenario; in particular, it identifies a spatially extended subsidence pattern, which increases as we move to higher heights, with no evidence of any uplift phenomena. This broad effect involve the Northern, Eastern, Southern and South-Western sectors of the island where we measure velocity values not exceeding -6 mm/year; moreover, we identify a more localized phenomenon affecting the North-Western area in correspondence to the Fango zone, where velocity values up to -10 mm/year are retrieved. In addition, our study shows a migration of the Eastern sector of the island

  18. Hydrothermal Solute Flux from Ebeko Volcanic Center, Paramushir, Kuril Islands

    Science.gov (United States)

    Taran, Y.; Kalacheva, E.; Kotenko, T.; Chaplygin, I.

    2014-12-01

    Ebeko volcano on the northern part of Paramushir Island, Northern Kurils, is characterized by frequent phreatic eruptions, a strong low-temperature fumarolic activity at the summit and was the object of comprehensive volcanological and geochemical studies during the last half a century. The volcanic center is composed of several Pleistocene volcanic structures aadjacent to Ebeko and hosts a hydrothermal system with a high outflow rate of hot SO4-Cl acidic water (Upper Yurieva springs) with the current maximum temperature of ~85oC, pH 1.3 and TDS ~ 10 g/L. All discharging thermal waters are drained by the Yurieva River to the Sea of Okhotsk. The hot springs have been changing in time, generally decreasing their activity from near boiling in 1960s, with TDS ~ 20 g/L and the presence of a small steaming field at the upper part of the ~ 700 m long discharging area, to a much lower discharge rate of main vents, lower temperature and the absence of the steaming ground. The spring chemistry did not react to the Ebeko volcanic activity (14 strong phreato-magmatic events during the last 60 years).The total measured outputs of chloride and sulfur from the system last time (2006-2010) were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are higher than the fumarolic volatile output from Ebeko. The estimated discharge rate of hot (85oC) water from the system with ~ 3500 ppm of chloride is about 0.3 m3/s which is much higher than the thermal water discharge from El Chichon or Copahue volcano-hydrothermal systems and among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. We also report the chemical composition (major and ~ 60 trace elements including REE) of water from the main hot spring vents and the Yurieva river mouth.

  19. Microbial Geochemistry in Shallow-Sea Hydrothermal Systems

    Science.gov (United States)

    Amend, J. P.; Pichler, T.

    2006-12-01

    , generally present as arsenite (As^{III}) in the vent fluid, feeds local biogeochemical arsenic cycles. Thus, shallow sites are excellent hunting grounds for novel extremophiles that may gain metabolic energy by catalyzing arsenic redox reactions. Particularly the Ambitle site, where hydrothermal fluids contain up to 1,000 μg/L arsenite, has proven to be exceptional. There, the arsenic has a wide-ranging impact on micro-, meio-, and macro-fauna.

  20. Pukala intrusion, its age and connection to hydrothermal alteration in Orivesi, southwestern Finland

    Directory of Open Access Journals (Sweden)

    Matti Talikka

    2005-01-01

    Full Text Available The Pukala intrusion is situated in the Paleoproterozoic Svecofennian domain of the Fennoscandian Shield in the contact region between the Central Finland Granitoid Complex and the Tampere Belt. The acid subvolcanic intrusion, which is in contact or close to severalaltered domains, mainly consists of porphyritic granodiorite and trondhjemite. The Pukala intrusion was emplaced into volcanic sequence in an island-arc or fore-arc setting before or during the early stages of the main regional deformation phase of the Svecofennian orogeny. On the basis of the geochemical data, the Pukala intrusion is a peraluminous volcanic-arc granitoid. After crystallisation at 1896±3 Ma, multiphase deformation and metamorphismcaused alteration, recrystallisation, and orientation of the minerals, and tilted the intrusion steeply towards south. The 1851±5 Ma U-Pb age for titanite is connected to the late stages of the Svecofennian tectonometamorphic evolution of the region. Several hydrothermally altered domains are located in the felsic and intermediate metavolcanic rocks of the Tampere Belt within less than one kilometre south of the Pukala intrusion. Alteration is divided into three basic types: partial silica alteration, chlorite-sericite±silica alteration, and sericite alteration in shear zones. The first two types probably formed during the emplacement and crystallisation of the Pukala intrusion, and the third is linked to late shearing. Intense sericitisation and comb quartz bands in the contact of theintrusion and the altered domain at Kutemajärvi suggest that the hydrothermal system was driven by the Pukala intrusion.

  1. Selective formation of VO2(A) or VO2(R) polymorph by controlling the hydrothermal pressure

    International Nuclear Information System (INIS)

    Ji Shidong; Zhang Feng; Jin Ping

    2011-01-01

    Missing VO 2 (A) usually occurs during the preparation of VO 2 polymorphs. This leads to an ambiguous understanding of the transformation between VO 2 polymorphs. The calculation of the ground state energies for different VO 2 polymorphs indicated that there is only a small energy gap between VO 2 (A) and VO 2 (R), which destined that the transformation from VO 2 (A) to VO 2 (R) should be pressure sensitive. This hypothesis was verified during the synthesizing of VO 2 polymorphs by reducing V 2 O 5 with oxalic acid through hydrothermal treatment process. Selective formation of pure phase VO 2 (A) or VO 2 (R) was achieved by controlling the hydrothermal pressure through varying the filling ratio at 270 deg. C. It was found that a filling ratio over 0.5 favors the formation of pure VO 2 (R) while a reduced filling ratio to 0.4 or lower results in the formation of VO 2 (A). Based on our experiments, VO 2 (B) nanobelts were always first formed and then it transformed to VO 2 (A) by assembling process at increased temperature or extended reaction time. Under further higher pressure, the VO 2 (A) transformed spontaneously to VO 2 (R) initialized from the volume shrinkage due to the formation of denser VO 2 (R). - Graphical abstract: Selective formation of VO 2 (A) or VO 2 (R) could be achieved by controlling the system pressure through varying the filling ratio during hydrothermal treatment. Highlights: → Selective formation of VO 2 polymorphs by controlling hydrothermal pressure. → Ground state energy characteristics were revealed for the first time. → Phase transformation mechanism was clearly elucidated.

  2. Practical Calculation of Thermal Deformation and Manufacture Error uin Surface Grinding

    Institute of Scientific and Technical Information of China (English)

    周里群; 李玉平

    2002-01-01

    The paper submits a method to calculate thermal deformation and manufacture error in surface grinding.The author established a simplified temperature field model.and derived the thermal deformaiton of the ground workpiece,It is found that there exists not only a upwarp thermal deformation,but also a parallel expansion thermal deformation.A upwarp thermal deformation causes a concave shape error on the profile of the workpiece,and a parallel expansion thermal deformation causes a dimension error in height.The calculations of examples are given and compared with presented experiment data.

  3. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  4. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  5. Ground Pollution Science

    International Nuclear Information System (INIS)

    Oh, Jong Min; Bae, Jae Geun

    1997-08-01

    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  6. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  7. Phreatic eruptions and deformation of Ioto Island (Iwo-jima), Japan, triggered by deep magma injection

    Science.gov (United States)

    Ueda, Hideki; Nagai, Masashi; Tanada, Toshikazu

    2018-03-01

    On Ioto Island (Iwo-jima), 44 phreatic eruptions have been recorded since 1889, when people began to settle there. Four of these eruptions, after the beginning of continuous observation by seismometers in 1976, were accompanied by intense seismic activity and rapid crustal deformation beforehand. Other eruptions on Ioto were without obvious crustal activities. In this paper, we discuss the mechanisms of phreatic eruptions on Ioto. Regular geodetic surveys and continuous GNSS observations show that Ioto intermittently uplifts at an abnormally high rate. All of the four eruptions accompanied by the precursors took place during intermittent uplifts. The crustal deformation before and after one of these eruptions revealed that a sill-like deformation source in the shallow part of Motoyama rapidly inflated before and deflated after the beginning of the eruption. From the results of a seismic array and a borehole survey, it is estimated that there is a layer of lava at a depth of about 100-200 m, and there is a tuff layer about 200-500 m beneath it. The eruptions accompanied by the precursors probably occurred due to abrupt boiling of hot water in hydrothermal reservoirs in the tuff layer, sealed by the lava layer and triggered by intermittent uplift. For the eruptions without precursors, the hydrothermal systems are weakly sealed by clay or probably occurred on the same principle as a geyser because phreatic eruptions had occurred beforehand and hydrostatic pressure is applied to the hydrothermal reservoirs.

  8. Hydrogen-Induced Plastic Deformation in ZnO

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  9. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  10. Probing η deformed backgrounds with Dp branes

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2018-03-01

    Full Text Available In this Letter, based on the notion of Gauge/Gravity duality we explore the low frequency behaviour associated with the retarded two point correlators in the ground state of the strongly correlated quantum liquid that is dual to η-deformed background in (2+1D. The massless charge carriers in the dual gauge theory are sourced due to some probe Nf flavour Dp brane configurations in the bulk. In our analysis we stick to the NS sector and compute the two point correlators by turning on fluctuations associated with the worldvolume gauge fields in the bulk spacetime. Our analysis reveals the existence of holographic zero sound modes for (1+1D QFTs those are dual to bosonic η deformed AdS3×S3 with vanishing RR fields.

  11. Deformable image registration using convolutional neural networks

    Science.gov (United States)

    Eppenhof, Koen A. J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P. W.

    2018-03-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between pairs of three-dimensional images. The outputs of the network are three maps for the x, y, and z components of a thin plate spline transformation grid. The network is trained on synthetic random transformations, which are applied to a small set of representative images for the desired application. Training therefore does not require manually annotated ground truth deformation information. The methodology is demonstrated on public data sets of inspiration-expiration lung CT image pairs, which come with annotated corresponding landmarks for evaluation of the registration accuracy. Advantages of this methodology are its fast registration times and its minimal parameterization.

  12. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    geometry and secular rates across the plate boundary segments, reveals a deep magma chamber under Hekla and gives a geodetic estimate of the current location of the North-America Eurasian plate boundary in south Iceland. Different geometries were tested for Hekla's magma chamber: spherical, horizontally elongated ellipsoidal, and pipe-like magma chambers. The data could not reliably distinguish the actual geometry; however, all three models indicate magma accumulation near the Moho (˜20-25 km) under Hekla. The February -- March 2000 eruption of Hekla gave another opportunity to image the magmatic system. In Chapter 5, I used co-eruptive GPS and InSAR displacements, borehole strain, and tilt measurements to jointly invert for co-eruptive deformation associated with the 2000 eruption and found a depth of approximately 20 km for the magma chamber, in accordance with my previous results. Telica is a highly seismically active volcano in Nicaragua. The seismicity is mostly of shallow (earthquake per minute averaged over 24 hours, but overall trends in seismic activity, as observed since 1993, do not have an obvious correlation with eruptive activity. This variability causes difficulties for hazard monitoring of Telica. Telica erupted in a small (VEI 2) explosive eruption in 2011. Eruptions of this style and size seem to occur on decadal time scales at Telica. In Chapter 3, I used an extensive multidisciplinary data set consisting of seismic and GPS data, multivariate ash analysis, SO2 measurements, fumarole temperatures, and visual observations, to show that the eruption was essentially an amagmatic eruption of hydrothermally altered materials from the conduit, and that short-term sealing of hydrothermal pathways led to temporary pressure build-up, resulting in the explosions. No significant crustal deformation was detected before or during the eruption, in accordance with low (earthquake offshore El Salvador was the largest event to rupture this segment of the subduction

  13. Marginally Deformed Starobinsky Gravity

    DEFF Research Database (Denmark)

    Codello, A.; Joergensen, J.; Sannino, Francesco

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  14. Transfer involving deformed nuclei

    International Nuclear Information System (INIS)

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs

  15. Advanced Curvature Deformable Mirrors

    Science.gov (United States)

    2010-09-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii ,Institute for Astronomy,640 North A‘ohoku Place, #209 , Hilo ,HI,96720-2700 8. PERFORMING...Advanced Curvature Deformable Mirrors Christ Ftaclas1,2, Aglae Kellerer2 and Mark Chun2 Institute for Astronomy, University of Hawaii

  16. Hydrothermal optimal power flow using continuation method

    International Nuclear Information System (INIS)

    Raoofat, M.; Seifi, H.

    2001-01-01

    The problem of optimal economic operation of hydrothermal electric power systems is solved using powerful continuation method. While in conventional approach, fixed generation voltages are used to avoid convergence problems, in the algorithm, they are treated as variables so that better solutions can be obtained. The algorithm is tested for a typical 5-bus and 17-bus New Zealand networks. Its capabilities and promising results are assessed

  17. Hydrothermal treatment of coprecipitated YSZ powders

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo; Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci

    2009-01-01

    Zirconia stabilized with 8.5 mol% yttria (YSZ) were synthesized by coprecipitation and resulting gels were hydrothermally treated at 200°C and 220 PSI for 4, 8 and 16 hours. Products were oven dried at 70°C for 24 hours, uniaxially pressed as pellets and sintered at 1500 °C for 1 hour. Powders were characterized for surface area with N 2 gas adsorption, X-ray diffraction, laser diffraction granulometric analysis and scanning and transmission electronic microscopy. Density of ceramics was measured by an immersion method based on the Archimedes principle. Results showed that powders dried at 70°C are amorphous and after treatment has tetragonal/cubic symmetry. Surface area of powders presented a significant reduction after hydrothermal treatment. Ceramics prepared from hydrothermally treated powders have higher green density but sintered pellets are less dense when compared to that made with powders calcined at 800°C for 1 hour due to the agglomerate state of powders. Solvothermal treatment is a promising procedure to enhance density. (author)

  18. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  19. Equilibrium deformations of single-particle states of odd nuclei of rare earth region

    International Nuclear Information System (INIS)

    Alikov, B.A.; Tsoj, E.G.; Zuber, K.; Pashkevich, V.V.

    1983-01-01

    In terms of the Strutinsky shell-correction method using the Woods-Saxon non-spherical potential the energies, quadrupole, and hexadecapole momenta of the ground and excited states of odd-proton nuclei with 61 6 deformation on atomic nuclei non-rotation states energies is discussed. It is shown that account of deformation of α 6 type slightly influences on the quadrupole and hexadecapole deformation value

  20. Projectile deformation effects in the breakup of 37Mg

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2016-01-01

    Full Text Available We study the breakup of 37Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the postform finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of 37Mg.

  1. Deformable mirrors : Design fundamentals for force actuation of continuous facesheets

    NARCIS (Netherlands)

    Ravensbergen, S.K.; Hamelinck, R.F.H.M.; Rosielle, P.C.J.N.; Steinbuch, M.

    2009-01-01

    Adaptive Optics is established as essential technology in current and future ground based (extremely) large telescopes to compensate for atmospheric turbulence. Deformable mirrors for astronomic purposes have a high number of actuators (> 10k), a relatively large stroke (> 10µm) on a small spacing

  2. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    Science.gov (United States)

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  3. q-Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 3 ... Keywords. Nonlinear dynamics; logistic map; -deformation; Tsallis statistics. ... As a specific example, a -deformation procedure is applied to the logistic map. Compared ...

  4. Saturation of Deformation and Identical Bands in Very-Neutron Rich Sr Isotopes

    CERN Multimedia

    2002-01-01

    The present proposal aims at establishing nuclear properties in an isotopic chain showing unique features. These features include the saturation of ground state deformation at its onset and the existence of ground state identical bands in neighbouring nuclei with the same deformation. The measurements should help to elucidate the role played by the proton-neutron residual interaction between orbitals with large spatial overlap, i.e. $\\pi g _{9/2} \

  5. Ground model and computer complex for designing underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bashurov, V.V.; Vakhrameev, Yu.S.; Dem' yanovskii, S.V.; Ignatenko, V.V.; Simonova, T.V.

    1977-01-01

    A description is given of a ground model that accounts for large deformations, their irreversibility, loose rock, breakdown, resistance to internal friction, and other factors. Calculations from the American Sulky explosion and camouflage detonations of two spaced explosive charges are cited as examples illustrating the possibility of design methods and the suitability of ground state equations for describing underground detonations.

  6. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    Science.gov (United States)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  7. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    Science.gov (United States)

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.

  8. 6. International FIG-symposium on deformation measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H; Heer, R [eds.

    1997-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  9. 6. International FIG-symposium on deformation measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H.; Heer, R. [eds.

    1996-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  10. Cosmetic and Functional Nasal Deformities

    Science.gov (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  11. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  12. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...... ethnic and religious diversity of the neighbourhood and, further, to frame what they see as the deterioration of genuine Danish identity....

  13. [Babies with cranial deformity].

    Science.gov (United States)

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  14. Deformed supersymmetric mechanics

    International Nuclear Information System (INIS)

    Ivanov, E.; Sidorov, S.

    2013-01-01

    Motivated by a recent interest in curved rigid supersymmetries, we construct a new type of N = 4, d = 1 supersymmetric systems by employing superfields defined on the cosets of the supergroup SU(2|1). The relevant worldline supersymmetry is a deformation of the standard N = 4, d = 1 supersymmetry by a mass parameter m. As instructive examples we consider at the classical and quantum levels the models associated with the supermultiplets (1,4,3) and (2,4,2) and find out interesting interrelations with some previous works on nonstandard d = 1 supersymmetry. In particular, the d = 1 systems with 'weak supersymmetry' are naturally reproduced within our SU(2|1) superfield approach as a subclass of the (1,4,3) models. A generalization to the N = 8, d = 1 case implies the supergroup SU(2|2) as a candidate deformed worldline supersymmetry

  15. Deformation Theory ( Lecture Notes )

    Czech Academy of Sciences Publication Activity Database

    Doubek, M.; Markl, Martin; Zima, P.

    2007-01-01

    Roč. 43, č. 5 (2007), s. 333-371 ISSN 0044-8753. [Winter School Geometry and Physics/27./. Srní, 13.01.2007-20.01.2007] R&D Projects: GA ČR GA201/05/2117 Institutional research plan: CEZ:AV0Z10190503 Keywords : deformation * Mauerer-Cartan equation * strongly homotopy Lie algebra Subject RIV: BA - General Mathematics

  16. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  17. Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire

    Science.gov (United States)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.

  18. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  19. Investigating Volcanic-Hydrothermal Systems in Dominica, Lesser Antilles: Temporal Changes in the Chemical Composition of Hydrothermal Fluids for Volcanic Monitoring Using Geothermometers

    Science.gov (United States)

    Onyeali, M. M. C.; Joseph, E. P.; Frey, H. M.

    2017-12-01

    Dominica has an abundance of volcanic activity, with nine potentially active volcanoes, many of which have highly active volcanic-hydrothermal systems. The waters are predominantly acid-sulphate in character (SO4=100-4200 mg/L, pH≤4), and likely formed because of dilution of acidic gases in near surface oxygenated groundwater. The waters are of primarily meteoric origin, but are likely affected by evaporation effects at/near the surface, with δ18O ranging from -1.75 to 10.67‰, and δD from -6.1 to 14.5‰. With updated water chemistry and isotopic data from five hydrothermal areas (Boiling Lake, Valley of Desolation, Sulphur Springs, Wotten Waven, Cold Soufriere) for the period 2014 to 2017, we will re-evaluate the characteristics of these systems, which were last reported in 2011. We will present updated reservoir temperatures using a variety of geothermometers and provide insight into water-rock interactions taking place in the reservoirs. Recent changes in chemistry of the waters have indicated that while the origin of the hydrothermal systems are still dominantly meteoric (δ18O = -3 to 8‰ and δD = -5 to 18‰), surface evaporation effects and variable amounts of mixing with shallow ground waters play an important role. Fumaroles appear to reflect a deeper source contribution as compared to thermal waters with differences in acidity, temperature, TDS, δ18O, and δD observed. The general composition of the waters for most of the hydrothermal systems studied indicate no significant changes, with the exception of the Boiling Lake, which experienced a draining event in November 2016 which lasted for 6 weeks. Decreases in temperature, pH, Na, K, and Cl were seen post draining, while SO4 remained relatively low (66 ppm), but showed a small increase. The chemistry of the Boiling Lake appears to show significant changes in response to changes in the groundwater system. Changes in the groundwater system at the lake observed during the 2004/2005 draining, which

  20. Numerical Modeling of Hydrothermal Circulation at the Longqi-1 Field: Southwest Indian Ridge

    Science.gov (United States)

    Guo, Z.; Lowell, R. P.; Tao, C.; Rupke, L.; Lewis, K. C.

    2017-12-01

    The Longqi-1(Dragon Flag) hydrothermal field is the first high-temperature hydrothermal system observed on the ultra-slow spreading Southwest Indian Ridge. Hydrothermal vents with temperatures near 380 °C are localized by detachment faulting within which extensional deformation likely increases permeability to provide preferred pathways for hydrothermal discharge. To better understand the Longqi-1 circulation system, we construct a 2-D numerical simulations in a NaCl- H2O fluid constrained by key observational data, such as vent temperature and heat output, crust structure derived from seismic data, and fault zone geometry deduced from seismicity. Heat output from AUV surveys is estimated to be » 300 ± 100 MW, and this value, in conjunction with vent temperature was used with the single-pass modeling approach to obtain an average permeability of 10-13 m-2 within the fault zone. In analogy with other fault-controlled hydrothermal systems such as Logatchev-1 we assume a lower background permeability of 10-14 m-2. The top boundary of the system is permeable and maintained at constant seafloor pressure, which is divided into two parts by the detachment fault. The pressure of the southern part is lower than the northern part to simulate the effect of the seafloor topography. The top boundary is upstream weighted to allow high temperature fluid to exit, while recharging fluid is maintained at 10°C. The bottom boundary is impermeable and is given a fixed temperature distribution at a depth of 7 km below the seafloor. The highest value Tmax is maintained over a distance given lateral distance and decreases linearly towards two ends to 300 °C. The salinity is set to 3.2 wt. % NaCl, and the simulations are assumed to be single phase. The results show that with a 7 km deep circulation system, Tmax = 550 oC gives a reasonable temperature and heat output of venting plume.We infer that the observed high salinity results from serpentinization reactions. Assuming all salinity

  1. Hydrothermal germination models: Improving experimental efficiency by limiting data collection to the relevant hydrothermal range

    Science.gov (United States)

    Hydrothermal models used to predict germination response in the field are usually parameterized with data from laboratory experiments that examine the full range of germination response to temperature and water potential. Inclusion of low water potential and high and low-temperature treatments, how...

  2. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  3. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-01-01

    Graphical abstract: Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH) 2 nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH) 2 nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH) 2 ) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH) 2 nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes

  4. Borehole plugging by hydrothermal transport. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; White, W.B.

    1976-02-28

    Calcium silicate--and aluminosilicate--compositions based on mixtures of fine grained quartz with various cements or calcium silicate compounds have been investigated under hydrothermal conditions in the temperature range 110-250/sup 0/C and pressure range 1,000-10,000 psi, pressures which are always in excess of that required to maintain liquid H/sub 2/O, and approximate the confining pressures which might be anticipated in deep boreholes. All silicate cement combinations investigated produce materials having adequate strength after reaction times of 1 day or longer. The calcium aluminate cement was also adequate with respect to strength but would need to be investigated more extensively for overall properties because of its highly reactive chemistry. The mini-rock cylinder-cement plug hydrothermal experiments in both limestone and sandstone resulted in reasonable magnitudes of bonding strength. The typical shear strength of a hydrothermally treated cement-sandstone plug is 1030 psi, and the compressive strength of the extruded cement plug is 9550 psi. Reactions having a potential for producing calcium carbonate plugs in holes drilled in carbonate rocks were studied. It should be noted that most cements are calcium silicate systems and are chemically compatible with the CaCO/sub 3/ and CaMg(CO/sub 3/)/sub 2/ in the rock walls of the hole. A side benefit from this research is some insight into the suitability of massive carbonate rocks as disposal sites. Carbonate rocks by themselves are highly impermeable, have low exchange capacity, and a low water content--all properties that are desirable in the storage medium. A major drawback is the presence of secondary permeability in the form of solutionally modified joints, fractures, and bedding planes.

  5. Borehole plugging by hydrothermal transport. Final report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1976-01-01

    Calcium silicate--and aluminosilicate--compositions based on mixtures of fine grained quartz with various cements or calcium silicate compounds have been investigated under hydrothermal conditions in the temperature range 110-250 0 C and pressure range 1,000-10,000 psi, pressures which are always in excess of that required to maintain liquid H 2 O, and approximate the confining pressures which might be anticipated in deep boreholes. All silicate cement combinations investigated produce materials having adequate strength after reaction times of 1 day or longer. The calcium aluminate cement was also adequate with respect to strength but would need to be investigated more extensively for overall properties because of its highly reactive chemistry. The mini-rock cylinder-cement plug hydrothermal experiments in both limestone and sandstone resulted in reasonable magnitudes of bonding strength. The typical shear strength of a hydrothermally treated cement-sandstone plug is 1030 psi, and the compressive strength of the extruded cement plug is 9550 psi. Reactions having a potential for producing calcium carbonate plugs in holes drilled in carbonate rocks were studied. It should be noted that most cements are calcium silicate systems and are chemically compatible with the CaCO 3 and CaMg(CO 3 ) 2 in the rock walls of the hole. A side benefit from this research is some insight into the suitability of massive carbonate rocks as disposal sites. Carbonate rocks by themselves are highly impermeable, have low exchange capacity, and a low water content--all properties that are desirable in the storage medium. A major drawback is the presence of secondary permeability in the form of solutionally modified joints, fractures, and bedding planes

  6. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  7. Vertical Cable Seismic Survey for Hydrothermal Deposit

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  8. Exotic octupole deformation in proton-rich Z=N nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Satoshi; Yabana, K [Niigata Univ. (Japan); Matsuo, M

    1998-03-01

    We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)

  9. Communications construction on mining grounds influenced by mining damage. Budownictwo komunikacyjne na terenach objetych szkodami gorniczymi

    Energy Technology Data Exchange (ETDEWEB)

    Rosikon, A

    1979-01-01

    This book considers problems associated with construction of communication lines on grounds influenced by underground coal mining. It is stated that about 50% of coal mined in Poland comes from protective coal pillars. Improving methods of strata control and ground control after underground mining will influence perspectives of mining in protective pillars. The following problems associated with minimizing mining damage are analyzed: types of ground deformation caused by underground mining, continuous and discontinuous deformation, factors which influence formation of subsidence troughs, forecasting ground subsidence according to the Knothe and Budryk theory, horizontal and vertical ground dislocation, coefficients used for description of ground deformation, Kochmanski's theory of continuous deformation, effects of ground subsidence of foundations of buildings and industrial structures, construction of roads, railway tracks and other communication lines on ground influenced by discontinuous deformations caused by coal mining, problems associated with construction of bridges and tunnels, construction of sewage systems, effects of underground mining on maintenance and repair of communication lines and sewage systems. Ways of minimizing discontinuous ground deformation are analyzed.

  10. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    Science.gov (United States)

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  11. Numerical Simulation of a Non-volcanic Hydrothermal System Caused by Formation of a High Permeability Fracture Zone

    Science.gov (United States)

    Oka, Daisuke; Ehara, Sachio; Fujimitsu, Yasuhiro

    2010-05-01

    Because in the Japanese islands the earth crust activity is very active, a disposal stratum for high-level radioactive waste produced by reprocessing the spent nuclear fuel from nuclear power plants will be selected in the tectonically stable areas in which the waste can be disposed underground safely for a long term and there is no influence of earthquakes, seismic activities, volcanic activities, upheaval, sedimentation, erosion, climate and global sea level change and so on, which causes the risk of the inflow of the groundwater to destroy the disposal site or the outflow to the ground surface. However, even if the disposal stratum in such condition will be chosen, in case that a new high permeability fracture zone is formed by the earthquake, and a new hydrothermal system may be formed for a long term (thousands or millions years) and the system may affect the disposal site. Therefore, we have to understand the feature of the non-volcanic hydrothermal system through the high permeability fracture zone. We estimated such influence by using HYDROTHERM Ver2.2 (Hayba & Ingebritsen, 1994), which is a three-dimensional numerical reservoir simulator. The model field is the northwestern part of Kego Fault, which was formed by a series of earthquakes called "the 2005 Fukuoka Prefecture Western Offshore Earthquakes" (the main shock of Mjma 7.0 on 20 March 2005) in Kyushu, Japan. The results of the numerical simulations show the development of a low temperature hydrothermal system as a new fracture zone is formed, in case that there is no volcanic heat source. The results of the simulations up to 100,000 years after formation of the fracture zone show that the higher heat flow and the wider and more permeable fracture zone accelerate the development of the hydrothermal system in the fracture zone. As a result of calculation of up to10 million years, we clarified the evolutional process of the non-volcanic hydrothermal system through the high permeability fracture zone. At

  12. Determining craneways deformations caused by static loads

    Directory of Open Access Journals (Sweden)

    Simonyan Vladimir Viktorovich

    2015-04-01

    Full Text Available The most typical types of crane substructures destruction are wear of crane rails, details of its fixation, deformation of crane beams, settlement or tilting of the columns. At technical examination of buildings and structures with crane rails their planned-high-altitude position is determined. There exist a list of methods for determining the crane rails’ planned-high-altitude position, each of them has its disadvantage, expressed in the final result - the real position of crane rails. While estimating their position from the ground, i.e. mounting transit on the ground, and indicating devices above, there is an inaccuracy on the rails, which is caused by different moments of indications fixation, both on the plan and hightwise. The authors carried out observations of the position of craneways both on the plan and heightwise for determining the reason of craneways bearing structures’ deformations and the period of their influence of railtrack state. The results of these observations are analyzed and presented. The authors present their suggestions on advancing the crane operation, which will increase its operation life.

  13. Hydrothermal Processes in the Archean - New Insights from Imaging Spectroscopy

    NARCIS (Netherlands)

    Ruitenbeek, F.J.A. van

    2007-01-01

    The aim of this research was to gain new insights in fossil hydrothermal systems using airborne imaging spectroscopy. Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral

  14. Levulinic acid from orange peel waste by hydrothermal carbonization (HTC)

    NARCIS (Netherlands)

    Puccini, Monica; Licursi, Domenico; Stefanelli, Eleonora; Vitolo, Sandra; Galletti, Anna Maria Raspolli; Heeres, Hero Jan

    2016-01-01

    With the awareness of the need for optimal and sustainable use of natural resources, hydrothermal treatment of biomass and biomass waste for energy and resource recovery has received increasing attention. The hydrothermal carbonization (HTC) of a biomass is achieved using water as the reaction

  15. EFFECTS OF HEAT-FLOW AND HYDROTHERMAL FLUIDS FROM ...

    African Journals Online (AJOL)

    Volcanic intrusions and hydrothermal activity have modified the diagenetic minerals. In the Ulster Basin, UK, most of the authigenic mineralization in the Permo-Triassic sandstones pre-dated tertiary volcanic intrusions. The hydrothermal fluids and heat-flow from the volcanic intrusions did not affect quartz and feldspar ...

  16. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  17. Geophysical characterization of an active hydrothermal shear zone in granitic rocks

    Science.gov (United States)

    Zahner, Tobias; Baron, Ludovic; Holliger, Klaus; Egli, Daniel

    2016-04-01

    Hydrothermally active faults and shear zones in the crystalline massifs of the central Alps are currently of particular interest because of their potential similarities and analogies with planned deep petrothermal reservoirs in the Alpine foreland. In order to better understand such hydrothermal systems, a near-vertical, hydrothermally active shear zone embedded in low-permeability granitic rocks has been drilled. This borehole is located on the Grimsel Pass in the central Swiss Alps, has an inclination of 24 degrees with regard to the vertical, and crosses the targeted shear zone between about 82 and 86 meters depth. The borehole has been fully cored and a comprehensive suite of geophysical logging data has been acquired. The latter comprises multi-frequency sonic, ground-penetrating radar, resistivity, self-potential, gamma-gamma, neutron-neutron, optical televiewer, and caliper log data. In addition to this, we have also performed a surface-to-borehole vertical seismic profiling experiment. The televiewer data and the retrieved core samples show a marked increase of the fracture density in the target region, which also finds its expression in rather pronounced and distinct signatures in all other log data. Preliminary results point towards a close correspondence between the ground-penetrating radar and the neutron-neutron log data, which opens the perspective of constraining the effective fracture porosity at vastly differing scales. There is also remarkably good agreement between the sonic log and the vertical seismic profiling data, which may allow for assessing the permeability of the probed fracture network by interpreting these data in a poroelastic context.

  18. Soil gas composition from the 2001-2002 fissure in the Lakki Plain (Nisyros Island, Greece): evidences for shallow hydrothermal fluid circulation

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Kanellopoulos, Christos; Vaselli, Orlando; Caponi, Chiara; Ricci, Andrea; Raspanti, Alessio; Gallorini, Andrea; Cabassi, Jacopo; Vougioukalakis, Georges

    2016-04-01

    Nisyros volcano (Aegean Sea, Greece) is currently classified in the "Very High Threat" category (Kinvig et al., 2010). Although the last volcanic activity, consisting of phreatic eruptions, occurred in the 19th century, Nisyros experienced an intense seismic activity during 1996-1998 accompanied by ground deformation and changes in the chemistry of fumarolic gases (Chiodini et al., 2002), pointing to a renewed unrest. Between November 2001 and December 2002, a NNE-oriented 600 m long fissure opened in the vegetated central part of the Lakki Plain. The fissure, 1-5 m wide and up to 15-20 m deep, showed neither vertical displacements nor gas release. No changes in the seismic and volcanic activity were observed during or after this event, which was interpreted as related to collapse of the upper caldera floor fine sediment cover (permeable sediment cover in the Lakki Plain conceals the underneath hydrothermal gas flow, preventing the typical surface manifestations (high temperature and CO2 flux), the chemistry of the interstitial gases reveals that deep-sourced fluids circulate within the deep permeable layers beneath the Lakki Plain enhancing alteration processes and formation of shallow collapsing structures. Chiodini G., Brombach T., Caliro S., Cardellini C., 2002. Geophys Res Lett, 29(16), 1759. Kinvig H.S., Winson A., Gottsmann J., 2010. Nat Hazards Earth Syst Sci, 10. Vougioukalakis G.E., Fytikas M., 2005. In Fytikas M., Vougioukalakis G.E. (Eds.), The South Aegean Active Volcanic Arc, Present Knowledge and Future Perspectives, Developments in Volcanology, Elsevier, Amsterdam The Netherlands, 2005, pp. 161-163.

  19. Study beryllium microplastic deformation

    International Nuclear Information System (INIS)

    Papirov, I.I.; Ivantsov, V.I.; Nikolaenko, A.A.; Shokurov, V.S.; Tuzov, Yu.V.

    2015-01-01

    Microplastic flow characteristics systematically studied for different varieties beryllium. In isostatically pressed beryllium it decreased with increasing particle size of the powder, increasing temperature and increasing the pressing metal purity. High initial values of the limit microelasticity and microflow in some cases are due a high level of internal stresses of thermal origin and over time it can relax slowly. During long-term storage of beryllium materials with high initial resistance values microplastic deformation microflow limit and microflow stress markedly reduced, due mainly to the relaxation of thermal microstrain

  20. Hydrothermal carbonization. Investigation of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrueck, J.; Rossbach, M.; Reichert, D.; Bockhorn, H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. of Technical Chemistry and Polymerchemistry; Walz, L. [Energie Baden-Wuerttemberg AG, Karlsruhe (Germany); Eyler, D. [European Institute for Energy Research, Karlsruhe (Germany)

    2010-07-01

    For energetic use and as a raw material lignocellulosic biomass becomes more and more important. Among pyrolytic refining, the hydrothermal treatment can be an alternative way to deoxygenerate biomass. The objective of this study is to gain deeper insights into the Hydrothermal Carbonization (HTC) process and also to define basic parameters for the construction of a small pilot plant. The biomass is converted in an autoclave at temperatures between 180 C and 240 C establishing the respective vapour pressure. Reaction times between 1 and 12 hours are applied and various catalysts in different concentrations are tested. Elemental analysis of the product, a brown coal-like solid, shows a composition of ca. C{sub 4}H{sub 3}O{sub 1}, corresponding to a carbon recovery of 60% of initial carbon mass. The elemental composition of the product is independent of the process temperature and the applied biomass, if a minimal reaction time is adhered, which however heavily depends on the reaction temperature. The remaining carbon species in intermediate reaction products in the liquid and gas phase are characterised by use of GC/MS, HPLC and FTIR. From the experimental data a two-way mechanism is deduced that includes a rapid formation of an initial solid and dehydration and decomposition reactions which lead to smaller organic molecules, e.g. furfural and aromatic species, and can be promoted by acid catalysis, e.g. H{sub 2}SO{sub 4}. (orig.)

  1. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying the feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].

  2. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation.

    Science.gov (United States)

    Pala, Mehmet; Kantarli, Ismail Cem; Buyukisik, Hasan Baha; Yanik, Jale

    2014-06-01

    Grape pomace was treated by hydrothermal carbonization (sub-critical water, 175-275°C) and torrefaction (nitrogen atmosphere, 250 and 300°C), with mass yield of solid product (char) ranging between 47% and 78%, and energy densification ratio to 1.42-1.15 of the original feedstock. The chars were characterised with respect to their fuel properties, morphological and structural properties and combustion characteristics. The hydrothermal carbonization produced the char with greater energy density than torrefaction. The chars from torrefaction were found to be more aromatic in nature than that from hydrothermal carbonization. Hydrothermal carbonization process produced the char having high combustion reactivity. Most interesting was the finding that aqueous phase from hydrothermal carbonization had antioxidant activity. The results obtained in this study showed that HTC appears to be promising process for a winery waste having high moisture content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Study on the hydrothermal treatment of Shenhua coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhicai Wang; Hengfu Shui; Zhanning Pei; Jinsheng Gao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-04-15

    In this paper, the hydrothermal treatment of Shenhua coal was carried out under 0.1 MPa (initial pressure) nitrogen and different temperature. Effects of hydrothermal treatment on the structure and the hydro-liquefaction activity of Shenhua coal were investigated by the ultimate and proximate analyses, the FTIR measurements and TG analyses of hydrothermally treated coals, and the characterizations of extraction and swelling properties, and the batch hydro-liquefaction of treated coal were also carried out. The results indicate that hydrothermal treatment above 200{sup o}C can increase the hydrogen content of treated coal and decrease the yield of volatiles and the content of ash, especially a large amount of CO and CH{sub 4} are found in gas products obtained by the hydrothermal treatment above 250{sup o}C. Hydrothermal treatment disrupts the weak covalent bond such as ether, ester and side-chain substituent by hydrolysis and pyrolysis, and changes the distribution of H-bond in coal. The swelling ratio and the Soxhlet extraction yield of treated coal decrease with the increase of hydrothermal treatment temperature. The conversion of liquefaction and the yield of CS{sub 2}/NMP mixed solvent extraction at ambient temperature are enhanced by hydrothermal treatment at 300{sup o}C. Therefore hydrogen donation reactions and the rupture of non-covalent bond and weak covalent bonds present in the process of hydrothermal treatment resulting in the changes of structure and reactivity of Shenhua coal. The results show that the hydro-liquefaction activity of Shenhua coal can be improved by hydrothermal pretreatment between 250{sup o}C and 300{sup o}C. 15 refs., 5 figs., 4 tabs.

  4. Water column imaging on hydrothermal vent in Central Indian Ridge

    Science.gov (United States)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  5. Deformation around basin scale normal faults

    International Nuclear Information System (INIS)

    Spahic, D.

    2010-01-01

    Faults in the earth crust occur within large range of scales from microscale over mesoscopic to large basin scale faults. Frequently deformation associated with faulting is not only limited to the fault plane alone, but rather forms a combination with continuous near field deformation in the wall rock, a phenomenon that is generally called fault drag. The correct interpretation and recognition of fault drag is fundamental for the reconstruction of the fault history and determination of fault kinematics, as well as prediction in areas of limited exposure or beyond comprehensive seismic resolution. Based on fault analyses derived from 3D visualization of natural examples of fault drag, the importance of fault geometry for the deformation of marker horizons around faults is investigated. The complex 3D structural models presented here are based on a combination of geophysical datasets and geological fieldwork. On an outcrop scale example of fault drag in the hanging wall of a normal fault, located at St. Margarethen, Burgenland, Austria, data from Ground Penetrating Radar (GPR) measurements, detailed mapping and terrestrial laser scanning were used to construct a high-resolution structural model of the fault plane, the deformed marker horizons and associated secondary faults. In order to obtain geometrical information about the largely unexposed master fault surface, a standard listric balancing dip domain technique was employed. The results indicate that for this normal fault a listric shape can be excluded, as the constructed fault has a geologically meaningless shape cutting upsection into the sedimentary strata. This kinematic modeling result is additionally supported by the observation of deformed horizons in the footwall of the structure. Alternatively, a planar fault model with reverse drag of markers in the hanging wall and footwall is proposed. Deformation around basin scale normal faults. A second part of this thesis investigates a large scale normal fault

  6. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  7. Nuclear deformation in the configuration-interaction shell model

    Science.gov (United States)

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Mustonen, M. T.

    2018-02-01

    We review a method that we recently introduced to calculate the finite-temperature distribution of the axial quadrupole operator in the laboratory frame using the auxiliary-field Monte Carlo technique in the framework of the configuration-interaction shell model. We also discuss recent work to determine the probability distribution of the quadrupole shape tensor as a function of intrinsic deformation β,γ by expanding its logarithm in quadrupole invariants. We demonstrate our method for an isotope chain of samarium nuclei whose ground states describe a crossover from spherical to deformed shapes.

  8. Post-Metamorphic Thermal Anomaly across the Nacimiento Block, Central California: a Hydrothermal Overprint?

    Science.gov (United States)

    Lacroix, B.; Hughes, J.; Lahfid, A.; Delchini, S.

    2017-12-01

    The thermal history of the Nacimiento block located within the Franciscan Complex (California, USA) has been previously proposed based on both vitrinite reflectance (Rm) and illite cristallinity methods (Underwood et al., 1995). These authors suggest that the Nacimiento block is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by post-metamorphic hydrothermal activity linked to the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both thermal anomaly and deposit seem spatially correlated, their relationship is still poorly constrained. Detailed geological and structural mapping within the Los Burros Mining District (LBMD) coupled with a thermal study was conducted to better understand processes responsible for the anomalous temperatures recorded near the deposit. The regional maximum temperature reached by metasediments from the Nacimiento block have been first investigated using the Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through careful fluid-inclusion and stable isotopes (O and C) studies on the deposit, the temperature and the potential source of the fluid responsible for the Los Burros Au-deposit emplacement were investigated. RSCM technique confirms the presence of a thermal anomaly in the range 260-320ºC near LBMD. However, our structural and petrographic results suggest that the thermal anomaly is not correlated to a post-metamorphic hydrothermal overprint but rather to a late, transpressive deformation uplifting buried metamorphic rocks.

  9. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  10. Rotary deformity in degenerative spondylolisthesis

    International Nuclear Information System (INIS)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul

    1994-01-01

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected

  11. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation

    Directory of Open Access Journals (Sweden)

    Andreas eTeske

    2016-02-01

    Full Text Available The hydrothermal mats, mounds and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heatflow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for a wider survey of the entire spreading region.

  12. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  13. Migration of fluids as a tool to evaluate the feasibility of the implantation of geological radioactive wastes repositories (RARN) in granitoid rocks: tests on granites submitted to natural deformation vs. not deformed

    International Nuclear Information System (INIS)

    Lopes, Nilo Henrique Balzani; Barbosa, Pedro Henrique Silva; Santos, Alanna Leite dos; Amorim, Lucas Eustáquio Dias; Freitas, Mônica Elizetti de; Rios, Francisco Javier

    2017-01-01

    Fluid composition and migration studies in granitoid rocks subjected to deformation events are a factor that should be considered in the selection of geologically favorable areas for RANR construction, and may be an excellent complement to engineering barrier designs. The research objective was to develop an academic approach, comparing the behavior of deformed and non-deformed granites, not being related to any CNEN project of deploying repositories. It is concluded that in the choice of suitable sites for the construction of repositories, granite bodies that are submitted to metamorphic / deformation / hydrothermal events or that are very fractured should be disregarded. The domes of granite batholith that have undergone hydraulic billing should also be discarded. It has been found that, because of the warming caused by radioactive decay reactions, there is a real possibility that the release of potentially abrasive fluids contained in the minerals can reach and corrode the walls of the repositories and / or packaging

  14. q-deformed Minkowski space

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.; Zumino, B.

    1993-01-01

    In this lecture I discuss the algebraic structure of a q-deformed four-vector space. It serves as a good example of quantizing Minkowski space. To give a physical interpretation of such a quantized Minkowski space we construct the Hilbert space representation and find that the relevant time and space operators have a discrete spectrum. Thus the q-deformed Minkowski space has a lattice structure. Nevertheless this lattice structure is compatible with the operation of q-deformed Lorentz transformations. The generators of the q-deformed Lorentz group can be represented as linear operators in the same Hilbert space. (orig.)

  15. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau

    2017-01-19

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  16. Deformation behaviour of turbine foundations

    International Nuclear Information System (INIS)

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  17. Deformed chiral nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1991-04-18

    We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).

  18. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  19. IBA in deformed nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  20. Hydraulic characterization of hydrothermally altered Nopal tuff

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.T.; Meyer-James, K.A. [Southwest Research Institute, San Antonio, TX (United States); Rice, G. [George Rice and Associates, San Antonio, TX (United States)

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

  1. Gold-bearing hydrothermal veins in Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Davidenko, N.M.

    1980-01-01

    Indicators such as the correlation of mineralization to plutonic and vulcanic formations and various facies of metamorphism, the character of the structural-tectonic control of mineralization, characteristics of silica redistribution as well that of calcium, water, and other components in altering ore zones, the specificity of sygenetic fluid inclusions in minerals, morphology, the internal structure and other typomorphic indicators of native gold and its accessories are utilized in the working out of a genetic classification for compiling a complex of diagnostic indicators of post-magmatic mineralization on Chukotka at various depths. Those indicators, in addition to earlier known hydrothermal gold ore formations, can be used to identify still other types of mineralization, particularly pyrite group minerals.

  2. Hydraulic characterization of hydrothermally altered Nopal tuff

    International Nuclear Information System (INIS)

    Green, R.T.; Meyer-James, K.A.; Rice, G.

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow

  3. Ground motion: An introduction for accelerator builders

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1992-02-01

    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed

  4. Ground motion: An introduction for accelerator builders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1992-02-01

    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.

  5. Non-traditional Stable Isotope Systematics of Seafloor Hydrothermal Systems

    Science.gov (United States)

    Rouxel, O. J.

    2009-05-01

    Seafloor hydrothermal activity at mid-ocean ridges is one of the fundamental processes controlling the chemistry of the oceans and the altered oceanic crust. Past studies have demonstrated the complexity and diversity of seafloor hydrothermal systems and have highlighted the importance of subsurface environments in controlling the composition of hydrothermal fluids and mineralization types. Traditionally, the behavior of metals in seafloor hydrothermal systems have been investigated by integrating results from laboratory studies, theoretical models, mineralogy and fluid and mineral chemistry. Isotope ratios of various metals and metalloids, such as Fe, Cu, Zn, Se, Cd and Sb have recently provided new approaches for the study of seafloor hydrothermal systems. Despite these initial investigations, the cause of the isotopic variability of these elements remains poorly constrained. We have little understanding of the isotope variations between vent types (black or white smokers) as well as the influence of source rock composition (basalt, felsic or ultrabasic rocks) and alteration types. Here, I will review and present new results of metal isotope systematics of seafloor hydrothermal systems, in particular: (1) determination of empirical isotope fractionation factors for Zn, Fe and Cu-isotopes through isotopic analysis of mono-mineralic sulfide grains lining the internal chimney wall in contact with hydrothermal fluid; (2) comparison of Fe- and Cu-isotope signatures of vent fluids from mid- oceanic and back-arc hydrothermal fields, spanning wide ranges of pH, temperature, metal concentrations and contributions of magmatic fluids enriched in SO2. Ultimately, the use of complementary non-traditional stable isotope systems may help identify and constrain the complex interactions between fluids,minerals, and organisms in seafloor hydrothermal systems.

  6. Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Upton, P.; MacKenzie, D.J.

    2009-01-01

    Orogenic hydrothermal systems in the South Island of New Zealand were active during Mesozoic and late Cenozoic collisional deformation and metamorphism of greywacke/schist terranes. Observations on the currently active mountain-building environment yield insights on processes occurring in the upper 5-15 km of the crust, and observations on an adjacent lithologically identical exhumed ancient mountain belt provide information on processes at 10-20 km in the crust. Hydrothermal fluids were mainly derived from metamorphic dehydration reactions and/or circulating topographically driven meteoric water in these mountain belts. Three geochemically and mineralogically different types of hydrothermal alteration and vein mineralisation occurred in these orogenic belts, and gold enrichment (locally economic) occurred in some examples of each of these three types. The first type of alteration involved fluids that were in or near chemical equilibrium with their greenschist facies host rocks. Fluid flow was controlled by discontinuous fractures, and by microshears and grain boundaries in host rocks, in zones from metres to hundreds of metres thick. Vein and alteration mineralogy was similar to that of the host rocks, and included calcite and chlorite. The second type of alteration occurred where the fluids were in distinct disequilibrium with the host rocks. Fracture permeability was important for fluid flow, but abundant host rock alteration occurred as well. The alteration zones were characterised by decomposition of chlorite and replacement by ankeritic carbonate in zones up to tens of metres thick. The mineralising fluid was deep-sourced and initially rock-equilibrated, with some meteoric input. The third type of mineralisation was controlled almost exclusively by fracture permeability, and host rock alteration was minor (centimetre scale). This mineralisation type commonly involved calcite and chlorite as vein and alteration minerals, and mineralisation fluids had a major

  7. Fraktalnist deformational relief polycrystalline aluminum

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич

    2006-02-01

    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  8. Hydrothermal Extraction of Microalgae Fatty Acid Influences Hydrochar Phytotoxicity

    Directory of Open Access Journals (Sweden)

    Christopher J. Ennis

    2017-08-01

    Full Text Available Hydrothermal carbonization (HTC of microalgae biomass for the production of triacylglycerides is a potentially valuable enabling technology for a waste water treatment-based integrated biorefinery. Here, HTC was used to treat Phaeodactylum tricornutum lipid-rich biomass producing a solid hydrochar from the surface of which adsorbed lipids were removed by hexane extraction following filtration of the solid hydrochar from the process liquid product. Approximately 7% of the input biomass was recovered and transesterified for qualitative and quantitative GC-MS analysis for fatty acid methyl esters. Transesterifiable lipids accounted for 94% of the material recovered by solvent extraction. Of the transesterified fatty acids (FA analyzed, the majority was monounsaturated (40.4% and saturated (37% C-16 FA. Other FA detected included saturated and monounsaturated C-18 (7.7 and 1.9% and saturated C-14 (5.3% and C-25 (1.5%. Thermal analysis (TGA/DSC of the hydrochar in air showed calorific values of 10.6 MJ kg−1 (delipidated hydrochar and 3.1 MJ kg−1 (non-delipidated hydrochar with the latter exhibiting the presence of volatalizable components. Germination trials were conducted to assess the potential phytotoxic effects of these hydrochars. Delipidated hydrochar showed a germination index of 73% suggesting the presence of some phytotoxicity. Non-delipidated hydrochar showed high germination index results of 102% (unground and 126% (ground. Taken together with the observation of reduced root hair proliferation in these two test conditions, this suggests the operation of a second phytotoxic effect that is removed by delipidation.

  9. Ground water '89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings of the 5th biennial symposium of the Ground Water Division of the Geological Society of South Africa are presented. The theme of the symposium was ground water and mining. Papers were presented on the following topics: ground water resources; ground water contamination; chemical analyses of ground water and mining and its influece on ground water. Separate abstracts were prepared for 5 of the papers presented. The remaining papers were considered outside the subject scope of INIS

  10. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  11. Hydrothermal Alteration Promotes Humic Acid Formation in Sediments: A Case Study of the Central Indian Ocean Basin

    Science.gov (United States)

    Sarma, Nittala S.; Kiran, Rayaprolu; Rama Reddy, M.; Iyer, Sridhar D.; Peketi, A.; Borole, D. V.; Krishna, M. S.

    2018-01-01

    Anomalously high concentrations of humic-rich dissolved organic matter (DOM) in extant submarine hydrothermal vent plumes traveled far from source are increasingly being reported. This DOM, able to mobilize trace metals (e.g., Fe2+) has been hypothesized as originating from organic matter produced by thermogenic bacteria. To eliminate a possible abiogenic origin of this DOM, study is required of well-preserved organic compounds that can be attributed to thermogenic bacteria. The Central Indian Ocean Basin (CIOB) is part of a diffuse plate boundary and an intraplate deformation zone. Coarse fraction (>63 µ) characteristics, mineralogy, magnetic susceptibility, and geochemistry were examined in sediments of a core raised close to a north-south fracture zone near the Equator. Two horizons of distinctly brown-colored sediments were shown as hydrothermally altered from their charred fragments and geochemistry (CaCO3, Corg, Ti/Al, Al/(Al + Fe + Mn), Sr/Ba, Mg/Li, Mn micronodules, Fe/Mn). We examined whether humic substances were preserved in these sediments, and if so whether their carbon isotope distribution would support their hydrothermal origin. Alkali extraction of sediments afforded humic acids (HA) in yields up to 1.2% in the brown sediments. The remaining portions of the core had nil or low concentrations of HA. The carbon of hydrothermal HA is isotopically heavier (average δ13C, ˜ -16.3‰) compared to nonhydrothermal HA (-18.1‰), suggesting that they were probably formed from organic matter that remained after elimination of lighter carbon enriched functional groups during diagenesis. The results provide compelling evidence of HA formation from lipids originating from thermogenic bacteria.

  12. High spin states and the competition of spherical and strongly deformed shapes in the A = 70 to 80 region

    International Nuclear Information System (INIS)

    Hamilton, J.H.; Ramayya, A.V.; Piercey, R.B.

    1982-01-01

    A wide variety of collective band structures are seen in Ge to Sr nuclei to make this an important new testing ground for nuclear models. These include bands built on coexisting and competing near-spherical and deformed shapes, γ vibrational bands and multiple positive and negative parity bands. Ground state bands in Ge and Kr but not 78 80 Sr are crossed at the 8 + to 12 + levels. Gaps in the Nilsson levels for both N and Z = 38 at large deformation lead to large ground state deformation in Kr and Sr around N = 38. The crossing of rotation aligned bands based on (g/sub 9/2/) 2 configuration are correlated with the ground state deformations. A second high spin crossing is seen in 74 Kr. Measured g factors in 68 Ge yield a two-quasineutron structure for the 8 2 + state. 30 references

  13. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    Science.gov (United States)

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pair approximation and the OAI mapping in the deformed limit

    International Nuclear Information System (INIS)

    Yoshinaga, N.

    1989-01-01

    The pair subspaces - the SD- and SDG-subspaces - are constructed. Eigenstates for a quadrupole force and transition rates for a quadrupole operator are calculated in the single j-shell-model. The SDG-pair approximation is found to be excellent in describing the low-spin states of the ground bands compared to exact shell-model calculations. The fermion interactions are mapped onto the corresponding boson ones using the mapping procedure by Otsuka, Arima and Iachello (OAI). The OAI approximation in zeroth-order fails in reproducing the ground-state energies in the deformed limit. (orig.)

  15. Advances in survey monitoring and deformation analysis of dams

    International Nuclear Information System (INIS)

    Teskey, W.F.; Biacs, Z.; Ingraham, T.J.

    1989-01-01

    Survey monitoring is an important method of determining the deformation behavior of structures such as dams. The deformation survey monitoring method used by Alberta Environment is designed to be able to detect horizontal movement in the order of 1.5 cm and vertical movement in the order of 0.5 cm. Using computer simulation, reference and observation points are varied to enable precisions of less than 1 cm at a 95% confidence level. Reference network points are pillars of 20 cm diameter steel pipe driven to refusal, which protrude above ground level to a comfortable instrument height of 1.5 m. Object points are 3 m long, 5 cm diameter steel pipes fitted with a helix base and drilled flush with ground level. Data processing is completely automated from data collection to preparation of report plots, using a microcomputer. If suitable procedures are followed, trigonometric (trig) leveling can replace spirit leveling in deformation surveys. Trig leveling can be used to determine heights of inaccessible points impossible to determine with spirit leveling, and allows totally automated data collection. An example is provided of application of the technique to deformation analysis of the Paddle River Dam situated north of Edmonton. 8 refs., 3 figs

  16. Base hydrolysis and hydrothermal processing of PBX-9404

    International Nuclear Information System (INIS)

    Flesner, R.L.; Spontarelli, T.; Dell'Orco, P.C.; Sanchez, J.A.

    1994-01-01

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. They also examined products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide

  17. Hydrothermal Carbonization of Seaweed For Advanced Biochar Production

    Directory of Open Access Journals (Sweden)

    Prakoso Tirto

    2018-01-01

    Full Text Available Seaweed such as Eucheuma Cottonii is a potential source of biomaterialIts high moisture content makes it suitable for hydrothermal conversion process since it doesn’t need to utilize dry feedstock. The aim of this study is to convert the biomass of red seaweed Eucheuma Cottonii into alternative fuels and high value biomaterials using hydrothermal process. The hydrothermal process seaweed Eucheuma Cottonii produce two types of products, liquid product and char (solid. This research focus on the char product. The char from hydrothermal process was then activated using the tubular furnace. The yield for activated char is 7.5 % and results of SEM analysis of activated char showed the formation of allotropes carbon include carbon micro spheres, carbon micro fibres and graphene. These structures have encountered application in a wide range of technological fields, such as adsorption, catalysis, hydrogen storage or electronics.

  18. Origin of Abiotic Methane in Submarine Hydrothermal Systems

    Science.gov (United States)

    Seewald, J. S.; German, C. R.; Grozeva, N. G.; Klein, F.; McDermott, J. M.; Ono, S.; Reeves, E. P.; Wang, D. T.

    2018-05-01

    Results of recent investigations into the chemical and isotopic composition of actively venting submarine hydrothermal fluids and volatile species trapped in fluid inclusions will be discussed in the context of processes responsible for abiotic CH4 formation.

  19. Mapping hydrothermal altered mineral deposits using Landsat 7 ...

    Indian Academy of Sciences (India)

    the colour composite, band ratio, principal component analysis, least square ... to hydrothermal alteration mapping using multi- ..... ing of the two images is also achieved by PCA; .... remote sensing perspective; 2nd edn, Prentice Hall Series.

  20. Whole Algae Hydrothermal Liquefaction: 2014 State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Snowden-Swan, Lesley J.; Anderson, Daniel; Hallen, Richard T.; Schmidt, Andrew J.; Albrecht, Karl O.; Elliott, Douglas C.

    2014-07-30

    This report describes the base case yields and operating conditions for converting whole microalgae via hydrothermal liquefaction and upgrading to liquid fuels. This serves as the basis against which future technical improvements will be measured.

  1. Load frequency control of three area interconnected hydro-thermal ...

    African Journals Online (AJOL)

    user

    hydrothermal reheat power system by the use of Artificial Intelligent and PI Controller. ... form of Kinetic Energy stored in generator prime mover set, which results the ... A control strategy is needed that not only maintains constancy of frequency ...

  2. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. ... (solar power); wind (wind power) and the rest, thermal power and ... probability of a system performing its function adequately for ...

  3. Radionuclides in hydrothermal systems as indicators of repository conditions

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1990-11-01

    Hydrothermal systems in tuffaceous and older sedimentary rocks contain evidence of the interaction of radionuclides in fluids with rock matrix minerals and with materials lining fractures, in settings somewhat analogous to the candidate repository site at Yucca Mountain, NV. Earlier studies encompassed the occurrences of U and Th in a ''fossil'' hydrothermal system in tuffaceous rock of the San Juan Mountains volcanic field, CO. More recent and ongoing studies examine active hydrothermal systems in calderas at Long Valley, CA and Valles, NM. At the Nevada Test Site, occurrences of U and Th in fractured and unfractured rhyolitic tuff that was heated to simulate the introduction of radioactive waste are also under investigation. Observations to date suggest that U is mobile in hydrothermal systems, but that localized reducing environments provided by Fe-rich minerals and/or carbonaceous material concentrate U and thus attenuate its migration. 11 refs., 6 figs., 1 tab

  4. Facile template-free hydrothermal synthesis and microstrain ...

    Indian Academy of Sciences (India)

    Administrator

    2009), solar cells (Yuan et al 2011), transparent elec- trodes (Kim et al ... increasing the peak width, intensity and shifting the 2θ peak position. ... Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods. 399.

  5. Deformation of a Volcanic Edifice by Pore Pressurization: An Analog Approach

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.

    2015-12-01

    Volcanic flank destabilization, preceded by pressurization-induced surface deformation or weakening, presents a significant hazard at stratovolcanoes with ample supply of magmatic volatiles or preexisting hydrothermal systems as in Bezymianny- and Bandai-type eruptions, respectively. Deformation is also an important sign of the nature of unrest at large calderas such as Long Valley, USA. Previous studies of volcanic inflation have focused primarily on the role of ascending magma. Relatively few studies have centered on surface deformation caused by pressurization from other volcanic fluids, including exsolved volatiles and pressurized hydrothermal systems. Most investigations of pore-pressurization have focused on numerical modelling of pore pressure transients. In analog experiments presented here, pore-filling fluids are injected into the base of a damp sand medium without exceeding dike propagating pressures, simulating the pressurization and bulk-permeable flow of volatile fluids through volcanic systems. The experiments examine surface deformation from a range of source depths and pressures as well as edifice geometries. 3D imaging is possible through use of the Microsoft® Kinect™ sensor, which allows for the generation of high-resolution, high frame rate, lab-scale Digital Elevation Models (DEMs). After initial processing to increase signal-to-noise ratio, surface deformation is measured using the DEM time-series generated by the Kinect™. Analysis of preliminary experiments suggests that inflation is possible up to approx. 10 % of pressure source depth. We also show that the Kinect™ sensor is useful in analog volcanological studies, an environment to which it is well-suited.

  6. On infinitesimal conformai deformations of surfaces

    Directory of Open Access Journals (Sweden)

    Юлия Степановна Федченко

    2014-11-01

    Full Text Available A new form of basic equations for conformai deformations is found. The equations involve tensor fields of displacement vector only. Conditions for trivial deformations as well as infinitesimal conformai deformations are studied.

  7. Volcano-hydrothermal energy research at white Island, New Zealand

    International Nuclear Information System (INIS)

    Allis, R.G.

    1994-01-01

    This paper presents the White Island (New Zealand) volcano-hydrothermal research project by the N.Z. DSIR and the Geological Survey of Japan, which is investigating the coupling between magmatic and geothermal systems. The first phase of this investigation is a geophysical survey of the crater floor of the andesite volcano, White Island during 1991/1992, to be followed by drilling from the crater floor into the hydrothermal system. (TEC). 4 figs., 8 refs

  8. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    Science.gov (United States)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  9. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  10. Quantifying the Erlenmeyer flask deformity

    Science.gov (United States)

    Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P

    2012-01-01

    Objective Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher′s disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Methods Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. Results A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher′s disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Conclusion Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher′s disease to be undertaken. PMID:22010032

  11. Design of bridges against large tectonic deformation

    Science.gov (United States)

    Anastasopoulos, I.; Gazetas, G.; Drosos, V.; Georgarakos, T.; Kourkoulis, R.

    2008-12-01

    The engineering community has devoted much effort to understanding the response of soil-structure systems to seismic ground motions, but little attention to the effects of an outcropping fault offset. The 1999 earthquakes of Turkey and Taiwan, offering a variety of case histories of structural damage due to faulting, have (re)fueled the interest on the subject. This paper presents a methodology for design of bridges against tectonic deformation. The problem is decoupled in two analysis steps: the first (at the local level) deals with the response of a single pier and its foundation to fault rupture propagating through the soil, and the superstructure is modeled in a simplified manner; and the second (at the global level) investigates detailed models of the superstructure subjected to the support (differential) displacements of Step 1. A parametric study investigates typical models of viaduct and overpass bridges, founded on piles or caissons. Fixed-head piled foundations are shown to be rather vulnerable to faulting-induced deformation. End-bearing piles in particular are unable to survive bedrock offsets exceeding 10 cm. Floating piles perform better, and if combined with hinged pile-to-cap connections, they could survive much larger offsets. Soil resilience is beneficial in reducing pile distress. Caisson foundations are almost invariably successful. Statically-indeterminate superstructures are quite vulnerable, while statically-determinate are insensitive (allowing differential displacements and rotations without suffering any distress). For large-span cantilever-construction bridges, where a statically determinate system is hardly an option, inserting resilient seismic isolation bearings is advantageous as long as ample seating can prevent the deck from falling off the supports. An actual application of the developed method is presented for a major bridge, demonstrating the feasibility of design against tectonic deformation.

  12. Magnetic Sensor for Detection of Ground Vehicles Based on Microwave Spin Wave Generation in Ferrite Films

    National Research Council Canada - National Science Library

    Slavin, A; Tiberkevich, V; Bankowski, E

    2006-01-01

    We propose to use the magnetic signatures, formed either by the residual magnetization or by deformation of the local Earth's magnetic field by large metal masses, for distant detection of ground vehicles...

  13. Deformation twinning in a creep-deformed nanolaminate structure

    International Nuclear Information System (INIS)

    Hsiung, Luke L

    2010-01-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti 3 Al-(α 2 ) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α 2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  14. Deformation twinning in a creep-deformed nanolaminate structure

    Science.gov (United States)

    Hsiung, Luke L.

    2010-10-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti3Al-(α2) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  15. Deforming tachyon kinks and tachyon potentials

    International Nuclear Information System (INIS)

    Afonso, Victor I.; Bazeia, Dionisio; Brito, Francisco A.

    2006-01-01

    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed

  16. Impact of hydrothermalism on the ocean iron cycle.

    Science.gov (United States)

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-28

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  17. Biosphere in 3.5 Ga submarine hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro [Tokyo Univ. (Japan). Dept. of Earth Science and Astronomy

    2003-04-01

    Abundant organic matter (kerogen) was identified in {approx}3.5 Ga hydrothermal silica dikes from the North Pole area in the Pilbara craton, Western Australia. The silica dikes developed in the uppermost 1000 m of the ancient oceanic crust. Thus, they would have been deposited in the 3.5 Ga sub-seafloor hydrothermal system. The carbon and nitrogen isotopic compositions of the kerogen were analyzed in this study. Their highly {sup 13}C-depleted isotopic compositions ({delta}{sup 13}C = -38 to -33 per mille) strongly suggest that they are originally derived from biologically produced organic matter. The remarkable similarity of the {delta}{sup 13}C values between the kerogen and modern hydrothermal vent organisms may suggest that the kerogen was derived from chemoautotrophic organisms. This idea is also consistent with their nitrogen isotopic compositions ({delta}{sup 15}N = -4 to +4 per mille). The silica dikes consist mainly of fine-grained silica with minor pyrite and sphalerite. These mineral assemblages indicate that the silica dike was deposited from relatively low-temperature (probably less than 150degC) reducing hydrothermal fluid. Thus, anaerobic thermophilic/hyperthermophilic organisms could have survived in the hydrothermal fluid, which formed the silica dikes. Therefore, it is plausible that a chemoautotrophic-based biosphere (possibly methanogenesis) probably existed in the Early Archean sub-seafloor hydrothermal system. (author)

  18. Effect of hydrothermal treatment of coal on its associative structure

    Energy Technology Data Exchange (ETDEWEB)

    Shui Heng-fu; Wang Zhi-cai; Wang Gao-qiang; Niu Min-feng [Anhui University of Technology, Maanshan (China). School of Chemistry & Chemical Engineering

    2006-10-15

    4 bituminous coals with different ranks were thermally and hydrothermally treated under different conditions, and the raw and treated coals were extracted with carbon disulfide/N-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent (1:1 by volume). It is found that the extraction yields of the thermal or hydrothermal treated coals at proper conditions increase in different extent. The increments of extraction yields for hydrothermal treated coals are higher than those of thermal treated coals. FT-IR shows that the adsorption peaks at 3410 cm{sup -1} attributed to OH group for the hydrothermal treated coals decrease, suggesting the dissociation of the coal aggregation structure due to the breakage of hydrogen bonds, resulting in the increase of extraction yields for the treated coals. For higher rank coal, the removal of minerals and the dissociation of {pi}-cation association after hydrothermal treatment of coal may be responsible for the increase of extraction yield. In addition, the mechanism of hydrothermal treatment of coal was discussed. 15 refs., 2 figs., 5 tabs.

  19. Hydrothermal processing of inorganic components of Hanford tank sludge

    International Nuclear Information System (INIS)

    Oldenborg, R.; Buelow, S.J.; Dyer, R.B.; Anderson, G.; Dell'Orco, P.C.; Funk, K.; Wilmanns, E.; Knutsen, K.

    1994-09-01

    Hydrothermal Processing (HTP) is an attractive approach for the treatment of Hanford tank sludge. Hydrothermal Processing refers to a waste treatment technique in which an aqueous waste stream is fed through a chemical reactor at elevated temperatures and pressures to effect desired chemical transformations and separations. Transformations such as organic and nitrate destruction and sludge reformulation have been demonstrated at pilot scale using simulants of Hanford tank wastes. At sufficiently high temperatures and pressures organics and nitrates are destroyed in seconds, producing primarily simple products such as CO 3 2- , H 2 O, N 2 , N 2 O and OH - , and sludges are reduced in volume and reformulated as rapid settling oxides amenable to downstream separation, or in some cases reformulated as soluble products. This report describes the hydrothermal dissolution of chromium and chromium oxide; the hydrothermal oxidation of chromium with nitrate; hydrothermal dissolution of aluminum-bearing sludges; the solubility of aluminum compounds in caustic hydrothermal media; experimental techniques for the study of solubility and phase behavior; optical cell studies of basic aluminate solution solubilities; and high temperature, low density salt solubility in the packed-bed flow apparatus

  20. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry.

    Science.gov (United States)

    Deamer, David; Damer, Bruce

    2017-09-01

    Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth-hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface-and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus-Hydrothermal vents-Hydrothermal fields-Origin of life. Astrobiology 17, 834-839.

  1. Hydrothermal influence on nearshore sediments of Kos Island, Aegean Sea

    Science.gov (United States)

    Megalovasilis, Pavlos; Godelitsas, Athanasios

    2015-04-01

    The Kos-Nisyros volcanic centre is a long-active, Plio-Pleistocene magmatic system in the subduction zone along the easternmost edge of the active Hellenic volcanic arc in the Aegean Sea. Although today there are signs of relative quiescence in volcanic activity, active onshore fumaroles and shallow-sea hydrothermal vents persist on, amongst others, the island of Kos. The present study explores the large-scale imprint of hydrothermally sourced heavy metals and nutrients on the island's coastal marine environment, based on geochemical data collected in September 2007 from hydrothermal waters and surficial nearshore sediments (Kos is severely influenced by ongoing submarine hydrothermal activity, and confirm that shallow-water sediment Fe, Mn, Zn and Pb levels are substantially higher than those of other islands along the Hellenic volcanic arc, and even exceed those of some deep-water hydrothermal vents in other world regions. Evidently, there may be significant metallic sulphide deposits of hydrothermal origin at depth beneath Kos.

  2. Metal mobilisation in hydrothermal sediments at the TAG Hydrothermal Field (MAR, 26°N)

    Science.gov (United States)

    Dutrieux, A. M.; Lichtschlag, A.; Martins, S.; Barriga, F. J.; Petersen, S.; Murton, B. J.

    2017-12-01

    Metalliferous sediments in the vicinity of hydrothermal systems are enriched in base metals, but few studies have addressed their potential as mineral resources. These metalliferous sediments have been accumulated by different processes and reflect modifications of the primary mineral deposits by: oxidation of the chimney materials, in situ precipitation of low-temperature minerals and mass wasting. To understand the post-formation processes in metalliferous sediments, we investigated sub-seafloor metal mobilisation in different geological environments. This presentation focuses on the TAG Hydrothermal Field (Mid-Atlantic Ridge, 26°N) and explores sediment and pore water compositions using ICP-MS and ICP-OES. We use reactive transport modelling to interpret the degree of metal remobilisation and to identify the most important geochemical reactions in the different sediments. The pore water concentrations measured in sediments above inactive sulphide mounds present constant major elements composition that indicates this environment is dominated by complete exchange with seawater. The sediments, that are mainly composed of hematite and goethite formed during the oxidation of sulphides, have low Cu concentrations (sediments and capped by more recent sediment slumping. In the depositionary channels, pore waters show metal concentrations affected by diagenesis and redox-sensitive metals are released at depth (e.g. Mn2+ and Cu2+). The leaching of the primary sulphides (e.g. deprecated grains of chalcopyrite), and metal mobilisation lead to an enrichment of Cu and Zn at shallower depth. Here, some stratigraphic horizons scavenge metallic cations back into solid phases and form Mn-oxide crusts between 30 and 60 cm, in which Cu concentrations also increase. Our results demonstrate that metal mobilisation differs depending on the geological environment and their related accumulation processes, causing the absence of Cu on the top of inactive hydrothermal mounds but enriched

  3. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    Science.gov (United States)

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ω-deformed SYM on a Gibbons-Hawking space

    International Nuclear Information System (INIS)

    Dey, Anindya

    2015-01-01

    We study an N=2, pure U(1) SYM theory on a Gibbons-Hawking space Ω-deformed using the U(1) isometry. The resultant 3D theory, after an appropriate “Nekrasov-Witten" change of variables, is asymptotically equivalent to the undeformed theory at spatial infinity but differs from it as one approaches the NUT centers which are fixed points under the U(1) action. The 3D theory may be recast in the form of a generalized hyperkähler sigma model introduced in http://dx.doi.org/10.1007/JHEP04(2014)158 where the target space is a one-parameter family of hyperkähler spaces. The hyperkähler fibers have a preferred complex structure which for the deformed theory depends on the parameter of Ω-deformation. The metric on the hyperkähler fiber can be reduced to a standard metric on ℂ×T 2 with the modular parameter of the torus depending explicitly on the Ω-deformation parameter. The contribution of the NUT center to the sigma model path integral, expected to be a holomorphic section of a holomorphic line bundle over the target space on grounds of supersymmetry, turns out to be a Jacobi theta function in terms of certain “deformed" variables.

  5. Utilization of InSAR differential interferometry for surface deformation detection caused by mining

    International Nuclear Information System (INIS)

    Yang, F.; Shao, Y.; Guichen, M.

    2010-01-01

    In China, the surface deformation of ground has been a significant geotechnical problem as a result of cracks in the ground surface, collapsing of house, and subsidence of roads. A powerful technology for detecting surface deformation in the ground is differential interferometry using synthetic aperture radar (INSAR). The technology enables the analysis from different phase of micro-wave between two observed data by synthetic aperture radar (SAR) of surface deformation of ground such as ground subsidence, land slide, and slope failure. In January 2006, the advanced land observing satellite was launched by the Japan Aerospace Exploration Agency. This paper presented an analytical investigation to detect ground subsidence or change caused by mining, overuse of ground water, and disaster. Specifically, the paper discussed the INSAR monitoring technology of the mine slope, including INSAR data sources and processing software; the principle of synthetic aperture radar interferometry; principles of differential SAR interferometry; and INSAR technology to slope monitoring of the Haizhou open pit mine. The paper also discussed the Haizhou strip mine side slope INSAR monitoring results and tests. It was concluded that the use of synthetic aperture radar interferometer technique was the optimal technique to provide three-dimensional spatial information and minimal change from ground surface by spatial remote sensing device. 18 refs., 5 figs.

  6. Utilization of InSAR differential interferometry for surface deformation detection caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Liaoning Technical Univ., Fuxin (China). School of Geomatics; Shao, Y. [Liaoning Technical Univ., Fuxin (China). Dept. of Foreign Language; Guichen, M. [Gifu Univ., Yanagido, Gifu (Japan). Dept. of Civil Engineering

    2010-07-01

    In China, the surface deformation of ground has been a significant geotechnical problem as a result of cracks in the ground surface, collapsing of house, and subsidence of roads. A powerful technology for detecting surface deformation in the ground is differential interferometry using synthetic aperture radar (INSAR). The technology enables the analysis from different phase of micro-wave between two observed data by synthetic aperture radar (SAR) of surface deformation of ground such as ground subsidence, land slide, and slope failure. In January 2006, the advanced land observing satellite was launched by the Japan Aerospace Exploration Agency. This paper presented an analytical investigation to detect ground subsidence or change caused by mining, overuse of ground water, and disaster. Specifically, the paper discussed the INSAR monitoring technology of the mine slope, including INSAR data sources and processing software; the principle of synthetic aperture radar interferometry; principles of differential SAR interferometry; and INSAR technology to slope monitoring of the Haizhou open pit mine. The paper also discussed the Haizhou strip mine side slope INSAR monitoring results and tests. It was concluded that the use of synthetic aperture radar interferometer technique was the optimal technique to provide three-dimensional spatial information and minimal change from ground surface by spatial remote sensing device. 18 refs., 5 figs.

  7. Chemistry of a serpentinization-controlled hydrothermal system at the Lost City hydrothermal vent field

    Science.gov (United States)

    Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.

    2003-12-01

    The Lost City Hydrothermal Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of hydrothermal solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-hydrothermal fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate

  8. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  9. Light at deep sea hydrothermal vents

    Science.gov (United States)

    Van Dover, Cindy Lee; Cann, J. R.; Cavanaugh, Colleen; Chamberlain, Steven; Delaney, John R.; Janecky, David; Imhoff, Johannes; Tyson, J. Anthony

    We usually think of the bottom of the sea as a dark environment, lit only by flashes of bioluminescent light. Discovery of light associated with geothermal processes at deep sea hydrothermal vents forces us to qualify our textbook descriptions of the seafloor as a uniformly dark environment. While a very dim glow emitted from high temperature (350°) vents (black smokers) at mid-oceanic ridge spreading centers has been documented [Van Dover et al, 1988], the source of this light and its role, if any, in the evolution and adaptation of photobiochemical processes have yet to be determined. Preliminary studies indicate that thermal radiation alone may account for the “glow” ]Smith and Delaney, 1989] and that a novel photoreceptor in shrimp-colonizing black smoker chimneys may detect this “glow” [Van Dover et al., 1989; Pelli and Chamberlain, 1989]. A more controversial question, posed by C. L. Van Dover, J. R. Cann, and J. R. Delaney at the 1993 LITE Workshop at the Woods Hole Oceanographic Institution in Massachusetts, is whether there may be sufficient light of appropriate wavelengths to support geothermally driven photosynthesis by microorganisms.

  10. Enceladus as a hydrothermal water world

    Science.gov (United States)

    Postberg, Frank; Hsu, Hsiang-Wen; Sekine, Yasuhito

    2014-05-01

    The composition of both salty ice grains and nanometer-sized stream particles emitted from Enceladus and measured by Cassini-CDA require require liquid water as a source. Moreover, they provide strong geochemical constraints for their origin inside the active moon. Most stream particles are composed of silica, a unique indicator as nano-silica would only form under quite specific conditions. With high probability on-going or geological recent hydrothermal activity at Enceladus is required to generate these particles. Inferred reaction temperatures at Enceladus ocean floor lie between 100 and 350 °C in a slightly alkaline environment (pH 7.5 - 10.5). The inferred high temperatures at great depth might require heat sources other than tides alone, such as remaining primordial heat and/or serpentinization of a probably porous rocky core. Long-term laboratory experiments were carried out to simulate the conditions at the Enceladus rock/water interface using the constraints derived from CDA measurements. These experiments allow insights into a rock/water chemistry which severely constrains the formation history of the moon and substantially enhances its astrobiological potential. Together with recent results from other Cassini instruments a conclusive picture of Enceladus as an active water world seems to be in reach.

  11. Hydrothermal evolution of repository groundwaters in basalt

    International Nuclear Information System (INIS)

    Apps, J.A.

    1984-01-01

    Groundwaters in the near field of a radioactive waste repository in basalt will change their chemical composition in response to reactions with the basalt. These reactions will be promoted by the heat generated by the decaying waste. It is important to predict both the rate and the extent of these reactions, and the secondary minerals produced, because the alteration process controls the chemical environment affecting the corrosion of the canister, the solubility and complexation of migrating radionuclides, the reactivity of the alteration products to radionuclides sorption, and the porosity and permeability of the host rock. A comprehensive review of the literature leads to the preliminary finding that hydrothermally altering basalts in geothermal regions such as Iceland lead to a secondary mineralogy and groundwater composition similar to that expected to surround a repository. Furthermore, laboratory experiments replicating the alteration conditions approximate those observed in the field and expected in a repository. Preliminary estimates were made of the rate of hydration and devitrification of basaltic glass and the zero-order dissolution rate of basaltic materials. The rates were compared with those for rhyolitic glasses and silicate minerals. Preliminary calculations made of mixed process alteration kinetics, involving pore diffusion and surface reaction suggest that at temperatures greater than 150 0 C, alteration proceeds so rapidly as to become pervasive in normally fractured basalt exposed to higher temperatures in the field. 70 references

  12. Hydrothermal Liquefaction Treatment Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-12

    Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios received increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.

  13. Deformation of Copahue volcano: Inversion of InSAR data using a genetic algorithm

    Science.gov (United States)

    Velez, Maria Laura; Euillades, Pablo; Caselli, Alberto; Blanco, Mauro; Díaz, Jose Martínez

    2011-04-01

    The Copahue volcano is one of the most active volcanoes in Argentina with eruptions having been reported as recently as 1992, 1995 and 2000. A deformation analysis using the Differential Synthetic Aperture Radar technique (DInSAR) was performed on Copahue-Caviahue Volcanic Complex (CCVC) from Envisat radar images between 2002 and 2007. A deformation rate of approximately 2 cm/yr was calculated, located mostly on the north-eastern flank of Copahue volcano, and assumed to be constant during the period of the interferograms. The geometry of the source responsible for the deformation was evaluated from an inversion of the mean velocity deformation measurements using two different models based on pressure sources embedded in an elastic homogeneous half-space. A genetic algorithm was applied as an optimization tool to find the best fit source. Results from inverse modelling indicate that a source located beneath the volcano edifice at a mean depth of 4 km is producing a volume change of approximately 0.0015 km/yr. This source was analysed considering the available studies of the area, and a conceptual model of the volcanic-hydrothermal system was designed. The source of deformation is related to a depressurisation of the system that results from the release of magmatic fluids across the boundary between the brittle and plastic domains. These leakages are considered to be responsible for the weak phreatic eruptions recently registered at the Copahue volcano.

  14. Constraining volcanic inflation at Three Sisters Volcanic Field in Oregon, USA, through microgravity and deformation modeling

    Science.gov (United States)

    Zurek, Jeffrey; William-Jones, Glyn; Johnson, Dan; Eggers, Al

    2012-10-01

    Microgravity data were collected between 2002 and 2009 at the Three Sisters Volcanic Complex, Oregon, to investigate the causes of an ongoing deformation event west of South Sister volcano. Three different conceptual models have been proposed as the causal mechanism for the deformation event: (1) hydraulic uplift due to continual injection of magma at depth, (2) pressurization of hydrothermal systems and (3) viscoelastic response to an initial pressurization at depth. The gravitational effect of continual magma injection was modeled to be 20 to 33 μGal at the center of the deformation field with volumes based on previous deformation studies. The gravity time series, however, did not detect a mass increase suggesting that a viscoelactic response of the crust is the most likely cause for the deformation from 2002 to 2009. The crust, deeper than 3 km, in the Three Sisters region was modeled as a Maxwell viscoelastic material and the results suggest a dynamic viscosity between 1018 to 5 × 1019 Pa s. This low crustal viscosity suggests that magma emplacement or stall depth is controlled by density and not the brittle ductile transition zone. Furthermore, these crustal properties and the observed geochemical composition gaps at Three Sisters can be best explained by different melt sources and limited magma mixing rather than fractional crystallization. More generally, low intrusion rates, low crustal viscosity, and multiple melt sources could also explain the whole rock compositional gaps observed at other arc volcanoes.

  15. M theory on deformed superspace

    Science.gov (United States)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  16. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  17. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau; Lin, Chun-Ho

    2017-01-01

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a

  18. Capillary Deformations of Bendable Films

    KAUST Repository

    Schroll, R. D.; Adda-Bedia, M.; Cerda, E.; Huang, J.; Menon, N.; Russell, T. P.; Toga, K. B.; Vella, D.; Davidovitch, B.

    2013-01-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical

  19. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  20. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  1. Deformation at Lava Lake Volcanoes: Lessons from Karthala

    Science.gov (United States)

    Biggs, J.; Rust, A.; Owens, C.

    2014-12-01

    To remain hot, permanent lava lakes require a continuous connection to a magma reservoir. Depending on the state of the conduit, changes in magma pressure could result in changes in the lake level (hydraulic head) or be accommodated elastically leading to surface deformation. Observing deformation is therefore key to understanding the plumbing system associated with lava lakes. However, the majority of the world's lava lakes lie in difficult socio-economic or remote locations meaning that there are few ground-based observations, and it is often necessary to rely on satellite imagery. Karthala volcano experienced a sequence of eruptions in April 2005, Nov 2005, May 2006 and Jan 2007. The first 3 took place at the Choungou Chahale crater, which typically contains either a water or lava lake; the last formed a new pit crater to the north. Satellite thermal imagery (Hirn et al, 2008) does not show an anomaly during the first eruption, which had a phreatomagmatic component, but large thermal anomalies, associated with an ephemeral lava lake were detected during the Nov 2005 and May 2006 eruptions. The final eruption produced a smaller anomaly attributed to a minor lava flow. Here we present InSAR observations from 2004-2010. We find no significant deformation associated with the first three eruptions, but the January 2007 eruption was associated with ~25 cm of deformation near the volcano's summit, characteristic of a dyke intrusion aligned with the northern rift zone. We also observe an unusual pattern deformation along the coast which may be attributed to rapid settling of soft sediment or recent volcanic deposits triggered by seismic activity. We propose that the first eruption cleared the reservoir-summit connection and interacted with the water in Choungou Chahale. The following eruptions formed a lava lake, but without causing deformation. By the final eruption, the conduit had become blocked and magma intruded along the rift zone causing deformation but no

  2. Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring

    OpenAIRE

    Martín Furones, Ángel Esteban; Anquela Julián, Ana Belén; DIMAS PAGÉS, ALEJANDRO; Cos-Gayón López, Fernando José

    2015-01-01

    Structural failures (bridge or building collapses) and geohazards (landslides, ground subsi- dence or earthquakes) are worldwide problems that often lead to significant economic and loss of life. Monitoring the deformation of both natural phenomena and man-made struc- tures is a major key to assessing structural dynamic responses. Actually, this monitoring process is under real-time demand for developing warning and alert systems. One of the most used techniques for real-time deformation m...

  3. Organic geochemistry of deep ground waters and radionuclide-partitioning experiments under hydrothermal conditions

    International Nuclear Information System (INIS)

    Means, J.L.; Maest, A.S.; Crear, D.A.

    1983-07-01

    This report summarizes research on two separate tasks. In the first task, the organic geochemistry of groundwater samples from the Permian Basin of Texas, the Paradox Basin of Utah, and the Nevada Test Site has been characterized. Acidic compounds were derivatized and analyzed using gas chromatography-mass spectrometry, and the molecular weight characteristics of the organic constituents present were determined using dialysis and gel filtration chromatography. The total organic carbon contents of the groundwaters from the Permian and Paradox Basins are very high, ranging from 12 to 76 mg/l. Although the specific organic composition varies from aquifer to aquifer, the organic components of these groundwaters appear to be composed principally of low molecular weight polar compounds derived from local hydrocarbon deposits. The total organic carbon contents of the groundwaters from the Nevada Test Site are very low, ranging from 0.1 to 0.6 mg/l. Here the principal organic species appear to be humic compounds and low molecular weight fatty acids. In the second task the adsorption of certain radionuclides by geologic substrates has been measured in the presence and absence of organic complexing agents from 25 to 250 0 C. Major findings include the following: (a) in some cases the extent of adsorption of Sr, Co, and U actually increases with increasing temperature; (b) oxalic acid either has little effect on the adsorption or actually increases the adsorption of Cs and Sr by kaolinite, illite, and montmorillonite; (c) the thermal degradation of natural organic compounds in the near-field environment may be significant; and (d) the adsorption of U, Co, and Sr, and Cs onto kaolinite and montmorillonite reaches a steady state in less than an hour at 25 0 C, 1 atm. 10 figures, 4 tables

  4. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging.

    Science.gov (United States)

    Cattani-Lorente, Maria; Durual, Stéphane; Amez-Droz, Michel; Wiskott, H W Anselm; Scherrer, Susanne S

    2016-03-01

    The purpose of the study was to assess the hydrothermal resistance of a translucent zirconia with two clinical relevant surface textures by means of accelerated tests (LTD) and to compare predicted monoclinic fractions with experimental values measured after two years aging at 37°C. Polished (P) and ground (G) specimens were subjected to hydrothermal degradation by exposure to water steam at different temperatures and pressures. The t-m phase transformation was quantified by grazing incidence X-ray diffraction (GIXDR). The elastic modulus and hardness before- and after LTD were determined by nanoindentation. G specimens presented a better resistance to hydrothermal degradation than P samples. Activation energies of 89 and 98kJ/mol and b coefficients of 2.0×10(-5) and 1.8×10(-6) were calculated for P and G samples respectively. The coefficients were subsequently used to predict transformed monoclinic fractions at 37°C. A good correlation was found between the predicted values and the experimental data obtained after aging at 37°C during 2 years. Hydrothermal degradation led to a significant decrease of the elastic moduli and hardness in both groups. The dependency of the t-m phase transformation rate on temperature must be determined to accurately predict the hydrothermal behavior of the zirconia ceramics at oral temperatures. The current prevailing assumption, that 5h aging at 134°C corresponds to 15-20 years at 37°C, will underestimate the transformed fraction of the translucent ceramic at 37°C. In this case, the mechanical surface treatment influences the ceramic's transformability. While mild grinding could potentially retard the hydrothermal transformation, polishing after occlusal adjustment is recommended to prevent wear of the antagonist teeth and maintain structural strength. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    Science.gov (United States)

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.

  6. Deformable Registration for Longitudinal Breast MRI Screening.

    Science.gov (United States)

    Mehrabian, Hatef; Richmond, Lara; Lu, Yingli; Martel, Anne L

    2018-04-13

    MRI screening of high-risk patients for breast cancer provides very high sensitivity, but with a high recall rate and negative biopsies. Comparing the current exam to prior exams reduces the number of follow-up procedures requested by radiologists. Such comparison, however, can be challenging due to the highly deformable nature of breast tissues. Automated co-registration of multiple scans has the potential to aid diagnosis by providing 3D images for side-by-side comparison and also for use in CAD systems. Although many deformable registration techniques exist, they generally have a large number of parameters that need to be optimized and validated for each new application. Here, we propose a framework for such optimization and also identify the optimal input parameter set for registration of 3D T 1 -weighted MRI of breast using Elastix, a widely used and freely available registration tool. A numerical simulation study was first conducted to model the breast tissue and its deformation through finite element (FE) modeling. This model generated the ground truth for evaluating the registration accuracy by providing the deformation of each voxel in the breast volume. An exhaustive search was performed over various values of 7 registration parameters (4050 different combinations of parameters were assessed) and the optimum parameter set was determined. This study showed that there was a large variation in the registration accuracy of different parameter sets ranging from 0.29 mm to 2.50 mm in median registration error and 3.71 mm to 8.90 mm in 95 percentile of the registration error. Mean registration errors of 0.32 mm, 0.29 mm, and 0.30 mm and 95 percentile errors of 3.71 mm, 5.02 mm, and 4.70 mm were obtained by the three best parameter sets. The optimal parameter set was applied to consecutive breast MRI scans of 13 patients. A radiologist identified 113 landmark pairs (~ 11 per patient) which were used to assess registration accuracy. The results demonstrated that

  7. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    International Nuclear Information System (INIS)

    Sugano, Motoyuki; Katoh, Harumi; Komatsu, Akihiro; Kobayashi, Hiroshi; Okado, Kohta; Kakuta, Yusuke; Hirano, Katsumi

    2012-01-01

    It is well known that over 0.8 kg kg −1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg −1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L −1 and 0.52 mol L −1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L −1 to 3.33 mol L −1 . It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L −1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg -1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  8. Effect of hydrothermal treatment on some properties of Shenhua coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi-cai; Shui Heng-fu; Zhang De-xiang; Gao Jin-sheng [East China University of Science and Technology, Shanghai (China). College of Resource and Environmental Engineering

    2006-10-15

    Effects of hydrothermal treatment on swelling, extraction and liquefaction behavior of Shenhua coal were studied through analyses of element content, ash content, volatile content and IR spectrum of treated coal. The results indicate that hydrogenation of coal is distinctly carried out in the process of hydrothermal pre-treatment and the hydrogen content of treated coal is more than that of raw coal. The contents of ash and volatile matters of treated coal are lower than those of raw coal. With the increase of treatment temperature the volatile content of the hydrothermal treated coal decreases and the ash content of treated coal increases. CO{sub 2} is main gas product and unvaries with the temperature changing, whereas CO and CH{sub 4} are formed when the temperature is above 250{sup o}C and increase with the temperature during hydrothermal treatment. Hydrothermal treatment is not in favor of coal swelling and the swelling ratio of treated coal decreases with the increase of treatment temperature. The swelling ratio of extraction residue by CS{sub 2}/NMP mixed solvent in NMP solvent is lower than that of the corresponding raw coal. The CS{sub 2}/NMP mixed solvent extraction yields of coal treated at appropriate temperature are higher than that of raw coal, but the extraction yields of treated coal obtained by n-hexane, toluene and THF successive Soxhelt extraction are lower. Hydrothermal treatment at 250-300{sup o}C can increase the conversion of treated coal in direct hydro-liquefaction. The gas + oil yield of treated coal is lower than that of raw coal and the preasphaltene yield of treated coal is much higher. IR spectra of treated coals show that the forms of non-covalent bonds are changed by hydrothermal treatment, and the hydrolysis of ester and ether bonds and the pyrolysis of aromatic side chains also maybe occur at high treatment temperature. 21 refs., 3 figs., 4 tabs.

  9. Estimation of Surface Deformation due to Pasni Earthquake Using SAR Interferometry

    Science.gov (United States)

    Ali, M.; Shahzad, M. I.; Nazeer, M.; Kazmi, J. H.

    2018-04-01

    Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.

  10. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    Science.gov (United States)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  11. Deformation inside and outside the nuclear molecules

    International Nuclear Information System (INIS)

    Cseh, J.; Algora, A.; Antonenko, N.V.; Jolos, R.V.; Hess, P.O.

    2006-01-01

    the cluster state and the state of the parent nucleus. In these considerations the deformation of the clusters are taken into account, too. Therefore, we investigate the interrelation of the quadrupole deformation and the clusterization from two aspects. On the one side, looking at the possible clusterizations of states with different quadrupole deformation of the parent nucleus, we tend to detemine the deformation dependence of various cluster-configurations. On the other side, we can investigate the role of the cluster-deformation inside the cluster (or molecular) nuclear states; i.e. figure out, how the relative orientation of deformed clusters can build up different states of the same nucleus. Here we report on the application of the above methods to the 40Ca nucleus, which is investigated also in the framework of the Antisymmetrised Molecular Dynamics (AMD) [?], thus we can compare our results with those of a fully microscopic treatment. This is interesting for the special case of the 40Ca nucleus, too, at the same time, however, it can be considered as a test of our method, which we apply also to heavy nuclei [?]. We have considered the binary clusterizations of the ground, superdeformed and hyperdeformed states of 40Ca [?]. The clusters were considered to have deformation, like the free nuclei, and we applied no constraint for their relative orientation. As shown in Figure 1, the ground state prefers asymmetric cluster-configurations, the hyperdeformed state symmetric ones, while the superdeformed state shows more complicated picture. It is interesting, that the 12C+28Si clusterization is allowed in each states. Nevertheless, they correspond to different geometrical configurations, since the relative orientation of the deformed clusters are different. From the energetic viewpoint this clusterization is in half-way between the energetically most preferred and least preferred alpha-like configurations. The energetic preference turned out to be similar from the

  12. Effects of process parameters on hydrothermal carbonization

    Science.gov (United States)

    Uddin, Md. Helal

    In recent years there has been increased research activity in renewable energy, especially upgrading widely available lignicellulosic biomass, in a bid to counter the increasing environmental concerns related with the use of fossil fuels. Hydrothermal carbonization (HTC), also known as wet torrefaction or hot water pretreatment, is a process for pretreatment of diverse lignocellulosic biomass feedstocks, where biomass is treated under subcritical water conditions in short contact time to produce high-value products. The products of this process are: a solid mass characterized as biochar/biocoal/biocarbon, which is homogeneous, energy dense, and hydrophobic; a liquid stream composed of five and six carbon sugars, various organic acids, and 5-HMF; and a gaseous stream, mainly CO2. A number of process parameters are considered important for the extensive application of the HTC process. Primarily, reaction temperature determines the characteristics of the products. In the solid product, the oxygen carbon ratio decreases with increasing reaction temperature and as a result, HTC biochar has the similar characteristics to low rank coal. However, liquid and gaseous stream compositions are largely correlated with the residence time. Biomass particle size can also limit the reaction kinetics due to the mass transfer effect. Recycling of process water can help to minimize the utility consumption and reduce the waste treatment cost as a result of less environmental impact. Loblolly pine was treated in hot compressed water at 200 °C, 230 °C, and 260 °C with 5:1 water:biomass mass ratio to investigate the effects of process parameters on HTC. The solid product were characterized by their mass yields, higher heating values (HHV), and equilibrium moisture content (EMC), while the liquid were characterized by their total organic carbon content and pH value.

  13. Analysis of building deformation in landslide area using multisensor PSInSAR™ technique.

    Science.gov (United States)

    Ciampalini, Andrea; Bardi, Federica; Bianchini, Silvia; Frodella, William; Del Ventisette, Chiara; Moretti, Sandro; Casagli, Nicola

    2014-12-01

    Buildings are sensitive to movements caused by ground deformation. The mapping both of spatial and temporal distribution, and of the degree of building damages represents a useful tool in order to understand the landslide evolution, magnitude and stress distribution. The high spatial resolution of space-borne SAR interferometry can be used to monitor displacements related to building deformations. In particular, PSInSAR technique is used to map and monitor ground deformation with millimeter accuracy. The usefulness of the above mentioned methods was evaluated in San Fratello municipality (Sicily, Italy), which was historically affected by landslides: the most recent one occurred on 14th February 2010. PSInSAR data collected by ERS 1/2, ENVISAT, RADARSAT-1 were used to study the building deformation velocities before the 2010 landslide. The X-band sensors COSMO-SkyMed and TerraSAR-X were used in order to monitor the building deformation after this event. During 2013, after accurate field inspection on buildings and structures, damage assessment map of San Fratello were created and then compared to the building deformation velocity maps. The most interesting results were obtained by the comparison between the building deformation velocity map obtained through COSMO-SkyMed and the damage assessment map. This approach can be profitably used by local and Civil Protection Authorities to manage the post-event phase and evaluate the residual risks.

  14. Shape coexistence in 16O, 72Se, and 240Pu: a comprehensive view based on the dynamic deformation model

    International Nuclear Information System (INIS)

    Kumar, K.

    1980-01-01

    The dynamic deformation model has been improved and applied to calculate the potential energies of deformation and the collective spectra of 16 O, 72 Se, and 240 Pu. A comprehensive view based on the dynamics of five-dimensional quadrupole motion is provided for three seemingly different types of shape coexistence: spherical (Op - Oh) and deformed (2p - 2h) shapes in 16 O, spherical and deformed minima in the potential energy surface of 72 Se, ground-state shape and the fission-isomer shape of 240 Pu. 5 figures, 3 tables

  15. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  16. Interactive Character Deformation Using Simplified Elastic Models

    NARCIS (Netherlands)

    Luo, Z.

    2016-01-01

    This thesis describes the results of our research into realistic skin and model deformation methods aimed at the field of character deformation and animation. The main contributions lie in the properties of our deformation scheme. Our approach preserves the volume of the deformed object while

  17. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  18. Bilateral cleft lip nasal deformity

    Directory of Open Access Journals (Sweden)

    Singh Arun

    2009-01-01

    Full Text Available Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it′s management both at the time of cleft lip repair

  19. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    Science.gov (United States)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  20. Characterizing the dynamics of hydrothermal systems with muon tomography: the case of La Soufrière de Guadeloupe

    Science.gov (United States)

    Rosas-Carbajal, M.; Marteau, J.; Tramontini, M.; de Bremond d Ars, J.; Le Gonidec, Y.; Carlus, B.; Ianigro, J. C.; Deroussi, S.; Komorowski, J. C.; Gibert, D.

    2017-12-01

    Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the study of the Earth's subsurface. Muon measurements yield a radiography of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Long-term measurements allow to infer density changes by tracking the associated variations in the muon flux. In the context of volcanic hydrothermal systems, this approach helps to characterize zones of steam formation, condensation, water infiltration and storage. We present results of imaging the La Soufrière de Guadeloupe dome and shallow active hydrothermal system with a network of muon telescopes viewing the dome from different positions around its base. First, we jointly invert the muon radiographies of the different telescopes with gravity data to obtain a three-dimensional density model of the lava dome. The model reveals an extended low density region where the hydrothermal system is most active. We then analyze the dynamics of the hydrothermal system from long-term measurements (more than 2 years of almost non-interrupted acquisition) with 5 simultaneous muon telescopes. We identify a periodicity of 1-2 months in the density increase/decrease in the most active zones below fumaroles and acid boiling ponds. Our simultaneous-muon telescope strategy provides constraints on the three-dimensional location of the density changes and an improved quantification of the associated mass flux changes. We compare the temporal trends acquired by the different muon telescopes to time-series of rainfall on the summit recharge area as well as to ground temperature profiles in the vicinity of thermal anomalies and high-discharge summit fumaroles.

  1. Deformation of second and third quantization

    Science.gov (United States)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  2. Duration of hydrothermal treatment and peeling of 'Murcott' tangor

    Directory of Open Access Journals (Sweden)

    Ana Luiza Pinheiro

    2011-12-01

    Full Text Available Hydrothermal treatment facilitates the peeling of 'Pera' sweet orange fruit and does not alter its quality. The aim of this work was to adapt the technology of peeling for the use of hydrothermal treatment in 'Murcott' tangor and to evaluate its influence in the CO2 production and the physicochemical, microbiologic and sensorial characteristics of fruits. The peeling time, the yield of marketable fruits and the internal temperature of fruits during the treatment were also evaluated. The hydrothermal treatment consisted of placing the fruits in a water-bath at 50 ºC for 5, 10, 15, 20, 25 and 30 min. Fruits were peeled by first opening a gap in the peduncle region with a knife and then manually removing the flavedo and albedo. Fruits were stored at 5 ºC for six days. Hydrothermal treatment caused changes in the fruits' CO2 production for only the first few hours after processing. Internal fruit temperature after 30 min of treatment reached 35 ºC. There were no changes in the physicochemical and microbiologic characteristics of the fruits. The treatment did not change the flavor, improved the fruits' appearance, decreased the peeling time of the treated fruits by 57 % and increased the yield of marketable fruits. In conclusion, the hydrothermal treatment accomplished from 5 to 30 min at 50 ºC can be used as part of the peeling process for 'Murcott' tangor.

  3. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    Science.gov (United States)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  4. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.

    1995-06-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  5. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz

    2010-01-01

    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  6. Electrical Subsurface Grounding Analysis

    International Nuclear Information System (INIS)

    J.M. Calle

    2000-01-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements

  7. Stochastic deformation of a thermodynamic symplectic structure

    OpenAIRE

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  8. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  9. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  10. The ground based plan

    International Nuclear Information System (INIS)

    1989-01-01

    The paper presents a report of ''The Ground Based Plan'' of the United Kingdom Science and Engineering Research Council. The ground based plan is a plan for research in astronomy and planetary science by ground based techniques. The contents of the report contains a description of:- the scientific objectives and technical requirements (the basis for the Plan), the present organisation and funding for the ground based programme, the Plan, the main scientific features and the further objectives of the Plan. (U.K.)

  11. Constructivist Grounded Theory?

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD, Hon. PhD

    2012-06-01

    Full Text Available AbstractI refer to and use as scholarly inspiration Charmaz’s excellent article on constructivist grounded theory as a tool of getting to the fundamental issues on why grounded theory is not constructivist. I show that constructivist data, if it exists at all, is a very, very small part of the data that grounded theory uses.

  12. Communication, concepts and grounding

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, F.

    2015-01-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain

  13. Structural Design and Response in Collision and Grounding

    DEFF Research Database (Denmark)

    Brown, Alan; Tikka, Kirsi; Daidola, John C.

    2000-01-01

    on Collision and Grounding of Ships, to be held in Copenhagen, July 1-3,2001, will also present and discuss many of the results of this panel and other related research. The paper discusses four primary areas of panel work: collision and grounding models, data, accident scenarios and design applications....... A probabilistic framework for assessing the crashworthiness of ships is presented. Results obtained from various grounding and collision models are compared to validating cases and to each other. Data necessary for proper model validation and probabilistic accident scenario development are identified. Deformable...

  14. Application of cultural algorithm to generation scheduling of hydrothermal systems

    International Nuclear Information System (INIS)

    Yuan Xiaohui; Yuan Yanbin

    2006-01-01

    The daily generation scheduling of hydrothermal power systems plays an important role in the operation of electric power systems for economics and security, which is a large scale dynamic non-linear constrained optimization problem. It is difficult to solve using traditional optimization methods. This paper proposes a new cultural algorithm to solve the optimal daily generation scheduling of hydrothermal power systems. The approach takes the water transport delay time between connected reservoirs into consideration and can conveniently deal with the complicated hydraulic coupling simultaneously. An example is used to verify the correctness and effectiveness of the proposed cultural algorithm, comparing with both the Lagrange method and the genetic algorithm method. The simulation results demonstrate that the proposed algorithm has rapid convergence speed and higher solution precision. Thus, an effective method is provided to solve the optimal daily generation scheduling of hydrothermal systems

  15. Magmatic gases in fluid inclusions from hydrothermal ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Graney, J.; Kesler, S. (University of Michigan, MI (United States))

    1992-08-31

    In this study, magmatic gases in fluid inclusions from hydrothermal ore deposits have been analyzed. The gas composition of fluid inclusions from a wide range of extinct hydrothermal systems as represented by different ore deposit types was determined using a quadrupole mass spectrometer. Most samples used for analysis consisted of transparent quartz, although barite, jasperoid, opal, sphalerite, pyrite, chalcopyrite, and bornite were also analyzed. H2O was the dominant volatile component in fluid inclusions, and composed 95-99 mole percent of the inclusion fluid. CO2 comprised most of the remaining volatile component and the other gases were generally present in amounts smaller than 0.1 mole percent. Analysis from porphyry and acid-sulfate deposits, in which magmatic gas contributions are considered to be largest, plotted closest to the fumarolic gas compositions. These inclusion fluid volatile component comparisons have shown that there are systematic differences in inclusion fluids from different hydrothermal systems. 9 refs., 3 figs.

  16. On the origin of whewellite in a hydrothermal uranium deposit

    International Nuclear Information System (INIS)

    Galimov, Eh.M.; Tugarinov, A.I.; Nikitin, A.A.

    1975-01-01

    Whewellite (calcium oxalate - Ca(COO) 2 H 2 O) is one of the rare minerals that occur principally in rocks of sedimentary origin. The authors of the article explained the origin of whewellite selected on a hydrothermal uranium deposit. To do this, they investigated the isotope composition of the carbon contained in the mineral and also of the carbon in the accompanying calcite and carbonaceous material. It was established that hydrothermal whewellite is markedly different in isotope composition from diagenetic whewellite. The whewellite investigated is a product of oxidation-reduction reactions that have taken place in a hydrothermal solution and in which organic substances are involved. U 6+ was reduced and precipitated in the form of pitchblende and the oxidized forms of organic substances including oxalic acid, were formed, with subsequent precipitation of the oxalate in the form of whewellite. (V.Ya.)

  17. Hydrothermal metallurgy for recycling of slag and glass

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Yoshikawa, Takeshi; Hirai, Nobumitsu; Katsuyama, Shigeru

    2009-01-01

    The authors have applied hydrothermal reactions to develop recycling processing of slag or glass. As an example, under hydrothermal conditions such as 200 300 deg. C and 30 40MPa with H 2 O, powders made of glass can be sintered to become solidified glass materials containing about 10mass% H 2 O. When the glass containing H 2 O is heated again under normal pressure, the glass expands releasing H 2 O to make porous microstructure. H 2 O starts to emit just above the glass transition temperature. Therefore, when we have a glass with low glass transition temperature, we can make low temperature foaming glass. The SiO 2 -Na 2 O-B 2 O 3 glass is a candidate to be such a foaming glass. In this paper, we describe our recent trial on the fabrication of the low temperature foaming glass by using hydrothermal reaction.

  18. Versatile hydrothermal synthesis of one-dimensional composite structures

    Science.gov (United States)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  19. Hydrothermal carbonization of biomass waste under low temperature condition

    Directory of Open Access Journals (Sweden)

    Putra Herlian Eriska

    2018-01-01

    Full Text Available In this paper, the use of banana peel for energy purposes was investigated. Banana peel is a lignocellulosic waste since it is the most widely produced and consumed fruit in Indonesia. Among the others, hydrothermal carbonization (HTC was chosen as alternative themochemical process, suitable for high moisture biomass. Through a 1 L stirred reactor, hydrothermal treatments were performed under low temperature condition (190, 210 and 230 °C, residence times (30 and 60 min, and biomass to water ratio (1:3, 1:5, and 1:10. Three of product were collected from the process with primary material balance. Solid phase (hydrochar was evaluated in terms of calorific value, proximate and ultimate analysis. The results suggested that the hydrothermal carbonization of banana peel gave high heating value (HHV of 20.09 MJ/kg for its char after dried naturally.

  20. Hydrothermal Disintegration and Extraction of Different Microalgae Species

    Directory of Open Access Journals (Sweden)

    Michael Kröger

    2018-02-01

    Full Text Available For the disintegration and extraction of microalgae to produce lipids and biofuels, a novel processing technology was investigated. The utilization of a hydrothermal treatment was tested on four different microalgae species (Scenedesmus rubescens, Chlorella vulgaris, Nannochloropsis oculata and Arthorspira platensis (Spirulina to determine whether it has an advantage in comparison to other disintegration methods for lipid extraction. It was shown, that hydrothermal treatment is a reasonable opportunity to utilize microalgae without drying and increase the lipid yield of an algae extraction process. For three of the four microalgae species, the extraction yield with a prior hydrothermal treatment elevated the lipid yield up to six times in comparison to direct extraction. Only Scenedesmus rubescens showed a different behaviour. Reason can be found in the different cell wall of the species. The investigation of the differences in cell wall composition of the used species indicate that the existence of algaenan as a cell wall compound plays a major role in stability.

  1. Process characteristics for microwave assisted hydrothermal carbonization of cellulose.

    Science.gov (United States)

    Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming

    2018-07-01

    The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Fractionation of boron isotopes in Icelandic hydrothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.K.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive δ 1 1B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive δ 1 1B than the high temperature systems, indicating fractionation of boron due to absorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems. (author). 14 refs., 2 figs

  3. Th-Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the Central Alps, Switzerland

    Science.gov (United States)

    Bergemann, C.; Gnos, E.; Berger, A.; Whitehouse, M.; Mullis, J.; Wehrens, P.; Pettke, T.; Janots, E.

    2017-04-01

    Th-Pb age dating of zoned hydrothermal monazite from alpine-type fissures/clefts is a powerful tool for constraining polyphase deformation at temperatures below 350°C and presents an alternative to K/Ar and 40Ar/39Ar dating techniques for dating brittle tectonics. This study considers the relationship between cleft orientations in ductile shear zones and cleft mineral crystallization during subsequent brittle overprinting. In the Grimsel area, located in the Aar Massif of the Central Alps, horizontal clefts formed during a primary thrust dominated deformation, while younger and vertically oriented clefts developed during secondary strike-slip movements. The change is due to a switch in orientation between the principal stress axes σ2 and σ3. The transition is associated with monazite crystallization and chloritization of biotite at around 11.5 Ma. Quartz fluid inclusion data allow a link between deformation stages and temperatures to be established and indicate that primary monazite crystallization occurred in both cleft systems at 300-350°C. While cleft monazite crystallization ceases at 11 Ma in inactive shear zones, monazite growth, and/or dissolution-reprecipitation continues under brittle deformation conditions in vertical clefts during later deformation until 7 Ma. This younger shear zone activity occurs in association with dextral strike-slip movement of the Rhone-Simplon fault system. With the exception of varying Th/U values correlated with the degree of oxidation, there is only limited compositional variation in the studied cleft monazites.

  4. Making Deformable Template Models Operational

    DEFF Research Database (Denmark)

    Fisker, Rune

    2000-01-01

    for estimation of the model parameters, which applies a combination of a maximum likelihood and minimum distance criterion. Another contribution is a very fast search based initialization algorithm using a filter interpretation of the likelihood model. These two methods can be applied to most deformable template......Deformable template models are a very popular and powerful tool within the field of image processing and computer vision. This thesis treats this type of models extensively with special focus on handling their common difficulties, i.e. model parameter selection, initialization and optimization....... A proper handling of the common difficulties is essential for making the models operational by a non-expert user, which is a requirement for intensifying and commercializing the use of deformable template models. The thesis is organized as a collection of the most important articles, which has been...

  5. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  6. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1982-01-01

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  7. Foam rheology at large deformation

    Science.gov (United States)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  8. Coastal submarine hydrothermal activity off northern Baja California

    International Nuclear Information System (INIS)

    Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D.; Young, D.R.

    1978-01-01

    In situ observations of submarine hydrothermal activity have been conducted in Punta Banda. Baja Califronia, Mexico, approximately 400 m from the coast and at a seawater depth of 30 m. The hydrothermal activity occurs within the Agua Blanca Fault, a major transverse structure of Northern Baja California. Hot springwater samples have been collected and analyzed. Marked differences exist between the submarine hot springwater, local land hot springwaters, groundwater, and local seawater. SiO 2 , HCO 3 , Ca, K, Li, B, Ba, Rb, Fe, Mn, As, and Zn are enriched in the submarine hot springwater, while Cl, Na, So 4 2 , Mg, Cu, Ni, Cd, Cr, and perhaps Pb are depleted in relation to average and local seawater values. Very high temperatures, at the hydrothermal vents, have been recorded (102 0 C at 4-atm pressure). Visible gaseous emanations rich in CH 4 and N 2 coexist with the hydrothermal solutions. Metalliferous deposits, pyrite, have been encountered with high concentrations of Fe, S, Si, Al, Mn, Ca, and the volatile elements As, Hg, Sb, and Tl, X ray dispersive spectrometry (1500-ppm detection limit). X ray diffraction, and scanning electron microscopy of the isolated metalliferous precipitates indicate that the principal products of precipitation are pyrite and gypsum accompanied by minor amounts of amorphous material containing Si and Al. Chemical analyses and XRD of the reference control rocks of the locality (volcanics) versus the hydrothermally altered rocks indicate that high-temperature and high-pressure water-rock interactions can in part explain the water chemistry characteristics of the submarine hydrothermal waters. Their long residence time, the occurrence of an extensive marine sedimentary formation, their association with CH 4 and their similarities with connate waters of oil and gas fields suggest that another component of their genesis could be in cation exchange reactions within deeply buried sediments of marine origin

  9. Exploration Method Development for hydrothermal plume hunting by XCTD

    Science.gov (United States)

    Kitagawa, Y.; Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Nakano, J.; Asakawa, E.; Sumi, T.

    2017-12-01

    J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed hydrothermal plume hunting by XCTD (eXpendables Conductivity, Temperature and Depth). We applied this method to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. Generally, hydrothermal plume exploration has been by ship mounted with MBES (Multi Beam Echo Sounder) or AUV with sound anomaly observation. However, these methods have to charter the sophisticated ship costly. On the other hand, throw-in type water quality meters (eg. XCTD and XBT) can be low-cost and easily operable. Moreover, that can make a quick look at seawater temperature and conductivity even in rough waters.Firstly, we confirmed XCTD probes position on the seafloor by ROV mounted deep-sea high vision camera. As a result of the test, probes swept downstream about 40 m in horizontal distance from throwing positions with about 1,600m in water depth. Following the previous test results, we had performed to the next test that confirmed detection range of hydrothermal plume at the chimney of North Mound in Izena Cauldron, so we had caught anomaly of seawater temperature and conductivity successfully which could be possibly derived from hydrothermal activities. Although averaged seawater temperature at a depth of 1500 m or more was about 3.95 degrees C, near the chimney was about 4.93 degrees C. The temperature anomalies originated from the hydrothermal plumes could be distributed at most 30m in horizontal distance and became smaller away from the chimney. Moreover, temperature anomaly mass of sea water tended to move upward in depth with distance away from the

  10. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    Science.gov (United States)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  11. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  12. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han

    2014-07-22

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  13. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...... parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness...

  14. Nucleon deformation from lattice QCD

    International Nuclear Information System (INIS)

    Tsapalis, A.

    2008-01-01

    The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)

  15. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han; Yang, Yongliang; Wonka, Peter

    2014-01-01

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  16. Formal connections in deformation quantization

    DEFF Research Database (Denmark)

    Masulli, Paolo

    The field of this thesis is deformation quantization, and we consider mainly symplectic manifolds equipped with a star product. After reviewing basics in complex geometry, we introduce quantization, focusing on geometric quantization and deformation quantization. The latter is defined as a star...... characteristic class, and that formal connections form an affine space over the derivations of the star products. Moreover, if the parameter space for the family of star products is contractible, we obtain that any two flat formal connections are gauge equivalent via a self-equivalence of the family of star...

  17. Nanodisturbances in deformed Gum Metal

    International Nuclear Information System (INIS)

    Gutkin, Mikhail Yu.; Ishizaki, Toshitaka; Kuramoto, Shigeru; Ovid'ko, Ilya A.

    2006-01-01

    Systematic experiments have been performed to characterize defect structures in deformed Gum Metal, a special titanium alloy with high strength, low Young's modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. Results from high-resolution transmission electron microscopy characterization reveal nanodisturbances (planar nanoscopic areas of local shear) as typical elements of defect structures in deformed Gum Metal. A theoretical model is suggested describing nanodisturbances as nanoscale dipoles of non-conventional partial dislocations with arbitrary, non-quantized Burgers vectors. It is shown theoretically that the homogeneous generation of nanodisturbances is energetically favorable in Gum Metal, where they effectively carry plastic flow

  18. Integration of hydrothermal-energy economics: related quantitative studies

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    A comparison of ten models for computing the cost of hydrothermal energy is presented. This comparison involved a detailed examination of a number of technical and economic parameters of the various quantitative models with the objective of identifying the most important parameters in the context of accurate estimates of cost of hydrothermal energy. Important features of various models, such as focus of study, applications, marked sectors covered, methodology, input data requirements, and output are compared in the document. A detailed sensitivity analysis of all the important engineering and economic parameters is carried out to determine the effect of non-consideration of individual parameters.

  19. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control

    Science.gov (United States)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.

    2017-12-01

    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  20. Evidence for recent hydrothermal activity in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; ShyamPrasad, M.; Gupta, S.M.; Charan, S.N.

    fracturing provide conditions conducive to hydrothermal discharge and accumulation of the resultant hydrothermal precipitates (Alt et al., 1987). Bonatti and Joensuu (1966) were among the first to report on the occurrence of spongy iron-oxides from a...-S fracture zones, traverse at 73”E, 76”3O’E and 79”E in the basin (Kamesh Raju, 1993). Many seamounts dot the floor of the CIB (Mukhopadhyay and Khadge, 1990; Kamesh Raju et al., 1993), some of them having caldera (Kodagali, 1991; Kodagali, pers. commun...

  1. Hydrothermal liquefaction of microalgae's for bio oil production

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, Harvind; Deng, Shuguang

    process water for algae cultivation. GC-MS, elemental analyzer, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-oil yield of 46% was obtained on Nannochloropsis salina at 310 °C...... and 107 bar. For Spirulina platensis algae sample, the highest bio-oil yield is 38% at 350 °C and 195 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins...

  2. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Directory of Open Access Journals (Sweden)

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  3. Rigour and grounded theory.

    Science.gov (United States)

    Cooney, Adeline

    2011-01-01

    This paper explores ways to enhance and demonstrate rigour in a grounded theory study. Grounded theory is sometimes criticised for a lack of rigour. Beck (1993) identified credibility, auditability and fittingness as the main standards of rigour for qualitative research methods. These criteria were evaluated for applicability to a Straussian grounded theory study and expanded or refocused where necessary. The author uses a Straussian grounded theory study (Cooney, In press) to examine how the revised criteria can be applied when conducting a grounded theory study. Strauss and Corbin (1998b) criteria for judging the adequacy of a grounded theory were examined in the context of the wider literature examining rigour in qualitative research studies in general and grounded theory studies in particular. A literature search for 'rigour' and 'grounded theory' was carried out to support this analysis. Criteria are suggested for enhancing and demonstrating the rigour of a Straussian grounded theory study. These include: cross-checking emerging concepts against participants' meanings, asking experts if the theory 'fit' their experiences, and recording detailed memos outlining all analytical and sampling decisions. IMPLICATIONS FOR RESEARCH PRACTICE: The criteria identified have been expressed as questions to enable novice researchers to audit the extent to which they are demonstrating rigour when writing up their studies. However, it should not be forgotten that rigour is built into the grounded theory method through the inductive-deductive cycle of theory generation. Care in applying the grounded theory methodology correctly is the single most important factor in ensuring rigour.

  4. Dynamic behavior of Kilauea Volcano and its relation to hydrothermal systems and geothermal energy

    Science.gov (United States)

    Kauhikaua, Jim; Moore, R.B.; ,

    1993-01-01

    Exploitation of hydrothermal systems on active basaltic volcanoes poses some unique questions about the role of volcanism and hydrothermal system evolution. Volcanic activity creates and maintains hydrothermal systems while earthquakes create permeable fractures that, at least temporarily, enhance circulation. Magma and water, possibly hydrothermal water, can interact violently to produce explosive eruptions. Finally, we speculate on whether volcanic behavior can be affected by high rates of heat extraction.

  5. Deformations of the Almheiri-Polchinski model

    Energy Technology Data Exchange (ETDEWEB)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2017-03-31

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS{sub 2} metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  6. Genifuel Hydrothermal Processing Bench Scale Technology Evaluation Project (WE&RF Report LIFT6T14)

    Science.gov (United States)

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C ...

  7. Closed-form critical earthquake response of elastic-plastic structures on compliant ground under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-01-01

    Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  8. The mechanism and characteristics of ground movement and strata failure caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Tianquan, L. (Central Coal Mining Research Institute, Beijing (China))

    1988-01-01

    Analyzes strata movement and ground subsidence caused by underground coal mining. Five types of strata failure during and after underground coal mining are comparatively evaluated: caving zone, fractured zone, bending zone, arched caving, bending with continuous ground movement, sinkhole formation. Effects of coal seam thickness, dip angle, coal panel dimensions, rock stratification and mechanical properties on dimensions and distribution of failure zones in rock strata are investigated. Strata movement during level and steep seam mining is comparatively evaluated. Causes of continuous ground surface deformation and discontinuous deformation are analyzed. Rock strata properties and water influx, which influence sinkhole hazards, are discussed.

  9. Deformable Models for Eye Tracking

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær

    2005-01-01

    A deformable template method for eye tracking on full face images is presented. The strengths of the method are that it is fast and retains accuracy independently of the resolution. We compare the me\\$\\backslash\\$-thod with a state of the art active contour approach, showing that the heuristic...

  10. Orbita - Anatomy, development and deformities

    International Nuclear Information System (INIS)

    Hartmann, K.M.; Reith, W.; Golinski, M.; Schroeder, A.C.

    2008-01-01

    The development of the structures of the human orbita is very complex, but understanding the development makes it easier to understand normal anatomy and dysplasia. The following article first discusses the embryonic development of the eye structures and then presents the ''normal'' radiological anatomy using different investigation techniques and the most common deformities. (orig.) [de

  11. Deformations of topological open strings

    NARCIS (Netherlands)

    Hofman, C.; Ma, Whee Ky

    Deformations of topological open string theories are described, with an emphasis on their algebraic structure. They are encoded in the mixed bulk-boundary correlators. They constitute the Hochschild complex of the open string algebra - the complex of multilinear maps on the boundary Hilbert space.

  12. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  13. Deformation Driven Alloying and Transformation

    Science.gov (United States)

    2015-03-03

    process is a repeated deformation and welding or folding of particles or layers that allows for strain levels in excess of 100 as shown in Fig.1. The...complete transformation yielded a duplex product of metastable BCC and FCC solid solutions. Another form of mechanochemical transduction is

  14. Deformation mechanisms of nanotwinned Al

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang [Texas A & M Univ., College Station, TX (United States)

    2016-11-10

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  15. Deformation mechanisms of nanotwinned Al

    International Nuclear Information System (INIS)

    Zhang, Xinghang

    2016-01-01

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  16. Treatment of hallux valgus deformity.

    Science.gov (United States)

    Fraissler, Lukas; Konrads, Christian; Hoberg, Maik; Rudert, Maximilian; Walcher, Matthias

    2016-08-01

    Hallux valgus deformity is a very common pathological condition which commonly produces painful disability. It is characterised as a combined deformity with a malpositioning of the first metatarsophalangeal joint caused by a lateral deviation of the great toe and a medial deviation of the first metatarsal bone.Taking the patient's history and a thorough physical examination are important steps. Anteroposterior and lateral weight-bearing radiographs of the entire foot are crucial for adequate assessment in the treatment of hallux valgus.Non-operative treatment of the hallux valgus cannot correct the deformity. However, insoles and physiotherapy in combination with good footwear can help to control the symptoms.There are many operative techniques for hallux valgus correction. The decision on which surgical technique is used depends on the degree of deformity, the extent of degenerative changes of the first metatarsophalangeal joint and the shape and size of the metatarsal bone and phalangeal deviation. The role of stability of the first tarsometatarsal joint is controversial.Surgical techniques include the modified McBride procedure, distal metatarsal osteotomies, metatarsal shaft osteotomies, the Akin osteotomy, proximal metatarsal osteotomies, the modified Lapidus fusion and the hallux joint fusion. Recently, minimally invasive percutaneous techniques have gained importance and are currently being evaluated more scientifically.Hallux valgus correction is followed by corrective dressings of the great toe post-operatively. Depending on the procedure, partial or full weight-bearing in a post-operative shoe or cast immobilisation is advised. Post-operative radiographs are taken in regular intervals until osseous healing is achieved. Cite this article: Fraissler L, Konrads C, Hoberg M, Rudert M, Walcher M. Treatment of hallux valgus deformity. EFORT Open Rev 2016;1:295-302. DOI: 10.1302/2058-5241.1.000005.

  17. Thorax deformity, joint hypermobility and anxiety disorder

    International Nuclear Information System (INIS)

    Gulsun, M.; Dumlu, K.; Erbas, M.; Yilmaz, Mehmet B.; Pinar, M.; Tonbul, M.; Celik, C.; Ozdemir, B.

    2007-01-01

    Objective was to evaluate the association between thorax deformities, panic disorder and joint hypermobility. The study includes 52 males diagnosed with thorax deformity, and 40 healthy male controls without thorax deformity, in Tatvan Bitlis and Isparta, Turkey. The study was carried out from 2004 to 2006. The teleradiographic and thoracic lateral images of the subjects were evaluated to obtain the Beighton scores; subjects psychiatric conditions were evaluated using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-1), and the Hamilton Anxiety Scale (HAM-A) was applied in order to determine the anxiety levels. Both the subjects and controls were compared in sociodemographic, anxiety levels and joint mobility levels. In addition, males with joint hypermobility and thorax deformity were compared to the group with thorax deformity without joint hypermobility. A significant difference in HAM-A scores was found between the groups with thorax deformity and without. In addition, 21 subjects with thorax deformity met the joint hypermobility criteria in the group with thorax deformity and 7 subjects without thorax deformity met the joint hypermobility criteria in the group without thorax deformity, according to Beighton scoring. The Beighton score of subjects with thorax deformity were significantly different from those of the group without deformity. Additionally, anxiety scores of the males with thorax deformity and joint hypermobility were found higher than males with thorax deformity without joint hypermobility. Anxiety disorders, particularly panic disorder, have a significantly higher distribution in males subjects with thorax deformity compared to the healthy control group. In addition, the anxiety level of males with thorax deformity and joint hypermobility is higher than males with thorax deformity without joint hypermobility. (author)

  18. Hydrogen is an energy source for hydrothermal vent symbioses.

    Science.gov (United States)

    Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stephane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole

    2011-08-10

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

  19. Hydrothermal liquefaction of barley straw to bio-crude oil

    DEFF Research Database (Denmark)

    Zhu, Zhe; Rosendahl, Lasse; Toor, Saqib

    2015-01-01

    Hydrothermal liquefaction (HTL) of barley straw with K2CO3 at different temperatures (280–400 C) was conducted and compared to optimize its process conditions; the aqueous phase as a co-product from this process was recycled to explore the feasibility of implementing wastewater reuse for bio...

  20. The Effect of Hydrothermal Treatment on Olivine Nano-Silica

    NARCIS (Netherlands)

    Griend, van de M.C; Lazaro, A.; Brouwers, H.J.H.

    2012-01-01

    This paper provides an overview of the effects of ripening the olivine nano-silica to form particles with a lower specific surface area for optimal use in high performance concrete. The nano-silica was ripened using a hydrothermal treatment in a mixed batch reactor at 90 C, pH ranging from 8 to 10

  1. Hydrothermal emergence model for ripgut brome (Bromus diandrus)

    Science.gov (United States)

    A model that describes the emergence of ripgut brome (Bromus diandrus) was developed using a two-season data set from a no-tilled field in northeastern Spain. The relationship between cumulative emergence and hydrothermal time (HTT) was described by a sigmoid growth function (Chapman equation). HTT ...

  2. Chaotic thermohaline convection in low-porosity hydrothermal systems

    NARCIS (Netherlands)

    Schoofs, Stan; Spera, Frank J.; Hansen, Ulrich

    1999-01-01

    Fluids circulate through the Earth's crust perhaps down to depths as great as 5^15 km, based on oxygen isotope systematics of exhumed metamorphic terrains, geothermal fields, mesozonal batholithic rocks and analysis of obducted ophiolites. Hydrothermal flows are driven by both thermal and chemical

  3. hydrothermal synthesis and characterisation of amine-templated

    African Journals Online (AJOL)

    PROF EKWUEME

    showed that the complexes were insoluble in water, ethanol, DMF and DMSO. KEYWORDS: Hydrothermal synthesis, metal phosphates, p-aminobenzoic acid, ethylacetoacetate, ethylammonium-. 4-aminobenzoate. INTRODUCTION. One of the major areas of materials science is the development of solid state materials with ...

  4. Load frequency control of three area interconnected hydro-thermal ...

    African Journals Online (AJOL)

    This paper present analysis on dynamic performance of Load Frequency Control (LFC) of three area interconnected hydrothermal reheat power system by the use of Artificial Intelligent and PI Controller. In the proposed scheme, control methodology developed using conventional PI controller, Artificial Neural Network ...

  5. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways

    Directory of Open Access Journals (Sweden)

    Alejandro Amadeus Castro Vega

    2007-01-01

    Full Text Available Hydrothermal conversion is a procedure which emulates organic matter’s natural conversion into bio-crude having physical and chemical properties analogous to petroleum. The artificial transformation of biomass requi- res previous knowledge of the main reaction routes and product availability. The main component of biomass (depolymerisation by hydrolysis is presented in hydrothermal cellulose conversion, producing oligosaccharides which exhibit dehydration and retro-aldol condensation reactions for transforming into furfurals and carboxylic acids. Other biomass components (such as lignin, proteins, and fat esters present both hydrolysis and pyrolysis reaction routes. As long as biomass mainly contains carbohydrates, subcritical hydrothermal conversion products and their wastes will be fundamentally analogous to those displaying cellulose. These substances have added- value by far surpassing raw material’s acquisition cost. When the main hydrothermal conversion products’ O/C, H/C molar ratios as reported in literature are plotted, an evolutionary tralectory for conversion products appears to be closely or even overlapped with fossil fuels’ geological evolution.

  6. Borehole plugging by hydrothermal transport. A feasibility report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1975-01-01

    The possibility of forming borehole plugs by hydrothermal transport was examined with respect to five systems, utilizing available literature data. In general, it would appear possible to create plugs with hydrothermal cements, with hydrothermally transported quartz, and with carbonates precipitated in-situ using carbon dioxide or carbon dioxide and water as reacting fluids. Hydrothermal cements appear to be most feasible from an engineering and economic point of view using a slurry with a lime-alumina-silica composition carried into the hole in a single pipe at temperatures in the range of 200 0 C and requiring only enough pressure to drive the mixture into the hole. Quartz or chalcedony plugs would be the most impervious, have the lowest chemical reactivity with groundwater, the lowest thermal expansion, and be most compatible with the wall rock. Deposition is likely to be slow, and there are severe engineering problems associated with a single pipe system carrying silica-rich solutions at temperatures in excess of 500 0 C at pressure of 2000 bars (30,000 psi). Calcite plugs could be formed as compatible plug materials in contact with a limestone or dolomite wall rock. It is not known whether non-porous plugs can be readily formed and there is also a problem of chemical reaction with percolating groundwater. The clay-water and sulfur-water systems do not appear to be viable plug systems. In-situ reconstitution of the wall rock does not appear to be an economically feasible possibility

  7. Highly Hydrothermally Stable Microporous Membranes for Hydroge Separation

    NARCIS (Netherlands)

    Wei, Qi; Wang, Fei; Wang, F.; Nie, Zuo-Ren; Song, C.; Wang, Yan-Li; Li, Qun-Yan

    2008-01-01

    Fluorocarbon-modified silica membranes were deposited on γ-Al2O3/α-Al2O3 supports by the sol−gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is

  8. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li [Colloid Chemistry Department, Max-Planck Institute for Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam (Germany); Institute of Coal Chemistry, Chinese Academy of Sciences, 27th Taoyuan South Road, 030001 Taiyuan (China); Fan, Li-Zhen; Zhou, Meng-Qi; Guan, Hui; Qiao, Suyan [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Antonietti, Markus; Titirici, Maria-Magdalena [Colloid Chemistry Department, Max-Planck Institute for Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam (Germany)

    2010-12-01

    Microporous nitrogen-doped carbons produced by hydrothermal carbonization of biomass derivative followed by chemical activation showed excellent supercapacitive capacitance performance both in acid and base electrolytes. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Inversion Approach For Thermal Data From A Convecting Hydrothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1985-01-01

    Hydrothermal systems are often studied by collecting thermal gradient data and temperature depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are conventionally interpreted by the ''forward'' method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the ''forward'' method may inadvertently miss the correct set of initial conditions. Analytical methods for ''inverting'' data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.

  10. Hydrothermal synthesis of titania powders and their photocatalyc properties

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Murafa, Nataliya; Houšková, Vendula

    2008-01-01

    Roč. 52, č. 4 (2008), s. 278-290 ISSN 0862-5468 R&D Projects: GA ČR GA203/08/0334 Institutional research plan: CEZ:AV0Z40320502 Keywords : anatase * rutile * hydrothermal synthesis Subject RIV: CA - Inorganic Chemistry Impact factor: 0.644, year: 2008

  11. Facile hydrothermal synthesis of CeO 2 nanopebbles

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) nanopebbles have been synthesized using a facile hydrothermal method. X-ray diffraction pattern (XRD) and transmission electron microscopy analyses confirm the presence of CeO2 nanopebbles. XRD shows the formation of cubic fluorite CeO2 and the average particle size estimated from the ...

  12. Hydrothermal synthesis, characterization, and magneticproperties of cobalt chromite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Zákutná, Dominika; Repko, A.; Matulková, I.; Nižňanský, Daniel; Ardu, A.; Cannas, C.; Mantlíková, Alice; Vejpravová, Jana

    2014-01-01

    Roč. 16, č. 2 (2014), 1-14 ISSN 1388-0764 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : cobalt chromite * hydrothermal method * nanoparticles * size effect * multiferroic materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.184, year: 2014

  13. Rapid hydrothermal route to synthesize cubic-phase gadolinium ...

    Indian Academy of Sciences (India)

    Administrator

    The elongated nanoscale systems, as produced via a hydrothermal process .... by adding several drops of 5 M NaOH solution under vigorous ... at an accelerating voltage of 200 kV. ..... remarkable distribution of nanoscale rods, with aspect ...

  14. Hydrothermal decomposition of liquid crystal in subcritical water

    International Nuclear Information System (INIS)

    Zhuang, Xuning; He, Wenzhi; Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao

    2014-01-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H 2 O 2 supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment

  15. Hydrothermal Synthesis of Analcime from Kutingkeng Formation Mudstone

    Science.gov (United States)

    Hsiao, Yin-Hsiu; Chen, Kuan-Ting; Ray, Dah-Tong

    2015-04-01

    In southwest of Taiwan, the foothill located in Tainan-Kaohsiung city is the exposed area of Pliocene strata to early Pleistocene strata. The strata are about a depth of five thousand, named as Kutigkeng Formation. The outcrop of Kutigkeng Formation is typical badlands, specifically called 'Moon World.' It is commonly known as no important economic applications of agricultural land. The mineral compositions of Kutingkeng Formation are quartz, clay minerals and feldspar. The clay minerals consist of illite, clinochlore and swelling clays. To study how the phase and morphology of analcime formed by hydrothermal synthesis were affected, analcime was synthesized from the mudstone of Kutinkeng Formation with microwave hydrothermal reaction was investigated. The parameters of the experiment were the reaction temperature, the concentration of mineralizer, solids/liquid ratio and time. The sodium silicate (Na2SiO3) were used as mineralizer. The results showed that the analcime could be synthesized by hydrothermal reaction above 180° from Kutinkeng Formation mudstone samples. At the highest temperature (240°) of this study, the high purity analcime could be produced. When the concentration of Na2SiO3=3~6M, analcime could be synthesized at 240°. The best solids/liquid ratio was approximate 1 to 5. The hydrothermal reaction almost was completed after 4 hours.

  16. Synthesis of ZrO2 nanoparticles by hydrothermal treatment

    International Nuclear Information System (INIS)

    Machmudah, Siti; Widiyastuti, W.; Prastuti, Okky Putri; Nurtono, Tantular; Winardi, Sugeng; Wahyudiono,; Kanda, Hideki; Goto, Motonobu

    2014-01-01

    Zirconium oxide (zirconia, ZrO 2 ) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl 4 precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 – 200°C with precursor concentration of 0.1 – 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal

  17. Hydrothermal processing of biomass from invasive aquatic plants

    Science.gov (United States)

    W. James Catallo; Todd F. Shupe; Thomas L. Eberhardt

    2008-01-01

    The purpose of this study was to examine the hydrothermal (HT) treatment of three invasive aquatic plants (i.e., Lemna sp., Hydrilla sp., and Eichhornia sp.) with respect to the generation of semi-volatile hydrocarbon product mixtures and biomass volume reduction. Identical HT treatments yielded similar semi-...

  18. Origin of Magnetism in Hydrothermally Aged 2-Line Ferrihydrite Suspensions.

    Science.gov (United States)

    Cao, Liang; Jiang, Zhao-Xia; Du, Yong-Hua; Yin, Xin-Mao; Xi, Shi-Bo; Wen, Wen; Roberts, Andrew P; Wee, Andrew T S; Xiong, Yi-Min; Liu, Qing-Song; Gao, Xing-Yu

    2017-03-07

    As an iron oxyhydroxide, nanosized ferrihydrite (Fh) is important in Earth science, biology, and industrial applications. However, its basic structure and origin of its magnetism have long been debated. We integrate synchrotron-based techniques to explore the chemical structures of 2-line ferrihydrite and to determine the origin of its magnetism during hydrothermal aging in air. Our results demonstrate that both the magnetism and X-ray magnetic circular dichroism (XMCD) signal of 2-line ferrihydrite are enhanced with aging time, and that XMCD spectral patterns resemble that of maghemite (γ-Fe 2 O 3 ) rather than magnetite (Fe 3 O 4 ). Fe L-edge and K-edge X-ray absorption spectroscopy (XAS) further indicate formation of both maghemite and hematite (α-Fe 2 O 3 ) with increasing concentrations with longer hydrothermal aging time. Thus, magnetic enhancement with longer hydrothermal aging time is attributed to increasing maghemite concentration instead of a magnetically ordered ferrihydrite as previously reported. Moreover, L-edge and K-edge XAS spectra with different probing depths yield different ratios of these Fe oxides, which suggest the formation of a core (ferrihydrite-rich)-shell (with a mixture of both allotropes; α-Fe 2 O 3 and γ-Fe 2 O 3 ) structure during hydrothermal aging. Our results provide insights into the chemical evolution of 2-line ferrihydrite that reveal unambiguously the origin of its magnetism.

  19. Production of lightweight refractory material by hydrothermal process

    International Nuclear Information System (INIS)

    Sulejmani, Ramiz B.

    2002-01-01

    Many different processes of production of lightweight refractories are well known over the World. Traditional production of lightweight refractories is by addition of combustibles or by a special frothing process. This work is concerned with hydrothermal of lightweight refractories from rice husk ash. The rice husk ash, used in present investigations were from Kocani region, R. Macedonia. The chemical analysis of the rice husk ash shows that it contains 91,8 - 93,7% SiO 2 and some alkaline and alkaline earth oxides. Microscopic and X - ray diffraction examinations of the rice husk ash have shown that it is composed of cristobalite, tridimite and amorphous silica. The composition of the mixture for lightweight refractory brick production is 93,4% rice husk ash and 6,6% Ca(OH) 2 . The mixtures were well mixed, moistened and pressed at 5 - 10 MPa. The hydrothermal reactions between calcium hydroxide and rice husk ash over the temperature range 80 - 160 o C were investigated. The period of autoclave treatment was from 2 to 72 h. After the hydrothermal treatment of the samples, the mineralogical composition, bulk density, density, cold crushing strength, porosity, refractoriness and thermal expansion were examined. Analysing the properties of the obtained samples it can be concluded that from rice husk ash and calcium hydroxide under hydrothermal condition it is possible to obtain lightweight acid refractory material with high quality.(Author)

  20. Hydrothermal synthesis and characterisation of amine-templated ...

    African Journals Online (AJOL)

    Hydrothermal synthesis and characterisation of amine-templated metal phosphate framework. ... The complexes were thermally stable up to 3000C, after which the organic components starts decomposing. The solubility test in a wide spectrum of solvents (at room temperature) showed that the complexes were insoluble in ...

  1. Dosimetric and geometric evaluation of the use of deformable image registration in adaptive intensity-modulated radiotherapy for head-and-neck cancer

    DEFF Research Database (Denmark)

    Eiland, R B; Maare, Christian; Sjöström, D

    2014-01-01

    CT) and a cone beam CT (CBCT). The CBCT was acquired on the same day (± 1 d) as the ReCT (i.e. at Fraction 17, 18, 23, 24 or 29). The ReCT served as ground truth. A deformed CT (dCT) with structures was created by deforming the pCT to the CBCT. The geometrical comparison was based on the volumes of the deformed...

  2. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  3. Microstructural Evidences of Intergranular Pressure Solution during Frictional Sliding at Hydrothermal Conditions

    Science.gov (United States)

    Ma, X.; Yao, S.; He, C.

    2017-12-01

    In the framework of rate- and state-dependent friction, velocity weakening is the result of a healing effect at intergranular contacts that is stronger than the instantaneous rate effect. Intergranular pressure solution has been proposed to be a feasible mechanism for the frictional healing effect (He et al., 2013), but to date no substantial evidences have been reported in related microstructures. In this study we report our reanalyses on samples of plagioclase gouge deformed at hydrothermal conditions with effective normal stresses of 100 MPa, 200 MPa, and 300 MPa, pore pressures of 30 MPa and 100 MPa, and temperatures from 100oC to 600oC. With an Inlens image detector in a scanning electron microscope, our focus is to find the evidences of the pressure solution processes during frictional sliding. As it has been difficult to observe the signatures of pressure solution during frictional sliding at the solution sites due to the short contact time of frequently-switching contact pairs, now we focus on the results of precipitation instead, which is the final process of pressure solution. With high magnification, we find the following evidences of intergranular pressure solution: 1) crystal growth as a result of precipitation is ubiquitously observed in deformed samples at temperatures above 200oC; 2) very fine-grained precipitated particles with flaky morphologies typically appear in intensely sheared regions and between relatively large particles in moderately sheared regions; 3) the precipitated grains are concentrated periodically in zones orientated at 45-50 degrees to the fault strike. These observations indicate that intergranular pressure solution is the dominant process responsible for the frictional healing effect.

  4. First Survey For Submarine Hydrothermal Vents In NE Sulawesi, Indonesia

    Science.gov (United States)

    McConachy, T.; Binns, R.; Permana, H.

    2001-12-01

    The IASSHA-2001 cruise (Indonesia-Australia Survey for Submarine Hydrothermal Activity) was successfully conducted from June 1 to June 29 on board Baruna Jaya VIII. Preliminary results are reported of the first expedition to locate and study submarine hydrothermal activity in north east Sulawesi. Leg A focussed on Tomini Bay, a virtually unexplored Neogene sedimentary basin. Its objective was to test whether modern sediment-hosted hydrothermal activity occurred on the sea floor. The results of new bathymetric mapping, sediment coring and CTD/transmissometer hydrocasts negate the likely presence in central Tomini Bay of large-scale modern analogues of hydrothermal massive sulfide environments involving hydrothermal venting of basinal or magma-derived fluids into reduced sediments. It is possible that the "heat engine" required to drive circulation of basinal and hydrothermal fluids is today too weak. Surveys around Colo volcano indicate that it may be in its final stage of evolution. Leg B studied the arc and behind-arc sectors of the Sangihe volcanic island chain extending northwards from Quaternary volcanoes on the northeastern tip of Sulawesi's North Arm, near Manado. West of the main active chain and extending northwards from Manado there is a subparallel ridge surmounted by a number of high (>2000 m) seamounts of uncertain age. Fifteen relatively high-standing submarine edifices were crossed during this leg, of which nine were tested for hydrothermal activity by hydrocast and dredging. Eight sites were known from previous bathymetric surveys, and seven are new discoveries made by narrow-beam or multibeam echo sounding. Two submarine edifices at least 1000 m high were discovered in the strait immediately north of Awu volcano on Sangihe Island. One, with crest at 206 m, is surrounded by a circular platform 300m deep which we infer to be a foundered fringing reef to a formerly emergent island. The other, lacking such a platform, appears relatively young and may be

  5. Satellite synthetic aperture radar for monitoring of surface deformation in shallow underground mining environments

    CSIR Research Space (South Africa)

    Engelbrecht, J

    2016-08-01

    Full Text Available . There are also human health-and-safety concerns in potentially unstable areas. To monitor the extent of deforming areas over time, ground-based surveys, including GPS and spirit-levelling techniques, are frequently employed. However, the process is time...

  6. The decay from the two-quasiparticle regime in even-even deformed rare earth nuclei

    International Nuclear Information System (INIS)

    Henriques, A.; Thorstensen, T.F.; Hammaren, E.

    1983-06-01

    A bump at 1 MeV has been identified in coincidence gamma-ray spectra from the ( 3 He, 4 He) reaction in deformed rare earth nuclei. Particle/gamma-ray angular correlation indicates a dipole character. It is suggested that this bump corresponds to transitions from two-quasiparticle states to the ground state band

  7. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    Science.gov (United States)

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.

    2005-03-01

    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  9. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  10. On deformations of linear differential systems

    NARCIS (Netherlands)

    Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.

    2011-01-01

    This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical

  11. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... Our study gives insight into possible deformed structures at spherical shell closure. ... Considerable experimental and theoretical efforts ... True deformation effects can be seen only by considering configuration mixing.

  12. Hydrothermal impacts on trace element and isotope ocean biogeochemistry.

    Science.gov (United States)

    German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H

    2016-11-28

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.

  13. The origin of methanethiol in midocean ridge hydrothermal fluids.

    Science.gov (United States)

    Reeves, Eoghan P; McDermott, Jill M; Seewald, Jeffrey S

    2014-04-15

    Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10(-8) M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10(-6) M) along with NH4(+) and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.

  14. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    Science.gov (United States)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  15. Different deformation patterns using GPS in the volcanic process of El Hierro (Canary Island) 2011-2013

    Science.gov (United States)

    García-Cañada, Laura; José García-Arias, María; Pereda de Pablo, Jorge; Lamolda, Héctor; López, Carmen

    2014-05-01

    Ground deformation is one of the most important parameter in volcano monitoring. The detected deformations in volcanic areas can be precursors of a volcanic activity and contribute with useful information to study the evolution of an unrest, eruption or any volcanic process. GPS is the most common technique used to measure volcano deformations. It can be used to detect slow displacement rates or much larger and faster deformations associated with any volcanic process. In volcanoes the deformation is expected to be a mixed of nature; during periods of quiescence it will be slow or not present, while increased activity slow displacement rates can be detected or much larger and faster deformations can be measure due to magma intrusion, for example in the hours to days prior a eruption beginning. In response to the anomalous seismicity detected at El Hierro in July 2011, the Instituto Geográfico Nacional (IGN) improved its volcano monitoring network in the island with continuous GPS that had been used to measure the ground deformation associated with the precursory unrest since summer 2011, submarine eruption (October 2011-March 2012) and the following unrest periods (2012-2013). The continuous GPS time series, together with other techniques, had been used to evaluate the activity and to detect changes in the process. We investigate changes in the direction and module of the deformation obtained by GPS and they show different patterns in every unrest period, very close to the seismicity locations and migrations.

  16. Intertwined Lattice Deformation and Magnetism in Monovacancy Graphene

    OpenAIRE

    Padmanabhan, Haricharan; Nanda, B. R. K.

    2016-01-01

    Using density functional calculations we have investigated the local spin moment formation and lattice deformation in graphene when an isolated vacancy is created. We predict two competing equilibrium structures: a ground state planar configuration with a saturated local moment of 1.5 $\\mu_B$, and a metastable non-planar configuration with a vanishing magnetic moment, at a modest energy expense of ~50 meV. Though non-planarity relieves the lattice of vacancy-induced strain, the planar state i...

  17. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”

    Directory of Open Access Journals (Sweden)

    J.-P. Duda

    2018-03-01

    Full Text Available Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic. In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia. Catalytic hydropyrolysis (HyPy of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤  n-C18 is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer–Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis.

  18. Changes in heat released by hydrothermal circulation monitored during an eruptive cycle at Mt. Etna (Italy)

    Science.gov (United States)

    Diliberto, I. S.; Gagliano Candela, E.; Morici, S.; Pecoraino, G.; Bellomo, S.; Bitetto, M.; Longo, M.

    2018-04-01

    The shallow vertical temperature profile has been measured in the proximity of an eruptive fissure far about 4 km north-northeast from Mt. Etna central craters. The monitoring site was a steam-heated soil lying between a group of flank fractures on the upper northeast flank of Mt. Etna (Italy), i.e., on the northeast rift. We chose this area because it was close to an eruptive fissure, that opened in 2002 and extended from about 2500 to about 1500 m a.s.l., with our aim being to determine a connection between this fracture system and the ongoing volcanic activity. Heat flux anomalies from the ground from September 2009 to September 2012 were evaluated. Changes in the hydrothermal release—which can be related to variations in volcanic activity—are discussed and compared to the published geophysical data. The heat flux ranges varied during the pre-eruptive (from about 7 to 38 W × m-2), syn-eruptive (from about 3 to 49 W × m-2), and post-eruptive phases, with the heat released being lowest at the latter phase (from about 1 to 20 W × m-2). Moreover, the heat flux time variation was strongly correlated with the eruption rate from the new southeast crater between January 2011 and April 2012. The migration of magma through active conduits acts as a changing heating source for steam-heated soils located above the active fractures. Our findings suggest that tracking the heat flux above active fractures constitutes a useful investigation field for low-cost thermal monitoring of volcanic activity. Time variations in their emissions could highlight the relationship between a hydrothermal circuit and the local network of fractures, possibly indicating variation in the structural weakness of a volcanic edifice. Continuous monitoring of heat flux, combined with a realistic model, would contribute to multidisciplinary investigations aimed at evaluating changes in volcano dynamics.

  19. Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.

    Science.gov (United States)

    Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N

    2008-10-01

    Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities.

  20. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images

    Directory of Open Access Journals (Sweden)

    Anna Barra

    2017-09-01

    Full Text Available This work is focused on deformation activity mapping and monitoring using Sentinel-1 (S-1 data and the DInSAR (Differential Interferometric Synthetic Aperture Radar technique. The main goal is to present a procedure to periodically update and assess the geohazard activity (volcanic activity, landslides and ground-subsidence of a given area by exploiting the wide area coverage and the high coherence and temporal sampling (revisit time up to six days provided by the S-1 satellites. The main products of the procedure are two updatable maps: the deformation activity map and the active deformation areas map. These maps present two different levels of information aimed at different levels of geohazard risk management, from a very simplified level of information to the classical deformation map based on SAR interferometry. The methodology has been successfully applied to La Gomera, Tenerife and Gran Canaria Islands (Canary Island archipelago. The main obtained results are discussed.

  1. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    Science.gov (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-05-15

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  3. Conformal deformation of Riemann space and torsion

    International Nuclear Information System (INIS)

    Pyzh, V.M.

    1981-01-01

    Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru

  4. Deformation limits of polymer coated metal sheets

    NARCIS (Netherlands)

    Van Den Bosch, M.J.W.J.P.; Schreurs, P.J.G; Geers, M.G.D.

    2005-01-01

    Polymer coated metals are increasingly used by the packaging and automotive industry. During industrial deformation processes (drawing, roll-forming, bending etc.) the polymer-metal laminate is highly deformed at high deformation rates. These forming conditions can affect the mechanical integrity

  5. Superfluidity of bosons on a deformable lattice

    International Nuclear Information System (INIS)

    Jackeli, G.; Ranninger, J.

    2001-01-01

    We study the superfluid properties of a system of interacting bosons on a lattice, which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon modes. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective sound-wave-like mode with sound velocity v, arising from gauge symmetry breaking. (i) The sound velocity v 0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest-order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of the phonon-mediated interaction in the static limit. (ii) The second-order correction to the sound velocity is enhanced as compared to that of bosons on a rigid lattice when the boson-phonon interaction is switched on due to the retarded nature of the phonon-mediated interaction. The overall effect is that the sound velocity is essentially unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detection of superfluid properties of bosons. Our results are based on an extension of the Beliaev-Popov formalism for a weakly interacting Bose gas on a rigid lattice to one on a deformable lattice with which it interacts

  6. The 2012-2014 eruptive cycle of Copahue Volcano, Southern Andes. Magmatic-Hydrothermal system interaction and manifestations.

    Science.gov (United States)

    Morales, Sergio; Alarcón, Alex; Basualto, Daniel; Bengoa, Cintia; Bertín, Daniel; Cardona, Carlos; Córdova, Maria; Franco, Luis; Gil, Fernando; Hernandez, Erasmo; Lara, Luis; Lazo, Jonathan; Mardones, Cristian; Medina, Roxana; Peña, Paola; Quijada, Jonathan; San Martín, Juan; Valderrama, Oscar

    2015-04-01

    deformation of the volcanic edifice detected by GPS network. In this new eruptive process, the record of tremor was followed by particular seismic quiescence, as precursors of explosive activity which evolved from low acoustic energy signals toward more energetic signals with impulsive first arrivals and strong attenuation, joined to night incandescence in the main vent without evident juvenile material ejected, which could be associated to the temporal depression of the hydrothermal system located in the volcano system. The recent eruptive episode at Copahue Volcano is a good example of the complex temporal evolution of the interaction between magmatic and hydrothermal systems.

  7. Deformations of super Riemann surfaces

    International Nuclear Information System (INIS)

    Ninnemann, H.

    1992-01-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.)

  8. Deformations of super Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ninnemann, H [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1992-11-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.).

  9. Performance through Deformation and Instability

    Science.gov (United States)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  10. Deterritorializing Drawing - transformation/deformation

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2012-01-01

    but also from within by sensations, body ‘images’ are different to all other images. Twisting these body images make a mode of operation of art. The paper will address the above issues discussing modes of operation and appearance of my actual project. Acting in the reality of drawing, the project confront...... criticises figurative as well as abstract painting as passing through the brain and not acting directly upon the senses. Figurative and abstract painting both fail to liberate the Figure, implementing transformation of form, but not attaining deformations of bodies. Bacon, then, is concerned about...... deformation, about painting the sensation, which is essentially rhythm, making Figure-rhythm relations appear as vibrations that flow through the body - making resonance. Deleuze, with Bergson, argues that art extracts ’a little time in a pure state’ from the everyday repetitions, and thereby opens...

  11. Oxygen isotope mapping and evaluation of paleo-hydrothermal systems associated with synvolcanic intrusion and VMS deposits

    International Nuclear Information System (INIS)

    Taylor, B.E

    2001-01-01

    . In contrast, rocks bearing evidence of isotopic enrichment (e.g., δ 18 O≥ 9.0% o ) typically may be found in hanging wall sequences, having formed subsequent to most alteration and mineralization. Recognition of isotopically enriched zones requires that hanging wall rocks were emplaced before the end of hydrothermal activity. Together, the paired low- and high- δ 18 O zones illustrate temperature gradients and delimit semi-conformable areas of hydrothermal circulation. At a regional scale, terrane between zones of high- and low-δ 18 O is prospective. At the camp or district scale, discordant up-flow zones are also clearly indicated by mapping and serve as local vectors for exploration. Oxygen isotope maps for four of the CAMIRO-GSC study areas (Noranda, Clifford-Ben Nevis, Sturgeon Lake, and Snow Lakeown). The grade of regional metamorphism varies among the areas selected for study, from prehnite-pumpellyite facies (Clifford-Ben Nevis) to lower-amphibolite facies (Snow Lake). Similarly, the style and intensity of folding also varies, from nearly undeformed (Clifford-Ben Nevis) to folded (Snow Lake). Neither the grade of regional metamorphism, nor the accompanying deformation has diminished the value of isotopic mapping. Whereas the shapes of isotopically depleted and enriched zones may reflect the strain pattern of the host rocks, regional metamorphism does not generally disturb the primary record of paleo-hydrothermal activity at the hand-specimen scale. Because greenschist regional metamorphism can produce many of the same mineral assemblages as form in large-scale submarine hydrothermal systems, it is particularly instructive to use isotopic techniques to delineate the hydrothermally altered domains. Oxygen isotope mapping offers the possibility of distinguishing ages of intrusions relative to hydrothermal activity. In the mineralized areas studied (i.e., Noranda, Sturgeon Lake, and Snow Lake), emplacement of the latest intrusions post-dated mineralizing

  12. Deterritorializing Drawing - transformation/deformation

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2012-01-01

    but also from within by sensations, body ‘images’ are different to all other images. Twisting these body images make a mode of operation of art. The paper will address the above issues discussing modes of operation and appearance of my actual project. Acting in the reality of drawing, the project confront...... the body, situated in real time and depth, with drawing transforming and deforming time and depth....

  13. Hindfoot Arthrodesis for Neuropathic Deformity

    Directory of Open Access Journals (Sweden)

    Peng-Ju Huang

    2007-03-01

    Full Text Available Acquired neurologic disorders of the foot lead to arthrosis, deformities, instabilities, and functional disabilities. Hindfoot arthrodesis is the current option available for irreducible or nonbraceable deformities of neuropathic feet. However, the role of ankle arthrodesis in these patients has been questioned because of high nonunion and complication rates. From 1990 to 2001, 17 cases of acquired neuropathic foot deformities were treated by four tibiotalocalcaneal (TTC arthrodeses and 13 ankle arthrodeses. TTC arthrodesis was performed on cases with combined ankle and subtalar arthritis or cases whose deformities or instabilities could not be corrected by ankle fusion alone. There was no nonunion of TTC arthrodesis and seven ununited ankle arthrodeses were salvaged by two TTC-attempted arthrodeses and five revision ankle-attempted arthrodeses. Eventually in these cases, there was one nonunion in TTC arthrodesis and one nonunion in revision ankle arthrodesis. The final fusion rate was 88% (15 of 17 cases with average union time of 6.9 months (range, 2.5–18 months. The American Orthopaedic Foot and Ankle Society ankle hind-foot functional scores were evaluated: one was excellent (5.8%, seven were good (41%, eight were fair (53.3%, and one was poor (5.8% in terms of total functional outcome. We conclude that TTC arthrodesis is indicated for cases with ankle and subtalar involvement and ankle arthrodesis is an alternative for cases with intact subtalar joint. We recommend revision ankle arthrodesis if the ankle fails to fuse and the bone stock of the talus is adequate. TTC arthrodesis is reserved for ankles with poor bone stock of the talus with fragmentation.

  14. Efektivitas Instagram Common Grounds

    OpenAIRE

    Wifalin, Michelle

    2016-01-01

    Efektivitas Instagram Common Grounds merupakan rumusan masalah yang diambil dalam penelitian ini. Efektivitas Instagram diukur menggunakan Customer Response Index (CRI), dimana responden diukur dalam berbagai tingkatan, mulai dari awareness, comprehend, interest, intentions dan action. Tingkatan respons inilah yang digunakan untuk mengukur efektivitas Instagram Common Grounds. Teori-teori yang digunakan untuk mendukung penelitian ini yaitu teori marketing Public Relations, teori iklan, efekti...

  15. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  16. Asymmetrical hydrothermal system below Merapi volcano imaged by geophysical data.

    Science.gov (United States)

    Byrdina, Svetlana; Friedel, Sven; Budi-Santoso, Agus; Suryanto, Wiwit; Suhari, Aldjarishy; Vandemeulebrouck, Jean; Rizal, Mohhamed H.; Grandis, Hendra

    2017-04-01

    A high-resolution image of the hydrothermal system of Merapi volcano is obtained using electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT inversions identify two distinct low-resistivity bodies, at the base of the south flank and in the summit area, that represent likely two parts of an interconnected hydrothermal system. In the summit area, the extension of the hydrothermal system is clearly limited by the main geological structures which are actual and ancient craters. A sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive hydrothermal system (20 - 50 Ωm) from the resistive andesite lava flows and pyroclastic deposits (2000 - 50 000 Ωm). High diffuse CO2 degassing (with a median value of 400g m -2 d -1) is observed in a narrow vicinity of the active crater rim and close to the Pasar-Bubar. The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The total CO2 degassing across the accessible summit area with a surface of 1.4 · 10 5 m 2 is around 20 td -1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200 - 230 td -1). This drop in the diffuse degassing can be related to the decrease in the magmatic activity, to the change of the summit morphology or to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100 000 Ωm, resistivity as low as 10 Ωm has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the hydrothermal system. We suggest that a sandwich-like structure of stratified pyroclastic deposits on the flanks of Merapi screen and separate the flow of hydrothermal fluids with the degassing occurring mostly through the fractured crater rims

  17. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    International Nuclear Information System (INIS)

    Kim, Sang Woo

    2016-01-01

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions

  18. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Dept. of Mechanical Engineering, Institute of Machine Convergence Technology, Hankyong National University, Anseong (Korea, Republic of)

    2016-10-15

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions.

  19. Faraday instability in deformable domains

    International Nuclear Information System (INIS)

    Pucci, G.

    2013-01-01

    Hydrodynamical instabilities are usually studied either in bounded regions or free to grow in space. In this article we review the experimental results of an intermediate situation, in which an instability develops in deformable domains. The Faraday instability, which consists in the formation of surface waves on a liquid experiencing a vertical forcing, is triggered in floating liquid lenses playing the role of deformable domains. Faraday waves deform the lenses from the initial circular shape and the mutual adaptation of instability patterns with the lens boundary is observed. Two archetypes of behaviour have been found. In the first archetype a stable elongated shape is reached, the wave vector being parallel to the direction of elongation. In the second archetype the waves exceed the response of the lens border and no equilibrium shape is reached. The lens stretches and eventually breaks into fragments that have a complex dynamics. The difference between the two archetypes is explained by the competition between the radiation pressure the waves exert on the lens border and its response due to surface tension.

  20. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Dr. Alvita Nathaniel, DSN, APRN, BC

    2005-06-01

    Full Text Available The Grounded Theory Perspective III: Theoretical Coding, Barney G. Glaser (Sociology Press, 2005. Not intended for a beginner, this book further defi nes, describes, and explicates the classic grounded theory (GT method. Perspective III lays out various facets of theoretical coding as Glaser meticulously distinguishes classic GT from other subsequent methods. Developed many years after Glaser’s classic GT, these methods, particularly as described by Strauss and Corbin, adopt the grounded theory name and engender ongoing confusion about the very premises of grounded theory. Glaser distinguishes between classic GT and the adscititious methods in his writings, referring to remodeled grounded theory and its offshoots as Qualitative Data Analysis (QDA models.