WorldWideScience

Sample records for ground cover height

  1. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.

    Science.gov (United States)

    Jimenez-Berni, Jose A; Deery, David M; Rozas-Larraondo, Pablo; Condon, Anthony Tony G; Rebetzke, Greg J; James, Richard A; Bovill, William D; Furbank, Robert T; Sirault, Xavier R R

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR ( r 2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association ( r 2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass ( r 2 = 0.93 and r 2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  2. Legume ground covers alter defoliation response of black walnut saplings to drought and anthracnose

    Science.gov (United States)

    J. W. Van Sambeek

    2003-01-01

    Growth and premature defoliation of black walnut saplings underplanted 5 or 6 years earlier with six different ground covers were quantified in response to a summer drought or anthracnose. Walnut saplings growing with ground covers of hairy vetch, crownvetch, and to a lesser extent sericea lespedeza continued to have more rapid height and diameter growth than saplings...

  3. L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark

    DEFF Research Database (Denmark)

    Joshi, Neha P.; Mitchard, Edward T A; Schumacher, Johannes

    2015-01-01

    may be confounded by variations in biophysical forest structure (density, height or cover fraction) and differences in the resolution of satellite and ground data. Here, we attempt to quantify the effect of these factors by relating L-band ALOS PALSAR HV backscatter and unique country-wide Li...

  4. The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations

    Directory of Open Access Journals (Sweden)

    Jaime Gomez-Gil

    2014-10-01

    Full Text Available Farmers experience whole-body vibrations when they drive tractors. Among the various factors that influence the vibrations to which the driver is exposed are terrain roughness, tractor speed, tire type and pressure, rear axle width, and tractor seat height above the ground. In this paper the influence of tractor seat height above the ground on the lateral vibrations to which the tractor driver is exposed is studied by means of a geometrical and an experimental analysis. Both analyses show that: (i lateral vibrations experienced by a tractor driver increase linearly with tractor-seat height above the ground; (ii lateral vibrations to which the tractor driver is exposed can equal or exceed vertical vibrations; (iii in medium-size tractors, a feasible 30 cm reduction in the height of the tractor seat, which represents only 15% of its current height, will reduce the lateral vibrations by around 20%; and (iv vertical vibrations are scarcely influenced by tractor-seat height above the ground. The results suggest that manufacturers could increase the comfort of tractors by lowering tractor-seat height above the ground, which will reduce lateral vibrations.

  5. The mount Cameroon height determined from ground gravity data ...

    African Journals Online (AJOL)

    Abstract This paper deals with the accurate determination of mount Cameroon orthometric height, by combining ground gravity data, global navigation satellite system (GNSS) observations and global geopotential models. The elevation of the highest point (Fako) is computed above the WGS84 reference ellipsoid.

  6. Sensitivity of WRF-simulated planetary boundary layer height to land cover and soil changes

    Directory of Open Access Journals (Sweden)

    Ferenc Ács

    2014-09-01

    Full Text Available Planetary boundary layer (PBL height sensitivity to both so-called single and accumulated land cover and soil changes is investigated in shallow convection under cloud-free conditions to compare the effects. Single land cover type and soil changes are carried out to be able to unequivocally separate the cause and effect relationships. The Yonsei University scheme in the framework of the Weather Research Forecasting (WRF mesoscale modeling system is used as a research tool. The area investigated lies in the Carpathian Basin, where anticyclonic weather type influence dominated on the five summer days chosen for simulations. Observation-based methods applied for validating diurnal PBL height courses manifest great deviations reaching 500–1300 m. The obtained deviations are somewhat smaller around midday and greater at night. They can originate either from the differences in the measuring principles or from the differences in the atmospheric profiles used. Concerning sensitivity analyses, we showed that PBL height differences caused by soil change are comparable with the PBL height differences caused by land cover change. The differences are much greater in the single than in the accumulated tests. Space averaged diurnal course difference around midday reaching a few tens of meters can be presumably treated as strongly significant. PBL height differences obtained in the sensitivity analyses are, at least in our case, smaller than those obtained by applying different observation based methods. The results may be utilized in PBL height diurnal course analyses.

  7. Ground cover in old-growth forests of the central hardwood region

    Science.gov (United States)

    Martin A. Spetich; Stephen R. Shifley; George R. Parker; Felix, Jr. Ponder

    1997-01-01

    Differences in ground cover (percent cover of litter, percent cover of vegetation and litter weight) in old-growth forests across this region are not well understood. We initiated a long-term study in a three-state region to enhance knowledge in this area. We present baseline results for ground cover and compare these data across productivity regions. Thirty 0.25-ac (0...

  8. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  9. Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data

    Directory of Open Access Journals (Sweden)

    S. O. Los

    2012-03-01

    Full Text Available We present new coarse resolution (0.5° × 0.5° vegetation height and vegetation-cover fraction data sets between 60° S and 60° N for use in climate models and ecological models. The data sets are derived from 2003–2009 measurements collected by the Geoscience Laser Altimeter System (GLAS on the Ice, Cloud and land Elevation Satellite (ICESat, the only LiDAR instrument that provides close to global coverage. Initial vegetation height is calculated from GLAS data using a development of the model of Rosette et al. (2008 with with further calibration on desert sites. Filters are developed to identify and eliminate spurious observations in the GLAS data, e.g. data that are affected by clouds, atmosphere and terrain and as such result in erroneous estimates of vegetation height or vegetation cover. Filtered GLAS vegetation height estimates are aggregated in histograms from 0 to 70 m in 0.5 m intervals for each 0.5° × 0.5°. The GLAS vegetation height product is evaluated in four ways. Firstly, the Vegetation height data and data filters are evaluated using aircraft LiDAR measurements of the same for ten sites in the Americas, Europe, and Australia. Application of filters to the GLAS vegetation height estimates increases the correlation with aircraft data from r = 0.33 to r = 0.78, decreases the root-mean-square error by a factor 3 to about 6 m (RMSE or 4.5 m (68% error distribution and decreases the bias from 5.7 m to −1.3 m. Secondly, the global aggregated GLAS vegetation height product is tested for sensitivity towards the choice of data quality filters; areas with frequent cloud cover and areas with steep terrain are the most sensitive to the choice of thresholds for the filters. The changes in height estimates by applying different filters are, for the main part, smaller than the overall uncertainty of 4.5–6 m established from the site measurements. Thirdly, the GLAS global vegetation height product is compared with a

  10. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa.

    Science.gov (United States)

    Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida

    2017-01-01

    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.

  11. Evaluation of burial ground soil covers

    International Nuclear Information System (INIS)

    Fenimore, J.W.

    1976-11-01

    Solid radioactive waste burial at the Savannah River Plant between 1955 and 1972 filled a 76-acre site. Burial operations then were shifted to an adjacent site, and a program was begun to develop a land cover that would: (1) minimize soil erosion; and (2) protect the buried waste from deep-rooted plants, since radionuclides can be recycled by uptake through root systems. In anticipation of the need for a suitable soil cover, five grass species were planted on 20 plots (4 plots of each species) at the burial ground (Facility 643-G) in 1969. The grass plots were planted for evaluation of viability, root depth, and erosion protection existing under conditions of low fertility and minimum care. In addition, 16 different artificial soil covers were installed on 32 plots (each cover on two plots) to evaluate: (1) resistance of cover to deterioration from weathering; (2) resistance of cover to encroachment by deep-rooted plants; and (3) soil erosion protection provided by the cover. All test plots were observed and photographed in 1970 and in 1974. After both grass and artificial soil covers were tested five years, the following results were observed: Pensacola Bahia grass was the best of the five cover grasses tested; and fifteen of the sixteen artificial covers that were tested controlled vegetation growth and soil erosion. Photographs of the test plots will be retaken at five-year intervals for future documentation

  12. Forest Canopy Cover and Height from MISR in Topographically Complex Southwestern US Landscape Assessed with High Quality Reference Data

    Science.gov (United States)

    Chopping, Mark; North, Malcolm; Chen, Jiquan; Schaaf, Crystal B.; Blair, J. Bryan; Martonchik, John V.; Bull, Michael A.

    2012-01-01

    This study addresses the retrieval of spatially contiguous canopy cover and height estimates in southwestern USforests via inversion of a geometric-optical (GO) model against surface bidirectional reflectance factor (BRF) estimates from the Multi-angle Imaging SpectroRadiometer (MISR). Model inversion can provide such maps if good estimates of the background bidirectional reflectance distribution function (BRDF) are available. The study area is in the Sierra National Forest in the Sierra Nevada of California. Tree number density, mean crown radius, and fractional cover reference estimates were obtained via analysis of QuickBird 0.6 m spatial resolution panchromatic imagery usingthe CANopy Analysis with Panchromatic Imagery (CANAPI) algorithm, while RH50, RH75 and RH100 (50, 75, and 100 energy return) height data were obtained from the NASA Laser Vegetation Imaging Sensor (LVIS), a full waveform light detection and ranging (lidar) instrument. These canopy parameters were used to drive a modified version of the simple GO model (SGM), accurately reproducing patterns ofMISR 672 nm band surface reflectance (mean RMSE 0.011, mean R2 0.82, N 1048). Cover and height maps were obtained through model inversion against MISR 672 nm reflectance estimates on a 250 m grid.The free parameters were tree number density and mean crown radius. RMSE values with respect to reference data for the cover and height retrievals were 0.05 and 6.65 m, respectively, with of 0.54 and 0.49. MISR can thus provide maps of forest cover and height in areas of topographic variation although refinements are required to improve retrieval precision.

  13. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates.

    Science.gov (United States)

    Madec, Simon; Baret, Fred; de Solan, Benoît; Thomas, Samuel; Dutartre, Dan; Jezequel, Stéphane; Hemmerlé, Matthieu; Colombeau, Gallian; Comar, Alexis

    2017-01-01

    The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z -value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values ( H 2 > 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable ( H 2 > 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed.

  14. Observations of temporal change of nighttime cloud cover from Himawari 8 and ground-based sky camera over Chiba, Japan

    Science.gov (United States)

    Lagrosas, N.; Gacal, G. F. B.; Kuze, H.

    2017-12-01

    Detection of nighttime cloud from Himawari 8 is implemented using the difference of digital numbers from bands 13 (10.4µm) and 7 (3.9µm). The digital number difference of -1.39x104 can be used as a threshold to separate clouds from clear sky conditions. To look at observations from the ground over Chiba, a digital camera (Canon Powershot A2300) is used to take images of the sky every 5 minutes at an exposure time of 5s at the Center for Environmental Remote Sensing, Chiba University. From these images, cloud cover values are obtained using threshold algorithm (Gacal, et al, 2016). Ten minute nighttime cloud cover values from these two datasets are compared and analyzed from 29 May to 05 June 2017 (20:00-03:00 JST). When compared with lidar data, the camera can detect thick high level clouds up to 10km. The results show that during clear sky conditions (02-03 June), both camera and satellite cloud cover values show 0% cloud cover. During cloudy conditions (05-06 June), the camera shows almost 100% cloud cover while satellite cloud cover values range from 60 to 100%. These low values can be attributed to the presence of low-level thin clouds ( 2km above the ground) as observed from National Institute for Environmental Studies lidar located inside Chiba University. This difference of cloud cover values shows that the camera can produce accurate cloud cover values of low level clouds that are sometimes not detected by satellites. The opposite occurs when high level clouds are present (01-02 June). Derived satellite cloud cover shows almost 100% during the whole night while ground-based camera shows cloud cover values that range from 10 to 100% during the same time interval. The fluctuating values can be attributed to the presence of thin clouds located at around 6km from the ground and the presence of low level clouds ( 1km). Since the camera relies on the reflected city lights, it is possible that the high level thin clouds are not observed by the camera but is

  15. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  16. Diseases of Ornamental and Shade Trees, Shrubs, Vines, and Ground Covers.

    Science.gov (United States)

    Nichols, Lester P.

    This agriculture extension service publication from Pennsylvania State University covers the identification and control of common ornamental trees, shrubs, and ground cover diseases. The publication is divided into sections. The first section discusses the diseases of ornamental and shade trees, including general diseases and diseases of specific…

  17. Database for estimating tree responses of walnut and other hardwoods to ground cover management practices

    Science.gov (United States)

    J.W. Van Sambeek

    2010-01-01

    The ground cover in plantings of walnut and other hardwoods can substantially affect tree growth and seed production. The number of alternative ground covers that have been suggested for establishment in tree plantings far exceeds the number that have already been tested with walnut and other temperate hardwoods. Knowing how other hardwood species respond to ground...

  18. Two-dimensional transport of dust from an infinite line source at ground level: non-zero roughness height

    International Nuclear Information System (INIS)

    Hassan, M.H.A.; Eltayeb, I.A.

    1992-07-01

    The previous study (Eltayeb and Hassan, 1992) of the two-dimensional diffusion equation of dust over a rough ground surface, which acts as a dust source of variable strength, under the influence of horizontal wind and gravitational attraction is here extended to all finite values of the roughness height Z 0 . An analytic expression is obtained for the concentration of dust for a general strength of the source. The result reduces to the previously known solutions as special cases. The expression for the concentration has been evaluated for some representative example of the source strength g(X). It is found that the concentration decreases with roughness height at any fixed point above ground level. (author). 4 refs, 2 figs

  19. Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck

    Directory of Open Access Journals (Sweden)

    Md. Istiaque Hasan

    2014-01-01

    Full Text Available The reinforced concrete cast in place four span deck of a concrete bridge near Roanoke, Texas, was recently completed. Due to possible construction errors, it was suspected that the concrete covers in the deck did not conform to drawings and specifications. A full scale non-destructive evaluation of the concrete covers was carried out using ground penetrating radar (GPR equipment. Cover values were determined from the radargram generated from the scan. The estimated covers were plotted on contour maps. Migration data can substitute the drilling based ground truth data without compromising the concrete cover estimations, except for areas with very high cover values. Areas with high water content may result in inaccurate concrete dielectric constants. Based on the results, significant retrofitting of the bridge deck, such as additional overlay, was recommended.

  20. Perch availability and ground cover: factors that may constitute ...

    African Journals Online (AJOL)

    In Succulent Karoe, pale chanting goshawks occupied areas where perch density (16 natural and 122 artificial/25 hal was significantly higher than in unoccupied areas (8 natural and 12 artificial/25 hal. The high proportion of cover formed by natural perches (trees and shrubs; 36%) and the low proportion of open ground ...

  1. High-Resolution Forest Canopy Height Estimation in an African Blue Carbon Ecosystem

    Science.gov (United States)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, Seung-Kuk; Simard, Marc

    2015-01-01

    Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereophotogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

  2. Estimating cotton canopy ground cover from remotely sensed scene reflectance

    International Nuclear Information System (INIS)

    Maas, S.J.

    1998-01-01

    Many agricultural applications require spatially distributed information on growth-related crop characteristics that could be supplied through aircraft or satellite remote sensing. A study was conducted to develop and test a methodology for estimating plant canopy ground cover for cotton (Gossypium hirsutum L.) from scene reflectance. Previous studies indicated that a relatively simple relationship between ground cover and scene reflectance could be developed based on linear mixture modeling. Theoretical analysis indicated that the effects of shadows in the scene could be compensated for by averaging the results obtained using scene reflectance in the red and near-infrared wavelengths. The methodology was tested using field data collected over several years from cotton test plots in Texas and California. Results of the study appear to verify the utility of this approach. Since the methodology relies on information that can be obtained solely through remote sensing, it would be particularly useful in applications where other field information, such as plant size, row spacing, and row orientation, is unavailable

  3. Ground cover influence on evaporation and stable water isotopes in soil water

    Science.gov (United States)

    Magdalena Warter, Maria; Jiménez-Rodríguez, Cesar D.; Coenders-Gerrits, Miriam; Teuling, Adriaan J. Ryan

    2017-04-01

    Forest ecosystems are characterized by complex structures which influence hydrological processes such as evaporation. The vertical stratification of the forest modifies the effect of the evaporation process due to the composition and local distribution of species within the forest. The evaluation of it will improve the understanding of evaporation in forest ecosystems. To determine the influence of forest understory on the fractionation front, four ground cover types were selected from the Speulderbos forest in the Netherlands. The native species of Thamariskmoss (Thuidium thamariscinum), Rough Stalked Feathermoss (Brachythecium rutabulum), and Haircapmoss (Polytrichum commune) as well as one type of litter made up of Douglas-Fir needles (Pseudotsuga menziesii) were used to analyse the rate of evaporation and changes on the isotopic concentration of the soil water on an in-situ basis in a controlled environment. Over a period of 4 weeks soil water content and atmospheric conditions were continuously measured, while the rainfall simulations were performed with different amounts and timings. The reference water added to the boxes keeps a stable composition along the trial period with a δ ^2H value of -42.59±1.15 \\permil} and δ 18O of -6.01±0.21 \\permil}. The evaporation front in the four ground covers is located between 5 and 10 cm depth and deuterium excess values are bigger than 5 \\permil. The litter layer of Douglas-Fir needles is the cover with higher fractionation in respect to the added water at 10 cm depth (δ ^2H: -29.79 \\permil), while the Haircapmoss keeps the lower fractionation rate at 5 cm and 10 cm (δ ^2H: -33.62 and δ ^2H: -35.34 \\permil). The differences showed by the soil water beneath the different ground covers depict the influence of ground cover on fractionation rates of the soil water, underlining the importance of the spatial heterogeneity of the evaporation front in the first 15 cm of soil.

  4. Mapping ground cover using hyperspectral remote sensing after the 2003 Simi and Old wildfires in southern California

    Science.gov (United States)

    Sarah A. Lewis; Leigh B. Lentile; Andrew T. Hudak; Peter R. Robichaud; Penelope Morgan; Michael J. Bobbitt

    2007-01-01

    Wildfire effects on the ground surface are indicative of the potential for post-fire watershed erosion response. Areas with remaining organic ground cover will likely experience less erosion than areas of complete ground cover combustion or exposed mineral soil. The Simi and Old fires burned ~67,000 ha in southern California in 2003. Burn severity indices calculated...

  5. 25 CFR 39.703 - What ground transportation costs are covered for students traveling by commercial transportation?

    Science.gov (United States)

    2010-04-01

    ... for Funds § 39.703 What ground transportation costs are covered for students traveling by commercial... 25 Indians 1 2010-04-01 2010-04-01 false What ground transportation costs are covered for students traveling by commercial transportation? 39.703 Section 39.703 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT...

  6. Global Distribution of Planetary Boundary Layer Height Derived from CALIPSO

    Science.gov (United States)

    Huang, J.

    2015-12-01

    The global distribution of planetary boundary layer (PBL) height, which was estimated from the attenuated back-scatter observations of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), is presented. In general, the PBL is capped by a temperature inversion that tends to trap moisture and aerosols. The gradient of back-scatter observed by lidar is almost always associated with this temperature inversion and the simultaneous decrease of moisture content. Thus, the PBL top is defined as the location of the maximum aerosol scattering gradient, which is analogous to the more conventional thermodynamic definition. The maximum standard deviation method, developed by Jordan et al. (2010), is modified and used to derive the global PBL heights. The derived PBL heights are not only consistent with the results of McGrath-Spangler and Denning (2012) but also agree well with the ground-based lidar measurements. It is found that the correlation between CALIPSO and the ground-based lidar was 0.73. The seasonal mean patterns from 4-year mid-day PBL heights over global are demonstrated. Also it is found that the largest PBL heights occur over the Tibetan Plateau and the coastal areas. The smallest PBL heights appear in the Tarim Basin and the northeast of China during the local winter. The comparison of PBL heights from CALIPSO and ECMWF under different land-cover conditions showed that, over ocean and forest surface, the PBL height estimated from the CALIPSO back-scatter climatology is larger than the ones estimated from ECMWF data. However, the PBL heights from ECMWF, over grass land and bare land surface in spring and summer are larger than the ones from CALIPSO.

  7. Topsoil and fertilizer effects on ground cover growth on calcareous minesoils

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.

    1997-01-01

    Canopy cover and above ground biomass of herbaceous species was measured in four studies for five years (1989-1993) in southeastern Ohio; on Central Ohio Coal Company's Muskingum Mine, 5 km South of Cumberland. Three studies compared graded cast overburden, standard graded topsoil (30 cm depth), and ripped topsoil. The fourth study lacked the ripped topsoil treatment. In 1987 two studies were seeded with both a standard and a modified mixture of grass and legume species, and two studies used the modified mix only. A nitrogen rate study used 45, 90 or 135 kg/ha of N applied on two occasions, and a phosphorus fertilizer study used rock phosphate amendment at 0, 1120, or 2240 kg/ha and triple superphosphate amendment at 0, 280, or 560 kg/ha. Based on one clipping per year, overall average biomass (Mg/ha dry weight) was slightly greater on standard topsoil (3.34), and ripped topsoil (3.30) than on cast overburden (3.09). Biomass did not differ significantly (p=0.05) on standard topsoil versus cast overburden for 15 of 19 comparisons. Legume biomass (Mg/ha, measured for 3 or 4 years) averaged 0.84 on standard topsoil, 0.75 on ripped topsoil, and 1.16 on cast overburden. In three studies, legume biomass was 50% higher on cast overburden than the topsoils, but differences among the soil surfaces were decreasing by 50% higher on cast overburden than the topsoils, but differences among the soil surfaces were decreasing by 1993. Nitrogen fertilizer increased ground cover only in the year when fertilizer was applied. Phosphorus fertilizer treatments had no significant effects. Ground cover showed no signs of deterioration during the last measurements in 1993. Observations in 1995 indicated dense canopy cover on all soil surfaces with substantial invasion by goldenrods (Solidago spp.) only on topsoils. 16 refs., 4 tabs

  8. Screening of plant species as ground cover on uranium mill tailings

    International Nuclear Information System (INIS)

    Venu Babu, P.; Eapen, S.

    2012-01-01

    The concept of construction of dams or holding areas for uranium mill tailings is relatively new in India and to date there is only one such facility being maintained by Uranium Corporation of India Limited (UCIL) at Jaduguda in Jharkhand. Due to the residual nature of radionuclides, chiefly uranium and its daughter products, special emphasis is given to the engineering aspects of the mill tailings ponds so as to ensure safety to general public for at least 200 years. Once a mill tailings pond reaches to its full capacity, creation of barrier layers over the mill tailings to prevent seepage of rain water and also erosion of mill tailings due to wind and water are advocated and a number of procedures are followed worldwide. Taking the extraordinary period of public safety to be assured, providing soil covers along with contouring and appropriate slopes over which vegetation is grown is gaining popularity. The vegetation not only reduces the impact of rain water hitting the soil cover, thereby reducing the soil erosion, but also lowers the moisture in the soil cover by extensive evapotranspiration, ensuring long term hydrological separation of the mill tailings underneath. Based on set criteria, applicable to the field scenario of mill tailings, a screening experiment was conducted under pot culture conditions to evaluate the survival and growth of different plant species. The plants after germination and hardening were transplanted into beakers containing mill tailings and periodical measurements on appropriate morphological characteristics such as plant height, length of twiners, number of tillers and number of leaves were recorded and evaluated. Of the twenty species tested in mill tailings, significant differences were noticed in the vigour of growth and several plant species could indeed establish well completing their life cycle including flowering and seed setting. Further, several leguminous species could also produce root nodules. It appears that the

  9. The specific features of gold ore provinces of the south of Siberia in a magnetic field at ground height and heights of flight of satellite Champ.

    Science.gov (United States)

    Litvinova, Tamara; Petrova, Alevtina

    2010-05-01

    The specific features of gold ore provinces of the south of Siberia in a magnetic field at ground height and heights of flight of satellite Champ. T.Litvinova -All-Russian Geological Research Institute (VSEGEI) A. Petrova - St. Petersburg, SPbF IZMIRAN, Russian Academy of Sciences, St. Petersburg For allocation of specific features known gold ore objects (Olimpiadninskoje, Suchoi Log, etc.) is executed the morphological analysis of the magnetic field received on materials of aeromagnetic data and satellite measurements at heights of 100 and 400 km. On the ground data on a map of magnetic anomalies of Russia of scale 1:2 500000 of 50 km on the extended structures crossing known gold ore deposits and promising ore units have been constructed geomagnetic and densitys sections up to depth. On geomagnetic and densitys sections to known large gold ore to deposits are dated deep synvertical the permeable zones described by a synlenticular -layered structure. Extended horizons of not magnetic formations are located on depths about 10, 12, 15-18, 30 and 40 km. On deep densitys sections reference sites ¬ the Suchoi Log, Olimpiadninskoje and Vodorazdelnoje ¬ is characterized by zones of inversion of density. Areas of the loosened breeds are dated to synvertical to deep zones of hydrothermal and fluid study of breeds inside which the loosened lenses in intervals of depths from 2 up to 5 km are formed, 8-13 km, 18-20 and 25-30 km of 35-40 km within the limits of the bottom bark. The analysis of a magnetic field has shown, that gold mineralization in researched region is dated for zones of long-living regional explosive infringements, to permeable terrigenous to thicknesses of depressions, to adjournment depression structures in units of crossing of tectonofluid zones of diagonal orientation. Terrigenous adjournment depression structures are shown on a geomagnetic section as the powerful deflections filled with low-magnetic thicknesses. These deflections are dated to

  10. [Postfire restoration of organic substance in the ground cover of the larch forests in the permafrost zone of central Evenkia].

    Science.gov (United States)

    Prokushkin, S G; Bogdanov, V V; Prokushkin, A S; Tokareva, I V

    2011-01-01

    The role of ground fires in transformation of organic substances in the ground cover of larch stands in the permafrost zone of Central Siberia was studied, as was the postfire restoration dynamics of organic substances. Ground fires lead to a considerable decrease in concentrations and resources of organic carbon and its individual fractions in the ground cover, and restoration takes many decades.

  11. Temporal monitoring of the soil freeze-thaw cycles over snow-cover land by using off-ground GPR

    KAUST Repository

    Jadoon, Khan; Lambot, Sé bastien; Dimitrov, Marin; Weihermü ller, Lutz

    2013-01-01

    We performed off-ground ground-penetrating radar (GPR) measurements over a bare agricultural field to monitor the freeze-thaw cycles over snow-cover. The GPR system consisted of a vector network analyzer combined with an off-ground monostatic horn

  12. Accuracy assessment of the vegetation continuous field tree cover product using 3954 ground plots in the southwestern USA

    Science.gov (United States)

    M. A. White; J. D. Shaw; R. D. Ramsey

    2005-01-01

    An accuracy assessment of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field (VCF) tree cover product using two independent ground-based tree cover databases was conducted. Ground data included 1176 Forest Inventory and Analysis (FIA) plots for Arizona and 2778 Southwest Regional GAP (SWReGAP) plots for Utah and western Colorado....

  13. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers

    Science.gov (United States)

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram

    2015-04-01

    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily

  14. Fear of heights and visual height intolerance.

    Science.gov (United States)

    Brandt, Thomas; Huppert, Doreen

    2014-02-01

    The aim of this review is, first, to cover the different aspects of visual height intolerance such as historical descriptions, definition of terms, phenomenology of the condition, neurophysiological control of gaze, stance and locomotion, and therapy, and, second, to identify warranted epidemiological and experimental studies. Vivid descriptions of fear of heights can be found in ancient texts from the Greek, Roman, and Chinese classics. The life-time prevalence of visual height intolerance is as high as 28% in the general population, and about 50% of those who are susceptible report an impact on quality of life. When exposed to heights, visual exploration by eye and head movements is restricted, and the velocity of locomotion is reduced. Therapy for fear of heights is dominated by the behavioral techniques applied during real or virtual reality exposure. Their efficacy might be facilitated by the administration of D-cycloserine or glucocorticoids. Visual height intolerance has a considerable impact on daily life and interpersonal interactions. It is much more frequent than fear of heights, which is defined as an environmental subtype of a specific phobia. There is certainly a continuum stretching from acrophobia to a less-pronounced visual height intolerance, to which the categorical distinction of a specific phobia does not apply.

  15. Assessing post-fire ground cover in Mediterranean shrublands with field spectrometry and digital photography

    Science.gov (United States)

    Montorio Llovería, Raquel; Pérez-Cabello, Fernando; García-Martín, Alberto

    2016-09-01

    Fire severity can be assessed by identifying and quantifying the fractional abundance of post-fire ground cover types, an approach with great capacity to predict ecosystem response. Focused on shrubland formations of Mediterranean-type ecosystems, three burned areas (Ibieca and Zuera wildfires and Peñaflor experimental fire) were sampled in the summers of 2006 and 2007. Two different ground measurements were made for each of the 356 plots: (i) 3-band high spatial resolution photography (HSRP) and (ii) the hemispherical-conical reflectance factor (HCRF) in the visible to near-infrared spectral range (VNIR, 400-900 nm). Stepwise multiple lineal regression (SMLR) models were fitted to spectral variables (HCRF, first derivative spectra or FDS, and four absorption indices) to estimate the fractional cover of seven post-fire ground cover types (vegetation and soil - unburned and charred components - and ash - char and ash, individually and as a combined category). Models were developed and validated at the Peñaflor site (training, n = 217; validation, n = 88) and applied to the samples from the Ibieca and Zuera sites (n = 51). The best results were observed for the abundance estimations of green vegetation (Radj.20.70-0.90), unburned soil (Radj.20.40-0.75), and the combination of ashes (Radj.20.65-0.80). In comparison of spectral data, FDS outperforms reflectance or absorption data because of its higher accuracy levels and, importantly, its greater capacity to yield generalizable models. Future efforts should be made to improve the estimation of intermediate severity levels and upscaling the developed models. In the context of fire severity assessment, our study demonstrates the potential of hyperspectral data to estimate in a quick and objective manner post-fire ground cover fractions and thus provide valuable information to guide management responses.

  16. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    Science.gov (United States)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  17. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia.

    Science.gov (United States)

    Singh, Minerva; Evans, Damian; Coomes, David A; Friess, Daniel A; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests.

  18. Evaluating remotely sensed plant count accuracy with differing unmanned aircraft system altitudes, physical canopy separations, and ground covers

    Science.gov (United States)

    Leiva, Josue Nahun; Robbins, James; Saraswat, Dharmendra; She, Ying; Ehsani, Reza

    2017-07-01

    This study evaluated the effect of flight altitude and canopy separation of container-grown Fire Chief™ arborvitae (Thuja occidentalis L.) on counting accuracy. Images were taken at 6, 12, and 22 m above the ground using unmanned aircraft systems. Plants were spaced to achieve three canopy separation treatments: 5 cm between canopy edges, canopy edges touching, and 5 cm of canopy edge overlap. Plants were placed on two different ground covers: black fabric and gravel. A counting algorithm was trained using Feature Analyst®. Total counting error, false positives, and unidentified plants were reported for images analyzed. In general, total counting error was smaller when plants were fully separated. The effect of ground cover on counting accuracy varied with the counting algorithm. Total counting error for plants placed on gravel (-8) was larger than for those on a black fabric (-2), however, false positive counts were similar for black fabric (6) and gravel (6). Nevertheless, output images of plants placed on gravel did not show a negative effect due to the ground cover but was impacted by differences in image spatial resolution.

  19. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  20. Correlation between land cover and ground vulnerability in Alexandria City (Egypt) using time series SAR interferometry and optical Earth observation data

    Science.gov (United States)

    Seleem, T.; Stergiopoulos, V.; Kourkouli, P.; Perrou, T.; Parcharidis, Is.

    2017-10-01

    The main scope of this study is to investigate the potential correlation between land cover and ground vulnerability over Alexandria city, Egypt. Two different datasets for generating ground deformation and land cover maps were used. Hence, two different approaches were followed, a PSI approach for surface displacement mapping and a supervised classification algorithm for land cover/use mapping. The interferometric results show a gradual qualitative and quantitative differentiation of ground deformation from East to West of Alexandria government. We selected three regions of interest, in order to compare the obtained interferometric results with the different land cover types. The ground deformation may be resulted due to different geomorphic and geologic factors encompassing the proximity to the active deltaic plain of the Nile River, the expansion of the urban network within arid regions of recent deposits, the urban density increase, and finally the combination of the above mentioned parameters.

  1. Distributed Modelling of Stormflow Generation: Assessing the Effect of Ground Cover

    Science.gov (United States)

    Jarihani, B.; Sidle, R. C.; Roth, C. H.; Bartley, R.; Wilkinson, S. N.

    2017-12-01

    Understanding the effects of grazing management and land cover changes on surface hydrology is important for water resources and land management. A distributed hydrological modelling platform, wflow, (that was developed as part of Deltares's OpenStreams project) is used to assess the effect of land management practices on runoff generation processes. The model was applied to Weany Creek, a small catchment (13.6 km2) of the Burdekin Basin, North Australia, which is being studied to understand sources of sediment and nutrients to the Great Barrier Reef. Satellite and drone-based ground cover data, high resolution topography from LiDAR, soil properties, and distributed rainfall data were used to parameterise the model. Wflow was used to predict total runoff, peak runoff, time of rise, and lag time for several events of varying magnitudes and antecedent moisture conditions. A nested approach was employed to calibrate the model by using recorded flow hydrographs at three scales: (1) a hillslope sub-catchment: (2) a gullied sub-catchment; and the 13.6 km2 catchment outlet. Model performance was evaluated by comparing observed and predicted stormflow hydrograph attributes using the Nash Sutcliffe efficiency metric. By using a nested approach, spatiotemporal patterns of overland flow occurrence across the catchment can also be evaluated. The results show that a process-based distributed model can be calibrated to simulate spatial and temporal patterns of runoff generation processes, to help identify dominant processes which may be addressed by land management to improve rainfall retention. The model will be used to assess the effects of ground cover changes due to management practices in grazed lands on storm runoff.

  2. Effects of 60Co γ-rays irradiation on seed growth of ground-cover chrysanthemum

    International Nuclear Information System (INIS)

    Ge Weiya; Wang Tiantian; Yang Shuhua; Zhao Ying; Ge Hong; Chen Lin

    2011-01-01

    The seeds of ground-cover chrysanthemum were used to study the effects of different doses of 60 Co γ-rays irradiation(10-50 Gy) on seed germination and physiological characteristics. The results showed that the rate of seed germination and seedling survival decreased significantly with the irradiation doses. With the increase of irradiation dose to above 20 Gy, the content of malondialdehyde (MDA) and activity of peroxidase (POD) in seedlings significantly increased. The similar trends were found in the activities of superoxide dismutase (SOD) and glutathione reductase (GR). Catalase (CAT) activity increased at doses lower than 20 Gy, and then decreased at the higher doses, whereas ascorbate peroxidase (APX) activity did not alter except for 40 Gy. It is concluded that the suitable irradiation dose of mutation breeding is 20 Gy for the seeds of ground-cover chrysanthemum. Although 60 Co γ-rays irradiation resulted in damage of membrane lipid peroxidation in the survival seedlings, the increased activity of CAT and POD could protect them against the damage. (authors)

  3. Simulation of ICESat-2 canopy height retrievals for different ecosystems

    Science.gov (United States)

    Neuenschwander, A. L.

    2016-12-01

    Slated for launch in late 2017 (or early 2018), the ICESat-2 satellite will provide a global distribution of geodetic measurements from a space-based laser altimeter of both the terrain surface and relative canopy heights which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to producing distribution of above ground vegetation structure. The ATLAS instrument designed for ICESat-2, will utilize a different technology than what is found on most laser mapping systems. The photon counting technology of the ATLAS instrument onboard ICESat-2 will record the arrival time associated with a single photon detection. That detection can occur anywhere within the vertical distribution of the reflected signal, that is, anywhere within the vertical distribution of the canopy. This uncertainty of where the photon will be returned from within the vegetation layer is referred to as the vertical sampling error. Preliminary simulation studies to estimate vertical sampling error have been conducted for several ecosystems including woodland savanna, montane conifers, temperate hardwoods, tropical forest, and boreal forest. The results from these simulations indicate that the canopy heights reported on the ATL08 data product will underestimate the top canopy height in the range of 1 - 4 m. Although simulation results indicate the ICESat-2 will underestimate top canopy height, there is, however, a strong correlation between ICESat-2 heights and relative canopy height metrics (e.g. RH75, RH90). In tropical forest, simulation results indicate the ICESat-2 height correlates strongly with RH90. Similarly, in temperate broadleaf forest, the simulated ICESat-2 heights were also strongly correlated with RH90. In boreal forest, the simulated ICESat-2 heights are strongly correlated with RH75 heights. It is hypothesized that the correlations between simulated ICESat-2 heights and canopy height metrics are a

  4. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  5. Spatio-temporal evaluation of plant height in corn via unmanned aerial systems

    Science.gov (United States)

    Varela, Sebastian; Assefa, Yared; Vara Prasad, P. V.; Peralta, Nahuel R.; Griffin, Terry W.; Sharda, Ajay; Ferguson, Allison; Ciampitti, Ignacio A.

    2017-07-01

    Detailed spatial and temporal data on plant growth are critical to guide crop management. Conventional methods to determine field plant traits are intensive, time-consuming, expensive, and limited to small areas. The objective of this study was to examine the integration of data collected via unmanned aerial systems (UAS) at critical corn (Zea mays L.) developmental stages for plant height and its relation to plant biomass. The main steps followed in this research were (1) workflow development for an ultrahigh resolution crop surface model (CSM) with the goal of determining plant height (CSM-estimated plant height) using data gathered from the UAS missions; (2) validation of CSM-estimated plant height with ground-truthing plant height (measured plant height); and (3) final estimation of plant biomass via integration of CSM-estimated plant height with ground-truthing stem diameter data. Results indicated a correlation between CSM-estimated plant height and ground-truthing plant height data at two weeks prior to flowering and at flowering stage, but high predictability at the later growth stage. Log-log analysis on the temporal data confirmed that these relationships are stable, presenting equal slopes for both crop stages evaluated. Concluding, data collected from low-altitude and with a low-cost sensor could be useful in estimating plant height.

  6. AIRBORNE X-HH INCIDENCE ANGLE IMPACT ON CANOPY HEIGHT RETREIVAL: IMPLICATIONS FOR SPACEBORNE X-HH TANDEM-X GLOBAL CANOPY HEIGHT MODEL

    Directory of Open Access Journals (Sweden)

    M. L. Tighe

    2012-07-01

    Full Text Available To support international climate change mitigation efforts, the United Nations REDD+ initiative (Reducing Emissions from Deforestation and Degradation seeks to reduce land use induced greenhouse gas emissions to the atmosphere. It requires independent monitoring of forest cover and forest biomass information in a spatially explicit form. It is widely recognised that remote sensing is required to deliver this information. Synthetic Aperture Radar interferometry (InSAR techniques have gained traction in the last decade as a viable technology from which vegetation canopy height and bare earth elevations can be derived. The viewing geometry of a SAR sensor is side-looking where the radar pulse is transmitted out to one side of the aircraft or satellite, defining an incidence angle (θ range. The incidence angle will change from near-range (NR to far-range (FR across of the track of the SAR platform. InSAR uses image pairs and thus, contain two set of incidence angles. Changes in the InSAR incidence angles can alter the relative contributions from the vegetation canopy and the ground surface and thus, affect the retrieved vegetation canopy height. Incidence angle change is less pronounced in spaceborne data than in airborne data and mitigated somewhat when multiple InSAR-data takes are combined. This study uses NEXTMap® single- and multi-pass X-band HH polarized InSAR to derive vegetation canopy height from the scattering phase centre height (hspc. Comparisons with in situ vegetation canopy height over three test sites (Arizona-1, Minnesota-2; the effect of incidence angle changes across swath on the X-HH InSAR hspc was examined. Results indicate at steep incidence angles (θ = 35º, more exposure of lower vegetation canopy structure (e.g. tree trunks led to greater lower canopy double bounce, increased ground scattering, and decreased volume scattering. This resulted in a lower scattering phase centre height (hspc or a greater underestimation of

  7. Measurement of NO2 pollutant sorption of various trees, shrubs and ground cover plants using gas NO2 labelled 15N

    International Nuclear Information System (INIS)

    Nasrullah, Nizar; Wungkar, Marietje; Gunawan, Andi; Gandanegara, Soertini; Suharsono, Heny

    2000-01-01

    The objective of this study is to measure the NO 2 pollutant sorption of various trees, shrubs and ground cover plants. 32 species of trees, 64 speceis of shrubs and 13 species of ground cover plants were exposed to 3 ppm (v / v) N- 15 O 2 in a gas chamber for 60 minutes. Experiment consisted of 2 replicates. The environment conditions in the chamber were set at 30 o C, 1000 lux, and initial relative humidity 60 %. After gas treatment, plants parts were separated into leaves, stems and roots, than dried in 70 o C for 48 hours and then weighed. After weighing, those plants parts were ground to a pine powder. After kjendhal digestion, N total content of plants were analyzed by distillation method. 15 N content of plant samples were analyzed by emission spectrometer ( Yasco, N-151). The amount of N-15 absorbed by plant was the total content of 15 N in the whole plants ( leaves, stem and root ) per gram dry weight of leaves. The amount of 15 N absorbed by plants varied among investigated plants. 15 N sorption of trees are in the range 0.28 - 68.31μg/g. The sorption of shrubs and ground cover plants varied in 1.97 - 100.02 μg/g and 2.38 - 24.06μg/g, respectively. According to the amount of 15 N sorption , the plants were divided into 3 groups of sorption level, high ( > 30.0μg/g), moderate ( 15 - 30 μg/g ), and low sorption level ( 15 μg/g). Results showed that among of 32 investigated trees, 64 shrubs and 13 ground cover plant, 4 species of trees and 13 species of shrubs performed a high sorption level and no one of ground cover plants performed a high sorption level. The species of trees and 15 species of shrubs that mention above are recommended to use as an element of landscape which to be functioned to reduce NO 2 atmospheric pollutant

  8. The height variation of supergranular velocity fields determined from simultaneous OSO 8 satellite and ground-based observations

    Science.gov (United States)

    November, L. J.; Toomre, J.; Gebbie, K. B.; Simon, G. W.

    1979-01-01

    Results are reported for simultaneous satellite and ground-based observations of supergranular velocities in the sun, which were made using a UV spectrometer aboard OSO 8 and a diode-array instrument operating at the exit slit of an echelle spectrograph attached to a vacuum tower telescope. Observations of the steady Doppler velocities seen toward the limb in the middle chromosphere and the photosphere are compared; the observed spectral lines of Si II at 1817 A and Fe I at 5576 A are found to differ in height of formation by about 1400 km. The results show that supergranular motions are able to penetrate at least 11 density scale heights into the middle chromosphere, that the patterns of motion correlate well with the cellular structure seen in the photosphere, and that the motion increases from about 800 m/s in the photosphere to at least 3000 m/s in the middle chromosphere. These observations imply that supergranular velocities should be evident in the transition region and that strong horizontal shear layers in supergranulation should produce turbulence and internal gravity waves.

  9. Program Merges SAR Data on Terrain and Vegetation Heights

    Science.gov (United States)

    Siqueira, Paul; Hensley, Scott; Rodriguez, Ernesto; Simard, Marc

    2007-01-01

    X/P Merge is a computer program that estimates ground-surface elevations and vegetation heights from multiple sets of data acquired by the GeoSAR instrument [a terrain-mapping synthetic-aperture radar (SAR) system that operates in the X and bands]. X/P Merge software combines data from X- and P-band digital elevation models, SAR backscatter magnitudes, and interferometric correlation magnitudes into a simplified set of output topographical maps of ground-surface elevation and tree height.

  10. Mapping wind erosion hazard in Australia using MODIS-derived ground cover, soil moisture and climate data

    International Nuclear Information System (INIS)

    Yang, X; Leys, J

    2014-01-01

    This paper describes spatial modeling methods to identify wind erosion hazard (WEH) areas across Australia using the recently available time-series products of satellite-derived ground cover, soil moisture and wind speed. We implemented the approach and data sets in a geographic information system to produce WEH maps for Australia at 500 m ground resolution on a monthly basis for the recent thirteen year period (2000–2012). These maps reveal the significant wind erosion hazard areas and their dynamic tendencies at paddock and regional scales. Dust measurements from the DustWatch network were used to validate the model and interpret the dust source areas. The modeled hazard areas and changes were compared with results from a rule-set approach and the Computational Environmental Management System (CEMSYS) model. The study demonstrates that the time series products of ground cover, soil moisture and wind speed can be jointly used to identify landscape erodibility and to map seasonal changes of wind erosion hazard across Australia. The time series wind erosion hazard maps provide detailed and useful information to assist in better targeting areas for investments and continuous monitoring, evaluation and reporting that will lead to reduced wind erosion and improved soil condition

  11. Epiphyte-cover on seagrass (Zostera marina L. leaves impedes plant performance and radial O2 loss from the below-ground tissue

    Directory of Open Access Journals (Sweden)

    Kasper Elgetti Brodersen

    2015-08-01

    Full Text Available The O2 budget of seagrasses is a complex interaction between several sources and sinks, which is strongly regulated by light availability and mass transfer over the diffusive boundary layer (DBL surrounding the plant. Epiphyte growth on leaves may thus strongly affect the O2 availability of the seagrass plant and its capability to aerate its rhizosphere as a defence against plant toxins.We used electrochemical and fiber-optic microsensors to quantify the O2 flux, DBL and light microclimate around leaves with and without filamentous algal epiphytes. We also quantified the below-ground radial O2 loss from roots (~1 mm from the root-apex to elucidate how this below-ground oxic microzone was affected by the presence of epiphytes.Epiphyte-cover on seagrass leaves (~21% areal cover resulted in reduced light quality and quantity for photosynthesis, thus leading to reduced plant fitness. A ~4 times thicker diffusive boundary layer around leaves with epiphyte-cover impeded gas (and nutrient exchange with the surrounding water-column and thus the amount of O2 passively diffusing into the leaves in darkness. During light exposure of the leaves, radial oxygen loss from the below-ground tissue was ~2 times higher from plants without epiphyte-cover. In contrast, no O2 was detectable at the surface of the root-cap tissue of plants with epiphyte-cover during darkness, leaving the plants more susceptible to sulphide intrusion.Epiphyte growth on seagrass leaves thus negatively affects the light climate and O2 uptake in darkness, hampering the plants performance and thereby reducing the oxidation capability of its below-ground tissue.

  12. Observing Crop-Height Dynamics Using a UAV

    Science.gov (United States)

    Ziliani, M. G.; Parkes, S. D.; McCabe, M.

    2017-12-01

    Retrieval of vegetation height during a growing season is a key indicator for monitoring crop status, offering insight to the forecast yield relative to previous planting cycles. Improvement in Unmanned Aerial Vehicle (UAV) technologies, supported by advances in computer vision and photogrammetry software, has enabled retrieval of crop heights with much higher spatial resolution and coverage. These methodologies retrieve a Digital Surface Map (DSM), which combine terrain and crop elements to obtain a Crop Surface Map (CSM). Here we describe an automated method for deriving high resolution CSMs from a DSM, using RGB imagery from a UAV platform. Importantly, the approach does not require the need for a digital terrain map (DTM). The method involves distinguishing between vegetation and bare-ground cover pixels, using vegetation index maps from the RGB orthomosaic derived from the same flight as the DSM. We show that the absolute crop height can be extracted to within several centimeters, exploiting the data captured from a single UAV flight. In addition, the method is applied across five surveys during a maize growing cycle and compared against a terrain map constructed from a baseline UAV survey undertaken prior to crop growth. Results show that the approach is able to reproduce the observed spatial variability of the crop height within the maize field throughout the duration of the growing season. This is particularly valuable since it may be employed to detect intra-field problems (i.e. fertilizer variability, inefficiency in the irrigation system, salinity etc.) at different stages of the season, from which remedial action can be initiated to mitigate against yield loss. The method also demonstrates that UAV imagery combined with commercial photogrammetry software can determine a CSM from a single flight without the requirement of a prior DTM. This, together with the dynamic crop height estimation, provide useful information with which to inform precision

  13. Infiltration properties of covering soil into the void of buried concrete waste due to fluctuation of ground water level and its prevention

    International Nuclear Information System (INIS)

    Takatsu, Tadashi; Tadano, Hideki; Abe, Satoshi; Imai, Jun; Yanagisawa, Eiji; Mitachi, Toshiyuki

    1999-01-01

    Low level radioactive concrete waste will be produced in future by breaking up the nuclear facilities, and the waste will be disposed in shallow depth of ground. In order to prepare for those situation, it is needed to clarify the infiltration properties of the covering soil into the void of buried concrete waste due to the fluctuation of ground water level and to develop the prevention methods against the infiltration of the covering soil. In this study, full-scale concrete structure specimens were broken up, and were compacted in large scale testing boxes and a series tests changing water level up and down in the concrete waste and covering soil were performed. From the test results, it was found that the appropriate filter installed between the covering soil and the concrete waste, enable us to prevent the infiltration of covering soil into the void of concrete waste. (author)

  14. UV hazard on Italian Apennines under different shading and ground cover conditions during peak tourist seasons of the year.

    Science.gov (United States)

    Grifoni, Daniele; Carreras, Giulia; Sabatini, Francesco; Zipoli, Gaetano

    2006-12-01

    In solar UV irradiance monitoring and forecasting services UV information is generally expressed in terms of its effect on erythema and referred to horizontal surface. In this work we define the UV radiative regime, in terms of biologically effective UV irradiance (UVBE) for skin and eye, under full sun and shaded conditions, over a mountainous tourist area of central Italy by means of two all-day measurements (summer and early spring) with different ground albedo (grass and snow cover respectively). UV irradiance was monitored on tilted surfaces (the most frequent for people standing and walking). Results show the significant contribution of ground albedo and sun position in determining the incident UVBE irradiance. On early spring days the UVBE irradiance measured on horizontal surface was much lower than on tilted ones; the opposite condition was observed in summer. The highest UVBE irradiance values, in particular conditions of sun elevation and ground cover, were reached in periods different from the summer both in full sun and shaded condition.

  15. Variability of the Mixed-Layer Height Over Mexico City

    Science.gov (United States)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-02-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (pollution episodes and the height of the mixed layer. The growth rate of the convective mixed-layer height has a seasonal behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  16. Ground level cosmic ray pulse height spectrum of a 7. 5 cm diameter spherical NaI(Tl) scintillation detector for energy region below 5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Toshi; Saito, Kimiaki; Moriuchi, Shigeru

    1988-09-01

    Ground level cosmic ray pulse height spectrum of a 7.5 cm diameter spherical NaI(Tl) scintillation detector was evaluated through stripping operation based on a pulse height spectrum measured on the sea and high precision response functions of the detector for U-series, Th-series and /sup 40/K. The exposure rate calculated from the determined cosmic ray pulse height spectrum was 0.21 R/h eq., which agreed well with that obtained from another method. The shape of the pulse height spectrum showed similarity to that measured at the altitude of 16,000 ft, especially in the energy region of 0 to 3 MeV. The principle of the adopted method is rather plain, however, the reliability of the spectrum is satisfactory. As the pulse height spectrum is a common information to any analytical method for environmental gamma ray using NaI(Tl) scintillation detector, it is expected to be used for simple and precise separation of cosmic ray component involved in the enviromental pulse height spectrum.

  17. Ground level cosmic ray pulse height spectrum of a 7.5 cm diameter spherical NaI(Tl) scintillation detector for energy region below 5 MeV

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Saito, Kimiaki; Moriuchi, Shigeru

    1988-01-01

    Ground level cosmic ray pulse height spectrum of a 7.5 cm diameter spherical NaI(Tl) scintillation detector was evaluated through stripping operation based on a pulse height spectrum measured on the sea and high precision response functions of the detector for U-series, Th-series and 40 K. The exposure rate calculated from the determined cosmic ray pulse height spectrum was 0.21 μR/h eq., which agreed well with that obtained from another method. The shape of the pulse height spectrum showed similarity to that measured at the altitude of 16,000 ft, especially in the energy region of 0 to 3 MeV. The principle of the adopted method is rather plain, however, the reliability of the spectrum is satisfactory. As the pulse height spectrum is a common information to any analytical method for environmental gamma ray using NaI(Tl) scintillation detector, it is expected to be used for simple and precise separation of cosmic ray component involved in the enviromental pulse height spectrum. (author)

  18. Effects of Wheelchair Seat-height Settings on Alternating Lower Limb Propulsion With Both Legs.

    Science.gov (United States)

    Murata, Tomoyuki; Asami, Toyoko; Matsuo, Kiyomi; Kubo, Atsuko; Okigawa, Etsumi

    2014-01-01

    This study investigated the effects of seat-height settings of wheelchairs with alternating propulsion with both legs. Seven healthy individuals with no orthopedic disease participated. Flexion angles at initial contact (FA-IC) of each joint, range of motion during propulsion period (ROM-PP), and ground reaction force (GRF) were measured using a three dimensional motion capture system and force plates, and compared with different seat-height settings. Statistically significant relationships were found between seat-height and speed, stride length, knee FA-IC, ankle FA-IC, hip ROM-PP, vertical ground reaction force (VGRF), and anterior posterior ground reaction force (APGRF). Speed, hip ROM-PP, VGRF and APGRF increased as the seat-height was lowered. This effect diminished when the seat-height was set below -40 mm. VGRF increased as the seat-height was lowered. The results suggest that the seat-height effect can be attributed to hip ROM-PP; therefore, optimal foot propulsion cannot be achieved when the seat height is set either too high or too low. Efficient foot propulsion of the wheelchair can be achieved by setting the seat height to lower leg length according to a combination of physical characteristics, such as the user's physical functions, leg muscles, and range of motion.

  19. Citizen science land cover classification based on ground and satellite imagery: Case study Day River in Vietnam

    Science.gov (United States)

    Nguyen, Son Tung; Minkman, Ellen; Rutten, Martine

    2016-04-01

    Citizen science is being increasingly used in the context of environmental research, thus there are needs to evaluate cognitive ability of humans in classifying environmental features. With the focus on land cover, this study explores the extent to which citizen science can be applied in sensing and measuring the environment that contribute to the creation and validation of land cover data. The Day Basin in Vietnam was selected to be the study area. Different methods to examine humans' ability to classify land cover were implemented using different information sources: ground based photos - satellite images - field observation and investigation. Most of the participants were solicited from local people and/or volunteers. Results show that across methods and sources of information, there are similar patterns of agreement and disagreement on land cover classes among participants. Understanding these patterns is critical to create a solid basis for implementing human sensors in earth observation. Keywords: Land cover, classification, citizen science, Landsat 8

  20. Variability of the Mixed-Layer Height Over Mexico City

    Science.gov (United States)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-06-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  1. Reformulation of the covering and quantizer problems as ground states of interacting particles

    Science.gov (United States)

    Torquato, S.

    2010-11-01

    It is known that the sphere-packing problem and the number-variance problem (closely related to an optimization problem in number theory) can be posed as energy minimizations associated with an infinite number of point particles in d -dimensional Euclidean space Rd interacting via certain repulsive pair potentials. We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in Rd that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the “void” nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplify the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. In the first three space dimensions, the best known solutions of the sphere-packing and number-variance problems (or their “dual” solutions) are directly related to those of the covering and quantizer problems, but such relationships may or may not exist for d≥4 , depending on the peculiarities of the dimensions involved. Our reformulation sheds light on the reasons for these similarities and differences. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper

  2. The influence of heel height on vertical ground reaction force during landing tasks in recreationally active and athletic collegiate females.

    Science.gov (United States)

    Lindenberg, Kelly M; Carcia, Christopher R

    2013-02-01

    To determine if heel height alters vertical ground reaction forces (vGRF) when landing from a forward hop or drop landing. Increased vGRF during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a athletic shoe. Using a force plate, peak vGRF at landing was examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- Peak vGRF (normalized for body mass) with 0 mm, 12 mm, and 24 mm lifts were 2.613±0.498, 2.616±0.497 and 2.495±0.518% BW, respectively. Significant differences were noted between 0 and 24 mm lift (psneaker significantly alters peak vGRF upon landing from a unilateral forward hop but not from a jumping maneuver.

  3. Land Use and Land Cover - MO 2015 Silver Land Cover (GDB)

    Data.gov (United States)

    NSGIC State | GIS Inventory — MoRAP produced and integrated data to map land cover and wetlands for the Upper Silver Creek Watershed in Illinois. LiDAR elevation and vegetation height information...

  4. Land Use and Land Cover - MO 2015 Meramec Land Cover (GDB)

    Data.gov (United States)

    NSGIC State | GIS Inventory — MoRAP produced and integrated data to map land cover and wetlands for the Meramec River bottomland in Missouri. LiDAR elevation and vegetation height information and...

  5. A comparison of ground and satellite observations of cloud cover to saturation pressure differences during a cold air outbreak

    Energy Technology Data Exchange (ETDEWEB)

    Alliss, R.J.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The role of clouds in the atmospheric general circulation and the global climate is twofold. First, clouds owe their origin to large-scale dynamical forcing, radiative cooling in the atmosphere, and turbulent transfer at the surface. In addition, they provide one of the most important mechanisms for the vertical redistribution of momentum and sensible and latent heat for the large scale, and they influence the coupling between the atmosphere and the surface as well as the radiative and dynamical-hydrological balance. In existing diagnostic cloudiness parameterization schemes, relative humidity is the most frequently used variable for estimating total cloud amount or stratiform cloud amount. However, the prediction of relative humidity in general circulation models (GCMs) is usually poor. Even for the most comprehensive GCMs, the predicted relative humidity may deviate greatly from that observed, as far as the frequency distribution of relative humidity is concerned. Recently, there has been an increased effort to improve the representation of clouds and cloud-radiation feedback in GCMs, but the verification of cloudiness parameterization schemes remains a severe problem because of the lack of observational data sets. In this study, saturation pressure differences (as opposed to relative humidity) and satellite-derived cloud heights and amounts are compared with ground determinations of cloud cover over the Gulf Stream Locale (GSL) during a cold air outbreak.

  6. Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion

    Science.gov (United States)

    Yu, Yifan; Saatchi, Sassan; Heath, Linda S.; LaPoint, Elizabeth; Myneni, Ranga; Knyazikhin, Yuri

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R2 = 0.86, P forests (R2 = 0.93, P forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree ]surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution.

  7. A stingless bee can use visual odometry to estimate both height and distance.

    Science.gov (United States)

    Eckles, M A; Roubik, D W; Nieh, J C

    2012-09-15

    Bees move and forage within three dimensions and rely heavily on vision for navigation. The use of vision-based odometry has been studied extensively in horizontal distance measurement, but not vertical distance measurement. The honey bee Apis mellifera and the stingless bee Melipona seminigra measure distance visually using optic flow-movement of images as they pass across the retina. The honey bees gauge height using image motion in the ventral visual field. The stingless bees forage at different tropical forest canopy levels, ranging up to 40 m at our site. Thus, estimating height would be advantageous. We provide the first evidence that the stingless bee Melipona panamica utilizes optic flow information to gauge not only distance traveled but also height above ground, by processing information primarily from the lateral visual field. After training bees to forage at a set height in a vertical tunnel lined with black and white stripes, we observed foragers that explored a new tunnel with no feeder. In a new tunnel, bees searched at the same height they were trained to. In a narrower tunnel, bees experienced more image motion and significantly lowered their search height. In a wider tunnel, bees experienced less image motion and searched at significantly greater heights. In a tunnel without optic cues, bees were disoriented and searched at random heights. A horizontal tunnel testing these variables similarly affected foraging, but bees exhibited less precision (greater variance in search positions). Accurately gauging flight height above ground may be crucial for this species and others that compete for resources located at heights ranging from ground level to the high tropical forest canopies.

  8. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    Science.gov (United States)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and

  9. Intrusion of soil covered uranium mill tailings by whitetail prairie dogs and Richardson's ground squirrels

    International Nuclear Information System (INIS)

    Shuman, R.

    1984-01-01

    The primary objective of the reclamation of uranium mill tailings is the long-term isolation of the matrial from the biosphere. Fossorial and semi-fossorial species represent a potentially disruptive influence as a result of their burrowing habits. The potential for intrusion was investigated with respect to two sciurids, the whitetail prairie dog (Cynomys leucurus) and Richardson's ground squirrel (Spermophilus richardsonii). Populations of prairie dogs were established on a control area, lacking a tailings layer, and two experimental areas, underlain by a waste layer, in southeastern Wyoming. Weekly measurements of prairie dog mound surface activities were conducted to demonstrate penetration, or lack thereof, of the tailings layer. Additionally, the impact of burrowing upon radon flux was determined. Limited penetration of the waste layer was noted after which frequency of inhabitance of the intruding burrow system declined. No significant changes in radon flux were detected. In another experiment, it was found that Richardson's ground squirrels burrowed to less extreme depths when confronted by mill tailings. Additional work at an inactive tailings pile in western Colorado revealed repeated intrusion through a shallow cover, and subsequent transport of radioactive material to the ground surface by prairie dogs. Radon flux from burrow entrances was significantly greater than that from undisturbed ground. Data suggested that textural and pH properties of tailings material may act to discourage repeated intrusion at some sites. 58 references

  10. MANAGEMENT EFFECTS ON GROUND COVER CLUMPINESS: SCALING FROM FIELD TO SENTINEL-2 COVER ESTIMATES

    Directory of Open Access Journals (Sweden)

    P. Scarth

    2017-11-01

    Full Text Available Significant progress has been made in the development of cover data and derived products based on remotely sensed fractional cover information and field data across Australia, and these cover data sets are now used for quantifying and monitoring grazing land condition. The availability of a dense time-series of nearly 30 years of cover data to describe the spatial and temporal patterns in landscape changes over time can help with monitoring the effectiveness of grazing land management practice change. With the advent of higher spatial resolution data, such as that provided by the Copernicus Sentinel 2 series of satellites, we can look beyond reporting purely on cover amount and more closely at the operational monitoring and reporting on spatial arrangement of cover and its links with land condition. We collected high spatial resolution cover transects at 20 cm intervals over the Wambiana grazing trials in the Burdekin catchment in Queensland, Australia. Spatial variance analysis was used to determine the cover autocorrelation at various support intervals. Coincident Sentinel-2 imagery was collected and processed over all the sites providing imagery to link with the field data. We show that the spatial arrangement and temporal dynamics of cover are important indicators of grazing land condition for both productivity and water quality outcomes. The metrics and products derived from this research will assist land managers to prioritize investment and practice change strategies for long term sustainability and improved water quality, particularly in the Great Barrier Reef catchments.

  11. Automated lidar-derived canopy height estimates for the Upper Mississippi River System

    Science.gov (United States)

    Hlavacek, Enrika

    2015-01-01

    Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.

  12. Height perception influenced by texture gradient.

    Science.gov (United States)

    Tozawa, Junko

    2012-01-01

    Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.

  13. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes.

    Science.gov (United States)

    Bae, Jichul; Benoit, Diane L; Watson, Alan K

    2016-06-01

    In southern Québec, supplement roadside ground covers (i.e. Trifolium spp.) struggle to establish near edges of major roads and thus fail to assist turf recruitment. It creates empty niches vulnerable to weed establishment such as common ragweed (Ambrosia artemisiifolia). We hypothesized that heavy metal stresses may drive such species shifts along roadside edges. A growth chamber experiment was conducted to assess effects of metals (Zn, Pb, Ni, Cu, and Cd) on germination and seedling behaviors of roadside weed (A. artemisiifolia) and ground cover legumes (Coronilla varia, Lotus corniculatus, and Trifolium arvense). All metals inhibited T. arvense germination, but the effect was least on A. artemisiifolia. Low levels of Pb and Ni promoted germination initiation of A. artemisiifolia. Germination of L. corniculatus was not affected by Zn, Pb, and Ni, but inhibited by Cu and Cd. Germination of C. varia was decreased by Ni, Cu, and Cd and delayed by Zn and Pb. Metal additions hindered seedling growth of all test species, and the inhibitory effect on the belowground growth was greater than on the aboveground growth. Seedling mortality was lowest in A. artemisiifolia but highest in T. arvense when exposed to the metal treatments. L. corniculatus and C. varia seedlings survived when subjected to high levels of Zn, Pb, and Cd. In conclusion, the successful establishment of A. artemisiifolia along roadside edges can be associated with its greater tolerance of heavy metals. The findings also revealed that L. corniculatus is a potential candidate for supplement ground cover in metal-contaminated roadside edges in southern Québec, especially sites contaminated with Zn and Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Experimental evaluation of ALS point cloud ground extraction over different land cover in the Malopolska Province

    Science.gov (United States)

    Korzeniowska, Karolina; Mandlburger, Gottfried; Klimczyk, Agata

    2013-04-01

    The paper presents an evaluation of different terrain point extraction algorithms for Airborne Laser Scanning (ALS) point clouds. The research area covers eight test sites in the Małopolska Province (Poland) with varying point density between 3-15points/m² and surface as well as land cover characteristics. In this paper the existing implementations of algorithms were considered. Approaches based on mathematical morphology, progressive densification, robust surface interpolation and segmentation were compared. From the group of morphological filters, the Progressive Morphological Filter (PMF) proposed by Zhang K. et al. (2003) in LIS software was evaluated. From the progressive densification filter methods developed by Axelsson P. (2000) the Martin Isenburg's implementation in LAStools software (LAStools, 2012) was chosen. The third group of methods are surface-based filters. In this study, we used the hierarchic robust interpolation approach by Kraus K., Pfeifer N. (1998) as implemented in SCOP++ (Trimble, 2012). The fourth group of methods works on segmentation. From this filtering concept the segmentation algorithm available in LIS was tested (Wichmann V., 2012). The main aim in executing the automatic classification for ground extraction was operating in default mode or with default parameters which were selected by the developers of the algorithms. It was assumed that the default settings were equivalent to the parameters on which the best results can be achieved. In case it was not possible to apply an algorithm in default mode, a combination of the available and most crucial parameters for ground extraction were selected. As a result of these analyses, several output LAS files with different ground classification were achieved. The results were described on the basis of qualitative and quantitative analyses, both being in a formal description. The classification differences were verified on point cloud data. Qualitative verification of ground extraction was

  15. Ground cover and tree growth on calcareous minesoils: Greater influence of soil surface than nitrogen rate or seed mix

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.

    1994-01-01

    Growth of ground cover and trees was evaluated for five growing seasons on calcareous coal minesoil surfaces (standard graded topsoil, graded and ripped topsoil, graded gray cast overburden) in southeastern Ohio. Soil surface plots were seeded in September 1987 with either a standard herbaceous seed mix [orchardgrass (Dactylis glomerata L.), timothy (Phleum pratense L.), perennial ryegrass (Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.), Ranger alfalfa (Medicago sativa L.), Mammoth red clover (Trifolium pratense L.), Empire birdsfoot trefoil (Lotus corniculatus L.), and wheat (Triticum aestivum L.)], or a modified mix using no alfalfa and half the rate of orchardgrass. Nitrogen (45, 90, or 135 kg ha/N) was applied as ammonium nitrate in September 1987 and April 1989. White ash (Fraxinus americana L.), silver maple (Acer saccharinum L.), northern red oak (Quercus rubra L.), and eastern white pine (Pinus strobus L.) were planted in spring 1989 into 0.8 m-wide strips sprayed with glyphosate herbicide at 2.24 kg/ha in October 1988. Total cover and total biomass were highest in July 1989, following the last application of nitrogen fertilizer in April 1989. Total cover ranged from 44% to 56%, and total biomass ranged from 102 to 162 g/0.5 m 2 from 1990 to 1993. Total cover and total biomass were lower at the lowest nitrogen rate in 1989 only. Type of herbaceous seed mix did not affect growth of ground cover or trees. Overall tree survival was 82.0% the first year but declined to 40.6% after 5 yr. Survival varied significantly among all tree species (3.5% for pine, 22.2% for oak, 38.5% for maple, 98.1% for ash)

  16. The Use of Sun Elevation Angle for Stereogrammetric Boreal Forest Height in Open Canopies

    Science.gov (United States)

    Montesano, Paul M.; Neigh, Christopher; Sun, Guoqing; Duncanson, Laura Innice; Van Den Hoek, Jamon; Ranson, Kenneth Jon

    2017-01-01

    larger differences from lidar that are associated with open canopy forests whose vegetation surface elevations are captured. Terrain aspect did not have a strong effect on the distribution of vegetation surfaces. Using the two DSM types together, the distribution of DSM-differenced heights in forests (6.0 m, sigma = 1.4 m) was consistent with the distribution of plot-level mean tree heights (6.5m, sigma = 1.2 m). We conclude that the variation in sun elevation angle at time of stereo pair acquisition can create illumination conditions conducive for capturing elevations of surfaces either near the ground or associated with vegetation canopy. Knowledge of HRSI acquisition solar geometry and snow cover can be used to understand and combine stereogrammetric surface elevation estimates to co-register rand difference overlapping DSMs, providing a means to map forest height at fine scales, resolving the vertical structure of groups of trees from spaceborne platforms in open canopy forests.

  17. Poppy Crop Height and Capsule Volume Estimation from a Single UAS Flight

    Directory of Open Access Journals (Sweden)

    Faheem Iqbal

    2017-06-01

    Full Text Available The objective of this study was to estimate poppy plant height and capsule volume with remote sensing using an Unmanned Aircraft System (UAS. Data were obtained from field measurements and UAS flights over two poppy crops at Cambridge and Cressy in Tasmania. Imagery acquired from the UAS was used to produce dense point clouds using structure from motion (SfM and multi-view stereopsis (MVS techniques. Dense point clouds were used to generate a digital surface model (DSM and orthophoto mosaic. An RGB index was derived from the orthophoto to extract the bare ground spaces. This bare ground space mask was used to filter the points on the ground, and a digital terrain model (DTM was interpolated from these points. Plant height values were estimated by subtracting the DSM and DTM to generate a Crop Height Model (CHM. UAS-derived plant height (PH and field measured PH in Cambridge were strongly correlated with R2 values ranging from 0.93 to 0.97 for Transect 1 and Transect 2, respectively, while at Cressy results from a single flight provided R2 of 0.97. Therefore, the proposed method can be considered an important step towards crop surface model (CSM generation from a single UAS flight in situations where a bare ground DTM is unavailable. High correlations were found between UAS-derived PH and poppy capsule volume (CV at capsule formation stage (R2 0.74, with relative error of 19.62%. Results illustrate that plant height can be reliably estimated for poppy crops based on a single UAS flight and can be used to predict opium capsule volume at capsule formation stage.

  18. Nature of short-period microtremors on the cliff-like ground. part 6; Gakechi kinbo no tanshuki bido. 6

    Energy Technology Data Exchange (ETDEWEB)

    Maiguma, T; Kimura, Y [Waseda University, Tokyo (Japan). School of Science and Engineering; Yasui, [Toda Corp., Tokyo, (Japan)

    1997-10-22

    Short-period microtremors were observed on the cliff-like ground to discuss vibration characteristics of the ground. It is known that damage of an earthquake becomes especially serious in the vicinity of the cliff-like ground with steep slopes. The present investigation has performed observations on short-period microtremors in two cliff-like grounds, one with a height of about 17 m and an inclination angle of about 55 degrees, and another with a height of 11 m and an inclination angle of about 60 degrees. The areas of the investigation are the Musashino tableland of the Pleistocene era covered by the Kanto loam bed, and the Oritate area (a farm land) with the cliff-like ground which has been formed as a result of erosion of a river terrace consisted of a gravel bed. The observation was carried out with nine moving coil type vibration converters having a natural period of one second installed for horizontal movements and seven converters installed for vertical movements. The result of the investigation revealed that, at the Musashino tableland, no noticeable influence of the cliff-like ground was recognized in the short-period microtremors; at the Oritate area, the spectra of the horizontal movements vary largely with vibrating directions; and the cliff effect can be seen in microtremors with frequencies from 5 Hz to 9 Hz. 5 refs., 9 figs.

  19. ANALYSIS AND CORRECTION OF SYSTEMATIC HEIGHT MODEL ERRORS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-06-01

    Full Text Available The geometry of digital height models (DHM determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC. Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3 has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP, but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM digital surface model (DSM or the new AW3D30 DSM, based on ALOS

  20. Estimating fog-top height through near-surface micrometeorological measurements

    OpenAIRE

    Román Cascón, Carlos; Yagüe Anguis, Carlos; Steeneveld, Gert-Jan; Sastre, Mariano; Arrillaga, Jon Ander; Maqueda Burgos, Gregorio

    2016-01-01

    Fog-top height (fog thickness) is very useful information for aircraft maneuvers, data assimilation/validation of Numerical Weather Prediction models or nowcasting of fog dissipation. This variable is usually difficult to determine, since the fog-layer top cannot be observed from the surface. In some cases, satellite data, ground remote sensing instruments or atmospheric soundings are used to provide approximations of fog-top height. These instruments are expensive and their data not always a...

  1. The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data

    Directory of Open Access Journals (Sweden)

    Changcheng Wang

    2016-03-01

    Full Text Available Forest height is of great significance in analyzing the carbon cycle on a global or a local scale and in reconstructing the accurate forest underlying terrain. Major algorithms for estimating forest height, such as the three-stage inversion process, are depending on the random-volume-over-ground (RVoG model. However, the RVoG model is characterized by a lot of parameters, which influence its applicability in forest height retrieval. Forest density, as an important biophysical parameter, is one of those main influencing factors. However, its influence to the RVoG model has been ignored in relating researches. For this paper, we study the applicability of the RVoG model in forest height retrieval with different forest densities, using the simulated and real Polarimetric Interferometric SAR data. P-band ESAR datasets of the European Space Agency (ESA BioSAR 2008 campaign were selected for experiments. The test site was located in Krycklan River catchment in Northern Sweden. The experimental results show that the forest density clearly affects the inversion accuracy of forest height and ground phase. For the four selected forest stands, with the density increasing from 633 to 1827 stems/Ha, the RMSEs of inversion decrease from 4.6 m to 3.1 m. The RVoG model is not quite applicable for forest height retrieval especially in sparsely vegetated areas. We conclude that the forest stand density is positively related to the estimation accuracy of the ground phase, but negatively correlates to the ground-to-volume scattering ratio.

  2. Non-phytoseiid Mesostigmata within citrus orchards in Florida: species distribution, relative and seasonal abundance within trees, associated vines and ground cover plants and additional collection records of mites in citrus orchards.

    Science.gov (United States)

    Childers, Carl C; Ueckermann, Eduard A

    2015-03-01

    Seven citrus orchards on reduced- to no-pesticide spray programs in central and south central Florida were sampled for non-phytoseiid mesostigmatid mites. Inner and outer canopy leaves, fruits, twigs and trunk scrapings were sampled monthly between August 1994 and January 1996. Open flowers were sampled in March from five of the sites. A total of 431 samples from one or more of 82 vine or ground cover plants were sampled monthly in five of the seven orchards. Two of the seven orchards (Mixon I and II) were on full herbicide programs and vines and ground cover plants were absent. A total of 2,655 mites (26 species) within the families: Ascidae, Blattisociidae, Laelapidae, Macrochelidae, Melicharidae, Pachylaelapidae and Parasitidae were identified. A total of 685 mites in the genus Asca (nine species: family Ascidae) were collected from within tree samples, 79 from vine or ground cover plants. Six species of Blattisociidae were collected: Aceodromus convolvuli, Blattisocius dentriticus, B. keegani, Cheiroseius sp. near jamaicensis, Lasioseius athiashenriotae and L. dentatus. A total of 485 Blattisociidae were collected from within tree samples compared with 167 from vine or ground cover plants. Low numbers of Laelapidae and Macrochelidae were collected from within tree samples. One Zygoseius furciger (Pachylaelapidae) was collected from Eleusine indica. Four species of Melicharidae were identified from 34 mites collected from within tree samples and 1,190 from vine or ground cover plants: Proctolaelaps lobatus was the most abundant species with 1,177 specimens collected from seven ground cover plants. One Phorytocarpais fimetorum (Parasitidae) was collected from inner leaves and four from twigs. Species of Ascidae, Blattisociidae, Melicharidae, Laelapidae and Pachylaelapidae were collected from 31 of the 82 vine or ground cover plants sampled, representing only a small fraction of the total number of Phytoseiidae collected from the same plants. Including the

  3. Study of the distribution of radon in the atmosphere to a height of 457 meters. Final report

    International Nuclear Information System (INIS)

    Clifford, C.E.; Rubin, R.M.; Wells, M.B.

    1981-05-01

    An experimental program has been conducted to provide a measurement of the distribution of radon in the atmosphere from ground level to a height of 457 meters above the ground. An extensive set of measurements were obtained using alpha-particle detectors of the Track Etch/sup TM/ type supplied by the Terradex Corporation. These detectors were exposed for periods of approximately three months on four television towers and were read by Terradex. Radon measurements were also made as a function of ground depth. A statistical F-test analysis of the readings from the exposed Track Etch/sup TM/ detectors on the towers leads to the conclusion that the radon concentration in air at each of the tower sites does not vary with height above ground for heights to 457 meters. In order to obtain additional measured data on the altitude variation of the radon concentration in the air, five NaI detectors were incrementally placed in positions ranging from ground level to 457-meters altitude on the Oklahoma City tower. The NaI measurements were evaluated through comparison with calculated predictions of the expected count rate as a function of altitude using ANISN, a discrete-ordinates-transport code. The source distributions in the air and ground and the NaI counter efficiency versus energy were determined analytically. Considering the large uncertainties in the Track Etch/sup TM/ detector data from the 4 television towers and the results of the analysis of the NaI detector measurements on the Oklahoma City tower, it is concluded that the radon concentration in air does not vary significantly with height above ground for heights up to 457 m

  4. UAS applications in high alpine, snow-covered terrain

    Science.gov (United States)

    Bühler, Y.; Stoffel, A.; Ginzler, C.

    2017-12-01

    Access to snow-covered, alpine terrain is often difficult and dangerous. Hence parameters such as snow depth or snow avalanche release and deposition zones are hard to map in situ with adequate spatial and temporal resolution and with spatial continuous coverage. These parameters are currently operationally measured at automated weather stations and by observer networks. However such isolated point measurements are not able to capture the information spatial continuous and to describe the high spatial variability present in complex mountain topography. Unmanned Aerial Systems (UAS) have the potential to fill this gap by frequently covering selected high alpine areas with high spatial resolution down to ground resolutions of even few millimeters. At the WSL Institute for Snow and Avalanche Research SLF we test different photogrammetric UAS with visual and near infrared bands. During the last three years we were able to gather experience in more than 100 flight missions in extreme terrain. By processing the imagery applying state-of-the-art structure from motion (SfM) software, we were able to accurately document several avalanche events and to photogrammetrically map snow depth with accuracies from 1 to 20 cm (dependent on the flight height above ground) compare to manual snow probe measurements. This was even possible on homogenous snow surfaces with very little texture. A key issue in alpine terrain is flight planning. We need to cover regions at high elevations with large altitude differences (up to 1 km) with high wind speeds (up to 20 m/s) and cold temperatures (down to - 25°C). Only a few UAS are able to cope with these environmental conditions. We will give an overview on our applications of UAS in high alpine terrain that demonstrate the big potential of such systems to acquire frequent, accurate and high spatial resolution geodata in high alpine, snow covered terrain that could be essential to answer longstanding questions in avalanche and snow hydrology

  5. Hypohydration Reduces Vertical Ground Reaction Impulse But Not Jump Height

    Science.gov (United States)

    2010-01-01

    height, provided that muscle contractile function remains normal, because gravitational and inertial resistance to jumping are pro- portional to body...testing, anthropometric and fitness measurements were made to characterize the study population. Peak aerobic power (VO2peak) was determined using an...determinations. All volunteers performed between 3 and 5 practice days of vertical jump testing to reduce training and learning effects. Practice

  6. Study of growth and development features of ten ground cover plants in Kish Island green space in warm season

    Directory of Open Access Journals (Sweden)

    S. Shooshtarian

    2016-05-01

    Full Text Available Having special ecological condition, Kish Island has a restricted range of native species of ornamental plants. Expansion of urban green space in this Island is great of importance due to its outstanding touristy position in the South of Iran. The purpose of this study was to investigate the growth and development of groundcover plants planted in four different regions of Kish Island and to recommend the most suitable and adaptable species for each region. Ten groundcover species included Festuca ovina L., Glaucium flavum Crantz., Frankenia thymifolia Desf., Sedum spurium Bieb., Sedum acre L., .Potentilla verna L., Carpobrotus acinaciformis (L. L. Bolus., Achillea millefolium L., Alternanthera dentata Moench. and Lampranthus spectabilis Haw. Evaluation of growth and development had been made by measurement of morphological characteristics such as height, covering area, leaf number and area, dry and fresh total weights and visual scoring. Physiological traits included proline and chlorophyll contents evaluated. This study was designed in factorial layout based on completely randomized blocks design with six replicates. Results showed that in terms of indices such as covering area, visual quality, height, total weight, and chlorophyll content, Pavioon and Sadaf plants had the most and the worst performances, respectively in comparison to other regions’ plants. Based on evaluated characteristics, C. acinaciformis, L. spectabilis and F. thymifolia had the most expansion and growth in all quadruplet regions and are recommend for planting in Kish Island and similar climates.

  7. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea.

    Science.gov (United States)

    Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho

    2015-07-01

    This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield.

  8. Effect of snow cover on soil frost penetration

    Science.gov (United States)

    Rožnovský, Jaroslav; Brzezina, Jáchym

    2017-12-01

    Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.

  9. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    Science.gov (United States)

    Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  10. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    Directory of Open Access Journals (Sweden)

    Jessica H. Belle

    2017-10-01

    Full Text Available Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5 concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  11. Modelling above Ground Biomass in Tanzanian Miombo Woodlands Using TanDEM-X WorldDEM and Field Data

    Directory of Open Access Journals (Sweden)

    Stefano Puliti

    2017-09-01

    Full Text Available The use of Interferometric Synthetic Aperture Radar (InSAR data has great potential for monitoring large scale forest above ground biomass (AGB in the tropics due to the increased ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height data is crucial for the development of large scale forest monitoring programs. This study provides an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands. The primary objective was to assess the accuracy of a model linking AGB with InSAR height from WorldDEM after the subtraction of ground heights. The secondary objective was to assess the possibility of obtaining InSAR height for field plots when the terrain heights were derived from global navigation satellite systems (GNSS; i.e., as an alternative to using airborne laser scanning (ALS. The results revealed that the AGB model using InSAR height had a predictive accuracy of R M S E = 24.1 t·ha−1; or 38.8% of the mean AGB when terrain heights were derived from ALS. The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB was improved when compared to a previous study using TanDEM-X for a sub-area of the area of interest and was of similar magnitude to what was achieved in the same sub-area using ALS data. Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for large scale AGB modelling in tropical woodlands.

  12. The effect of different trap height on the diversity of sap beetle (Coleoptera: Nitidulidae)

    Science.gov (United States)

    Rahim, Nor Atikah Abdul; Yaakop, Salmah

    2018-04-01

    This paper aim to measure the diversity and abundance of sap beetles in oil palm plantation in Malaysia on different heights, 1.5m and 2.5m above ground. A total 0f 20 baited traps were set up in Felda Lui Muda, Negeri Sembilan and located along three transects. The sap beetles collected weekly for a month and identified until species level and the diversity indexes were measured using Evenness Index (E), Shannon-Wiener Index (H'), Simpson's Index (D') and Margalef's Index (R'). All the diversity indexes indicated that the diversity on the lower height above the ground is higher than the upper height The result also shows that there are significant difference (p<0.05) when tested with t-test between the numbers of individuals on the different trap height although the number of species shows different results.

  13. Tree height and tropical forest biomass estimation

    Science.gov (United States)

    M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton

    2013-01-01

    Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....

  14. PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2017-05-01

    Full Text Available The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC. The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3, WorldView-2 (WV2, Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs. The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the

  15. Problems and Limitations of Satellite Image Orientation for Determination of Height Models

    Science.gov (United States)

    Jacobsen, K.

    2017-05-01

    The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC). The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py) for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3), WorldView-2 (WV2), Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs). The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the object height

  16. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  17. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan; Weihermller, Lutz; McCabe, Matthew; Moghadas, Davood; Vereecken, Harry; Lambot, Sbastien

    2015-01-01

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  18. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  19. NACOWA experiments on LMFBR cover gas aerosols, heat transfer, and fission product enrichment

    International Nuclear Information System (INIS)

    Minges, J.; Schuetz, W.

    1993-12-01

    Fifteen different NACOWA test series were carried out. The following items were investigated: sodium mass concentration in the cover gas, sodium aerosol particle size, radiative heat transfer across the cover gas, total heat transfer across the cover gas, sodium deposition on the cover plate, temperature profiles across the cover gas, phenomena if the argon cover gas is replaced by helium, enrichment of cesium, iodine, and zinc in the aerosol and in the deposits. The conditions were mainly related to the design parameters of the EFR. According to the first consistent design, a pool temperature of 545 C and a roof temperature of only 120 C were foreseen at a cover gas height of 85 cm. The experiments were carried out in a stainless steel test vessel of 0.6 m diameter and 1.14 m height. Pool temperature (up to 545 C), cover gas height (12.5 cm, 33 cm, and others), and roof temperature (from 110 C to 450 C) were the main parameters. (orig./HP) [de

  20. CryoSat-2 SAR and SARin Inland Water Heights from the CRUCIAL project

    Science.gov (United States)

    Benveniste, J.; Restano, M.; Ambrózio, A.; Moore, P.; Birkinshaw, S.

    2017-12-01

    CRUCIAL was an ESA/STSE funded project investigating innovative land and inland water applications from CryoSat-2 with a forward-look component to the Sentinel-3 and Jason-CS/Sentinel-6 missions. The high along-track sampling of CryoSat-2 in its SAR and SARin modes offers the opportunity to recover high frequency signals over inland waters. A methodology was developed to process the FBR L1A Doppler beams to form a waveform product using ground cell gridding, beam steering and beam stacking. Inland water heights from CryoSat-2 are derived by using a set of empirical retrackers formulated for inland water applications. Results of the processing strategy include a comparison of waveforms and heights from the burst echoes (80 m along-track) and from multi-look waveforms (320 m along-track). SAR and SARin FBR data are available for the Amazon, Brahmaputra and Mekong for 2011-2015. FBR SAR results are compared against stage data from the nearest gauge. Heights from Tonlé Sap are also compared against Jason-2 data from the United States Department of Agriculture. A strategy to select the number of multi-looks over rivers was designed based on the rms of heights across Tonlé Sap. Comparisons include results from the empirical retrackers and from waveforms and heights obtained via ESA's Grid Processing on Demand (G-POD/SARvatore) using the SAMOSA2 retracker. Results of FBR SARin processing for the Amazon and Brahmaputra are presented including comparison of heights from the two antennae, extraction of slope of the ground surface and validation against ground data where appropriate.

  1. Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

    Directory of Open Access Journals (Sweden)

    Minerva Singh

    2015-04-01

    Full Text Available This study develops a modelling framework for utilizing very high-resolution (VHR aerial imagery for monitoring stocks of above-ground biomass (AGB in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM, Gabor wavelets and Fourier-based textural ordination (FOTO were used in conjunction with two different machine learning (ML-based regression techniques (support vector regression (SVR and random forest (RF regression. These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i horizontal canopy variables (i.e., canopy cover and texture variables plus vertical canopy height; (ii horizontal variables only; and (iii texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.

  2. Evaluating rapid ground sampling and scaling estimated plant cover using UAV imagery up to Landsat for mapping arctic vegetation

    Science.gov (United States)

    Nelson, P.; Paradis, D. P.

    2017-12-01

    The small stature and spectral diversity of arctic plant taxa presents challenges in mapping arctic vegetation. Mapping vegetation at the appropriate scale is needed to visualize effects of disturbance, directional vegetation change or mapping of specific plant groups for other applications (eg. habitat mapping). Fine spatial grain of remotely sensed data (ca. 10 cm pixels) is often necessary to resolve patches of many arctic plant groups, such as bryophytes and lichens. These groups are also spectrally different from mineral, litter and vascular plants. We sought to explore method to generate high-resolution spatial and spectral data to explore better mapping methods for arctic vegetation. We sampled ground vegetation at seven sites north or west of tree-line in Alaska, four north of Fairbanks and three northwest of Bethel, respectively. At each site, we estimated cover of plant functional types in 1m2 quadrats spaced approximately every 10 m along a 100 m long transect. Each quadrat was also scanned using a field spectroradiometer (PSR+ Spectral Evolution, 400-2500 nm range) and photographed from multiple perspectives. We then flew our small UAV with a RGB camera over the transect and at least 50 m on either side collecting on imagery of the plot, which were used to generate a image mosaic and digital surface model of the plot. We compare plant functional group cover ocular estimated in situ to post-hoc estimation, either automated or using a human observer, using the quadrat photos. We also compare interpolated lichen cover from UAV scenes to estimated lichen cover using a statistical models using Landsat data, with focus on lichens. Light and yellow lichens are discernable in the UAV imagery but certain lichens, especially dark colored lichens or those with spectral signatures similar to graminoid litter, present challenges. Future efforts will focus on integrating UAV-upscaled ground cover estimates to hyperspectral sensors (eg. AVIRIS ng) for better combined

  3. Height-diameter allometry of tropical forest trees

    Science.gov (United States)

    T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd

    2011-01-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...

  4. Winter rye cover crop effect on corn seedling pathogens

    Science.gov (United States)

    Cover crops have been grown successfully in Iowa, but sometimes a cereal rye cover crop preceding corn can reduce corn yields. Our research examines the effect of a rye cover crop on infections of the succeeding corn crop by soil fungal pathogens. Plant measurements included: growth stage, height, r...

  5. Relationship between LiDAR-derived forest canopy height and Landsat images

    Science.gov (United States)

    Cristina Pascual; Antonio Garcia-Abril; Warren B. Cohen; Susana. Martin-Fernandez

    2010-01-01

    The mean and standard deviation (SD) of light detection and ranging (LiDAR)-derived canopy height are related to forest structure. However, LiDAR data typically cover a limited area and have a high economic cost compared with satellite optical imagery. Optical images may be required to extrapolate LiDAR height measurements across a broad landscape. Different spectral...

  6. Intensity of Ground Cover Crop Arachis pintoi, Rhizobium Inoculation and Phosphorus Application and Their Effects on Field Growth and Nutrient Status of Cocoa Plants

    Directory of Open Access Journals (Sweden)

    John Bako Baon

    2006-08-01

    Full Text Available Arachis pintoiis potentially as a cover crop for cocoa (Theobroma cacaoL. farm, however information regarding its effect on the growth of cocoa plants in the field is very limited. The objective of this experiment is to investigate the combined influence of ground cover crop A. pintoi, rhizobial bacterial inoculation and phosphorus (P fertilizer on the growth of cocoa in the field and nutrient status. This experiment laid out in split-split plot design consisted of three levels of cover crop (without, A. pintoiand Calopogonium caeruleum, two levels of rhizobium inoculation (not inoculated and inoculated and two levels of phosphorus application (no P added and P added. The results showed that in field condition the presence of A. pintoias cover crop did not affect the growth of cocoa. On the other hand, C. caeruleumas cover crop tended to restrict cocoa growth compared to A. pintoi. Application of P increased leaf number of cocoa plant. Biomass production of A. pintoiwas 40% higher than C. caeruleum. Soil organic carbon and nitrogen contents were not affected by ground cover crops, though higher value (0.235% N and 1.63% organic C was obtained from combined treatments of inoculation and P addition or neither inoculation nor P addition. In the case of no rhizobium inoculation, soil N content in cocoa farm with A. pintoicover crop was lower than that of without cover crop or with C. caeruleum. Cover crop increased plant N content when there was no inoculation, on the other hand rhizobium inoculation decreased N content of cocoa tissue. Tissue P content of cocoa plant was not influenced by A. Pintoicover crop or by rhizobium inoculation, except that the P tissue content of cocoa was 28% higher when the cover crop was C. caeruleumand inoculated. Key words : Arachis pintoi, Theobroma cacao, Calopogonium caeruleum, rhizobium, nitrogen, phosphorus.

  7. Wood Specific Gravity Variation with Height and Its Implications for Biomass Estimation

    Science.gov (United States)

    Michael C. Wiemann; G. Bruce Williamson

    2014-01-01

    Wood specific gravity (SG) is widely employed by ecologists as a key variable in estimates of biomass. When it is important to have nondestructive methods for sampling wood for SG measurements, cores are extracted with an increment borer. While boring is a relatively difficult task even at breast height sampling, it is impossible at ground level and arduous at heights...

  8. Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2017-09-01

    Full Text Available This work aims to estimate soil moisture and vegetation height from Global Navigation Satellite System (GNSS Signal to Noise Ratio (SNR data using direct and reflected signals by the land surface surrounding a ground-based antenna. Observations are collected from a rainfed wheat field in southwestern France. Surface soil moisture is retrieved based on SNR phases estimated by the Least Square Estimation method, assuming the relative antenna height is constant. It is found that vegetation growth breaks up the constant relative antenna height assumption. A vegetation-height retrieval algorithm is proposed using the SNR-dominant period (the peak period in the average power spectrum derived from a wavelet analysis of SNR. Soil moisture and vegetation height are retrieved at different time periods (before and after vegetation's significant growth in March. The retrievals are compared with two independent reference data sets: in situ observations of soil moisture and vegetation height, and numerical simulations of soil moisture, vegetation height and above-ground dry biomass from the ISBA (interactions between soil, biosphere and atmosphere land surface model. Results show that changes in soil moisture mainly affect the multipath phase of the SNR data (assuming the relative antenna height is constant with little change in the dominant period of the SNR data, whereas changes in vegetation height are more likely to modulate the SNR-dominant period. Surface volumetric soil moisture can be estimated (R2  =  0.74, RMSE  =  0.009 m3 m−3 when the wheat is smaller than one wavelength (∼ 19 cm. The quality of the estimates markedly decreases when the vegetation height increases. This is because the reflected GNSS signal is less affected by the soil. When vegetation replaces soil as the dominant reflecting surface, a wavelet analysis provides an accurate estimation of the wheat crop height (R2  =  0.98, RMSE  =  6

  9. Methods for converting continuous shrubland ecosystem component values to thematic National Land Cover Database classes

    Science.gov (United States)

    Rigge, Matthew B.; Gass, Leila; Homer, Collin G.; Xian, George Z.

    2017-10-26

    The National Land Cover Database (NLCD) provides thematic land cover and land cover change data at 30-meter spatial resolution for the United States. Although the NLCD is considered to be the leading thematic land cover/land use product and overall classification accuracy across the NLCD is high, performance and consistency in the vast shrub and grasslands of the Western United States is lower than desired. To address these issues and fulfill the needs of stakeholders requiring more accurate rangeland data, the USGS has developed a method to quantify these areas in terms of the continuous cover of several cover components. These components include the cover of shrub, sagebrush (Artemisia spp), big sagebrush (Artemisia tridentata spp.), herbaceous, annual herbaceous, litter, and bare ground, and shrub and sagebrush height. To produce maps of component cover, we collected field data that were then associated with spectral values in WorldView-2 and Landsat imagery using regression tree models. The current report outlines the procedures and results of converting these continuous cover components to three thematic NLCD classes: barren, shrubland, and grassland. To accomplish this, we developed a series of indices and conditional models using continuous cover of shrub, bare ground, herbaceous, and litter as inputs. The continuous cover data are currently available for two large regions in the Western United States. Accuracy of the “cross-walked” product was assessed relative to that of NLCD 2011 at independent validation points (n=787) across these two regions. Overall thematic accuracy of the “cross-walked” product was 0.70, compared to 0.63 for NLCD 2011. The kappa value was considerably higher for the “cross-walked” product at 0.41 compared to 0.28 for NLCD 2011. Accuracy was also evaluated relative to the values of training points (n=75,000) used in the development of the continuous cover components. Again, the “cross-walked” product outperformed NLCD

  10. Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.

    Science.gov (United States)

    Schnabel, William; Munk, Jens; Byrd, Amanda

    2015-01-01

    Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.

  11. Examination of Conservatism in Ground-level Source Release Assumption when Performing Consequence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lim, Ho-Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    One of these assumptions frequently assumed is the assumption of ground-level source release. The user manual of a consequence analysis software HotSpot is mentioning like below: 'If you cannot estimate or calculate the effective release height, the actual physical release height (height of the stack) or zero for ground-level release should be used. This will usually yield a conservative estimate, (i.e., larger radiation doses for all downwind receptors, etc).' This recommendation could be agreed in aspect of conservatism but quantitative examination of the effect of this assumption to the result of consequence analysis is necessary. The source terms of Fukushima Dai-ichi NPP accident have been estimated by several studies using inverse modeling and one of the biggest sources of the difference between the results of these studies was different effective source release height assumed by each studies. It supports the importance of the quantitative examination of the influence by release height. Sensitivity analysis of the effective release height of radioactive sources was performed and the influence to the total effective dose was quantitatively examined in this study. Above 20% difference is maintained even at longer distances, when we compare the dose between the result assuming ground-level release and the results assuming other effective plume height. It means that we cannot ignore the influence of ground-level source assumption to the latent cancer fatality estimations. In addition, the assumption of ground-level release fundamentally prevents detailed analysis including diffusion of plume from effective plume height to the ground even though the influence of it is relatively lower in longer distance. When we additionally consider the influence of surface roughness, situations could be more serious. The ground level dose could be highly over-estimated in short downwind distance at the NPP sites which have low surface roughness such as Barakah site in

  12. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    Directory of Open Access Journals (Sweden)

    Takenobu Michioka

    2016-03-01

    Full Text Available Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the additional structure. When the source height is equivalent to the reactor building height, the additional structure enhances both the vertical and horizontal gas dispersion widths and decreases the ground gas concentration, and it means that the additional structure does not decrease the effective stack height. When the source height is larger than the reactor height, the additional structures might affect the effective stack height. As the distance between the source and the additional structure decreases, or as the height of the additional structure increases, the structure has a larger effect on the effective stack height.

  13. Assessment of the thematic accuracy of land cover maps

    DEFF Research Database (Denmark)

    Høhle, Joachim

    2015-01-01

    were applied (‘Decision Tree’ and ‘Support Vector Machine’) using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures...... methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width......Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (‘building’, ‘hedge and bush’, ‘grass’, ‘road and parking lot’, ‘tree’, ‘wall and car port’) had to be derived. Two classification methods...

  14. AN ASSESSMENT OF CITIZEN CONTRIBUTED GROUND REFERENCE DATA FOR LAND COVER MAP ACCURACY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    G. M. Foody

    2015-08-01

    Full Text Available It is now widely accepted that an accuracy assessment should be part of a thematic mapping programme. Authoritative good or best practices for accuracy assessment have been defined but are often impractical to implement. Key reasons for this situation are linked to the ground reference data used in the accuracy assessment. Typically, it is a challenge to acquire a large sample of high quality reference cases in accordance to desired sampling designs specified as conforming to good practice and the data collected are normally to some degree imperfect limiting their value to an accuracy assessment which implicitly assumes the use of a gold standard reference. Citizen sensors have great potential to aid aspects of accuracy assessment. In particular, they may be able to act as a source of ground reference data that may, for example, reduce sample size problems but concerns with data quality remain. The relative strengths and limitations of citizen contributed data for accuracy assessment are reviewed in the context of the authoritative good practices defined for studies of land cover by remote sensing. The article will highlight some of the ways that citizen contributed data have been used in accuracy assessment as well as some of the problems that require further attention, and indicate some of the potential ways forward in the future.

  15. Surface covering of downed logs: drivers of a neglected process in dead wood ecology.

    Science.gov (United States)

    Dynesius, Mats; Gibb, Heloise; Hjältén, Joakim

    2010-10-07

    Many species use coarse woody debris (CWD) and are disadvantaged by the forestry-induced loss of this resource. A neglected process affecting CWD is the covering of the surfaces of downed logs caused by sinking into the ground (increasing soil contact, mostly covering the underside of the log), and dense overgrowth by ground vegetation. Such cover is likely to profoundly influence the quality and accessibility of CWD for wood-inhabiting organisms, but the factors affecting covering are largely unknown. In a five-year experiment we determined predictors of covering rate of fresh logs in boreal forests and clear-cuts. Logs with branches were little covered because they had low longitudinal ground contact. For branchless logs, longitudinal ground contact was most strongly related to estimated peat depth (positive relation). The strongest predictor for total cover of branchless logs was longitudinal ground contact. To evaluate the effect on cover of factors other than longitudinal ground contact, we separately analyzed data from only those log sections that were in contact with the ground. Four factors were prominent predictors of percentage cover of such log sections: estimated peat depth, canopy shade (both increasing cover), potential solar radiation calculated from slope and slope aspect, and diameter of the log (both reducing cover). Peat increased cover directly through its low resistance, which allowed logs to sink and soil contact to increase. High moisture and low temperatures in pole-ward facing slopes and under a canopy favor peat formation through lowered decomposition and enhanced growth of peat-forming mosses, which also proved to rapidly overgrow logs. We found that in some boreal forests, peat and fast-growing mosses can rapidly cover logs lying on the ground. When actively introducing CWD for conservation purposes, we recommend that such rapid covering is avoided, thereby most likely improving the CWD's longevity as habitat for many species.

  16. Sexual Orientation, Objective Height, and Self-Reported Height.

    Science.gov (United States)

    Skorska, Malvina N; Bogaert, Anthony F

    2017-01-01

    Studies that have used mostly self-reported height have found that androphilic men and women are shorter than gynephilic men and women, respectively. This study examined whether an objective height difference exists or whether a psychosocial account (e.g., distortion of self-reports) may explain these putative height differences. A total of 863 participants, recruited at a Canadian university, the surrounding region, and through lesbian, gay, bisexual, and transgender (LGBT) events across Canada, self-reported their height and had their height measured. Androphilic men were shorter, on average, than gynephilic men. There was no objective height difference between gynephilic, ambiphilic, and androphilic women. Self-reported height, statistically controlling for objective height, was not related to sexual orientation. These findings are the first to show an objective height difference between androphilic and gynephilic men. Also, the findings suggest that previous studies using self-reported height found part of a true objective height difference between androphilic and gynephilic men. These findings have implications for existing biological theories of men's sexual orientation development.

  17. Study of radial distribution of 239,240Pu and 90Sr in annual tree rings and trunk bark of a 103 years old Norway spruce at four different heights above ground

    International Nuclear Information System (INIS)

    Holgye, Z.; Schlesingerova, E.

    2016-01-01

    Radial distribution of 239,240 Pu and 90 Sr originating from atmospheric nuclear tests in tree rings and trunk bark at heights of 1.3, 10, 18 and 22 m above ground was studied. 239,240 Pu activity concentrations in air dried tree ring samples (each containing 10 annual rings) at all heights were under detection limit of the used method. 90 Sr activity concentrations in tree ring samples ranged from 0.54 to 2.81 Bq kg -1 . 239,240 Pu and 90 Sr were present in the trunk bark. The paper presents data for 239,240 Pu and 90 Sr aggregated transfer factors to tree trunk. (author)

  18. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    Science.gov (United States)

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  19. Temporal monitoring of the soil freeze-thaw cycles over snow-cover land by using off-ground GPR

    KAUST Repository

    Jadoon, Khan

    2013-07-01

    We performed off-ground ground-penetrating radar (GPR) measurements over a bare agricultural field to monitor the freeze-thaw cycles over snow-cover. The GPR system consisted of a vector network analyzer combined with an off-ground monostatic horn antenna, thereby setting up an ultra-wideband stepped-frequency continuous-wave radar. Measurements were performed during nine days and the surface of the bare soil was exposed to snow fall, evaporation and precipitation as the GPR antenna was mounted 110 cm above the ground. Soil surface dielectric permittivity was retrieved using an inversion of time-domain GPR data focused on the surface reflection. The GPR forward model used combines a full-waveform solution of Maxwell\\'s equations for three-dimensional wave propagation in planar layered media together with global reflection and transmission functions to account for the antenna and its interactions with the medium. Temperature and permittivity sensors were installed at six depths to monitor the soil dynamics in the top 8 cm depth. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and permittivity data and in particular freeze and thaw events were clearly visible. A good agreement of the trend was observed between the temperature, permittivity and GPR time-lapse data with respect to five freeze-thaw cycles. The GPR-derived permittivity was in good agreement with sensor observations. The proposed method appears to be promising for the real-time mapping and monitoring of the frozen layer at the field scale. © 2013 IEEE.

  20. Experiences of ZAMG on mixing height determination

    Energy Technology Data Exchange (ETDEWEB)

    Piringer, M. [Zentralanstalt fuer Meteorologie und Geodynamik, ZAMG, Vienna (Austria)

    1997-10-01

    Temperature inversions in the boundary layer occur quite often, esp. in mountainous terrain by which Austria is covered to a large extent, and can lead to enhanced pollution at the surface because the air volume available for dilution is then vertically limited. The Department of Environmental Meteorology of ZAMG therefore set up several field programs in the past to study such conditions at a variety of sites in Austria, using tethersondes and Sodars. Early investigations aimed at comparing Sodar echo profiles to the tethersonde temperature profiles to derive mixing heights from the Sodar echo structure. More recently, evolving from KONGEX, the `convective boundary layer experiment`, mixing heights calculated for Vienna by the OML model were compared to those derived from radiosonde and tethersonde potential temperature profiles. Results of these investigations will be presented, focussing on the problems when using the different methods. New efforts to derive mixing heights from data were also undertaken and are discussed separately. (au)

  1. Estimating biomass of shrubs and forbs in central Washington Douglas-fir stands.

    Science.gov (United States)

    Craig M. Olson; Robert E. Martin

    1981-01-01

    Understory plants in closed 70-year-old even-aged Douglas-fir stands in north central Washington were destructively sampled to determine the relationship of ground cover and height to dry weight. Weight of plant material can be estimated from the product of plant height and percentage of ground cover on 50- x 100-centimeter (cm) quadrats. Correlation coefficients for...

  2. Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest

    Science.gov (United States)

    Striegl, Robert G.; Wickland, K.P.

    2001-01-01

    Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

  3. Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods

    Directory of Open Access Journals (Sweden)

    Zengliang Zang

    2017-06-01

    Full Text Available The aerosol optical depth (AOD from satellites or ground-based sun photometer spectral observations has been widely used to estimate ground-level PM2.5 concentrations by regression methods. The boundary layer height (BLH is a popular factor in the regression model of AOD and PM2.5, but its effect is often uncertain. This may result from the structures between the stable and convective BLHs and from the calculation methods of the BLH. In this study, the boundary layer is divided into two types of stable and convective boundary layer, and the BLH is calculated using different methods from radiosonde data and National Centers for Environmental Prediction (NCEP reanalysis data for the station in Beijing, China during 2014–2015. The BLH values from these methods show significant differences for both the stable and convective boundary layer. Then, these BLHs were introduced into the regression model of AOD-PM2.5 to seek the respective optimal BLH for the two types of boundary layer. It was found that the optimal BLH for the stable boundary layer is determined using the method of surface-based inversion, and the optimal BLH for the convective layer is determined using the method of elevated inversion. Finally, the optimal BLH and other meteorological parameters were combined to predict the PM2.5 concentrations using the stepwise regression method. The results indicate that for the stable boundary layer, the optimal stepwise regression model includes the factors of surface relative humidity, BLH, and surface temperature. These three factors can significantly enhance the prediction accuracy of ground-level PM2.5 concentrations, with an increase of determination coefficient from 0.50 to 0.68. For the convective boundary layer, however, the optimal stepwise regression model includes the factors of BLH and surface wind speed. These two factors improve the determination coefficient, with a relatively low increase from 0.65 to 0.70. It is found that the

  4. HEIGHT VARIATION OF THE VECTOR MAGNETIC FIELD IN SOLAR SPICULES

    Energy Technology Data Exchange (ETDEWEB)

    Suárez, D. Orozco; Ramos, A. Asensio; Bueno, J. Trujillo, E-mail: dorozco@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-04-20

    Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.

  5. Estimating Tree Height and Diameter at Breast Height (DBH from Digital Surface Models and Orthophotos Obtained with an Unmanned Aerial System for a Japanese Cypress (Chamaecyparis obtusa Forest

    Directory of Open Access Journals (Sweden)

    Kotaro Iizuka

    2017-12-01

    Full Text Available Methods for accurately measuring biophysical parameters are a key component for quantitative evaluation regarding to various forest applications. Conventional in situ measurements of these parameters take time and expense, encountering difficultness at locations with heterogeneous microtopography. To obtain precise biophysical data in such situations, we deployed an unmanned aerial system (UAS multirotor drone in a cypress forest in a mountainous area of Japan. The structure from motion (SfM method was used to construct a three-dimensional (3D model of the forest (tree structures from aerial photos. Tree height was estimated from the 3D model and compared to in situ ground data. We also analyzed the relationships between a biophysical parameter, diameter at breast height (DBH, of individual trees with canopy width and area measured from orthorectified images. Despite the constraints of ground exposure in a highly dense forest area, tree height was estimated at an accuracy of root mean square error = 1.712 m for observed tree heights ranging from 16 to 24 m. DBH was highly correlated with canopy width (R2 = 0.7786 and canopy area (R2 = 0.7923, where DBH ranged from 11 to 58 cm. The results of estimating forest parameters indicate that drone-based remote-sensing methods can be utilized to accurately analyze the spatial extent of forest structures.

  6. The Analysis of Height System Definition and the High Precision GNSS Replacing Leveling Method

    Directory of Open Access Journals (Sweden)

    ZHANG Chuanyin

    2017-08-01

    Full Text Available Based on the definition of height system, the gravitational equipotential property of height datum surface is discussed in this paper, differences of the heights at ground points that defined in different height systems are tested and analyzed as well. A new method for replacing leveling using GNSS is proposed to ensure the consistency between GNSS replacing leveling and spirit leveling at mm accuracy level. The main conclusions include:①For determining normal height at centimeter accuracy level, the datum surface of normal height should be the geoid. The 1985 national height datum of China adopts normal height system, its datum surface is the geoid passing the Qingdao zero point.②The surface of equi-orthometric height in the near earth space is parallel to the geoid. The combination of GNSS precise positioning and geoid model can be directly used for orthometric height determination. However, the normal height system is more advantageous for describing the terrain and relief.③Based on the proposed method of GNSS replacing leveling, the errors in geodetic height affect more on normal height result than the errors of geoid model, the former is about 1.5 times of the latter.

  7. Mixing height determination from the momentum balance of the neutral or stable PBL

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, J.C. [Risoe National Lab., Roskilde (Denmark)

    1997-10-01

    The mixing height is defined by the top of the layer of turbulent mixing. This height is equal to the height H of turbulent vertical momentum transport (fiction) in neutral or stable stratification. In very stable cases, the wave induced momentum transport must be excluded if the waves do not have mixing effects (e.g. break) within the frictional layer. Thus the conditions provided by the momentum balance determine the mixing height in most cases of mechanical turbulence. Mixing is a time dependent process and depends also on the height of release of substance to be mixed. It depends on the specific form of the exchange coefficient function whether the mixing time for the mixed layer is finite of infinite. If this time is infinite, an additional mixing time criterion for a substance released close to the ground must be applied for the determination of the corresponding mixing height. (au)

  8. Effects of plant phenology and vertical height on accuracy of radio-telemetry locations

    Science.gov (United States)

    Grovenburg, Troy W.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Lehman, Chad P.; Brinkman, Todd J.; Robling, Kevin A.; Rupp, Susan P.; Jenks, Jonathan A.

    2013-01-01

    The use of very high frequency (VHF) radio-telemetry remains wide-spread in studies of wildlife ecology and management. However, few studies have evaluated the influence of vegetative obstruction on accuracy in differing habitats with varying transmitter types and heights. Using adult and fawn collars at varying heights above the ground (0, 33, 66 and 100 cm) to simulate activities (bedded, feeding and standing) and ages (neonate, juvenile and adult) of deer Odocoileus spp., we collected 5,767 bearings and estimated 1,424 locations (28-30 for each of 48 subsamples) in three habitat types (pasture, grassland and forest), during two stages of vegetative growth (spring and late summer). Bearing error was approximately twice as large at a distance of 900 m for fawn (9.9°) than for adult deer collars (4.9°). Of 12 models developed to explain the variation in location error, the analysis of covariance model (HT*D + C*D + HT*TBA + C*TBA) containing interactions of height of collar above ground (HT), collar type (C), vertical height of understory vegetation (D) and tree basal area (TBA) was the best model (wi = 0.92) and explained ∼ 71% of the variation in location error. Location error was greater for both collar types at 0 and 33 cm above the ground compared to 66 and 100 cm above the ground; however, location error was less for adult than fawn collars. Vegetation metrics influenced location error, which increased with greater vertical height of understory vegetation and tree basal area. Further, interaction of vegetation metrics and categorical variables indicated significant effects on location error. Our results indicate that researchers need to consider study objectives, life history of the study animal, signal strength of collar (collar type), distance from transmitter to receiver, topographical changes in elevation, habitat composition and season when designing telemetry protocols. Bearing distances in forested habitat should be decreased (approximately 23

  9. The height of the atmospheric boundary layer during unstable conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.

    2005-11-01

    The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer

  10. Multispectral LiDAR Data for Land Cover Classification of Urban Areas

    Directory of Open Access Journals (Sweden)

    Salem Morsy

    2017-04-01

    Full Text Available Airborne Light Detection And Ranging (LiDAR systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy.

  11. Multispectral LiDAR Data for Land Cover Classification of Urban Areas.

    Science.gov (United States)

    Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed

    2017-04-26

    Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy.

  12. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    Directory of Open Access Journals (Sweden)

    C. Vera Valero

    2018-03-01

    Full Text Available Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  13. Experimental Investigation of Rotorcraft Outwash in Ground Effect

    Science.gov (United States)

    Tanner, Philip E.; Overmeyer, Austin D.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.

    2015-01-01

    The wake characteristics of a rotorcraft are affected by the proximity of a rotor to the ground surface, especially during hover. Ground effect is encountered when the rotor disk is within a distance of a few rotor radii above the ground surface and results in an increase in thrust for a given power relative to that same power condition with the rotor out of ground effect. Although this phenomenon has been highly documented and observed since the beginning of the helicopter age, there is still a relatively little amount of flow-field data existing to help understand its features. Joint Army and NASA testing was conducted at NASA Langley Research Center using a powered rotorcraft model in hover at various rotor heights and thrust conditions in order to contribute to the complete outwash data set. The measured data included outwash velocities and directions, rotor loads, fuselage loads, and ground pressures. The researchers observed a linear relationship between rotor height and percent download on the fuselage, peak mean outwash velocities occurring at radial stations between 1.7 and 1.8 r/R regardless of rotor height, and the measurement azimuthal dependence of the outwash profile for a model incorporating a fuselage. Comparisons to phase-locked PIV data showed similar contours but a more contracted wake boundary for the PIV data. This paper describes the test setup and presents some of the averaged results.

  14. A HYBRID METHOD IN VEGETATION HEIGHT ESTIMATION USING POLINSAR IMAGES OF CAMPAIGN BIOSAR

    Directory of Open Access Journals (Sweden)

    S. Dehnavi

    2015-12-01

    Full Text Available Recently, there have been plenty of researches on the retrieval of forest height by PolInSAR data. This paper aims at the evaluation of a hybrid method in vegetation height estimation based on L-band multi-polarized air-borne SAR images. The SAR data used in this paper were collected by the airborne E-SAR system. The objective of this research is firstly to describe each interferometry cross correlation as a sum of contributions corresponding to single bounce, double bounce and volume scattering processes. Then, an ESPIRIT (Estimation of Signal Parameters via Rotational Invariance Techniques algorithm is implemented, to determine the interferometric phase of each local scatterer (ground and canopy. Secondly, the canopy height is estimated by phase differencing method, according to the RVOG (Random Volume Over Ground concept. The applied model-based decomposition method is unrivaled, as it is not limited to specific type of vegetation, unlike the previous decomposition techniques. In fact, the usage of generalized probability density function based on the nth power of a cosine-squared function, which is characterized by two parameters, makes this method useful for different vegetation types. Experimental results show the efficiency of the approach for vegetation height estimation in the test site.

  15. a Hybrid Method in Vegetation Height Estimation Using Polinsar Images of Campaign Biosar

    Science.gov (United States)

    Dehnavi, S.; Maghsoudi, Y.

    2015-12-01

    Recently, there have been plenty of researches on the retrieval of forest height by PolInSAR data. This paper aims at the evaluation of a hybrid method in vegetation height estimation based on L-band multi-polarized air-borne SAR images. The SAR data used in this paper were collected by the airborne E-SAR system. The objective of this research is firstly to describe each interferometry cross correlation as a sum of contributions corresponding to single bounce, double bounce and volume scattering processes. Then, an ESPIRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm is implemented, to determine the interferometric phase of each local scatterer (ground and canopy). Secondly, the canopy height is estimated by phase differencing method, according to the RVOG (Random Volume Over Ground) concept. The applied model-based decomposition method is unrivaled, as it is not limited to specific type of vegetation, unlike the previous decomposition techniques. In fact, the usage of generalized probability density function based on the nth power of a cosine-squared function, which is characterized by two parameters, makes this method useful for different vegetation types. Experimental results show the efficiency of the approach for vegetation height estimation in the test site.

  16. Stratifying FIA Ground Plots Using A 3-Year Old MRLC Forest Cover Map and Current TM Derived Variables Selected By "Decision Tree" Classification

    Science.gov (United States)

    Michael Hoppus; Stan Arner; Andrew Lister

    2001-01-01

    A reduction in variance for estimates of forest area and volume in the state of Connecticut was accomplished by stratifying FIA ground plots using raw, transformed and classified Landsat Thematic Mapper (TM) imagery. A US Geological Survey (USGS) Multi-Resolution Landscape Characterization (MRLC) vegetation cover map for Connecticut was used to produce a forest/non-...

  17. The importance of postural cues for determining eye height in immersive virtual reality.

    Science.gov (United States)

    Leyrer, Markus; Linkenauger, Sally A; Bülthoff, Heinrich H; Mohler, Betty J

    2015-01-01

    In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height.

  18. The importance of postural cues for determining eye height in immersive virtual reality.

    Directory of Open Access Journals (Sweden)

    Markus Leyrer

    Full Text Available In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height.

  19. Lucas Heights buffer zone: plan of management

    International Nuclear Information System (INIS)

    1986-01-01

    This plan is being used by the Commission as a guide for its management of the Lucas Heights buffer zone, which is essentially a circular area having a 1-6 km radius around the HIFAR reactor. Aspects covered by this plan include past uses, current use, objectives for buffer zone land management, emergency evacuation, resource conservation, archaeology, fire, access, rehabilitation of disturbed areas, resource management and plan implementation

  20. Memory for target height is scaled to observer height.

    Science.gov (United States)

    Twedt, Elyssa; Crawford, L Elizabeth; Proffitt, Dennis R

    2012-04-01

    According to the embodied approach to visual perception, individuals scale the environment to their bodies. This approach highlights the central role of the body for immediate, situated action. The present experiments addressed whether body scaling--specifically, eye-height scaling--occurs in memory when action is not immediate. Participants viewed standard targets that were either the same height as, taller than, or shorter than themselves. Participants then viewed a comparison target and judged whether the comparison was taller or shorter than the standard target. Participants were most accurate when the standard target height matched their own heights, taking into account postural changes. Participants were biased to underestimate standard target height, in general, and to push standard target height away from their own heights. These results are consistent with the literature on eye-height scaling in visual perception and suggest that body scaling is not only a useful metric for perception and action, but is also preserved in memory.

  1. Calibration and Validation of Landsat Tree Cover in the Taiga−Tundra Ecotone

    Directory of Open Access Journals (Sweden)

    Paul Mannix Montesano

    2016-06-01

    Full Text Available Monitoring current forest characteristics in the taiga−tundra ecotone (TTE at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover >80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010 by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  2. An applied model for the height of the daytime mixed layer and the entrainment zone

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik

    1994-01-01

    A model is presented for the height of the mixed layer and the depth of the entrainment zone under near-neutral and unstable atmospheric conditions. It is based on the zero-order mixed layer height model of Batchvarova and Gryning (1991) and the parameterization of the entrainment zone depth......-layer height: friction velocity, kinematic heat flux near the ground and potential temperature gradient in the free atmosphere above the entrainment zone. When information is available on the horizontal divergence of the large-scale flow field, the model also takes into account the effect of subsidence...

  3. Childhood height, adult height, and the risk of prostate cancer

    DEFF Research Database (Denmark)

    Bjerregaard, Lise Geisler; Aarestrup, Julie; Gamborg, Michael

    2016-01-01

    PURPOSE: We previously showed that childhood height is positively associated with prostate cancer risk. It is, however, unknown whether childhood height exerts its effects independently of or through adult height. We investigated whether and to what extent childhood height has a direct effect...... on the risk of prostate cancer apart from adult height. METHODS: We included 5,871 men with height measured at ages 7 and 13 years in the Copenhagen School Health Records Register who also had adult (50-65 years) height measured in the Danish Diet, Cancer and Health study. Prostate cancer status was obtained...... through linkage to the Danish Cancer Registry. Direct and total effects of childhood height on prostate cancer risk were estimated from Cox regressions. RESULTS: From 1996 to 2012, 429 prostate cancers occurred. Child and adult heights were positively and significantly associated with prostate cancer risk...

  4. Hovering performance of Anna's hummingbirds (Calypte anna) in ground effect.

    Science.gov (United States)

    Kim, Erica J; Wolf, Marta; Ortega-Jimenez, Victor Manuel; Cheng, Stanley H; Dudley, Robert

    2014-09-06

    Aerodynamic performance and energetic savings for flight in ground effect are theoretically maximized during hovering, but have never been directly measured for flying animals. We evaluated flight kinematics, metabolic rates and induced flow velocities for Anna's hummingbirds hovering at heights (relative to wing length R = 5.5 cm) of 0.7R, 0.9R, 1.1R, 1.7R, 2.2R and 8R above a solid surface. Flight at heights less than or equal to 1.1R resulted in significant reductions in the body angle, tail angle, anatomical stroke plane angle, wake-induced velocity, and mechanical and metabolic power expenditures when compared with flight at the control height of 8R. By contrast, stroke plane angle relative to horizontal, wingbeat amplitude and wingbeat frequency were unexpectedly independent of height from ground. Qualitative smoke visualizations suggest that each wing generates a vortex ring during both down- and upstroke. These rings expand upon reaching the ground and present a complex turbulent interaction below the bird's body. Nonetheless, hovering near surfaces results in substantial energetic benefits for hummingbirds, and by inference for all volant taxa that either feed at flowers or otherwise fly close to plant or other surfaces. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Derivation of pulse height to exposure rate conversion functions for aerial radiological surveys

    International Nuclear Information System (INIS)

    Artuso, J.F.

    1985-01-01

    A method is described for deriving conversion functions that can be used to convert pulse height spectra taken at altitude to the exposure rate at the 1-m level. An integral equation is set up which involves the integration of a calculated pulse height spectrum multiplied by an unknown conversion function and then set equal to the exposure rate at ground level. This equation is then solved for the conversion function by assuming as a solution a three-term polynomial. Conversion functions have been derived for various source distributions, including surface, uniform, and exponentially distributed sources. These conversion functions are independent of source energy, which means that a conversion can be made without any knowledge of the isotopic content of the source. In the case of a uniform distribution, these conversion functions provide conversions that agree to within 10% with ground truth measurements

  6. Fall from heights: does height really matter?

    Science.gov (United States)

    Alizo, G; Sciarretta, J D; Gibson, S; Muertos, K; Romano, A; Davis, J; Pepe, A

    2018-06-01

    Fall from heights is high energy injuries and constitutes a fraction of all fall-related trauma evaluations while bearing an increase in morbidity and mortality. We hypothesize that despite advancements in trauma care, the overall survivability has not improved in this subset of trauma patients. All adult trauma patients treated after sustaining a fall from heights during a 40-month period were retrospectively reviewed. Admission demographics, clinical data, fall height (ft), injury patterns, ISS, GCS, length of stay, and mortality were reviewed. 116 patients sustained a fall from heights, 90.4% accidental. A mean age of 37± 14.7 years, 86% male, and a fall height of 19 ± 10 ft were encountered. Admission GCS was 13 ± 2 with ISS 10 ± 11. Overall LOS was 6.6 ± 14.9 days and an ICU LOS of 2.8 ± 8.9 days. Falls ≥ 25 ft.(16%) had lower GCS 10.4 ± 5.8, increased ISS 22.6 ± 13.8, a fall height 37.9 ± 13.1 ft and associated increased mortality (p < 0.001). Mortality was 5.2%, a mean distance fallen of 39 ± 22 ft. and an ISS of 31.5 ±16.5. Brain injury was the leading cause of death, 50% with open skull fractures. Level of height fallen is a good predictor of overall outcome and survival. Despite advances in trauma care, death rates remain unchanged. Safety awareness and injury prevention programs are needed to reduce the risk of high-level falls.

  7. Encountered Wave Height Distributions for Ships in the North Atlantic

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup; Schrøter, C.; Jensen, Jørgen Juncher

    2004-01-01

    About 20 000 observations of wave heights taken on board vessels sailing in the North Atlantic are presented. The data covers year 2002 and 2003 and stem from a variety of ship types. From the preliminary analysis of the data some conclusions are reached about the effect of weather routing whether...

  8. Nature of short-period microtremors on the cliff-like ground. Part 4; Gakechi kinbo no tanshuki bido. 4

    Energy Technology Data Exchange (ETDEWEB)

    Maiguma, T; Yoshiike, T [Waseda University, Tokyo (Japan). School of Science and Engineering

    1996-10-01

    Microtremors were measured on the cliff-like ground with a height about 10 m, to examine the vibration characteristics. Test field-1 near Akabane, Kita-ku, Tokyo is located in a part of Musashino plateau covered with Kanto loam on its surface, and has relatively sound ground. Test field-2 at Machida is located in the western part of Tama hills, and also has Kanto loam on its surface. For the cliff-like ground with inclined angle 70{degree} at Akabane, remarkably predominant frequency 3.2 Hz was observed for the microtremors in the direction perpendicular to the cliff surface. However, this predominant vibration did not become larger due to the damping effects of the reinforcement walls near the end of cliff and the large trees on the cliff. Influence of the cliff-like ground was scarcely observed in the microtremors spectrum in both the directions parallel and vertical to the cliff-surface. From the observation of microtremors with short period on the cliff-like ground with inclined angle around 32{degree} at Machida, influence of cliff-like ground was not observed in the microtremors spectrum in all of the vibrating directions perpendicular, parallel and vertical to the cliff surface. 3 refs., 10 figs.

  9. Comparison between reflectivity statistics at heights of 3 and 6 km and rain rate statistics at ground level

    Science.gov (United States)

    Crane, R. K.

    1975-01-01

    An experiment was conducted to study the relations between the empirical distribution functions of reflectivity at specified locations above the surface and the corresponding functions at the surface. A bistatic radar system was used to measure continuously the scattering cross section per unit volume at heights of 3 and 6 km. A frequency of 3.7 GHz was used in the tests. It was found that the distribution functions for reflectivity may significantly change with height at heights below the level of the melting layer.

  10. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models

    Science.gov (United States)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2018-03-01

    Tree or canopy height is an important attribute for carbon stock estimation, forest management and habitat quality assessment. Airborne Laser Scanning (ALS) based on Light Detection and Ranging (LiDAR) has advantages over other remote sensing techniques for describing the structure of forests. However, sloped terrain can be challenging for accurate estimation of tree locations and heights based on a Canopy Height Model (CHM) generated from ALS data; a CHM is a height-normalised Digital Surface Model (DSM) obtained by subtracting a Digital Terrain Model (DTM) from a DSM. On sloped terrain, points at the same elevation on a tree crown appear to increase in height in the downhill direction, based on the ground elevations at these points. A point will be incorrectly identified as the treetop by individual tree crown (ITC) recognition algorithms if its height is greater than that of the actual treetop in the CHM, which will be recorded as the tree height. In this study, the influence of terrain slope and crown characteristics on the detection of treetops and estimation of tree heights is assessed using ALS data in a tropical forest with complex terrain (i.e. micro-topography) and tree crown characteristics. Locations and heights of 11,442 trees based on a DSM are compared with those based on a CHM. The horizontal (DH) and vertical displacements (DV) increase with terrain slope (r = 0.47 and r = 0.54 respectively, p tree height are up to 16.6 m on slopes greater than 50° in our study area in Sumatra. The errors in locations (DH) and tree heights (DV) are modelled for trees with conical and spherical tree crowns. For a spherical tree crown, DH can be modelled as R sin θ, and DV as R (sec θ - 1). In this study, a model is developed for an idealised conical tree crown, DV = R (tan θ - tan ψ), where R is the crown radius, and θ and ψ are terrain and crown angles respectively. It is shown that errors occur only when terrain angle exceeds the crown angle, with the

  11. Effect of Ankle Joint Contact Angle and Ground Contact Time on Depth Jump Performance.

    Science.gov (United States)

    Phillips, Joshua H; Flanagan, Sean P

    2015-11-01

    Athletes often need to both jump high and get off the ground quickly, but getting off the ground quickly can decrease the vertical ground reaction force (VGRF) impulse, impeding jump height. Energy stored in the muscle-tendon complex during the stretch-shortening cycle (SSC) may mitigate the effects of short ground contact times (GCTs). To take advantage of the SSC, several coaches recommend "attacking" the ground with the foot in a dorsiflexed (DF) position at contact. However, the efficacy of this technique has not been tested. This investigation tested the hypotheses that shorter GCTs would lead to smaller vertical depth jump heights (VDJH), and that this difference could be mitigated by instructing the athletes to land in a DF as opposed to a plantar flexed (PF) foot position. Eighteen healthy junior college athletes performed depth jumps from a 45-cm box onto force platforms under instruction to achieve one of the 2 objectives (maximum jump height [hmax] or minimal GCT [tmin]), with one of the 2 foot conditions (DF or PF). These variations created 4 distinct jump conditions: DF-hmax, DF-tmin, PF-hmax, and PF-tmin. For all variables examined, there were no significant interactions. For all 4 conditions, the ankle was PF during landing, but the DF condition was 28.87% less PF than the PF condition. The tmin conditions had a 23.48% shorter GCT than hmax. There were no significant main effects for jump height. The peak impact force for tmin was 22.14% greater than hmax and 19.11% greater for DF compared with PF conditions. A shorter GCT did not necessitate a smaller jump height, and a less PF foot did not lead to improvements in jump height or contact time during a depth jump from a 45-cm box. The same jump height was attained in less PF and shorter GCT conditions by larger impact forces. To decrease contact time while maintaining jump height, athletes should be instructed to "get off the ground as fast as possible." This cue seems to be more important than foot

  12. An improved tree height measurement technique tested on mature southern pines

    Science.gov (United States)

    Don C. Bragg

    2008-01-01

    Virtually all techniques for tree height determination follow one of two principles: similar triangles or the tangent method. Most people apply the latter approach, which uses the tangents of the angles to the top and bottom and a true horizontal distance to the subject tree. However, few adjust this method for ground slope, tree lean, crown shape, and crown...

  13. High-altitude electromagnetic pulse environment over the lossy ground

    International Nuclear Information System (INIS)

    Xie Yanzhao; Wang Zanji

    2003-01-01

    The electromagnetic field above ground produced by an incident high-altitude electromagnetic pulse plane wave striking the ground plane was described in this paper in terms of the Fresnel reflection coefficients and the numerical FFT. The pulse reflected from the ground plane always cancel the incident field for the horizontal field component, but the reflected field adds to the incident for the vertical field component. The results of several cases for variations in the observation height, angle of incidence and lossy ground electrical parameters were also presented showing different e-field components above the earth

  14. Linking snake habitat use to nest predation risk in grassland birds: the dangers of shrub cover.

    Science.gov (United States)

    Klug, Page E; Jackrel, Sara L; With, Kimberly A

    2010-03-01

    Extremes in rangeland management, varying from too-frequent fire and intensive grazing to the suppression of both, threaten rangeland ecosystems worldwide. Intensive fire and grazing denude and homogenize vegetation whereas their suppression increases woody cover. Although habitat loss is implicated in grassland bird declines, degradation through intensive management or neglect also decreases breeding habitat and may reduce nesting success through increased rates of nest predation. Snakes are important nest predators, but little is known about how habitat use in snakes relates to predation risk for grassland birds nesting within tallgrass prairie subjected to different grazing and fire frequencies. We evaluated nest survival in the context of habitat used by nesting songbirds and two bird-eating snakes, the eastern yellowbelly racer Coluber constrictor flaviventris and Great Plains ratsnake Pantherophis emoryi. Daily nest survival rates decreased with increasing shrub cover and decreasing vegetation height, which characterize grasslands that have been neglected or intensively managed, respectively. Discriminant function analysis revealed that snake habitats were characterized by higher shrub cover, whereas successful nests were more likely to occur in areas with tall grass and forbs but reduced shrub cover. Because snakes often use shrub habitat, birds nesting in areas with increased shrub cover may be at higher risk of nest predation by snakes in addition to other predators known to use shrub habitat (e.g., mid-sized carnivores and avian predators). Depredated nests also occurred outside the discriminant space of the snakes, indicating that other predators (e.g., ground squirrels Spermophilus spp. and bullsnakes Pituophis catenifer) may be important in areas with denuded cover. Targeted removal of shrubs may increase nest success by minimizing the activity of nest predators attracted to shrub cover.

  15. Grounded meets floating

    Science.gov (United States)

    Walker, Ryan T.

    2018-04-01

    A comprehensive assessment of grounding-line migration rates around Antarctica, covering a third of the coast, suggests retreat in considerable portions of the continent, beyond the rates expected from adjustment following the Last Glacial Maximum.

  16. Propagation predictions and verification for communication and radar

    CSIR Research Space (South Africa)

    Botha, L

    2006-02-01

    Full Text Available , but underestimates the loss at lower heights. As the terrain was covered with trees, it was suspected that at UHF frequencies, the effective ground height is the height of the tree tops. To test this theory, the height was changed to the tree top height and Figure...

  17. Feasibility of using pyranometers for continuous estimation of ground cover fraction in table grape vineyards

    Directory of Open Access Journals (Sweden)

    Antonio Martinez-Cob

    2014-06-01

    Full Text Available This paper evaluates the feasibility of using pyranometers for continuous estimation of ground cover fraction (GCF at remote, unattended sites. Photographical techniques were used for measuring GCF (GCFref at a table grape vineyard grown under a net. Daily pyranometer-driven GCF estimates (GCFpyr were obtained from solar radiation measurements above and below the canopy. For GCFpyr computation, solar radiation was averaged for two hours around solar noon (midday periods and for daylight periods (8:00 to 18:00 Universal Time Coordinated. GCFpyr and GCFref (daylight periods showed a good agreement: mean estimation error, 0.000; root mean square error, 0.113; index of agreement, 0.967. The high GCF attained, the large measurement range for GCF and the presence of the net above the table grape were the likely reasons for the good performance of GCFpyr in this crop despite the short number of pyranometers used. Further research is required to develop more appropriate calibration equations of GCFpyr and for a more detailed evaluation of using a short number of pyranometers to estimate GCF.

  18. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    Science.gov (United States)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  19. Concordant preferences for actual height and facial cues to height

    OpenAIRE

    Re, Daniel Edward; Perrett, David I.

    2012-01-01

    Physical height has a well-documented effect on human mate preferences. In general, both sexes prefer opposite-sex romantic relationships in which the man is taller than the woman, while individual preferences for height are affected by a person’s own height. Research in human mate choice has demonstrated that attraction to facial characteristics, such as facial adiposity, may reflect references for body characteristics. Here, we tested preferences for facial cues to height. In general, incre...

  20. Determination of the smoke-plume heights and their dynamics with ground-based scanning LIDAR

    Science.gov (United States)

    V. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao

    2015-01-01

    Lidar-data processing techniques are analyzed, which allow determining smoke-plume heights and their dynamics and can be helpful for the improvement of smoke dispersion and air quality models. The data processing algorithms considered in the paper are based on the analysis of two alternative characteristics related to the smoke dispersion process: the regularized...

  1. Azimuth cut-off model for significant wave height investigation along coastal water of Kuala Terengganu, Malaysia

    Science.gov (United States)

    Marghany, Maged; Ibrahim, Zelina; Van Genderen, Johan

    2002-11-01

    The present work is used to operationalize the azimuth cut-off concept in the study of significant wave height. Three ERS-1 images have been used along the coastal waters of Terengganu, Malaysia. The quasi-linear transform was applied to map the SAR wave spectra into real ocean wave spectra. The azimuth cut-off was then used to model the significant wave height. The results show that azimuth cut-off varied with the different period of the ERS-1 images. This is because of the fact that the azimuth cut-off is a function of wind speed and significant wave height. It is of interest to find that the significant wave height modeled from azimuth cut-off is in good relation with ground wave conditions. It can be concluded that ERS-1 can be used as a monitoring tool in detecting the significant wave height variation. The azimuth cut-off can be used to model the significant wave height. This means that the quasi-linear transform could be a good application to significant wave height variation during different seasons.

  2. Above-ground biomass of mangrove species. I. Analysis of models

    Science.gov (United States)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  3. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.

    Science.gov (United States)

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-07-01

    Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P Run (β = -0.139; P = 0.002) prostheses, respectively. Neither prosthetic stiffness ( P ≥ 0.180) nor height ( P = 0.062) affected the metabolic cost of running. The metabolic cost of running was related to lower peak (β = 0.649; P = 0.001) and stance average (β = 0.772; P = 0.018) vertical ground reaction forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations. NEW & NOTEWORTHY The metabolic cost of running for athletes with unilateral transtibial amputations depends on prosthetic model and is associated with lower peak and stance average vertical ground reaction forces, longer contact times, and reduced leg stiffness. Metabolic cost is unrelated to prosthetic stiffness, height, and stride kinematic symmetry. Unlike nonamputees who decrease leg stiffness with

  4. Experimental Investigation of a Lift Augmented Ground Effect Platform

    National Research Council Canada - National Science Library

    Igue, Roberto T

    2005-01-01

    .... Lift, torque and efficiency were measured and calculated for each setting. Pressure and velocity information was also collected at specific points around the craft when operating at different heights above ground...

  5. Love and fear of heights: the pathophysiology and psychology of height imbalance.

    Science.gov (United States)

    Salassa, John R; Zapala, David A

    2009-01-01

    Individual psychological responses to heights vary on a continuum from acrophobia to height intolerance, height tolerance, and height enjoyment. This paper reviews the English literature and summarizes the physiologic and psychological factors that generate different responses to heights while standing still in a static or motionless environment. Perceptual cues to height arise from vision. Normal postural sway of 2 cm for peripheral objects within 3 m increases as eye-object distance increases. Postural sway >10 cm can result in a fall. A minimum of 20 minutes of peripheral retinal arc is required to detect motion. Trigonometry dictates that a 20-minute peripheral retinal arch can no longer be achieved in a standing position at an eye-object distance of >20 m. At this distance, visual cues conflict with somatosensory and vestibular inputs, resulting in variable degrees of imbalance. Co-occurring deficits in the visual, vestibular, and somatosensory systems can significantly increase height imbalance. An individual's psychological makeup, influenced by learned and genetic factors, can influence reactions to height imbalance. Enhancing peripheral vision and vestibular, proprioceptive, and haptic functions may improve height imbalance. Psychotherapy may improve the troubling subjective sensations to heights.

  6. Isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    1985-01-01

    Environmental isotope observations were conducted on ground waters from approximately 50 boreholes covering a substantial part of Gordonia. The quality of these waters ranges from fresh to saline. The observed isotope ratios cover a wide range of values, indicating varied hydrological conditions. The most important conclusions arrived at by this study are: 1. no important regional movement of ground water occurs at present; 2. there is widespread evidence of diffuse rainfall recharge; and 3. an important part of ground-water salinity is derived from the unsaturated zone, during such recharge

  7. Temperate forest and open landscapes are distinct alternative states as reflected in canopy height and tree cover

    NARCIS (Netherlands)

    Xu, Chi; Vergnon, Remi; Cornelissen, J.H.C.; Hantson, S.; Holmgren, M.; Nes, van E.H.; Scheffer, M.

    2015-01-01

    The suggestion that woody plants of intermediate height between trees and shrubs (‘trubs’) are conspicuously rare [1] invoked much interest. Two comments showed regional species lists that did not have this paucity of medium-sized woody plants 2 and 3. In response, we hypothesized that the

  8. Tree cover, tree height and bare soil cover differences along a land use degradation gradient in semi-arid savannas, South Africa

    CSIR Research Space (South Africa)

    Mathieu, R

    2009-07-01

    Full Text Available High resolution airborne hyperspectral and discrete return LiDAR data were used to assess bare soil and tree cover differences along a land use transect consisting of state-owned, privately-owned conservation areas, and communal areas in South...

  9. Effect of plant cover on presence of Black Francolin (Francolinus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-21

    Jun 21, 2010 ... factors threatening the populations of these birds in Khouzestan Province, southwestern Iran. Using plot sampling, this study aims to investigate different vegetative factors including plant species, percentage of species presence and dominant plant cover height on francolin presence. Sampling was.

  10. Evaluation and planning for lightning rod grounding of PSTA cyclotron building

    International Nuclear Information System (INIS)

    Suyamto; Taufik; Idrus Abdul Kudus

    2015-01-01

    Lightning rod connected with the ground resistance is an equipment protection against hazards of lightning strikes building. Lightning strike to the building may result in damage to the building and destroy all the equipment inside it. The need for a lightning rod of a building is regulated in PUIPP expressed with risk factors (FR). The amount of FR is the sum of the value of the index of five (5 ) components of the building i.e building functions, construction, the height and the situation of the building and and the number of yearly lightning days in that places. At this time 05 PSTA building has undergone changes in the function of the building's mechanical workshop into a cyclotron building so that safety criteria also change into vital building with lightning rods resistance have to < 1 Ω. From measurements of grounding resistant which exist at present known that average Rp is 1.26 Ω so it is necessary to install new additional grounding resistance to reduce being less than 1 Ω. To fulfil this and taking into consideration the cost and ease of installation, planned addition of a grounding using electrodes solid rods of copper, a diameter of 16 mm and a length of 4 m , planted the soil water depth of 12 m, as well as clay covering, with a water content of about 30 %. Under these conditions and taking into the cost and ease of installation are expected to obtain optimal results i.e. soil resistivity 18.35 Ω-m and its resistance of Rx 4.82 Ω. When coupled with existing grounding final resistant Rp 0.99 Ω obtained is thus fulfilling the requirements of PUIPP that is less than 1 Ω. (author)

  11. Development and validation of fuel height models for terrestrial lidar - RxCADRE 2012

    Science.gov (United States)

    Eric M. Rowell; Carl A. Seielstad; Roger D. Ottmar

    2016-01-01

    Terrestrial laser scanning (TLS) was used to collect spatially continuous measurements of fuelbed characteristics across the plots and burn blocks of the 2012 RxCADRE experiments in Florida. Fuelbeds were scanned obliquely from plot/block edges at a height of 20 m above ground. Pre-fire blocks were scanned from six perspectives and four perspectives for post-...

  12. Agreement between measured height, and height predicted from ...

    African Journals Online (AJOL)

    lower limb measurements, such as knee height, as well as upper limb measures ... had with bone injuries/fractures affecting height or ulna length; and n = 1 had a ... and heels, buttocks and upper back in contact with the vertical surface of the .... found striking similarity in linear growth of infants to five-year- olds among all ...

  13. Accuracy of recumbent height measurement.

    Science.gov (United States)

    Gray, D S; Crider, J B; Kelley, C; Dickinson, L C

    1985-01-01

    Since many patients requiring specialized nutritional support are bedridden, measurement of height for purposes of nutritional assessment or prescription must often be done with the patient in bed. This study examined the accuracy of measuring body height in bed in the supine position. Two measurements were performed on 108 ambulatory inpatients: (1) standing height using a standard height-weight scale, and (2) bed height using a flexible tape. Patients were divided into four groups based on which of two researchers performed each of the two measurements. Each patient was also weighed and self-reported height, weight, sex, and age were recorded. Bed height was significantly longer than standing height by 3.68 cm, but the two measurements were equally precise. It was believed, however, that this 2% difference was probably not clinically significant in most circumstances. Bed height correlated highly with standing height (r = 0.95), and the regression equation was standing height = 13.82 +/- 0.09 bed height. Patients overestimated their heights. Heights recorded by nurses were more accurate when patients were measured than when asked about their heights, but the patients were more often asked than measured.

  14. Land Use and Land Cover, Existing land use derived from orthoimagery. Ground-truthing from discussion with local plan commission members., Published in 2000, 1:12000 (1in=1000ft) scale, Portage County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Land Use and Land Cover dataset current as of 2000. Existing land use derived from orthoimagery. Ground-truthing from discussion with local plan commission members..

  15. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2010-08-01

    Full Text Available The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB (and thus carbon content of vegetation and leaf area index (LAI and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a undisturbed forest growth and (b a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size. The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91% if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60% between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a

  16. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    Science.gov (United States)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the

  17. Design And Ground Testing For The Expert PL4/PL5 'Natural And Roughness Induced Transition'

    Science.gov (United States)

    Masutti, Davie; Chazot, Olivier; Donelli, Raffaele; de Rosa, Donato

    2011-05-01

    Unpredicted boundary layer transition can impact dramatically the stability of the vehicle, its aerodynamic coefficients and reduce the efficiency of the thermal protection system. In this frame, ESA started the EXPERT (European eXPErimental Reentry Testbed) program to pro- vide and perform in-flight experiments in order to obtain aerothermodynamic data for the validation of numerical models and of ground-to-flight extrapolation methodologies. Considering the boundary layer transition investigation, the EXPERT vehicle is equipped with two specific payloads, PL4 and PL5, concerning respectively the study of the natural and roughness induced transition. The paper is a survey on the design process of these two in-flight experiments and it covers the major analyses and findings encountered during the development of the payloads. A large amount of transition criteria have been investigated and used to estimate either the dangerousness of the height of the distributed roughness, arising due to nose erosion, or the effectiveness of height of the isolated roughness element forcing the boundary layer transition. Supporting the PL4 design, linear stability computations and CFD analyses have been performed by CIRA on the EXPERT flight vehicle to determine the amplification factor of the boundary layer instabilities at different point of the re-entry trajectory. Ground test experiments regarding the PL5 are carried on in the Mach 6 VKI H3 Hypersonic Wind Tunnel with a Reynolds numbers ranging from 18E6/m to 26E6/m. Infrared measurements (Stanton number) and flow visualization are used on a 1/16 scaled model of the EXPERT vehicle and a flat plate to validate the Potter and Whitfield criterion as a suitable methodology for ground-to-flight extrapolation and the payload design.

  18. Planning School Grounds for Outdoor Learning

    Science.gov (United States)

    Wagner, Cheryl; Gordon, Douglas

    2010-01-01

    This publication covers the planning and design of school grounds for outdoor learning in new and existing K-12 facilities. Curriculum development as well as athletic field planning and maintenance are not covered although some references on these topics are provided. It discusses the different types of outdoor learning environments that can be…

  19. Numerical Investigation of Aerodynamic Braking for a Ground Vehicle

    Science.gov (United States)

    Devanuri, Jaya Krishna

    2018-06-01

    The purpose of this article is to observe the effect of an air brake on the aerodynamics of a ground vehicle and also to study the influence of change in the parameters like the velocity of the vehicle, the angle of inclination, height, and position of the air brake on the aerodynamics of the vehicle body. The test subject used is an Ahmed body which is a generic 3D car body as it retains all the aerodynamic characteristics of a ground vehicle. Numerical investigation has been carried out by RNG k-ɛ turbulence model. Results are presented in terms of streamlines and drag coefficient to understand the influence of pertinent parameters on flow physics. It is found that with the use of an air brake, though the drag coefficient remains more or less constant with velocity, it increases with the increase in height and angle of inclination of the air brake. But the effect of position of air brake on the coefficient of drag is surprising since for certain heights of the air brake the drag coefficient is maximum at the foremost point and as the air brake moves towards the rear it is first observed to decrease and then increase. It is also observed that with the increase in height of the air brake the drag coefficient monotonically decreases as the position of the air brake is moved towards the rear. Taguchi method has been employed with L16 orthogonal array to obtain the optimal configuration for the air brake. For each of the selected parameters, four different levels have been chosen to obtain the maximum drag coefficient value. The study could provide an invaluable database for the optimal design of an airbrake for a ground vehicle.

  20. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery Using a Probabilistic Learning Framework

    Science.gov (United States)

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna

    2015-01-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  1. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery using a Probabilistic Learning Framework

    Science.gov (United States)

    Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.

    2015-12-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  2. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    Science.gov (United States)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest

  3. Effects of Different Cutting Height on Nutritional Quality of Whole Crop Barley Silage and Feed Value on Hanwoo Heifers.

    Science.gov (United States)

    Kim, Dong Hyeon; Amanullah, Sardar M; Lee, Hyuk Jun; Joo, Young Ho; Han, Ouk Kyu; Adesogan, Adegbola T; Kim, Sam Churl

    2016-09-01

    The present study evaluated the effects of different cutting height on nutritive value, fermentation quality, in vitro and in vivo digestibility of whole crop barley silage. Whole crop barley forage (Yuyeon hybrid) was harvested at height of 5, 10, and 15 cm from the ground level. Each cutting height was rolled to make round bale and ensiled for 100 days. After 100 days of ensiling, pH of silage was lower (pcutting height. The content of lactate and lactate to acetate ratio were increased (pcutting height, whereas the acetate content was higher (pcutting height. Aerobic stability was greater (pcutting height. Three total mixed rations (TMR) were formulated with silages from the three different cutting heights (TMR5, TMR10, and TMR15) incorporated as forage at 70:30 ratio with concentrate (dry matter [DM] basis). In vitro dry matter digestibility was higher (pcutting height. The digestibility of DM and neutral detergent fiber were highest (pcutting height, at least up to 10 to 15 cm, of whole crop barley forage at harvest (Yuyeon) may be beneficial for making silage for TMR formulation and increasing digestibility of DM and NDF.

  4. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  5. Spatial and temporal distribution of vertical ground movements at Mt. Vesuvius in the period 1973-2009

    Directory of Open Access Journals (Sweden)

    Folco Pingue

    2013-11-01

    Full Text Available Since the early ’70s vertical ground movements at Mount Vesuvius area have been investigated and monitored by the Osservatorio Vesuviano (Isti-tuto Nazionale di Geofisica Vulcanologia - Osservatorio Vesuviano since 2001. This monitoring began with the installation of a high-precision leveling line in the region at medium-high elevations on the volcano. The deformation pattern and expected strain field assessment methods in the volcanic structure induced by inner sources has demanded in subsequent years the expansion of the leveling network up to cover the whole volcanic area, enclosing part of leveling lines of other institutions. As a result of this expansion, the Mt. Vesuvius Area Leveling Network (VALN has today reached a length of about 270 km and consists of 359 benchmarks. It is configured in 21 circuits and is connected, westward, to the Campi Flegrei leveling network and, northward, to the Campania Plain leveling network. The data collected have been carefully re-analyzed for random and systematic errors and for error propagation along the leveling lines to identify the areas affected by significant ground movements. For each survey, the data were rigorously adjusted and vertical ground movements were evaluated by differentiating the heights calculated by the various measurements conducted by the Osservatorio Vesuviano from 1973 to 2009.

  6. Final height in survivors of childhood cancer compared with Height Standard Deviation Scores at diagnosis.

    Science.gov (United States)

    Knijnenburg, S L; Raemaekers, S; van den Berg, H; van Dijk, I W E M; Lieverst, J A; van der Pal, H J; Jaspers, M W M; Caron, H N; Kremer, L C; van Santen, H M

    2013-04-01

    Our study aimed to evaluate final height in a cohort of Dutch childhood cancer survivors (CCS) and assess possible determinants of final height, including height at diagnosis. We calculated standard deviation scores (SDS) for height at initial cancer diagnosis and height in adulthood in a cohort of 573 CCS. Multivariable regression analyses were carried out to estimate the influence of different determinants on height SDS at follow-up. Overall, survivors had a normal height SDS at cancer diagnosis. However, at follow-up in adulthood, 8.9% had a height ≤-2 SDS. Height SDS at diagnosis was an important determinant for adult height SDS. Children treated with (higher doses of) radiotherapy showed significantly reduced final height SDS. Survivors treated with total body irradiation (TBI) and craniospinal radiation had the greatest loss in height (-1.56 and -1.37 SDS, respectively). Younger age at diagnosis contributed negatively to final height. Height at diagnosis was an important determinant for height SDS at follow-up. Survivors treated with TBI, cranial and craniospinal irradiation should be monitored periodically for adequate linear growth, to enable treatment on time if necessary. For correct interpretation of treatment-related late effects studies in CCS, pre-treatment data should always be included.

  7. Estimating Snow Cover from Publicly Available Images

    OpenAIRE

    Fedorov, Roman; Camerada, Alessandro; Fraternali, Piero; Tagliasacchi, Marco

    2016-01-01

    In this paper we study the problem of estimating snow cover in mountainous regions, that is, the spatial extent of the earth surface covered by snow. We argue that publicly available visual content, in the form of user generated photographs and image feeds from outdoor webcams, can both be leveraged as additional measurement sources, complementing existing ground, satellite and airborne sensor data. To this end, we describe two content acquisition and processing pipelines that are tailored to...

  8. Thrips (Thysanoptera: Thripidae) mitigation in seedling cotton using strip tillage and winter cover crops.

    Science.gov (United States)

    Toews, Michael D; Tubbs, R Scott; Wann, Dylan Q; Sullivan, Dana

    2010-10-01

    Thrips are the most consistent insect pests of seedling cotton in the southeastern United States, where symptoms can range from leaf curling to stand loss. In a 2 year study, thrips adults and immatures were sampled at 14, 21 and 28 days after planting on cotton planted with a thiamethoxam seed treatment in concert with crimson clover, wheat or rye winter cover crops and conventional or strip tillage to investigate potential differences in thrips infestations. Densities of adult thrips, primarily Frankliniella fusca (Hinds), peaked on the first sampling date, whereas immature densities peaked on the second sampling date. Regardless of winter cover crop, plots that received strip tillage experienced significantly fewer thrips at each sampling interval. In addition, assessment of percentage ground cover 42 days after planting showed that there was more than twice as much ground cover in the strip-tilled plots compared with conventionally tilled plots. Correlation analyses showed that increased ground cover was inversely related to thrips densities that occurred on all three sampling dates in 2008 and the final sampling date in 2009. Growers who utilize strip tillage and a winter cover crop can utilize seed treatments for mitigation of early-season thrips infestation.

  9. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  10. Moss and lichen cover mapping at local and regional scales in the boreal forest ecosystem of central Canada

    Science.gov (United States)

    Rapalee, G.; Steyaert, L.T.; Hall, F.G.

    2001-01-01

    Mosses and lichens are important components of boreal landscapes [Vitt et al., 1994; Bubier et al., 1997]. They affect plant productivity and belowground carbon sequestration and alter the surface runoff and energy balance. We report the use of multiresolution satellite data to map moss and lichens over the BOREAS region at a 10 m, 30 m, and 1 km scales. Our moss and lichen classification at the 10 m scale is based on ground observations of associations among soil drainage classes, overstory composition, and cover type among four broad classes of ground cover (feather, sphagnum, and brown mosses and lichens). For our 30 m map, we used field observations of ground cover-overstory associations to map mosses and lichens in the BOREAS southern study area (SSA). To scale up to a 1 km (AVHRR) moss map of the BOREAS region, we used the TM SSA mosaics plus regional field data to identify AVHRR overstory-ground cover associations. We found that: 1) ground cover, overstory composition and density are highly correlated, permitting inference of moss and lichen cover from satellite-based land cover classifications; 2) our 1 km moss map reveals that mosses dominate the boreal landscape of central Canada, thereby a significant factor for water, energy, and carbon modeling; 3) TM and AVHRR moss cover maps are comparable; 4) satellite data resolution is important; particularly in detecting the smaller wetland features, lakes, and upland jack pine sites; and 5) distinct regional patterns of moss and lichen cover correspond to latitudinal and elevational gradients. Copyright 2001 by the American Geophysical Union.

  11. Social inequalities in height: persisting differences today depend upon height of the parents.

    Directory of Open Access Journals (Sweden)

    Bruna Galobardes

    Full Text Available Substantial increases in height have occurred concurrently with economic development in most populations during the last century. In high-income countries, environmental exposures that can limit genetic growth potential appear to have lessened, and variation in height by socioeconomic position may have diminished. The objective of this study is to investigate inequalities in height in a cohort of children born in the early 1990s in England, and to evaluate which factors might explain any identified inequalities.12,830 children from The Avon Longitudinal Study of Parents and Children (ALSPAC, a population based cohort from birth to about 11.5 years of age, were used in this analysis. Gender- and age-specific z-scores of height at different ages were used as outcome variables. Multilevel models were used to take into account the repeated measures of height and to analyze gender- and age-specific relative changes in height from birth to 11.5 years. Maternal education was the main exposure variable used to examine socioeconomic inequalities. The roles of parental and family characteristics in explaining any observed differences between maternal education and child height were investigated. Children whose mothers had the highest education compared to those with none or a basic level of education, were 0.39 cm longer at birth (95% CI: 0.30 to 0.48. These differences persisted and at 11.5 years the height difference was 1.4 cm (95% CI: 1.07 to 1.74. Several other factors were related to offspring height, but few changed the relationship with maternal education. The one exception was mid-parental height, which fully accounted for the maternal educational differences in offspring height.In a cohort of children born in the 1990s, mothers with higher education gave birth to taller boys and girls. Although height differences were small they persisted throughout childhood. Maternal and paternal height fully explained these differences.

  12. Consistent treatment of ground deposition together with species growth and decay during atmospheric transport

    International Nuclear Information System (INIS)

    Murphy, B.D.; Nelson, C.B.; Ohr, S.Y.

    1981-01-01

    We discuss the adaptation of a trajectory model to an initial pollutant species and a series of successor species at mesoscale distances. The effect of source height is discussed since it is important in determining close-in ground level concentration, which influences plume depletion due to dry deposition. A scheme is outlined which handles deposition and species decay in a consistent manner and which does so for an arbitrary number of successor pollutant species. This scheme is discussed in terms of a Lagrangian trajectory model which accounts for initial source height and which calculates ground-level concentrations out to mesoscale distances

  13. Multi-temporal Assessment of Forest Cover, Stocking parameters ...

    African Journals Online (AJOL)

    user

    The study assessed forest cover, stocking parameters and above-ground tree .... deration new emerging ideas on REDD+, this study .... representing areas of change and zero values representing no ..... John Wiley & Sons, Inc. New York.

  14. Effect of cutting height and time on seed yield and seed quality of Stylosanthes guianensis CIAT 184

    OpenAIRE

    Pimpaporn Pholsen; Chureerat Satjipanon; Krailas Kiyothong

    2002-01-01

    The objectives of this experiment were to study the effect of cutting height and time on seed yield and seed quality of Stylosanthes guianensis CIAT 184 in Korat soil series at Khon Kaen Animal Nutrition Research Center, during April 2000 - May 2001. The experimental design was 2 × 4 factorial in randomized complete block design with 4 replications. The treatment consisted of 2 factors: - 1) Two levels of cutting height viz. 20 and 30 cm above ground; 2) Four periods of cutting time viz. at 6...

  15. Trap Height Affects Capture of Lady Beetles (Coleoptera: Coccinellidae) in Pecan Orchards.

    Science.gov (United States)

    Cottrell, T E

    2017-04-01

    There is scarce information regarding the vertical stratification of predaceous Coccinellidae in tall trees. Although numerous studies have been done in orchards and forests, very few studies have assessed the occurrence of predaceous Coccinellidae high in tree canopies. The objective of this study was to examine the abundance of Coccinellidae at different heights in mature pecan, Carya illinoinensis (Wangenh.) K. Koch, orchards with tall trees. From spring through late fall during 2013 and 2014, yellow pyramidal Tedders traps were suspended in the pecan canopy at 6.1 and 12.2 m, in addition to being placed on the ground (0 m). The exotic species Harmonia axyridis and Coccinella septempunctata accounted for a high percentage of trap capture during this study. Except for Olla v-nigrum, low numbers of native species (Hippodamia convergens, Coleomegilla maculata, Cycloneda munda, Scymnus spp., and Hyperaspis spp.) were captured. However, significantly more were captured in ground traps rather than in canopy traps with the exception of O. v-nigrum. Similar to most native species, significantly more C. septempunctata were captured in ground traps than canopy traps. This contrasts sharply with H. axyridis captured similarly at all trap heights. The ability to exploit resources across vertical strata, unlike many intraguild predators, may be an underestimated factor helping to explain the invasiveness of H. axyridis. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by a US Government employee and is in the public domain in the US.

  16. Sentinel pigeon surveillance for West Nile virus by using lard-can traps at differing elevations and canopy cover classes.

    Science.gov (United States)

    Deegan, Carrie S; Burns, Joseph E; Huguenin, Michael; Steinhaus, Eliza Y; Panella, Nicholas A; Beckett, Susan; Komar, Nicholas

    2005-11-01

    Sentinel pigeons, Columba livia, were installed in lard-can traps at heights of 1.5 m and 7.6-9.1 m within differing canopy cover classes in New York City. Adult mosquitoes were collected weekly from July to October 2002, as were serum samples from each pigeon. Culex pipiens L. and Culex restuans Theobald comprised 97% of mosquitoes collected and were most numerous in canopy-level, forested traps. The West Nile virus (family Flaviviridae, genus Flavivirus, WNV) seroconversion rate was significantly greater for pigeons in canopy-level traps, although seroconversions occurred concurrently with human cases in the city and were of little prognostic value to public health agencies. Our results indicate that sentinel pigeons were most effective for monitoring enzootic transmission of WNV when placed in single-sentinel caging 7.6-9.1 m above ground level.

  17. Final height in survivors of childhood cancer compared with Height Standard Deviation Scores at diagnosis

    NARCIS (Netherlands)

    Knijnenburg, S. L.; Raemaekers, S.; van den Berg, H.; van Dijk, I. W. E. M.; Lieverst, J. A.; van der Pal, H. J.; Jaspers, M. W. M.; Caron, H. N.; Kremer, L. C.; van Santen, H. M.

    2013-01-01

    Our study aimed to evaluate final height in a cohort of Dutch childhood cancer survivors (CCS) and assess possible determinants of final height, including height at diagnosis. We calculated standard deviation scores (SDS) for height at initial cancer diagnosis and height in adulthood in a cohort of

  18. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  19. Height premium for job performance.

    Science.gov (United States)

    Kim, Tae Hyun; Han, Euna

    2017-08-01

    This study assessed the relationship of height with wages, using the 1998 and 2012 Korean Labor and Income Panel Study data. The key independent variable was height measured in centimeters, which was included as a series of dummy indicators of height per 5cm span (wages to assess the heterogeneity in the height-wage relationship, across the conditional distribution of monthly wages. We found a non-linear relationship of height with monthly wages. For men, the magnitude of the height wage premium was overall larger at the upper quantile of the conditional distribution of log monthly wages than at the median to low quantile, particularly in professional and semi-professional occupations. The height-wage premium was also larger at the 90th quantile for self-employed women and salaried men. Our findings add a global dimension to the existing evidence on height-wage premium, demonstrating non-linearity in the association between height and wages and heterogeneous changes in the dispersion and direction of the association between height and wages, by wage level. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Near-ground cooling efficacies of trees and high-albedo surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen M. [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1997-05-01

    Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequently-proposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object`s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by.

  1. Biocompatibility of a new device of self-expandable covered and non-covered tracheal stent: comparative study in rats

    Directory of Open Access Journals (Sweden)

    Olavo Ribeiro Rodrigues

    2013-01-01

    Full Text Available PURPOSE: To investigate the compatibility of a new model of self-expandable tracheal stent in rats. METHODS: A new device of polyurethane covered and non - covered stent was placed in the trachea of Wistar rats. Animals were distributed in two groups: the polyurethane covered and non-covered group. Macroscopic parameters included position within the tracheal lumen, adherence to the mucosa, degree of dilatation, permeability and internal diameter. Microscopic findings evaluated were: incorporation, inflammatory activity, granulation tissue and epithelial revetment injuries. The observation follow-up was six weeks. All parameters were quantified based on determined score values. Incorporation of the stents was evaluated based on the observation if the stent was fixed into the trachea or if it could be removed. Degree of dilatation was performed by external diameter measurements. Granulation tissue was evaluated by measurements of height of the tissue growing into the tracheal lumen. RESULTS: 100% of non-covered stents had total attachment to mucosa and 100% of polyurethane covered type had adherence only. Regarding dilatation, granulation tissue, inflammatory activity and internal diameter measurements, there were no significant differences between the groups. Pathological tracheal wall injuries were present in both groups. CONCLUSION: Both models of stent demonstrated biocompatibility with the trachea. Rats are suitable for an experimental model of tracheal stent study.

  2. Exploring the mechanisms of vehicle front-end shape on pedestrian head injuries caused by ground impact.

    Science.gov (United States)

    Yin, Sha; Li, Jiani; Xu, Jun

    2017-09-01

    In pedestrian-vehicle accidents, pedestrians typically suffer from secondary impact with the ground after the primary contact with vehicles. However, information about the fundamental mechanism of pedestrian head injury from ground impact remains minimal, thereby hindering further improvement in pedestrian safety. This study addresses this issue by using multi-body modeling and computation to investigate the influence of vehicle front-end shape on pedestrian safety. Accordingly, a simulation matrix is constructed to vary bonnet leading-edge height, bonnet length, bonnet angle, and windshield angle. Subsequently, a set of 315 pedestrian-vehicle crash simulations are conducted using the multi-body simulation software MADYMO. Three vehicle velocities, i.e., 20, 30, and 40km/h, are set as the scenarios. Results show that the top governing factor is bonnet leading-edge height. The posture and head injury at the instant of head ground impact vary dramatically with increasing height because of the significant rise of the body bending point and the movement of the collision point. The bonnet angle is the second dominant factor that affects head-ground injury, followed by bonnet length and windshield angle. The results may elucidate one of the critical barriers to understanding head injury caused by ground impact and provide a solid theoretical guideline for considering pedestrian safety in vehicle design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    Science.gov (United States)

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  4. Investigation of snow cover dust pollution by contact and satellite observations

    Science.gov (United States)

    Raputa, Vladimir F.; Yaroslavtseva, Tatyana V.

    2015-11-01

    The problems of reconstructing the snow cover pollution fields from dusting, point, linear and area sources according to ground and satellite observations are considered. Using reconstruction models, the methods of the combined analysis of the characteristic images of snow cover pollution haloes in the vicinity of sources of dust and contact data observations have been developed. On the basis of the numerical data analysis of ground monitoring and satellite imagery, the stable quantitative regularities between the fields of dust fallouts and the intensity of a change of tones of gray in the radial directions relative to the main sources are identified.

  5. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    Science.gov (United States)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  6. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  7. Field Ground Truthing Data Collector - a Mobile Toolkit for Image Analysis and Processing

    Science.gov (United States)

    Meng, X.

    2012-07-01

    Field Ground Truthing Data Collector is one of the four key components of the NASA funded ICCaRS project, being developed in Southeast Michigan. The ICCaRS ground truthing toolkit entertains comprehensive functions: 1) Field functions, including determining locations through GPS, gathering and geo-referencing visual data, laying out ground control points for AEROKAT flights, measuring the flight distance and height, and entering observations of land cover (and use) and health conditions of ecosystems and environments in the vicinity of the flight field; 2) Server synchronization functions, such as, downloading study-area maps, aerial photos and satellite images, uploading and synchronizing field-collected data with the distributed databases, calling the geospatial web services on the server side to conduct spatial querying, image analysis and processing, and receiving the processed results in field for near-real-time validation; and 3) Social network communication functions for direct technical assistance and pedagogical support, e.g., having video-conference calls in field with the supporting educators, scientists, and technologists, participating in Webinars, or engaging discussions with other-learning portals. This customized software package is being built on Apple iPhone/iPad and Google Maps/Earth. The technical infrastructures, data models, coupling methods between distributed geospatial data processing and field data collector tools, remote communication interfaces, coding schema, and functional flow charts will be illustrated and explained at the presentation. A pilot case study will be also demonstrated.

  8. Potential change in forest types and stand heights in central Siberia in a warming climate

    International Nuclear Information System (INIS)

    Tchebakova, N M; Parfenova, E I; Korets, M A; Conard, S G

    2016-01-01

    Previous regional studies in Siberia have demonstrated climate warming and associated changes in distribution of vegetation and forest types, starting at the end of the 20th century. In this study we used two regional bioclimatic envelope models to simulate potential changes in forest types distribution and developed new regression models to simulate changes in stand height in tablelands and southern mountains of central Siberia under warming 21st century climate. Stand height models were based on forest inventory data (2850 plots). The forest type and stand height maps were superimposed to identify how heights would change in different forest types in future climates. Climate projections from the general circulation model Hadley HadCM3 for emission scenarios B1 and A2 for 2080s were paired with the regional bioclimatic models. Under the harsh A2 scenario, simulated changes included: a 80%–90% decrease in forest-tundra and tundra, a 30% decrease in forest area, a ∼400% increase in forest-steppe, and a 2200% increase in steppe, forest-steppe and steppe would cover 55% of central Siberia. Under sufficiently moist conditions, the southern and middle taiga were simulated to benefit from 21st century climate warming. Habitats suitable for highly-productive forests (≥30–40 m stand height) were simulated to increase at the expense of less productive forests (10–20 m). In response to the more extreme A2 climate the area of these highly-productive forests would increase 10%–25%. Stand height increases of 10 m were simulated over 35%–50% of the current forest area in central Siberia. In the extremely warm A2 climate scenario, the tall trees (25–30 m) would occur over 8%–12% of area in all forest types except forest-tundra by the end of the century. In forest-steppe, trees of 30–40 m may cover some 15% of the area under sufficient moisture. (letter)

  9. Survey of Ground Dwelling Arthropods Associated with Two Habitat ...

    African Journals Online (AJOL)

    Survey of Ground Dwelling Arthropods Associated with Two Habitat Types in the Jos ... in the mean abundance of ground dwelling arthropods in relation to taxa. ... Food availability and vegetation cover were found to be critical to arthropods ...

  10. Thermal Environmental Design in Outdoor Space Focusing on Radiation Environment Influenced by Ground Cover Material and Solar Shading, through the Examination on the Redevelopment Buildings in Front of Central Osaka Station

    Directory of Open Access Journals (Sweden)

    Hideki Takebayashi

    2018-01-01

    Full Text Available The outdoor open space is used for various purposes, e.g., to walk, rest, talk, meet, study, exercise, play, perform, eat, and drink. Therefore, it is desirable to provide various thermal environments according to users’ needs and their actual conditions. In this study, the radiation environment was evaluated, focusing on ground cover materials and solar radiation shading, through the examination on the redevelopment buildings in front of Central Osaka Station. The spatial distribution of solar radiation shading was calculated using ArcGIS and building shape data. Surface temperatures on the ground and wall are calculated based on the surface heat budget equation. MRT (Mean Radiant Temperature of the human body is calculated assuming that the human body is a sphere. The most dominant factor for the radiant environment is solar radiation shielding and the next is the improvement of surface cover. It is difficult to make SET* (Standard new Effective Temperature comfortable in the afternoon by both solar radiation shielding and improved surface cover because the air temperature is too high on a typical summer day (August. However, particularly in Rooftop Gardens and Green Garden, because the areas of shade grass and water are large, there are several places where people do not feel uncomfortable.

  11. Use of UAV-Borne Spectrometer for Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Sowmya Natesan

    2018-04-01

    Full Text Available Unmanned aerial vehicles (UAV are being used for low altitude remote sensing for thematic land classification using visible light and multi-spectral sensors. The objective of this work was to investigate the use of UAV equipped with a compact spectrometer for land cover classification. The UAV platform used was a DJI Flamewheel F550 hexacopter equipped with GPS and Inertial Measurement Unit (IMU navigation sensors, and a Raspberry Pi processor and camera module. The spectrometer used was the FLAME-NIR, a near-infrared spectrometer for hyperspectral measurements. RGB images and spectrometer data were captured simultaneously. As spectrometer data do not provide continuous terrain coverage, the locations of their ground elliptical footprints were determined from the bundle adjustment solution of the captured images. For each of the spectrometer ground ellipses, the land cover signature at the footprint location was determined to enable the characterization, identification, and classification of land cover elements. To attain a continuous land cover classification map, spatial interpolation was carried out from the irregularly distributed labeled spectrometer points. The accuracy of the classification was assessed using spatial intersection with the object-based image classification performed using the RGB images. Results show that in homogeneous land cover, like water, the accuracy of classification is 78% and in mixed classes, like grass, trees and manmade features, the average accuracy is 50%, thus, indicating the contribution of hyperspectral measurements of low altitude UAV-borne spectrometers to improve land cover classification.

  12. Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Xiliang Ni

    2015-06-01

    Full Text Available Spatially-detailed forest height data are useful to monitor local, regional and global carbon cycle. LiDAR remote sensing can measure three-dimensional forest features but generating spatially-contiguous forest height maps at a large scale (e.g., continental and global is problematic because existing LiDAR instruments are still data-limited and expensive. This paper proposes a new approach based on an artificial neural network (ANN for modeling of forest canopy heights over the China continent. Our model ingests spaceborne LiDAR metrics and multiple geospatial predictors including climatic variables (temperature and precipitation, forest type, tree cover percent and land surface reflectance. The spaceborne LiDAR instrument used in the study is the Geoscience Laser Altimeter System (GLAS, which can provide within-footprint forest canopy heights. The ANN was trained with pairs between spatially discrete LiDAR metrics and full gridded geo-predictors. This generates valid conjugations to predict heights over the China continent. The ANN modeled heights were evaluated with three different reference data. First, field measured tree heights from three experiment sites were used to validate the ANN model predictions. The observed tree heights at the site-scale agreed well with the modeled forest heights (R = 0.827, and RMSE = 4.15 m. Second, spatially discrete GLAS observations and a continuous map from the interpolation of GLAS-derived tree heights were separately used to evaluate the ANN model. We obtained R of 0.725 and RMSE of 7.86 m and R of 0.759 and RMSE of 8.85 m, respectively. Further, inter-comparisons were also performed with two existing forest height maps. Our model granted a moderate agreement with the existing satellite-based forest height maps (R = 0.738, and RMSE = 7.65 m (R2 = 0.52, and RMSE = 8.99 m. Our results showed that the ANN model developed in this paper is capable of estimating forest heights over the China continent with a

  13. Predation of artificial ground nests on white-tailed prairie dog colonies

    Science.gov (United States)

    Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.

    1999-01-01

    Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.

  14. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    Science.gov (United States)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  15. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    Science.gov (United States)

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by

  16. Height-Deterministic Pushdown Automata

    DEFF Research Database (Denmark)

    Nowotka, Dirk; Srba, Jiri

    2007-01-01

    We define the notion of height-deterministic pushdown automata, a model where for any given input string the stack heights during any (nondeterministic) computation on the input are a priori fixed. Different subclasses of height-deterministic pushdown automata, strictly containing the class...... of regular languages and still closed under boolean language operations, are considered. Several of such language classes have been described in the literature. Here, we suggest a natural and intuitive model that subsumes all the formalisms proposed so far by employing height-deterministic pushdown automata...

  17. Predicting wind shear effects: A study of Minnesota wind data collected at heights up to 70 meters

    Energy Technology Data Exchange (ETDEWEB)

    Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)

    1997-12-31

    The Minnesota Department of Public Service (DPS) collects wind data at carefully selected sites around the state and analyzes the data to determine Minnesota`s wind power potential. DPS recently installed advanced new monitoring equipment at these sites and began to collect wind data at 30, 50, and 70 meters above ground level, with two anemometers at each level. Previously, the Department had not collected data at heights above ground level higher than 30 meters. DPS also, with the U.S. Department of Energy (DOE), installed four sophisticated monitoring sites as part of a Tall Tower Wind Shear Study that is assessing the effects of wind shear on wind power potential. At these sites, wind data are being collected at the 10, 30, 40, 50, 60, and 70 meter heights. This paper presents the preliminary results of the analysis of wind data from all sites. These preliminary results indicate that the traditional 1/7 power law does not effectively predict wind shear in Minnesota, and the result is an underestimation of Minnesota`s wind power potential at higher heights. Using a power factor of 1/5 or 1/4 may be more accurate and provide sound justification for installing wind turbines on taller towers in Minnesota.

  18. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California

    Science.gov (United States)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-01-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  19. Precise plant height monitoring and biomass estimation with Terrestrial Laser Scanning in paddy rice

    Directory of Open Access Journals (Sweden)

    N. Tilly

    2013-10-01

    Full Text Available Optimizing crop management is a major topic in the field of precision agriculture as the growing world population puts pressure on the efficiency of field production. Accordingly, methods to measure plant parameters with the needed precision and within-field resolution are required. Studies show that Terrestrial Laser Scanning (TLS is a suitable method to capture small objects like crop plants. In this contribution, the results of multi-temporal surveys on paddy rice fields with the TLS system Riegl LMS-Z420i are presented. Three campaigns were carried out during the key vegetative stage of rice plants in the growing period 2012 to monitor the plant height. The TLS-derived point clouds are interpolated to visualize plant height above ground as crop surface models (CSMs with a high resolution of 0.01 m. Spatio-temporal differences within the data of one campaign and between consecutive campaigns can be detected. The results were validated against manually measured plant heights with a high correlation (R2 = 0.71. Furthermore, the dependence of actual biomass from plant height was evaluated. To the present, no method for the non-destructive determination of biomass is found yet. Thus, plant parameters, like the height, have to be used for biomass estimations. The good correlation (R2 = 0.66 leads to the assumption that biomass can be estimated from plant height measurements. The results show that TLS can be considered as a very promising tool for precision agriculture.

  20. Comparing distinct ground-based lightning location networks covering the Netherlands

    Science.gov (United States)

    de Vos, Lotte; Leijnse, Hidde; Schmeits, Maurice; Beekhuis, Hans; Poelman, Dieter; Evers, Läslo; Smets, Pieter

    2015-04-01

    Lightning can be detected using a ground-based sensor network. The Royal Netherlands Meteorological Institute (KNMI) monitors lightning activity in the Netherlands with the so-called FLITS-system; a network combining SAFIR-type sensors. This makes use of Very High Frequency (VHF) as well as Low Frequency (LF) sensors. KNMI has recently decided to replace FLITS by data from a sub-continental network operated by Météorage which makes use of LF sensors only (KNMI Lightning Detection Network, or KLDN). KLDN is compared to the FLITS system, as well as Met Office's long-range Arrival Time Difference (ATDnet), which measures Very Low Frequency (VLF). Special focus lies on the ability to detect Cloud to Ground (CG) and Cloud to Cloud (CC) lightning in the Netherlands. Relative detection efficiency of individual flashes and lightning activity in a more general sense are calculated over a period of almost 5 years. Additionally, the detection efficiency of each system is compared to a ground-truth that is constructed from flashes that are detected by both of the other datasets. Finally, infrasound data is used as a fourth lightning data source for several case studies. Relative performance is found to vary strongly with location and time. As expected, it is found that FLITS detects significantly more CC lightning (because of the strong aptitude of VHF antennas to detect CC), though KLDN and ATDnet detect more CG lightning. We analyze statistics computed over the entire 5-year period, where we look at CG as well as total lightning (CC and CG combined). Statistics that are considered are the Probability of Detection (POD) and the so-called Lightning Activity Detection (LAD). POD is defined as the percentage of reference flashes the system detects compared to the total detections in the reference. LAD is defined as the fraction of system recordings of one or more flashes in predefined area boxes over a certain time period given the fact that the reference detects at least one

  1. A Semi-Automated Machine Learning Algorithm for Tree Cover Delineation from 1-m Naip Imagery Using a High Performance Computing Architecture

    Science.gov (United States)

    Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.

    2014-12-01

    Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.

  2. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery

    Science.gov (United States)

    Malambo, L.; Popescu, S. C.; Murray, S. C.; Putman, E.; Pugh, N. A.; Horne, D. W.; Richardson, G.; Sheridan, R.; Rooney, W. L.; Avant, R.; Vidrine, M.; McCutchen, B.; Baltensperger, D.; Bishop, M.

    2018-02-01

    Plant breeders and agronomists are increasingly interested in repeated plant height measurements over large experimental fields to study critical aspects of plant physiology, genetics and environmental conditions during plant growth. However, collecting such measurements using commonly used manual field measurements is inefficient. 3D point clouds generated from unmanned aerial systems (UAS) images using Structure from Motion (SfM) techniques offer a new option for efficiently deriving in-field crop height data. This study evaluated UAS/SfM for multitemporal 3D crop modelling and developed and assessed a methodology for estimating plant height data from point clouds generated using SfM. High-resolution images in visible spectrum were collected weekly across 12 dates from April (planting) to July (harvest) 2016 over 288 maize (Zea mays L.) and 460 sorghum (Sorghum bicolor L.) plots using a DJI Phantom 3 Professional UAS. The study compared SfM point clouds with terrestrial lidar (TLS) at two dates to evaluate the ability of SfM point clouds to accurately capture ground surfaces and crop canopies, both of which are critical for plant height estimation. Extended plant height comparisons were carried out between SfM plant height (the 90th, 95th, 99th percentiles and maximum height) per plot and field plant height measurements at six dates throughout the growing season to test the repeatability and consistency of SfM estimates. High correlations were observed between SfM and TLS data (R2 = 0.88-0.97, RMSE = 0.01-0.02 m and R2 = 0.60-0.77 RMSE = 0.12-0.16 m for the ground surface and canopy comparison, respectively). Extended height comparisons also showed strong correlations (R2 = 0.42-0.91, RMSE = 0.11-0.19 m for maize and R2 = 0.61-0.85, RMSE = 0.12-0.24 m for sorghum). In general, the 90th, 95th and 99th percentile height metrics had higher correlations to field measurements than the maximum metric though differences among them were not statistically significant. The

  3. Above-ground biomass investments and light interception of tropical forest trees and lianas early in succession

    NARCIS (Netherlands)

    Selaya, N.G.; Anten, N.P.R.; Oomen, R.J.; Matthies, M.; Werger, M.J.A.

    2007-01-01

    Background and Aims Crown structure and above-ground biomass investment was studied in relation to light interception of trees and lianas growing in a 6-month-old regenerating forest. Methods The vertical distribution of total above-ground biomass, height, diameter, stem density, leaf angles and

  4. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  5. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    Science.gov (United States)

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  6. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    Science.gov (United States)

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  7. Land use and land cover mapping: City of Palm Bay, Florida

    Science.gov (United States)

    Barile, D. D.; Pierce, R.

    1977-01-01

    Two different computer systems were compared for use in making land use and land cover maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban areas were unclassified. The General Electric Image 100 produced a map depicting eight land cover categories classifying 68 percent of the total area. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test areas compared and Image 100 was in agreement 70 percent and 80 percent.

  8. Dynamic Behaviour and Seismic Response of Ground Supported Cylindrical Water Tanks

    Science.gov (United States)

    Asha, Joseph; Glory, Joseph

    2018-05-01

    Liquid storage tank such as in water distribution systems, petroleum plants etc., constitute a vital component of life line systems. Reducing earthquake effects on liquid storage tanks, to minimize the environmental and economic impact of these effects, have always been an important engineering concern. In this paper, the dynamic behavior of cylindrical ground supported concrete water tanks with different aspect ratios is investigated using finite element software ANSYS. The natural frequencies and modal responses are obtained for impulsive and convective modes of vibration. The natural frequency of vibration of the tank is observed to be the lowest at maximum water depth. The fundamental impulsive frequency increases as water level reduces and for water level less than 1/3 of tank height, there is significantly no change in impulsive frequency. The effect of wall flexibility on dynamic behavior of the tank is investigated by performing the modal analysis of flexible and rigid tanks. For a partially filled tank, the results of the present study are of significant relevance. The response of the tank to the transient loading as horizontal ground motion of El Centro earthquake is studied for various water heights. As the height of water on the tank increases, the ultimate maximum seismic response parameters are also observed to be increased. The location of maximum hoop stress varies in accordance with the variations in input ground motion and water fill condition whereas shear and bending moment are maximum at the base.

  9. FIELD GROUND TRUTHING DATA COLLECTOR – A MOBILE TOOLKIT FOR IMAGE ANALYSIS AND PROCESSING

    Directory of Open Access Journals (Sweden)

    X. Meng

    2012-07-01

    Full Text Available Field Ground Truthing Data Collector is one of the four key components of the NASA funded ICCaRS project, being developed in Southeast Michigan. The ICCaRS ground truthing toolkit entertains comprehensive functions: 1 Field functions, including determining locations through GPS, gathering and geo-referencing visual data, laying out ground control points for AEROKAT flights, measuring the flight distance and height, and entering observations of land cover (and use and health conditions of ecosystems and environments in the vicinity of the flight field; 2 Server synchronization functions, such as, downloading study-area maps, aerial photos and satellite images, uploading and synchronizing field-collected data with the distributed databases, calling the geospatial web services on the server side to conduct spatial querying, image analysis and processing, and receiving the processed results in field for near-real-time validation; and 3 Social network communication functions for direct technical assistance and pedagogical support, e.g., having video-conference calls in field with the supporting educators, scientists, and technologists, participating in Webinars, or engaging discussions with other-learning portals. This customized software package is being built on Apple iPhone/iPad and Google Maps/Earth. The technical infrastructures, data models, coupling methods between distributed geospatial data processing and field data collector tools, remote communication interfaces, coding schema, and functional flow charts will be illustrated and explained at the presentation. A pilot case study will be also demonstrated.

  10. A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step.

    Science.gov (United States)

    Hyun, Seung-Hyun; Ryew, Che-Cheong

    2017-12-01

    The aim of this study is to compare and analyze the components of ground reaction force (GRF) relative to the foothold heights during downward step of 16-t truck. Adult males (n= 10) jumped downward from each 1st, 2nd, 3rd foothold step and driver's seat orderly using hand rail. Sampling rate of force components of 3 axis (medial-lateral [ML] GRF, anterior-posterior [AP] GRF, peak vertical force [PVF]), variables (COPx, COPy, COP area) of center of pressure (COP), loading rate, and stability index (ML, AP, vertical, and dynamic postural stability index [DPSI]) processed from GRF system was cut off at 1,000 Hz. and variables was processed with repeated one-way analysis of variance. AP GRF, PVF and loading rate showed higher value in case of not used hand rail than that used hand rail in all 1st, 2nd, and 3rd of foothold step. DPSI showed more lowered stability in order of 2nd, 3rd step than 1st foothold step used with hand rail, of which showed lowest stability from driver's seat. COPx, COPy, and COP area showed higher value in case of 2nd and 3rd than that of 1st of foothold step, and showed lowest stability from driver's seat. It is more desirable for cargo truck driver to utilize an available hand rail in order of 3rd, 2nd, and 1st of foothold step than downward stepping directly, thus by which may results in decrease of falling injuries and minimization of impulsive force transferring to muscular-skeletal system.

  11. Sky cover from MFRSR observations

    Directory of Open Access Journals (Sweden)

    E. Kassianov

    2011-07-01

    Full Text Available The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their modeled clear-sky counterparts are the main components of a new method for estimating the fractional sky cover of different cloud types, including cumuli. The performance of this method is illustrated using 1-min resolution data from a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR. The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM Climate Research Facility (ACRF Southern Great Plains (SGP site during the summer of 2007 and represent 13 days with cumuli. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

  12. Estimating pinyon and juniper cover across Utah using NAIP imagery

    Directory of Open Access Journals (Sweden)

    Darrell B. Roundy

    2016-11-01

    Full Text Available Expansion of Pinus L. (pinyon and Juniperus L. (juniper (P-J trees into sagebrush (Artemisia L. steppe communities can lead to negative effects on hydrology, loss of wildlife habitat, and a decrease in desirable understory vegetation. Tree reduction treatments are often implemented to mitigate these negative effects. In order to prioritize and effectively plan these treatments, rapid, accurate, and inexpensive methods are needed to estimate tree canopy cover at the landscape scale. We used object based image analysis (OBIA software (Feature AnalystTM for ArcMap 10.1®, ENVI Feature Extraction®, and Trimble eCognition Developer 8.2® to extract tree canopy cover using NAIP (National Agricultural Imagery Program imagery. We then compared our extractions with ground measured tree canopy cover (crown diameter and line point intercept on 309 plots across 44 sites in Utah. Extraction methods did not consistently over- or under-estimate ground measured P-J canopy cover except where tree cover was >45%. Estimates of tree canopy cover using OBIA techniques were strongly correlated with estimates using the crown diameter method (r = 0.93 for ENVI, 0.91 for Feature AnalystTM, and 0.92 for eCognition. Tree cover estimates using OBIA techniques had lower correlations with tree cover measurements using the line-point intercept method (r = 0.85 for ENVI, 0.83 for Feature AnalystTM, and 0.83 for eCognition. All software packages accurately and inexpensively extracted P-J canopy cover from NAIP imagery when the imagery was not blurred, and when P-J cover was not mixed with Amelanchier alnifolia (Utah serviceberry and Quercus gambelii (Gambel’s oak, which had similar spectral values as P-J.

  13. Application and Limitations of GPS Radio Occultation (GPS-RO) Data for Atmospheric Boundary Layer Height Detection over the Arctic.

    Science.gov (United States)

    Ganeshan, M.; Wu, D. L.

    2014-12-01

    Due to recent changes in the Arctic environment, it is important to monitor the atmospheric boundary layer (ABL) properties over the Arctic Ocean, especially to explore the variability in ABL clouds (such as sensitivity and feedback to sea ice loss). For example, radiosonde and satellite observations of the Arctic ABL height (and low-cloud cover) have recently suggested a positive response to sea ice loss during October that may not occur during the melt season (June-September). Owing to its high vertical and spatiotemporal resolution, an independent ABL height detection algorithm using GPS Radio Occultation (GPS-RO) refractivity in the Arctic is explored. Similar GPS-RO algorithms developed previously typically define the level of the most negative moisture gradient as the ABL height. This definition is favorable for subtropical oceans where a stratocumulus-topped ABL is often capped by a layer of sharp moisture lapse rate (coincident with the temperature inversion). The Arctic Ocean is also characterized by stratocumulus cloud cover, however, the specific humidity does not frequently decrease in the ABL capping inversion. The use of GPS-RO refractivity for ABL height retrieval therefore becomes more complex. During winter months (December-February), when the total precipitable water in the troposphere is a minimum, a fairly straightforward algorithm for ABL height retrieval is developed. The applicability and limitations of this method for other seasons (Spring, Summer, Fall) is determined. The seasonal, interannual and spatial variability in the GPS-derived ABL height over the Arctic Ocean, as well as its relation to the underlying surface (ice vs. water), is investigated. The GPS-RO profiles are also explored for the evidence of low-level moisture transport in the cold Arctic environment.

  14. Aerosol layer height from synergistic use of VIIRS and OMPS

    Science.gov (United States)

    Lee, J.; Hsu, N. Y. C.; Sayer, A. M.; Kim, W.; Seftor, C. J.

    2017-12-01

    This study presents an Aerosol Single-scattering albedo and Height Estimation (ASHE) algorithm, which retrieves the height of UV-absorbing aerosols by synergistically using the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS). ASHE provides height information over a much broader area than ground-based or spaceborne lidar measurements by benefitting from the wide swaths of the two instruments used. As determination of single-scattering albedo (SSA) of the aerosol layer is the most critical part for the performance and coverage of ASHE, here we demonstrate three different strategies to constrain the SSA. First, ASHE is able to retrieve the SSA of UV-absorbing aerosols when Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provides vertical profiles of the aerosol layer of interest. Second, Aerosol Robotic Network (AERONET) inversions can directly constrain the SSA of the aerosol layer when collocated with VIIRS or OMPS. Last, a SSA climatology from ASHE, AERONET, or other data sources can be used for large-scale, aged aerosol events, for which climatological SSA is well-known, at the cost of a slight decrease in retrieval accuracy. The same algorithm can be applied to measurements of similar type, such as those made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI), for a long-term, consistent data record.

  15. The Vertical Horopter is Not Adaptable and is Not Adaptive for Viewing Along the Ground

    Directory of Open Access Journals (Sweden)

    M Banks

    2011-04-01

    Full Text Available Helmholtz speculated that the pitch of the vertical horopter is an adaptation for perceiving 3D structure along the ground. We examined this claim by asking whether the horopter is adaptable (ie, whether it is different for people of different heights and whether it can be changed in response to distorting lenses and whether it's adaptive (ie, whether it really is suited for perceiving along the ground. We find that it is not adaptable in that the pitch of the vertical horopter is not correlated with height and in that it does not change in response to one week of altered visual experience. We also find that it is not adaptive for viewing along the ground because the vertical horopter is a convex curve rather than a line. We speculate that it is adaptive for other aspects of natural viewing.

  16. Unified height systems after GOCE

    Science.gov (United States)

    Rummel, Reiner; Gruber, Thomas; Sideris, Michael; Rangelova, Elena; Woodworth, Phil; Hughes, Chris; Ihde, Johannes; Liebsch, Gunter; Rülke, Axel; Gerlach, Christian; Haagmans, Roger

    2015-04-01

    The objectives of global height unification are twofold, (1) the realization of accurate geopotential numbers C together with their standard deviation σ(C) at a selected set of stations (datum points of national height systems, geodetic fundamental stations (IERS), primary tide gauges (PSMSL) and primary reference clocks (IERS)) and (2) the determination of height off-sets between all existing regional/national height systems and one global height reference. In the future the primary method of height determination will be GPS-levelling with very stringent requirements concerning the consistency of the positioning and the gravity potential difference part. Consistency is required in terms of the applied standards (ITRF, zero tide system, geodetic reference system). Geopotential differences will be based on a next generation geopotential model combining GOCE and GRACE and a best possible collection of global terrestrial and altimetric gravity and topographic data. Ultimately, the envisaged accuracy of height unification is about 10 cm2/s2 (or 1cm). At the moment, in well surveyed regions, an accuracy of about 40 to 60 cm2/s2 (or 4 to 6cm) is attainable. Objective One can be realized by straight forward computation of geopotential numbers C, i.e. geopotential differences relative to an adopted height reference. No adjustment is required for this. Objective Two, the unification of existing height systems is achieved by employing a least-squares adjustment based on the GBVP-approach. In order to attain a non-singular solution, this requires for each included datum zone at least one geo-referenced station per zone, i.e. its ellipsoidal height h and, in addition, the corresponding physical height H (geopotential number, normal height, orthometric height, etc.). Changes in geopotential numbers of consecutive realizations reflect (1) temporal changes of station heights, (2) improvements or changes of the applied geopotential (or geoid) model and (3) improvements of the

  17. Global effects of income and income inequality on adult height and sexual dimorphism in height.

    Science.gov (United States)

    Bogin, Barry; Scheffler, Christiane; Hermanussen, Michael

    2017-03-01

    Average adult height of a population is considered a biomarker of the quality of the health environment and economic conditions. The causal relationships between height and income inequality are not well understood. We analyze data from 169 countries for national average heights of men and women and national-level economic factors to test two hypotheses: (1) income inequality has a greater association with average adult height than does absolute income; and (2) neither income nor income inequality has an effect on sexual dimorphism in height. Average height data come from the NCD-RisC health risk factor collaboration. Economic indicators are derived from the World Bank data archive and include gross domestic product (GDP), Gross National Income per capita adjusted for personal purchasing power (GNI_PPP), and income equality assessed by the Gini coefficient calculated by the Wagstaff method. Hypothesis 1 is supported. Greater income equality is most predictive of average height for both sexes. GNI_PPP explains a significant, but smaller, amount of the variation. National GDP has no association with height. Hypothesis 2 is rejected. With greater average adult height there is greater sexual dimorphism. Findings support a growing literature on the pernicious effects of inequality on growth in height and, by extension, on health. Gradients in height reflect gradients in social disadvantage. Inequality should be considered a pollutant that disempowers people from the resources needed for their own healthy growth and development and for the health and good growth of their children. © 2017 Wiley Periodicals, Inc.

  18. Pando Province, Northern Bolivia, Shaded Relief and Colored Height

    Science.gov (United States)

    2003-01-01

    Pando Province, Bolivia, and adjacent parts of Brazil and Peru are seen in this visualization of Shuttle Radar Topography Mission (SRTM) elevation data covering part of the Amazon Basin. Most of this region is covered by tropical rainforest and is still largely unaltered by development, though new roads are providing increased access to the area, leading to changes in the landscape. SRTM data provide the first detailed three-dimensional look at the landforms of this region, and the Amazon Basin in its entirety, and will be particularly helpful in understanding the hydrologic patterns as environmental management becomes increasingly important.River drainage across this area flows generally east-northeast away from the nearby Andes Mountains. The most prominent river channels seen here are the Purus River in the northwest (upper left) and the Madre de Dios River, which crosses the south central (lower central) part of this view. The Beni and Mamore Rivers combine with the Madre de Dios in the eastern (right central) area to form the Madeira River, which flows northeast to eventually meet the Amazon River near Manaus.The Trans-Amazon Highway crosses the northern half of the scene, and subtle evidence of rainforest clear cutting, facilitated by this easy access, is apparent just north of the scene center, even at the low resolution of this display (740 m or 2428 feet). As seen here, clear cutting patterns in the rainforest typically show a pattern of parallel lines. SRTM mapped the shape of the Earths solid surface (not exclusively the ground surface), which includes to some degree land covers such as forests. Thus, SRTM data are capable of revealing deforestation patterns.For a smaller, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (image size: 184k JPEG)A combination of visualization methods was used to produce this image, based on shading and color coding. A shade image was derived by computing

  19. Investigating the relationship between tree heights derived from SIBBORK forest model and remote sensing measurements

    Science.gov (United States)

    Osmanoglu, B.; Feliciano, E. A.; Armstrong, A. H.; Sun, G.; Montesano, P.; Ranson, K.

    2017-12-01

    Tree heights are one of the most commonly used remote sensing parameters to measure biomass of a forest. In this project, we investigate the relationship between remotely sensed tree heights (e.g. G-LiHT lidar and commercially available high resolution satellite imagery, HRSI) and the SIBBORK modeled tree heights. G-LiHT is a portable, airborne imaging system that simultaneously maps the composition, structure, and function of terrestrial ecosystems using lidar, imaging spectroscopy and thermal mapping. Ground elevation and canopy height models were generated using the lidar data acquired in 2012. A digital surface model was also generated using the HRSI technique from the commercially available WorldView data in 2016. The HRSI derived height and biomass products are available at the plot (10x10m) level. For this study, we parameterized the SIBBORK individual-based gap model for Howland forest, Maine. The parameterization was calibrated using field data for the study site and results show that the simulated forest reproduces the structural complexity of Howland old growth forest, based on comparisons of key variables including, aboveground biomass, forest height and basal area. Furthermore carbon cycle and ecosystem observational capabilities will be enhanced over the next 6 years via the launch of two LiDAR (NASA's GEDI and ICESAT 2) and two SAR (NASA's ISRO NiSAR and ESA's Biomass) systems. Our aim is to present the comparison of canopy height models obtained with SIBBORK forest model and remote sensing techniques, highlighting the synergy between individual-based forest modeling and high-resolution remote sensing.

  20. Encounter Probability of Individual Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    1998-01-01

    wave height corresponding to a certain exceedence probability within a structure lifetime (encounter probability), based on the statistical analysis of long-term extreme significant wave height. Then the design individual wave height is calculated as the expected maximum individual wave height...... associated with the design significant wave height, with the assumption that the individual wave heights follow the Rayleigh distribution. However, the exceedence probability of such a design individual wave height within the structure lifetime is unknown. The paper presents a method for the determination...... of the design individual wave height corresponding to an exceedence probability within the structure lifetime, given the long-term extreme significant wave height. The method can also be applied for estimation of the number of relatively large waves for fatigue analysis of constructions....

  1. Nature of short-period microtremors on the cliff-like ground. 3; Gakechi kinbo no tanshuki bido . 3

    Energy Technology Data Exchange (ETDEWEB)

    Maiguma, T; Matsuzawa, H [Saitama University, Saitama (Japan). Faculty of Engineering

    1996-05-01

    Vibration characteristics were investigated of the ground in the vicinity of a cliff-like sharp slope. Short-period microtremors were observed in the vicinity of an artificially made cliff-like test ground, height 8m and inclination 90{degree}, and a natural cliff, height approximately 9m and inclination approximately 35{degree}. The artificial cliff was reinforced by a virtually vertical retaining wall of concrete, and the ground was prepared for testing with a belt approximately 20m wide and 50m long along the cliff face. All the vibration components were simultaneously measured at measuring spots that were located 5-40m apart from the cliff end and orientated perpendicular to the cliff face. It was then found that in case of artificial cliff there is a conspicuous 3.1Hz prevalent ground vibration in the component squarely meeting the cliff face, that the prevalent ground vibration is not particularly great near the cliff end because the retaining wall and the ground are artificially prepared, that there is no influence of the cliff-like ground in the ground vibration parallel to or vertical along the cliff face, and that in case of natural ground there are no vibration characteristic proper to a cliff-like ground in any of the vibration components. 3 refs., 7 figs.

  2. Spatial and temporal variability of grass cover in two olive grove catchments on contrasting soil types

    Science.gov (United States)

    Aguilera, Laura; Taguas, Encarnación V.; Gimeno, Enrique; Gómez, José A.

    2013-04-01

    Mediterranean climate conditions -characterized by the concentration of the precipitation in the seasons of autumn and spring, the low temperatures in winter and extremely warm and dry summers- determine that ground cover by adventitious (or cover crop) vegetation shows significant seasonal and annual variability. In addition, its spatial variability associates also, partially, to water availability among the landscape. This is especially relevant in olive orchards, an agricultural system under high erosion risk in the region where the establishment of herbaceous cover has proved to improve soil protection reducing erosion risk, as well as the improvement of soil properties (Gómez et al., 2009). All these benefits are based on small scale studies where full ground cover by the cover crop is relatively easy to obtain. However, few information is available about the actual ground cover achieved at farm scale, although preliminary observations suggests that this might be extremely variable (Gómez and Giráldez, 2009). This study presents the preliminary results evaluating the spatial and temporal evolution of ground cover by adventitious vegetation (the preferred option by farmers to achieve a cover crop) in two commercial olive farms during 2 hydrological years (2011-2012). The study was conducted in two farms located in the province of Cordoba, Southern Spain. Both were olive orchards grown under deficit irrigation systems and present a gauge station where rainfall, runoff and sediment loads have been measured from the year 2005. The soil management in "La Conchuela" farm was based in the use of herbicide in the line of olive trees to keep the bare soil all year round, and the application of selective herbicide in the lane between the olive trees to promote the grown of graminaceae grasses . In addition, the grass is mechanically killed in June. In the another farm, "Arroyo Blanco", the grass spontaneous cover is allowed until mid-spring in which is also

  3. Microtopographic control on the ground thermal regime in ice wedge polygons

    Science.gov (United States)

    Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.

    2018-06-01

    The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.

  4. Encounter Probability of Significant Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    The determination of the design wave height (often given as the significant wave height) is usually based on statistical analysis of long-term extreme wave height measurement or hindcast. The result of such extreme wave height analysis is often given as the design wave height corresponding to a c...

  5. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Directory of Open Access Journals (Sweden)

    Yang Yang, Ying Fang, Xini Zhang, Junliang He, Weijie Fu

    2017-12-01

    Full Text Available The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively performed a weight-bearing dorsiflexion (WB-DF maneuver, drop jumps (DJs, and lay-up jumps (LJs. Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041 was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028 and power (p = 0.022 were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  6. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-12-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion-extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  7. Relationship between Arm Span Measurements and Body Height in Dinaric Alpes Population: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Bojan Masanovic

    2017-08-01

    Full Text Available Several researches have reported the benefit of using various body parameters in predicting standing height, and arm span happened to be one of the most reliable ones in adults. On the other hand, it is well-known the tallness and body proportions are specific in the area that are covered by Dinaric Alpes. Therefore, the purpose of this study was to investigate the potential relationship between arm span measurements and body height in Dinaric Alpes population. The most visible electronic database (Google Scholar was searched for original research articles available until September 2017. Then research findings were summarized and relationship between arm span measurements and body height in Dinaric Alpes population were identified, as well as areas of future research were recommended. The assessment of body height using various anthropometric measures is very typical from the past centuries and it has been attempted to be studied by many researchers. However, it is important to underline that the arm span has been obtained as the most reliable body indicator for predicting the true height of an individual. However, the studies sampled with the populations lived at Dinaric Alpes mountains have specific estimates. Therefore, all above-mentioned have confirmed the necessity for developing separate body height models for each population on account of ethnic as well as regional differences.

  8. A vegetation height classification approach based on texture analysis of a single VHR image

    International Nuclear Information System (INIS)

    Petrou, Z I; Manakos, I; Stathaki, T; Tarantino, C; Adamo, M; Blonda, P

    2014-01-01

    Vegetation height is a crucial feature in various applications related to ecological mapping, enhancing the discrimination among different land cover or habitat categories and facilitating a series of environmental tasks, ranging from biodiversity monitoring and assessment to landscape characterization, disaster management and conservation planning. Primary sources of information on vegetation height include in situ measurements and data from active satellite or airborne sensors, which, however, may often be non-affordable or unavailable for certain regions. Alternative approaches on extracting height information from very high resolution (VHR) satellite imagery based on texture analysis, have recently been presented, with promising results. Following the notion that multispectral image bands may often be highly correlated, data transformation and dimensionality reduction techniques are expected to reduce redundant information, and thus, the computational cost of the approaches, without significantly compromising their accuracy. In this paper, dimensionality reduction is performed on a VHR image and textural characteristics are calculated on its reconstructed approximations, to show that their discriminatory capabilities are maintained up to a large degree. Texture analysis is also performed on the projected data to investigate whether the different height categories can be distinguished in a similar way

  9. Assessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud-Top-Height Retrieval.

    Science.gov (United States)

    Naud, C. M.; Muller, J.-P.; Slack, E. C.; Wrench, C. L.; Clothiaux, E. E.

    2005-06-01

    The Chilbolton 3-GHz Advanced Meteorological Radar (CAMRa), which is mounted on a fully steerable 25-m dish, can provide three-dimensional information on the presence of hydrometeors. The potential for this radar to make useful measurements of low-altitude liquid water cloud structure is investigated. To assess the cloud-height assignment capabilities of the 3-GHz radar, low-level cloud-top heights were retrieved from CAMRa measurements made between May and July 2003 and were compared with cloud-top heights retrieved from a vertically pointing 94-GHz radar that operates alongside CAMRa. The average difference between the 94- and 3-GHz radar-derived cloud-top heights is shown to be -0.1 ± 0.4 km. To assess the capability of 3-GHz radar scans to be used for satellite-derived cloud-top-height validation, multiangle imaging spectroradiometer (MISR) cloud-top heights were compared with both 94- and 3-GHz radar retrievals. The average difference between 94-GHz radar and MISR cloud-top heights is shown to be 0.1 ± 0.3 km, while the 3-GHz radar and MISR average cloud-top-height difference is shown to be -0.2 ± 0.6 km. In assessing the value of the CAMRa measurements, the problems associated with low-reflectivity values from stratiform liquid water clouds, ground clutter, and Bragg scattering resulting from turbulent mixing are all addressed. It is shown that, despite the difficulties, the potential exists for CAMRa measurements to contribute significantly to liquid water cloud-top-height retrievals, leading to the production of two-dimensional transects (i.e., maps) of cloud-top height.

  10. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  11. The topside ionospheric effective scale heights (HT) derived with ROCSAT-1 and ground-based Ionosonde observations at equatorial and mid-latitude stations

    Science.gov (United States)

    Ram Sudarsanam, Tulasi; Su, Shin-Yi; Liu, C. H.; Reinisch, Bodo

    In this study, we propose the assimilation of topside in situ electron density data from ROCSAT-1 satellite along with the ionosonde measurements for accurate determination of topside iono-spheric effective scale heights (HT) using -Chapman function. The reconstructed topside elec-tron density profiles using these scale heights exhibit an excellent similitude with Jicamarca Incoherent Scatter Radar (ISR) profiles, and are much better representations than the existing methods of Reinisch-Huang method and/or the empirical IRI-2007 model. The main advan-tage with this method is that it allows the precise determination of the effective scale height (HT) and the topside electron density profiles at a dense network of ionosonde/digisonde sta-tions where no ISR facilities are available. The demonstration of the method is applied by investigating the diurnal, seasonal and solar activity variations of HT over the dip-equatorial station Jicamarca and the mid-latitude station Grahamstown. The diurnal variation of scale heights over Jicamarca consistently exhibits a morning time descent followed by a minimum around 0700-0800 LT and a pronounced maximum at noon during all the seasons of both high and moderate solar activity periods. Further, the scale heights exhibit a secondary maximum during the post-sunset hours of equinoctial and summer months, whereas the post-sunset peak is absent during the winter months. These typical features are further investigated using the topside ion properties obtained by ROCSAT-1 as well as SAMI2 model simulations. The re-sults consistently indicate that the diurnal variation of the effective scale height (HT) does not closely follow the plasma temperature variation and at equatorial latitudes is largely controlled by the vertical ExB drift.

  12. VERTICAL JUMP HEIGHT IN YOUNG CHILDREN - A LONGITUDINAL STUDY IN 4- TO 6-YEAR OLD CHILDREN

    Directory of Open Access Journals (Sweden)

    Katja Koren

    2017-01-01

    Full Text Available Preschool children are intensively involved in the process of developing fundamental movement skills such as walking, running, jumping, climbing, crawling and other simple movements. We aimed to compare age- and gender- related trends in countermovement vertical jump (CMJ performance (jumping height measured with a means of ground force plate during a longitudinal study of 4- to 6-year old children (N=79; 43% boys. Furthermore, we classified children CMJ arm-leg coordination into poor, average, or excellent on the grounds of high speed video footage. We found that CMJ height progresses significantly with age when arms are used (P<.001, η2=.632 and without the use of arms (P<.001, η2=.620. There were no sex effects. After classification of CMJ arm - leg coordination we found that children with excellent CMJ coordination progress more intensively than those with average coordination, whereas poorly coordinated jumpers do not progress at all. After extrapolating our data with the data of others, we found logarithmic CMJ height trends until the age of 16 in both sexes, athlete boys jumping higher than the non-athletes after the ages of 14 or 15. It seems that the initial movement patterns level, in this case the observed jumping technic, develops and refines in 4- to 6-year old children at that age. We conclude that jumping coordination is a very important factor of CMJ performance in the studied age span.

  13. The Regional Land Cover Monitoring System: Building regional capacity through innovative land cover mapping approaches

    Science.gov (United States)

    Saah, D.; Tenneson, K.; Hanh, Q. N.; Aekakkararungroj, A.; Aung, K. S.; Goldstein, J.; Cutter, P. G.; Maus, P.; Markert, K. N.; Anderson, E.; Ellenburg, W. L.; Ate, P.; Flores Cordova, A. I.; Vadrevu, K.; Potapov, P.; Phongsapan, K.; Chishtie, F.; Clinton, N.; Ganz, D.

    2017-12-01

    Earth observation and Geographic Information System (GIS) tools, products, and services are vital to support the environmental decision making by governmental institutions, non-governmental agencies, and the general public. At the heart of environmental decision making is the monitoring land cover and land use change (LCLUC) for land resource planning and for ecosystem services, including biodiversity conservation and resilience to climate change. A major challenge for monitoring LCLUC in developing regions, such as Southeast Asia, is inconsistent data products at inconsistent intervals that have different typologies across the region and are typically made in without stakeholder engagement or input. Here we present the Regional Land Cover Monitoring System (RLCMS), a novel land cover mapping effort for Southeast Asia, implemented by SERVIR-Mekong, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries. The RLCMS focuses on mapping biophysical variables (e.g. canopy cover, tree height, or percent surface water) at an annual interval and in turn using those biophysical variables to develop land cover maps based on stakeholder definitions of land cover classes. This allows for flexible and consistent land cover classifications that can meet the needs of different institutions across the region. Another component of the RLCMS production is the stake-holder engagement through co-development. Institutions that directly benefit from this system have helped drive the development for regional needs leading to services for their specific uses. Examples of services for regional stakeholders include using the RLCMS to develop maps using the IPCC classification scheme for GHG emission reporting and developing custom annual maps as an input to hydrologic modeling/flood forecasting systems. In addition to the implementation of this system and the service stemming from the RLCMS in Southeast Asia, it is

  14. Using Winter Annual Cover Crops in a Virginia No-till Cotton Production System

    OpenAIRE

    Daniel, James B. II

    1997-01-01

    Cotton (Gossypium hirsutum L.) is a low residue crop, that may not provide sufficient surface residue to reduce erosion and protect the soil. A winter annual cover crop could alleviate erosion between cotton crops. Field experiments were conducted to evaluate selected winter annual cover crops for biomass production, ground cover, and N assimilation. The cover crop treatments were monitored under no-till and conventional tillage systems for the effects on soil moisture, cotton yield and qu...

  15. Solving satisfiability problems by the ground-state quantum computer

    International Nuclear Information System (INIS)

    Mao Wenjin

    2005-01-01

    A quantum algorithm is proposed to solve the satisfiability (SAT) problems by the ground-state quantum computer. The scale of the energy gap of the ground-state quantum computer is analyzed for the 3-bit exact cover problem. The time cost of this algorithm on the general SAT problems is discussed

  16. Remote Sensing of Leaf Area Index from LiDAR Height Percentile Metrics and Comparison with MODIS Product in a Selectively Logged Tropical Forest Area in Eastern Amazonia

    Directory of Open Access Journals (Sweden)

    Yonghua Qu

    2018-06-01

    Full Text Available Leaf area index (LAI is an important parameter to describe the capacity of forests to intercept light and thus affects the microclimate and photosynthetic capacity of canopies. In general, tropical forests have a higher leaf area index and it is a challenge to estimate LAI in a forest with a very dense canopy. In this study, it is assumed that the traditional Light Detection and Ranging (LiDAR-derived fractional vegetation cover (fCover has weak relationship with leaf area index in a dense forest. We propose a partial least squares (PLS regression model using the height percentile metrics derived from airborne LiDAR data to estimate the LAI of a dense forest. Ground inventory and airborne LiDAR data collected in a selectively logged tropical forest area in Eastern Amazonia are used to map LAI from the plot level to the landscape scale. The results indicate that the fCover, derived from the first return or the last return, has no significant correlations with the ground-based LAI. The PLS model evaluated by the leave-one-out validation shows that the estimated LAI is significantly correlated with the ground-based LAI with an R2 of 0.58 and a root mean square error (RMSE of 1.13. A data comparison indicates that the Moderate Resolution Imaging Spectrometer (MODIS LAI underestimates the landscape-level LAI by about 22%. The MODIS quality control data show that in the selected tile, the cloud state is not the primary factor affecting the MODIS LAI performance; rather, the LAI from the main radiative transfer (RT algorithm contributes much to the underestimation of the LAI in the tropical forest. In addition, the results show that the LiDAR-based LAI has a better response to the logging activities than the MODIS-based LAI, and that the leaf area reduction caused by logging is about 13%. In contrast, the MODIS-based LAI exhibits no apparent spatial correlation with the LiDAR-based LAI. It is suggested that the main algorithm of MODIS should be

  17. Inverted Polarity Thunderstorms Linked with Elevated Cloud Base Height

    Science.gov (United States)

    Cummins, K. L.; Williams, E.

    2016-12-01

    The great majority of thunderstorms worldwide exhibit gross positive dipole structure, produce intracloud lightning that reduces this positive dipole (positive intracloud flashes), and produce negative cloud-to-ground lightning from the lower negative end of this dipole. During the STEPS experiment in 2000 much new evidence for thunderstorms (or cells within multi-cellular storms) with inverted polarity came to light, both from balloon soundings of electric field and from LMA analysis. Many of the storms with inverted polarity cells developed in eastern Colorado. Fleenor et al. (2009) followed up after STEPS to document a dominance of positive polarity CG lightning in many of these cases. In the present study, surface thermodynamic observations (temperature and dew point temperature) have been used to estimate the cloud base heights and temperatures at the time of the Fleenor et al. lightning observations. It was found that when more than 90% of the observed CG lightning polarity within a storm is negative, the cloud base heights were low (2000 m AGL or lower, and warmer, with T>10 C), and when more than 90% of the observed CG lightning within a storm was positive, the cloud base heights were high (3000 m AGL or higher, and colder, with Tmixed polarity were generally associated with intermediate cloud base heights. These findings on inverted polarity thunderstorms are remarkably consistent with results in other parts of the world where strong instability prevails in the presence of high cloud base height: the plateau regions of China (Liu et al., 1989; Qie et al., 2005), and in pre-monsoon India (Pawar et al., 2016), particularly when mixed polarity cases are excluded. Calculations of adiabatic cloud water content for lifting from near 0 oC cast some doubt on earlier speculation (Williams et al., 2005) that the graupel particles in these inverted polarity storms attain a wet growth condition, and so exhibit positive charging following laboratory experiments. This

  18. Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD)

    Science.gov (United States)

    Hansen, M.C.; Egorov, Alexey; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Turubanova, S.A.; Roy, David P.; Goetz, S.J.; Loveland, Thomas R.; Ju, J.; Kommareddy, A.; Kovalskyy, Valeriy; Forsyth, C.; Bents, T.

    2014-01-01

    Forest cover loss and bare ground gain from 2006 to 2010 for the conterminous United States (CONUS) were quantified at a 30 m spatial resolution using Web-Enabled Landsat Data available from the USGS Center for Earth Resources Observation and Science (EROS) (http://landsat.usgs.gov/WELD.php). The approach related multi-temporal WELD metrics and expert-derived training data for forest cover loss and bare ground gain through a decision tree classification algorithm. Forest cover loss was reported at state and ecoregional scales, and the identification of core forests' absent of change was made and verified using LiDAR data from the GLAS (Geoscience Laser Altimetry System) instrument. Bare ground gain correlated with population change for large metropolitan statistical areas (MSAs) outside of desert or semi-desert environments. GoogleEarth™ time-series images were used to validate the products. Mapped forest cover loss totaled 53,084 km2 and was found to be depicted conservatively, with a user's accuracy of 78% and a producer's accuracy of 68%. Excluding errors of adjacency, user's and producer's accuracies rose to 93% and 89%, respectively. Mapped bare ground gain equaled 5974 km2 and nearly matched the estimated area from the reference (GoogleEarth™) classification; however, user's (42%) and producer's (49%) accuracies were much less than those of the forest cover loss product. Excluding errors of adjacency, user's and producer's accuracies rose to 62% and 75%, respectively. Compared to recent 2001–2006 USGS National Land Cover Database validation data for forest loss (82% and 30% for respective user's and producer's accuracies) and urban gain (72% and 18% for respective user's and producer's accuracies), results using a single CONUS-scale model with WELD data are promising and point to the potential for national-scale operational mapping of key land cover transitions. However, validation results highlighted limitations, some of which can be addressed by

  19. Physiological pattern of lumbar disc height

    International Nuclear Information System (INIS)

    Biggemann, M.; Frobin, W.; Brinckmann, P.

    1997-01-01

    Purpose of this study is to present a new method of quantifying objectively the height of all discs in lateral radiographs of the lumbar spine and of analysing the normal craniocaudal sequence pattern of lumbar disc heights. Methods: The new parameter is the ventrally measured disc height corrected for the dependence on the angle of lordosis by normalisation to mean angles observed in the erect posture of healthy persons. To eliminate radiographic magnification, the corrected ventral height is related to the mean depth of the cranially adjoining vertebra. In this manner lumbar disc heights were objectively measured in young, mature and healthy persons (146 males and 65 females). The craniocaudal sequence pattern was analysed by mean values from all persons and by height differences of adjoining discs in each individual lumbar spine. Results: Mean normative values demonstrated an increase in disc height between L1/L2 and L4/L5 and a constant or decreasing disc height between L4/L5 and L5/S1. However, this 'physiological sequence of disc height in the statistical mean' was observed in only 36% of normal males and 55% of normal females. Conclusion: The radiological pattern of the 'physiological sequence of lumbar disc height' leads to a relevant portion of false positive pathological results especially at L4/L5. An increase of disc height from L4/L5 to L5/S1 may be normal. The recognition of decreased disc height should be based on an abrupt change in the heights of adjoining discs and not on a deviation from a craniocaudal sequence pattern. (orig.) [de

  20. Assessing alternative measures of tree canopy cover: Photo-interpreted NAIP and ground-based estimates

    Science.gov (United States)

    Chris Toney; Greg Liknes; Andy Lister; Dacia Meneguzzo

    2012-01-01

    In preparation for the development of the National Land Cover Database (NLCD) 2011 tree canopy cover layer, a pilot project for research and method development was completed in 2010 by the USDA Forest Service Forest Inventory and Analysis (FIA) program and Remote Sensing Applications Center (RSAC).This paper explores one of several topics investigated during the NLCD...

  1. Adult height, nutrition, and population health

    Science.gov (United States)

    Perkins, Jessica M.; Subramanian, S.V.; Davey Smith, George

    2016-01-01

    In this review, the potential causes and consequences of adult height, a measure of cumulative net nutrition, in modern populations are summarized. The mechanisms linking adult height and health are examined, with a focus on the role of potential confounders. Evidence across studies indicates that short adult height (reflecting growth retardation) in low- and middle-income countries is driven by environmental conditions, especially net nutrition during early years. Some of the associations of height with health and social outcomes potentially reflect the association between these environmental factors and such outcomes. These conditions are manifested in the substantial differences in adult height that exist between and within countries and over time. This review suggests that adult height is a useful marker of variation in cumulative net nutrition, biological deprivation, and standard of living between and within populations and should be routinely measured. Linkages between adult height and health, within and across generations, suggest that adult height may be a potential tool for monitoring health conditions and that programs focused on offspring outcomes may consider maternal height as a potentially important influence. PMID:26928678

  2. Creating Space Plasma from the Ground

    Science.gov (United States)

    2016-05-12

    AFRL-AFOSR-VA-TR-2016-0179 CREATING SPACE PLASMA FROM THE GROUND Herbert C Carlson UTAH STATE UNIVERSITY Final Report 05/12/2016 DISTRIBUTION A...DATE (DD-MM-YYYY) 05/14/2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 08/14/2012-05/14/2016 4. TITLE AND SUBTITLE Creating space plasma from...Report (2016) Creating Space Plasma from the Ground Grant FA9550-11-1-0236 AFOSR Program Manager Dr. Kent Miller PI: Herbert C. Carlson Center for

  3. In defense of the classical height system

    Science.gov (United States)

    Foroughi, Ismael; Vaníček, Petr; Sheng, Michael; Kingdon, Robert William; Santos, Marcelo C.

    2017-11-01

    In many European countries, normal heights referred to the quasi-geoid as introduced by Molodenskij in the mid-20th century are preferred to the classical height system that consists of orthometric heights and the geoid as a reference surface for these heights. The rationale for this choice is supposed to be that in the classical height system, neither the geoid, nor the orthometric height can be ever known with centimetre level accuracy because one would need to know the topographical mass density to a level that can never be achieved. The aim of this paper is to question the validity of this rationale. The common way of assessing the congruency of a local geoid model and the orthometric heights is to compare the geoid heights with the difference between orthometric heights provided by leveling and geodetic heights provided by GNSS. On the other hand, testing the congruency of a quasi-geoidal model with normal height a similar procedure is used, except that instead of orthometric heights, normal heights are employed. For the area of Auvergne, France, which is now a more or less standard choice for precise geoid or quasi-geoid testing, only the normal heights are supplied by the Institute Geographic National, the provider of the data. This is clearly the consequence of the European preference for the Molodenskij system. The quality of the height system is to be judged by the congruency of the difference of the geoid/quasi-geoid heights subtracted from the geodetic heights and orthometric/normal heights. To assess the congruency of the classical height system, the Helmert approximation of orthometric heights is typically used as the transformation between normal and Helmert's heights is easily done. However, the evaluation of the differences between Helmert's and the rigorous orthometric heights is somewhat more involved as will be seen from the review in this paper. For the area of interest, the differences between normal and Helmert's heights at the control

  4. On the impact of snow cover on daytime pollution dispersion

    Science.gov (United States)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Hildebrand, P.; Rogers, F. A.; Cramer, J.; Schanot, A.

    A preliminary evaluation of the impact of snow cover on daytime pollutant dispersion conditions is made by using conceptual, scaling, and observational analyses. For uniform snow cover and synoptically unperturbed sunny conditions, observations indicate a considerate suppression of the surface sensible heat flux, the turbulence, and the development of the daytime atmospheric boundary layer (ABL) when compared to snow-free conditions. However, under conditions of non-uniform snow cover, as in urban areas, or associated with vegetated areas or bare ground patches, a milder effect on pollutant dispersion conditions would be expected. Observed concentrations of atmospheric particles within the ABL, and surface pollutant concentrations in urban areas, reflect the impact of snow cover on the modification of ABL characteristics.

  5. Shallow ground disposal of radioactive wastes. A guidebook

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations.

  6. On the Extreme Wave Height Analysis

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1994-01-01

    The determination of the design wave height is usually based on the statistical analysis of long-term extreme wave height measurements. After an introduction to the procedure of the extreme wave height analysis, the paper presents new development concerning various aspects of the extreme wave...... height analysis. Finally, the paper gives a practical example based on a data set of the hindcasted wave heights for a deep water location in the Mediterranean Sea....

  7. GPM GROUND VALIDATION DUAL POLARIZED C-BAND DOPPLER RADAR KING CITY GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarized C-Band Doppler Radar King City GCPEx dataset has special Range Height Indicator (RHI) and sector scans of several dual...

  8. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    International Nuclear Information System (INIS)

    Kim, Seyoung

    2017-01-01

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  9. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung [Korea Institute of Machinery and Materials(KIMM), Daejeon (Korea, Republic of)

    2017-04-15

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  10. Land-cover mapping using multitemporal, dual-frequency polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Dierking, Wolfgang

    2000-01-01

    during the growing season acquired a lot of data over a Danish agricultural site. The data acquisitions were co-ordinated with ground surveys to obtain a detailed land cover map. The test area contains a large number of different land cover classes, such as more than 10 different crop types, deciduous......The Danish Center for Remote Sensing (DCRS) is, in collaboration with the Danish mapping agency, conducting a study on topographic mapping using SAR data, and land cover mapping results are presented. The Danish EMISAR system (an L- and C-band, fully polarimetric, airborne SAR) have in 1994 to 1999...

  11. Towards Seamless Validation of Land Cover Data

    Science.gov (United States)

    Chuprikova, Ekaterina; Liebel, Lukas; Meng, Liqiu

    2018-05-01

    This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty patterns associated with the fusion of various land cover data sets including GlobeLand30, CORINE (CLC2006, Germany) and land cover data derived from Volunteered Geographic Information (VGI) such as Open Street Map (OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. Such an endeavor aims to pave a way towards a seamless validation of global land cover data on the one hand and a targeted knowledge discovery in areas with higher uncertainty values on the other hand.

  12. Shoe collar height effect on athletic performance, ankle joint kinematics and kinetics during unanticipated maximum-effort side-cutting performance.

    Science.gov (United States)

    Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man

    2015-01-01

    Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.

  13. Validation of mixing heights derived from the operational NWP models at the German weather service

    Energy Technology Data Exchange (ETDEWEB)

    Fay, B.; Schrodin, R.; Jacobsen, I. [Deutscher Wetterdienst, Offenbach (Germany); Engelbart, D. [Deutscher Wetterdienst, Meteorol. Observ. Lindenberg (Germany)

    1997-10-01

    NWP models incorporate an ever-increasing number of observations via four-dimensional data assimilation and are capable of providing comprehensive information about the atmosphere both in space and time. They describe not only near surface parameters but also the vertical structure of the atmosphere. They operate daily, are well verified and successfully used as meteorological pre-processors in large-scale dispersion modelling. Applications like ozone forecasts, emission or power plant control calculations require highly resolved, reliable, and routine values of the temporal evolution of the mixing height (MH) which is a critical parameter in determining the mixing and transformation of substances and the resulting pollution levels near the ground. The purpose of development at the German Weather Service is a straightforward mixing height scheme that uses only parameters derived from NWP model variables and thus automatically provides spatial and temporal fields of mixing heights on an operational basis. An universal parameter to describe stability is the Richardson number Ri. Compared to the usual diagnostic or rate equations, the Ri number concept of determining mixing heights has the advantage of using not only surface layer parameters but also regarding the vertical structure of the boundary layer resolved in the NWP models. (au)

  14. Accuracy Assessment of Satellite Derived Forest Cover Products in South and Southeast Asia

    Science.gov (United States)

    Gilani, H.; Xu, X.; Jain, A. K.

    2017-12-01

    South and Southeast Asia (SSEA) region occupies 16 % of worlds land area. It is home to over 50% of the world's population. The SSEA's countries are experiencing significant land-use and land-cover changes (LULCCs), primarily in agriculture, forest, and urban land. For this study, we compiled four existing global forest cover maps for year 2010 by Gong et al.(2015), Hansen et al. (2013), Sexton et al.(2013) and Shimada et al. (2014), which were all medium resolution (≤30 m) products based on Landsat and/or PALSAR satellite images. To evaluate the accuracy of these forest products, we used three types of information: (1) ground measurements, (2) high resolution satellite images and (3) forest cover maps produced at the national scale. The stratified random sampling technique was used to select a set of validation data points from the ground and high-resolution satellite images. Then the confusion matrix method was used to assess and rank the accuracy of the forest cover products for the entire SSEA region. We analyzed the spatial consistency of different forest cover maps, and further evaluated the consistency with terrain characteristics. Our study suggests that global forest cover mapping algorithms are trained and tested using limited ground measurement data. We found significant uncertainties in mountainous areas due to the topographical shadow effect and the dense tree canopies effects. The findings of this study will facilitate to improve our understanding of the forest cover dynamics and their impacts on the quantities and pathways of terrestrial carbon and nitrogen fluxes. Gong, P., et al. (2012). "Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data." International Journal of Remote Sensing 34(7): 2607-2654. Hansen, M. C., et al. (2013). "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342(6160): 850-853. Sexton, J. O., et al. (2013). "Global, 30-m resolution

  15. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  16. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    Science.gov (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the

  17. Sensitivity of GPS occultation to the stratopause height

    DEFF Research Database (Denmark)

    Schrøder, Thomas Morville; Ao, Chi; de la Torre Juárez, Manuel

    2007-01-01

    We scrutinize temperature profiles collected with radio occultation measurement for an imprint of the stratopause. In the retrieval step that integrates bending angle data to atmospheric refractivity, the falloff toward infinite altitude is constrained in a boundary condition with statistical opt...... rate, not isothermal conditions. Keeping the model seed for temperature conversion to subsequent retrieval steps eliminates external information from the deconvolved refractivity. It will help argue for radio occultation as independent vehicle for climate monitoring....... height gradient. On the basis of noise free simulation using a climatology covering all latitudes, seasons, and hours and on the basis of validation against data collected with weather balloons, laser imaging, and limb sounding, we find that adaptation to the fluctuating stratopause is crucial...

  18. LANDSAT-D ground segment operations plan, revision A

    Science.gov (United States)

    Evans, B.

    1982-01-01

    The basic concept for the utilization of LANDSAT ground processing resources is described. Only the steady state activities that support normal ground processing are addressed. This ground segment operations plan covers all processing of the multispectral scanner and the processing of thematic mapper through data acquisition and payload correction data generation for the LANDSAT 4 mission. The capabilities embedded in the hardware and software elements are presented from an operations viewpoint. The personnel assignments associated with each functional process and the mechanisms available for controlling the overall data flow are identified.

  19. Simulated impacts of land cover change on summer climate in the Tibetan Plateau

    International Nuclear Information System (INIS)

    Li Qian; Xue Yongkang

    2010-01-01

    The Tibetan Plateau (TP) is a key region of land-atmosphere interactions with severe eco-environment degradation. This study uses an atmospheric general circulation model, NCEP GCM/SSiB, to present the major TP summer climate features for six selected ENSO years and preliminarily assess the possible impact of land cover change on the summer circulation over the TP. Compared to Reanalysis II data, the GCM using satellite derived vegetation properties generally reproduces the main 6-year-mean TP summer circulation features despite some discrepancies in intensity and geographic locations of some climate features. Two existing vegetation maps with very different land cover conditions over the TP, one with bare ground and one with vegetation cover, derived from satellite derived data, are tested and produce clearer climate signals due to land cover change. It shows that land cover change from vegetated land to bare ground decreases the radiation absorbed by the surface and results in weaker surface thermal effects, which lead to lower atmospheric temperature, as well as weaker vertical ascending motion, low-layer cyclonic, upper level anticyclonic, and summer monsoon circulation. These changes in circulation cause a decrease in the precipitation in the southeastern TP.

  20. Gully potential in soil-covered uranium waste impoundments

    International Nuclear Information System (INIS)

    Abt, S.R.; Hogan, S.A.; Johnson, T.L.

    1994-01-01

    Soil covers are routinely considered a design alternative to stabilize uranium waste impoundments. Gully intrusion into the cover is one of the greatest potential threats to the long-term stability of an impoundment. An investigation was conducted to estimate the maximum depth of gully intrusion, the approximate top width of the gully at the point of maximum incision, and the approximate location of the maximum intrusion. A large-scale laboratory study was conducted on seven embankments in which approximately 200 years of rainfall was simulated and the resulting gullies were documented. In addition, 11 gullies occurring in actual reclaimed impoundments were documented. An analysis of the laboratory and field data sets was performed in which the maximum depth of gully incision, top width of the gully, and location of the maximum gully incision were related to the pile height, tributary volume of runoff, and soil composition. These relations provide the designers with a means for assessing the cover design to meet the long-term stability of the waste

  1. More practical critical height sampling.

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2015-01-01

    Critical Height Sampling (CHS) (Kitamura 1964) can be used to predict cubic volumes per acre without using volume tables or equations. The critical height is defined as the height at which the tree stem appears to be in borderline condition using the point-sampling angle gauge (e.g. prism). An estimate of cubic volume per acre can be obtained from multiplication of the...

  2. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  3. Imagery and fear influence height perception.

    Science.gov (United States)

    Clerkin, Elise M; Cody, Meghan W; Stefanucci, Jeanine K; Proffitt, Dennis R; Teachman, Bethany A

    2009-04-01

    The current study tested whether height overestimation is related to height fear and influenced by images of falling. To assess perceptual biases, participants high (n=65) versus low (n=64) in height fear estimated the vertical extents of two balconies using a visual matching task. On one of the balconies, participants engaged in an imagery exercise designed to enhance the subjective sense that they were acting in a dangerous environment by picturing themselves falling. As expected, we found that individuals overestimated the balcony's height more after they imagined themselves falling, particularly if they were already afraid of heights. These findings suggest that height fear may serve as a vulnerability factor that leads to perceptual biases when triggered by a stressor (in this case, images of falling).

  4. Structure from Motion (SfM Photogrammetry with Drone Data: A Low Cost Method for Monitoring Greenhouse Gas Emissions from Forests in Developing Countries

    Directory of Open Access Journals (Sweden)

    Reason Mlambo

    2017-03-01

    Full Text Available Structure from Motion (SfM photogrammetry applied to photographs captured from Unmanned Aerial Vehicle (UAV platforms is increasingly being utilised for a wide range of applications including structural characterisation of forests. The aim of this study was to undertake a first evaluation of whether SfM from UAVs has potential as a low cost method for forest monitoring within developing countries in the context of Reducing Emissions from Deforestation and forest Degradation (REDD+. The project evaluated SfM horizontal and vertical accuracy for measuring the height of individual trees. Aerial image data were collected for two test sites; Meshaw (Devon, UK and Dryden (Scotland, UK using a Quest QPOD fixed wing UAV and DJI Phantom 2 quadcopter UAV, respectively. Comparisons were made between SfM and airborne LiDAR point clouds and surface models at the Meshaw site, while at Dryden, SfM tree heights were compared to ground measured tree heights. Results obtained showed a strong correlation between SfM and LiDAR digital surface models (R2 = 0.89 and canopy height models (R2 = 0.75. However, at Dryden, a poor correlation was observed between SfM tree heights and ground measured heights (R2 = 0.19. The poor results at Dryden were explained by the fact that the forest plot had a closed canopy structure such that SfM failed to generate enough below-canopy ground points. Finally, an evaluation of UAV surveying methods was also undertaken to determine their usefulness and cost-effectiveness for plot-level forest monitoring. The study concluded that although SfM from UAVs performs poorly in closed canopies, it can still provide a low cost solution in those developing countries where forests have sparse canopy cover (<50% with individual tree crowns and ground surfaces well-captured by SfM photogrammetry. Since more than half of the forest covered areas of the world have canopy cover <50%, we can conclude that SfM has enormous potential for forest mapping in

  5. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.; Thompson, C.J.; Evans, J.C.; Hulstrom, L.C.

    2000-05-01

    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground.

  6. Evaluation of Elevated Tritium Levels in Groundwater Downgradient from the 618-11 Burial Ground Phase I Investigations

    International Nuclear Information System (INIS)

    Dresel, P.E.; Smith, R.M.; Williams, B.A.; Thompson, C.J.; Evans, J.C.; Hulstrom, L.C.

    2000-01-01

    This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructed immediately east of the burial ground

  7. Land Cover Classification Using ALOS Imagery For Penang, Malaysia

    International Nuclear Information System (INIS)

    Sim, C K; Abdullah, K; MatJafri, M Z; Lim, H S

    2014-01-01

    This paper presents the potential of integrating optical and radar remote sensing data to improve automatic land cover mapping. The analysis involved standard image processing, and consists of spectral signature extraction and application of a statistical decision rule to identify land cover categories. A maximum likelihood classifier is utilized to determine different land cover categories. Ground reference data from sites throughout the study area are collected for training and validation. The land cover information was extracted from the digital data using PCI Geomatica 10.3.2 software package. The variations in classification accuracy due to a number of radar imaging processing techniques are studied. The relationship between the processing window and the land classification is also investigated. The classification accuracies from the optical and radar feature combinations are studied. Our research finds that fusion of radar and optical significantly improved classification accuracies. This study indicates that the land cover/use can be mapped accurately by using this approach

  8. Water availability forecasting for Naryn River using ground-based and satellite snow cover data

    Directory of Open Access Journals (Sweden)

    O. Y. Kalashnikova

    2017-01-01

    Full Text Available The main source of river nourishment in arid regions of Central Asia is the melting of seasonal snow accu‑ mulated in mountains during the cold period. In this study, we analyzed data on seasonal snow cover by ground‑based observations from Kyrgyzhydromet network, as well as from MODIS satellite imagery for the period of 2000–2015. This information was used to compile the forecast methods of water availability of snow‑ice and ice‑snow fed rivers for the vegetation period. The Naryn river basin was chosen as a study area which is the main tributary of Syrdarya River and belongs to the Aral Sea basin. The representative mete‑ orological stations with ground‑based observations of snow cover were identified and regression analysis between mean discharge for the vegetation period and number of snow covered days, maximum snow depth based on in‑situ data as well as snow cover area based on MODIS images was conducted. Based on this infor‑ mation, equations are derived for seasonal water availability forecasting using multiple linear regression anal‑ ysis. Proposed equations have high correlation coefficients (R = 0.89÷0.92 and  and fore‑ casting accuracy. The methodology was implemented in Kyrgyzhydromet and is used for forecasting of water availability in Naryn basin and water inflow into Toktogul Reservoir.

  9. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    Science.gov (United States)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential

  10. Active numerical model of human body for reconstruction of falls from height.

    Science.gov (United States)

    Milanowicz, Marcin; Kędzior, Krzysztof

    2017-01-01

    Falls from height constitute the largest group of incidents out of approximately 90,000 occupational accidents occurring each year in Poland. Reconstruction of the exact course of a fall from height is generally difficult due to lack of sufficient information from the accident scene. This usually results in several contradictory versions of an incident and impedes, for example, determination of the liability in a judicial process. In similar situations, in many areas of human activity, researchers apply numerical simulation. They use it to model physical phenomena to reconstruct their real course over time; e.g. numerical human body models are frequently used for investigation and reconstruction of road accidents. However, they are validated in terms of specific road traffic accidents and are considerably limited when applied to the reconstruction of other types of accidents. The objective of the study was to develop an active numerical human body model to be used for reconstruction of accidents associated with falling from height. Development of the model involved extension and adaptation of the existing Pedestrian human body model (available in the MADYMO package database) for the purposes of reconstruction of falls from height by taking into account the human reaction to the loss of balance. The model was developed by using the results of experimental tests of the initial phase of the fall from height. The active numerical human body model covering 28 sets of initial conditions related to various human reactions to the loss of balance was developed. The application of the model was illustrated by using it to reconstruct a real fall from height. From among the 28 sets of initial conditions, those whose application made it possible to reconstruct the most probable version of the incident was selected. The selection was based on comparison of the results of the reconstruction with information contained in the accident report. Results in the form of estimated

  11. SMEX02 Watershed Vegetation Sampling Data, Walnut Creek, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the vegetation parameters stand density, plant height, phenological stage, ground cover, green and dry biomass, row spacing, stem and leaf...

  12. Historical Image Registration and Land-Use Land-Cover Change Analysis

    Directory of Open Access Journals (Sweden)

    Fang-Ju Jao

    2014-12-01

    Full Text Available Historical aerial images are important to retain past ground surface information. The land-use land-cover change in the past can be identified using historical aerial images. Automatic historical image registration and stitching is essential because the historical image pose information was usually lost. In this study, the Scale Invariant Feature Transform (SIFT algorithm was used for feature extraction. Subsequently, the present study used the automatic affine transformation algorithm for historical image registration, based on SIFT features and control points. This study automatically determined image affine parameters and simultaneously transformed from an image coordinate system to a ground coordinate system. After historical aerial image registration, the land-use land-cover change was analyzed between two different years (1947 and 1975 at the Tseng Wen River estuary. Results show that sandbars and water zones were transformed into a large number of fish ponds between 1947 and 1975.

  13. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications

    Science.gov (United States)

    Wolfe, Stephen A.; Morse, Peter D.; Neudorf, Christina M.; Kokelj, Steven V.; Lian, Olav B.; O'Neill, H. Brendan

    2018-05-01

    Contemporary sand wedges and sand veins are active in seasonally frozen ground within the extensive discontinuous permafrost zone in Northwest Territories, Canada. The region has a subarctic continental climate with 291 mm a-1 precipitation, -4.1 °C mean annual air temperature, warm summers (July mean 17.0 °C), and cold winters (January mean -26.6 °C). Five years of continuous observations indicate that interannual variation of the ground thermal regime is dominantly controlled by winter air temperature and snow cover conditions. At sandy sites, thin snow cover and high thermal conductivity promote rapid freezing, high rates of ground cooling, and low near-surface ground temperatures (-15 to -25 °C), resulting in thermal contraction cracking to depths of 1.2 m. Cracking potentials are high in sandy soils when air temperatures are air temperatures are ≤-17 °C, and snow cover is conditions in peatlands maintain permafrost, but thermal contraction cracking does not occur because thicker snow cover and the thermal properties of peat prolong freezeback and maintain higher winter ground temperatures. A combination of radiocarbon dating, optical dating, and stratigraphic observations were used to differentiate sand wedge types and formation histories. Thermal contraction cracks that develop in the sandy terrain are filled by surface (allochthonous) and/or host (autochthonous) material during the thaw season. Epigenetic sand wedges infilled with allochthonous sand develop within former beach sediments beneath an active eolian sand sheet. Narrower and deeper syngenetic wedges developed within aggrading eolian sand sheets, whereas wider and shallower antisyngenetic wedges developed in areas of active erosion. Thermal contraction cracking beneath vegetation-stabilized surfaces leads to crack infilling by autochthonous host and overlying organic material, with resultant downturning and subsidence of adjacent strata. Sand wedge development in seasonally frozen ground

  14. Ground Control for Emplacement Drifts for LA

    International Nuclear Information System (INIS)

    Y. Sun

    2004-01-01

    The purpose of this calculation is to analyze the stability of repository emplacement drifts during the preclosure period, and to provide a final ground support method for emplacement drifts for the License Application (LA). The scope of the work includes determination of input parameter values and loads, selection of appropriate process and methods for the calculation, application of selected methods, such as empirical or analytical, to the calculation, development and execution of numerical models, and evaluation of results. Results from this calculation are limited to use for design of the emplacement drifts and the final ground support system installed in these drifts. The design of non-emplacement openings and their ground support systems is covered in the ''Ground Control for Non-Emplacement Drifts for LA'' (BSC 2004c)

  15. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  16. Regional Quantitative Cover Mapping of Tundra Plant Functional Types in Arctic Alaska

    Directory of Open Access Journals (Sweden)

    Matthew J. Macander

    2017-10-01

    Full Text Available Ecosystem maps are foundational tools that support multi-disciplinary study design and applications including wildlife habitat assessment, monitoring and Earth-system modeling. Here, we present continuous-field cover maps for tundra plant functional types (PFTs across ~125,000 km2 of Alaska’s North Slope at 30-m resolution. To develop maps, we collected a field-based training dataset using a point-intercept sampling method at 225 plots spanning bioclimatic and geomorphic gradients. We stratified vegetation by nine PFTs (e.g., low deciduous shrub, dwarf evergreen shrub, sedge, lichen and summarized measurements of the PFTs, open water, bare ground and litter using the cover metrics total cover (areal cover including the understory and top cover (uppermost canopy or ground cover. We then developed 73 spectral predictors derived from Landsat satellite observations (surface reflectance composites for ~15-day periods from May–August and five gridded environmental predictors (e.g., summer temperature, climatological snow-free date to model cover of PFTs using the random forest data-mining algorithm. Model performance tended to be best for canopy-forming PFTs, particularly deciduous shrubs. Our assessment of predictor importance indicated that models for low-statured PFTs were improved through the use of seasonal composites from early and late in the growing season, particularly when similar PFTs were aggregated together (e.g., total deciduous shrub, herbaceous. Continuous-field maps have many advantages over traditional thematic maps, and the methods described here are well-suited to support periodic map updates in tandem with future field and Landsat observations.

  17. A case study of lightning attachment to flat ground showing multiple unconnected upward leaders

    Science.gov (United States)

    Cummins, Kenneth L.; Krider, E. Philip; Olbinski, Mike; Holle, Ronald L.

    2018-04-01

    On 10 July 2015, a cloud-to-ground (CG) lightning flash that produced two ground terminations was photographed from inside the safety of a truck in southern New Mexico. An analysis of archived NLDN data verified that this was a two-stroke flash, and a close-up view of the first stroke shows that it also initiated at least 12 unconnected, upward leaders (or "streamers") near the ground termination. No unconnected upward leaders were seen near the second ground attachment. After combining an analysis of the photograph with information provided by the NLDN, we infer that the first stroke was of negative (normal) polarity, had modest peak current, and struck about 460 m (± 24%) from the camera. Attachment occurred when an upward-propagating positive leader reached an inferred height of about 21 m above local ground. The second stroke struck ground about 740 m from the camera, and the height of its attachment leader is estimated to be 15 m. The estimated lengths of the unconnected upward leaders in the two-dimensional (2-D) plane of the first stroke range from 2 to 8 m, and all appear to be located within 15 m (2-D) of the main ground termination, with 24% uncertainty. Many of the unconnected upward leaders (inferred to be positive) exhibit multiple upward branches, and most of those branches have upward-directed forks or splits at their ends. This is the first report showing such extensive branching for positive upward leaders in natural lightning strikes to ground. None of the upward leaders can be seen to emanate from the tops of tall, isolated, or pointed objects on the ground, but they likely begin on small plants and rocks, or flat ground. In terms of lightning safety, this photo demonstrates that numerous upward leaders can be produced near a lightning strike point and have the potential to damage or cause injury at more than one specific point on the ground.

  18. Combined Treatment with Gonadotropin-releasing Hormone Analog and Anabolic Steroid Hormone Increased Pubertal Height Gain and Adult Height in Boys with Early Puberty for Height.

    Science.gov (United States)

    Tanaka, Toshiaki; Naiki, Yasuhiro; Horikawa, Reiko

    2012-04-01

    Twenty-one boys with a height of 135 cm or less at onset of puberty were treated with a combination of GnRH analog and anabolic steroid hormone, and their pubertal height gain and adult height were compared with those of untreated 29 boys who enter puberty below 135 cm. The mean age at the start of treatment with a GnRH analog, leuprorelin acetate depot (Leuplin(®)) was 12.3 yr, a mean of 1.3 yr after the onset of puberty, and GnRH analog was administered every 3 to 5 wk thereafter for a mean duration of 4.1 yr. The anabolic steroid hormone was started approximately 1 yr after initiation of treatment with the GnRH analog. The mean pubertal height gain from onset of puberty till adult height was significantly greater in the combination treatment group (33.9 cm) than in the untreated group (26.4 cm) (ppenis and pubic hair is promoted by the anabolic steroid hormone, no psychosocial problems arose because of delayed puberty. No clinically significant adverse events appeared. Combined treatment with GnRH analog and anabolic steroid hormone significantly increased height gain during puberty and adult height in boys who entered puberty with a short stature, since the period until epiphyseal closure was extended due to deceleration of the bone age maturation by administration of the GnRH analog and the growth rate at this time was maintained by the anabolic steroid hormone.

  19. Ireland, Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    The island of Ireland comprises a large central lowland of limestone with a relief of hills surrounded by a discontinuous border of coastal mountains which vary greatly in geological structure. The mountain ridges of the south are composed of old red sandstone separated by limestone river valleys. Granite predominates in the mountains of Galway, Mayo and Donegal in the west and north-west and in Counties Down and Wicklow on the east coast, while a basalt plateau covers much of the north-east of the country. The central plain, which is broken in places by low hills, is extensively covered with glacial deposits of clay and sand. It has considerable areas of bog and numerous lakes. The island has seen at least two general glaciations and everywhere ice-smoothed rock, mountain lakes, glacial valleys and deposits of glacial sand, gravel and clay mark the passage of the ice. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency

  20. Maternal Height and Child Growth Patterns

    OpenAIRE

    Addo, O. Yaw; Stein, Aryeh D.; Fall, Caroline H.; Gigante, Denise P.; Guntupalli, Aravinda M.; Horta, Bernardo L.; Kuzawa, Christopher W.; Lee, Nanette; Norris, Shane A.; Prabhakaran, Poornima; Richter, Linda M.; Sachdev, Harshpal S.; Martorell, Reynaldo

    2013-01-01

    OBJECTIVE:\\ud To examine associations between maternal height and child growth during 4 developmental periods: intrauterine, birth to age 2 years, age 2 years to mid-childhood (MC), and MC to adulthood.\\ud \\ud STUDY DESIGN:\\ud Pooled analysis of maternal height and offspring growth using 7630 mother-child pairs from 5 birth cohorts (Brazil, Guatemala, India, the Philippines, and South Africa). We used conditional height measures that control for collinearity in height across periods. We estim...

  1. The influence of heel height on utilized coefficient of friction during walking.

    Science.gov (United States)

    Blanchette, Mark G; Brault, John R; Powers, Christopher M

    2011-05-01

    Wearing high heel shoes has been associated with an increased potential for slips and falls. The association between wearing high heels and the increased potential for slipping suggests that the friction demand while wearing high heels may be greater when compared to wearing low heel shoes. The purpose of this study was to determine if heel height affects utilized friction (uCOF) during walking. A secondary purpose of this study was to compare kinematics at the ankle, knee, and hip that may explain uCOF differences among shoes with varied heel heights. Fifteen healthy women (mean age 24.5±2.5yrs) participated. Subjects walked at self-selected velocity under 3 different shoe conditions that varied in heel height (low: 1.27cm, medium: 6.35cm, and high: 9.53cm). Ground reaction forces (GRFs) were recorded using a force platform (1560Hz). Kinematic data were obtained using an 8 camera motion analysis system (120Hz). Utilized friction was calculated as the ratio of resultant shear force to vertical force. One-way repeated measures ANOVAs were performed to test for differences in peak uCOF, GRFs at peak uCOF and lower extremity joint angles at peak uCOF. On average, peak uCOF was found to increase with heel height. The increased uCOF observed in high heel shoes was related to an increase in the resultant shear force and decrease in the vertical force. Our results signify the need for proper public education and increased footwear industry awareness of how high heel shoes affect slip risk. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Standardizing Scale Height Computation of Maven Ngims Neutral Data and Variations Between Exobase and Homeopause Scale Heights

    Science.gov (United States)

    Elrod, M. K.; Slipski, M.; Curry, S.; Williamson, H. N.; Benna, M.; Mahaffy, P. R.

    2017-12-01

    The MAVEN NGIMS team produces a level 3 product which includes the computation of Ar scale height an atmospheric temperatures at 200 km. In the latest version (v05_r01) this has been revised to include scale height fits for CO2, N2 O and CO. Members of the MAVEN team have used various methods to compute scale heights leading to significant variations in scale height values depending on fits and techniques within a few orbits even, occasionally, the same pass. Additionally fitting scale heights in a very stable atmosphere like the day side vs night side can have different results based on boundary conditions. Currently, most methods only compute Ar scale heights as it is most stable and reacts least with the instrument. The NGIMS team has chosen to expand these fitting techniques to include fitted scale heights for CO2, N2, CO, and O. Having compared multiple techniques, the method found to be most reliable for most conditions was determined to be a simple fit method. We have focused this to a fitting method that determines the exobase altidude of the CO2 atmosphere as a maximum altitude for the highest point for fitting, and uses the periapsis as the lowest point and then fits the altitude versus log(density). The slope of altitude vs log(density) is -1/H where H is the scale height of the atmosphere for each species. Since this is between the homeopause and the exobase, each species will have a different scale height by this point. This is being released as a new standardization for the level 3 product, with the understanding that scientists and team members will continue to compute more precise scale heights and temperatures as needed based on science and model demands. This is being released in the PDS NGIMS level 3 v05 files for August 2017. Additionally, we are examining these scale heights for variations seasonally, diurnally, and above and below the exobase. The atmosphere is significantly more stable on the dayside than on the nightside. We have also found

  3. Degeneration and height of cervical discs classified from MRI compared with precise height measurements from radiographs

    International Nuclear Information System (INIS)

    Kolstad, Frode; Myhr, Gunnar; Kvistad, Kjell Arne; Nygaard, Oystein P.; Leivseth, Gunnar

    2005-01-01

    Study design: Descriptive study comparing MRI classifications with measurements from radiographs. Objectives: 1.Define the relationship between MRI classified cervical disc degeneration and objectively measured disc height. 2.Assess the level of inter- and intra-observer errors using MRI in defining cervical disc degeneration. Summary of background data: Cervical spine degeneration has been defined radiologically by loss of disc height, decreased disc and bone marrow signal intensity and disc protrusion/herniation on MRI. The intra- and inter-observer error using MRI in defining cervical degeneration influences data interpretation. Few previous studies have addressed this source of error. The relation and time sequence between cervical disc degeneration classified by MRI and cervical disc height decrease measured from radiographs is unclear. Methods: The MRI classification of degeneration was based on nucleus signal, prolaps identification and bone marrow signal. Two neuro-radiologists evaluated the MR-images independently in a blinded fashion. The radiographic disc height measurements were done by a new computer-assisted method compensating for image distortion and permitting comparison with normal level-, age- and gender-appropriate disc height. Results/conclusions: 1.Progressing disc degeneration classified from MRI is on average significantly associated with a decrease of disc height as measured from radiographs. Within each MRI defined category of degeneration measured disc heights, however, scatter in a wide range. 2.The inter-observer agreement between two neuro-radiologists in both defining degeneration and disc height by MRI was only moderate. Studies addressing questions related to cervical disc degeneration should take this into consideration

  4. Degeneration and height of cervical discs classified from MRI compared with precise height measurements from radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Kolstad, Frode [National Centre of Spinal Disorders, Norwegian University of Science and Technology, University Hospital of Trondheim, 7006 Trondheim (Norway)]. E-mail: frode.kolstad@medisin.ntnu.no; Myhr, Gunnar [Department of Radiology, University Hospital of Trondheim, 7006 Trondheim (Norway); Kvistad, Kjell Arne [Department of Radiology, University Hospital of Trondheim, 7006 Trondheim (Norway); Nygaard, Oystein P. [National Centre of Spinal Disorders, Norwegian University of Science and Technology, University Hospital of Trondheim, 7006 Trondheim (Norway); Leivseth, Gunnar [Department of Neuromedicine, Faculty of Medicine, Norwegian University of Science and Technology, University Hospital of Trondheim, 7006 Trondheim (Norway)

    2005-09-01

    Study design: Descriptive study comparing MRI classifications with measurements from radiographs. Objectives: 1.Define the relationship between MRI classified cervical disc degeneration and objectively measured disc height. 2.Assess the level of inter- and intra-observer errors using MRI in defining cervical disc degeneration. Summary of background data: Cervical spine degeneration has been defined radiologically by loss of disc height, decreased disc and bone marrow signal intensity and disc protrusion/herniation on MRI. The intra- and inter-observer error using MRI in defining cervical degeneration influences data interpretation. Few previous studies have addressed this source of error. The relation and time sequence between cervical disc degeneration classified by MRI and cervical disc height decrease measured from radiographs is unclear. Methods: The MRI classification of degeneration was based on nucleus signal, prolaps identification and bone marrow signal. Two neuro-radiologists evaluated the MR-images independently in a blinded fashion. The radiographic disc height measurements were done by a new computer-assisted method compensating for image distortion and permitting comparison with normal level-, age- and gender-appropriate disc height. Results/conclusions: 1.Progressing disc degeneration classified from MRI is on average significantly associated with a decrease of disc height as measured from radiographs. Within each MRI defined category of degeneration measured disc heights, however, scatter in a wide range. 2.The inter-observer agreement between two neuro-radiologists in both defining degeneration and disc height by MRI was only moderate. Studies addressing questions related to cervical disc degeneration should take this into consideration.

  5. Providing Diurnal Sky Cover Data at ARM Sites

    Energy Technology Data Exchange (ETDEWEB)

    Klebe, Dimitri I. [Solmirus Corporation, Colorado Springs, CO (United States)

    2015-03-06

    The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizing the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.

  6. An antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2013-01-01

    Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur...

  7. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    Science.gov (United States)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather

  8. Dynamics of forest cover conversion in and around Bwindi ...

    African Journals Online (AJOL)

    Land use/cover map for 2010 was reconstructed by analyzing 2001 image, validated and/or reconstructed by ground truthing, use of secondary data and key ... The severe loss of woodlot outside the protected area not only poses a potential threat to the protected forest but also calls for intervention measures if efforts to ...

  9. Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing

    Directory of Open Access Journals (Sweden)

    L. Dai

    2017-08-01

    Full Text Available Snow cover on the Qinghai–Tibetan Plateau (QTP plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow

  10. Characterizing sub-arctic peatland vegeation using height estimates from structure from motion and an unmanned aerial system (UAS)

    Science.gov (United States)

    Palace, M. W.; DelGreco, J.; Herrick, C.; Sullivan, F.; Varner, R. K.

    2017-12-01

    The collapse of permafrost, due to thawing, changes landscape topography, hydrology and vegetation. Changes in plant species composition influence methane production pathways and methane emission rates. The complex spatial heterogeneity of vegetation composition across peatlands proves important in quantifying methane emissions. Effort to characterize vegetation across these permafrost peatlands has been conducted with varied success, with difficulty seen in estimating some cover types that are at opposite ends of the permafrost collapse transition, ie palsa/tall shrub and tall graminoid. This is because some of the species are the same (horsetail) and some of the species have similar structure (horsetail/Carex spp.). High resolution digital elevation maps, developed with airborne LIght Detection And Ranging (lidar) have provided insight into some wetland attributes, but lidar collection is costly and requires extensive data processing effort. Lidar information also lacks the spectral information that optical sensors provide. We used an inexpensive Unmanned Aerial Vehicle (UAV) with an optical sensor to image a mire in northern Sweden (Stordalen Mire) in 2015. We collected 700 overlapping images that were stitched together using Structure from Motion (SfM). SfM analysis also provided, due to parallax, the ability to develop a height map of vegetation. This height map was used, along with textural analysis, to develop an artificial neural network to predict five vegetation cover types. Using 200 training points, we found improvements in our prediction of these cover types. We suggest that using the digital height model from SfM provides useful information in remotely sensing vegetation across a permafrost collapsing region that exhibit resulting changes in vegetation composition. The ability to rapidly and inexpensively deploy such a UAV system provides the opportunity to examine multiple sites with limited personnel effort in remote areas.

  11. Genetic determinants of height growth assessed longitudinally from infancy to adulthood in the northern Finland birth cohort 1966.

    Directory of Open Access Journals (Sweden)

    Ulla Sovio

    2009-03-01

    Full Text Available Recent genome-wide association (GWA studies have identified dozens of common variants associated with adult height. However, it is unknown how these variants influence height growth during childhood. We derived peak height velocity in infancy (PHV1 and puberty (PHV2 and timing of pubertal height growth spurt from parametric growth curves fitted to longitudinal height growth data to test their association with known height variants. The study consisted of N = 3,538 singletons from the prospective Northern Finland Birth Cohort 1966 with genotype data and frequent height measurements (on average 20 measurements per person from 0-20 years. Twenty-six of the 48 variants tested associated with adult height (p<0.05, adjusted for sex and principal components in this sample, all in the same direction as in previous GWA scans. Seven SNPs in or near the genes HHIP, DLEU7, UQCC, SF3B4/SV2A, LCORL, and HIST1H1D associated with PHV1 and five SNPs in or near SOCS2, SF3B4/SV2A, C17orf67, CABLES1, and DOT1L with PHV2 (p<0.05. We formally tested variants for interaction with age (infancy versus puberty and found biologically meaningful evidence for an age-dependent effect for the SNP in SOCS2 (p = 0.0030 and for the SNP in HHIP (p = 0.045. We did not have similar prior evidence for the association between height variants and timing of pubertal height growth spurt as we had for PHVs, and none of the associations were statistically significant after correction for multiple testing. The fact that in this sample, less than half of the variants associated with adult height had a measurable effect on PHV1 or PHV2 is likely to reflect limited power to detect these associations in this dataset. Our study is the first genetic association analysis on longitudinal height growth in a prospective cohort from birth to adulthood and gives grounding for future research on the genetic regulation of human height during different periods of growth.

  12. Genetic Determinants of Height Growth Assessed Longitudinally from Infancy to Adulthood in the Northern Finland Birth Cohort 1966

    Science.gov (United States)

    Sovio, Ulla; Bennett, Amanda J.; Millwood, Iona Y.; Molitor, John; O'Reilly, Paul F.; Timpson, Nicholas J.; Kaakinen, Marika; Laitinen, Jaana; Haukka, Jari; Pillas, Demetris; Tzoulaki, Ioanna; Molitor, Jassy; Hoggart, Clive; Coin, Lachlan J. M.; Whittaker, John; Pouta, Anneli; Hartikainen, Anna-Liisa; Freimer, Nelson B.; Widen, Elisabeth; Peltonen, Leena; Elliott, Paul; McCarthy, Mark I.; Jarvelin, Marjo-Riitta

    2009-01-01

    Recent genome-wide association (GWA) studies have identified dozens of common variants associated with adult height. However, it is unknown how these variants influence height growth during childhood. We derived peak height velocity in infancy (PHV1) and puberty (PHV2) and timing of pubertal height growth spurt from parametric growth curves fitted to longitudinal height growth data to test their association with known height variants. The study consisted of N = 3,538 singletons from the prospective Northern Finland Birth Cohort 1966 with genotype data and frequent height measurements (on average 20 measurements per person) from 0–20 years. Twenty-six of the 48 variants tested associated with adult height (p<0.05, adjusted for sex and principal components) in this sample, all in the same direction as in previous GWA scans. Seven SNPs in or near the genes HHIP, DLEU7, UQCC, SF3B4/SV2A, LCORL, and HIST1H1D associated with PHV1 and five SNPs in or near SOCS2, SF3B4/SV2A, C17orf67, CABLES1, and DOT1L with PHV2 (p<0.05). We formally tested variants for interaction with age (infancy versus puberty) and found biologically meaningful evidence for an age-dependent effect for the SNP in SOCS2 (p = 0.0030) and for the SNP in HHIP (p = 0.045). We did not have similar prior evidence for the association between height variants and timing of pubertal height growth spurt as we had for PHVs, and none of the associations were statistically significant after correction for multiple testing. The fact that in this sample, less than half of the variants associated with adult height had a measurable effect on PHV1 or PHV2 is likely to reflect limited power to detect these associations in this dataset. Our study is the first genetic association analysis on longitudinal height growth in a prospective cohort from birth to adulthood and gives grounding for future research on the genetic regulation of human height during different periods of growth. PMID:19266077

  13. High-speed ground transportation development outside United States

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  14. Sampling and Mapping Soil Erosion Cover Factor for Fort Richardson, Alaska. Integrating Stratification and an Up-Scaling Method

    National Research Council Canada - National Science Library

    Wang, Guangxing; Gertner, George; Anderson, Alan B; Howard, Heidi

    2006-01-01

    When a ground and vegetation cover factor related to soil erosion is mapped with the aid of remotely sensed data, a cost-efficient sample design to collect ground data and obtain an accurate map is required...

  15. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    Science.gov (United States)

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  16. The effect of short ground vegetation on terrestrial laser scans at a local scale

    Science.gov (United States)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  17. Mapping boreal forest biomass from a SRTM and TanDEM-X based on canopy height model and Landsat spectral indices

    Science.gov (United States)

    Sadeghi, Yaser; St-Onge, Benoît; Leblon, Brigitte; Prieur, Jean-François; Simard, Marc

    2018-06-01

    We propose a method for mapping above-ground biomass (AGB) (Mg ha-1) in boreal forests based predominantly on Landsat 8 images and on canopy height models (CHM) generated using interferometric synthetic aperture radar (InSAR) from the Shuttle Radar Topographic Mission (SRTM) and the TanDEM-X mission. The original SRTM digital elevation model (DEM) was corrected by modelling the respective effects of landform and land cover on its errors and then subtracted from a TanDEM-X DSM to produce a SAR CHM. Among all the landform factors, the terrain curvature had the largest effect on SRTM elevation errors, with a r2 of 0.29. The NDSI was the best predictor of the residual SRTM land cover error, with a r2 of 0.30. The final SAR CHM had a RMSE of 2.45 m, with a bias of 0.07 m, compared to a lidar-based CHM. An AGB prediction model was developed based on a combination of the SAR CHM, TanDEM-X coherence, Landsat 8 NDVI, and other vegetation indices of RVI, DVI, GRVI, EVI, LAI, GNDVI, SAVI, GVI, Brightness, Greenness, and Wetness. The best results were obtained using a Random forest regression algorithm, at the stand level, yielding a RMSE of 26 Mg ha-1 (34% of average biomass), with a r2 of 0.62. This method has the potential of creating spatially continuous biomass maps over entire biomes using only spaceborne sensors and requiring only low-intensity calibration.

  18. A fixed full-matrix method for determining ice sheet height change from satellite altimeter: an ENVISAT case study in East Antarctica with backscatter analysis

    Science.gov (United States)

    Yang, Yuande; Hwang, Cheinway; E, Dongchen

    2014-09-01

    A new method, called the fixed full-matrix method (FFM), is used to compute height changes at crossovers of satellite altimeter ground tracks. Using the ENVISAT data in East Antarctica, FFM results in crossovers of altimeter heights that are 1.9 and 79 times more than those from the fixed half method (FHM) and the one-row method (ORM). The mean standard error of height changes is about 14 cm from ORM, which is reduced to 7 cm by FHM and to 3 cm by FFM. Unlike FHM, FFM leads to uniform errors in the first-half and second-half height-change time series. FFM has the advantage in improving the accuracy of the change of height and backscattered power over ORM and FHM. Assisted by the ICESat-derived height changes, we determine the optimal threshold correlation coefficient (TCC) for a best correction for the backscatter effect on ENVISAT height changes. The TCC value of 0.92 yields an optimal result for FFM. With this value, FFM yields ENVISAT-derived height change rates in East Antarctica mostly falling between and 3 cm/year, and matching the ICESat result to 0.94 cm/year. The ENVISAT result will provide a constraint on the current mass balance result along the Chinese expedition route CHINARE.

  19. Connecting Brabant's cover sand landscapes through landscape history

    Science.gov (United States)

    Heskes, Erik; van den Ancker, Hanneke; Jungerius, Pieter Dirk; Harthoorn, Jaap; Maes, Bert; Leenders, Karel; de Jongh, Piet; Kluiving, Sjoerd; van den Oetelaar, Ger

    2015-04-01

    Noord-Brabant has the largest variety of cover sand landscapes in The Netherlands, and probably in Western Europe. During the Last Ice Age the area was not covered by land ice and a polar desert developed in which sand dunes buried the existing river landscapes. Some of these polar dune landscapes experienced a geomorphological and soil development that remained virtually untouched up to the present day, such as the low parabolic dunes of the Strabrechtse Heide or the later and higher dunes of the Oisterwijkse Vennen. As Noord-Brabant lies on the fringe of a tectonic basin, the thickness of cover sand deposits in the Centrale Slenk, part of a rift through Europe, amounts up to 20 metres. Cover sand deposits along the fault lines cause the special phenomenon of 'wijst' to develop, in which the higher grounds are wetter than the boarding lower grounds. Since 4000 BC humans settled in these cover sand landscapes and made use of its small-scale variety. An example are the prehistoric finds on the flanks and the historic towns on top of the 'donken' in northwest Noord-Brabant, where the cover sand landscapes are buried by river and marine deposits and only the peaks of the dunes protrude as donken. Or the church of Handel that is built beside a 'wijst' source and a site of pilgrimage since living memory. Or the 'essen' and plaggen agriculture that developed along the stream valleys of Noord-Brabant from 1300 AD onwards, giving rise to geomorphological features as 'randwallen' and plaggen soils of more than a metre thickness. Each region of Brabant each has its own approach in attracting tourists and has not yet used this common landscape history to connect, manage and promote their territories. We propose a landscape-historical approach to develop a national or European Geopark Brabants' cover sand landscapes, in which each region focuses on a specific part of the landscape history of Brabant, that stretches from the Late Weichselian polar desert when the dune

  20. Quantifying the impact of cloud cover on ground radiation flux measurements using hemispherical images

    NARCIS (Netherlands)

    Roupioz, L.; Colin, J.; Jia, L.; Nerry, F.; Menenti, M.

    2015-01-01

    Linking observed or estimated ground incoming solar radiation with cloud coverage is difficult since the latter is usually poorly described in standard meteorological observation protocols. To investigate the benefits of detailed observation and characterization of cloud coverage and

  1. Maximum range of a projectile launched from a height h: a non-calculus treatment

    International Nuclear Information System (INIS)

    Ganci, S; Lagomarsino, D

    2014-01-01

    The classical example of problem solving, maximizing the range of a projectile launched from height h with velocity v over the ground level, has received various solutions. In some of these, one can find the maximization of the range R by differentiating R as a function of an independent variable or through the implicit differentiation in Cartesian or polar coordinates. In other papers, various elegant non-calculus solutions can be found. In this paper, this problem is revisited on the basis of the elementary analytical geometry and the trigonometry only. (papers)

  2. Maximum range of a projectile launched from a height h: a non-calculus treatment

    Science.gov (United States)

    Ganci, S.; Lagomarsino, D.

    2014-07-01

    The classical example of problem solving, maximizing the range of a projectile launched from height h with velocity v over the ground level, has received various solutions. In some of these, one can find the maximization of the range R by differentiating R as a function of an independent variable or through the implicit differentiation in Cartesian or polar coordinates. In other papers, various elegant non-calculus solutions can be found. In this paper, this problem is revisited on the basis of the elementary analytical geometry and the trigonometry only.

  3. Relative importance of expertise, lifting height and weight lifted on posture and lumbar external loading during a transfer task in manual material handling.

    Science.gov (United States)

    Plamondon, André; Larivière, Christian; Delisle, Alain; Denis, Denys; Gagnon, Denis

    2012-01-01

    The objective of this study was to measure the effect size of three important factors in manual material handling, namely expertise, lifting height and weight lifted. The effect of expertise was evaluated by contrasting 15 expert and 15 novice handlers, the effect of the weight lifted with a 15-kg box and a 23-kg box and the effect of lifting height with two different box heights: ground level and a 32 cm height. The task consisted of transferring a series of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables (moments) while expertise had low impact. On the other hand, expertise showed a significant effect of posture variables on the lumbar spine and knees. All three factors are important, but for a reduction of external back loading, the focus should be on the lifting height and weight lifted. The objective was to measure the effect size of three important factors in a transfer of boxes from a conveyor to a hand trolley. Lifting height and weight lifted had more effect size than expertise on external back loading variables but expertise was a major determinant in back posture.

  4. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  5. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Final height and intrauterine growth retardation.

    Science.gov (United States)

    Tauber, Maïthé

    2017-06-01

    Approximately 10% of small for gestational age (SGA) children maintain a small body size throughout childhood and often into adult life with a decreased pubertal spurt. Growth hormone (GH) therapy increases short-term growth in a dose-dependent manner and adult height had now been well documented. Shorter children might benefit from a higher dose at start (50μg/kg/day). The response to GH treatment was similar for both preterm and term short SGA groups and the effect of GH treatment on adult height showed a wide variation in growth response. As a whole, mean adult height is higher than -2 SDS in 60% of patients and 70% reached an adult height in their target height with better results with higher doses and combined GnRH analog therapy in those who were short at onset of puberty. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus.

    Science.gov (United States)

    Davis, R F; Baird, R E; McNeil, R D

    2000-12-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P rye or wheat cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton.

  8. Catalogue of response spectra for unfolding in situ gamma-ray pulse-height distributions

    International Nuclear Information System (INIS)

    Dymke, N.

    1982-01-01

    To unfold in situ gamma-ray pulse-height distributions by means of a response matrix technique, the matrix must be in keeping with the measurement geometry, detector size, and energy range to be covered by the measurements. A methodology has been described for determination of standard gamma-ray spectra needed in deriving response matrices and a spectrum catalogue compiled containing graphs and data for the 0-3 MeV (4 x 4 in. NaI(Tl)) and 0-8 MeV (1.5 x 1.5 in. NaI(Tl)) ranges. (author)

  9. Evaluation of landscape coverings to reduce soil lead hazards in urban residential yards: The Safer Yards Project

    International Nuclear Information System (INIS)

    Binns, H.J.; Gray, K.A.; Chen Tianyue; Finster, M.E.; Peneff, Nicholas; Schaefer, Peter; Ovsey, Victor; Fernandes, Joyce; Brown, Mavis; Dunlap, Barbara

    2004-01-01

    This study was designed primarily to evaluate the effectiveness of landscape coverings to reduce the potential for exposure to lead-contaminated soil in an urban neighborhood. Residential properties were randomized in to three groups: application of ground coverings/barriers plus placement of a raised garden bed (RB), application of ground coverings/barriers only (no raised bed, NRB), and control. Outcomes evaluated soil lead concentration (employing a weighting method to assess acute hazard soil lead [areas not fully covered] and potential hazard soil lead [all soil surfaces regardless of covering status]), density of landscape coverings (6=heavy, >90% covered; 1=bare, <10% covered), lead tracked onto carpeted entryway floor mats, and entryway floor dust lead loadings. Over 1 year, the intervention groups had significantly reduced acute hazard soil lead concentration (median change: RB, -478 ppm; NRB, -698 ppm; control, +52 ppm; Kruskal-Wallis, P=0.02), enhanced landscape coverings (mean change in score: RB, +0.6; NRB, +1.5; control, -0.6; ANOVA, P<0.001), and a 50% decrease in lead tracked onto the floor mats. The potential hazard soil lead concentration and the entryway floor dust lead loading did not change significantly. Techniques evaluated by this study are feasible for use by property owners but will require continued maintenance. The long-term sustainability of the method needs further examination

  10. Accuracy Assessment of Lidar-Derived Digital Terrain Model (dtm) with Different Slope and Canopy Cover in Tropical Forest Region

    Science.gov (United States)

    Salleh, M. R. M.; Ismail, Z.; Rahman, M. Z. A.

    2015-10-01

    Airborne Light Detection and Ranging (LiDAR) technology has been widely used recent years especially in generating high accuracy of Digital Terrain Model (DTM). High density and good quality of airborne LiDAR data promises a high quality of DTM. This study focussing on the analysing the error associated with the density of vegetation cover (canopy cover) and terrain slope in a LiDAR derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation irregular network (ATIN) algorithm technique in producing ground points. Next, the ground control points (GCPs) used in generating the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 and 0.870) with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 0.924) obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy caver of study area.

  11. ACCURACY ASSESSMENT OF LIDAR-DERIVED DIGITAL TERRAIN MODEL (DTM WITH DIFFERENT SLOPE AND CANOPY COVER IN TROPICAL FOREST REGION

    Directory of Open Access Journals (Sweden)

    M. R. M. Salleh

    2015-10-01

    Full Text Available Airborne Light Detection and Ranging (LiDAR technology has been widely used recent years especially in generating high accuracy of Digital Terrain Model (DTM. High density and good quality of airborne LiDAR data promises a high quality of DTM. This study focussing on the analysing the error associated with the density of vegetation cover (canopy cover and terrain slope in a LiDAR derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation irregular network (ATIN algorithm technique in producing ground points. Next, the ground control points (GCPs used in generating the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 and 0.870 with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 0.924 obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy caver of study area.

  12. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  13. USING COMBINATION OF PLANAR AND HEIGHT FEATURES FOR DETECTING BUILT-UP AREAS FROM HIGH-RESOLUTION STEREO IMAGERY

    Directory of Open Access Journals (Sweden)

    F. Peng

    2017-09-01

    Full Text Available Within-class spectral variation and between-class spectral confusion in remotely sensed imagery degrades the performance of built-up area detection when using planar texture, shape, and spectral features. Terrain slope and building height are often used to optimize the results, but extracted from auxiliary data (e.g. LIDAR data, DSM. Moreover, the auxiliary data must be acquired around the same time as image acquisition. Otherwise, built-up area detection accuracy is affected. Stereo imagery incorporates both planar and height information unlike single remotely sensed images. Stereo imagery acquired by many satellites (e.g. Worldview-4, Pleiades-HR, ALOS-PRISM, and ZY-3 can be used as data source of identifying built-up areas. A new method of identifying high-accuracy built-up areas from stereo imagery is achieved by using a combination of planar and height features. The digital surface model (DSM and digital orthophoto map (DOM are first generated from stereo images. Then, height values of above-ground objects (e.g. buildings are calculated from the DSM, and used to obtain raw built-up areas. Other raw built-up areas are obtained from the DOM using Pantex and Gabor, respectively. Final high-accuracy built-up area results are achieved from these raw built-up areas using the decision level fusion. Experimental results show that accurate built-up areas can be achieved from stereo imagery. The height information used in the proposed method is derived from stereo imagery itself, with no need to require auxiliary height data (e.g. LIDAR data. The proposed method is suitable for spaceborne and airborne stereo pairs and triplets.

  14. Using Combination of Planar and Height Features for Detecting Built-Up Areas from High-Resolution Stereo Imagery

    Science.gov (United States)

    Peng, F.; Cai, X.; Tan, W.

    2017-09-01

    Within-class spectral variation and between-class spectral confusion in remotely sensed imagery degrades the performance of built-up area detection when using planar texture, shape, and spectral features. Terrain slope and building height are often used to optimize the results, but extracted from auxiliary data (e.g. LIDAR data, DSM). Moreover, the auxiliary data must be acquired around the same time as image acquisition. Otherwise, built-up area detection accuracy is affected. Stereo imagery incorporates both planar and height information unlike single remotely sensed images. Stereo imagery acquired by many satellites (e.g. Worldview-4, Pleiades-HR, ALOS-PRISM, and ZY-3) can be used as data source of identifying built-up areas. A new method of identifying high-accuracy built-up areas from stereo imagery is achieved by using a combination of planar and height features. The digital surface model (DSM) and digital orthophoto map (DOM) are first generated from stereo images. Then, height values of above-ground objects (e.g. buildings) are calculated from the DSM, and used to obtain raw built-up areas. Other raw built-up areas are obtained from the DOM using Pantex and Gabor, respectively. Final high-accuracy built-up area results are achieved from these raw built-up areas using the decision level fusion. Experimental results show that accurate built-up areas can be achieved from stereo imagery. The height information used in the proposed method is derived from stereo imagery itself, with no need to require auxiliary height data (e.g. LIDAR data). The proposed method is suitable for spaceborne and airborne stereo pairs and triplets.

  15. Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach

    Science.gov (United States)

    Wong, Colman Ching Chi; Liu, Chun-Ho

    2013-04-01

    Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient

  16. Challenges in Defining Tsunami Wave Height

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Mungov, G.; Sweeney, A.; Arcos, N. P.

    2017-12-01

    The NOAA National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 Mw earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height, NCEI will consider adding an additional field for the maximum peak measurement.

  17. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  18. Combined Treatment with Gonadotropin-releasing Hormone Analog and Anabolic Steroid Hormone Increased Pubertal Height Gain and Adult Height in Boys with Early Puberty for Height

    OpenAIRE

    Tanaka, Toshiaki; Naiki, Yasuhiro; Horikawa, Reiko

    2012-01-01

    Twenty-one boys with a height of 135 cm or less at onset of puberty were treated with a combination of GnRH analog and anabolic steroid hormone, and their pubertal height gain and adult height were compared with those of untreated 29 boys who enter puberty below 135 cm. The mean age at the start of treatment with a GnRH analog, leuprorelin acetate depot (Leuplin?) was 12.3 yr, a mean of 1.3 yr after the onset of puberty, and GnRH analog was administered every 3 to 5 wk thereafter for a mean d...

  19. Combined Usage of TanDEM-X and CryoSat-2 for Generating a High Resolution Digital Elevation Model of Fast Moving Ice Stream and Its Application in Grounding Line Estimation

    Directory of Open Access Journals (Sweden)

    Seung Hee Kim

    2017-02-01

    Full Text Available Definite surface topography of ice provides fundamental information for most glaciologists to study climate change. However, the topography at the marginal region of ice sheets exhibits noticeable dynamical changes from fast flow velocity and large thinning rates; thus, it is difficult to determine instantaneous topography. In this study, the surface topography of the marginal region of Thwaites Glacier in the Amundsen Sector of West Antarctica, where ice melting and thinning are prevailing, is extracted using TanDEM-X interferometry in combination with data from the near-coincident CryoSat-2 radar altimeter. The absolute height offset, which has been a persistent problem in applying the interferometry technique for generating DEMs, is determined by linear least-squares fitting between the uncorrected TanDEM-X heights and reliable reference heights from CryoSat-2. The reliable heights are rigorously selected at locations of high normalized cross-correlation and low RMS heights between segments of data points. The generated digital elevation model with the resolved absolute height offset is assessed with airborne laser altimeter data from the Operation IceBridge that were acquired five months after TanDEM-X and show high correlation with biases of 3.19 m and −4.31 m at the grounding zone and over the ice sheet surface, respectively. For practical application of the generated DEM, grounding line estimation assuming hydrostatic equilibrium was carried out, and the feasibility was seen through comparison with the previous grounding line. Finally, it is expected that the combination of interferometry and altimetery with similar datasets can be applied at regions even with a lack of ground control points.

  20. Shielding effect of snow cover on indoor exposure due to terrestrial gamma radiation

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo; Kobayashi, Sadayoshi

    1988-01-01

    Many people in the world live in high latitude region where it snows frequently in winter. When snow covers the ground, it considerably reduces the external exposure from the radiation sources in the ground. Therefore, the evaluation of snow effect on exposure due to terrestrial gamma radiation is necessary to obtain the population dose as well as the absorbed dose in air in snowy regions. Especially the shielding effect on indoor exposure is essentially important in the assessment of population dose since most individuals spend a large portion of their time indoors. The snow effect, however, has been rather neglected or assumed to be the same both indoors and outdoors in the population dose calculation. Snow has been recognized only as a cause of temporal variation of outdoor exposure rate due firstly to radon daughters deposition with snow fall and secondly to the shielding effect of snow cover. This paper describes an approach to the evaluation of shielding effect of snow cover on exposure and introduces population dose calculation as numerical example for the people who live in wooden houses in Japan

  1. Effect of firing conditions & release height on terminal performance of submunitions and conditions for optimum height of release

    Directory of Open Access Journals (Sweden)

    L.K. Gite

    2017-06-01

    Full Text Available Submunitions should exhibit optimum terminal performance at target end when released from certain pre-determined height. Selection of an optimum height of release of the submunitions depends on the terminal parameters like forward throw, remaining velocity, impact angle and flight time. In this paper, the effects of initial firing conditions and height of release on terminal performance of submunitions discussed in detail. For different height of release, the relation between range and forward throw is also established & validated for a number of firing altitude and rocket configurations.

  2. Differences in breeding bird assemblages related to reed canary grass cover cover and forest structure on the Upper Mississippi River

    Science.gov (United States)

    Kirsch, Eileen M.; Gray, Brian R.

    2017-01-01

    Floodplain forest of the Upper Mississippi River provides habitat for an abundant and diverse breeding bird community. However, reed canary grass Phalaris arundinacea invasion is a serious threat to the future condition of this forest. Reed canary grass is a well-known aggressive invader of wetland systems in the northern tier states of the conterminous United States. Aided by altered flow regimes and nutrient inputs from agriculture, reed canary grass has formed dense stands in canopy gaps and forest edges, retarding tree regeneration. We sampled vegetation and breeding birds in Upper Mississippi River floodplain forest edge and interior areas to 1) measure reed canary grass cover and 2) evaluate whether the breeding bird assemblage responded to differences in reed canary grass cover. Reed canary grass was found far into forest interiors, and its cover was similar between interior and edge sites. Bird assemblages differed between areas with more or less reed canary grass cover (.53% cover breakpoint). Common yellowthroat Geothlypis trichas, black-capped chickadee Parus atricapillus, and rose-breasted grosbeak Pheucticus ludovicianus were more common and American redstart Setophaga ruticilla, great crested flycatcher Myiarchus crinitus, and Baltimore oriole Icterus galbula were less common in sites with more reed canary grass cover. Bird diversity and abundance were similar between sites with different reed canary grass cover. A stronger divergence in bird assemblages was associated with ground cover ,15%, resulting from prolonged spring flooding. These sites hosted more prothonotary warbler Protonotaria citrea, but they had reduced bird abundance and diversity compared to other sites. Our results indicate that frequently flooded sites may be important for prothonotary warblers and that bird assemblages shift in response to reed canary grass invasion.

  3. Intelligent systems for KSC ground processing

    Science.gov (United States)

    Heard, Astrid E.

    1992-01-01

    The ground processing and launch of Shuttle vehicles and their payloads is the primary task of Kennedy Space Center. It is a process which is largely manual and contains little inherent automation. Business is conducted today much as it was during previous NASA programs such as Apollo. In light of new programs and decreasing budgets, NASA must find more cost effective ways in which to do business while retaining the quality and safety of activities. Advanced technologies including artificial intelligence could cut manpower and processing time. This paper is an overview of the research and development in Al technology at KSC with descriptions of the systems which have been implemented, as well as a few under development which are promising additions to ground processing software. Projects discussed cover many facets of ground processing activities, including computer sustaining engineering, subsystem monitor and diagnosis tools and launch team assistants. The deployed Al applications have proven an effectiveness which has helped to demonstrate the benefits of utilizing intelligent software in the ground processing task.

  4. Evaluation of the Barr & Stroud FP15 and Criterion 400 laser dendrometers for measuring upper stem diameters and heights

    Science.gov (United States)

    Michael S. Williams; Kenneth L. Cormier; Ronald G. Briggs; Donald L. Martinez

    1999-01-01

    Calibrated Barr & Stroud FP15 and Criterion 400 laser dendrometers were tested for reliability in measuring upper stem diameters and heights under typical field conditions. Data were collected in the Black Hills National Forest, which covers parts of South Dakota and Wyoming in the United States. Mixed effects models were employed to account for differences between...

  5. Height predicts jealousy differently for men and women

    NARCIS (Netherlands)

    Buunk, Abraham P.; Park, Justin H.; Zurriaga, Rosario; Klavina, Liga; Massar, Karlijn

    Because male height is associated with attractiveness, dominance, and reproductive success, taller men may be less jealous. And because female height has a curvilinear relationship with health and reproductive success (with average-height females having the advantages), female height may have a

  6. Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?

    Directory of Open Access Journals (Sweden)

    E. M. Veenendaal

    2015-05-01

    Full Text Available Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna–forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna–forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three

  7. [Natural regeneration of young Excentrodendron hsienmu in karst mountainous region in Southwest Guangxi, China].

    Science.gov (United States)

    Ou, Zhi-Yang; Su, Zhi-Yao; Peng, Yu-Hua; Hu, Qin-Fei; Huang, Xiao-Rong

    2013-09-01

    A field survey was conducted in the karst mountainous region in Pingguo County of Southwest Guangxi, China to explore the structural characteristics, spatial distribution pattern, and growth dynamics of young Excentrodendron hsienmu as well as the main environmental factors affecting the natural regeneration of the E. hsienmu population. In the study area, the population structure of the young E. hsienmu was stable, and exhibited a clumped spatial pattern for the seedlings and seedling sprouts. The ground diameter growth and height growth of the young E. hsienmu presented the same variation trend, i. e., the ground diameter increased with increasing height. The ground diameter growth and height growth of the E. hsienmu seedlings were limited by population density, i. e., decreased with increasing population density. The correlation analysis showed that the trees more than 2.5 m in height and the shrubs were the major stand factors affecting the natural regeneration of young E. hsienmu, while the herbs had no significant correlation with the regeneration. The percentage of covered rock also had no significant effects on the regeneration. Kruskal-Wallis ANOVA showed that there existed significant differences in the height and ground diameter of young E. hsienmu at different slope degrees and slope positions. The population density, height, and ground diameter had significant differences across slope aspects. The natural regeneration of young E. hsienmu was comprehensively affected by the species biological characteristics, intraspecific competition, interspecific competition, heterogeneous habitat, and anthropogenic disturbances.

  8. Above-ground biomass models for Seabuckthorn (Hippophae salicifolia) in Mustang District, Nepal

    DEFF Research Database (Denmark)

    Rajchal, Rajesh; Meilby, Henrik

    2013-01-01

    weight of fruit and oven-dry weight of wood (stem and branches) and leaves were measured and used as a basis for developing biomass models. Diameters of the trees were measured at 30 cm above ground whereas the heights were measured in terms of the total tree height (m). Among several models tested......, the models suggested for local use were: ln(woody biomass, oven-dry, kg) = -3.083 + 2.436 ln(diameter, cm), ln (fruit biomass, fresh, kg) = -3.237 + 1.346 ln(diameter, cm) and ln(leaf biomass, oven-dry, kg) = -4.013 + 1.403 ln(Diameter, cm) with adjusted coefficients of determination of 0.99, 0.73 and 0.......91 for wood, fruit, and leaves, respectively. The models suggested for a slightly broader range of environmental conditions were: ln (woody biomass, oven-dry, kg) = -3.277 + 0.924 ln(diameter2 × height), ln(Fruit biomass, fresh, kg) = -3.146 + 0.485 ln(diameter2 × height) and ln(leaf biomass, oven-dry, kg...

  9. [Fall from height--surprising autopsy diagnosis in primarily unclear initial situations].

    Science.gov (United States)

    Schyma, Christian; Doberentz, Elke; Madea, Burkhard

    2012-01-01

    External post-mortem examination and first police assessments are often not consistent with subsequent autopsy results. This is all the more surprising the more serious the injuries found at autopsy are. Such discrepancies result especially from an absence of gross external injuries, as demonstrated by four examples. A 42-year-old, externally uninjured male was found at night time in a helpless condition in the street and died in spite of resuscitation. Autopsy showed severe polytrauma with traumatic brain injury and lesions of the thoracic and abdominal organs. A jump from the third floor was identified as the cause. At dawn, a twenty-year-old male was found dead on the grounds of the adjacent house. Because of the blood-covered head the police assumed a traumatic head injury by strike impact. The external examination revealed only abrasions on the forehead and to a minor extent on the back. At autopsy a midfacial fracture, a trauma of the thorax and abdomen and fractures of the spine and pelvis were detected. Afterwards investigations showed that the man, intoxicated by alcohol, had fallen from the flat roof of a multistoried house. A 77-year-old man was found unconscious on his terrace at day time; a cerebral seizure was assumed. He was transferred to emergency care where he died. The corpse was externally inconspicuous. Autopsy revealed serious traumatic injuries of the brain, thorax, abdomen and pelvis, which could be explained by a fall from the balcony. A 47-year-old homeless person without any external injuries was found dead in a barn. An alcohol intoxication was assumed. At autopsy severe injuries of the brain and cervical spine were found which were the result of a fall from a height of 5 m. On the basis of an external post-mortem examination alone gross blunt force trauma cannot be reliably excluded.

  10. The association between adult attained height and sitting height with mortality in the European Prospective Investigation into Cancer and Nutrition (EPIC.

    Directory of Open Access Journals (Sweden)

    Norie Sawada

    Full Text Available Adult height and sitting height may reflect genetic and environmental factors, including early life nutrition, physical and social environments. Previous studies have reported divergent associations for height and chronic disease mortality, with positive associations observed for cancer mortality but inverse associations for circulatory disease mortality. Sitting height might be more strongly associated with insulin resistance; however, data on sitting height and mortality is sparse. Using the European Prospective Investigation into Cancer and Nutrition study, a prospective cohort of 409,748 individuals, we examined adult height and sitting height in relation to all-cause and cause-specific mortality. Height was measured in the majority of participants; sitting height was measured in ~253,000 participants. During an average of 12.5 years of follow-up, 29,810 deaths (11,931 from cancer and 7,346 from circulatory disease were identified. Hazard ratios (HR with 95% confidence intervals (CI for death were calculated using multivariable Cox regression within quintiles of height. Height was positively associated with cancer mortality (men: HRQ5 vs. Q1 = 1.11, 95%CI = 1.00-1.24; women: HRQ5 vs. Q1 = 1.17, 95%CI = 1.07-1.28. In contrast, height was inversely associated with circulatory disease mortality (men: HRQ5 vs. Q1 = 0.63, 95%CI = 0.56-0.71; women: HRQ5 vs. Q1 = 0.81, 95%CI = 0.70-0.93. Although sitting height was not associated with cancer mortality, it was inversely associated with circulatory disease (men: HRQ5 vs. Q1 = 0.64, 95%CI = 0.55-0.75; women: HRQ5 vs. Q1 = 0.60, 95%CI = 0.49-0.74 and respiratory disease mortality (men: HRQ5 vs. Q1 = 0.45, 95%CI = 0.28-0.71; women: HRQ5 vs. Q1 = 0.60, 95%CI = 0.40-0.89. We observed opposing effects of height on cancer and circulatory disease mortality. Sitting height was inversely associated with circulatory disease and respiratory disease mortality.

  11. Citrus-orchard ground harbours a diverse, well-established and abundant ground-dwelling spider fauna

    Energy Technology Data Exchange (ETDEWEB)

    Monzo, C.; Molla, O.; Vanaclocha, P.; Monton, H.; Melic, A.; Castanera, P.; Urbaneja, A.

    2011-07-01

    Ground-dwelling spider assemblages comprise one of the most representative predatory groups to be found in many crops. There is some evidence of the role that ground-dwelling spiders play in controlling certain citrus pests; however, there are almost no studies about the abundance and composition of this predatory group in citrus orchards. A three-year survey conducted using pitfall traps in three citrus orchards in Eastern Spain yielded more than five-thousand ground-dwelling spiders belonging to more than 50 species and 20 families. Wandering families such as Lycosidae, Gnaphosidae and Zodariidae were the most numerous in terms of captures. The generalist predator Pardosa cribata Simon (Araneae: Lycosidae) was the most common species, representing a quarter of all captures, followed by Zodarion cesari Pekar. (Araneae: Zodariidae) and Trachyzelotes fuscipes (Koch) (Araneae: Gnaphosidae). Spiders were active throughout the year with a peak population in summer. The species abundance data for the three spider assemblages sampled fitted a log normal statistical model which is consistent with a well-established community. The presence of a cover crop provided higher abundance of alternative prey and consequently higher abundance and diversity of ground-dwelling spiders. This work demonstrates that the citrus-orchard ground harbours a diverse and abundant ground-dwelling spider fauna, which is also active throughout the year. A challenge for future studies will be to establish conservation management strategies for these predators, that will improve biological control of those citrus pests that inhabit or spend part of their life cycle on the orchard floor. (Author) 49 refs.

  12. Genetically Determined Height and Coronary Artery Disease

    NARCIS (Netherlands)

    Nelson, Christopher P.; Hamby, Stephen E.; Saleheen, Danish; Hopewell, Jenna C.; Zeng, Lingyao; Assimes, Themistocles L.; Kanoni, Stavroula; Willenborg, Christina; Burgess, Stephen; Amouyel, Phillipe; Anand, Sonia; Blankenberg, Stefan; Boehm, Bernhard O.; Clarke, Robert J.; Collins, Rory; Dedoussis, George; Farrall, Martin; Franks, Paul W.; Groop, Leif; Hall, Alistair S.; Hamsten, Anders; Hengstenberg, Christian; Hovingh, G. Kees; Ingelsson, Erik; Kathiresan, Sekar; Kee, Frank; König, Inke R.; Kooner, Jaspal; Lehtimäki, Terho; März, Winifred; McPherson, Ruth; Metspalu, Andres; Nieminen, Markku S.; O'Donnell, Christopher J.; Palmer, Colin N. A.; Peters, Annette; Perola, Markus; Reilly, Muredach P.; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Shah, Svati H.; Schreiber, Stefan; Siegbahn, Agneta; Thorsteinsdottir, Unnur; Veronesi, Giovani; Wareham, Nicholas; Willer, Cristen J.; Zalloua, Pierre A.; Erdmann, Jeanette

    2015-01-01

    BACKGROUND The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested

  13. Vegetation assessment of forests of Pagan Island, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Pratt, Linda W.

    2011-01-01

    As part of the Marianas Expedition Wildlife Surveys-2010, the forest vegetation of the island of Pagan, Commonwealth of the Northern Mariana Islands (CNMI), was sampled with a series of systematic plots along 13 transects established for monitoring forest bird populations. Shrubland and grassland were also sampled in the northern half of the island. Data collected were woody plant density, tree diameter at breast height, woody plant density in height classes below 2 m, and ground cover measured with the point-intercept method. Coconut forests (Cocos nucifera) were generally found to have low native tree diversity, little regeneration of trees and shrubs in the forest understory, and little live ground cover. The sole exception was a coconut-dominated forest of the northeast side of the island that exhibited high native tree diversity and a large number of young native trees in the understory. Ironwood (Casuarina equisetifolia) forests on the northern half of the island were nearly monocultures with almost no trees other than ironwood in vegetation plots, few woody plants in the understory, and low ground cover dominated by native ferns. Mixed native forests of both northern and southern sections of the island had a diversity of native tree species in both the canopy and the sparse understory. Ground cover of native forests in the north had a mix of native and alien species, but that of the southern half of the island was dominated by native ferns and woody plants.

  14. Engineered soil covers for management of salt impacted sites

    International Nuclear Information System (INIS)

    Sweeney, D.A.; Tratch, D.J.

    2005-01-01

    The use of engineered soil cover systems to mitigate environmental impacts from tailings and waste rock piles is becoming an accepted practice. This paper presented design concepts for soil covers related to reclamation practices in the mining industry as an effective risk management practice at salt impacted sites. Research and field programs have demonstrated that a layered engineered soil cover can reduce or eliminate infiltration. Key components of the system included re-establishing surface vegetation to balance precipitation fluxes with evapotranspiration potential, and design of a capillary break below the rooting zone to minimize deeper seated infiltration. It was anticipated that the incorporation of a vegetation cover and a capillary break would minimize infiltration into the waste rock or tailing pile and reduce the generation of acid rock drainage (ARD). Design of a layered soil cover requires the incorporation of meteorological data, moisture retention characteristics of the impacted soils, and proposed engineered cover materials. Performance of the soil cover was predicted using a finite element model combined with meteorological data from the site area, unsaturated soil properties of the parent sub-surface soils and potential covered materials. The soil cover design consisted of re-vegetation and a loose clay cover overlying a compacted till layer. The design was conducted for an off site release of salt impacted pasture land adjacent to a former highway maintenance yard. The model predicted minimal infiltration during high precipitation events and no infiltration during low precipitation events. Results indicated that the proposed soil cover would enable re-establishment of a productive agricultural ground cover, as well as minimizing the potential for additional salt migration. It was concluded that further research and development is needed to ensure that the cover system is an acceptable method for long-term risk management. 17 refs., 5 figs

  15. Investigation and Analysis on Ground Cover Plants Resources of Urban Green Space in Hunan%湖南城市园林绿地地被植物资源调查分析

    Institute of Scientific and Technical Information of China (English)

    肖姣娣

    2014-01-01

    为筛选出湖南省优良乡土地被植物,采用现场实地调查与查询相关文献资料的方式对湖南省典型城市园林绿地地被植物种类及利用形式进行研究。结果表明:湖南省共有地被植物243种,隶属77科177属,其中低矮灌木类地被植物87种、草本类地被植物103种、矮竹类地被植物10种、藤本地被植物33种、蕨类地被植物8种,主要以花坛、花境、色带、绿篱的形式应用在城市公共空间,疏林、密林、园林道路边界,坡地、水岸、建筑及围墙周边。%In order to screen native ground cover plants of Hunan province ,species and application form of typi-cal groundcover plants of urban greenspace were investigated by field investigation and consulting relevant lit-eratures .The results showed that there were 243 species of ground cover plants in Hunan province ,which be-longed to 77 families and 177 genus ,including 87 species of low bush ,103 species of herb ,10 species of bam-boo ,33 species of liana and 8 species of fern .They were applied in urban public space ,open forest ,dense forest , garden road boundary ,slope ,water-front and surrounding ground of buildings and walls with the form of flower bed ,flower border ,ribbon and hedge .

  16. Exchange of moisture between atmosphere and ground regarding tritium transfer

    International Nuclear Information System (INIS)

    Bunnenberg, C.

    1980-09-01

    Two measuring equipment have been developed in the framework of this study which fulfill important conditions to avoid microclimatic interferences during measurement by using site-specific ground samples and embedding these in the ground surface. The beta-absorption lysimeter allows the detection of a minimum deposit height of 0.001 mm in a 1 mm sample layer. The conductivity moisture probe is to measure the moisture diffusion within the first 80 mm of the upper ground with a vertical spacial resolution of 2 mm. It is possible to measure a minimum water content increase of 0.02 wt% per 2 mm ground layer using this probe. The influences of single microclimatic parameter on condensation and evaporation were investigated and a transport equation was developed. Investigations in the Negev proved the application ability of the measuring equipment. The application of the transport equation showed very good agreement with the measured values. When the ground surface starts to cool in the afternoon, there is a countercurrent moisture transport from the atmosphere and the deeper ground layers which lead to a higher water content in the upper ground layer. At about 50 mm depth there is an overlapping layer of the two moisture flows which remains almost constant over the 24 h cycle. This exchange zone of atmospheric humidity and ground water must be paid great attention with regard to HTO transfer. (orig./HP) [de

  17. 14 CFR 29.87 - Height-velocity envelope.

    Science.gov (United States)

    2010-01-01

    ... Category A engine isolation requirements, the height-velocity envelope for complete power failure must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a...

  18. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review

    Science.gov (United States)

    Dong, Chunyu

    2018-06-01

    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  19. "Fire Moss" Cover and Function in Severely Burned Forests of the Western United States

    Science.gov (United States)

    Grover, H.; Doherty, K.; Sieg, C.; Robichaud, P. R.; Fulé, P. Z.; Bowker, M.

    2017-12-01

    With wildfires increasing in severity and extent throughout the Western United States, land managers need new tools to stabilize recently burned ecosystems. "Fire moss" consists of three species, Ceratodon purpureus, Funaria hygrometrica, and Bryum argentum. These mosses colonize burned landscapes quickly, aggregate soils, have extremely high water holding capacity, and can be grown rapidly ex-situ. In this talk, I will focus on our efforts to understand how Fire Moss naturally interacts with severely burned landscapes. We examined 14 fires in Arizona, New Mexico, Washington, and Idaho selecting a range of times since fire, and stratified plots within each wildfire by winter insolation and elevation. At 75+ plots we measured understory plant cover, ground cover, Fire Moss cover, and Fire Moss reproductive effort. On plots in the Southwest, we measured a suite of soil characteristics on moss covered and adjacent bare soil including aggregate stability, shear strength, compressional strength, and infiltration rates. Moss cover ranged from 0-75% with a mean of 16% across all plots and was inversely related to insolation (R2 = .32, p = stability and infiltration rates as adjacent bare ground. These results will allow us to model locations where Fire Moss will naturally increase postfire hillslope soil stability, locations for targeting moss restoration efforts, and suggest that Fire Moss could be a valuable tool to mitigate post wildfire erosion.

  20. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections

    International Nuclear Information System (INIS)

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-01-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. - Highlights: • The pollutant transport strongly depends on the roof-height arrangement. • The non-uniform canyons also remove the pollutants through their lateral openings. • The higher the upstream wall, the more pollutant is removed through the top. • The lateral coherent structures correlate

  1. Methodological proposal of grounding in commercial and industrial installations

    International Nuclear Information System (INIS)

    Rodriguez Araya, Michael Eduardo

    2013-01-01

    A methodology is elaborated for the design of methods of commercial and industrial grounding. International standards and technical documents related with the grounding in the electrical design are studied in commercial and industrial installations. The design techniques of earthing systems are investigated. The topics that were covered to develop a design proposal have been: the analysis of resistivity, soil types, calculations of step voltages, contact and voltage of mesh. A field visit is programmed in nearby of the Escuela de Ingenieria Electrica at the Universidad de Costa Rica, to realize the pertinent measurements of resistivity for the design of a hypothetical grounding mesh for a future installation. The tellurometer (GP-1 model) of the brand Amprobe Instrument was used to provide the data from ground resistivity. The equipment has used four electrodes and has implemented the Wenner method for calculations. A earthing design is realized in a company in the industrial or commercial sector of Costa Rica. The earthing designs are realized to protect equipments found at the site and are affected by conditions such as: atmospheric overloads, transients, sags, interruptions or any event that may to affect the quality of the energy. The resistivity of an ground has depended largely on the amount of moisture that has presented. A correct earthing system should cover the greater amount of the total area of the building, and to comply with the voltage of mesh necessary for the design has been optimal. The design of any earthing has depended on unique characteristics that have been indicated by the location of industry [es

  2. Wuthering Heights

    NARCIS (Netherlands)

    Bronte, Emily

    2005-01-01

    Wuthering Heights tells the story of a romance between two youngsters: Catherine Earnshaw and an orphan boy, Heathcliff. After she rejects him for a boy from a better background he develops a lust for revenge that takes over his life. In attempting to win her back and destroy those he blames for his

  3. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada

    Directory of Open Access Journals (Sweden)

    Frédérique C. Pivot

    2012-07-01

    Full Text Available RADARSAT and ERS-2 data collected at multiple incidence angles are used to characterize the seasonal variations in the backscatter of snow-covered landscapes in the northern Hudson Bay Lowlands during the winters of 1997/98 and 1998/99. The study evaluates the usefulness of C-band SAR systems for retrieving the snow water equivalent under dry snow conditions in the forest–tundra ecotone. The backscatter values are compared against ground measurements at six sampling sites, which are taken to be representative of the land-cover types found in the region. The contribution of dry snow to the radar return is evident when frost penetrates the first 20 cm of soil. Only then does the backscatter respond positively to changes in snow water equivalent, at least in the open and forested areas near the coast, where 1-dB increases in backscatter for each approximate 5–10 mm of accumulated water equivalent are observed at 20–31° incidence angles. Further inland, the backscatter shows either no change or a negative change with snow accumulation, which suggests that the radar signal there is dominated by ground surface scattering (e.g., fen when not attenuated by vegetation (e.g., forested and transition. With high-frequency ground-penetrating radar, we demonstrate the presence of a 10–20-cm layer of black ice underneath the snow cover, which causes the reduced radar returns (−15 dB and less observed in the inland fen. A correlation between the backscattering and the snow water equivalent cannot be determined due to insufficient observations at similar incidence angles. To establish a relationship between the snow water equivalent and the backscatter, only images acquired with similar incidence angles should be used, and they must be corrected for both vegetation and ground effects.

  4. Mixing height measurements from UHF wind profiling radar

    Energy Technology Data Exchange (ETDEWEB)

    Angevine, W.M.; Grimsdell, A.W. [CIRES, Univ. of Colorado, and NOAA Aeronomy Lab., Boulder, Colorado (United States)

    1997-10-01

    Mixing height in convective boundary layers can be detected by wind profiling radars (profilers) operating at or near 915 MHZ. We have made such measurements in a variety of settings including Alabama in 1992; Nova Scotia, Canada, during the North Atlantic Regional Experiment (NARE) 1993; Tennessee during the Southern Oxidant Study (SOS) 1994; near a 450 m tower in Wisconsin in 1995; and extensively in Illinois during the Flatland95, `96, and `97 experiments, as well as continuous operations at the Flatland Atmospheric Observatory. Profiler mixing height measurements, like all measurements, are subject to some limitations. The most important of these are due to rainfall, minimum height, and height resolution. Profilers are very sensitive to rain, which dominates the reflectivity and prevents the mixing height from being detected. Because the best height resolution is currently 60 m and the minimum height is 120-150 m AGL, the profiler is not suited for detecting mixing height in stable or nocturnal boundary layers. Problems may also arise in very dry or cold environments. (au) 12 refs.

  5. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  6. Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film

    International Nuclear Information System (INIS)

    Wang Rui; Guo Li-Xin; Wang An-Qi; Wu Zhen-Sen

    2011-01-01

    The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional (1D) rough sea surface with the Pierson—Moskowitz (PM) spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic (EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments. (fundamental areas of phenomenology(including applications))

  7. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  8. Soil cover by natural trees in agroforestry systems

    Science.gov (United States)

    Diaz-Ambrona, C. G. H.; Almoguera Millán, C.; Tarquis Alfonso, A.

    2009-04-01

    The dehesa is common agroforestry system in the Iberian Peninsula. These open oak parklands with silvo-pastoral use cover about two million hectares. Traditionally annual pastures have been grazed by cows, sheep and also goats while acorns feed Iberian pig diet. Evergreen oak (Quercus ilex L.) has other uses as fuelwood collection and folder after tree pruning. The hypothesis of this work is that tree density and canopy depend on soil types. We using the spanish GIS called SIGPAC to download the images of dehesa in areas with different soil types. True colour images were restoring to a binary code, previously canopy colour range was selected. Soil cover by tree canopy was calculated and number of trees. Processing result was comparable to real data. With these data we have applied a dynamic simulation model Dehesa to determine evergreen oak acorn and annual pasture production. The model Dehesa is divided into five submodels: Climate, Soil, Evergreen oak, Pasture and Grazing. The first three require the inputs: (i) daily weather data (maximum and minimum temperatures, precipitation and solar radiation); (ii) the soil input parameters for three horizons (thickness, field capacity, permanent wilting point, and bulk density); and (iii) the tree characterization of the dehesa (tree density, canopy diameter and height, and diameter of the trunk). The influence of tree on pasture potential production is inversely proportional to the canopy cover. Acorn production increase with tree canopy cover until stabilizing itself, and will decrease if density becomes too high (more than 80% soil tree cover) at that point there is competition between the trees. Main driving force for dehesa productivity is soil type for pasture, and tree cover for acorn production. Highest pasture productivity was obtained on soil Dystric Planosol (Alfisol), Dystric Cambisol and Chromo-calcic-luvisol, these soils only cover 22.4% of southwest of the Iberian peninssula. Lowest productivity was

  9. Remote Sensing of Cloud Top Heights Using the Research Scanning Polarimeter

    Science.gov (United States)

    Sinclair, Kenneth; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej

    2015-01-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASAs SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSPs unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTHs with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi

  10. 14 CFR 27.87 - Height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... applicable power failure condition in paragraph (b) of this section, a limiting height-speed envelope must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-speed envelope. 27.87 Section 27.87... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.87 Height-speed envelope. (a) If there is any...

  11. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff

    Science.gov (United States)

    de Baets, S.; Poesen, J.

    2009-04-01

    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  12. Birth order progressively affects childhood height.

    Science.gov (United States)

    Savage, Tim; Derraik, José G B; Miles, Harriet L; Mouat, Fran; Cutfield, Wayne S; Hofman, Paul L

    2013-09-01

    There is evidence suggesting that first-born children and adults are anthropometrically different to later-borns. Thus, we aimed to assess whether birth order was associated with changes in growth and metabolism in childhood. We studied 312 healthy prepubertal children: 157 first-borns and 155 later-borns. Children were aged 3-10 years, born 37-41 weeks gestation, and of birth weight appropriate-for-gestational-age. Clinical assessments included measurement of children's height, weight, fasting lipid and hormonal profiles and DEXA-derived body composition. First-borns were taller than later-borns (P < 0·0001), even when adjusted for parents' heights (0·31 vs 0·03 SDS; P = 0·001). There was an incremental height decrease with increasing birth order, so that first-borns were taller than second-borns (P < 0·001), who were in turn taller than third-borns (P = 0·007). Further, among sibling pairs both height SDS (P = 0·009) and adjusted height SDS (P < 0·0001) were lower in second- vs first-born children. Consistent with differences in stature, first- (P = 0·043) and second-borns (P = 0·003) had higher IGF-I concentrations than third-borns. Both first- (P < 0·001) and second-borns (P = 0·004) also had reduced abdominal adiposity (lower android fat to gynoid fat ratio) when compared with third-borns. Other parameters of adiposity and blood lipids were unaffected by birth order. First-borns were taller than later-born children, with an incremental height reduction from first to third birth order. These differences were present after correction for genetic height, and associated to some extent with alterations in plasma IGF-I. Our findings strengthen the evidence that birth order is associated with phenotypic changes in childhood. © 2013 John Wiley & Sons Ltd.

  13. Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors Over Southeast Asia

    Science.gov (United States)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae; Tsay, Si-Chee; Welton, Ellsworth J.; Wang, Sheng-Hsiang; Chen, Wei-Nai

    2016-01-01

    This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against space borne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74 (8184) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.81.0 km). Eliminating the requirement of CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64 of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.

  14. A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling whe...... programming that allows flexibility in modeling the workforce. Parameters allow a planner to determine the level of demand coverage that best fulfills the requirements of the organization. Results are presented from several diverse real-life ground handling instances.......We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling where...

  15. An analysis of the relationship between bodily injury severity and fall height in victims of fatal falls from height

    Directory of Open Access Journals (Sweden)

    Grzegorz Teresiński

    2017-03-01

    Full Text Available Aim of the study : One of the basic issues discussed in forensic literature regarding falls from a height is determination of fall heights and differentiation between suicidal and accidental falls. The aim of the study was to verify the usefulness of the available methods for the purposes of forensic expertises. Material and methods : The study encompassed fatalities of falls from a height whose autopsies were performed in the Department of Forensic Medicine in Lublin. Results : Similarly to other authors, the severity of injuries was assessed using the Abbreviated Injury Scale (AIS and injury severity score (ISS. The study findings demonstrated a statistically significant correlation between the fall height and the severity of injuries according to ISS and a statistically significant difference in fall heights between the groups of accidents and suicides.

  16. Local- and landscape-scale land cover affects microclimate and water use in urban gardens.

    Science.gov (United States)

    Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M

    2018-01-01

    Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the

  17. Calibration of angle response of a NaI(Tl) airborne spectrometer to 137Cs and 60Co point sources on the ground

    International Nuclear Information System (INIS)

    Liu Xinhua; Zhang Yongxing; Gu Renkang; Shen Ensheng

    1998-01-01

    The angle response function F(φ,θ) is a basic calibration of airborne spectrometers in airborne surveying for nuclear emergency monitoring. The author describes the method and results of angle response function calibration of a NaI(Tl) airborne spectrometer for 137 Cs and 60 Co point sources on the ground, with less than 20% uncertainty. By using the results, the calibration factors of the NaI(Tl) airborne spectrometer fixed in Yun-5 plane at different flying heights are calculated by numerical integral method for 137 Cs uniform area source on ground surface, with less than 25% uncertainty. The minimum detection limits (L D ) are calculated at 90 m and 120 m flying heights in the range of over Shijiazhuang airborne surveying for 137 Cs uniform area source on ground surface to be 3.83 and 5.62 kBq/m 2 , respectively

  18. Simulations of the Holuhraun eruption 2014 with WRF-Chem and evaluation with satellite and ground based SO2 measurements

    Science.gov (United States)

    Hirtl, Marcus; Arnold-Arias, Delia; Flandorfer, Claudia; Maurer, Christian; Mantovani, Simone; Natali, Stefano

    2016-04-01

    Volcanic eruptions, with gas or/and particle emissions, directly influence our environment, with special significance when they either occur near inhabited regions or are transported towards them. In addition to the well-known affectation of air traffic, with large economic impacts, the ground touching plumes can lead directly to an influence of soil, water and even to a decrease of air quality. The eruption of Holuhraun in August 2014 in central Iceland is the country's largest lava and gas eruption since the Lakagígar eruption in 1783. Nevertheless, very little volcanic ash was produced. The main atmospheric threat from this event was the SO2 pollution that frequently violated the Icelandic National Air Quality Standards in many population centers. However, the SO2 affectation was not limited to Iceland but extended to mainland Europe. The on-line coupled model WRF-Chem is used to simulate the dispersion of SO2 for this event that affected the central European regions. The volcanic emissions are considered in addition to the anthropogenic and biogenic ground sources at European scale. A modified version of WRF-Chem version 4.1 is used in order to use time depending injection heights and mass fluxes which were obtained from in situ observations. WRF-Chem uses complex gas- (RADM2) and aerosol- (MADE-SORGAM) chemistry and is operated on a European domain (12 km resolution), and a nested grid covering the Alpine region (4 km resolution). The study is showing the evaluation of the model simulations with satellite and ground based measurement data of SO2. The analysis is conducted on a data management platform, which is currently developed in the frame of the ESA-funded project TAMP "Technology and Atmospheric Mission Platform": it provides comprehensive functionalities to visualize and numerically compare data from different sources (model, satellite and ground-measurements).

  19. Interpreting forest biome productivity and cover utilizing nested scales of image resolution and biogeographical analysis

    Science.gov (United States)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE

    1988-01-01

    The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.

  20. Soybean growth and yield after single tillage and species mixture of cover plants

    Directory of Open Access Journals (Sweden)

    Gislaine Piccolo de Lima

    2012-10-01

    Full Text Available The use of cover crops is important for the agricultural crop and soil management in order to improve the system and, consequently, to increase yield. Therefore, the present study analyzed the effect of crop residues of black oat (Avena strigosa Schreb. (BO and a cocktail (CO of BO, forage turnip (Raphanus sativus L. (FT and common vetch (Vicia sativa L. (V on the emergence speed index (ESI, seedling emergence speed (SES plant height and soybean yield in different intervals between cover crop desiccation with glyphosate 480 (3 L ha-1 and BRS 232 cultivar sowing. Plots of 5 x 2.5 m with 1 m of border received four treatments with BO cover crops and four with CO as well as a control for each cover crop, at random, with five replications. The plots were desiccated in intervals of 1, 10, 20 and 30 days before soybean seeding. The harvest was manual while yield was adjusted to 13% of moisture content. The experimental design was completely randomized with splitplots and means compared by the Scott and Knott test at 5% of significance. The results showed that CO of cover crops can be recommended for soybean to obtain a more vigorous seedling emergence, from 10 days after cover crop desiccation.

  1. The IXV Ground Segment design, implementation and operations

    Science.gov (United States)

    Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.

  2. Height and Breast Cancer Risk

    DEFF Research Database (Denmark)

    Zhang, Ben; Shu, Xiao-Ou; Delahanty, Ryan J

    2015-01-01

    BACKGROUND: Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the association remain unclear. METHODS: We performed a meta......-analysis to investigate associations between height and breast cancer risk using data from 159 prospective cohorts totaling 5216302 women, including 113178 events. In a consortium with individual-level data from 46325 case patients and 42482 control patients, we conducted a Mendelian randomization analysis using...... a genetic score that comprised 168 height-associated variants as an instrument. This association was further evaluated in a second consortium using summary statistics data from 16003 case patients and 41335 control patients. RESULTS: The pooled relative risk of breast cancer was 1.17 (95% confidence...

  3. Multi-temporal and Dual-polarization Interferometric SAR for Land Cover Type Classification

    Directory of Open Access Journals (Sweden)

    WANG Xinshuang

    2015-05-01

    Full Text Available In order to study SAR land cover classification method, this paper uses the multi-dimensional combination of temporal,polarization and InSAR data. The area covered by space borne data of ALOS PALSAR in Xunke County,Heilongjiang Province was chosen as test site. A land cover classification technique of SVM based on multi-temporal, multi-polarization and InSAR data had been proposed, using the sensitivity to land cover type of multi-temporal, multi-polarization SAR data and InSAR measurements, and combing time series characteristic of backscatter coefficient and correlation coefficient to identify ground objects. The results showed the problem of confusion between forest land and urban construction land can be nicely solved, using the correlation coefficient between HH and HV, and also combing the selected temporal, polarization and InSAR characteristics. The land cover classification result with higher accuracy is gotten using the classification algorithm proposed in this paper.

  4. Long term ground movement of TRISTAN synchrotron

    International Nuclear Information System (INIS)

    Endo, K.; Ohsawa, Y.; Miyahara, M.

    1989-01-01

    The long term ground movement is estimated through the geological survey before a big accelerator is planned. For the case of TRISTAN-MR (main ring), its site was surveyed to reflect the underground information to the building prior to the construction. The movement of the synchrotron magnet mainly results from the structure of the tunnel. If an individual movement of the magnet exceeds a certain threshold limit, it gives a significant effect on the particle behavior in a synchrotron. Height of the quadrupole magnets were observed periodically during past two years at the TRISTAN-MR and their height differences along the 3 km circumference of the accelerator ring were decomposed into the Fourier components depicting the causes of the movements. Results shows the movement of the tunnel foundation which was also observed by the simultaneous measurement of both magnets and fiducial marks on the tunnel wall. The long term movement of the magnets is summarized with the geological survey prior to construction. 1 ref., 6 figs., 1 tab

  5. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz

    2010-01-01

    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  6. Quantifying Structural and Compositional Changes in Forest Cover in NW Yunnan, China

    Science.gov (United States)

    Hakkenberg, C.

    2012-12-01

    NW Yunnan, China is a region renowned for high levels of biodiversity, endemism and genetically distinct refugial plant populations. It is also a focal area for China's national reforestation efforts like the Natural Forest Protection Program (NFPP), intended to control erosion in the Upper Yangtze watershed. As part of a larger project to investigate the role of reforestation programs in facilitating the emergence of increasingly species-rich forest communities on a previously degraded and depauperate land mosaic in montane SW China, this study uses a series of Landsat TM images to quantify the spatial pattern and rate of structural and compositional change in forests recovering from medium to large-scale disturbances in the area over the past 25 years. Beyond the fundamental need to assess the outcomes of one of the world's largest reforestation programs, this research offers approaches to confronting two critical methodological issues: (1) techniques for characterizing subtle changes in the nature of vegetation cover, and (2) reducing change detection uncertainty due to persistent cloud cover and shadow. To address difficulties in accurately assessing the structure and composition of vegetative regrowth, a biophysical model was parameterized with over 300 ground-truthed canopy cover assessment points to determine pattern and rate of long-term vegetation changes. To combat pervasive shadow and cloud cover, an interactive generalized additive model (GAM) model based on topographic and spatial predictors was used to overcome some of the constraints of satellite image analysis in Himalayan regions characterized by extreme topography and extensive cloud cover during the summer monsoon. The change detection is assessed for accuracy using ground-truthed observations in a variety of forest cover types and topographic positions. Results indicate effectiveness in reducing the areal extent of unclassified regions and increasing total change detection accuracy. In addition

  7. An Improved Iterative Fitting Method to Estimate Nocturnal Residual Layer Height

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-08-01

    Full Text Available The planetary boundary layer (PBL is an atmospheric region near the Earth’s surface. It is significant for weather forecasting and for the study of air quality and climate. In this study, the top of nocturnal residual layers—which are what remain of the daytime mixing layer—are estimated by an elastic backscatter Lidar in Wuhan (30.5°N, 114.4°E, a city in Central China. The ideal profile fitting method is widely applied to determine the nocturnal residual layer height (RLH from Lidar data. However, the method is seriously affected by an optical thick layer. Thus, we propose an improved iterative fitting method to eliminate the optical thick layer effect on RLH detection using Lidar. Two typical case studies observed by elastic Lidar are presented to demonstrate the theory and advantage of the proposed method. Results of case analysis indicate that the improved method is more practical and precise than profile-fitting, gradient, and wavelet covariance transform method in terms of nocturnal RLH evaluation under low cloud conditions. Long-term observations of RLH performed with ideal profile fitting and improved methods were carried out in Wuhan from 28 May 2011 to 17 June 2016. Comparisons of Lidar-derived RLHs with the two types of methods verify that the improved solution is practical. Statistical analysis of a six-year Lidar signal was conducted to reveal the monthly average values of nocturnal RLH in Wuhan. A clear RLH monthly cycle with a maximum mean height of about 1.8 km above ground level was observed in August, and a minimum height of about 0.7 km was observed in January. The variation in monthly mean RLH displays an obvious quarterly dependence, which coincides with the annual variation in local surface temperature.

  8. Estimated erosion rate at the SRP burial ground

    International Nuclear Information System (INIS)

    Horton, J.H.; Wilhite, E.L.

    1978-04-01

    The rate of soil erosion at the Savannah River Plant (SRP) burial ground can be calculated by means of the universal soil loss equation. Erosion rates estimated by the equation are more suitable for long-term prediction than those which could be measured with a reasonable effort in field studies. The predicted erosion rate at the SRP burial ground ranges from 0.0007 cm/year under stable forest cover to 0.38 cm/year if farmed with cultivated crops. These values correspond to 170,000 and 320 years, respectively, to expose waste buried 4 ft deep

  9. Effects of different ground surface on rye habit and yield

    International Nuclear Information System (INIS)

    Doroszewski, A.

    1995-01-01

    Rye was sown in pots imbeded into the ground, in non-competitive conditions. Plot differed only with kinds of ground surfaces (grass, bare soil) which affected the spectral composition of reflected sunlight. Plants growing on the ground covered with grass received more radiation in the range of far red than plants growing on bare soil. The plants from both plots reacted differently to the environmental conditions by creating different habits. Main shoots of rye growing in the neighbourhood of grass had been much taller than the rye growing on the bare soil; its internodes were longer and its heads heavier and heads had more grain

  10. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 2: Validation

    Directory of Open Access Journals (Sweden)

    Marc Zebisch

    2013-03-01

    Full Text Available The performance of a new algorithm for binary snow cover monitoring based on Moderate Resolution Imaging Spectroradiometer (MODIS satellite images at 250 m resolution is validated using snow cover maps (SCA based on Landsat 7 ETM+ images and in situ snow depth measurements from ground stations in selected test sites in Central Europe. The advantages of the proposed algorithm are the improved ground resolution of 250 m and the near real-time availability with respect to the 500 m standard National Aeronautics and Space Administration (NASA MODIS snow products (MOD10 and MYD10. It allows a more accurate snow cover monitoring at a local scale, especially in mountainous areas characterized by large landscape heterogeneity. The near real-time delivery makes the product valuable as input for hydrological models, e.g., for flood forecast. A comparison to sixteen snow cover maps derived from Landsat ETM/ETM+ showed an overall accuracy of 88.1%, which increases to 93.6% in areas outside of forests. A comparison of the SCA derived from the proposed algorithm with standard MODIS products, MYD10 and MOD10, indicates an agreement of around 85.4% with major discrepancies in forested areas. The validation of MODIS snow cover maps with 148 in situ snow depth measurements shows an accuracy ranging from 94% to around 82%, where the lowest accuracies is found in very rugged terrain restricted to in situ stations along north facing slopes, which lie in shadow in winter during the early morning acquisition.

  11. Grounding and shielding circuits and interference

    CERN Document Server

    Morrison, Ralph

    2016-01-01

    Applies basic field behavior in circuit design and demonstrates how it relates to grounding and shielding requirements and techniques in circuit design This book connects the fundamentals of electromagnetic theory to the problems of interference in all types of electronic design. The text covers power distribution in facilities, mixing of analog and digital circuitry, circuit board layout at high clock rates, and meeting radiation and susceptibility standards. The author examines the grounding and shielding requirements and techniques in circuit design and applies basic physics to circuit behavior. The sixth edition of this book has been updated with new material added throughout the chapters where appropriate. The presentation of the book has also been rearranged in order to reflect the current trends in the field.

  12. Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.).

    Science.gov (United States)

    Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan

    2018-04-15

    Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.

  13. Preliminary Interpretation of the Ground Magnetic Survey around ...

    African Journals Online (AJOL)

    Ground magnetic profiling was carried out around Oguta Lake in Imo State, Southeastern Nigeria. Seventy-Six stations in three profiles were established at five hundred meters intervals on major roads in the study area, A total distance of thirty five kilometers was covered. The result indicates that the highest field reading ...

  14. Wave Height Estimation from Shadowing Based on the Acquired X-Band Marine Radar Images in Coastal Area

    Directory of Open Access Journals (Sweden)

    Yanbo Wei

    2017-08-01

    Full Text Available In this paper, the retrieving significant wave height from X-band marine radar images based on shadow statistics is investigated, since the retrieving accuracy can not be seriously affected by environmental factors and the method has the advantage of without any external reference to calibrate. However, the accuracy of the significant wave height estimated from the radar image acquired at the near-shore area is not ideal. To solve this problem, the effect of water depth is considered in the theoretical derivation of estimated wave height based on the sea surface slope. And then, an improved retrieving algorithm which is suitable for both in deep water area and shallow water area is developed. In addition, the radar data are sparsely processed in advance in order to achieve high quality edge image for the requirement of shadow statistic algorithm, since the high resolution radar images will lead to angle-blurred for the image edge detection and time-consuming in the estimation of sea surface slope. The data acquired from Pingtan Test Base in Fujian Province were used to verify the effectiveness of the proposed algorithm. The experimental results demonstrate that the improved method which takes into account the water depth is more efficient and effective and has better performance for retrieving significant wave height in the shallow water area, compared to the in situ buoy data as the ground truth and that of the existing shadow statistic method.

  15. Biomechanics of Thoracolumbar Burst and Chance-Type Fractures during Fall from Height

    Science.gov (United States)

    Ivancic, Paul C.

    2014-01-01

    Study Design In vitro biomechanical study. Objective To investigate the biomechanics of thoracolumbar burst and Chance-type fractures during fall from height. Methods Our model consisted of a three-vertebra human thoracolumbar specimen (n = 4) stabilized with muscle force replication and mounted within an impact dummy. Each specimen was subjected to a single fall from an average height of 2.1 m with average velocity at impact of 6.4 m/s. Biomechanical responses were determined using impact load data combined with high-speed movie analyses. Injuries to the middle vertebra of each spinal segment were evaluated using imaging and dissection. Results Average peak compressive forces occurred within 10 milliseconds of impact and reached 40.3 kN at the ground, 7.1 kN at the lower vertebra, and 3.6 kN at the upper vertebra. Subsequently, average peak flexion (55.0 degrees) and tensile forces (0.7 kN upper vertebra, 0.3 kN lower vertebra) occurred between 43.0 and 60.0 milliseconds. The middle vertebra of all specimens sustained pedicle and endplate fractures with comminution, bursting, and reduced height of its vertebral body. Chance-type fractures were observed consisting of a horizontal split fracture through the laminae and pedicles extending anteriorly through the vertebral body. Conclusions We hypothesize that the compression fractures of the pedicles and vertebral body together with burst fracture occurred at the time of peak spinal compression, 10 milliseconds. Subsequently, the onset of Chance-type fracture occurred at 20 milliseconds through the already fractured and weakened pedicles and vertebral body due to flexion-distraction and a forward shifting spinal axis of rotation. PMID:25083357

  16. Evolutionary perspectives on human height variation

    NARCIS (Netherlands)

    Stulp, Gert; Barrett, Louise

    Human height is a highly variable trait, both within and between populations, has a high heritability, and influences the manner in which people behave and are treated in society. Although we know much about human height, this information has rarely been brought together in a comprehensive,

  17. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  18. The association between adult attained height and sitting height with mortality in the European prospective investigation into cancer and nutrition (EPIC)

    NARCIS (Netherlands)

    Sawada, Norie; Wark, Petra A.; Merritt, Melissa A.; Tsugane, Shoichiro; Ward, Heather A.; Rinaldi, Sabina; Weiderpass, Elisabete; Dartois, Laureen; His, Mathilde; Boutron-Ruault, Marie Christine; Turzanski-Fortner, Renée; Kaaks, Rudolf; Overvad, Kim; Redondo, María Luisa; Travier, Noemie; Molina-Portillo, Elena; Dorronsoro, Miren; Cirera, Lluis; Ardanaz, Eva; Perez-Cornago, Aurora; Trichopoulou, Antonia; Lagiou, Pagona; Valanou, Elissavet; Masala, Giovanna; Pala, Valeria; Peeters, Petra H M; Van Der Schouw, Yvonne T.; Melander, Olle; Manjer, Jonas; Silva, Marisa Da; Skeie, Guri; Tjønneland, Anne; Olsen, Anja; Gunter, Marc J.; Riboli, Elio; Cross, Amanda J.

    2017-01-01

    Adult height and sitting height may reflect genetic and environmental factors, including early life nutrition, physical and social environments. Previous studies have reported divergent associations for height and chronic disease mortality, with positive associations observed for cancer mortality

  19. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Sangiorgi, G., E-mail: giorgia.sangiorgi1@unimib.it [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Ferrero, L.; Perrone, M.G.; Bolzacchini, E. [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Duane, M. [Institute for Environment and Sustainability, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy); Larsen, B.R. [Institute for Health and Consumer Protection, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy)

    2011-12-15

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 {+-} 20 min. - Graphical abstract: Display Omitted Highlights: > Experimental vertical profiles of HCs and particle concentration by tethered balloon. > Effect of mixing height on the vertical distribution of HCs and particles. > Effect of tropospheric reactivity on vertical profiles of HCs. > Pseudo-first order kinetic reaction of HCs in convective systems. - Vertical transport and photochemical loss of HCs below and above the mixing height were studied by means of a novel and simple approach.

  20. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections.

    Science.gov (United States)

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-08-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fracture behavior of rubber powder modified rubber blends applied for conveying belt top covers

    OpenAIRE

    Euchler, Eric; Stocek, Radek; Gehde, Michael; Bunzel, Jörg-Michael; Saal, Wolfgang; Kipscholl, Reinhold

    2016-01-01

    The aim of this study is concentrated on the experimental investigation of wear resistance of rubber powder modified rubber blends. Styrene-Butadiene-Rubber (SBR) blends applied for conveying belt top covers have been modified by ground rubber (rubber powder) based on SBR. We theoretically described the rubber wear mechanism due to loading conditions occurring at conveyor belts in the field, to simulate wear behavior of top cover rubber materials. An own developed testing equipment based on g...

  2. Efeito da cobertura vegetal sobre a pérola-da-terra (Hemiptera: Margarodidae na cultura da videira = Effect of cover crops on brazilian ground pearl (Hemiptera: Margarodidae in vineyards

    Directory of Open Access Journals (Sweden)

    Marcos Botton

    2010-10-01

    Full Text Available O uso da cobertura vegetal em vinhedos é uma prática empregada paraminimizar a erosão e melhorar as qualidades químicas e físicas do solo. Neste trabalho, foi avaliado o efeito de coberturas vegetais sobre a população da pérola-da-terra Eurhizococcus brasiliensis (Hemiptera: Margarodidae na cultura da videira. No primeiro experimento, o vinhedo foi mantido sem cobertura vegetal por meio da aplicação trimestral do herbicida glifosato comparado com o uso de vegetação espontânea, durante o ano, de vegetação espontânea, no verão, e de aveia preta no inverno. No segundo experimento foi avaliado o efeito da mucuna-preta (Stizolobium aterrimum cultivada no vinhedo durante o verão comparado com a vegetação espontânea. No primeiro experimento, a população da pérolada-terra nas raízes de plantas de videira foi maior em áreas mantidas sem cobertura vegetal emostrou-se semelhante em áreas onde se manteve a vegetação espontânea, ao longo do ano, e com aveia preta no inverno e vegetação espontânea no verão. A infestação das plantas de videira em áreas onde foi empregada a mucuna-preta durante o verão foi equivalente à da vegetação espontânea. S. aterrimum foi registrada pela primeira vez como hospedeira de E. brasiliensis. The use of cover crops is an important strategy to reduce erosion and improve chemical and physical soil properties. In this work, we evaluate the effect of cover crops to reduce Brazilian ground pearl Eurhizococcus brasiliensis (Hemiptera: Margarodidae infestation in vineyards. In the first experiment, glyphosate was sprayed each three months to avoid cover crops. This treatment was compared with naturally occurring vegetation during the year and the use of Avena sativa in the winter. In a second experiment, Stizolobium aterrimum was cultivated during the summer compared with naturally occurringvegetation. Brazilian ground pearl population was higher in glyphosate sprayed areas than where cover

  3. Land-Cover Change in the East Central Texas Plains, 1973-2000

    Science.gov (United States)

    Karstensen, Krista A.

    2009-01-01

    ancillary data such as census statistics and published literature are used. The sample block data are then incorporated into statistical analyses to generate an overall change matrix for the ecoregion. For example, the scalar statistics can show the spatial extent of change per cover type with time, as well as the land-cover transformations from one land-cover type to another type occurring with time. Field data of the sample blocks include direct measurements of land cover, particularly ground-survey data collected for training and validation of image classifications (Loveland and others, 2002). The field experience allows for additional observations of the character and condition of the landscape, assistance in sample block interpretation, ground truthing of Landsat imagery, and helps determine the driving forces of change identified in an ecoregion. Management and maintenance of field data, beyond initial use for training and validation of image classifications, is important as improved methods for image classification are developed, and as present-day data become part of the historical legacy for which studies of land-cover change in the future will depend (Loveland and others, 2002). The results illustrate that there is no single profile of land-cover change; instead, there is significant geographic variability that results from land uses within ecoregions continuously adapting to the resource potential created by various environmental, technological, and socioeconomic factors.

  4. Rangeland monitoring using remote sensing: comparison of cover estimates from field measurements and image analysis

    Directory of Open Access Journals (Sweden)

    Ammon Boswell

    2017-01-01

    Full Text Available Rangeland monitoring is important for evaluating and assessing semi-arid plant communities. Remote sensing provides an effective tool for rapidly and accurately assessing rangeland vegetation and other surface attributes such as bare soil and rock. The purpose of this study was to evaluate the efficacy of remote sensing as a surrogate for field-based sampling techniques in detecting ground cover features (i.e., trees, shrubs, herbaceous cover, litter, surface, and comparing results with field-based measurements collected by the Utah Division of Wildlife Resources Range Trent Program. In the field, five 152 m long transects were used to sample plant, litter, rock, and bare-ground cover using the Daubenmire ocular estimate method. At the same location of each field plot, a 4-band (R,G,B,NIR, 25 cm pixel resolution, remotely sensed image was taken from a fixed-wing aircraft. Each image was spectrally classified producing 4 cover classes (tree, shrub, herbaceous, surface. No significant differences were detected between canopy cover collected remotely and in the field for tree (P = 0.652, shrub (P = 0.800, and herbaceous vegetation (P = 0.258. Surface cover was higher in field plots (P < 0.001, likely in response to the methods used to sample surface features by field crews. Accurately classifying vegetation and other features from remote sensed information can improve the efficiency of collecting vegetation and surface data. This information can also be used to improve data collection frequency for rangeland monitoring and to efficiently quantify ecological succession patterns.

  5. Case study on ground surface deformation induced by CO2 injection into coal seam

    International Nuclear Information System (INIS)

    Li Hong; Tang Chun'an

    2010-01-01

    To monitor a geomechanical response of injecting CO 2 into relatively shallow coal seams, tiltmeters were set as an array to cover the ground surface area surrounding the injection well, and to measure the ground deformation during a well fracturing stimulation and a short-term CO 2 injection test. In this paper, an attempt to establish a quantitative relationship between the in-situ coal swelling and the corresponding ground deformation was made by means of numerical simulation study. (authors)

  6. A Decade of Annual National Land Cover Products - the Cropland Data Layer

    Science.gov (United States)

    Mueller, R.; Johnson, D. M.; Sandborn, A.; Willis, P.; Ebinger, L.; Yang, Z.; Seffrin, R.; Boryan, C. G.; Hardin, R.

    2017-12-01

    The Cropland Data Layer (CDL) is a national land cover product produced by the US Department of Agriculture/National Agricultural Statistics Service (NASS) to assess planted crop acreage on an annual basis. The 2017 CDL product serves as the decadal anniversary for the mapping of conterminous US agriculture. The CDL is a supervised land cover classification derived from medium resolution Earth observing satellites that capture crop phenology throughout the growing season, leveraging confidentially held ground reference information from the USDA Farm Service Agency (FSA) as training data. The CDL currently uses ancillary geospatial data from the US Geological Survey's National Land Cover Database (NLCD), and Imperviousness and Forest Canopy layers as well as the National Elevation Dataset as training for the non-agricultural domain. Accuracy assessments are documented and released annually with metadata publication. NASS is currently reprocessing the 2008 and 2009 CDL products to 30m resolution. They were originally processed and released at 56m based on the Resourcesat-1 AWiFS sensor. Additionally, best practices learned from processing the FSA ground reference data were applied to the historical training set, providing an enhanced classification at 30m. The release of these reprocessed products in the fall of 2017, along with the 2017 CDL annual product will be discussed and will complete a decade's worth of annual 30m products. Discussions of change and trend analytics as well as partnerships with key industry stakeholders will be displayed on the evolution and improvements made to this decadal geospatial crop specific land cover product.

  7. Height, selected genetic markers and prostate cancer risk

    DEFF Research Database (Denmark)

    Lophatananon, Artitaya; Stewart-Brown, Sarah; Kote-Jarai, Zsofia

    2017-01-01

    Background:Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer.Methods:We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases...... and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions.Results:The results suggest that height is associated with high-grade prostate cancer risk. Men with height >180 cm...... are at a 22% increased risk as compared to men with height prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer...

  8. Preliminary Back-Analysis of the Height of Mud Brick Fortifications Based on Geoarchaeological Data at Tell El-Retaba Site in Egypt

    Directory of Open Access Journals (Sweden)

    Trzciński Jerzy

    2017-12-01

    Full Text Available The Tell el-Retaba archaeological site is located at Wadi Tumilat, a shallow valley running from the Nile Delta to the Bitter Lakes. In ancient times, a route connecting Egypt with Syria-Palestine ran across the site. In the 13th century BC, during the rule of Ramesses II, a fortress surrounded by “Wall 1” was erected and in times of Ramesses III in the 12th century BC, a larger fortress surrounded by “Wall 2” and “Wall 3” was constructed. Using the finite element method (FEM and ZSoil 2D&3D software, the wall heights were modelled and their soil-structure interaction was analysed. Strength of the wall depended on size and strength of bricks and mortar, brickwork, wall shape and foundation. Ancient builders using mud bricks must have known from practical experience the essentials of a wall construction, in which the height to width ratio was at 1.75 to 1.85. Moreover, they must have related the engineering properties of the material with the height of the construction and its purpose. The width to height ratio must have been used and related by ancient Egyptians to the ground resistance. Modelling has shown that, at wall width of 5 m, the foundation would have lost its stability at wall height of 13–14 m and bricks from the lower part of the wall would be destroyed. According to the undertaken assumptions, in order to retain stability, the wall height must have been limited to about 8–9 m.

  9. Soil parameter retrieval under vegetation cover using SAR polarimetery

    Energy Technology Data Exchange (ETDEWEB)

    Jagdhuber, Thomas

    2012-07-01

    Soil conditions under vegetation cover and their spatial and temporal variations from point to catchment scale are crucial for understanding hydrological processes within the vadose zone, for managing irrigation and consequently maximizing yield by precision farming. Soil moisture and soil roughness are the key parameters that characterize the soil status. In order to monitor their spatial and temporal variability on large scales, remote sensing techniques are required. Therefore the determination of soil parameters under vegetation cover was approached in this thesis by means of (multi-angular) polarimetric SAR acquisitions at a longer wavelength (L-band, {lambda}{sub c}=23cm). In this thesis, the penetration capabilities of L-band are combined with newly developed (multi-angular) polarimetric decomposition techniques to separate the different scattering contributions, which are occurring in vegetation and on ground. Subsequently the ground components are inverted to estimate the soil characteristics. The novel (multi-angular) polarimetric decomposition techniques for soil parameter retrieval are physically-based, computationally inexpensive and can be solved analytically without any a priori knowledge. Therefore they can be applied without test site calibration directly to agricultural areas. The developed algorithms are validated with fully polarimetric SAR data acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR) for three different study areas in Germany. The achieved results reveal inversion rates up to 99% for the soil moisture and soil roughness retrieval in agricultural areas. However, in forested areas the inversion rate drops significantly for most of the algorithms, because the inversion in forests is invalid for the applied scattering models at L-band. The validation against simultaneously acquired field measurements indicates an estimation accuracy (root mean square error) of 5-10vol.% for the soil moisture (range of in situ

  10. Countermovement depth - a variable which clarifies the relationship between the maximum power output and height of a vertical jump.

    Science.gov (United States)

    Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew

    2018-01-01

    The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.

  11. Effect of earthquake and tsunami. Ground motion and tsunami observed at nuclear power station

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou

    2012-01-01

    Fukushima Daiichi and Daini Nuclear Power Stations (NPSs) were struck by the earthquake off the pacific coast in the Tohoku District, which occurred at 14:46 on March 11, 2011. Afterwards, tsunamis struck the Tohoku District. In terms of the earthquake observed at the Fukushima NPSs, the acceleration response spectra of the earthquake movement observed on the basic board of reactor buildings exceeded the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss for partial periodic bands at the Fukushima Daiichi NPS. As for the Fukushima Daini NPS, the acceleration response spectra of the earthquake movement observed on the basic board of the reactor buildings was below the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss. Areas inundated by Tsunami at each NPS were investigated and tsunami inversion analysis was made to build tsunami source model to reproduce tide record, tsunami height, crustal movement and inundated area, based on tsunami observation records in the wide areas from Hokkaido to Chiba prefectures. Tsunami heights of Fukushima Daiichi and Daini NPSs were recalculated as O.P. +13m and +9m respectively and tsunami peak height difference was attributed to the extent of superposition of tsunami waves of tsunami earthquake type of wave source in the area along interplane trench off the coast in the Fukushima prefecture and interplane earthquake type of wave source in rather deep interplate area off the coast in the Miyagi prefecture. (T. Tanaka)

  12. 14 CFR 29.1517 - Limiting height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of... following power failure, the range of heights and its variation with forward speed must be established...

  13. Investigating airborne low frequency GPR antenna-ground coupling through modelling

    CSIR Research Space (South Africa)

    Vogt, D

    2013-10-01

    Full Text Available . The plane of symmetry is a perfect electric conductor. The models are run using two rock materials: granite and dolerite, from the catalogue in Vogt (2000). These two materials cover the range of electrical properties expected for Karoo sediments... that is refracted into the ground away from the antenna travels along the surface at a greater velocity than the propagation in the ground, causing a propagation shape that has “ears” which are flatter than the typical spherical propagation in the earth...

  14. Characterization of subarctic vegetation using ground based remote sensing methods

    Science.gov (United States)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future work will involve scaling up from the 50 plots through the use of data collected from two unmanned aerial systems (UAS), as

  15. Seasonal Variation in Exposure Level of Types A and B Ultraviolet ...

    African Journals Online (AJOL)

    the sun in the sky, cloud cover, and height from ground level affected the amount of UVR received, but the ... the influence dosage of UVR.[5-8] Taking into ... industrial development of Arak city, the specific climate of the region, and given the ...

  16. Coefficients of resistance to cold-air-drainage winds on a grass-covered slope

    International Nuclear Information System (INIS)

    Komoda, H.; Kobayashi, T.; Mori, M.; Kaneko, T.

    2006-01-01

    The cold-air-drainage (CAD) wind is one of the most familiar local winds in Japan. It is driven by the surplus of density, or the deficit of potential temperature produced by radiative cooling in the surface air layer on a slope, and is resisted by the ground surface and the surrounding atmosphere. The coefficients of resistance of the ground surface and the surrounding atmosphere change with the CAD wind speed. The observations made on a grass-covered slope of Mt. Kuju showed that the resistance exerted by the surrounding atmosphere was much larger than that by the ground surface, and the sum of two coefficients of resistance decreased by one order of magnitude when the CAD wind speed exceeded some critical value

  17. Adding Theoretical Grounding to Grounded Theory: Toward Multi-Grounded Theory

    OpenAIRE

    Göran Goldkuhl; Stefan Cronholm

    2010-01-01

    The purpose of this paper is to challenge some of the cornerstones of the grounded theory approach and propose an extended and alternative approach for data analysis and theory development, which the authors call multi-grounded theory (MGT). A multi-grounded theory is not only empirically grounded; it is also grounded in other ways. Three different grounding processes are acknowledged: theoretical, empirical, and internal grounding. The authors go beyond the pure inductivist approach in GT an...

  18. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    Science.gov (United States)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  19. Soft computing methods for geoidal height transformation

    Science.gov (United States)

    Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.

    2009-07-01

    Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.

  20. Near-ground cooling efficacies of trees and high-albedo surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen Michael [Univ. of California, Berkeley, CA (United States)

    1997-05-01

    Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequentlyproposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object’s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by 0.25 perturbs the object’s surface temperature by -1 to +2 K. Comparing a tree’s canopy-to-air convection to the reduction in ground-to-air convection induced by tree shading of the ground indicates that the presence of a tree can either increase or decrease solar heating of ground-level air. The tree’s net effect depends on the extent to which solar heating of the canopy is dissipated by evaporation, and on the fraction of air heated by the canopy that flows downward and mixes with the ground-level air. A two-month lysimeter (plant-weighing) experiment was conducted to measure instantaneous rates of water loss from a tree under various conditions of weather and soil-moisture. Calculations of canopy-to-air convection and the reduction of ground-to-air convection based on this data indicate that canopy-induced heating would negate shadowinduced cooling if approximately 45% of the canopy-heated air mixed with ground level air. This critical fraction is comparable to typical downward mixing

  1. Car Covers | Outdoor Covers Canada

    OpenAIRE

    Covers, Outdoor

    2018-01-01

    Protect your car from the elements with Ultimate Touch Car Cover. The multi-layer non-woven fabric is soft on the finish and offers 4 seasons all weather protection.https://outdoorcovers.ca/car-covers/

  2. The Sine Method: An Alternative Height Measurement Technique

    Science.gov (United States)

    Don C. Bragg; Lee E. Frelich; Robert T. Leverett; Will Blozan; Dale J. Luthringer

    2011-01-01

    Height is one of the most important dimensions of trees, but few observers are fully aware of the consequences of the misapplication of conventional height measurement techniques. A new approach, the sine method, can improve height measurement by being less sensitive to the requirements of conventional techniques (similar triangles and the tangent method). We studied...

  3. Soil and ground cover

    International Nuclear Information System (INIS)

    Wiechen, A.; Heine, K.; Bundesanstalt fuer Milchforschung, Kiel

    1985-01-01

    The monitoring programmes set up in accordance with the directives for the surveillance of effluents from nuclear installations oblige operators of such installations to take samples of vegetation (grass) and soil twice a year at the least favourable place in the industrial plant's environment, and at a reference site, for radioactivity monitoring by gamma spectroscopy. In addition, the samples are to be examined for their Sr-90 content. Data recorded over the years show that nuclear facilities do not significantly contribute to soil and vegetation contamination with Sr-90 or Cs-137. The directives require regular interlaboratory comparisons, which are coordinated by the directing centre at Kiel. (DG) [de

  4. Linear disturbances on discontinuous permafrost: implications for thaw-induced changes to land cover and drainage patterns

    International Nuclear Information System (INIS)

    Williams, Tyler J; Quinton, William L; Baltzer, Jennifer L

    2013-01-01

    Within the zone of discontinuous permafrost, linear disturbances such as winter roads and seismic lines severely alter the hydrology, ecology, and ground thermal regime. Continued resource exploration in this environment has created a need to better understand the processes causing permafrost thaw and concomitant changes to the terrain and ground cover, in order to efficiently reduce the environmental impact of future exploration through the development of best management practices. In a peatland 50 km south of Fort Simpson, NWT, permafrost thaw and the resulting ground surface subsidence have produced water-logged linear disturbances that appear not to be regenerating permafrost, and in many cases have altered the land cover type to resemble that of a wetland bog or fen. Subsidence alters the hydrology of plateaus, developing a fill and spill drainage pattern that allows some disturbances to be hydrologically connected with adjacent wetlands via surface flow paths during periods of high water availability. The degree of initial disturbance is an important control on the extent of permafrost thaw and thus the overall potential recovery of the linear disturbance. Low impact techniques that minimize ground surface disturbance and maintain original surface topography by eliminating windrows are needed to minimize the impact of these linear disturbances. (letter)

  5. Wave plus current over a ripple-covered bed

    DEFF Research Database (Denmark)

    Fredsøe, Jørgen; Andersen, Ken Haste; Sumer, B. Mutlu

    1999-01-01

    This paper concerns the combined wave and current boundary layer flow over a ripple-covered bed, The study comprises experiments as well as a numerical modelling study: the experimental part comprises laser Doppler anemometry (LDA) velocity and turbulence measurements, and a flow-visualization st......This paper concerns the combined wave and current boundary layer flow over a ripple-covered bed, The study comprises experiments as well as a numerical modelling study: the experimental part comprises laser Doppler anemometry (LDA) velocity and turbulence measurements, and a flow......-visualization study in the laboratory with ripples, 22 cm in length, and 3.5 cm in height. One wave-alone, three current-alone, and three combined waves and current tests were conducted. The wave-velocity-to-current-velocity ratio ranges from 1 to 2.4. The orbiral-amplitude-ro-ripple-length ratio (at the bed) is 0.......41. The effect of superimposing waves on a current is to displace the velocity profile to higher elevations. The velocity profiles exhibit two "logarithmic layers", one associated with the actual roughness of the bed (the actual ripple roughness), and the other with the apparent roughness induced by the waves...

  6. Agreement between estimated and measured heights and weights ...

    African Journals Online (AJOL)

    index (BMI = kg/m2) and require accurate recording of a patient's height and weight.1. In reality, however, patients often cannot stand up straight for accurate height measurement, or are unable to step on a scale. In such cases, height and weight values are often obtained from the patient or their relatives, who either do not ...

  7. The Impact of Time Difference between Satellite Overpass and Ground Observation on Cloud Cover Performance Statistics

    Directory of Open Access Journals (Sweden)

    Jędrzej S. Bojanowski

    2014-12-01

    Full Text Available Cloud property data sets derived from passive sensors onboard the polar orbiting satellites (such as the NOAA’s Advanced Very High Resolution Radiometer have global coverage and now span a climatological time period. Synoptic surface observations (SYNOP are often used to characterize the accuracy of satellite-based cloud cover. Infrequent overpasses of polar orbiting satellites combined with the 3- or 6-h SYNOP frequency lead to collocation time differences of up to 3 h. The associated collocation error degrades the cloud cover performance statistics such as the Hanssen-Kuiper’s discriminant (HK by up to 45%. Limiting the time difference to 10 min, on the other hand, introduces a sampling error due to a lower number of corresponding satellite and SYNOP observations. This error depends on both the length of the validated time series and the SYNOP frequency. The trade-off between collocation and sampling error call for an optimum collocation time difference. It however depends on cloud cover characteristics and SYNOP frequency, and cannot be generalized. Instead, a method is presented to reconstruct the unbiased (true HK from HK affected by the collocation differences, which significantly (t-test p < 0.01 improves the validation results.

  8. Integrating the effects of forest cover on slope stability in a deterministic landslide susceptibility model (TRIGRS 2.0)

    Science.gov (United States)

    Zieher, T.; Rutzinger, M.; Bremer, M.; Meissl, G.; Geitner, C.

    2014-12-01

    The potentially stabilizing effects of forest cover in respect of slope stability have been the subject of many studies in the recent past. Hence, the effects of trees are also considered in many deterministic landslide susceptibility models. TRIGRS 2.0 (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability; USGS) is a dynamic, physically-based model designed to estimate shallow landslide susceptibility in space and time. In the original version the effects of forest cover are not considered. As for further studies in Vorarlberg (Austria) TRIGRS 2.0 is intended to be applied in selected catchments that are densely forested, the effects of trees on slope stability were implemented in the model. Besides hydrological impacts such as interception or transpiration by tree canopies and stems, root cohesion directly influences the stability of slopes especially in case of shallow landslides while the additional weight superimposed by trees is of minor relevance. Detailed data on tree positions and further attributes such as tree height and diameter at breast height were derived throughout the study area (52 km²) from high-resolution airborne laser scanning data. Different scenarios were computed for spruce (Picea abies) in the study area. Root cohesion was estimated area-wide based on published correlations between root reinforcement and distance to tree stems depending on the stem diameter at breast height. In order to account for decreasing root cohesion with depth an exponential distribution was assumed and implemented in the model. Preliminary modelling results show that forest cover can have positive effects on slope stability yet strongly depending on tree age and stand structure. This work has been conducted within C3S-ISLS, which is funded by the Austrian Climate and Energy Fund, 5th ACRP Program.

  9. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  10. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: The added value of the isotope (δ13C and δ18O CO2; δ13C and δD CH4) approach

    International Nuclear Information System (INIS)

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-01-01

    Highlights: ► Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. ► The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. ► Isotope tracking of the contribution of the methane oxidation to the CO 2 concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach (δ 13 C and δ 18 O of CO 2 ; δ 13 C and δD of CH 4 ) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO 2 levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH 4 oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH 4 is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH 4 oxidation by the methanotrophic bacteria. δ 13 C of CO 2 samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  11. Large Steel Tank Fails and Rockets to Height of 30 meters − Rupture Disc Installed Incorrectly

    OpenAIRE

    Hedlund, Frank H.; Selig, Robert S.; Kragh, Eva K.

    2016-01-01

    At a brewery, the base plate-to-shell weld seam of a 90-m3 vertical cylindrical steel tank failed catastrophically. The 4 ton tank “took off” like a rocket leaving its contents behind, and landed on a van, crushing it. The top of the tank reached a height of 30 m. The internal overpressure responsible for the failure was an estimated 60 kPa. A rupture disc rated at <50 kPa provided overpressure protection and thus prevented the tank from being covered by the European Pressure Equipment Dir...

  12. Total body height estimation using sacrum height in Anatolian Caucasians: multidetector computed tomography-based virtual anthropometry

    International Nuclear Information System (INIS)

    Karakas, Hakki Muammer; Celbis, Osman; Harma, Ahmet; Alicioglu, Banu

    2011-01-01

    Estimation of total body height is a major step when a subject has to be identified from his/her skeletal structures. In the presence of decomposed skeletons and missing bones, estimation is usually based on regression equation for intact long bones. If these bones are fragmented or missing, alternative structures must be used. In this study, the value of sacrum height (SH) in total body height (TBH) estimation was investigated in a contemporary population of adult Anatolian Caucasians. Sixty-six men (41.6 ± 14.9 years) and 43 women (41.1 ± 14.2 years) were scanned with 64-row multidetector computed tomography (MDCT) to obtain high-resolution anthropometric data. SH of midsagittal sections was electronically measured. The technique and methodology were validated on a standard skeletal model. Sacrum height was 111.2 ± 12.6 mm (77-138 mm) in men and 104.7 ± 8.2 (89-125 mm) in women. The difference between the two sexes regarding SH was significant (p < 0.0001). SH did not significantly correlate with age in men, whereas the correlation was significant in women (p < 0.03). The correlation between SH and the stature was significant in men (r = 0.427, p < 0.0001) and was insignificant in women. For men the regression equation was [Stature = (0.306 x SH)+137.9] (r = 0.54, SEE = 56.9, p < 0.0001). Sacrum height is not susceptible to sex, or to age in men. In the presence of incomplete male skeletons, SH helps to determine the stature. This study is also one of the initial applications of MDCT in virtual anthropometric research. (orig.)

  13. Total body height estimation using sacrum height in Anatolian Caucasians: multidetector computed tomography-based virtual anthropometry

    Energy Technology Data Exchange (ETDEWEB)

    Karakas, Hakki Muammer [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Radiology, Malatya (Turkey); Celbis, Osman [Inonu University Medical Faculty Turgut Ozal Medical Center, Department of Forensic Medicine, Malatya (Turkey); Harma, Ahmet [Inonu University Medical Faculty Turgut Ozal Medical Center, Department of Orthopaedics and Traumatology, Malatya (Turkey); Alicioglu, Banu [Trakya University Medical Faculty, Department of Radiology, Edirne (Turkey); Trakya University Health Sciences Institute, Department of Anatomy, Edirne (Turkey)

    2011-05-15

    Estimation of total body height is a major step when a subject has to be identified from his/her skeletal structures. In the presence of decomposed skeletons and missing bones, estimation is usually based on regression equation for intact long bones. If these bones are fragmented or missing, alternative structures must be used. In this study, the value of sacrum height (SH) in total body height (TBH) estimation was investigated in a contemporary population of adult Anatolian Caucasians. Sixty-six men (41.6 {+-} 14.9 years) and 43 women (41.1 {+-} 14.2 years) were scanned with 64-row multidetector computed tomography (MDCT) to obtain high-resolution anthropometric data. SH of midsagittal sections was electronically measured. The technique and methodology were validated on a standard skeletal model. Sacrum height was 111.2 {+-} 12.6 mm (77-138 mm) in men and 104.7 {+-} 8.2 (89-125 mm) in women. The difference between the two sexes regarding SH was significant (p < 0.0001). SH did not significantly correlate with age in men, whereas the correlation was significant in women (p < 0.03). The correlation between SH and the stature was significant in men (r = 0.427, p < 0.0001) and was insignificant in women. For men the regression equation was [Stature = (0.306 x SH)+137.9] (r = 0.54, SEE = 56.9, p < 0.0001). Sacrum height is not susceptible to sex, or to age in men. In the presence of incomplete male skeletons, SH helps to determine the stature. This study is also one of the initial applications of MDCT in virtual anthropometric research. (orig.)

  14. Monitoring of natural revegetation of Semipalatinsk nuclear testing ground

    International Nuclear Information System (INIS)

    Sultanova, B.M.

    2002-01-01

    It is well known, that monitoring of natural revegetation of Semipalatinsk test site (STS) was carried out during period 1994-2002 at test areas (Experimental field, Balapan, Degelen). In this paper the peculiarities of vegetation cover of these test areas are observed. Thus, vegetation cover of Experimental field ground in the epicentre is completely destroyed. At present there are different stages of zonal steppe communities rehabilitation: in zones with γ-irradiation 11000-14000 μR/h the revegetation is not found; on the plots with γ-irradiation 8200-10000 μR/h rare species of Artemisia frigida are found; aggregation of plant (managed from 6000-7000 μR/h is observed; At the γ-irradiation 80-200 μR/h rarefied groups of bunch grass communities similar to the zonal steppe are formed and zonal bunch grass communities developed with 18-25 μR/h. Vegetation cover of Degelen hill tops and near-mouth ground in the results of underground nuclear expulsions are completely destroyed. Here there are three main kinds of vegetation: very stony gallery areas don't almost overgrow; at technogen tops near galleries the single plants, rare field groups and unclosed micro-phyto-biocenoses of weed and adventive species (Amaranthus retroflexus, Artemisia dracunculus, Laxctuca serriola, Chorispora sibirica etc.). On the Balapan are the revegetation is limited by high radiation pollution rate. Here cenose rehabilitation is presented by Artemisia marshalliana, Spita sareptana, Festuca valresiaca). In their paper florostic and phyrocoenitic diversity of STS's flora transformation is studied. Pattern distribution and migration of radionuclides in soils and vegetation cover is represented

  15. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  16. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    Science.gov (United States)

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-04-05

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  17. Acoustic Resonance between Ground and Thermosphere

    Directory of Open Access Journals (Sweden)

    M Matsumura

    2009-04-01

    Full Text Available Ultra-low frequency acoustic waves called "acoustic gravity waves" or "infrasounds" are theoretically expected to resonate between the ground and the thermosphere. This resonance is a very important phenomenon causing the coupling of the solid Earth, neutral atmosphere, and ionospheric plasma. This acoustic resonance, however, has not been confirmed by direct observations. In this study, atmospheric perturbations on the ground and ionospheric disturbances were observed and compared with each other to confirm the existence of resonance. Atmospheric perturbations were observed with a barometer, and ionospheric disturbances were observed using the HF Doppler method. An end point of resonance is in the ionosphere, where conductivity is high and the dynamo effect occurs. Thus, geomagnetic observation is also useful, so the geomagnetic data were compared with other data. Power spectral density was calculated and averaged for each month. Peaks appeared at the theoretically expected resonance frequencies in the pressure and HF Doppler data. The frequencies of the peaks varied with the seasons. This is probably because the vertical temperature profile of the atmosphere varies with the seasons, as does the reflection height of infrasounds. These results indicate that acoustic resonance occurs frequently.

  18. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  19. Calibration and Validation of Tundra Plant Functional Type Fractional Cover Mapping

    Science.gov (United States)

    Macander, M. J.; Nelson, P.; Frost, G. V., Jr.

    2017-12-01

    Fractional cover maps are being developed for selected tundra plant functional types (PFTs) across >500,000 sq. km of arctic Alaska and adjacent Canada at 30 m resolution. Training and validation data include a field-based training dataset based on point-intercept sampling method at hundreds of plots spanning bioclimatic and geomorphic gradients. We also compiled 50 blocks of 1-5 cm resolution RGB image mosaics in Alaska (White Mountains, North Slope, and Yukon-Kuskokwim Delta) and the Yukon Territory. The mosaics and associated surface and canopy height models were developed using a consumer drone and structure from motion processing. We summarized both the in situ measurements and drone imagery to determine cover of two PFTs: Low and Tall Deciduous Shrub, and Light Fruticose/Foliose Lichen. We applied these data to train 2 m (limited extent) and 30 m (wall to wall) maps of PFT fractional cover for shrubs and lichen. Predictors for 2 m models were commercial satellite imagery such as WorldView-2 and Worldview-3, analyzed on the ABoVE Science Cloud. Predictors for 30 m models were primarily reflectance composites and spectral metrics developed from Landsat imagery, using Google Earth Engine. We compared the performance of models developed from the in situ and drone-derived training data and identify best practices to improve the performance and efficiency of arctic PFT fractional cover mapping.

  20. INFLUENCE OF BODY HEIGHT, BODY WEIGHT AND THE AGE ON THE RESULTS ACHIEVED BY MAN-MARATHONERS IN A MARATHON RACE

    Directory of Open Access Journals (Sweden)

    Naser Rašiti Naser

    2011-09-01

    Full Text Available The research is conducted on a sample of 100 successful man marathoners who has taken part in ten of the most popular marathon races. The sample of entities includes ten of the best placed marathoners in each race held during the year 2008. The aim of the research is to assess the influence of the body height, weight and the age of the marathoners on the final result in the race. The collected data is processed by the basic descriptive parameters. The entities have the average weight of 56.94 kg, with the average height of 168.98 cm, at the average age of 29.75, with the achieved average result of 2:13.23 hours in the race. In the intercorrelation matrix only one significant coefficient of correlation is obtained (p<0.001 between the body height and body weight. By the regressive analysis the influence of the predictory variables (height, weight and age on the criteria variable – sig. =0, 21 (the result of the marathon is not confirmed, which provides only 15% (RO²=.302 of analysis in the common ground of variability. The rest of 91% in analysing the total variability of the criteria variable can be ascribed to some other anthropologic characteristics, and mainly to the functional characteristics of anaerobic type.

  1. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy

    International Nuclear Information System (INIS)

    Sangiorgi, G.; Ferrero, L.; Perrone, M.G.; Bolzacchini, E.; Duane, M.; Larsen, B.R.

    2011-01-01

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 ± 20 min. - Graphical abstract: Display Omitted Highlights: → Experimental vertical profiles of HCs and particle concentration by tethered balloon. → Effect of mixing height on the vertical distribution of HCs and particles. → Effect of tropospheric reactivity on vertical profiles of HCs. → Pseudo-first order kinetic reaction of HCs in convective systems. - Vertical transport and photochemical loss of HCs below and above the mixing height were studied by means of a novel and simple approach.

  2. Effect of Cover Crops on Vertical Distribution of Leaf Area and Dry Matter of Soybean (Glycine max L. in Competition with Weeds

    Directory of Open Access Journals (Sweden)

    seyyedeh samaneh hashemi

    2017-08-01

    Full Text Available Introduction Amount and vertical distribution of leaf area are essential for estimating interception and utilization of solar radiation of crop canopies and, consequently dry matter accumulation (Valentinuz & Tollenaar, 2006. Vertical distribution of leaf area is leaf areas per horizontal layers, based on height (Boedhram et al., 2001. Above-ground biomass is one of the central traits in functional plant ecology and growth analysis. It is a key parameter in many allometric relationships (Niklas & Enquist, 2002. The vertical biomass distribution is considered to be the main determinant of competitive strength in plant species. The presence of weeds intensifies competition for light, with the effect being determined by plant height, position of the branches, and location of the maximum leaf area. So, this experiment was conducted to study the vertical distribution of leaf area and dry matter of soybean canopy in competition with weeds and cover crops. Materials and methods This experiment was performed based on complete randomized block design with 3 replications in center of Agriculture of Joybar in 2013. Soybean was considered as main crop and soybean and Persian clover (Trifolium resupinatum L., fenugreek (Trigonella foenum–graecum L., chickling pea (Lathyrus sativus L. and winter vetch (Vicia sativa L. were the cover crops. Treatments were included cover crops (Persian clover, fenugreek, chickling pea and winter vetch and cover crop planting times (simultaneous planting of soybean with cover crops and planting cover crops three weeks after planting of soybeans and also monoculture of soybeans both in weedy and weed free conditions were considered as controls. Soybean planted in 50 cm row spacing with 5 cm between plants in the same row. Each plot was included 5 rows soybeans. Cover crop inter-seeded simultaneously in the main crop. Crops were planted on 19 May 2013 for simultaneous planting of soybean. The dominant weed species were green

  3. Evaluation of airborne lidar data to predict vegetation Presence/Absence

    Science.gov (United States)

    Palaseanu-Lovejoy, M.; Nayegandhi, A.; Brock, J.; Woodman, R.; Wright, C.W.

    2009-01-01

    This study evaluates the capabilities of the Experimental Advanced Airborne Research Lidar (EAARL) in delineating vegetation assemblages in Jean Lafitte National Park, Louisiana. Five-meter-resolution grids of bare earth, canopy height, canopy-reflection ratio, and height of median energy were derived from EAARL data acquired in September 2006. Ground-truth data were collected along transects to assess species composition, canopy cover, and ground cover. To decide which model is more accurate, comparisons of general linear models and generalized additive models were conducted using conventional evaluation methods (i.e., sensitivity, specificity, Kappa statistics, and area under the curve) and two new indexes, net reclassification improvement and integrated discrimination improvement. Generalized additive models were superior to general linear models in modeling presence/absence in training vegetation categories, but no statistically significant differences between the two models were achieved in determining the classification accuracy at validation locations using conventional evaluation methods, although statistically significant improvements in net reclassifications were observed. ?? 2009 Coastal Education and Research Foundation.

  4. Modelling foot height and foot shape-related dimensions.

    Science.gov (United States)

    Xiong, Shuping; Goonetilleke, Ravindra S; Witana, Channa P; Lee Au, Emily Yim

    2008-08-01

    The application of foot anthropometry to design good-fitting footwear has been difficult due to the lack of generalised models. This study seeks to model foot dimensions so that the characteristic shapes of feet, especially in the midfoot region, can be understood. Fifty Hong Kong Chinese adults (26 males and 24 females) participated in this study. Their foot lengths, foot widths, ball girths and foot heights were measured and then evaluated using mathematical models. The results showed that there were no significant allometry (p > 0.05) effects of foot length on ball girth and foot width. Foot height showed no direct relationship with foot length. However, a normalisation with respect to foot length and foot height resulted in a significant relationship for both males and females with R(2) greater than 0.97. Due to the lack of a direct relationship between foot height and foot length, the current practice of grading shoes with a constant increase in height or proportionate scaling in response to foot length is less than ideal. The results when validated with other populations can be a significant way forward in the design of footwear that has an improved fit in the height dimension.

  5. SIR-C/X-SAR data calibration and ground truth campaign over the NASA-CB1 test-site

    International Nuclear Information System (INIS)

    Notarnicola, C.; Posa, F.; Refice, A.; Sergi, R.; Smacchia, P.; Casarano, D.; De Carolis, G.; Mattia, F.; Schena, V.D.

    2001-01-01

    During the Space Shuttle Endeavour mission in October 1994, a remote-sensing campaign was carried out with the objectives of both radiometric and polarimetric calibration and ground truth data acquisition of bare soils. This paper presents the results obtained in the experiment. Polarimetric cross-talk and channel imbalance values, as well as radiometric calibration parameters, have been found to be within the science requirements for SAR images. Regarding ground truth measurements, a wide spread in the height rms values and correlation lengths has been observed, which was motivated a critical revisiting of surface parameters descriptors

  6. Assessment of the impact of underground mining on ground surface

    International Nuclear Information System (INIS)

    Toomik, Arvi

    1999-01-01

    The mine able oil shale bed is located in horizontally lying Ordovician limestones at a depth of 10-60 meters from the ground surface. Limestones are covered with Quaternary sediments, mainly till and loam, sporadically seams of clay occur. The overburden rocks of oil shale bed are jointed limestones with weak contacts between layers. The upper part of limestones is weakened additionally due to weathering to depths of 10-20 metres. Ground movements caused by mining reach the ground surface easily due to the shallow location of workings. The size and nature of these movements depend on mining and roof control methods used. In this study the impact of geotechnical processes on the ground surface caused by four different mining methods is analysed. A new, artificial micro relief is formed on undermined areas, where the ground surface depressions are alternating with rising grounds. When the Quaternary cover contains loamy sediments, the surface (rain) water will accumulate in the depressions. The response of usable lands on undermined areas depends on the degree of changes in the relief and water regime. There exists a maximum degree (limit) of changes of ground movements in case of which the changes in land use are not yet considerable. The factor of land deterioration was developed for arable and forest lands taking into account the character and degree of negative impacts. When no one deterioration factor exceeds the limit, the value of arable land will be 1.0 (100%). When some factor exceeds the limit, then water logging in subsidence troughs will diminish the value to 0.7, slopes to 0.8 and the area of weathered basic rocks to 0.9. In case of a combined effect of all these factors the value of arable land will fall to 0.5. As the long-term character of ground movement after room and pillar mining is not yet established, the factor for quasi stable areas is taken preliminarily as 0.9. Using detailed plans of mined out areas and the proposed factors, it is possible

  7. Imaging height fluctuations in free-standing graphene membranes

    Science.gov (United States)

    Dorsey, Kyle; Miskin, Marc; Barnard, Arthur; Rose, Peter; Cohen, Itai; McEuen, Paul

    We present a technique based on multi-wavelength interference microscopy to measure the heights of observed ripples in free-standing graphene membranes. Graphene membranes released from a transparent substrate produce interference fringes when viewed in the reflection mode of an inverted microscope(Blees et. al. Nature 524 (7564): 204-207 (2015)). The fringes correspond to corrugation of the membrane as it floats near an interface. A single set of fringes is insufficient to uniquely determine the height profile, as a given fringe spacing can correspond to an increase or decrease in height by λ / 2 . Imaging at multiple wavelengths resolves the ambiguities in phase, and enables unique determination of the height profile of the membrane (Schilling et. al.Phys. Rev. E, 69:021901, 2004). We utilize this technique to map out the height fluctuations in free-standing graphene membranes to answer questions about fundamental mechanical properties of two-dimensional materials.

  8. Footprint parameters as a measure of arch height.

    Science.gov (United States)

    Hawes, M R; Nachbauer, W; Sovak, D; Nigg, B M

    1992-01-01

    The human foot has frequently been categorized into arch height groups based upon analysis of footprint parameters. This study investigates the relationship between directly measured arch height and many of the footprint parameters that have been assumed to represent arch height. A total of 115 male subjects were measured and footprint parameters were calculated from digitized outlines. Correlation and regression analyses were used to determine the relationship between footprint measures and arch height. It may be concluded from the results that footprint parameters proposed in the literature (arch angle, footprint index, and arch index) and two further parameters suggested in this study (arch length index and truncated arch index) are invalid as a basis for prediction or categorization of arch height. The categorization of the human foot according to the footprint measures evaluated in this paper represent no more than indices and angles of the plantar surface of the foot itself.

  9. Validation Study for an Atmospheric Dispersion Model, Using Effective Source Heights Determined from Wind Tunnel Experiments in Nuclear Safety Analysis

    Directory of Open Access Journals (Sweden)

    Masamichi Oura

    2018-03-01

    Full Text Available For more than fifty years, atmospheric dispersion predictions based on the joint use of a Gaussian plume model and wind tunnel experiments have been applied in both Japan and the U.K. for the evaluation of public radiation exposure in nuclear safety analysis. The effective source height used in the Gaussian model is determined from ground-level concentration data obtained by a wind tunnel experiment using a scaled terrain and site model. In the present paper, the concentrations calculated by this method are compared with data observed over complex terrain in the field, under a number of meteorological conditions. Good agreement was confirmed in near-neutral and unstable stabilities. However, it was found to be necessary to reduce the effective source height by 50% in order to achieve a conservative estimation of the field observations in a stable atmosphere.

  10. On the Impact of Local Taxes in a Set Cover Game

    Science.gov (United States)

    Escoffier, Bruno; Gourvès, Laurent; Monnot, Jérôme

    Given a collection C of weighted subsets of a ground set E, the SET cover problem is to find a minimum weight subset of C which covers all elements of E. We study a strategic game defined upon this classical optimization problem. Every element of E is a player which chooses one set of C where it appears. Following a public tax function, every player is charged a fraction of the weight of the set that it has selected. Our motivation is to design a tax function having the following features: it can be implemented in a distributed manner, existence of an equilibrium is guaranteed and the social cost for these equilibria is minimized.

  11. On the Flame Height Definition for Upward Flame Spread

    OpenAIRE

    Consalvi, Jean L; Pizzo, Yannick; Porterie, Bernard; Torero, Jose L

    2007-01-01

    Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be define...

  12. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests

    Science.gov (United States)

    McIntosh, Anne C. S.; Macdonald, S. Ellen; Quideau, Sylvie A.

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  13. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  14. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  15. Geological and Structural Inferences from Satellite Images in Parts of Deccan basalt covered regions of Central India

    Science.gov (United States)

    Harinarayana, Tirumalachetty; Borra, Veeraiah; Basava, Sharana; Suryabali, Singh

    In search of new areas for hydrocarbon exploration, integrated ground geophysical studies have been taken up in Central India with seismic, magnetotellurics, deep resistivity and gravity surveys. Since the region is covered with basalt and well known for its intensive tectonic activity, remote sensing method seems to have value addition to the subsurface information derived from geophysical, geological and tectonic studies. The Narmada and Tapti rift zone and Deccan basalt covered regions of Central India, stems from its complexity. A Resourcesat-1 (IRS- P6) LISS-III satellite images covering an area of approximately 250,000 sq. km corresponding to the region in and around Baroda(Vadodara), Indore, Nandurbar, Khandwa, Akot, Nasik, Aurangabad, Pune and Latur in Central India was digitally processed and interpreted to present a schematic map of the geology and elucidate the structural fabric of the region. From our study, the disposition of the intensive dyke system, various faults and other lineaments in the region are delineated. Ground truth studies have shown good correlation with lineaments/dykes indicated in remote sensing studies and have revealed distinct ENE-WSW trending lineaments, dykes which are more prominent near the Narmada and Tapti river course. Evolution of these features with Deccan volcanism is discussed with available geochronological data set. These findings are significant in relation to structural data and form a part of the geo-structural database for ground surveys.

  16. Monitoring recharge in areas of seasonally frozen ground in the Columbia Plateau and Snake River Plain, Idaho, Oregon, and Washington

    Science.gov (United States)

    Mastin, Mark; Josberger, Edward

    2014-01-01

    Seasonally frozen ground occurs over approximately one‑third of the contiguous United States, causing increased winter runoff. Frozen ground generally rejects potential groundwater recharge. Nearly all recharge from precipitation in semi-arid regions such as the Columbia Plateau and the Snake River Plain in Idaho, Oregon, and Washington, occurs between October and March, when precipitation is most abundant and seasonally frozen ground is commonplace. The temporal and spatial distribution of frozen ground is expected to change as the climate warms. It is difficult to predict the distribution of frozen ground, however, because of the complex ways ground freezes and the way that snow cover thermally insulates soil, by keeping it frozen longer than it would be if it was not snow covered or, more commonly, keeping the soil thawed during freezing weather. A combination of satellite remote sensing and ground truth measurements was used with some success to investigate seasonally frozen ground at local to regional scales. The frozen-ground/snow-cover algorithm from the National Snow and Ice Data Center, combined with the 21-year record of passive microwave observations from the Special Sensor Microwave Imager onboard a Defense Meteorological Satellite Program satellite, provided a unique time series of frozen ground. Periodically repeating this methodology and analyzing for trends can be a means to monitor possible regional changes to frozen ground that could occur with a warming climate. The Precipitation-Runoff Modeling System watershed model constructed for the upper Crab Creek Basin in the Columbia Plateau and Reynolds Creek basin on the eastern side of the Snake River Plain simulated recharge and frozen ground for several future climate scenarios. Frozen ground was simulated with the Continuous Frozen Ground Index, which is influenced by air temperature and snow cover. Model simulation results showed a decreased occurrence of frozen ground that coincided with

  17. Evidence of inbreeding depression on human height.

    Directory of Open Access Journals (Sweden)

    Ruth McQuillan

    Full Text Available Stature is a classical and highly heritable complex trait, with 80%-90% of variation explained by genetic factors. In recent years, genome-wide association studies (GWAS have successfully identified many common additive variants influencing human height; however, little attention has been given to the potential role of recessive genetic effects. Here, we investigated genome-wide recessive effects by an analysis of inbreeding depression on adult height in over 35,000 people from 21 different population samples. We found a highly significant inverse association between height and genome-wide homozygosity, equivalent to a height reduction of up to 3 cm in the offspring of first cousins compared with the offspring of unrelated individuals, an effect which remained after controlling for the effects of socio-economic status, an important confounder (χ(2 = 83.89, df = 1; p = 5.2 × 10(-20. There was, however, a high degree of heterogeneity among populations: whereas the direction of the effect was consistent across most population samples, the effect size differed significantly among populations. It is likely that this reflects true biological heterogeneity: whether or not an effect can be observed will depend on both the variance in homozygosity in the population and the chance inheritance of individual recessive genotypes. These results predict that multiple, rare, recessive variants influence human height. Although this exploratory work focuses on height alone, the methodology developed is generally applicable to heritable quantitative traits (QT, paving the way for an investigation into inbreeding effects, and therefore genetic architecture, on a range of QT of biomedical importance.

  18. Using a Mobile Device "App" and Proximal Remote Sensing Technologies to Assess Soil Cover Fractions on Agricultural Fields.

    Science.gov (United States)

    Laamrani, Ahmed; Pardo Lara, Renato; Berg, Aaron A; Branson, Dave; Joosse, Pamela

    2018-02-27

    Quantifying the amount of crop residue left in the field after harvest is a key issue for sustainability. Conventional assessment approaches (e.g., line-transect) are labor intensive, time-consuming and costly. Many proximal remote sensing devices and systems have been developed for agricultural applications such as cover crop and residue mapping. For instance, current mobile devices (smartphones & tablets) are usually equipped with digital cameras and global positioning systems and use applications (apps) for in-field data collection and analysis. In this study, we assess the feasibility and strength of a mobile device app developed to estimate crop residue cover. The performance of this novel technique (from here on referred to as "app" method) was compared against two point counting approaches: an established digital photograph-grid method and a new automated residue counting script developed in MATLAB at the University of Guelph. Both photograph-grid and script methods were used to count residue under 100 grid points. Residue percent cover was estimated using the app, script and photograph-grid methods on 54 vertical digital photographs (images of the ground taken from above at a height of 1.5 m) collected from eighteen fields (9 corn and 9 soybean, 3 samples each) located in southern Ontario. Results showed that residue estimates from the app method were in good agreement with those obtained from both photograph-grid and script methods (R² = 0.86 and 0.84, respectively). This study has found that the app underestimates the residue coverage by -6.3% and -10.8% when compared to the photograph-grid and script methods, respectively. With regards to residue type, soybean has a slightly lower bias than corn (i.e., -5.3% vs. -7.4%). For photos with residue <30%, the app derived residue measurements are within ±5% difference (bias) of both photograph-grid- and script-derived residue measurements. These methods could therefore be used to track the recommended minimum

  19. [Influence of disc height on outcome of posterolateral fusion].

    Science.gov (United States)

    Drain, O; Lenoir, T; Dauzac, C; Rillardon, L; Guigui, P

    2008-09-01

    Experimentally, posterolateral fusion only provides incomplete control of flexion-extension, rotation and lateral inclination forces. The stability deficit increases with increasing height of the anterior intervertebral space, which for some warrants the adjunction of an intersomatic arthrodesis in addition to the posterolateral graft. Few studies have been devoted to the impact of disc height on the outcome of posterolateral fusion. The purpose of this work was to investigate the spinal segment immobilized by the posterolateral fusion: height of the anterior intervertebral space, the clinical and radiographic impact of changes in disc height, and the short- and long-term impact of disc height measured preoperatively on clinical and radiographic outcome. In order to obtain a homogeneous group of patients, the series was limited to patients undergoing posterolateral arthrodesis for degenerative spondylolisthesis, in combination with radicular release. This was a retrospective analysis of a consecutive series of 66 patients with mean 52 months follow-up (range 3-63 months). A dedicated self-administered questionnaire was used to collect data on pre- and postoperative function, the SF-36 quality of life score, and patient satisfaction. Pre- and postoperative (early, one year, last follow-up) radiographic data were recorded: olisthesic level, disc height, intervertebral angle, intervertebral mobility (angular, anteroposterior), and global measures of sagittal balance (thoracic kyphosis, lumbar lordosis, T9 sagittal tilt, pelvic version, pelvic incidence, sacral slope). SpineView was used for all measures. Univariate analysis searched for correlations between variation in disc height and early postoperative function and quality of fusion at last follow-up. Multivariate analysis was applied to the following preoperative parameters: intervertebral angle, disc height, intervertebral mobility, sagittal balance parameters, use of osteosynthesis or not. At the olisthesic

  20. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  1. Annual global tree cover estimated by fusing optical and SAR satellite observations

    Science.gov (United States)

    Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.

    2017-12-01

    Tree cover defined structurally as the proportional, vertically projected area of vegetation (including leaves, stems, branches, etc.) of woody plants above a given height affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Tree cover provides a measurable attribute upon which forest cover may be defined. Changes in tree cover over time can be used to monitor and retrieve site-specific histories of forest disturbance, succession, and degradation. Measurements of Earth's tree cover have been produced at regional, national, and global extents. However, most representations are static, and those for which multiple time periods have been produced are neither intended nor adequate for consistent, long-term monitoring. Moreover, although a substantial proportion of change has been shown to occur at resolutions below 250 m, existing long-term, Landsat-resolution datasets are either produced as static layers or with annual, five- or ten-year temporal resolution. We have developed an algorithms to retrieve seamless and consistent, sub-hectare resolution estimates of tree-canopy from optical and radar satellite data sources (e.g., Landsat, Sentinel-2, and ALOS-PALSAR). Our approach to estimation enables assimilation of multiple data sources and produces estimates of both cover and its uncertainty at the scale of pixels. It has generated the world's first Landsat-based percent tree cover dataset in 2013. Our previous algorithms are being adapted to produce prototype percent-tree and water-cover layers globally in 2000, 2005, and 2010—as well as annually over North and South America from 2010 to 2015—from passive-optical (Landsat and Sentinel-2) and SAR measurements. Generating a global, annual dataset is beyond the scope of this support; however, North and South America represent all of the world's major biomes and so offer the complete global range of environmental sources of error and

  2. Comparison of mixing height parameterizations with profiles measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jaquier, A.; Stuebi, R.; Tercier, P. [Swiss Meteorological Inst., SMI - MeteoSwiss, Payerne (Switzerland)

    1997-10-01

    Different meteorological pre-processors for dispersion studies are available to derive the atmospheric boundary layer mixing height (MH). The analysis of their performances has been reviewed in the framework of the European COST Action 710. In this project, the computed mixing height values have been compared with data derived mostly from aero-logical sounding analysis and Sodar measurements. Since then, a new analysis of a low-tropospheric wind profiler (WP) data has been performed taking advantage of its high data sampling ({delta}t {approx} 30 sec.). The comparison between these recent results and aero-logical sounding, Sodar data, as well as to meteorological pre-processors calculations are reported for three periods of several days corresponding to different meteorological situations. In convective conditions, the pre-processors give reasonable level, the mixing height growing rate is in fair agreement with the measured one. In stable cloudy daytime conditions, the modeled mixing height does not correspond to any measured height. (LN)

  3. [Application of optical flow dynamic texture in land use/cover change detection].

    Science.gov (United States)

    Yan, Li; Gong, Yi-Long; Zhang, Yi; Duan, Wei

    2014-11-01

    In the present study, a novel change detection approach for high resolution remote sensing images is proposed based on the optical flow dynamic texture (OFDT), which could achieve the land use & land cover change information automatically with a dynamic description of ground-object changes. This paper describes the ground-object gradual change process from the principle using optical flow theory, which breaks the ground-object sudden change hypothesis in remote sensing change detection methods in the past. As the steps of this method are simple, it could be integrated in the systems and software such as Land Resource Management and Urban Planning software that needs to find ground-object changes. This method takes into account the temporal dimension feature between remote sensing images, which provides a richer set of information for remote sensing change detection, thereby improving the status that most of the change detection methods are mainly dependent on the spatial dimension information. In this article, optical flow dynamic texture is the basic reflection of changes, and it is used in high resolution remote sensing image support vector machine post-classification change detection, combined with spectral information. The texture in the temporal dimension which is considered in this article has a smaller amount of data than most of the textures in the spatial dimensions. The highly automated texture computing has only one parameter to set, which could relax the onerous manual evaluation present status. The effectiveness of the proposed approach is evaluated with the 2011 and 2012 QuickBird datasets covering Duerbert Mongolian Autonomous County of Daqing City, China. Then, the effects of different optical flow smooth coefficient and the impact on the description of the ground-object changes in the method are deeply analyzed: The experiment result is satisfactory, with an 87.29% overall accuracy and an 0.850 7 Kappa index, and the method achieves better

  4. Advantages of floating covers with LLDPE Liners

    International Nuclear Information System (INIS)

    Munoz Gomez, J. M.

    2014-01-01

    Using floating covers in irrigation pounds and waste dam gives many advantages. It is a very interesting investment for those place with a high evaporation ratio. this is an easy system which improves several aspects in irrigation or drinkable water reservoirs, mainly it saves water and it saves clean-works (time and cost). It is also used in waste dam to deodorization. Time ago this application was developed with PVC liners and TPO liners, now the innovation is LLDPE liners which improve mechanical properties, durability and an easier installation. This paper develops the state of art of this design technology, and the back ground of our experience. (Author)

  5. Measuring perceived ceiling height in a visual comparison task.

    Science.gov (United States)

    von Castell, Christoph; Hecht, Heiko; Oberfeld, Daniel

    2017-03-01

    When judging interior space, a dark ceiling is judged to be lower than a light ceiling. The method of metric judgments (e.g., on a centimetre scale) that has typically been used in such tasks may reflect a genuine perceptual effect or it may reflect a cognitively mediated impression. We employed a height-matching method in which perceived ceiling height had to be matched with an adjustable pillar, thus obtaining psychometric functions that allowed for an estimation of the point of subjective equality (PSE) and the difference limen (DL). The height-matching method developed in this paper allows for a direct visual match and does not require metric judgment. It has the added advantage of providing superior precision. Experiment 1 used ceiling heights between 2.90 m and 3.00 m. The PSE proved sensitive to slight changes in perceived ceiling height. The DL was about 3% of the physical ceiling height. Experiment 2 found similar results for lower (2.30 m to 2.50 m) and higher (3.30 m to 3.50 m) ceilings. In Experiment 3, we additionally varied ceiling lightness (light grey vs. dark grey). The height matches showed that the light ceiling appeared significantly higher than the darker ceiling. We therefore attribute the influence of ceiling lightness on perceived ceiling height to a direct perceptual rather than a cognitive effect.

  6. Replacing fallow by cover crops: economic sustainability

    Science.gov (United States)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  7. Estimating Mixing Heights Using Microwave Temperature Profiler

    Science.gov (United States)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  8. Land-cover change in the Ozark Highlands, 1973-2000

    Science.gov (United States)

    Karstensen, Krista A.

    2010-01-01

    Led by the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS) in collaboration with the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA), the Land-Cover Trends Project was initiated in 1999 and aims to document the types, geographic distributions, and rates of land-cover change on a region by region basis for the conterminous United States, and to determine some of the key drivers and consequences of the change (Loveland and others, 2002). For 1973, 1980, 1986, 1992, and 2000 land-cover maps derived from the Landsat series are classified by visual interpretation, inspection of historical aerial photography and ground survey, into 11 land-cover classes. The classes are defined to capture land cover that is discernable in Landsat data. A stratified probability-based sampling methodology undertaken within the 84 Omernik Level III Ecoregions (Omernik, 1987) was used to locate the blocks, with 9 to 48 blocks per ecoregion. The sampling was designed to enable a statistically robust 'scaling up' of the sample-classification data to estimate areal land-cover change within each ecoregion (Loveland and others, 2002; Stehman and others, 2005). At the time of writing, approximately 90 percent of the 84 conterminous United States ecoregions have been processed by the Land-Cover Trends Project. Results from these completed ecoregions illustrate that across the conterminous United States there is no single profile of land-cover/land-use change, rather, there are varying pulses affected by clusters of change agents (Loveland and others, 2002). Land-Cover Trends Project results for the conterminous United States to-date are being used for collaborative environmental change research with partners such as; the National Science Foundation, the National Oceanic and Atmospheric Administration, and the U.S. Fish and Wildlife Service. The strategy has also been adapted for use in a NASA global

  9. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  10. Weighting of field heights for sharpness and noisiness

    Science.gov (United States)

    Keelan, Brian W.; Jin, Elaine W.

    2009-01-01

    Weighting of field heights is important in cases when a single numerical value needs to be calculated that characterizes an attribute's overall impact on perceived image quality. In this paper we report an observer study to derive the weighting of field heights for sharpness and noisiness. One-hundred-forty images were selected to represent a typical consumer photo space distribution. Fifty-three sample points were sampled per image, representing field heights of 0, 14, 32, 42, 51, 58, 71, 76, 86% and 100%. Six observers participated in this study. The field weights derived in this report include both: the effect of area versus field height (which is a purely objective, geometric factor); and the effect of the spatial distribution of image content that draws attention to or masks each of these image structure attributes. The results show that relative to the geometrical area weights, sharpness weights were skewed to lower field heights, because sharpness-critical subject matter was often positioned relatively near the center of an image. Conversely, because noise can be masked by signal, noisiness-critical content (such as blue skies, skin tones, walls, etc.) tended to occur farther from the center of an image, causing the weights to be skewed to higher field heights.

  11. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Falls from height: A retrospective analysis.

    Science.gov (United States)

    Turgut, Kasim; Sarihan, Mehmet Ediz; Colak, Cemil; Güven, Taner; Gür, Ali; Gürbüz, Sükrü

    2018-01-01

    Emergency services manage trauma patients frequently and falls from height comprise the main cause of emergency service admissions. In this study, we aimed to analyse the demographic characteristics of falls from height and their relationship to the mortality. A total of 460 patients, who admitted to the Emergency Department of Inonu University between November 2011 and November 2014 with a history of fall from height, were examined retrospectively. Demographic parameters, fall characteristics and their effect to mortality were evaluated statistically. The study comprised of 292 (63.5%) men and 168 (36.5%) women patients. The mean age of all patients was 27±24.99 years. Twenty-six (5.6%) patients died and the majority of them were in ≥62 years old group. The highest percentage of falls was at 0-5 years age group (28.3%). People fell mainly from 1.1-4 metres(m) level (46.1%). The causes of falls were ordered as unintentional (92.2%), workplace (8.1%) and suicidal (1.7%). Skin and soft tissue injuries (37.4%) were the main traumatic lesions. Age, fall height, fall place, lineer skull fracture, subarachnoidal hemorrhage, cervical fracture, thoracic vertebra fracture and trauma scores had statistically significant effect on mortality. The casualties died because of subarachnoid hemorrhage mostly.

  13. Development and Evaluation of Models for the Relationship between Tree Height and Diameter at Breast Height for Chinese-Fir Plantations in Subtropical China.

    Science.gov (United States)

    Li, Yan-qiong; Deng, Xiang-wen; Huang, Zhi-hong; Xiang, Wen-hua; Yan, Wen-de; Lei, Pi-feng; Zhou, Xiao-lu; Peng, Chang-hui

    2015-01-01

    Tree diameter at breast height (dbh) and height are the most important variables used in forest inventory and management as well as forest carbon-stock estimation. In order to identify the key stand variables that influence the tree height-dbh relationship and to develop and validate a suit of models for predicting tree height, data from 5961 tree samples aged from 6 years to 53 years and collected from 80 Chinese-fir plantation plots were used to fit 39 models, including 33 nonlinear models and 6 linear models, were developed and evaluated into two groups. The results showed that composite models performed better in height estimate than one-independent-variable models. Nonlinear composite Model 34 and linear composite Model 6 were recommended for predicting tree height in Chinese fir plantations with a dbh range between 4 cm and 40 cm when the dbh data for each tree and the quadratic mean dbh of the stand (Dq) and mean height of the stand (Hm) were available. Moreover, Hm could be estimated by using the formula Hm = 11.707 × l n(Dq)-18.032. Clearly, Dq was the primary stand variable that influenced the height-dbh relationship. The parameters of the models varied according to stand age and site. The inappropriate application of provincial or regional height-dbh models for predicting small tree height at local scale may result in larger uncertainties. The method and the recommended models developed in this study were statistically reliable for applications in growth and yield estimation for even-aged Chinese-fir plantation in Huitong and Changsha. The models could be extended to other regions and to other tree species only after verification in subtropical China.

  14. The height of watermelons with wall

    International Nuclear Information System (INIS)

    Feierl, Thomas

    2012-01-01

    We derive asymptotics for the moments as well as the weak limit of the height distribution of watermelons with p branches with wall. This generalizes a famous result of de Bruijn et al (1972 Graph Theory and Computing (New York: Academic) pp 15–22) on the average height of planted plane trees, and results by Fulmek (2007 Electron. J. Combin. 14 R64) and Katori et al (2008 J. Stat. Phys. 131 1067–83) on the expected value and higher moments, respectively, of the height distribution of watermelons with two branches. The asymptotics for the moments depend on the analytic behaviour of certain multidimensional Dirichlet series. In order to obtain this information, we prove a reciprocity relation satisfied by the derivatives of one of Jacobi’s theta functions, which generalizes the well-known reciprocity law for Jacobi’s theta functions. (paper)

  15. Biological intrusion of low-level-waste trench covers

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Gladney, E.S.

    1981-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. Past research on low-level waste shallow land burial methods has emphasized physical (i.e., water infiltration, soil erosion) and chemical (radionuclide leaching) processes that can cause waste site failure and subsequent radionuclide transport. The purpose of this paper is to demonstrate the need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatments. Plants and animals not only can transport radionuclides to the ground surface via root systems and soil excavated from the cover profile by animal burrowing activities, but they modify physical and chemical processes within the cover profile by changing the water infiltration rates, soil erosion rates and chemical composition of the soil. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and soil overburden depth. The rate of biological intrusion through the various barrier materials is being evaluated through the use of activatable stable tracers

  16. Predicting human height by Victorian and genomic methods.

    Science.gov (United States)

    Aulchenko, Yurii S; Struchalin, Maksim V; Belonogova, Nadezhda M; Axenovich, Tatiana I; Weedon, Michael N; Hofman, Albert; Uitterlinden, Andre G; Kayser, Manfred; Oostra, Ben A; van Duijn, Cornelia M; Janssens, A Cecile J W; Borodin, Pavel M

    2009-08-01

    In the Victorian era, Sir Francis Galton showed that 'when dealing with the transmission of stature from parents to children, the average height of the two parents, ... is all we need care to know about them' (1886). One hundred and twenty-two years after Galton's work was published, 54 loci showing strong statistical evidence for association to human height were described, providing us with potential genomic means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci genomic profile explained 4-6% of the sex- and age-adjusted height variance, and had limited ability to discriminate tall/short people, as characterized by the area under the receiver-operating characteristic curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted height variance, and showed high discriminative accuracy. We have also explored how much variance a genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed, in terms of both discriminative accuracy and costs. For less heritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that the variants determining an essential proportion of the trait's variation can be identified.

  17. Effect of rock fragment embedding on the aeolian deposition of dust on stone-covered surfaces

    NARCIS (Netherlands)

    Goossens, D.

    2005-01-01

    Many stone-covered surfaces on Earth are subject to aeolian deposition of atmospheric dust. This study investigates how the deposition of dust is affected when rock fragments become gradually more embedded in the ground or, inversely, become more concentrated on the surface. Experiments were

  18. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  19. Comparison of Cloud Base Height Derived from a Ground-Based Infrared Cloud Measurement and Two Ceilometers

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-01-01

    Full Text Available The cloud base height (CBH derived from the whole-sky infrared cloud-measuring system (WSIRCMS and two ceilometers (Vaisala CL31 and CL51 from November 1, 2011, to June 12, 2012, at the Chinese Meteorological Administration (CMA Beijing Observatory Station are analysed. Significant differences can be found by comparing the measurements of different instruments. More exactly, the cloud occurrence retrieved from CL31 is 3.8% higher than that from CL51, while WSIRCMS data shows 3.6% higher than ceilometers. More than 75.5% of the two ceilometers’ differences are within ±200 m and about 89.5% within ±500 m, while only 30.7% of the differences between WSIRCMS and ceilometers are within ±500 m and about 55.2% within ±1000 m. These differences may be caused by the measurement principles and CBH retrieval algorithm. A combination of a laser ceilometer and an infrared cloud instrument is recommended to improve the capability for determining cloud occurrence and retrieving CBHs.

  20. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty.

    Science.gov (United States)

    Tanner, J M; Whitehouse, R H

    1976-01-01

    New charts for height, weight, height velocity, and weight velocity are presented for clinical (as opposed to population survey) use. They are based on longitudinal-type growth curves, using the same data as in the British 1965 growth standards. In the velocity standards centiles are given for children who are early- and late-maturing as well as for those who mature at the average age (thus extending the use of the previous charts). Limits of normality for the age of occurrence of the adolescent growth spurt are given and also for the successive stages of penis, testes, and pubic hair development in boys, and for stages of breast and pubic hair development in girls. PMID:952550

  1. Evolution of nesting height in an endangered Hawaiian forest bird in response to a non-native predator.

    Science.gov (United States)

    Vanderwerf, Eric A

    2012-10-01

    The majority of bird extinctions since 1800 have occurred on islands, and non-native predators have been the greatest threat to the persistence of island birds. Island endemic species often lack life-history traits and behaviors that reduce the probability of predation and they can become evolutionarily trapped if they are unable to adapt, but few studies have examined the ability of island species to respond to novel predators. The greatest threat to the persistence of the Oahu Elepaio (Chasiempis ibidis), an endangered Hawaiian forest bird, is nest predation by non-native black rats (Rattus rattus). I examined whether Oahu Elepaio nest placement has changed at the individual and population levels in response to rat predation by measuring nest height and determining whether each nest produced offspring from 1996 to 2011. Average height of Oahu Elepaio nests increased 50% over this 16-year period, from 7.9 m (SE 1.7) to 12.0 m (SE 1.1). There was no net change in height of sequential nests made by individual birds, which means individual elepaios have not learned to place nests higher. Nests ≤3 m off the ground produced offspring less often, and the proportion of such nests declined over time, which suggests that nest-building behavior has evolved through natural selection by predation. Nest success increased over time, which may increase the probability of long-term persistence of the species. Rat control may facilitate the evolution of nesting height by slowing the rate of population decline and providing time for this adaptive response to spread through the population. ©2012 Society for Conservation Biology.

  2. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Protat, Alain; Young, Stuart; McFarlane, Sally A.; L' Ecuyer, Tristan; Mace, Gerald G.; Comstock, Jennifer M.; Long, Charles N.; Berry, Elizabeth; Delanoe, Julien

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.

  3. The SMOS Validation Campaign 2010 in the Upper Danube Catchment: A Data Set for Studies of Soil Moisture, Brightness Temperature, and Their Spatial Variability Over a Heterogeneous Land Surface

    DEFF Research Database (Denmark)

    T. dall' Amico, Johanna; Schlenz, Florian; Loew, Alexander

    2013-01-01

    resolutions from roughly 400 m to 2 km. The contemporaneous distributed ground measurements include surface soil moisture, a detailed land cover map, vegetation height, phenology, and biomass. Furthermore, several ground stations provide continuous measurements of soil moisture and soil temperature as well...... infrared and L-band passive microwave data were collected together with spatially distributed in situ measurements. Two airborne radiometers, EMIRAD and HUT-2D, were used during the campaigns providing two complementary sets of measurements at incidence angles from 0$^{circ}$ to 40$^{circ}$ and with ground...

  4. Anterior Face Height Values in a Nigerian Population | Folaranmi ...

    African Journals Online (AJOL)

    ... Anterior Upper Face Height 47.7 (4) mm, Anterior Total Face Height (ATFH) 108.5 (5) mm, ratio of ALFH to ATFH ALFH: ATFH 56 (4)%. Conclusion: This study provides anterior face height measurements, which will be of great significance in evaluating facial proportions andesthetics in orthodontics, orthognathic surgery, ...

  5. Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-12-01

    Full Text Available To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola was an Ultisol (Typic Paleudult originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST (strip width 2 m, in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1 CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2 CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.

  6. Dominant height-based height-diameter equations for trees in southern Indiana

    Science.gov (United States)

    John A., Jr. Kershaw; Robert C. Morrissey; Douglass F. Jacobs; John R. Seifert; James B. McCarter

    2008-01-01

    Height-diameter equations are developed based on dominant tree data collected in 1986 in 8- to 17-year-old clearcuts and the phase 2 Forest Inventory and Analysis plots on the Hoosier National Forest in south central Indiana. Two equation forms are explored: the basic, three-parameter Chapman-Richards function, and a modification of the three-parameter equation...

  7. Accuracy of LiDAR-based tree height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan

    Directory of Open Access Journals (Sweden)

    Azita Ahmad Zawawi

    2015-04-01

    Full Text Available Aim of study: To present an approach for estimating tree heights, stand density and crown patches using LiDAR data in a subtropical broad-leaved forest. Area of study: The study was conducted within the Yambaru subtropical evergreen broad-leaved forest, Okinawa main island, Japan. Materials and methods: A digital canopy height model (CHM was extracted from the LiDAR data for tree height estimation and a watershed segmentation method was applied for the individual crown delineation. Dominant tree canopy layers were estimated using multi-scale filtering and local maxima detection. The LiDAR estimation results were then compared to the ground inventory data and a high resolution orthophoto image for accuracy assessment. Main results: A Wilcoxon matched pair test suggests that LiDAR data is highly capable of estimating tree height in a subtropical forest (z = 4.0, p = 0.345, but has limitation to detect small understory trees and a single tree delineation. The results show that there is a statistically significant different type of crown detection from LiDAR data over forest inventory (z = 0, p = 0.043. We also found that LiDAR computation results underestimated the stand density and overestimated the crown size. Research highlights: Most studies involving crown detection and tree height estimation have focused on the analysis of plantations, boreal forests and temperate forests, and less was conducted on tropical and/or subtropical forests. Our study tested the capability of LiDAR as an effective application for analyzing a highly dense forest

  8. Do centimetres matter? Self-reported versus estimated height measurements in parents.

    Science.gov (United States)

    Gozzi, T; Flück, Ce; L'allemand, D; Dattani, M T; Hindmarsh, P C; Mullis, P E

    2010-04-01

    An impressive discrepancy between reported and measured parental height is often observed. The aims of this study were: (a) to assess whether there is a significant difference between the reported and measured parental height; (b) to focus on the reported and, thereafter, measured height of the partner; (c) to analyse its impact on the calculated target height range. A total of 1542 individual parents were enrolled. The parents were subdivided into three groups: normal height (3-97th Centile), short (97%) stature. Overall, compared with men, women were far better in estimating their own height (p Women of normal stature underestimated the short partner and overestimated the tall partner, whereas male partners of normal stature overestimated both their short as well as tall partners. Women of tall stature estimated the heights of their short partners correctly, whereas heights of normal statured men were underestimated. On the other hand, tall men overestimated the heights of their female partners who are of normal and short stature. Furthermore, women of short stature estimated the partners of normal stature adequately, and the heights of their tall partners were overestimated. Interestingly, the short men significantly underestimated the normal, but overestimated tall female partners. Only measured heights should be used to perform accurate evaluations of height, particularly when diagnostic tests or treatment interventions are contemplated. For clinical trails, we suggest that only quality measured parental heights are acceptable, as the errors incurred in estimates may enhance/conceal true treatment effects.

  9. The determination of the mixing height. Current progress and problems

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.; Beyrich, F.; Batchvarova, E. [eds.

    1997-10-01

    This report contains extended abstracts of presentations given at a EURASAP Workshop on The Determination of the Mixing Height - Current Progress and Problems. The Workshop, initiated from discussions with Peter Builtjes, was held at Risoe National Laboratory 1-3 October 1997 within the framework of EURASAP (European Association for the Sciences of Air Pollution). The specific topics and chairpersons of the Workshop were: Theoretical Considerations (Sven-Erik Gryning), Mixing Height Estimation from Turbulence Measurements and In-Situ Soundings (Douw Steyn), Mixing Height Determination from NWP-Models (Han van Dop), Climatology and Global Aspects (Werner Klug), Mixing Height Determination from Remote Systems (Werner Klug), Verification of Mixing Height Parameterizations and Models (Frank Beyrich), Mixing Height over Complex Terrain (Ekaterina Batchvarova), Internal Boundary Layers: Mixing Height in Coastal Areas and Over Cities (Allen White). The discussion at the end of the Workshop was chaired by Robert Bornstein. (au)

  10. Impact of height-dependent drainage forcing on the stable atmospheric boundary layer over a uniform slope

    International Nuclear Information System (INIS)

    Maguire, A.J.; Rees, J.M.; Derbyshire, S.H.

    2008-01-01

    This paper presents a theoretical study of the stably stratified atmospheric boundary layer (SBL) overlying a uniform shallow slope with a gradient of the order of 1:1000. By relaxing the assumption made in a previous study that the slope-induced drainage force is constant across the boundary layer, analysis has been performed that demonstrates that a realistic form for the drainage forcing is a term proportional to (1-z/h) 1/2 , where z is the height above the ground and h is the depth of the boundary layer. Modified expressions for the maximum sustainable surface buoyancy flux and Zilitinkevich's ratio are derived.

  11. AUTOMATIC DETERMINATION OF TRUNK DIAMETER, CROWN BASE AND HEIGHT OF SCOTS PINE (PINUS SYLVESTRISL. BASED ON ANALYSIS OF 3D POINT CLOUDS GATHERED FROM MULTI-STATION TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    Ratajczak Michał

    2015-12-01

    Full Text Available Rapid development of terrestrial laser scanning (TLS in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes, trees and lumber size (volume of trees is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM, the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m, further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method, as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (PinussylvestrisL. on the circular surface with a radius of 18 m, within which there were 16pine trees (14 of them were cut down. It was characterized by a two-storey and even-aged construction (147 years old and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points and PIPE (fitting the cylinder in the FARO

  12. Impact reduction through long-term intervention in recreational runners: midfoot strike pattern versus low-drop/low-heel height footwear.

    Science.gov (United States)

    Giandolini, Marlène; Horvais, Nicolas; Farges, Yohann; Samozino, Pierre; Morin, Jean-Benoît

    2013-08-01

    Impact reduction has become a factor of interest in the prevention of running-related injuries such as stress fractures. Currently, the midfoot strike pattern (MFS) is thought as a potential way to decrease impact. The purpose was to test the effects of two long-term interventions aiming to reduce impact during running via a transition to an MFS: a foot strike retraining versus a low-drop/low-heel height footwear. Thirty rearfoot strikers were randomly assigned to two experimental groups (SHOES and TRAIN). SHOES progressively wore low-drop/low-heel height shoes and TRAIN progressively adopted an MFS, over a 3-month period with three 30-min running sessions per week. Measurement sessions (pre-training, 1, 2 and 3 months) were performed during which subjects were equipped with three accelerometers on the shin, heel and metatarsals, and ran for 15 min on an instrumented treadmill. Synchronized acceleration and vertical ground reaction force signals were recorded. Peak heel acceleration was significantly lower as compared to pre-training for SHOES (-33.5 ± 12.8 % at 2 months and -25.3 ± 18.8 % at 3 months, p heel height footwear seemed to be more effective than foot strike retraining to attenuate heel impact in the long term.

  13. Practical application of the geometric geoid for heighting over ...

    African Journals Online (AJOL)

    This is because a geoid model is required to convert ellipsoidal heights to orthometric heights that are used in practice. A local geometric geoid ... The geoid height is expressed as a function of the local plane coordinates through a biquadratic surface polynomial, using 14 GPS/levelling points. Five points have been used ...

  14. Canopy cover negatively affects arboreal ant species richness in a tropical open habitat

    Directory of Open Access Journals (Sweden)

    A. C. M. Queiroz

    Full Text Available Abstract We tested the hypothesis of a negative relationship between vegetation characteristics and ant species richness in a Brazilian open vegetation habitat, called candeial. We set up arboreal pitfalls to sample arboreal ants and measured the following environmental variables, which were used as surrogate of environmental heterogeneity: tree richness, tree density, tree height, circumference at the base of the plants, and canopy cover. Only canopy cover had a negative effect on the arboreal ant species richness. Vegetation characteristics and plant species composition are probably homogeneous in candeial, which explains the lack of relationship between other environmental variables and ant richness. Open vegetation habitats harbor a large number of opportunistic and generalist species, besides specialist ants from habitats with high temperatures. An increase in canopy cover decreases sunlight incidence and may cause local microclimatic differences, which negatively affect the species richness of specialist ants from open areas. Canopy cover regulates the richness of arboreal ants in open areas, since only few ant species are able to colonize sites with dense vegetation; most species are present in sites with high temperature and luminosity. Within open vegetation habitats the relationship between vegetation characteristics and species richness seems to be the opposite from closed vegetation areas, like forests.

  15. Influence of habitat on behavior of Towndsend's ground squirrels (Spermophilus townsendii)

    Science.gov (United States)

    Sharpe, Peter B.; Van Horne, Beatrice

    1998-01-01

    Trade-offs between foraging and predator avoidance may affect an animal's survival and reproduction. These trade-offs may be influenced by differences in vegetative cover, especially if foraging profitability and predation risk differ among habitats. We examined above-ground activity of Townsend's ground squirrels (Spermophilus townsendii) in four habitats in the Snake River Birds of Prey National Conservation Area in southwestern Idaho to determine if behavior of ground squirrels varied among habitats, and we assessed factors that might affect perceived predation risk (i. e. predator detectability, predation pressure, population density). The proportion of time spent in vigilance by ground squirrels in winterfat (Krascheninnikovia lanata) and mosaic habitats of winterfat-sagebrush (Artemisia tridentata) was more than twice that of ground squirrels in burned and unburned sagebrush habitats. We found no evidence for the 'many-eyes' hypothesis as an explanation for differences in vigilance among habitats. Instead, environmental heterogeneity, especially vegetation structure, likely influenced activity budgets of ground squirrels. Differences in vigilance may have been caused by differences in predator detectability and refuge availability, because ground squirrels in the winterfat and mosaic habitats also spent more time in upright vigilant postures than ground squirrels in burned-sagebrush or sagebrush habitats. Such postures may enhance predator detection in low-growing winterfat.

  16. Predicting average wintertime wind and wave conditions in the North Atlantic sector from Eurasian snow cover in October

    International Nuclear Information System (INIS)

    Brands, Swen

    2014-01-01

    The present study assesses the lead–lag teleconnection between Eurasian snow cover in October and the December-to-February mean boreal winter climate with respect to the predictability of 10 m wind speed and significant wave heights in the North Atlantic and adjacent seas. Lead–lag correlations exceeding a magnitude of 0.8 are found for the short time period of 1997/98–2012/13 (n = 16) for which daily satellite-sensed snow cover data is available to date. The respective cross-validated hindcast skill obtained from using linear regression as a statistical forecasting technique is similarly large in magnitude. When using a longer but degraded time series of weekly snow cover data for calculating the predictor variable (1979/80–2011/12, n = 34), hindcast skill decreases but yet remains significant over a large fraction of the study area. In addition, Monte-Carlo field significance tests reveal that the patterns of skill are globally significant. The proposed method might be used to make forecast decisions for wind and wave energy generation, seafaring, fishery and offshore drilling. To exemplify its potential suitability for the latter sector, it is additionally applied to DJF frequencies of significant wave heights exceeding 2 m, a threshold value above which mooring conditions at oil platforms are no longer optimal. (paper)

  17. Ground temperature estimation through an energy balance method

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X. [Manitoba Univ., Winnipeg, MB (Canada); Naterer, G.F. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada)

    2007-07-01

    A joint research project by the University of Manitoba and the University of Ontario Institute of Technology (UOIT) is currently examining ground thermal responses to heat conduction within power transmission line towers. The aim of the study is to develop thermal protection alternatives for the freezing and thawing conditions that typically lead to the tilting and heaving of tower foundations. The analysis presented in this paper focused on the temperatures of areas undisturbed by tower foundations. The ground was approximated as a semi-infinite homogenous system with a sinusoidal variation of ground temperature and constant thermophysical properties. Solar radiation and air temperature data were used to develop the sinusoidal profiles. The far-field temperature was modeled using a 1-D transient heat conduction equation. Geothermal gradients were neglected. The energy balance method was used for boundary conditions at the ground surface. Energy components included heat conduction through the ground; heat convection due to wind; net radiative heat transfer; and latent heat transfer due to evaporation. Newton's law of cooling was used to model the convective heat transfer. The model was used to predict ground temperature under varying conditions. Monthly variations of temperature at 2 meters depth were calculated using different evaporation fractions. The model was also used to estimate summer ground temperature at a site in Manitoba. Air temperature, wind velocity and solar radiation data were used. It was suggested that further research is needed to consider the effects of freezing, thawing, and winter snow cover. 2 refs., 1 tab., 2 figs.

  18. Using a Mobile Device “App” and Proximal Remote Sensing Technologies to Assess Soil Cover Fractions on Agricultural Fields

    Directory of Open Access Journals (Sweden)

    Ahmed Laamrani

    2018-02-01

    Full Text Available Quantifying the amount of crop residue left in the field after harvest is a key issue for sustainability. Conventional assessment approaches (e.g., line-transect are labor intensive, time-consuming and costly. Many proximal remote sensing devices and systems have been developed for agricultural applications such as cover crop and residue mapping. For instance, current mobile devices (smartphones & tablets are usually equipped with digital cameras and global positioning systems and use applications (apps for in-field data collection and analysis. In this study, we assess the feasibility and strength of a mobile device app developed to estimate crop residue cover. The performance of this novel technique (from here on referred to as “app” method was compared against two point counting approaches: an established digital photograph-grid method and a new automated residue counting script developed in MATLAB at the University of Guelph. Both photograph-grid and script methods were used to count residue under 100 grid points. Residue percent cover was estimated using the app, script and photograph-grid methods on 54 vertical digital photographs (images of the ground taken from above at a height of 1.5 m collected from eighteen fields (9 corn and 9 soybean, 3 samples each located in southern Ontario. Results showed that residue estimates from the app method were in good agreement with those obtained from both photograph–grid and script methods (R2 = 0.86 and 0.84, respectively. This study has found that the app underestimates the residue coverage by −6.3% and −10.8% when compared to the photograph-grid and script methods, respectively. With regards to residue type, soybean has a slightly lower bias than corn (i.e., −5.3% vs. −7.4%. For photos with residue <30%, the app derived residue measurements are within ±5% difference (bias of both photograph-grid- and script-derived residue measurements. These methods could therefore be used to track

  19. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada

    Science.gov (United States)

    2013-01-01

    Background Herbivore coexistence on the Late Cretaceous island continent of Laramidia has been a topic of great interest, stemming from the paradoxically high diversity and biomass of these animals in relation to the relatively small landmass available to them. Various hypotheses have been advanced to account for these facts, of which niche partitioning is among the most frequently invoked. However, despite its wide acceptance, this hypothesis has not been rigorously tested. This study uses the fossil assemblage from the Dinosaur Park Formation of Alberta as a model to investigate whether niche partitioning facilitated herbivorous dinosaur coexistence on Laramidia. Specifically, the question of feeding height stratification is examined in light of the role it plays in facilitating modern ungulate coexistence. Results Most herbivorous dinosaur species from the Dinosaur Park Formation were restricted to feeding no higher than approximately 1 m above the ground. There is minimal evidence for feeding height partitioning at this level, with ceratopsids capable of feeding slightly higher than ankylosaurs, but the ecological significance of this is ambiguous. Hadrosaurids were uniquely capable of feeding up to 2 m quadrupedally, or up to 5 m bipedally. There is no evidence for either feeding height stratification within any of these clades, or for change in these ecological relationships through the approximately 1.5 Ma record of the Dinosaur Park Formation. Conclusions Although we cannot reject the possibility, we find no good evidence that feeding height stratification, as revealed by reconstructed maximum feeding heights, played an important role in facilitating niche partitioning among the herbivorous dinosaurs of Laramidia. Most browsing pressure was concentrated in the herb layer, although hadrosaurids were capable of reaching shrubs and low-growing trees that were out of reach from ceratopsids, ankylosaurs, and other small herbivores, effectively dividing the

  20. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada.

    Science.gov (United States)

    Mallon, Jordan C; Evans, David C; Ryan, Michael J; Anderson, Jason S

    2013-04-04

    Herbivore coexistence on the Late Cretaceous island continent of Laramidia has been a topic of great interest, stemming from the paradoxically high diversity and biomass of these animals in relation to the relatively small landmass available to them. Various hypotheses have been advanced to account for these facts, of which niche partitioning is among the most frequently invoked. However, despite its wide acceptance, this hypothesis has not been rigorously tested. This study uses the fossil assemblage from the Dinosaur Park Formation of Alberta as a model to investigate whether niche partitioning facilitated herbivorous dinosaur coexistence on Laramidia. Specifically, the question of feeding height stratification is examined in light of the role it plays in facilitating modern ungulate coexistence. Most herbivorous dinosaur species from the Dinosaur Park Formation were restricted to feeding no higher than approximately 1 m above the ground. There is minimal evidence for feeding height partitioning at this level, with ceratopsids capable of feeding slightly higher than ankylosaurs, but the ecological significance of this is ambiguous. Hadrosaurids were uniquely capable of feeding up to 2 m quadrupedally, or up to 5 m bipedally. There is no evidence for either feeding height stratification within any of these clades, or for change in these ecological relationships through the approximately 1.5 Ma record of the Dinosaur Park Formation. Although we cannot reject the possibility, we find no good evidence that feeding height stratification, as revealed by reconstructed maximum feeding heights, played an important role in facilitating niche partitioning among the herbivorous dinosaurs of Laramidia. Most browsing pressure was concentrated in the herb layer, although hadrosaurids were capable of reaching shrubs and low-growing trees that were out of reach from ceratopsids, ankylosaurs, and other small herbivores, effectively dividing the herbivores in terms of relative