WorldWideScience

Sample records for ground biomass production

  1. Estimating the Annual Above-Ground Biomass Production of Various Species on Sites in Sweden on the Basis of Individual Climate and Productivity Values

    Directory of Open Access Journals (Sweden)

    Johann Trischler

    2014-10-01

    Full Text Available The literature contains a large number of bioclimate, climate and biometric models for estimating the production of different species or stands under specific conditions on a defined site or models giving the distribution of a single species. Depending on the model used, the amount of input data required varies considerably and often involves a large investment in time and money. The purpose of this study was to create a model to estimate the annual above-ground biomass production of various species from site conditions defined by mean annual temperature and mean annual precipitation. For this approach, the Miami model of Lieth was used as a base model with some modifications. This first version of the modified model was restricted to sites in Sweden, where changes in the soil and groundwater level were relatively small, and where the growth of land vegetation was mostly dependent on temperature. A validation of this model has shown that it seems possible to use the Miami model to estimate the annual above-ground biomass production of various species, and that it was possible to compare the annual above-ground biomass production of different species on one site, as well as the annual above-ground biomass production of different species on different sites using the modeled data.

  2. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  3. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    Directory of Open Access Journals (Sweden)

    L. O. Anderson

    2009-09-01

    Full Text Available Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of forests over Paleovarzea geomorphologycal formation, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  4. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    Science.gov (United States)

    Anderson, L. O.; Malhi, Y.; Ladle, R. J.; Aragão, L. E. O. C.; Shimabukuro, Y.; Phillips, O. L.; Baker, T.; Costa, A. C. L.; Espejo, J. S.; Higuchi, N.; Laurance, W. F.; López-González, G.; Monteagudo, A.; Núñez-Vargas, P.; Peacock, J.; Quesada, C. A.; Almeida, S.

    2009-09-01

    Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of forests over Paleovarzea geomorphologycal formation, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  5. Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia

    Directory of Open Access Journals (Sweden)

    L. O. Anderson

    2009-02-01

    Full Text Available Long-term studies using the RAINFOR network of forest plots have generated significant insights into the spatial and temporal dynamics of forest carbon cycling in Amazonia. In this work, we map and explore the landscape context of several major RAINFOR plot clusters using Landsat ETM+ satellite data. In particular, we explore how representative the plots are of their landscape context, and test whether bias in plot location within landscapes may be influencing the regional mean values obtained for important forest biophysical parameters. Specifically, we evaluate whether the regional variations in wood productivity, wood specific density and above ground biomass derived from the RAINFOR network could be driven by systematic and unintentional biases in plot location. Remote sensing data covering 45 field plots were aggregated to generate landscape maps to identify the specific physiognomy of the plots. In the Landsat ETM+ data, it was possible to spectrally differentiate three types of terra firme forest, three types of alluvial terrain forest, two types of bamboo-dominated forest, palm forest, Heliconia monodominant vegetation, swamp forest, disturbed forests and land use areas. Overall, the plots were generally representative of the forest physiognomies in the landscape in which they are located. Furthermore, the analysis supports the observed regional trends in those important forest parameters. This study demonstrates the utility of landscape scale analysis of forest physiognomies for validating and supporting the finds of plot based studies. Moreover, the more precise geolocation of many key RAINFOR plot clusters achieved during this research provides important contextual information for studies employing the RAINFOR database.

  6. Conservative species drive biomass productivity in tropical dry forests

    NARCIS (Netherlands)

    Prado-Junior, Jamir A.; Schiavini, Ivan; Vale, Vagner S.; Sande, van der Masha T.; Lohbeck, Madelon; Poorter, Lourens

    2016-01-01

    Forests account for a substantial part of the terrestrial biomass storage and productivity. To better understand forest productivity, we need to disentangle the processes underlying net biomass change. We tested how above-ground net biomass change and its underlying biomass dynamics (biomass recr

  7. Puerto Rico Above Ground Biomass Map, 2000

    Data.gov (United States)

    U.S. Environmental Protection Agency — This image dataset details the U.S. Commonwealth of Puerto Rico above-ground forest biomass (AGB) (baseline 2000) developed by the United States (US) Environmental...

  8. Seaweed and Biomass production

    Science.gov (United States)

    Nadiradze, K. T.

    2016-02-01

    The Black Sea has a sensitive ecosystem, vulnerable to the potential impacts by climate, water quality, pollution and etc. Successfully restoring and sustaining healthy Black Sea aqua cultural farming will require concreted action by private sector, civil society, farmer organizations and other stakeholders. But to achieve agri-environmental goals at scale, well-organized policy goals, framework and strategy for Sea Agriculture Green energy, Algae Biomass, Sapropel Production, aquacultures farming are essential for Georgian Farmers. But we must recognizes the most sustainable and at least risky farming systems will be those that build in aqua cultural, environmental, and social management practices resilient to climate ch ange and other risks and shocks evident in Georgia and whole in a Black Sea Basin Countries. Black Sea has more than 600 kinds of seaweeds; these species contain biologically active substances also present in fish - vitamins and omega fatty acids. The task is to specify how Black Sea seaweeds can be used in preparing nutrition additives, medicines and cosmetic products. As elsewhere around the world, governments, civil society, and the private sector in Georgia should work together to develop and implement `Blue Economy' and Green Growth strategies to generate equitable, sustainable economic development through strengthening Sea Agriculture. We are very interested to develop Black Sea seaweed plantation ad farming for multiply purposes fo r livestock as food additives, for human as great natural source of iodine as much iodine are released by seaweeds into the atmosphere to facilitate the development of better models or aerosol formation and atmospheric chemistry. It is well known, that earth's oceans are thought to have absorbed about one quarter of the CO2 humans pumped into the atmosphere over the past 20 years. The flip side of this process is that, as they absorb co2, oceans also become more acidic with dramatic consequences for sea life

  9. Modeling below-ground biomass to improve sustainable management of Actaea racemosa, a globally important medicinal forest product

    Science.gov (United States)

    James L. Chamberlain; Gabrielle Ness; Christine J. Small; Simon J. Bonner; Elizabeth B. Hiebert

    2013-01-01

    Non-timber forest products, particularly herbaceous understory plants, support a multi-billion dollar industry and are extracted from forests worldwide for their therapeutic value. Tens of thousands of kilograms of rhizomes and roots of Actaea racemosa L., a native Appalachian forest perennial, are harvested every year and used for the treatment of...

  10. Photoinduced Biohydrogen Production from Biomass

    Directory of Open Access Journals (Sweden)

    Yutaka Amao

    2008-07-01

    Full Text Available Photoinduced biohydrogen production systems, coupling saccharaides biomass such as sucrose, maltose, cellobiose, cellulose, or saccharides mixture hydrolysis by enzymes and glucose dehydrogenase (GDH, and hydrogen production with platinum colloid as a catalyst using the visible light-induced photosensitization of Mg chlorophyll-a (Mg Chl-a from higher green plant or artificial chlorophyll analog, zinc porphyrin, are introduced.

  11. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  12. Latitudinal characteristics of below- and above-ground biomass of Typha: a modelling approach.

    Science.gov (United States)

    Asaeda, Takashi; Hai, Dinh Ngoc; Manatunge, Jagath; Williams, David; Roberts, Jane

    2005-08-01

    The latitudinal differences in the growth characteristics of Typha are largely unknown, although a number of studies have pointed out the effects of climate on the growth and productivity of Typha. Therefore, a dynamic growth model was developed for Typha to examine the effects of latitudinal changes in temperature and radiation on partitioning of the total biomass during the growing season into rhizomes, roots, flowering and vegetative shoots, and inflorescences. After validating the model with data from growth studies of Typha found in past literature, it was used to investigate the dynamics of above- and below-ground biomasses at three latitudes: 30 degrees, 40 degrees and 50 degrees. Regardless of the initial rhizome biomass, both above- and below-ground biomass values converged to a latitude-specific equilibrium produced by the balance between the total production and respiration and mortality losses. Above-ground biomass was high from 10 degrees to 35 degrees latitude with sufficient radiation, despite high metabolic losses; however, it decreased markedly at higher latitudes due to a low photosynthetic rate. Below-ground biomass, on the other hand, increased with latitude up to 40 degrees due to decreasing metabolic losses, and then markedly decreased at higher latitudes. Above-ground biomass was enhanced with an increasing number of cohorts regardless of latitude. However, although more cohorts resulted in a larger below-ground biomass at low latitudes, the largest below-ground biomass was provided by a smaller number of cohorts at high latitudes. This difference is due to low production rates of late-season cohorts in high latitudes, compared with consumption for shooting and establishing foliage. The model could be used to predict the potential growth of Typha in given conditions over a wide range of latitudes and is useful for practical applications such as wetland management or wastewater treatment systems using Typha.

  13. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  14. Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India

    Science.gov (United States)

    Madugundu, Rangaswamy; Nizalapur, Vyjayanthi; Jha, Chandra Shekhar

    2008-06-01

    This study demonstrates the potentials of IRS P6 LISS-IV high-resolution multispectral sensor (IGFOV ˜ 6 m)-based estimation of biomass in the deciduous forests in the Western Ghats of Karnataka, India. Regression equations describing the relationship between IRS P6 LISS-IV data-based vegetation index (NDVI) and field measured leaf area index (ELAI) and estimated above-ground biomass (EAGB) were derived. Remote sensing (RS) data-based leaf area index (PLAI) image is generated using regression equation based on NDVI and ELAI ( r2 = 0.68, p ≤ 0.05). RS-based above-ground biomass (PAGB) image was generated based on regression equation developed between PLAI and EAGB ( r2 = 0.63, p ≤ 0.05). The mean value of estimated above-ground biomass and RS-based above-ground biomass in the study area are 280(±72.5) and 297.6(±55.2) Mg ha -1, respectively. The regression models generated in the study between NDVI and LAI; LAI and biomass can also help in generating spatial biomass map using RS data alone. LISS-IV-based estimation of biophysical parameters can also be used for the validation of various coarse resolution satellite products derived from the ground-based measurements alone.

  15. [Biomass and carbon storage of ground bryophytes under six types of young coniferous forest plantations].

    Science.gov (United States)

    Bao, Weikai; Lei, Bo; Leng, Li

    2005-10-01

    This paper studied the biomass and carbon storage of the ground bryophytes under young Picea balfouriana (P), Pinus tabulaeformis (Y), Pinus armandii (H), Larix kaempferi (L), Picea balfouriana-Pinus tabulaeformis (P-Y), and Pinus tabulaeformis-Pinus armandii (Y-H) forest plantations in the upper reach of Minjiang River, Sichuan Province. The results showed that total biomass and carbon storage of ground bryophytes were relatively low, being 3.11 - 460.36 kg x hm(-2) and 1.12 +/- 0.03 x 168.95 +/- 0.92 kg x hm(-2), respectively. On plot level, only the bryophyte biomass between forest P and others, and the carbon storage between forest L and others were significantly different. The ground bryophyte had the highest biomass and carbon storage under forest P, while the lowest ones under forest H. Comprehensive analysis suggested that forest type and its structural feature might be the important factors determining the biomass and carbon storage of ground bryophytes, and thinning was an important measure to improve ground bryophyte growth and biomass production.

  16. Methane production from plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zauner, E.

    1985-01-01

    Methane fermentations of plant biomass were performed to increase basic knowledge necessary for development of suitable conversion technologies. Effects of bacterial inoculants, substrate compounds and varied process conditions were analyzed in batch and continuous fermentation experiments. Use of enriched bacterial populations precultured and adapted to plant materials was proved to be advantageous for inoculation. Methane yields and productivities as well as chemical and bacterial composition of digester fluids were determined at various loading rates and retention times during fermentation of different grass and maize silages. Recycling for favorable amounts of decomposed effluent for neutralization of supplied acid raw materials was important to achieve high methane yields. Quantity and composition of acido-, aceto- and methanogenic bacteria were not essentially influenced by changed fermentation conditions. Results of these laboratory examinations have to be completed by long run and scale up experiments to develop control parameters for plant biogas digesters.

  17. Does species richness affect fine root biomass and production in young forest plantations?

    DEFF Research Database (Denmark)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie;

    2015-01-01

    species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could......Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass...... and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined...

  18. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  19. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  20. Engineering verification of the biomass production chamber

    Science.gov (United States)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  1. Butanol production from renewable biomass by clostridia.

    Science.gov (United States)

    Jang, Yu-Sin; Malaviya, Alok; Cho, Changhee; Lee, Joungmin; Lee, Sang Yup

    2012-11-01

    Global energy crisis and limited supply of petroleum fuels have rekindled the worldwide focus towards development of a sustainable technology for alternative fuel production. Utilization of abundant renewable biomass offers an excellent opportunity for the development of an economical biofuel production process at a scale sufficiently large to have an impact on sustainability and security objectives. Additionally, several environmental benefits have also been linked with the utilization of renewable biomass. Butanol is considered to be superior to ethanol due to its higher energy content and less hygroscopy. This has led to an increased research interest in butanol production from renewable biomass in recent years. In this paper, we review the various aspects of utilizing renewable biomass for clostridial butanol production. Focus is given on various alternative substrates that have been used for butanol production and on fermentation strategies recently reported to improve butanol production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  3. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability......, and energetic feasibility by combining the use of a geographical information system with laboratory experiments, statistical analyses, field studies, and literature reviews. The biomasses identified as sustainable in this study were animal manure, straw, surplus grass from agricultural production, grass from...... nature conservation, and grass from roadside verges. It was found that a significant potential of the investigated sustainable biomass resources are available in Denmark, but also on European level. In Europe, the energy potential in 2030 from animal manure, straw and surplus grass was projected to range...

  4. Freshwater aquatic plant biomass production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K.R.; Sutton, D.L.; Bowes, G.

    1983-01-01

    About 8% (1.2 million ha) of the total surface area of Florida is occupied by freshwater. Many of these water bodies are eutrophic. Nutrients present in these water bodies can be potentially used to culture aquatic plants as a possible feedstock for methane production. This paper summarizes the results of known research findings on biomass production potential of freshwater aquatic plants in Florida and identifies key research needs to improve the quality and quantity of biomass yields. Among floating aquatic plants, biomass yield potential was in the order of water-hyacinth > water lettuce > pennywort > salvinia > duckweed > azolla. Pennywort, duckweed, and azolla appear to perform well during the cooler months compared to other aquatic plants. Among emergent plants, biomass yield potential was in the order of southern wild rice > cattails > soft rush > bulrush. Cultural techniques, nutrient management, and environmental factors influencing the biomass yields were discussed. 68 references.

  5. Closed photobioreactors for production of microalgal biomasses.

    Science.gov (United States)

    Wang, Bei; Lan, Christopher Q; Horsman, Mark

    2012-01-01

    Microalgal biomasses have been produced industrially for a long history for application in a variety of different fields. Most recently, microalgae are established as the most promising species for biofuel production and CO(2) bio-sequestration owing to their high photosynthesis efficiency. Nevertheless, design of photobioreactors that maximize solar energy capture and conversion has been one of the major challenges in commercial microalga biomass production. In this review, we systematically survey the recent developments in this field.

  6. Biomass gasification and energy production

    Energy Technology Data Exchange (ETDEWEB)

    Mahinpey, N.; Nikoo, M.B. [Regina Univ., SK (Canada). Faculty of Engineering

    2007-07-01

    The ASPEN PLUS simulation program was used to model an atmospheric fluidized bed biomass gasifier. The aim of the study was develop a simulation capable of accurately predicting steady state performance of the gasifier in relation to hydrodynamics and reaction kinetics. The influences of feed decomposition, volatile reactions, gas gasification and gas-solid separation were considered through modularized ASPEN PLUS models. The ASPEN PLUS yield reactor was used to simulate biomass feed decomposition. A separation column model was used to separate volatile materials and solids. Experimental data from a pine biomass gasification experiment conducted in a laboratory-scale fluidized bed gasifier was used to validate the simulation results. Good agreement was shown for gas composition, although carbon dioxide (CO{sub 2}) rates were slightly underestimated. The study also demonstrated that higher temperatures improved the gasification process and carbon conversion. The optimized gasification process produced more carbon monoxide (CO) and less CO{sub 2}. The introduction of lower temperature steam to the gasification process increased tar output. It was concluded that the conversion efficiency increased when the equivalence ratio was increased. 7 refs., 1 tab., 12 figs.

  7. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y. [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T. [Aston Univ. Birmingham (United Kingdom); Beckman, D. [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  8. Biomass production by freshwater and marine macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    North, W.J.; Gerard, V.A.; Kuwabara, J.S.

    1981-01-01

    Research on aquatic macrophytes as producers of biomass has been undertaken at Woods Hole Oceanographic Institution (WHOI) on the east coast and on the west coast by a group of collaborators in a joint effort known as the Marine Biomass Project. Studies at WHOI have focused on estuarine and coastal situations with some attention recently to freshwater plants. The Marine Farm Project has primarily been concerned with oceanic biomass production. A group at WHOI has undertaken a wide variety of studies concerning aquatic macrophytes including nutrient uptake, growth, yields, and environmental factors affecting yields. Aquatic biomass production systems have been surveyed on a worldwide basis and currently the role of carbon as a potential limiting nutrient in biomass culturing is being examined. The Marine Farm Project is presently attempting to grow giant kelp in offshore waters off southern California. Other work related to aquatic biomass production includes an investigation at the University of California, Berkeley, of microalgae in ponds. This paper will emphasize discussion of the kelp production phases of the Marine Farm Project. Activities by the WHOI are briefly summarized.

  9. Does species richness affect fine root biomass and production in young forest plantations?

    Science.gov (United States)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  10. Variability of Biomass Burning Aerosols Layers and Near Ground

    Science.gov (United States)

    Vasilescu, Jeni; Belegante, Livio; Marmureanu, Luminita; Toanca, Flori

    2016-06-01

    The aim of this study is to characterize aerosols from both chemical and optical point of view and to explore the conditions to sense the same particles in elevated layers and at the ground. Three days of continuous measurements using a multi-wavelength depolarization lidar(RALI) and a C-ToF-AMS aerosol mass spectrometer are analyzed. The presence of smoke particles was assessed in low level layers from RALI measurements. Chemical composition of submicronic volatile/semi-volatile aerosols at ground level was monitored by the CTOF AMS Several episodes of biomass burning aerosols have been identified by both techniques due to the presence of specific markers (f60, linear particle depolarization ratio, Ängström exponent).

  11. Woody biomass production systems for Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, D.L.; Pathak, N.N.; Satapathy, P.C. (Florida Univ., Gainesville, FL (United States). Dept. of Forestry)

    1993-01-01

    Woody biomass production research in Florida has addressed genetic improvement, coppice productivity, clonal propagation, biomass properties, and economics of Eucalyptus and other species in short rotation, intensive culture systems. Improved E. grandis seedlings could more than double productivity, but exceptional clones offer more immediate potential in southern Florida. E. tereticornis and E. camaldulensis appear to have frost-resistance and good growth in central and southern Florida. For northern Florida, E. amplifolia has good frost-resilience and coppicing ability. Eucalytpus species are suitable for fermentation processes. Other promising species include Casuarina glauca and Taxodium distichum in southern Florida, and Sapium sebiferum state-wide. Break-even costs for biomass production systems with Eucalyptus range from approximately $2.00 to $4.00 GJ[sup -1]; short rotation culture appears feasible for slash pine in northern and central Florida but cannot yet be advised for sand pine. (author)

  12. Hydrothermal pretreatment of biomass for pellet production

    Energy Technology Data Exchange (ETDEWEB)

    Tooyserkani, Z. [British Columbia Univ., Vancouver, BC (Canada). Clean Energy Research Centre, Biomass and Bioenergy Research Group

    2010-07-01

    This presentation discussed innovative technologies for the production of wood pellets using the hydrothermal pre-treatment of biomass. Conventional techniques use low-cost mill residues, such as saw dust and shavings, as feedstock to produce durable, low-ash pellets. However, mill residues are becoming less available as a result of fewer saw mills, increased pellet production, and increased competition for saw dust. Advanced techniques use mixed biomass such as logging residue as feedstock, creating pellets that are durable for handling and long-term storage, of a higher energy density for transport and mixing with coal for co-firing, and a choice feedstock for biofuels. Advanced pellet production uses steam explosion/pre-treatment in which biomass receives a short-term high-pressure steam treatment followed by sudden decompression. Mild torrefaction seems to have positive feedback, and steam-treated pellets are durable with superior hydrophobicity. 3 figs., 3 tabs.

  13. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  14. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  15. Evaluation on Microalgae Biomass for Bioethanol Production

    Science.gov (United States)

    Chng, L. M.; Lee, K. T.; Chan, D. C. J.

    2017-06-01

    The depletion of energy resources has triggered worldwide concern for alternative sources, especially renewable energy. Microalgae biomass offers the most promising feedstock for renewable energy because of their impressive efficient growing characteristics and valuable composition. Simple cell structure of the microalgae would simplify the pretreatment technology thus increase the cost-effectiveness of biofuel production. Scenedesmus dimorphus is a carbohydrate-rich microalgae that has potential as biomass for bioethanol. The cultivation of Scenedesmus dimorphus under aeration of carbon dioxide enriched air resulted 1.47 g/L of dry biomass with composition of 12 w/w total lipid, 53.7 w/w carbohydrate and 17.4 protein. Prior to ethanolic fermentation with Saccharomyces cerevisiae, various pre-treatment methods were investigated to release and degrade the complex carbohydrate in cell biomass thus obtaining the maximal amount of digestible sugar for ethanolic yeast. In this study, sulfuric acid was used as hydrolysis agent while amyloglucosidase as enzymatic agent. Dried biomass via hydrothermal acidic hydrolysis yielded sugar which is about 89 of total carbohydrate at reaction temperature of 125 °C and acid concentration of 4 v/v. While combination of organosolv treatment (mixture of methanol and chloroform) with enzymatic hydrolysis yielded comparable amount of sugar with 0.568 g glucose/g treated-biomass. In this study, the significant information in pre-treatment process ensures the sustainability of the biofuel produced.

  16. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus;

    -58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). • A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  17. Modeling and analysis of biomass production systems

    Energy Technology Data Exchange (ETDEWEB)

    Mishoe, J.W.; Lorber, M.N.; Peart, R.M.; Fluck, R.C.; Jones, J.W.

    1984-01-01

    BIOMET is an interactive simulation model that is used to analyze specific biomass and methane production systems. The system model is composed of crop growth models, harvesting, transportation, conversion and economic submodels. By use of menus the users can configure the structure and set selected parameters of the system to analyze the effects of variables within the component models. For example, simulations of a water hyacinth system resulted in yields of 63, 48 and 37 mg/ha/year for different harvest schedules. For napier grass, unit methane costs were $3.04, $2.86 and $2.98 for various yields of biomass. 10 references.

  18. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  19. Sustainable biomass production on Marginal Lands (SEEMLA)

    Science.gov (United States)

    Barbera, Federica; Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    Sustainable biomass production on Marginal Lands (SEEMLA) The main objective of the H2020 funded EU project SEEMLA (acronym for Sustainable Exploitation of Biomass for Bioenergy from Marginal Lands in Europe) is the establishment of suitable innovative land-use strategies for a sustainable production of plant-based energy on marginal lands while improving general ecosystem services. The use of marginal lands (MagL) could contribute to the mitigation of the fast growing competition between traditional food production and production of renewable bio-resources on arable lands. SEEMLA focuses on the promotion of re-conversion of MagLs for the production of bioenergy through the direct involvement of farmers and forester, the strengthening of local small-scale supply chains, and the promotion of plantations of bioenergy plants on MagLs. Life cycle assessment is performed in order to analyse possible impacts on the environment. A soil quality rating tool is applied to define and classify MagL. Suitable perennial and woody bioenergy crops are selected to be grown in pilot areas in the partner countries Ukraine, Greece and Germany. SEEMLA is expected to contribute to an increasing demand of biomass for bioenergy production in order to meet the 2020 targets and beyond.

  20. QUANTIFICATION OF ABOVE-GROUND BIOMASS IN STAND OF Acacia mearnsii DE WILD., BATEMANS BAY PROVENANCE - AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Winckler Caldeira

    2010-08-01

    Full Text Available The above-ground biomass of the Australian provenance Batemans Bay of black wattle (Acacia mearnsii De Wild., at 2.4 years after planting was quantified. The provenance was established in soils of low fertility, with high acidity, at Fazenda Menezes, District of Capão Comprido, County of Butiá/RS. Nine trees were selected to form a sample. The destructive sampling comprised the individualization of the compartments of the above-ground biomass (leaves, live branches, dead branches, bark, and wood, and the determination of the dry matter allocated in each of these compartments. The production of above-ground biomass of the Australian provenance Batemans Bay was 36,1 Mg ha-1 with the following distribution: 20% in the leaves; 19,5% in the live branches; 2,8% in the dead branches; 11,8% in the bark and 45,9% in the wood.

  1. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  2. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  3. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  4. Soil Organic Carbon and Below Ground Biomass: Development of New GLOBE Special Measurements

    Science.gov (United States)

    Levine, Elissa; Haskett, Jonathan

    1999-01-01

    A scientific consensus is building that changes in the atmospheric concentrations of radiatively active gases are changing the climate (IPCC, 1990). One of these gases CO2 has been increasing in concentration due to additions from anthropogenic sources that are primarily industrial and land use related. The soil contains a very large pool of carbon, estimated at 1550 Gt (Lal 1995) which is larger than the atmospheric and biosphere pools of carbon combined (Greenland, 1995). The flux between the soil and the atmosphere is very large, 60 Pg C/yr (Lal 1997), and is especially important because the soil can act as either a source or a sink for carbon. On any given landscape, as much as 50% of the biomass that provides the major source of carbon can be below ground. In addition, the movement of carbon in and out of the soil is mediated by the living organisms. At present, there is no widespread sampling of soil biomass in any consistent or coordinated manner. Current large scale estimates of soil carbon are limited by the number and widely dispersed nature of the data points available. A measurement of the amount of carbon in the soil would supplement existing carbon data bases as well as provide a benchmark that can be used to determine whether the soil is storing carbon or releasing it to the atmosphere. Information on the below ground biomass would be a valuable addition to our understanding of net primary productivity and standing biomass. The addition of these as special measurements within GLOBE would be unique in terms of areal extent and continuity, and make a real contribution to scientific understanding of carbon dynamics.

  5. An Experimental Investigation of Hydrogen Production from Biomass

    Institute of Scientific and Technical Information of China (English)

    吕鹏梅; 常杰; 付严; 王铁军; 陈勇; 祝京旭

    2003-01-01

    In gaseous products of biomass steam gasification, there exist a lot of CO, CH4 and other hydrocarbons that can be converted to hydrogen through steam reforming reactions. There exists potential hydrogen production from the raw gas of biomass steam gasification. In the present work, the characteristics of hydrogen production from biomass steam gasification were investigated in a small-scale fluidized bed. In these experiments, the gasifying agent (air) was supplied into the reactor from the bottom of the reactor and the steam was added into the reactor above biomass feeding location. The effects of reaction temperature, steam to biomass ratio, equivalence ratio (ER) and biomass particle size on hydrogen yield and hydrogen yield potential were investigated. The experimental results showed that higher reactor temperature, proper ER, proper steam to biomass ratio and smaller biomass particle size will contribute to more hydrogen and potential hydrogen yield.

  6. Biomass and fibre productivity evaluation of novel native warm season grasses

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, P.G. [Agriculture and Agri-Food Canada, Swift Current, SK (Canada); McElroy, A.R. [Agriculture Canada, Ottawa, ON (Canada). Grain and Oilseeds Branch; McCaughey, P. [Agriculture and Agri-Food Canada Research Centre, Brandon, MB (Canada)

    1997-07-01

    Biomass production and cellulose content of a range of switchgrass (Panicum virgatum L.) cultivars was discussed. In 1991 the U.S. Department of Energy identified switchgrass, a native warm-season grass, as the model biomass crop for ethanol production from lignocellulosic materials. A Canadian study was conducted in which 11 cultivars of switchgrass were seeded at small plots of dryland and irrigated sites in Manitoba and Saskatchewan. No switchgrass plants established themselves at the dryland site at Swift Current Saskatchewan. Biomass was determined by clipping above-ground biomass in September 1994 and 1996. Dry matter content and cellulose content was determined. Results showed that the biomass production of the cultivar Dacotah was less than cool-season grasses at test sites in Manitoba, and Saskatchewan. The high yields observed for cultivars adapted to southern or eastern regions were not sustainable in the semiarid prairie region of Canada. 8 refs., 2 tabs.

  7. Conversion of biomass to selected chemical products.

    Science.gov (United States)

    Gallezot, Pierre

    2012-02-21

    This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).

  8. EnviroAtlas - Above Ground Live Biomass Carbon Storage for the Conterminous United States- Forested

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes the average above ground live dry biomass estimate for the Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit (HUC) in kg/m...

  9. EnviroAtlas - Below Ground Live Tree Biomass Carbon Storage for the Conterminous United States- Forested

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes the average below ground live tree root dry biomass estimate for the Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit...

  10. Biofuel production from plant biomass derived sugars

    Energy Technology Data Exchange (ETDEWEB)

    Cripps, R.

    2007-03-15

    This report details the results of a project that aimed to develop a recombinant thermophilic microorganism able to produce ethanol in a commercial yield from mixed C5 (xylose and arabinose) and C6 (mainly glucose) sugar substrates typically found in biomass hydrolysates. The main focus of the project was on producing a stable recombinant which formed ethanol as its major product and did not produce significant quantities of by-products. The costs of bioethanol could be substantially reduced if cheap plant-based feedstocks could be utilised. This study focussed on a strain of Geobacillus thermoglucosidasius known to be a thermophilic ethanol producer and developed the genetic manipulation techniques necessary to engineer its metabolism such that unwanted products (mainly organic acids) were no longer formed and ethanol became the overwhelming product. An appropriate genetic took kit to allow the required metabolic engineering was acquired and used to inactivate the genes of the metabolic pathways involved in the formation of the organic acids (e.g. lactic acid) and to up-regulate genes concerned with the formation of ethanol. This allowed the flow of metabolites derived from the sugar substrates to be redirected to the desired product. Stable mutants lacking the ability to form lactic acid were created and shown to give enhanced levels of ethanol, with yields from glucose approaching those achieved in yeast fermentations and low by-product formation.

  11. Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings.

    Science.gov (United States)

    Cheng, Dongliang; Ma, Yuzhu; Zhong, Quanling; Xu, Weifeng

    2014-10-01

    Allometric biomass allocation theory predicts that leaf biomass (M L ) scaled isometrically with stem (M S ) and root (M R ) biomass, and thus above-ground biomass (leaf and stem) (M A ) and root (M R ) scaled nearly isometrically with below-ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above- and below-ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above- to below-ground biomass. The results indicated that M L and M S scaled in an isometric or a nearly isometric manner with M R , as well as M A to M R for five woody species. Significant variation was observed in the Y-intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for M L versus M S and M L versus M R , but not for M S versus M R and M A versus M R . We conclude, therefore, that a nearly isometric scaling relationship of M A versus M R holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.

  12. Biomass gasification for liquid fuel production

    Science.gov (United States)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-08-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  13. Biomass gasification for liquid fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  14. Potentials for forest woody biomass production in Serbia

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar Lj.

    2015-01-01

    Full Text Available The paper presents the analysis of possible potentials for the production of forest biomass in Serbia taking into consideration the condition of forests, present organizational and technical capacities as well as the needs and situation on the firewood market. Starting point for the estimation of production potentials for forest biomass is the condition of forests which is analyzed based on the available planning documents on all levels. Potentials for biomass production and use refer to initial periods in the production and use of forest biomass in Serbia.

  15. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  16. Estimation and mapping of above ground biomass and carbon of ...

    African Journals Online (AJOL)

    USER

    hand, trees absorb CO2 during photosynthesis resulting in a decrease in the carbon ... –Kyoto climate change agreement on reducing emissions from deforestation and ... the nature of terrain can also affect the amounts of biomass and carbon ...

  17. Exploring multi-scale forest above ground biomass estimation with optical remote sensing imageries

    Science.gov (United States)

    Koju, U.; Zhang, J.; Gilani, H.

    2017-02-01

    Forest shares 80% of total exchange of carbon between the atmosphere and the terrestrial ecosystem. Due to this monitoring of forest above ground biomass (as carbon can be calculated as 0.47 part of total biomass) has become very important. Forest above ground biomass as being the major portion of total forest biomass should be given a very careful consideration in its estimation. It is hoped to be useful in addressing the ongoing problems of deforestation and degradation and to gain carbon mitigation benefits through mechanisms like Reducing Emissions from Deforestation and Forest Degradation (REDD+). Many methods of above ground biomass estimation are in used ranging from use of optical remote sensing imageries of very high to very low resolution to SAR data and LIDAR. This paper describes a multi-scale approach for assessing forest above ground biomass, and ultimately carbon stocks, using very high imageries, open source medium resolution and medium resolution satellite datasets with a very limited number of field plots. We found this method is one of the most promising method for forest above ground biomass estimation with higher accuracy and low cost budget. Pilot study was conducted in Chitwan district of Nepal on the estimation of biomass using this technique. The GeoEye-1 (0.5m), Landsat (30m) and Google Earth (GE) images were used remote sensing imageries. Object-based image analysis (OBIA) classification technique was done on Geo-eye imagery for the tree crown delineation at the watershed level. After then, crown projection area (CPA) vs. biomass model was developed and validated at the watershed level. Open source GE imageries were used to calculate the CPA and biomass from virtual plots at district level. Using data mining technique, different parameters from Landsat imageries along with the virtual sample biomass were used for upscaling biomass estimation at district level. We found, this approach can considerably reduce field data requirements for

  18. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  19. Electricity and heat production by biomass cogeneration

    Science.gov (United States)

    Marčič, Simon; Marčič, Milan

    2017-07-01

    In Slovenia, approximately 2 % of electricity is generated using cogeneration systems. Industrial and district heating networks ensure the growth of such technology. Today, many existing systems are outdated, providing myriad opportunities for reconstruction. One concept for the development of households and industry envisages the construction of several small biomass units and the application of natural gas as a fuel with a relatively extensive distribution network. This concept has good development potential in Slovenia. Forests cover 56 % of the surface area in Slovenia, which has, as a result, a lot of waste wood to be turned into biomass. Biomass is an important fuel in Slovenia. Biomass is gasified in a gasifier, and the wood gas obtained is used to power the gas engine. This paper describes a biomass cogeneration system as the first of this type in Slovenia, located in Ruše.

  20. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Daugbjerg Jensen, P.; Svane Bech, K. [Danish Technological Institute (DTI), Taastrup (Denmark)] [and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  1. Forest Structure, Composition and Above Ground Biomass of Tree Community in Tropical Dry Forests of Eastern Ghats, India

    Directory of Open Access Journals (Sweden)

    Sudam Charan SAHU

    2016-03-01

    Full Text Available The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI of 40.72, while Combretaceae had the highest family importance value (FIV of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%, Madhuca indica (7.9%, Mangifera indica (6.9%, Terminalia alata (6.9% and Diospyros melanoxylon (4.4%, warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks scheme.

  2. Iron nutrition, biomass production, and plant product quality.

    Science.gov (United States)

    Briat, Jean-François; Dubos, Christian; Gaymard, Frédéric

    2015-01-01

    One of the grand challenges in modern agriculture is increasing biomass production, while improving plant product quality, in a sustainable way. Of the minerals, iron (Fe) plays a major role in this process because it is essential both for plant productivity and for the quality of their products. Fe homeostasis is an important determinant of photosynthetic efficiency in algae and higher plants, and we review here the impact of Fe limitation or excess on the structure and function of the photosynthetic apparatus. We also discuss the agronomic, plant breeding, and transgenic approaches that are used to remediate Fe deficiency of plants on calcareous soils, and suggest ways to increase the Fe content and bioavailability of the edible parts of crops to improve human diet.

  3. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    OpenAIRE

    De Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B; Haywood, J.; LONGO, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-01-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field ...

  4. The regional environmental impact of biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.

    1994-09-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics.

  5. Estimating above-ground carbon biomass in a newly restored coastal plain wetland using remote sensing.

    Directory of Open Access Journals (Sweden)

    Joseph B Riegel

    Full Text Available Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical challenge that must be overcome before a carbon offset market can be successfully implemented in the United States. Previous studies have shown that LiDAR (light detection and ranging is well-suited for modeling above-ground biomass in mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in areas with young, aggrading vegetation. This study compared the abilities of discrete-return LiDAR and high resolution optical imagery to model above-ground carbon biomass at a young restored forested wetland site in eastern North Carolina. We found that the optical imagery model explained more of the observed variation in carbon biomass than the LiDAR model (adj-R(2 values of 0.34 and 0.18 respectively; root mean squared errors of 0.14 Mg C/ha and 0.17 Mg C/ha respectively. Optical imagery was also better able to predict high and low biomass extremes than the LiDAR model. Combining both the optical and LiDAR improved upon the optical model but only marginally (adj-R(2 of 0.37. These results suggest that the ability of discrete-return LiDAR to model above-ground biomass may be rather limited in areas with young, small trees and that high spatial resolution optical imagery may be the better tool in such areas.

  6. Is the simple auger coring method reliable for below-ground standing biomass estimation in Eucalyptus forest plantations?

    Science.gov (United States)

    Levillain, Joseph; Thongo M'Bou, Armel; Deleporte, Philippe; Saint-André, Laurent; Jourdan, Christophe

    2011-07-01

    Despite their importance for plant production, estimations of below-ground biomass and its distribution in the soil are still difficult and time consuming, and no single reliable methodology is available for different root types. To identify the best method for root biomass estimations, four different methods, with labour requirements, were tested at the same location. The four methods, applied in a 6-year-old Eucalyptus plantation in Congo, were based on different soil sampling volumes: auger (8 cm in diameter), monolith (25 × 25 cm quadrate), half Voronoi trench (1·5 m(3)) and a full Voronoi trench (3 m(3)), chosen as the reference method. With the reference method (0-1m deep), fine-root biomass (FRB, diameter biomass (MRB diameter 2-10 mm) at 2·0 t ha(-1), coarse-root biomass (CRB, diameter >10 mm) at 5·6 t ha(-1) and stump biomass at 6·8 t ha(-1). Total below-ground biomass was estimated at 16·2 t ha(-1) (root : shoot ratio equal to 0·23) for this 800 tree ha(-1) eucalypt plantation density. The density of FRB was very high (0·56 t ha(-1)) in the top soil horizon (0-3 cm layer) and decreased greatly (0·3 t ha(-1)) with depth (50-100 cm). Without labour requirement considerations, no significant differences were found between the four methods for FRB and MRB; however, CRB was better estimated by the half and full Voronoi trenches. When labour requirements were considered, the most effective method was auger coring for FRB, whereas the half and full Voronoi trenches were the most appropriate methods for MRB and CRB, respectively. As CRB combined with stumps amounted to 78 % of total below-ground biomass, a full Voronoi trench is strongly recommended when estimating total standing root biomass. Conversely, for FRB estimation, auger coring is recommended with a design pattern accounting for the spatial variability of fine-root distribution.

  7. Strategies for optimizing algal biology for enhanced biomass production

    Directory of Open Access Journals (Sweden)

    Amanda N. Barry

    2015-02-01

    Full Text Available One of the more environmentally sustainable ways to produce high energy density (oils feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source and subsequent carbon capture and sequestration (BECCS has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass. To increase aerial carbon capture rates and biomass productivity it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to two-fold increases in biomass productivity.

  8. Biodiesel Production from Spent Coffee Grounds

    Science.gov (United States)

    Blinová, Lenka; Bartošová, Alica; Sirotiak, Maroš

    2017-06-01

    The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.

  9. Levulinic acid production from waste biomass

    OpenAIRE

    Anna Maria Raspolli Galletti,; Claudia Antonetti; Valentina De Luise,; Domenico Licursi,; Nicoletta Nassi

    2012-01-01

    The hydrothermal conversion of waste biomass to levulinic acid was investigated in the presence of homogeneous acid catalysts. Different cheap raw materials (poplar sawdust, paper mill sludge, tobacco chops, wheat straw, olive tree pruning) were employed as substrates. The yields of levulinic acid were improved by optimization of the main reaction parameters, such as type and amount of acid catalyst, temperature, duration, biomass concentration, and electrolyte addition. The catalytic perform...

  10. Diversity increases biomass production for trematode parasites in snails

    Science.gov (United States)

    Hechinger, Ryan F.; Lafferty, Kevin D.; Kuris, Armand M.

    2008-01-01

    Increasing species diversity typically increases biomass in experimental assemblages. But there is uncertainty concerning the mechanisms of diversity effects and whether experimental findings are relevant to ecological process in nature. Hosts for parasites provide natural, discrete replicates of parasite assemblages. We considered how diversity affects standing-stock biomass for a highly interactive parasite guild: trematode parasitic castrators in snails. In 185 naturally occurring habitat replicates (individual hosts), diverse parasite assemblages had greater biomass than single-species assemblages, including those of their most productive species. Additionally, positive diversity effects strengthened as species segregated along a secondary niche axis (space). The most subordinate species—also the most productive when alone—altered the general positive effect, and was associated with negative diversity effects on biomass. These findings, on a previously unstudied consumer class, extend previous research to illustrate that functional diversity and species identity may generally both explain how diversity influences biomass production in natural assemblages of competing species.

  11. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  12. Evaluation of Sentinel-1A Data For Above Ground Biomass Estimation in Different Forests in India

    Science.gov (United States)

    Vadrevu, Krishna Prasad

    2017-01-01

    Use of remote sensing data for mapping and monitoring of forest biomass across large spatial scales can aid in addressing uncertainties in carbon cycle. Earlier, several researchers reported on the use of Synthetic Aperture Radar (SAR) data for characterizing forest structural parameters and the above ground biomass estimation. However, these studies cannot be generalized and the algorithms cannot be applied to all types of forests without additional information on the forest physiognomy, stand structure and biomass characteristics. The radar backscatter signal also saturates as forest parameters such as biomass and the tree height increase. It is also not clear how different polarizations (VV versus VH) impact the backscatter retrievals in different forested regions. Thus, it is important to evaluate the potential of SAR data in different landscapes for characterizing forest structural parameters. In this study, the SAR data from Sentinel-1A has been used to characterize forest structural parameters including the above ground biomass from tropical forests of India. Ground based data on tree density, basal area and above ground biomass data from thirty-eight different forested sites has been collected to relate to SAR data. After the pre-processing of Sentinel 1-A data for radiometric calibration, geo-correction, terrain correction and speckle filtering, the variability in the backscatter signal in relation tree density, basal area and above biomass density has been investigated. Results from the curve fitting approach suggested exponential model between the Sentinel-1A backscatter versus tree density and above ground biomass whereas the relationship was almost linear with the basal area in the VV polarization mode. Of the different parameters, tree density could explain most of the variations in backscatter. Both VV and VH backscatter signals could explain only thirty and thirty three percent of variation in above biomass in different forest sites of India

  13. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  14. GENETICALLY MODIFIED LIGNOCELLULOSIC BIOMASS FOR IMPROVEMENT OF ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2010-02-01

    Full Text Available Production of ethanol from lignocellulosic feed-stocks is of growing interest worldwide in recent years. However, we are currently still facing significant technical challenges to make it economically feasible on an industrial scale. Genetically modified lignocellulosic biomass has provided a potential alternative to address such challenges. Some studies have shown that genetically modified lignocellulosic biomass can increase its yield, decreasing its enzymatic hydrolysis cost and altering its composition and structure for ethanol production. Moreover, the modified lignocellulosic biomass also makes it possible to simplify the ethanol production procedures from lignocellulosic feed-stocks.

  15. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    OpenAIRE

    Köhler, P.; Huth, A.

    2010-01-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degr...

  16. Above Ground Leafless Woody Biomass and Nutrient Content within Different Compartments of a P. maximowicii × P. trichocarpa Poplar Clone

    Directory of Open Access Journals (Sweden)

    Heinrich Spiecker

    2013-06-01

    Full Text Available In this study the quantification of biomass within all relevant compartments of a three-year-old poplar clone (P. maximowicii × P. trichocarpa planted on abandoned agricultural land at a density of 5000 trees ha−1 is presented. A total of 30 trees within a diameter range of 1.8 cm to 8.9 cm, at breast height (dbh at 1.3 m, were destructively sampled. In order to analyze the biomass, the complete tree, stem, as well as all branches, were divided into 1 cm diameter classes and all buds from the trees were completely removed. Total yield was calculated as 11.7 odt ha−1 year−1 (oven dry tonnes per hectare and year. Branches constituted 22.2% of total dry leafless biomass and buds 2.0%. The analyses revealed a strong correlation of the dry weight for all the three compartments with diameter at breast height. Debarked sample discs were used to obtain a ratio between wood and bark. Derived from these results, a model was developed to calculate the biomass of bark with dbh as the predictor variable. Mean bark percentage was found to be 16.8% of above ground leafless biomass. The results concur that bark percentage decreases with increasing tree diameter, providing the conclusion that larger trees contain a lower bark proportion, and thus positively influence the quality of the end product while consequently reducing the export of nutrients from site.

  17. Investigating combustion as a method of processing inedible biomass produced in NASA's biomass production chamber

    Science.gov (United States)

    Dreschel, T. W.; Wheeler, R. M.; Hinkle, C. R.; Sager, J. C.; Knott, W. M.

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project at the John F. Kennedy Space Center is a research program to integrate and evaluate biological processes to provide air, water, and food for humans in closed environments for space habitation. This project focuses on the use of conventional crop plants as grown in the Biomass Production Chamber (BPC) for the production and recycling of oxygen, food, and water. The inedible portion of these crops has the potential to be converted to edible biomass or directly to the elemental constituents for direct recycling. Converting inedible biomass directly, by combustion, to carbon dioxide, water, and minerals could provide a baseline for estimating partitioning of the mass balance during recycling in a CELSS. Converting the inedible biomass to carbon dioxide and water requires the same amount of oxygen that was produced by photosynthesis. The oxygen produced during crop growth is just equal to the oxygen required to oxidize all the biomass produced during growth. Thus, the amount of oxygen produced that is available for human consumption is in proportion to the amount of biomass actually utilized by humans. The remaining oxygen must be available to oxidize the rest of the biomass back to carbon dioxide and water or the system will not be a regenerative one.

  18. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  19. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  20. Nondestructive estimates of above-ground biomass using terrestrial laser scanning

    NARCIS (Netherlands)

    Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; Kaasalainen, M.

    2015-01-01

    Allometric equations are currently used to estimate above-ground biomass (AGB) based on the indirect relationship with tree parameters. Terrestrial laser scanning (TLS) can measure the canopy structure in 3D with high detail. In this study, we develop an approach to estimate AGB from TLS data, which

  1. Photoelectrochemical hydrogen production from biomass derivatives and water.

    Science.gov (United States)

    Lu, Xihong; Xie, Shilei; Yang, Hao; Tong, Yexiang; Ji, Hongbing

    2014-11-21

    Hydrogen, a clean energy carrier with high energy capacity, is a very promising candidate as a primary energy source for the future. Photoelectrochemical (PEC) hydrogen production from renewable biomass derivatives and water is one of the most promising approaches to producing green chemical fuel. Compared to water splitting, hydrogen production from renewable biomass derivatives and water through a PEC process is more efficient from the viewpoint of thermodynamics. Additionally, the carbon dioxide formed can be re-transformed into carbohydrates via photosynthesis in plants. In this review, we focus on the development of photoanodes and systems for PEC hydrogen production from water and renewable biomass derivatives, such as methanol, ethanol, glycerol and sugars. We also discuss the future challenges and opportunities for the design of the state-of-the-art photoanodes and PEC systems for hydrogen production from biomass derivatives and water.

  2. Regulation for Optimal Liquid Products during Biomass Pyrolysis: A Review

    Science.gov (United States)

    Wang, F.; Hu, L. J.; Zheng, Y. W.; Huang, Y. B.; Yang, X. Q.; Liu, C.; Kang, J.; Zheng, Z. F.

    2016-08-01

    The liquid product obtained from biomass pyrolysis is very valuable that it could be used for extraction of chemicals as well as for liquid fuel. The desire goal is to obtain the most bio-oil with desired higher heating value (HHV), high physicochemical stability. The yields and chemical composition of products from biomass pyrolysis are closely related to the feedstock, pyrolysis parameters and catalysts. Current researches mainly concentrated on the co-pyrolysis of different biomass and introduce of novel catalysts as well as the combined effect of catalysts and pyrolysis parameters. This review starts with the chemical composition of biomass and the fundamental parameters and focuses on the influence of catalysts on bio-oil. What is more, the pyrolysis facilities at commercial scales were also involved. The classic researches and the current literature about the yield and composition of products (mainly liquid products) are summarized.

  3. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  4. Biomass gasification for the production of methane

    NARCIS (Netherlands)

    Nanou, P.

    2013-01-01

    Biomass is very promising as a sustainable alternative to fossil resources because it is a renewable source that contains carbon, an essential building block for gaseous and liquid fuels. Methane is the main component of natural gas, which is a fuel used for heating, power generation and transportat

  5. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin;

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...

  6. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  7. Biomass and neutral lipid production in geothermal microalgal consortia.

    Science.gov (United States)

    Bywaters, Kathryn F; Fritsen, Christian H

    2014-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems - in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L(-1) day(-1). The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L(-1 )day(-1); the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  8. Sophorolipid production from lignocellulosic biomass feedstocks

    Science.gov (United States)

    Samad, Abdul

    , the yield of SLs was 0.55 g/g carbon (sugars plus oil) for cultures with bagasse hydrolysates. Further, SL production was investigated using sweet sorghum bagasse and corn stover hydrolysates derived from different pretreatment conditions. For the former and latter sugar sources, yellow grease or soybean oil was supplemented at different doses to enhance sophorolipid yield. 14-day batch fermentation on bagasse hydrolysates with 10, 40 and 60 g/L of yellow grease had cell densities of 5.7 g/L, 6.4 g/L and 7.8 g/L, respectively. The study also revealed that the yield of SLs on bagasse hydrolysate decreased from 0.67 to 0.61 and to 0.44 g/g carbon when yellow grease was dosed at 10, 40 and 60 g/L. With aforementioned increasing yellow grease concentration, the residual oil left after 14 days was recorded as 3.2 g/L, 8.5 g/L and 19.9 g/L. For similar experimental conditions, the cell densities observed for corn stover hydrolysate combined with soybean oil at 10, 20 and 40 g/L concentration were 6.1 g/L, 5.9 g/L, and 5.4 g/L respectively. Also, in the same order of oil dose supplemented, the residual oil recovered after 14-day was 8.5 g/L, 8.9 g/L, and 26.9 g/L. Corn stover hydrolysate mixed with the 10, 20 and 40 g/L soybean oil, the SL yield was 0.19, 0.11 and 0.09 g/g carbon. Overall, both hydrolysates supported cell growth and sophorolipid production. The results from this research show that hydrolysates derived from the different lignocellulosic biomass feedstocks can be utilized by C. bombicola to achieve substantial yields of SLs. Based upon the results revealed by several batch-stage experiments, it can be stated that there is great potential for scaling up and industrial scale production of these high value products in future.

  9. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  10. Hydrogen from algal biomass: A review of production process.

    Science.gov (United States)

    Sharma, Archita; Arya, Shailendra Kumar

    2017-09-01

    Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  11. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    . Straw can be co-fired with coal in suspension fired power plants with a maximum straw share of 10 to 20 wt%. However, 100% straw firing induced several problems that can impede both boiler availability and power efficiency. Straw is highly fibrous and tenacious in nature, therefore a relatively high...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized...... wheat straw, miscanthus, spruce, beech, pine, and spruce bark) with different chemical and physical properties were pyrolyzed by Simultaneous Thermal Analysis (STA) and torrefied in the simultaneous torrefaction and grinding reactor. The effect of biomass alkali content on torrefaction characteristics...

  12. LEVULINIC ACID PRODUCTION FROM WASTE BIOMASS

    Directory of Open Access Journals (Sweden)

    Anna Maria Raspolli Galletti,

    2012-02-01

    Full Text Available The hydrothermal conversion of waste biomass to levulinic acid was investigated in the presence of homogeneous acid catalysts. Different cheap raw materials (poplar sawdust, paper mill sludge, tobacco chops, wheat straw, olive tree pruning were employed as substrates. The yields of levulinic acid were improved by optimization of the main reaction parameters, such as type and amount of acid catalyst, temperature, duration, biomass concentration, and electrolyte addition. The catalytic performances were also improved by the adoption of microwave irradiation as an efficient heating method, allowing significant energy and time savings. The hydrothermal conversions of inulin and wheat straw were carried out in the presence of niobium phosphate, which up to now have never been employed in these reactions. The preliminary results appeared to be in need of further optimization.

  13. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    Science.gov (United States)

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  14. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    Directory of Open Access Journals (Sweden)

    Hieu Cong Nguyen

    2015-07-01

    Full Text Available The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1 Dark Object Subtraction (DOS; (2 Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH and (3 the Second Simulation of Satellite Signal in the Solar Spectrum (6S and compare them with Top of Atmospheric (TOA reflectance. By using the k-Nearest Neighbor (kNN algorithm, a series of experiments were conducted for above-ground forest biomass (AGB estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  15. Biomass production of young lodgepole pine (Pinus contorta var. latifolia stands in Latvia

    Directory of Open Access Journals (Sweden)

    Jansons A

    2013-01-01

    Full Text Available Biomass as a source of renewable energy is gaining an increasing importance in the context of emission targets set by the European Union. Large areas of abandoned agricultural land with different soils are potentially available for establishment of biomass plantations in the Baltic states. Considering soil and climatic requirements as well as traits characteristic for lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm and the scarcity of published knowledge, we assessed the above-ground biomass of Pinus contorta in comparison to that of native Scots pine (Pinus sylvestris L. and factors affecting biomass production. Data were collected in 3 experimental trials, located in two sites in central part of Latvia: Zvirgzde and Kuldiga (56°41’ N, 24°28’ E and 57°03’ N, 21°57’ E, respectively. Trials were established with density 5000 tree ha-1, using seed material from Canada (50°08’-60°15’ N, 116°25’-132°50’ W and two Pinus contorta stands with unknown origin growing in Latvia. Results reveal that absolute dry aboveground biomass of Pinus contorta reaches 114 ± 6.4 t ha-1 at age 16 on a fertile former arable land, 48 ± 3.6 and 94 ± 9.4 t ha-1 at age 22 and 25, respectively, on a sandy forest land (Vacciniosa forest type. The biomass is significantly (p < 0.01 and considerably (more than two-fold higher than that of the native Pinus sylvestris and the productivity is similar (in fertile soils or higher (on poor soils than reported for other species in energy-wood plantations. Provenance was a significant factor affecting the above-ground biomass, and the ranking of provenances did not change significantly between different soil conditions. It provides opportunities for further improvement of productivity using selection.

  16. Landsat Imagery-Based Above Ground Biomass Estimation and Change Investigation Related to Human Activities

    Directory of Open Access Journals (Sweden)

    Chaofan Wu

    2016-02-01

    Full Text Available Forest biomass is a significant indicator for substance accumulation and forest succession, and a spatiotemporal biomass map would provide valuable information for forest management and scientific planning. In this study, Landsat imagery and field data cooperated with a random forest regression approach were used to estimate spatiotemporal Above Ground Biomass (AGB in Fuyang County, Zhejiang Province of East China. As a result, the AGB retrieval showed an increasing trend for the past decade, from 74.24 ton/ha in 2004 to 99.63 ton/ha in 2013. Topography and forest management were investigated to find their relationships with the spatial distribution change of biomass. In general, the simulated AGB increases with higher elevation, especially in the range of 80–200 m, wherein AGB acquires the highest increase rate. Moreover, the forest policy of ecological forest has a positive effect on the AGB increase, particularly within the national level ecological forest. The result in this study demonstrates that human activities have a great impact on biomass distribution and change tendency. Furthermore, Landsat image-based biomass estimates would provide illuminating information for forest policy-making and sustainable development.

  17. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  18. Carbon balance of rewetted and drained peat soils used for biomass production: A mesocosm study

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka

    2016-01-01

    Rewetting of drained peatlands has been recommended to reduce CO2 emissions and to restore the carbon sink function of peatlands. Recently, the combination of rewetting and biomass production (paludiculture) has gained interest as a possible land use option in peatlands for obtaining such benefits...... of lower CO2 emissions without losing agricultural land. The present study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different ground water levels (GWL...... closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha−1) than drained peat soils (15 Mg ha−1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than drained peat...

  19. Engineering analysis of biomass gasifier product gas cleaning technology

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  20. Algal Biomass for Bioenergy and Bioproducts Production in Biorefinery Concepts

    DEFF Research Database (Denmark)

    D'Este, Martina

    is becoming impellent. Macro- and microalgae have the ability to transform nutrients into valuable biomass. Being a good source of vitamins, minerals, lipids, proteins and pigments, they represent a promising source of various products. However these biomasses are still very little explored as biorefinery...... feedstocks. Biorefinery represents an important tool towards the development of a sustainable economy. Within the biorefinery framework several bioproducts, such as food, feed and biofuels, can be produced from biomass. The specific composition of the biomass feedstock determines the potential final product...... industry. The macroalgae used in this work were Laminaria digitata and Saccharina latissima, while the microalgae were Chlorella sorokiniana, Chlorella vulgaris and Chlorella protothecoides. Moreover, an evaluation of the effect of the harvesting season and location on the composition of high value...

  1. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass.

    Science.gov (United States)

    Negro, Maria José; Manzanares, Paloma; Ballesteros, Ignacio; Oliva, Jose Miguel; Cabañas, Araceli; Ballesteros, Mercedes

    2003-01-01

    Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210 C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.

  2. Biomass and water: a critical review of the water footprint concept as sustainability criterion for biomass production

    Science.gov (United States)

    Zessner, M.; Thaler, S.; Bertrán de Lis, F.; Kaltenbrunner, W.; Kreuzinger, N.

    2012-04-01

    Agricultural production is the most water consuming economic sector worldwide. Together with fertile soil the availability of fresh water is the most restricting factor for biomass production in many areas around the globe. Additionally, agriculture significantly contributes to water pollution by nutrient losses and pesticide emissions. Therefore assessment of impacts on water is one of the essential aspects in the evaluation of the sustainability of concepts considering biomass as raw material. The water footprint concept combines all different types of water uses into one indicator. The total water footprint of biomass production consist of the green water footprint, which is the amount of rainwater evapotranspirated for growth, the blue water, which is the amount of ground and surface water used for irrigation, and the grey water, which quantifies the fresh water amount needed for assimilation of pollutions loads emitted into the water system from areas used for biomass production. The water footprint concept has significantly raised the public awareness of fresh water as resource with restricted availability. Water footprints for different products are commonly known and compared to each other. Despite the release of these general water footprint values a standardized method of water footprint accounting is still in work and differences in the basic assumptions for the calculation together with few methodological shortcomings may lead to significant differences in the results. Problems in this respect will be presented in this contribution and suggestions to improve standardization will be given. In contrast to the carbon footprint the water footprint has a strong regional component, because long distance water transport is far out of any economical possibility. That means even though the world's total biomass productivity is restricted by the joint availability of fertile soil and fresh water. There are tremendous regional differences to which extent water

  3. Production, characterization and utilization of the biomass from various sources

    OpenAIRE

    Gojkovic, Živan

    2014-01-01

    Biomass management is one of the most important issues in modern natural science as it is the basic category which spans through various disciplines of biotechnology. Whether animal, plant or microbial by its origin, biomass presents a vast source of food components, fine chemicals and bioactive molecules, which extraction, characterization and formulation can result in interesting new products destined for human consumption or as new materials in biomedicine. In the scope of t...

  4. Production of distillate fuels from biomass-derived polyoxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  5. Production of distillate fuels from biomass-derived polyoxygenates

    Science.gov (United States)

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  6. Liquid fuels production from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  7. Selection of Willows (Salix sp. for Biomass Production

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2014-12-01

    Full Text Available Background and Purpose: Willows compared with other species are the most suitable for biomass production in short rotations because of their very abundant growth during the first years. Nowadays, in Croatia, a large number of selected and registered willow clones are available. The main objective of the research should be to find genotypes which, with minimum nutrients, will produce the maximum quantity of biomass. Material and Methods: Clonal test of the arborescent willows include the autochthonous White Willow (Salix alba, interracial hybrids of the autochthonous White Willow and the English ‘cricket’ Willow (S. alba var. calva, interspecies hybrids (S. matsudana × S. alba, as well as multispecies hybrids of willows. Average production of dry biomass (DM∙ha-1∙a-1 per hectare was estimated in regard to the clone, survival, spacing and the number of shoots per stump. Results: The highest biomass production as well as the best adaptedness and phenotypic stability on testing site was shown by clones (‘V 374’, ‘V 461’, ‘V 578’ from 15.2 - 25.0 t∙DM∙ha-1∙a-1 originated from backcross hybrid S. matsudana × (S. matsudana × S. alba and by one S. alba clone (‘V 95’, 23.1 - 25.7 t∙DM∙ha-1∙a-1. These clones are now at the stage of registration and these results indicate significant potential for further breeding aimed at biomass production in short rotations. Conclusions: Willow clones showed high biomass production on marginal sites and dry biomass could be considerably increased with the application of intensive silvicultural and agro technical measures. No nutrition or pest control measures were applied (a practice otherwise widely used in intensive cultivation system, while weed vegetation was regulated only at the earliest age.

  8. Production of Spirulina biomass in closed photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Torzillo, G.; Pushparaj, B.; Bocci, F.; Balloni, W.; Materassi, R.; Florenzano, G.

    1986-01-01

    The results of six years investigation on the outdoor mass culture of Spirulina platensis and S. maxima in closed tubular photobioreactors are reported. On average, under the climatic conditions of central Italy, the annual yield of biomass obtained from the closed culture units was equivalent to 33 t dry weight/ha per year. In the same climatic conditions the yield of the same organisms grown in open ponds was about 18 t/ha per year. This considerable difference is due primarily to better temperature conditions in the closed culture system. The main problems encountered relate to the control of temperature and oxygen concentration in the culture suspension. This will require an appropriate design and management of the photobioreactor as well as the selection of strains specifically adapted to grow at high temperature and high oxygen concentration. 8 references.

  9. Energy yields in intensive and extensive biomass production systems

    NARCIS (Netherlands)

    Nonhebel, S.

    2002-01-01

    As for agricultural crops, biomass crops can be grown in intensive production systems (external inputs such as pesticides and artificial fertilisers) or extensive systems with few external inputs. The choice between an intensive or extensive production system has consequences for yields. A method is

  10. Modelling biomass production and yield of horticultural crops: a review.

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Heuvelink, E.; Goudriaan, J.

    1998-01-01

    Descriptive and explanatory modelling of biomass production and yield of horticultural crops is reviewed with special reference to the simulation of leaf area, light interception, dry matter (DM) production, DM partitioning and DM content. Most models for prediction of harvest date (timing of produc

  11. A Review on Biomass Torrefaction Process and Product Properties

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  12. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery

    Science.gov (United States)

    Wu, Chaofan; Shen, Huanhuan; Shen, Aihua; Deng, Jinsong; Gan, Muye; Zhu, Jinxia; Xu, Hongwei; Wang, Ke

    2016-07-01

    Biomass is one significant biophysical parameter of a forest ecosystem, and accurate biomass estimation on the regional scale provides important information for carbon-cycle investigation and sustainable forest management. In this study, Landsat satellite imagery data combined with field-based measurements were integrated through comparisons of five regression approaches [stepwise linear regression, K-nearest neighbor, support vector regression, random forest (RF), and stochastic gradient boosting] with two different candidate variable strategies to implement the optimal spatial above-ground biomass (AGB) estimation. The results suggested that RF algorithm exhibited the best performance by 10-fold cross-validation with respect to R2 (0.63) and root-mean-square error (26.44 ton/ha). Consequently, the map of estimated AGB was generated with a mean value of 89.34 ton/ha in northwestern Zhejiang Province, China, with a similar pattern to the distribution mode of local forest species. This research indicates that machine-learning approaches associated with Landsat imagery provide an economical way for biomass estimation. Moreover, ensemble methods using all candidate variables, especially for Landsat images, provide an alternative for regional biomass simulation.

  13. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...... dielectric heating’’ effects. This paper presents a state-of-the-art review of microwave-assisted pyrolysis of biomass. First, conventional fast pyrolysis and microwave dielectric heating is briefly introduced. Then microwave-assisted pyrolysis process is thoroughly discussed stepwise from biomass...

  14. Forest biomass density, utilization and production dynamics in a western Himalayan watershed

    Institute of Scientific and Technical Information of China (English)

    Rakesh Kumar Sharma; Prem Lall Sankhayan; Ole Hofstad

    2008-01-01

    There is enough evidence to show that the forest biomass has decreased significantly in the Indian Himalayan state of Himachal Pradesh. The government has responded through restrictive measures to check this decline. Using tree biomass as proxy for degradation, we assessed the current state of biomass within dominant land use types and examined its implications for sustainability. The highest above-ground mean tree biomass density of 1158 t·ha-1 was recorded for the reserved forest followed by 728, 13, 11, 8, 5 and 3 t·ha-1 in the protected forest, fallow land, cultivated-unirrigated land, grassland, orchard land and cultivated-irrigated land respectively. Of the total accessible biomass, only 0.31% was extracted annually by the local people for fuel, fodder and other uses. Though, the current level of extraction may be sustainable in the short run, insufficient regeneration is observed for long term sustainability. Forest biomass production was simulated for the next 30 years with a logistic growth model and the relative significance of input variables in influencing system behaviour was analysed through sensitivity analysis. The model results highlighted the declining forest resources in the long run. Positive response through appropriate government policies can, however, change the scenario for the better.

  15. Production d'éthanol a partir de biomasse lignocellulosique Ethanol Production from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Ogier J. C.

    2006-12-01

    Full Text Available Cette étude fait le point des connaissances scientifiques et techniques dans le domaine de la production alcoolique à partir de susbstrats lignocellulosiques. Ce travail, réalisé dans le cadre d'Agrice (Agriculture pour la chimie et l'énergie, est une synthèse bibliographique qui a cherché à identifier les avancées capables de débloquer certains verrous technologiques et économiques liés à ce type de procédé. La biomasse lignocellulosique est un substrat complexe, constitué des trois principales fractions que sont la cellulose, les hémicelluloses et la lignine. Le procédé de production d'éthanol consiste à récupérer par hydrolyse le maximum de sucres issus à la fois des fractions cellulosiques et hémicellulosiques, puis de fermenter ces sucres en éthanol. Les premiers procédés d'hydrolyse utilisés étaient surtout chimiques, mais ils sont peu compétitifs à l'heure actuelle, en raison notamment du coût des réactifs et de la formation de nombreux sous-produits et de composés inhibiteurs rendant les hydrolysats peu fermentescibles. Ils sont désormais concurrencés par les procédés enzymatiques, plus spécifiques et qui permettent de meilleurs rendements d'hydrolyse dans des conditions moins sévères. Cependant, la biomasse lignocellulosique n'est pas directement accessible aux enzymes, et elle doit subir au préalable une phase de prétraitement dont l'objectif est d'améliorer la susceptibilité à l'hydrolyse enzymatique de la cellulose et éventuellement d'hydrolyser la fraction hémicellulosique en sucres monomères. Parmi les nombreuses méthodes de prétraitement qui ont été étudiées, nous en avons identifié trois répondant au mieux aux objectifs précédemment cités : le prétraitement à l'acide dilué, l'explosion à la vapeur avec utilisation d'un catalyseur, et la thermohydrolyse. Ces trois méthodes permettraient d'atteindre des rendements d'hydrolyse enzymatique de la cellulose proches de

  16. Ethanol production from biomass: technology and commercialization status.

    Science.gov (United States)

    Mielenz, J R

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level.

  17. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  18. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  19. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  20. An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy

    Directory of Open Access Journals (Sweden)

    Weidong Huang

    2015-01-01

    Full Text Available There is not enough land for the current bioenergy production process because of its low annual yield per unit land. In the present paper, an integrated biomass production and conversion process for sustainable bioenergy is proposed and analyzed. The wastes from the biomass conversion process, including waste water, gas and solid are treated or utilized by the biomass production process in the integrated process. Analysis of the integrated process including the production of water hyacinth and digestion for methane in a tropical area demonstrates several major advantages of the integrated process. (1 The net annual yield of methane per unit land can reach 29.0 and 55.6 km3/h for the present and future (2040 respectively, which are mainly due to the high yield of water hyacinth, high biomethane yield and low energy input. The land demand for the proposed process accounts for about 1% of the world’s land to meet the current global automobile fuels or electricity consumption; (2 A closed cycle of nutrients provides the fertilizer for biomass production and waste treatment, and thus reduces the energy input; (3 The proposed process can be applied in agriculturally marginal land, which will not compete with food production. Therefore, it may be a good alternative energy technology for the future.

  1. Marginal land-based biomass energy production in China.

    Science.gov (United States)

    Tang, Ya; Xie, Jia-Sui; Geng, Shu

    2010-01-01

    Fast economic development in China has resulted in a significant increase in energy demand. Coal accounts for 70% of China's primary energy consumption and its combustion has caused many environmental and health problems. Energy security and environmental protection requirements are the main drivers for renewable energy development in China. Small farmland and food security make bioenergy derived from corn or sugarcane unacceptable to China: the focus should be on generating bioenergy from ligno-cellulosic feedstock sources. As China cannot afford biomass energy production from its croplands, marginal lands may play an important role in biomass energy production. Although on a small scale, marginal land has already been used for various purposes. It is estimated that some 45 million hm(2) of marginal land could be brought into high potential biomass energy production. For the success of such an initiative, it will likely be necessary to develop multipurpose plants. A case study, carried out on marginal land in Ningnan County, Sichuan Province with per capita cropland of 0.07 ha, indicated that some 380,000 tons of dry biomass could be produced each year from annual pruning of mulberry trees. This study supports the feasibility of producing large quantities of biomass from marginal land sources.

  2. Spirogyra biomass a renewable source for biofuel (bioethanol Production

    Directory of Open Access Journals (Sweden)

    Fuad Salem Eshaq

    2010-12-01

    Full Text Available Biofuels refer to renewable fuels from biological sources that can be used for heat, electricity and fuel. The fuels obtained from algae are termed as third generation fuels. The production of fuel from algae provides many advantages when compared to the fuel produced from other sources like agrobased raw materials. Other than environmental pollution control the algal biofuel will help in reduction of the fuel cost when compared to the agrobased and fossil fuels. In the present study algae specifically Spirogyra was used for the production of bioethanol by the fermentative process. A comparative study was carried out by using chemically pre-treated anduntreated Spirogyra biomass. The Spirogyra has a very simple cell wall made up of cellulose and starch that can be converted to ethanol by the fermentation process. The Spirogyra biomass was subjected to saccharification process by the fungal organism Aspergillus niger MTCCC 2196 for the hydrolysis, this process was followed by the fermentation using yeast Saccharomyces cerevisiae MTCC170 for the production of alcohol. A high yield of ethanol was recorded for untreated Spirogyra biomass when compared to chemically pre-treated biomass. The yield of alcohol using algal biomass is more when compared to alcohol produced from other sources like agrobased rawmaterials.

  3. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

    2011-10-01

    Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

  4. Feasibility of Bioethanol Production From Lignocellulosic Biomass

    Science.gov (United States)

    Aunina, Zane; Bazbauers, Gatis; Valters, Karlis

    2010-01-01

    The objective of the paper is to discuss the potential of cellulosic ethanol production processes and compare them, to find the most appropriate production method for Latvia's situation, to perform theoretical calculations and to determine the potential ethanol price. In addition, price forecasts for future cellulosic and grain ethanol are compared. A feasibility estimate to determine the price of cellulosic ethanol in Latvia, if production were started in 2010, was made. The grain and cellulosic ethanol price comparison (future forecast) was made through to the year 2018.

  5. Biomass Performance : Monitoring and Control in Pharmaceutical Production

    OpenAIRE

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this thesis process monitoring is one of the central themes, from monitoring the environment of the micro-organisms to monitoring the micro-organisms themselves. The latter is called monitoring biomass performa...

  6. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing

    Science.gov (United States)

    Mustafa, Ghulam; Arshad, Muhammad

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  7. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  8. Algal biomass production and carbon fixation from flue gas

    Institute of Scientific and Technical Information of China (English)

    WANG Ling; ZHU Jing

    2016-01-01

    Algal biofuel has established as one of renewable energy. In this study, Nannochloropsis salina was cultured to test feasibility of biomass production and CO2 fixation from flue gas. Firstly, cultivation was conducted under different light intensity. Results showed that the highest dry biomass of 1.25±0.061 g/L was achieved at light intensity of 10klux, while the highest total lipids was 33.677±1.9% at light intensity of 15klux. The effect of mercury on algae growth was also investigated, the algae growth was serious limited at the presence of mercury, and there was no any difference at the range of 10-50 ug/m3. These results provide useful information for algal biomass production and CO2 fixation from flue gas.

  9. Energy-efficient photobioreactor configuration for algal biomass production.

    Science.gov (United States)

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2015-11-01

    Full Text Available Among the various renewable energy sources, biohydrogen is gaining a lot of traction as it has very high efficiency of conversion to usable power with less pollutant generation. The various technologies available for the production of biohydrogen from lignocellulosic biomass such as direct biophotolysis, indirect biophotolysis, photo, and dark fermentations have some drawbacks (e.g., low yield and slower production rate, etc., which limits their practical application. Among these, metabolic engineering is presently the most promising for the production of biohydrogen as it overcomes most of the limitations in other technologies. Microbial electrolysis is another recent technology that is progressing very rapidly. However, it is the dark fermentation approach, followed by photo fermentation, which seem closer to commercialization. Biohydrogen production from lignocellulosic biomass is particularly suitable for relatively small and decentralized systems and it can be considered as an important sustainable and renewable energy source. The comprehensive life cycle assessment (LCA of biohydrogen production from lignocellulosic biomass and its comparison with other biofuels can be a tool for policy decisions. In this paper, we discuss the various possible approaches for producing biohydrogen from lignocellulosic biomass which is an globally available abundant resource. The main technological challenges are discussed in detail, followed by potential solutions.

  11. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa

    Science.gov (United States)

    Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida

    2017-01-01

    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies. PMID:28617841

  12. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa.

    Science.gov (United States)

    Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida

    2017-01-01

    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.

  13. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  14. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  15. Phytoplankton biomass, production and potential export in the North Water

    Science.gov (United States)

    Klein, Bert; LeBlanc, Bernard; Mei, Zhi-Ping; Beret, Rachel; Michaud, Josée; Mundy, C.-J.; von Quillfeldt, Cecilie H.; Garneau, Marie-Ève; Roy, Suzanne; Gratton, Yves; Cochran, J. Kirk; Bélanger, Simon; Larouche, Pierre; Pakulski, J. Dean; Rivkin, Richard B.; Legendre, Louis

    The seasonal patterns of phytoplankton biomass and production were determined in the North Water, located between Greenland and Ellesmere Island (Canadian Arctic), in August 1997, April-July 1998, and August-September 1999. The patterns differed among the four defined regions of this large polynya, i.e. North (>77.5°N), East (>75°W), West (5 μm) fraction dominated the biomass and production during the bloom. During July, August, and September, biomass and production decreased over the whole region, with the highest biomass, dominated by large cells, occurring in the North. The annual particulate and dissolved phytoplankton production were the highest ever reported for the high Arctic, reaching maximum values of 254 and 123 g C m -2 yr -1, respectively, in the East. Rates in the North and West were considerably lower than in the East (ca. two- and three-fold, respectively). The f-ratios (i.e. ratio of new to total production), derived from the size structure of phytoplankton, were high north of 76°N (0.4-0.7). Regionally, this indicated a high potential export of particulate organic carbon ( EPOC) from the phytoplankton community to other trophic compartments and/or downwards in the East (155 g C m -2 yr -1), with lower values in the North and West (i.e. 77 and 42 g C m -2 yr -1, respectively). The seasonal and spatial patterns of EPOC were consistent with independent estimates of potential carbon export. Phytoplankton biomass and production were generally dominated by the large size fraction, whereas EPOC seemed to be dominated by the large size fraction early in the season and by the small size fraction (<5 μm) from June until the end of the growing season.

  16. Biomass-based hydrogen production: A review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kalinci, Yildiz [Department of Technical Programs, Izmir Vocational High School, Dokuz Eylul University, Education Campus Buca, Izmir (Turkey); Hepbasli, Arif [Department of Mechanical Engineering, Faculty of Engineering, Ege University, 35100 Izmir (Turkey); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2009-11-15

    In this study, various processes for conversion of biomass into hydrogen gas are comprehensively reviewed in terms of two main groups, namely (i) thermo-chemical processes (pyrolysis, conventional gasification, supercritical water gasification (SCWG)), and (ii) biological conversions (fermentative hydrogen production, photosynthesis, biological water gas shift reactions (BWGS)). Biomass-based hydrogen production systems are discussed in terms of their energetic and exergetic aspects. Literature studies and potential methods are then summarized for comparison purposes. In addition, a biomass gasification process via oxygen and steam in a downdraft gasifier is exergetically studied for performance assessment as a case study. The operating conditions and strategies are really important for better performance of the system for hydrogen production. A distinct range of temperatures and pressures is used, such as that the temperatures may vary from 480 to 1400 C, while the pressures are in the range of 0.1-50 MPa in various thermo-chemical processes reviewed. For the operating conditions considered the data for steam biomass ratio (SBR) and equivalence ratio (ER) range from 0.6 to 10 and 0.1 to 0.4, respectively. In the study considered, steam is used as the gasifying agent with a product gas heating value of about 10-15 MJ/Nm{sup 3}, compared to an air gasification of biomass process with 3-6 MJ/Nm{sup 3}. The exergy efficiency value for the case study system is calculated to be 56.8%, while irreversibility and improvement potential rates are found to be 670.43 and 288.28 kW, respectively. Also, exergetic fuel and product rates of the downdraft gasifier are calculated as 1572.08 and 901.64 kW, while fuel depletion and productivity lack ratios are 43% and 74.3%, respectively. (author)

  17. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  18. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet ex

  19. Progress on optimizing miscanthus biomass production for the european bioeconomy

    NARCIS (Netherlands)

    Lewandowski, Iris; Clifton-Brown, John; Trindade, Luisa M.; Linden, van der Gerard C.; Schwarz, Kai Uwe; Müller-Sämann, Karl; Anisimov, Alexander; Chen, C.L.; Dolstra, Oene; Donnison, Iain S.; Farrar, Kerrie; Fonteyne, Simon; Harding, Graham; Hastings, Astley; Huxley, Laurie M.; Iqbal, Yasir; Khokhlov, Nikolay; Kiesel, Andreas; Lootens, Peter; Meyer, Heike; Mos, Michal; Muylle, Hilde; Nunn, Chris; Özgüven, Mensure; Roldán-Ruiz, Isabel; Schüle, Heinrich; Tarakanov, Ivan; Weijde, van der Tim; Wagner, Moritz; Xi, Qingguo; Kalinina, Olena

    2016-01-01

    This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and s

  20. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION: ¿Developm

  1. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  2. Alfalfa -- a sustainable crop for biomass energy production

    Science.gov (United States)

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  3. Wood products biomass gasification: technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G.; Scarzella, L.

    In this paper, a design lay-out is presented for the gasification of wood products biomass. Regarding this alternative energy form, the paper discusses historical aspects and recent technological developments made by Italian industry. The design, construction, performance, efficiency, present and future applications of a twin-feeding system are described.

  4. Ecological impacts of biomass production at stand and landscape levels

    CSIR Research Space (South Africa)

    Du Toit, B

    2014-09-01

    Full Text Available In Chapters 4, 5 and 6 of this book, the authors discussed the production and procurement of biomass from various sources, including extensively managed systems such as woodlands, and much more intensively managed systems such as short-rotation bio...

  5. Recovery of phenolic compounds from biomass during ethanol production

    Science.gov (United States)

    Biomass to ethanol conversion represents an alternative liquid fuel technology that does not need to compete with food crops. Maintaining agricultural production of commodity crops such as corn and soybeans for the food supply and using agricultural waste or low input energy crops grown on marginal ...

  6. Non-thermal production of pure hydrogen from biomass: HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.; Koukios, E.G.; Niel, van E.W.J.; Eroglu, I.; Modigell, M.; Friedl, A.; Wukovits, W.; Ahrer, W.

    2010-01-01

    The objectives and methodology of the EU-funded research project HYVOLUTION devoted to hydrogen production from biomass are reviewed. The main scientific objective of this project is the development of a novel two-stage bioprocess employing thermophilic and phototrophic bacteria, for the cost-effect

  7. Optimization of a photobioreactor biomass production using natural light

    CERN Document Server

    Grognard, Frédéric; Pierre, Masci; Bernard, Olivier

    2010-01-01

    We address the question of optimization of the biomass long term productivity in the framework of microalgal biomass production in photobioreactors under the influence of day/night cycles. For that, we propose a simple bioreactor model accounting for light attenuation in the reactor due to biomass density and obtain the control law that optimizes productivity over a single day through the application of Pontryagin's maximum principle, with the dilution rate being the control. An important constraint on the obtained solution is that the biomass in the reactor should be at the same level at the beginning and at the end of the day so that the same control can be applied everyday and optimizes the long term productivity. Several scenarios are possible depending on the microalgae's strain parameters and the maximal admissible value of the dilution rate: bang-bang or bang-singular-bang control or, if the growth rate of the algae is very strong in the presence of light, constant maximal dilution. A bifurcation diagr...

  8. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  9. Photosynthetic pathway and biomass energy production.

    Science.gov (United States)

    Marzola, D L; Bartholomew, D P

    1979-08-10

    The current interest in locating new or alternative sources of energy has focused attention on solar energy capture by crops that can be subsequently utilized as a substitute for fossil fuels. The very high productivity of sugarepane and the fact that it accumulates sugars that are directly fermentable to alcohol may have caused seemingly less productive crops to be overlooked. We show here that recoverable alcohol from achievable commercial yields of pineapple can actually equal that of sugarcane, with the pineapple crop requiring only a fraction of the water used by sugarcane. Pineapple is well adapted to the subhumid or semiarid tropics and thus is particularly well suited for exploiting large areas not now under cultivation with any crop of commercial value.

  10. Hydrogen production via thermal gasification of biomass in near-to-medium term

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I.

    2009-09-15

    Dedicated biomass gasification technologies are presently being developed in many countries for the production of second-generation liquid biofuels. Both fluidised-bed gasification and special entrained flow systems are under intensive development. These technologies can also be used for hydrogen production, which may become an interesting alternative in replacing part of fossil fuel input in oil refineries and chemical industries. In addition, fuel cell technology is being developed for hydrogen-rich gases. New and revolutionary production methods, capable of replacing the classical process routes, can not however be foreseen to emerge in the medium-term. Also the new hydrogen separation technologies, presently under development, seem to have only limited potential to reduce the production cost of hydrogen compared to commercially available technology. However, with rising prices of fossil fuels and locally depleting natural gas reserves, gasification route is likely to gain more ground as a credible production technology for hydrogen. The global needs to cut down the CO{sub 2} emissions can also make gasification of biomass an interesting possibility. Several biomass gasification processes are presently at demonstration phase, mostly aimed for the production of liquid transportation fuels. If and when this technology will be commercialized, it could easily be adopted to the production of hydrogen. (orig.)

  11. Potential of various fungi for biomass production of castor.

    Science.gov (United States)

    Sawant, V S; Bansode, K G; Bavachkar, S N; Bhale, U N

    2013-11-01

    An experiment was conducted to evaluate biomass production of castor (Ricinus communis) with inoculation of native Arbuscular Mycorrhizal Fungi (AMF), Trichoderma harzianum and Aspergillus niger. In castor, dual treatment of mycorrhiza and T. harzianum was better for shoot length (29.5 cm), root length (40.3 cm), fresh shoot weight (4.90 g), fresh root weight (1.13 g), number of leaves (10) and leaf area (75.5 cm2) than dual treatment of mycorrhiza and A. niger or mycorrhiza alone. These findings established the potential of the fungi for increase in biomass of castor.

  12. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0

  13. Ground based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-05-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the Southwestern part of the Brazilian Amazon forest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground based measurements over Brazil, aiming to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼1000 cm−3 to peaks of up to 35 000 cm−3 during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed on average at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent Black Carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of Biomass Burning Organic Aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol

  14. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.

    Science.gov (United States)

    Deneyer, Aron; Renders, Tom; Van Aelst, Joost; Van den Bosch, Sander; Gabriëls, Dries; Sels, Bert F

    2015-12-01

    Linear, branched and cyclic alkanes are important intermediates and end products of the chemical industry and are nowadays mainly obtained from fossil resources. In search for alternatives, biomass feedstocks are often presented as a renewable carbon source for the production of fuels, chemicals and materials. However, providing a complete market for all these applications seems unrealistic due to both financial and logistic issues. Despite the very large scale of current alkane-based fuel applications, biomass definitely has the potential to offer a partial solution to the fuel business. For the smaller market of chemicals and materials, a transition to biomass as main carbon source is more realistic and even probably unavoidable in the long term. The appropriate use and further development of integrated chemo- and biotechnological (catalytic) process strategies will be crucial to successfully accomplish this petro-to-bio feedstock transition. Furthermore, a selection of the most promising technologies from the available chemo- and biocatalytic tool box is presented. New opportunities will certainly arise when multidisciplinary approaches are further explored in the future. In an attempt to select the most appropriate biomass sources for each specific alkane-based application, a diagram inspired by van Krevelen is applied, taking into account both the C-number and the relative functionality of the product molecules.

  15. Direct power generation from waste coffee grounds in a biomass fuel cell

    Science.gov (United States)

    Jang, Hansaem; Ocon, Joey D.; Lee, Seunghwa; Lee, Jae Kwang; Lee, Jaeyoung

    2015-11-01

    We demonstrate the possibility of direct power generation from waste coffee grounds (WCG) via high-temperature carbon fuel cell technology. At 900 °C, the WCG-powered fuel cell exhibits a maximum power density that is twice than carbon black. Our results suggest that the heteroatoms and hydrogen contained in WCG are crucial in providing good cell performance due to its in-situ gasification, without any need for pre-reforming. As a first report on the use of coffee as a carbon-neutral fuel, this study shows the potential of waste biomass (e.g. WCG) in sustainable electricity generation in fuel cells.

  16. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  17. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  18. On the Spent Coffee Grounds Biogas Production

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2016-01-01

    Full Text Available Due to the strict legislation currently in use for landfilling, anaerobic digestion has a strong potential as an alternative treatment for biodegradable waste. Coffee is one of the most consumed beverages in the world and spent coffee grounds (SCG are generated in a considerable amount as a processing waste during making the coffee beverage. Chemical composition of SCG, presence of polysaccharides, proteins, and minerals makes from the SCG substrates with high biotechnological value, which might be used as valuable input material in fermentation process. The methane production ranged from 0.271–0.325 m3/kg dry organic matter.

  19. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  20. Biomass storage for further energy use through biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Atem, A.D. [Instituto CEDIAC, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Mendoza (Argentina); Indiveri, M.E. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Llamas, S. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina)

    2010-06-15

    The present work approaches the residual biomass conservation for later digestion in an anaerobic batch reactor. Twenty 4 L capacity PET reactors were used. A measuring device was constructed to quantify the biogas production. As substrate were used tomato wastes from local industry and rumen fluid as inoculum. Digestion start up was able to be controlled by varying the temperature, during a period of 118 days was not verified biogas production. After re-inoculated with rumen fluid stabilized for 34 days, biogas production was verified. They were obtained 0.10 m{sup 3} of biogas per kilogram of volatile solids, with 50% of methane content. (author)

  1. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well.

  2. [Moraxella bovis biomass production in a bench-top fermentor].

    Science.gov (United States)

    González, R D; Oberti, E R

    1994-01-01

    A Moraxella bovis strain was isolated from a kerato-conjunctivities lesion of a calf in Villa Valeria (Córdoba); it was used to establish improved cultural conditions, such as nature and concentration of carbon and nitrogen sources, and pH control in shaken flasks. The selected conditions were assayed for biomass production in a bench-top fermentor. The strain is used by the pharmaceutical industry to produce vaccines and adjuvants. In the initial condition (48 h culture on blood agar) 0.019 g biomass/l.h-1 was obtained. With the use of liquid defined medium with pH control, productivity was increased to 0.153g/l.h-1, with optimum harvest time of 32 h.

  3. Carbonaceous residues from biomass gasification as catalysts for biodiesel production

    Institute of Scientific and Technical Information of China (English)

    Rafael Luque; Antonio Pineda; Juan C. Colmenares; Juan M. Campelo; Antonio A. Romero; Juan Carlos Serrano-Ruiz; Luisa F. Cabeza; Jaime Cot-Gores

    2012-01-01

    Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation,generating clogging of filters and issues related with the purity of syngas production.To date,these waste residues find no useful applications and they are generally disposed upon generation in the gasification process.A detailed analysis of these residues pointed out the presence of high quantities of Ca (>30 wt%).TG experiments indicated that a treatment under air at moderate temperatures (400-800 ℃) decomposed the majority of carbon species,while XRD indicated the presence of a crystalline CaO phase.CaO enriched valorized materials turned out to be good heterogeneous catalysts for biodiesel production from vegetable oils,providing moderate to good activities (50%-70% after 12 h) to fatty acid methyl esters in the transesterification of sunflower oil with methanol.

  4. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  5. Lignocellulosic biomass utilization toward biorefinery : technologies, products and perspectives

    OpenAIRE

    Mussatto, Solange I.

    2014-01-01

    Lignocellulosic biomass wastes (LBW) are generated and accumulated in large amounts around the world every year. The disposal of large amounts of such wastes in the nature may cause environmental problems, affecting the quality of the soil, lakes and rivers. In order to avoid these problems, efforts have been directed to use LBW in a biorefinery to maximize the reutilization of these wastes with minimal or none production of residual matter. Through biorefiner...

  6. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  7. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  8. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  9. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  10. Biomass and biofertilizer production by Sesbania cannabina in alkaline soil

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.L.N.; Gill, H.S. [Central Soil Salinity Research Inst., Haryana (India)

    1995-12-01

    Biomass shortages in developing countries require increased investigation into fast-growing, N-fixing, woody plant species. In field trials in north India, the potential of Sesbania cannabina for production of green leaf manure (biofertilizer) and firewood (woody biomass) was investigated. At 100 days after sowing (DAS), green matter was 21.5 and 9.4 Mg ha{sup -1} in the stem and the leaf. A seeding rate of 15 kg ha{sup -1} producing a population of 10{sup 5} plants per hectare was adequate. Biofertilizer potential was 124.7 N, 5.3 P, 80.7 K and 12.0 S (kg ha{sup -1}), respectively. Nodulation was profuse and effective and N fixed was nearly 122 kg ha{sup -1} at 100 DAS. At maturity, 200 DAS, woody biomass production was 19.2 Mg ha{sup -1} and growing Sesbania until this stage was no more demanding on soil nutrients than growing it for green-matter production. There was a considerable beneficial influence from growing Sesbania on soil C and N status. (Author)

  11. Best Available Techniques (BAT) in solid biomass fuel processing, handling, storage and production of pellets from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, J.P.; Tana, J. [AaF-Industri Ab, Stockholm (Sweden)

    2012-09-15

    With the increasing use of biomass fuels the varieties of sources for biomass have expanded to almost all possible combustible matter with biological origin. The increasing scale in solid biomass fuel production and utilization at the combustion plants of the wide variety of biomass fuels have contributed to littering, dust, odor and noise emissions of the production chain. The report aims to provide information for operators, environmental consultants and competent environmental authorities on what is considered BAT, as defined in the IPPC directive (2008/1/EC), in biomass processing and handling as well as the production of pellets from biomass. The project gives a brief description of commonly used solid biomass fuels and the processes, handling and storage of these biomasses in the Nordic countries covering processes from production site to the point of use. Environmental emissions, sources of waste and other relevant environmental aspects from commonly used processes, included raw material and energy use, chemical use and emissions to soil are also included in the report. (Author)

  12. Biomass and multi-product crops for agricultural and energy production - an AGE analysis

    NARCIS (Netherlands)

    Ignaciuk, A.; Dellink, R.B.

    2006-01-01

    By-products from agriculture and forestry can contribute to production of clean and cheap (bio)electricity. To assess the role of such multi-product crops in the response to climate policies, we present an applied general equilibrium model with special attention to biomass and multi-product crops.

  13. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  14. Bio-oil production via subcritical hydrothermal liquefaction of biomass

    Science.gov (United States)

    Durak, Halil

    2017-04-01

    Biomass based raw materials can be converted into the more valued energy forms using biochemical methods such as ethanol fermentation, methane fermentation and the thermochemical methods such as direct combustion, pyrolysis, gasification, liquefaction. The bio-oil obtained from the biomass has many advantages than traditional use. Firstly, it has features such as high energy density, easy storage and easy transportation. Bio-oil can be used as a fuel in engines, turbines and burning units directly. Besides, it can be converted into products in higher quality and volume via catalytic cracking, hydrodexygenation, emulsification, and steam reforming [1,2]. Many organic solvents such as acetone, ethanol, methanol, isopropanol are used in the supercritical liquefaction processes. When we think about the cost and effects of the organic solvent on nature, it will be understood better that it is necessary to find solvent that are more sensitive against nature. Here, water must have an important place because of its features. Most important solvent of the world water is named as "universal solvent" because none of the liquids can dissolve the materials as much as done by water. Water is found much at the nature and cost of it is very few when compared with the other solvent. Hydrothermal liquefaction, a thermochemical conversion process is an effective method used for converting biomass into the liquid products. General reaction conditions for hydrothermal liquefaction process are the 250-374 °C temperature range and 4 - 22 Mpa pressure values range, besides, the temperature values can be higher according to the product that is expected to be obtained [3,4]. In this study, xanthium strumarium plant stems have been used as biomass source. The experiments have been carried out using a cylindrical reactor (75 mL) at the temperatures of 300 °C. The produced liquids at characterized by elemental analysis, GC-MS and FT-IR. According to the analysis, different types of compounds

  15. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    Science.gov (United States)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; Kauffman, Jobriath; Prisley, Stephen

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  16. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    OpenAIRE

    Chen, G.;Andries, J.;Spliethoff, H.

    2017-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based o...

  17. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  18. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B.L.; Castillo, F.J.

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  19. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  20. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  1. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    陈冠益; 方梦祥; ANDRIES,J.; 骆仲泱; SPLIETHOFF,H.; 岑可法

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The ki-netic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into pri-mary products ( tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  2. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    Science.gov (United States)

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization.

    Science.gov (United States)

    Shuai, Li; Amiri, Masoud Talebi; Questell-Santiago, Ydna M; Héroguel, Florent; Li, Yanding; Kim, Hoon; Meilan, Richard; Chapple, Clint; Ralph, John; Luterbacher, Jeremy S

    2016-10-21

    Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin fraction that can be converted to guaiacyl and syringyl monomers at near theoretical yields during subsequent hydrogenolysis (47 mole % of Klason lignin for beech and 78 mole % for a high-syringyl transgenic poplar). These yields were three to seven times those obtained without formaldehyde, which prevented lignin condensation by forming 1,3-dioxane structures with lignin side-chain hydroxyl groups. By depolymerizing cellulose, hemicelluloses, and lignin separately, monomer yields were between 76 and 90 mole % for these three major biomass fractions. Copyright © 2016, American Association for the Advancement of Science.

  4. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  5. Bio-syngas production from agro-industrial biomass residues by steam gasification.

    Science.gov (United States)

    Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge

    2016-12-01

    This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H2 and CO were found in the conversion range of 50-80% and higher concentrations of CO2 in conversions around 10%, for all the gasified biochars. The H2/CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2016-09-01

    Full Text Available Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw materials. The supply of feedstocks for bioethanol production can vary season to season and depends on geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though the commercial production has still not been established. In addition, the supply and the attentive use of microbes render the bioethanol production process highly peculiar. Many conversion technologies and techniques for biomass-based ethanol production are under development and expected to be demonstrated. In this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried out and a review of current trends and issues is conducted.

  7. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    Science.gov (United States)

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures).

  8. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  9. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    Science.gov (United States)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  10. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2010-05-01

    Full Text Available The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB (and thus carbon content of vegetation and leaf area index (LAI. The process-based forest growth model FORMIND2.0 was applied to simulate (a undisturbed forest growth and (b a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size. The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60% between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in

  11. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. On-line catalytic upgrading of biomass fast pyrolysis products

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; ZHU XiFeng; LI WenZhi; ZHANG Ying; CHEN DengYu

    2009-01-01

    Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of biomass and on-line analysis of the pyrolysis vapors. Four biomass materials (poplar wood, fir wood, cotton straw and rice husk) were pyrolyzed to reveal the difference among their products. Moreover, catalytic cracking of the pyrolysis vapors from cotton straw was performed by using five catalysts, including two microporous zeolites (HZSM-5 and HY) and three mesoporous catalysts (ZrO2&TiO2, SBA-15 and AI/SBA-15). The results showed that the distribution of the pyrolytic products from the four materials differed a little from each other, while catalytic cracking could significantly alter the pyrolytic products. Those important primary pyrolytic products such as levoglucosen, hydroxyacetaldehyde and 1-hydroxy-2-propanone were decreased greatly after catalysis. The two microporous zeolites were ef-fective to generate high yields of hydrocarbons, while the three mesoporous materials favored the formation of furan, furfural and other furan compounds, as well as acetic acid.

  13. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-11-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent black carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the

  14. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR

    Directory of Open Access Journals (Sweden)

    Vincenzo Giannico

    2016-04-01

    Full Text Available Assessing forest stand conditions in urban and peri-urban areas is essential to support ecosystem service planning and management, as most of the ecosystem services provided are a consequence of forest stand characteristics. However, collecting data for assessing forest stand conditions is time consuming and labor intensive. A plausible approach for addressing this issue is to establish a relationship between in situ measurements of stand characteristics and data from airborne laser scanning (LiDAR. In this study we assessed forest stand volume and above-ground biomass (AGB in a broadleaved urban forest, using a combination of LiDAR-derived metrics, which takes the form of a forest allometric model. We tested various methods for extracting proxies of basal area (BA and mean stand height (H from the LiDAR point-cloud distribution and evaluated the performance of different models in estimating forest stand volume and AGB. The best predictors for both models were the scale parameters of the Weibull distribution of all returns (except the first (proxy of BA and the 95th percentile of the distribution of all first returns (proxy of H. The R2 were 0.81 (p < 0.01 for the stand volume model and 0.77 (p < 0.01 for the AGB model with a RMSE of 23.66 m3·ha−1 (23.3% and 19.59 Mg·ha−1 (23.9%, respectively. We found that a combination of two LiDAR-derived variables (i.e., proxy of BA and proxy of H, which take the form of a forest allometric model, can be used to estimate stand volume and above-ground biomass in broadleaved urban forest areas. Our results can be compared to other studies conducted using LiDAR in broadleaved forests with similar methods.

  15. Sampling of contaminants from product gases of biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Staahlberg, P.; Lappi, M.; Kurkela, E.; Simell, P.; Oesch, P.; Nieminen, M. [VTT Energy, Espoo (Finland). New Energy Technologies

    1998-12-01

    Reliable sampling and analysis of products from biomass gasification are essential for the successful process development and economical operation of commercial gasifiers. One of the most important and most difficult analytical tasks is to characterise the emissions from the gasifiers. This report presents a review of the sampling and analytical systems employed and developed when doing research on coal and biomass gasification. In addition to the sampling systems published in the literature, experiences obtained in various biomass gasification R and D projects of VTT in 1985-1995 are described. The present sampling methods used for different gas contaminants at VTT are also briefly presented. This report focuses mainly on the measurement of tars, nitrogen compounds and sulphur gases. Isokinetic and non-isokinetic sampling train systems are described and, in addition, special sampling apparatus based on liquid-quenched probe and gas dilution is briefly outlined. Sampling of tars with impinger systems and sampling of heavy tars with filter techniques are described in detail. Separate sampling of particulates is briefly discussed. From inorganic compounds the sampling systems used for H{sub 2}S and other sulphur gases, NH{sub 3} and HCN and HCl are presented. Proper storage of the samples is also included in the report. (orig.) 90 refs.

  16. Microbial biodiesel production by direct methanolysis of oleaginous biomass.

    Science.gov (United States)

    Thliveros, Panagiotis; Uçkun Kiran, Esra; Webb, Colin

    2014-04-01

    Biodiesel is usually produced by the transesterification of vegetable oils and animal fats with methanol, catalyzed by strong acids or bases. This study introduces a novel biodiesel production method that features direct base-catalyzed methanolysis of the cellular biomass of oleaginous yeast Rhodosporidium toruloides Y4. NaOH was used as catalyst for transesterification reactions and the variables affecting the esterification level including catalyst concentration, reaction temperature, reaction time, solvent loading (methanol) and moisture content were investigated using the oleaginous yeast biomass. The most suitable pretreatment condition was found to be 4gL(-1) NaOH and 1:20 (w/v) dried biomass to methanol ratio for 10h at 50°C and under ambient pressure. Under these conditions, the fatty acid methyl ester (FAME) yield was 97.7%. Therefore, the novel method of direct base-catalyzed methanolysis of R. toruloides is a much simpler, less tedious and time-consuming, process than the conventional processes with higher FAME (biodiesel) conversion yield.

  17. Evaluation of Alnus species and hybrids. [For biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.B. (Iowa State Univ., Ames, IA (US). Dept. of Forestry); Burgess, D. (Petawawa National Forestry Inst., Chalk River, Ontario (CA))

    1990-01-01

    Trials of a common set of seed lots representing 39 parents and five species of Alnus have been started in four countries: Belgium, Canada, the UK, and the US. Initial results indicate that cold hardiness is a problem in using A. acuminata but that sufficiently hardy A. rubra sources are available. A. glutinosa had the best growth in the nursery, and A. cordata had the best survival under severe moisture-stress conditions. A summary also is given of a workshop on alder improvement that further demonstrates the potential for developing the genus for biomass energy production. (author).

  18. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  19. Production of yeast biomass using waste Chinese cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Min Ho Choi; Yun Hee Park [Ajou Univ., Suwon (Korea). Dept. of Molecular Science and Technology

    2003-08-01

    The possibility of using waste Chinese cabbage as a substrate for microbial biomass production was investigated. Cell mass and the protein content of four species of yeast, Candida utilis, Pichia stipitis, Kluyveromyces marxianus, and Saccharomyces cerevisiae, were determined when cultured in juice extracted from cabbage waste. Compared to YM broth containing the same level of sugar, all the strains except C. utilis showed higher total protein production in cabbage juice medium (CJM). Cell mass production was lower for all four strains in heat-treated CJM than in membrane-filtered medium, and this adverse effect was pronounced when the CJM was autoclaved at 121{sup o}C for 15 min. As a source of inorganic nitrogen, only ammonium sulfate added at a concentration of 0.5 g nitrogen per liter of CJM increased cell growth. Of the seven organic nitrogen sources tested, only corn steep powder was effective in increasing cell mass (by about 11%). As a micronutrient, the addition of 0.5 mM zinc increased cell mass. The results suggest that juice from waste Chinese cabbages can be used to produce microbial biomass protein without substantial modification, after preliminary heat treatment at temperatures below those required for sterilization. (Author)

  20. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  1. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required......The production of construction materials is very energy intensive and requires large quantities of fossil fuels.Asphalt is the major road paving material in Europe and is being produced primarily in stationary batch mixasphalt factories. The production process requiring the most energy....... This paper analyses different pathways for the useof biomass feedstock as a primary process fuel. The analysed cases consider the gasification of straw andwood chips and the direct combustion of wood pellets. The additional use of syngas from the gasifier for theproduction of heat or combined heat and power...

  2. Development of Allometric Equations for Estimating Above-Ground Liana Biomass in Tropical Primary and Secondary Forests, Malaysia

    Directory of Open Access Journals (Sweden)

    Patrick Addo-Fordjour

    2013-01-01

    Full Text Available The study developed allometric equations for estimating liana stem and total above-ground biomass in primary and secondary forests in the Penang National Park, Penang, Malaysia. Using biomass-diameter-length data of 60 liana individuals representing 15 species, allometric equations were developed for liana stem biomass and total above-ground biomass (TAGB. Three types of allometric equations were developed: models fitted to untransformed, weighted, and log-transformed (log10 data. There was a significant linear relationship between biomass and the predictors (diameter, length, and/or their combinations. The same set of models was developed for primary and secondary forests due to absence of differences in regression line slopes of the forests (ANCOVA: . The coefficients of determination values of the models were high (stem: 0.861 to 0.990; TAGB: 0.900 to 0.992. Generally, log-transformed models showed better fit (Furnival's index, FI 0.5. A comparison of the best TAGB model in this study (based on FI with previously published equations indicated that most of the equations significantly ( overestimated TAGB of lianas. However, a previous equation from Southeast Asia estimated TAGB similar to that of the current equation (. Therefore, regional or intracontinental equations should be preferred to intercontinental equations when estimating liana biomass.

  3. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James (USDA, Albany, CA); Whalen, Maureen (USDA, Albany, CA); Thilmony, Roger (USDA, Albany, CA); Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a

  4. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste......, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate......, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass...

  5. Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar

    Science.gov (United States)

    Daniel B. Stover; Frank P. Day; John R Butnor; Bert G. Drake

    2007-01-01

    Growth and distribution of coarse roots in time and space represent a gap in our understanding of belowground ecology. Large roots may play a critical role in carbon sequestration belowground. Using ground-penetrating radar (GPR), we quantified coarseroot biomass from an open-top chamber experiment in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. GPR...

  6. Above-ground biomass models for Seabuckthorn (Hippophae salicifolia) in Mustang District, Nepal

    DEFF Research Database (Denmark)

    Rajchal, Rajesh; Meilby, Henrik

    2013-01-01

    weight of fruit and oven-dry weight of wood (stem and branches) and leaves were measured and used as a basis for developing biomass models. Diameters of the trees were measured at 30 cm above ground whereas the heights were measured in terms of the total tree height (m). Among several models tested...

  7. Long-term changes in above ground biomass after disturbance in a neotropical dry forest, Hellshire Hills, Jamaica

    DEFF Research Database (Denmark)

    Niño, Milena; McLaren, Kurt P.; Meilby, Henrik

    2014-01-01

    We used data from experimental plots (control, partially cut and clear-cut) established in 1998, in a tropical dry forest (TDF) in Jamaica, to assess changes in above ground biomass (AGB) 10 years after disturbance. The treatments reduced AGB significantly in 1999 (partially cut: 37.6 %, clear-cu...

  8. Value added liquid products from waste biomass pyrolysis using pretreatments.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition.

  9. Biomass. Energy carrier and biobased products; Biomasse. Energietraeger und biobasierte Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, W. [Technische Univ. Muenchen (Germany). Inst. fuer Toxikologie und Umwelthygiene; Groeger, G. (eds.) [BioRegionUlm Foerderverein Biotechnologie e.V., Ulm (Germany)

    2006-07-01

    Within the scope of the 3rd Reivensburg Environmental Biotechnology Meeting at 29th June, 2007, at Castle Reivensburg near Guenzburg (Federal Republic of Germany), the following lectures were held: (a) Challenges according to materials management, land use and power generation in the background of precarious economical situation in the Federal Republic of Germany (H.-G. Petersen); (b) Regenerative raw materials in Germany: Plant sources and potentials (W. Luehs, W. Friedt); (c) Biobased industrial products and bioraffinery systems (B. Kamm, M. Kamm); (d) Potential of biomass materials conversion in chemical industries (R. Busch); (e) Environmental compatible processes and low-priced ecological materials from the processing of biotechnological poly-3-hydroxybutyrate (H. Seliger, H. Haeberlein, R. Kohler, P. Sulzberger); (f) New starch from potatoes - a regenerative raw material (T. Servay); (g) Fuels from renewable energy sources: potential, production, perspectives (M. Specht, U. Zuberbuehler, A. Bandi); (h) Application of biogas as a fuel from the view of a car manufacturer (S. Schrahe); (i) Large-scale production of bioethanol (P. Johne, C. Sauter); (j) Environmental political evaluation of the use of biofuels and politics of biofuels of selected countries (J.M. Henke).

  10. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  11. Biomass for bioethanol production and technological process in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Nadiradze, K.; Phirosmanashvili, N. [Association for Farmers Rights Defence, Tbilisi (Georgia)

    2010-07-01

    This study discussed the use of biomass for bioethanol production in Georgia and its potential impacts on the country's rural economy. Eighty-five per cent of the country's lands are forested or used for agricultural purposes, and more than 56 per cent of the adult population is involved in the agricultural sector. The privatization of land in post-Soviet Georgia has resulted in the creation of a new social class of land-owners. The use of biofuel in petroleum fuel has significantly lowered greenhouse gases (GHGs) in the country. The biofuel is produced using local agricultural and forest wastes. Use of the biofuel has lowered the country's reliance on imported oil and has increased its energy security. The production of ethanol in Georgia has resulted in significant socio-economic benefits in the country.

  12. Production of New Biomass/Waste-Containing Solid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration

  13. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  14. Methods for producing extracted and digested products from pretreated lignocellulosic biomass

    Science.gov (United States)

    Chundawat, Shishir; Sousa, Leonardo Da Costa; Cheh, Albert M.; Balan; , Venkatesh; Dale, Bruce

    2017-05-16

    Methods for producing extracted and digested products from pretreated lignocellulosic biomass are provided. The methods include converting native cellulose I.sub..beta. to cellulose III.sub.I by pretreating the lignocellulosic biomass with liquid ammonia under certain conditions, and performing extracting or digesting steps on the pretreated/converted lignocellulosic biomass.

  15. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    Science.gov (United States)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid

  16. Biomass production by fescue and switchgrass alone and in mixed swards with legumes. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, M. [Univ. of Kentucky, Lexington, KY (United States). Univ. of Agronomy

    1994-06-01

    In assessing the role of biomass in alleviating potential global warming, the absence of information on the sustainability of biomass production on soils of limited agricultural potential is cited as a major constraint to the assessment of the role of biomass. Research on the sustainability of yields, recycling of nutrients, and emphasis on reduced inputs of agricultural chemicals in the production of biomass are among the critical research needs to clarify optimum cropping practice in biomass production. Two field experiments were conducted between 1989 and 1993. One study evaluated biomass production and composition of switchgrass (Panicum virgatum L.) grown alone and with bigflower vetch (Vicia grandiflora L.) and the other assessed biomass productivity and composition of tall fescue (Festuca arundinacea Schreb.) grown alone and with perennial legumes. Switchgrass received 0, 75 or 150 kg ha{sup {minus}1} of N annually as NH{sub 4}NO{sub 3} or was interseeded with vetch. Tall fescue received 0, 75, 150 or 225 kg ha{sup {minus}1} of N annually or was interseeded with alfalfa (Medicago L.) or birdsfoot trefoil (Lotus corniculatus L.). It is hoped that production systems can be designed to produce high yields of biomass with minimal inputs of fertilizer N. Achievement of this goal would reduce the potential for movement of NO{sub 3} and other undesirable N forms outside the biomass production system into the environment. In addition, management systems involving legumes could reduce the cost of biomass production.

  17. Differential productivity of Bristol Bay spawning grounds

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Bristol Bay escapement surveys covering a period of several years show that, irrespective of fluctuations in total numbers on a system, certain grounds display a...

  18. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  19. Digestate as nutrient source for biomass production of sida, lucerne and maize

    Science.gov (United States)

    Bueno Piaz Barbosa, Daniela; Nabel, Moritz; Horsch, David; Tsay, Gabriela; Jablonowski, Nicolai

    2014-05-01

    Biogas as a renewable energy source is supported in many countries driven by climate and energy policies. Nowadays, Germany is the largest biogas producer in the European Union. A sustainable resource management has to be considered within this growing scenario of biogas production systems and its environmental impacts. In this respect, studies aiming to enhance the management of biogas residues, which represents a valuable source of nutrients and organic fertilization, are needed. Our objective was to evaluate the digestate (biogas residue after fermentation process) application as nutrient source for biomass production of three different plants: sida (Sida hermaphrodita - Malvaceae), lucerne (Medicago sativa - Fabaceae) and maize (Zea mays - Poaceae). The digestate was collected from an operating biogas facility (fermenter volume 2500m³, ADRW Natur Power GmbH & Co.KG Titz/Ameln, Germany) composed of maize silage as the major feedstock, and minor amounts of chicken manure, with a composition of 3,29% N; 1,07% P; 3,42% K; and 41,2% C. An arable field soil (Endogleyic Stagnosol) was collected from 0-30 cm depth and 5 mm sieved. The fertilizer treatments of the plants were established in five replicates including digestate (application amount equivalent to 40 t ha-1) and NPK fertilizer (application amount equivalent to 200:100:300 kg ha-1) applications, according to the recommended agricultural doses, and a control (no fertilizer application). The digestate and the NPK fertilizer were thoroughly mixed with the soil in a rotatory shaker for 30 min. The 1L pots were filled with the fertilized soil and the seedlings were transplanted and grown for 30 days under greenhouse conditions (16 h day/8 h night: 24ºC/18ºC; 60% air humidity). After harvesting, the leaf area was immediately measured, and the roots were washed to allow above and below-ground biomass determination. Subsequently, shoots and roots were dried at 60ºC for 48 hours. The biomass and leaf area of sida

  20. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  1. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    OpenAIRE

    Köhler, P.; Huth, A.

    2010-01-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model...

  2. Rationally engineered synthetic coculture for improved biomass and product formation.

    Directory of Open Access Journals (Sweden)

    Suvi Santala

    Full Text Available In microbial ecosystems, bacteria are dependent on dynamic interspecific interactions related to carbon and energy flow. Substrates and end-metabolites are rapidly converted to other compounds, which protects the community from high concentrations of inhibitory molecules. In biotechnological applications, pure cultures are preferred because of the more straight-forward metabolic engineering and bioprocess control. However, the accumulation of unwanted side products can limit the cell growth and process efficiency. In this study, a rationally engineered coculture with a carbon channeling system was constructed using two well-characterized model strains Escherichia coli K12 and Acinetobacter baylyi ADP1. The directed carbon flow resulted in efficient acetate removal, and the coculture showed symbiotic nature in terms of substrate utilization and growth. Recombinant protein production was used as a proof-of-principle example to demonstrate the coculture utility and the effects on product formation. As a result, the biomass and recombinant protein titers of E. coli were enhanced in both minimal and rich medium simple batch cocultures. Finally, harnessing both the strains to the production resulted in enhanced recombinant protein titers. The study demonstrates the potential of rationally engineered cocultures for synthetic biology applications.

  3. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Science.gov (United States)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  4. Above-ground biomass and structure of 260 African tropical forests

    Science.gov (United States)

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  5. THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    M. G. McKellar; G. L. Hawkes; J. E. O' Brien

    2008-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

  6. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source.

  7. Potential For Agricultural Biomass Production for Energy Purposes in Poland: a Review

    Directory of Open Access Journals (Sweden)

    Rafał Baum

    2013-03-01

    Full Text Available This article reviews the production capacity of Polish agriculture with respect to biomass used for energy production. The forecast production potential of agricultural biomass in Poland in 2020 includes three key areas: the expected consumption of renewable energy according to energy type, the energy potential of agriculture and barriers to the use of biomass. Studies have shown that in Poland, total energy consumption will significantly increase (over 10% by 2020. Growth of demand for renewable energy will primarily result from strong growth of demand for transport biofuels and electricity. In 2020, approximately 80% of final energy from renewable sources will come from biomass. More than three-quarters of the biomass will be generated from agriculture. In Poland, crops from 1.0 to 4.3 million ha can be used for energy production. The study shows changes in the structure of biomass use, and the analysis confirms the declining share of biomass for heat production and the increasing share of biomass for electricity and biofuels. The main obstacles to the continued use of agricultural biomass are a lack of local markets for biomass energy and poor financial support for energy crop production.

  8. Mapping landscape scale variations of forest structure, biomass, and productivity in Amazonia

    Directory of Open Access Journals (Sweden)

    S. Saatchi

    2009-06-01

    Full Text Available Landscape and environmental variables such as topography, geomorphology, soil types, and climate are important factors affecting forest composition, structure, productivity, and biomass. Here, we combine a network of forest inventories with recently developed global data products from satellite observations in modeling the potential distributions of forest structure and productivity in Amazonia and examine how geomorphology, soil, and precipitation control these distributions. We use the RAINFOR network of forest plots distributed in lowland forests across Amazonia, and satellite observations of tree cover, leaf area index, phenology, moisture, and topographical variations. A maximum entropy estimation (Maxent model is employed to predict the spatial distribution of several key forest structure parameters: basal area, fraction of large trees, fraction of palms, wood density, productivity, and above-ground biomass at 5 km spatial resolution. A series of statistical tests at selected thresholds as well as across all thresholds and jackknife analysis are used to examine the accuracy of distribution maps and the relative contributions of environmental variables. The final maps were interpreted using soil, precipitation, and geomorphological features of Amazonia and it was found that the length of dry season played a key role in impacting the distribution of all forest variables except the wood density. Soil type had a significant impact on the wood productivity. Most high productivity forests were distributed either on less infertile soils of western Amazonia and Andean foothills, on crystalline shields, and younger alluvial deposits. Areas of low elevation and high density of small rivers of Central Amazonia showed distinct features, hosting mainly forests with low productivity and smaller trees.

  9. Productivity developments in European agriculture: relations to and opportunities for biomass production

    NARCIS (Netherlands)

    de Wit, M.P.; Londo, H.M.; Faaij, A.P.C.

    2011-01-01

    This paper discusses if, how fast and to what maximum yield improvements can be realized in Europe in the coming decades and what the opportunities and relations are to biomass production. The starting point for the analysis is the historic context of developments in European agriculture over the pa

  10. Improved endoglucanase production and mycelial biomass of some ericoid fungi.

    Science.gov (United States)

    Adeoyo, O R; Pletschke, B I; Dames, J F

    2017-12-01

    Fungal species associated with ericaceous plant roots produce a number of enzymes and other bio-active metabolites in order to enhance survival of their host plants in natural environments. This study focussed on endoglucanase production from root associated ericoid mycorrhizal and dark septate endophytic fungal isolates. Out of the five fungal isolates screened, Leohumicola sp. (ChemRU330/PPRI 13195) had the highest relative enzyme activity and was tested along with isolates belonging to Hyloscyphaceae (EdRU083/PPRI 17284) and Leotiomycetes (EdRU002/PPRI 17261) for endoglucanase production under different pH and nutritional conditions that included: carbon sources, nitrogen sources and metal ions, at an optimum temperature of 28 °C. An optimal of pH 5.0 produced enzyme activity of 3.99, 2.18 and 4.31 (U/mg protein) for isolates EdRU083, EdRU002 and Leohumicola sp. respectively. Increased enzyme activities and improved mycelial biomass production were obtained in the presence of supplements such as potassium, sodium, glucose, maltose, cellobiose, tryptone and peptone. While NaFe-EDTA and Co(2+) inhibited enzyme activity. The potential role of these fungi as a source of novel enzymes is an ongoing objective of this study.

  11. Hydrogen production from high moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Xu, X. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  12. Altered sucrose metabolism impacts plant biomass production and flower development.

    Science.gov (United States)

    Coleman, Heather D; Beamish, Leigh; Reid, Anya; Park, Ji-Young; Mansfield, Shawn D

    2010-04-01

    Nicotiana tabacum (tobacco) was transformed with three genes involved in sucrose metabolism, UDP-glucose pyrophosphorylase (UGPase, EC 2.7.7.9), sucrose synthase (SuSy, EC 2.4.1.13) and sucrose phosphate synthase (SPS, EC 2.4.1.14). Plants harbouring the single transgenes were subsequently crossed to produce double and triple transgenic lines, including: 2 x 35S::UGPase x SPS, 4CL::UGPase x SPS, 2 x 35S::SuSy x SPS, 4CL::SuSy x SPS, 2 x 35S::UGPase x SuSy x SPS, and 4CL::UGPase x SuSy x SPS. The ultimate aim of the study was to examine whether it is possible to alter cellulose production through the manipulation of sucrose metabolism genes. While altering sucrose metabolism using UGPase, SuSy and SPS does not have an end effect on cellulose production, their simultaneous overexpression resulted in enhanced primary growth as seen in an increase in height growth, in some cases over 50%. Furthermore, the pyramiding strategy of simultaneously altering the expression of multiple genes in combination resulted in increased time to reproductive bud formation as well as altered flower morphology and foliar stipule formation in 4CL lines. Upregulation of these sucrose metabolism genes appears to directly impact primary growth and therefore biomass production in tobacco.

  13. LiDAR-Assisted Multi-Source Program (LAMP for Measuring Above Ground Biomass and Forest Carbon

    Directory of Open Access Journals (Sweden)

    Tuomo Kauranne

    2017-02-01

    Full Text Available Forest measurement for purposes like harvesting planning, biomass estimation and mitigating climate change through carbon capture by forests call for increasingly frequent forest measurement campaigns that need to balance cost with accuracy and precision. Often this implies the use of remote sensing based measurement methods. For any remote-sensing based methods to be accurate, they must be validated against field data. We present a method that combines field measurements with two layers of remote sensing data: sampling of forests by airborne laser scanning (LiDAR and Landsat imagery. The Bayesian model-based framework presented here is called Lidar-Assisted Multi-source Programme—or LAMP—for Above Ground Biomass estimation. The method has two variants: LAMP2 which splits the biomass estimation task into two separate stages: forest type stratification from Landsat imagery and mean biomass density estimation of each forest type by LiDAR models calibrated on field plots. LAMP3, on the other hand, estimates first the biomass on a LiDAR sample using models calibrated with field plots and then uses these LiDAR-based models to generate biomass density estimates on thousands of surrogate plots, with which a satellite image based model is calibrated and subsequently used to estimate biomass density on the entire forest area. Both LAMP methods have been applied to a 2 million hectare area in Southern Nepal, the Terai Arc Landscape or TAL to calculate the emission Reference Levels (RLs that are required for the UN REDD+ program that was accepted as part of the Paris Climate Agreement. The uncertainty of these estimates is studied with error variance estimation, cross-validation and Monte Carlo simulation. The relative accuracy of activity data at pixel level was found to be 14 per cent at 95 per cent confidence level and the root mean squared error of biomass estimates to be between 35 and 39 per cent at 1 ha resolution.

  14. Ulva biomass as a co-substrate for stable anaerobic digestion of spent coffee grounds in continuous mode.

    Science.gov (United States)

    Kim, Jaai; Kim, Hakchan; Lee, Changsoo

    2017-10-01

    Ulva biomass was evaluated as a co-substrate for anaerobic digestion of spent coffee grounds at varying organic loads (0.7-1.6g chemical oxygen demand (COD)/Ld) and substrate compositions. Co-digestion with Ulva (25%, COD basis) proved beneficial for SCG biomethanation in both terms of process performance and stability. The beneficial effect is much more pronounced at higher organic and hydraulic loads, with the highest COD removal and methane yield being 51.8% and 0.19L/g COD fed, respectively. The reactor microbial community structure changed dynamically during the experiment, and a dominance shift from hydrogenotrophic to aceticlastic methanogens occurred with increase in organic loading rate. Network analysis provides a comprehensive view of the microbial interactions involved in the system and confirms a direct positive correlation between Ulva input and methane productivity. A group of populations, including Methanobacterium- and Methanoculleus-related methanogens, was identified as a possible indicator for monitoring the biomethanation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000.

    Science.gov (United States)

    Haberl, Helmut; Kastner, Thomas; Schaffartzik, Anke; Ludwiczek, Nikolaus; Erb, Karl-Heinz

    2012-12-01

    Global trade of biomass-related products is growing exponentially, resulting in increasing 'teleconnections' between producing and consuming regions. Sustainable management of the earth's lands requires indicators to monitor these connections across regions and scales. The 'embodied human appropriation of NPP' (eHANPP) allows one to consistently attribute the HANPP resulting from production chains to consumers. HANPP is the sum of land-use induced NPP changes and biomass harvest. We present the first national-level assessment of embodied HANPP related to agriculture based on a calculation using bilateral trade matrices. The dataset allows (1) the tracing of the biomass-based products consumed in Austria in the year 2000 to their countries of origin and quantifying the HANPP caused in production, and (2) the assigning of the national-level HANPP on Austria's territory to the consumers of the products on the national level. The dataset is constructed along a consistent system boundary between society and ecosystems and can be used to assess Austria's physical trade balance in terms of eHANPP. Austria's eHANPP-trade balance is slightly negative (imports are larger than exports); import and export flows are large in relation to national HANPP. Our findings show how the eHANPP approach can be used for quantifying and mapping the teleconnections related to a nation's biomass metabolism.

  16. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  17. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  18. Allometric relationship for estimating above-ground biomass of Aegialitis rotundifolia Roxb.of Sundarbans mangrove forest, in Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Mohammad Raqibul Hasan Siddique·Mahmood Hossain; M d.Rezaul Karim Chowdhury

    2012-01-01

    Tree biomass plays a key role in sustainable management by providing different aspects of ecosystem.Estimation of above ground biomass by non-destructive means requires the development of allometric equations.Most researchers used DBH (diameter at breast height) and TH (total height) to develop allometric equation for a tree.Very few species-specific allometric equations are currently available for shrubs to estimate of biomass from measured plant attributes.Therefore,we used some of readily measurable variables to develop allometric equations such as girth at collar-height (GCH) and height of girth measuring point (GMH) with total height (TH) for A.rotundifolia,a mangrove species of Sundarbans of Bangladesh,as it is too dwarf to take DBH and too irregular in base to take Girth at a fixed height.Linear,non-linear and logarithmic regression techniques were tried to determine the best regression model to estimate the above-ground biomass of stem,branch and leaf.A total of 186 regression equations were generated from the combination of independent variables.Best fit regression equations were determined by examining co-efficient of determination (R2),co-efficient of variation (Cv),mean-square of the error (Mserror),residual mean error (Rsme),and F-value.Multiple linear regression models showed more efficient over other types of regression equation.The performance of regression equations was increased by inclusion of GMH as an independent variable along with total height and GCH.

  19. MICROALGAE BIOMASS PRODUCTION BASED ON WASTEWATER FROM DAIRY INDUSTRY

    Directory of Open Access Journals (Sweden)

    Marcin Dębowski

    2016-05-01

    Full Text Available The goal of this study was to determine the feasibility of culturing high-oil algae biomass based on wastewater from dairy processing plants. The experiments were conducted in laboratory scale with tubular photobioreactor using. The best technological properties were demonstrated for eluates from an anaerobic reactor treating dairy wastewater. The use of a substrate of this type yielded algae biomass concentration at a level of 3490 mg d.m./dm3, with the mean rate of algae biomass growth at 176 mg d.m./dm3∙d. The mean content of oil in the proliferated biomass of algae approximated 20%.

  20. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  1. Ethanol and lignin production from Brazilian empty fruit bunch biomass.

    Science.gov (United States)

    Raman, Jegannathan Kenthorai; Gnansounou, Edgard

    2014-11-01

    Brazil Government is promoting palm plantations to use degraded land for biofuels. Palm production is expected to increase 35 per cent in future and there would be profuse biomass available that needs to be handled efficiently. Therefore, in this study the potential of EFB from Brazil as raw material for biorefinery was explored by compositional analysis and pretreatment conditions optimization to produce ethanol and co-products. EFB from Brazil contains significant cellulose, hemicellulose, lignin and low ash content. The optimized dilute sulfuric acid pretreatment conditions for efficient cellulose and hemicellulose separation were 160°C temperature, 1.025% v/v acid concentration, 10.5min and 20% solid loading. Under optimum pretreatment process conditions, low enzyme loading (10FPU, 20IU cellulase and glucosidase enzyme/g glucan) and 15% solid loading, 51.1g ethanol, 344.1g solid residue (65% lignin and 24.87MJ/kg LHV) and 3.7l xylose rich liquid could be produced per kg dry EFB.

  2. Biomass estimates of Pacific herring Clupea harengus pallasi, in California from the 1985-86 spawning-ground surveys

    OpenAIRE

    Spratt, Jerome D.

    1986-01-01

    The 1985-86 spawning biomass estimate of Pacific herring, Clupea harengus pallasi, in San Francisco Bay is 49,000 tons. The relatively small population increases during 1984 and 1985 indicate that the population is rebuilding slowly from the 1983-84 season when only 40,000 tons of herring spawned. Spawning-ground surveys in Tomales Bay were inconclusive. Herring normally spawn in eelgrass, Zostera marina, beds; this season herring spawned unexpectedly in deeper water, disrupting our...

  3. Detection of large above ground biomass variability in lowland forest ecosystems by airborne LiDAR

    Directory of Open Access Journals (Sweden)

    J. Jubanski

    2012-08-01

    Full Text Available Quantification of tropical forest Above Ground Biomass (AGB over large areas as input for Reduced Emissions from Deforestation and forest Degradation (REDD+ projects and climate change models is challenging. This is the first study which attempts to estimate AGB and its variability across large areas of tropical lowland forests in Central Kalimantan (Indonesia through correlating airborne Light Detection and Ranging (LiDAR to forest inventory data. Two LiDAR height metrics were analysed and regression models could be improved through the use of LiDAR point densities as input (R2 = 0.88; n = 52. Surveying with a LiDAR point density per square meter of 2–4 resulted in the best cost-benefit ratio. We estimated AGB for 600 km of LiDAR tracks and showed that there exists a considerable variability of up to 140% within the same forest type due to varying environmental conditions. Impact from logging operations and the associated AGB losses dating back more than 10 yr could be assessed by LiDAR but not by multispectral satellite imagery. Comparison with a Landsat classification for a 1 million ha study area where AGB values were based on site specific field inventory data, regional literature estimates, and default values by the Intergovernmental Panel on Climate Change (IPCC showed an overestimation of 46%, 102%, and 137%, respectively. The results show that AGB overestimation may lead to wrong GHG emission estimates due to deforestation in climate models. For REDD+ projects this leads to inaccurate carbon stock estimates and consequently to significantly wrong REDD+ based compensation payments.

  4. Environmental Controls on Above-Ground Biomass in the Taita Hills, Kenya

    Science.gov (United States)

    Adhikari, H.; Heiskanen, J.; Siljander, M.; Maeda, E. E.; Heikinheimo, V.; Pellikka, P.

    2016-12-01

    Tropical forests are globally significant ecosystems which maintain high biodiversity and provide valuable ecosystem services, including carbon sink, climate change mitigation and adaptation. This ecosystem has been severely degraded for decades. However, the magnitude and spatial patterns of the above ground biomass (AGB) in the tropical forest-agriculture landscapes is highly variable, even under the same climatic condition and land use. This work aims 1) to generate wall-to-wall map of AGB density for the Taita Hills in Kenya based on field measurements and airborne laser scanning (ALS) and 2) to examine environmental controls on AGB using geospatial data sets on topography, soils, climate and land use, and statistical modelling. The study area (67000 ha) is located in the northernmost part of the Eastern Arc Mountains of Kenya and Tanzania, and the highest hilltops reach over 2200 m in elevation. Most of the forest area has been cleared for croplands and agroforestry, and hills are surrounded by the semi-arid scrublands and dry savannah at an elevation of 600-900 m a.s.l. As a result, the current land cover is a mosaic of various types of land cover and land use. The field measurements were carried out in total of 216 plots in 2013-2015 for AGB computations and ALS flights were conducted in 2014-2015. AGB map at 30 m x 30 m resolution was implemented using multiple linear regression based on ALS variables derived from the point cloud, namely canopy cover and 25 percentile height of ALS returns (R2 = 0.88). Boosted regression trees (BRT) was used for examining the relationship between AGB and explanatory variables, which were derived from ALS-based high resolution DEM (2 m resolution), soil database, downscaled climate data and land cover/use maps based on satellite image analysis. The results of these analyses will be presented in the conference.

  5. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  6. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal...

  7. Fast pyrolysis of biomass : an experimental study on mechanisms influencing yield and composition of the products

    NARCIS (Netherlands)

    Hoekstra, Elly

    2011-01-01

    Pyrolysis oil originating from biomass has the potential to replace ‘crude fossil oil’ and to produce fuels and chemicals in a more sustainable way. The favorable perspective of fast pyrolysis as biomass pre-treatment step is directly related to the production of a liquid as main product and the sig

  8. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a ...... of bioenergy....

  9. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese

    2015-01-01

    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  10. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    Science.gov (United States)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at

  11. A METHOD OF IMPROVING THE PRODUCTION OF BIOMASS OR A DESIRED PRODUCT FROM A CELL

    DEFF Research Database (Denmark)

    1998-01-01

    the F¿1? ATPase or portions thereof is expressed, may be selected from prokaryotes and eukaryotes. In particular the DNA encoding F¿1? or a portion thereof may be derived from bacteria and eukaryotic microorganisms such as yeasts, other fungi and cell lines of higher organisms and be selected from......The production of biomass or a desired product from a cell can be improved by inducing conversion of ATP to ADP without primary effects on other cellular metabolites or functions which is achieved by expressing an uncoupled ATPase activity in said cell and incubating the cell with a suitable...... substrate to produce said biomass or product. This is conveniently done by expressing in said cell the soluble part (F¿1?) of the membrane bound (F¿0?F¿1? type) H?+¿-ATPase or a portion of F¿1? exhibiting ATPase activity. The organism from which the F¿1? ATPase or portions thereof is derived, or in which...

  12. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  13. Crop production without fossil fuel: production systems for tractor fuel and mineral nitrogen based on biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, Serina

    2009-12-15

    With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this thesis was to evaluate different systems for biomass-based production of tractor fuel and mineral nitrogen fertilisers, which at present are the two largest fossil energy carriers in Swedish agriculture. The land use, energy input and environmental load of the systems were calculated using life cycle assessment methodology. Two categories of renewable tractor fuel were studied: first generation fuels and second generation fuels, the latter defined as fuels not yet produced on a commercial scale. An organic farm self-sufficient in tractor fuel was modelled. Raw material from the farm was assumed to be delivered to a large fuel production facility and fuel transported back to the farm, where it was utilised. In general, the second generation renewable fuels had higher energy balance and lower environmental impact than the first generation fuels. However all systems studied reduced the use of fossil fuels to a great extent and lowered the contribution to global warming. The land needed to be set aside for tractor fuel varied between 2% and 5% of the farm's available land. Two major routes for biomass-based production of mineral nitrogen for conventional agriculture were studied, one based on anaerobic digestion and one on thermochemical gasification of biomass. The crops studied were able to produce between 1.6 and 3.9 tonnes N per hectare in the form of ammonium nitrate. The use of fossil fuel for ammonium nitrate production was 35 MJ per kg N in the fossil reference scenario, but only 1-4 MJ per kg N in the biomass systems. The contribution to global warming can be greatly reduced by the biomass systems, but there is an increased risk of eutrophication and acidification. It is clear that the agricultural sector has great potential to reduce the use of fossil fuel and to lower the emissions of greenhouse

  14. Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland

    Science.gov (United States)

    Milchunas, D.G.; Vandever, M.W.

    2013-01-01

    Annual/perennial and tall/short plant species differentially dominate early to late successional shortgrass steppe communities. Plant species can have different ratios of above-/below-ground biomass distributions and this can be modified by precipitation and grazing. We compared grazing effects on aboveground production and root biomass in early- and mid-seral fields and undisturbed shortgrass steppe. Production averaged across four years and grazed and ungrazed treatments were 246, 134, and 102 g m−2 yr−1 for the early-, mid-seral, and native sites, respectively, while root biomass averaged 358, 560, and 981 g m−2, respectively. Early- and mid-seral communities provided complimentary forage supplies but at the cost of root biomass. Grazing increased, decreased, or had no effect on aboveground production in early-, mid-seral, and native communities, and had no effect on roots in any. Grazing had some negative effects on early spring forage species, but not in the annual dominated early-seral community. Dominant species increased with grazing in native communities with a long evolutionary history of grazing by large herbivores, but had no effects on the same species in mid-seral communities. Effects of grazing in native communities in a region cannot necessarily be used to predict effects at other seral stages.

  15. Oil Palm Biomass As Potential Substitution Raw Materials For Commercial Biomass Briquettes Production

    Directory of Open Access Journals (Sweden)

    A. B. Nasrin

    2008-01-01

    Full Text Available Palm oil industry generates vast amount of palm biomass. Converting palm biomass into a uniform and solid fuel through briquetting process appears to be an attractive solution in upgrading its properties and add value. In this study, raw materials including empty fruit bunch (EFB, in powder and fibre forms, palm kernel expeller (PKE and sawdust were densified into briquettes at high temperature and pressure using screw extrusion technology. The briquettes were analysed to determine its physical and chemical properties, mechanical strength and burning characteristics. It was found that briquettes made either from 100% pulverized EFB or mixed with sawdust exhibited good burning properties. EFB fibre and PKE, due to their physical properties, were recommended to be blended with sawdust in producing quality briquettes. In overall, converting palm biomass into briquettes has increased its energy content and reduced moisture content about minimum of 5% and 38% respectively compared to its raw materials. The properties of palm biomass briquettes obtained from the study were compared to the commercial sawdust briquettes properties and to the minimum requirements of DIN 51731. The details of the study were highlighted in this paper. Palm biomass briquettes can become an important renewable energy fuel source in the future.

  16. Production of substitute natural gas by biomass hydrogasification

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffarian, M.; Zwart, R.W.R. [ECN Biomass, Petten (Netherlands)

    2000-11-01

    Hydrogen, generated from renewable sources, is likely to play a major role in the future energy supply. The storage and transport of hydrogen can take place in its free form (H2), or chemically bound, e.g. as methane. However, the storage and transport of hydrogen in its free form are more complex, and probably would require more energy than the storage and transport of hydrogen in chemical form. An additional important advantage of the indirect use of hydrogen as energy carrier is, that in the future renewable energy supply, pads of the existing large-scale energy infra- structure could still be used. Production of Substitute Natural Gas (SNG) by biomass hydrogasification has been assessed as a process for chemical storage of hydrogen. Thermodynamic analysis has shown the feasibility of this process. The product gas of the process has a Wobbe-index, a mole percentage methane, and a calorific value quite comparable to the quality of the Dutch natural gas. With a hydrogen content below 10 mol%, the produced SNG can be transported through the existing gas net without any additional adjustment. The integrated system has an energetic efficiency of 81% (LHV). In the long term, the required hydrogen for this process can be produced by water electrolysis, with electricity from renewable sources. In the short term, hydrogen may be obtained from hydrogen-rich gases available as by-product from industrial processes. Results of thermodynamic analysis of the process and experimental work, application potentials of the process in the Netherlands, and plans for future development are presented. 21 refs.

  17. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  18. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  19. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    Butanol replaced gasoline gallon for gallon in a 10,000 miles trip across the United States without the need to highly modify a ’92 Buick (your existing car today). Butanol can now be made for less than ethanol and yields more Btu’s from the same corn, making the plow to tire equation positive – more energy out than it takes to make it and Butanol is much safer. Butanol when substituted for gasoline gives better gas mileage and does not pollute as tested in 10 states. Butanol should now receive the same recognition as ethanol in U.S. legislation “ethanol/butanol”. There is abundant plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry, which processes more than 13% of the ~9.5 billion bushels (~240 million metric tons) of corn annually produced in the U.S. to produce high-fructose-corn-syrup, dextrose, starch, and fuel alcohol, and generates more than 10 million metric tons of corn byproducts that are currently of limited use and pose significant environmental problems. The abundant inexpensive renewable resources as feedstock for fermentation, and recent advances in the fields of biotechnology and bioprocessing have resulted in a renewed interest in the fermentation production of chemicals and fuels, including n-butanol. The historic acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is one of the oldest known industrial fermentations. It was ranked second only to ethanol fermentation by yeast in its scale of production, and is one of the largest biotechnological processes ever known. However, since the 1950's industrial ABE fermentation has declined continuously, and almost all butanol is now produced via petrochemical routes (Chemical Marketing Reporter, 1993). Butanol is an important industrial solvent and is a better fuel for replacing gasoline – gallon for gallon than ethanol. Current butanol

  20. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  1. Attached cultivation for improving the biomass productivity of Spirulina platensis.

    Science.gov (United States)

    Zhang, Lanlan; Chen, Lin; Wang, Junfeng; Chen, Yu; Gao, Xin; Zhang, Zhaohui; Liu, Tianzhong

    2015-04-01

    To improve cultivation efficiency for microalgae Spirulina platensis is related to increase its potential use as food source and as an effective alternative for CO2 fixation. The present work attempted to establish a technique, namely attached cultivation, for S. platensis. Laboratory experiments were made firstly to investigate optimal conditions on attached cultivation. The optimal conditions were found: 25 g m(-2) for initial inoculum density using electrostatic flocking cloth as substrata, light intensity lower than 200 μmol m(-2) s(-1), CO2 enriched air flow (0.5%) at a superficial aeration rate of 0.0056 m s(-1) in a NaHCO3-free Zarrouk medium. An outdoor attached cultivation bench-scale bioreactor was built and a 10d culture of S. platensis was carried out with daily harvesting. A high footprint areal biomass productivity of 60 g m(-2) d(-1) was obtained. The nutrition of S. platensis with attached cultivation is identical to that with conventional liquid cultivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Glycolate oxidation in A. thaliana chloroplasts improves biomass production

    Directory of Open Access Journals (Sweden)

    Alexandra eMaier

    2012-02-01

    Full Text Available A complete glycolate catabolic cycle was established in chloroplasts of the C3-model plant Arabidopsis thaliana by which one molecule of glycolate is completely oxidized within the chloroplast to two molecules of CO2. Genes coding for glycolate oxidase, malate synthase, and catalase were introduced into the nuclear genome of A. thaliana by step-wise transformation. Other genes required for a fully operational pathway are the endogenous NADP-malic enzyme and pyruvate dehydrogenase. Transgenic lines expressing the complete novel pathway produced rossettes with more leaves and higher fresh and dry weight but individual leaves were flatter and thinner than the wild type. The photosynthetic rates of the transgenic plants were higher on a dry weight and chlorophyll basis, but there were no differences in the compensation point. In addition, transgenic plants showed a lower glycine/serine ratio than the wild type indicating a reduction of the flux through the photorespiratory pathway. In this way, due to the increased oxidation of glycolate inside the chloroplasts, a photorespiratory bypass was created, which resulted in higher CO2 assimilation and enhanced biomass production.

  3. Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    OpenAIRE

    Finegan, B.; Pena Claros, M.; Silva de Oliveira, A.; ASCARRUNZ, N.; Bret-Harte, M. S.; Carreño Rocabado, I.G.; Casanoves, F; Diaz, S; Eguiguren Velepucha, P.; Fernandez, F.; Licona, J.C.; Lorenzo, L; Salgado Negret, B.; Vaz, M; L. Poorter

    2014-01-01

    1. Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. 2. Data are presented for three rain forests in Bolivia, Brazil and Costa Rica. Initial above-ground biomass and biomass increments of survivors, recruits and survivors + recruits (total) were estimated for trees ≥10 cm d.b.h. in 62 and 21 1.0-ha plots, respecti...

  4. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L. – a case study

    Directory of Open Access Journals (Sweden)

    Christopher Morhart

    2016-02-01

    Full Text Available Background: The global search for new ways to sequester carbon has already reached agricultural lands. Such land constitutes a major potential carbon sink. The production of high value timber within agroforestry systems can facilitate an in-situ carbon storage function. This is followed by a potential long term ex- situ carbon sinkwithin long lasting products such as veneer and furniture. For this purpose wild cherry (Prunus avium L. is an interesting option for middle Europe, yielding high prices on the timber market. Methods: A total number of 39 wild cherry were sampled in 2012 and 2013 to assess the leafless above ground biomass. The complete trees including stem and branches were separated into 1 cm diameter classes. Wood and bark from sub-samples were analysed separately and nutrient content was derived. Models for biomass estimation were constructed for all tree compartments. Results: The smallest diameter classes possess the highest proportion of bark due to smaller cross sectional area. Tree boles with a greater amount of stem wood above 10 cm in diameter will have a more constant bark proportion. Total branch bark proportion also remains relatively constant above d1.3m measurements of 8 cm. A balance is evident between the production of new branches with a low diameter and high bark proportion offset by the thickening and a relative reduction in bark proportion in larger branches. The results show that a single tree with an age of 17 and 18 years can store up to 85 kg of carbon within the aboveground biomass portion, an amount that will increase as the tree matures. Branches display greater nutrient content than stem sections per volume unit which can be attributed to a greater bark proportion. Conclusions: Using the derived models the carbon and the nutrient content of above-ground woody biomass of whole trees can be calculated. Suggested values for carbon with other major and minor nutrients held within relatively immature trees

  5. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy.

  6. Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass.

    Science.gov (United States)

    Lu, Xiaoming; Withers, Mitch R; Seifkar, Navid; Field, Randall P; Barrett, Steven R H; Herzog, Howard J

    2015-05-01

    The objective of this study was to assess the costs, energy consumption and greenhouse gas (GHG) emissions throughout the biomass supply chain for large scale biofuel production. Two types of energy crop were considered, switchgrass and loblolly pine, as representative of herbaceous and woody biomass. A biomass logistics model has been developed to estimate the feedstock supply system from biomass production through transportation. Biomass in the form of woodchip, bale and pellet was investigated with road, railway and waterway transportation options. Our analysis indicated that the farm or forest gate cost is lowest for loblolly pine whole tree woodchip at $39.7/dry tonne and highest for switchgrass round bale at $72.3/dry tonne. Switchgrass farm gate GHG emissions is approximately 146kgCO2e/dry tonne, about 4 times higher than loblolly pine. The optimum biomass transportation mode and delivered form are determined by the tradeoff between fixed and variable costs for feedstock shipment.

  7. Chromium speciation in coal and biomass co-combustion products.

    Science.gov (United States)

    Stam, Arthur F; Meij, Ruud; Te Winkel, Henk; Eijk, Ronald J van; Huggins, Frank E; Brem, Gerrit

    2011-03-15

    Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7-28% wood for which ashes exhibited Cr(VI) concentrations of 12-16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO(4)(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.

  8. Application of lignocellulolytic fungi for bioethanol production from renewable biomass

    Directory of Open Access Journals (Sweden)

    Jović Jelena M.

    2015-01-01

    Full Text Available Pretreatment is a necessary step in the process of conversion of lignocellulosic biomass to ethanol; by changing the structure of lignocellulose, enhances enzymatic hydrolysis, but, often, it consumes large amounts of energy and/or needs an application of expensive and toxic chemicals, which makes the process economically and ecologically unfavourable. Application of lignocellulolytic fungi (from the class Ascomycetes, Basidiomycetes and Deuteromycetes is an attractive method for pre-treatment, environmentally friendly and does not require the investment of energy. Fungi produce a wide range of enzymes and chemicals, which, combined in a variety of ways, together successfully degrade lignocellulose, as well as aromatic polymers that share features with lignin. On the basis of material utilization and features of a rotten wood, they are divided in three types of wood-decay fungi: white rot, brown rot and soft rot fungi. White rot fungi are the most efficient lignin degraders in nature and, therefore, have a very important role in carbon recycling from lignified wood. This paper describes fungal mechanisms of lignocellulose degradation. They involve oxidative and hydrolytic mechanisms. Lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase and enzymes able to catalyze formation of hydroxyl radicals (•OH such as glyoxal oxidase, pyranose-2-oxidase and aryl-alcohol oxidase are responsible for oxidative processes, while cellulases and hemicellulases are involved in hydrolytic processes. Throughout the production stages, from pre-treatment to fermentation, the possibility of their application in the technology of bioethanol production is presented. Based on previous research, the advantages and disadvantages of biological pre-treatment are pointed out.

  9. Above ground biomass estimation from lidar and hyperspectral airbone data in West African moist forests.

    Science.gov (United States)

    Vaglio Laurin, Gaia; Chen, Qi; Lindsell, Jeremy; Coomes, David; Cazzolla-Gatti, Roberto; Grieco, Elisa; Valentini, Riccardo

    2013-04-01

    The development of sound methods for the estimation of forest parameters such as Above Ground Biomass (AGB) and the need of data for different world regions and ecosystems, are widely recognized issues due to their relevance for both carbon cycle modeling and conservation and policy initiatives, such as the UN REDD+ program (Gibbs et al., 2007). The moist forests of the Upper Guinean Belt are poorly studied ecosystems (Vaglio Laurin et al. 2013) but their role is important due to the drier condition expected along the West African coasts according to future climate change scenarios (Gonzales, 2001). Remote sensing has proven to be an effective tool for AGB retrieval when coupled with field data. Lidar, with its ability to penetrate the canopy provides 3D information and best results. Nevertheless very limited research has been conducted in Africa tropical forests with lidar and none to our knowledge in West Africa. Hyperspectral sensors also offer promising data, being able to evidence very fine radiometric differences in vegetation reflectance. Their usefulness in estimating forest parameters is still under evaluation with contrasting findings (Andersen et al. 2008, Latifi et al. 2012), and additional studies are especially relevant in view of forthcoming satellite hyperspectral missions. In the framework of the EU ERC Africa GHG grant #247349, an airborne campaign collecting lidar and hyperspectral data has been conducted in March 2012 over forests reserves in Sierra Leone and Ghana, characterized by different logging histories and rainfall patterns, and including Gola Rainforest National Park, Ankasa National Park, Bia and Boin Forest Reserves. An Optech Gemini sensor collected the lidar dataset, while an AISA Eagle sensor collected hyperspectral data over 244 VIS-NIR bands. The lidar dataset, with a point density >10 ppm was processed using the TIFFS software (Toolbox for LiDAR Data Filtering and Forest Studies)(Chen 2007). The hyperspectral dataset, geo

  10. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  11. Synthesis and analysis of biomass and net primary productivity in Chinese forests

    OpenAIRE

    Ni, Jian; Zhang, Xin-Shi; Scurlock, Jonathan

    2001-01-01

    International audience; An extant dataset is presented on biomass and net primary productivity (NPP) of 6 forest biomes, including 690 stands from 17 forest types of China. Data on latitude, longitude, elevation, field measurements of stand age, leaf area index (LAI) and total biomass were collected for 29 provinces from forestry inventory data of the Forestry Ministry of China, as well as a wide range of published literature. The individual site-based NPP was estimated from field biomass mea...

  12. Sustainable production of microalgae biomass in liquid digestates and by products from agro-food industries

    OpenAIRE

    Massa, Marina

    2016-01-01

    Globally, there is growing interest in microalgae production as innovative vegetable biomass rich in phytochemicals at high added value to apply in different commercial sectors (food, feed, nutraceutical, cosmetician and wastewaters depuration) and as future biodiesel source for the high lipid content and fatty acid profile of some species. To date the microalgae market for food and feed is a niche market but it is increasingly relevant and strictly correlate to their chemical com...

  13. Grounded Innovation Strategies for Creating Digital Products

    CERN Document Server

    Holmquist, Lars Erik

    2012-01-01

    How will you design the next big thing? And the thing after that? And after that…? This book can help, by providing practical techniques for the innovation process which consists of invention and investigation. Smart products are popping up everywhere and we are constantly presented with newer, better 'things' that enhance our everyday lives - the pace continually speeding up. Efficiency of creativity mixed with designing within budgetary and business culture parameters is difficult on a good day. This book provides extensive examples of products that did and didn't make it to consumers an

  14. Investigating Appropriate Sampling Design for Estimating Above-Ground Biomass in Bruneian Lowland Mixed Dipterocarp Forest

    Science.gov (United States)

    Lee, S.; Lee, D.; Abu Salim, K.; Yun, H. M.; Han, S.; Lee, W. K.; Davies, S. J.; Son, Y.

    2014-12-01

    Mixed tropical forest structure is highly heterogeneous unlike plantation or mixed temperate forest structure, and therefore, different sampling approaches are required. However, the appropriate sampling design for estimating the above-ground biomass (AGB) in Bruneian lowland mixed dipterocarp forest (MDF) has not yet been fully clarified. The aim of this study was to provide supportive information in sampling design for Bruneian forest carbon inventory. The study site was located at Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Six 60 m × 60 m quadrats were established, separated by a distance of approximately 100 m and each was subdivided into quadrats of 10 m × 10 m, at an elevation between 200 and 300 m above sea level. At each plot all free-standing trees with diameter at breast height (dbh) ≥ 1 cm were measured. The AGB for all trees with dbh ≥ 10 cm was estimated by allometric models. In order to analyze changes in the diameter-dependent parameters used for estimating the AGB, different quadrat areas, ranging from 10 m × 10 m to 60 m × 60 m, were used across the study area, starting at the South-West end and moving towards the North-East end. The derived result was as follows: (a) Big trees (dbh ≥ 70 cm) with sparse distribution have remarkable contribution to the total AGB in Bruneian lowland MDF, and therefore, special consideration is required when estimating the AGB of big trees. Stem number of trees with dbh ≥ 70 cm comprised only 2.7% of all trees with dbh ≥ 10 cm, but 38.5% of the total AGB. (b) For estimating the AGB of big trees at the given acceptable limit of precision (p), it is more efficient to use large quadrats than to use small quadrats, because the total sampling area decreases with the former. Our result showed that 239 20 m × 20 m quadrats (9.6 ha in total) were required, while 15 60 m × 60 m quadrats (5.4 ha in total) were required when estimating the AGB of the trees

  15. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  16. Estimation of above ground biomass for multi-stemmed short-rotation woody crops

    Science.gov (United States)

    Brian A. Byrd; Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway

    2015-01-01

    With the increasing interest in short-rotation woody crop (SRWC) systems, an accurate yet quick, non-destructive means for determining aboveground biomass is necessary from both management and research perspectives.

  17. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  18. Forest above Ground Biomass Inversion by Fusing GLAS with Optical Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Xiaohuan Xi

    2016-03-01

    Full Text Available Forest biomass is an important parameter for quantifying and understanding biological and physical processes on the Earth’s surface. Rapid, reliable, and objective estimations of forest biomass are essential to terrestrial ecosystem research. The Geoscience Laser Altimeter System (GLAS produced substantial scientific data for detecting the vegetation structure at the footprint level. This study combined GLAS data with MODIS/BRDF (Bidirectional Reflectance Distribution Function and ASTER GDEM data to estimate forest aboveground biomass (AGB in Xishuangbanna, Yunnan Province, China. The GLAS waveform characteristic parameters were extracted using the wavelet method. The ASTER DEM was used to compute the terrain index for reducing the topographic influence on the GLAS canopy height estimation. A neural network method was applied to assimilate the MODIS BRDF data with the canopy heights for estimating continuous forest heights. Forest leaf area indices (LAIs were derived from Landsat TM imagery. A series of biomass estimation models were developed and validated using regression analyses between field-estimated biomass, canopy height, and LAI. The GLAS-derived canopy heights in Xishuangbanna correlated well with the field-estimated AGB (R2 = 0.61, RMSE = 52.79 Mg/ha. Combining the GLAS estimated canopy heights and LAI yielded a stronger correlation with the field-estimated AGB (R2 = 0.73, RMSE = 38.20 Mg/ha, which indicates that the accuracy of the estimated biomass in complex terrains can be improved significantly by integrating GLAS and optical remote sensing data.

  19. Above-ground biomass characteristics of young hybrid aspen (Populus tremula L. x P. tremuloides Michx.) plantations on former agricultural land in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Tullus, Arvo; Tullus, Hardi; Soo, Tea; Paern, Linnar [Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu (Estonia)

    2009-11-15

    Fifty biomass production model trees were analysed in 7-yr-old commercial hybrid aspen plantations established on abandoned agricultural land in Estonia. Above-ground leafless biomass (ALB) of the model trees varied from 0.1 to 9.8 kg DM. The ALB of plantations with a density of 880-1340 trees ha{sup -1} growing on former field soils was between 2.18 and 8.54 t DM ha{sup -1}. The amount of nitrogen accumulated in the ALB varied between 14.4 and 48.5 kg ha{sup -1}, the amount of phosphorus, between 1.7 and 5.9 kg ha{sup -1}, and the amount of potassium, between 6.5 and 21.9 kg ha{sup -1}. The removal of major mineral nutrients from the site with the removal of woody biomass in 7-yr-old plantations would be relatively small, constituting 0.5-3.4% of the nutrient pool in the humus layer of the previously fertilized field soils. The stembark content decreases rapidly until the DBH reaches 4 cm, which can be considered a target diameter for the hybrid aspen coppicing system. (author)

  20. Increased mycelial biomass production by Lentinula edodes intermittently illuminated by green light emitting diodes.

    Science.gov (United States)

    Glukhova, Lubov B; Sokolyanskaya, Ludmila O; Plotnikov, Evgeny V; Gerasimchuk, Anna L; Karnachuk, Olga V; Solioz, Marc; Karnachuk, Raisa A

    2014-11-01

    Fungi possess a range of light receptors to regulate metabolism and differentiation. To study the effect of light on Lentinula edodes (the shiitake mushroom), mycelial cultures were exposed to blue, green, and red fluorescent lights and light-emitting diodes, as well as green laser light. Biomass production, morphology, and pigment production were evaluated. Exposure to green light at intervals of 1 min/d at 0.4 W/m(2) stimulated biomass production by 50-100 %, depending on the light source. Light intensities in excess of 1.8 W/m(2) or illumination longer than 30 min/d did not affect biomass production. Carotenoid production and morphology remained unaltered during increased biomass production. These observations provide a cornerstone to the study of photoreception by this important fungus.

  1. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  2. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis

    DEFF Research Database (Denmark)

    Markou, Giorgos; Angelidaki, Irini; Nerantzis, Elias

    2013-01-01

    In the present study the potential of bioethanol production using carbohydrate-enriched biomass of the cyanobacterium Arthrospira platensis was studied. For the saccharification of the carbohydrate-enriched biomass, four acids (H2SO4, HNO3, HCl and H3PO4) were investigated. Each acid were used at...

  3. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valkenburg, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walkton, C. W. [Dept. of Energy (DOE), Washington DC (United States); Elliott, D. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, J. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Czernik, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-02-01

    The Biomass Program develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case is the first to establish detailed cost targest for the production of diesel and gasoline blendstock from biomass via a fast pyrolysis process.

  4. Biomass and its potential for protein and amino acids : valorizing agricultural by-products

    NARCIS (Netherlands)

    Sari, Y.W.

    2015-01-01

    The use of biomass for industrial products is not new. Plants have long been used for clothes, shelter, paper, construction, adhesives, tools, and medicine. With the exploitation on fossil fuel usage in the early 20th century and development of petroleum based refinery, the use of biomass for indust

  5. Biomass and its potential for protein and amino acids : valorizing agricultural by-products

    NARCIS (Netherlands)

    Sari, Y.W.

    2015-01-01

    The use of biomass for industrial products is not new. Plants have long been used for clothes, shelter, paper, construction, adhesives, tools, and medicine. With the exploitation on fossil fuel usage in the early 20th century and development of petroleum based refinery, the use of biomass for

  6. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  7. Biomass and its potential for protein and amino acids : valorizing agricultural by-products

    NARCIS (Netherlands)

    Sari, Y.W.

    2015-01-01

    The use of biomass for industrial products is not new. Plants have long been used for clothes, shelter, paper, construction, adhesives, tools, and medicine. With the exploitation on fossil fuel usage in the early 20th century and development of petroleum based refinery, the use of biomass for indust

  8. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    Science.gov (United States)

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  9. Can portable pyrolysis units make biomass utilization affordable while using bio-char to enhance soil productivity and sequester carbon?

    Science.gov (United States)

    Mark Coleman; Deborah Page-Dumroese; Jim Archuleta; Phil Badger; Woodum Chung; Tyron Venn; Dan Loeffler; Greg Jones; Kristin McElligott

    2010-01-01

    We describe a portable pyrolysis system for bioenergy production from forest biomass that minimizes long-distance transport costs and provides for nutrient return and long-term soil carbon storage. The cost for transporting biomass to conversion facilities is a major impediment to utilizing forest biomass. If forest biomass could be converted into bio-oil in the field...

  10. Production of Renewable Natural Gas from Waste Biomass

    Science.gov (United States)

    Kumar, Sachin; Suresh, S.; Arisutha, S.

    2013-03-01

    Biomass energy is expected to make a major contribution to the replacement of fossil fuels. Methane produced from biomass is referred to as bio-methane, green gas, bio-substitute natural gas or renewable natural gas (RNG) when it is used as a transport fuel. Research on upgrading of the cleaned producer gas to RNG is still ongoing. The present study deals with the conversion of woody biomass into fuels, RNG using gasifier. The various effects of parameters like temperature, pressure, and tar formation on conversion were also studied. The complete carbon conversion was observed at 480 °C and tar yield was significantly less. When biomass was gasified with and without catalyst at about 28 s residence time, ~75 % (w/w) and 88 % (w/w) carbon conversion for without and with catalyst was observed. The interest in RNG is growing; several initiatives to demonstrate the thermal-chemical conversion of biomass into methane and/or RNG are under development.

  11. Fertilization Affects Biomass Production of Suaeda salsa and Soil Organic Carbon Pool in East Coastal Region of China

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-feng; YANG Jing-song; YAO Rong-jiang; LIU Guang-ming; YU Shi-peng

    2013-01-01

    Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this study was to assess the effects of N and P applied to Suaeda salsa on biomass production, SOC concentration, labile organic carbon (LOC) concentration, SOC pool and carbon management index (CMI) as well as the effect of the land use practice on soil quality of coastal tidal lands in east coastal region of China. The study provided relevant references for coastal exploitation, tidal land management and related study in other countries and regions. The field experiment was laid out in a randomized complete block design, consisting of four N-fertilization rates (0 (N0), 60 (N1), 120 (N2) and 180 kg ha-1 (N3)), three P-fertilization rates (0 (P0), 70 (P1) and 105 kg ha-1 (P2)) and bare land without vegetation. N and P applied to S. salsa on coastal tidal lands significantly affected biomass production (above-ground biomass and roots), bulk density (ρb), available N and P, SOC, LOC, SOC pool and CMI. Using statistical analysis, significantly interactions in N and P were observed for biomass production and the dominant factor for S. salsa production was N in continuous 2-yr experiments. There were no significant interactions between N and P for SOC concentration, LOC concentration and SOC pool. However, significant interaction was obtained for CMI at the 0-20 cm depth and N played a dominant role in the variation of CMI. There were significant improvements for soil measured attributes and parameters, which suggested that increasing the rates of N and P significantly decreasedρb at the 0-20 cm depth and increased available N and P, SOC, LOC, SOC pool as well as CMI at both the 0-20 and 20-40 cm depth, respectively. By correlation analysis, there were significantly positive correlations between biomass (above-ground biomass and roots) and SOC as well as LOC in

  12. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Agu, R.C.; Amadife, A.E.; Ude, C.M.; Onyia, A.; Ogu, E.O. [Enugu State Univ. of Science and Technology (Nigeria). Faculty of Applied Natural Sciences; Okafor, M.; Ezejiofor, E. [Nnamdi Azikiwe Univ., Awka (Nigeria). Dept. of Applied Microbiology

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 M H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.

  13. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass.

    Science.gov (United States)

    Yu, Qiang; Wu, Honghui; He, Nianpeng; Lü, Xiaotao; Wang, Zhiping; Elser, James J; Wu, Jianguo; Han, Xingguo

    2012-01-01

    The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C:P and N:P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N:C under N limitation and positively correlated with P:C under P limitation. However, the N:P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C:N:P stoichiometry. Furthermore, μ and C:N:P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.

  14. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass.

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    Full Text Available The growth rate hypothesis (GRH proposes that higher growth rate (the rate of change in biomass per unit biomass, μ is associated with higher P concentration and lower C:P and N:P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N:C under N limitation and positively correlated with P:C under P limitation. However, the N:P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C:N:P stoichiometry. Furthermore, μ and C:N:P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.

  15. Development of Hybrid Product Breakdown Structure for NASA Ground Systems

    Science.gov (United States)

    Monaghan, Mark W.; Henry, Robert J.

    2013-01-01

    The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product

  16. Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire.

    Science.gov (United States)

    Wirth, C; Schulze, E-D; Schulze, W; von Stünzner-Karbe, D; Ziegler, W; Miljukova, I M; Sogatchev, A; Varlagin, A B; Panvyorov, M; Grigoriev, S; Kusnetzova, W; Siry, M; Hardes, G; Zimmermann, R; Vygodskaya, N N

    1999-10-01

    The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the "lichen" site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6-10 kgdw m(-2) after 200 years depending on stand density and fire history compared to 20 kgdw m(-2) in the "Vaccinium" type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5-1.5 and crown cover was 30-60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope -0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem

  17. Pretreatment of cellulosic biomass in improved production of ethanol and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ningjun; Gong, C.S.; Tsao, G.T. [Purdue Univ., West Lafayette, IN (United States); Yutang Huang [Jilin Corn Research and Development Center (China)

    1996-12-31

    A highly efficient process of simultaneous saccharification and fermentation (SSF) of cellulose using fungal cellulose and yeast to produce ethanol from lignocellulose pretreated with ammonia was developed. The process entails steeping the biomass with ammonia at ambient temperature to remove and extract lignin. This is followed by dilute acid hydrolysis at 100-108{degrees}C under atmospheric pressure to remove and recover a xylose-rich hemicellulose fraction as hemicellulose hydrolysate. This xylose-rich (92% xylose) hydrolysate was used as substrate for xylitol production by yeast and cellulose fraction was used for ethanol production in the SSF process with yeast. The same substrate was also used for 2,3-butanediol production in the SSF process with Klebsiella pneumonia. Experiments show that 98% of ammonia is recoverable for reuse and that the treated ground corn cob gives close to 86% theoretical yield of ethanol based on cellulose content. An ethanol concentration of over 60 g/L was obtained within 72 hours of SSF. 8 refs., 7 figs.

  18. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    Science.gov (United States)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  19. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  20. Early differentiation in biomass production and carbon sequestration of white poplar and its two hybrids in Central Iran

    Institute of Scientific and Technical Information of China (English)

    Hormoz Sohrabi; Mohammad Kazem Parsapour; Ali Soltani; Yaghoub Iranmanesh

    2015-01-01

    We assessed the potential of white poplar (Populus alba L.) and its inter-sectional hybridization with euphrates poplar (P. euphratica Oliv.) for carbon storage and sequestration in central Iran. Trials were established at planting density of 2,500 trees per hectare in block ran-domized design with three replicates. After 6 years, we measured the above-ground biomass of tree components (trunk, branch, bark, twig and leaf), and assessed soil carbon at three depths. P. alba × euphratica plantation stored significantly more carbon (22.3 t ha-1) than P. alba (16.7 t ha-1) and P. euphratica × alba (13.1 t ha-1). Most of the carbon was accumulated in the above-ground biomass (61.1%in P. alba, 72.4%in P. alba × euphra-tica and 56.0% in P. euphratica × alba). There was no significant difference in soil carbon storage. Also, biomass allocation was different between white poplar P. alba and its inter-sectional hybridization. Therefore, there was a yield difference due to genomic imprinting, which increased the possibility that paternally and maternally inherited wood production alleles would be differentially expressed in the new crossing.

  1. Airborne measurements of biomass burning products over Africa

    Science.gov (United States)

    Helas, Guenter; Lobert, Juergen; Goldammer, Johann; Andreae, Meinrat O.; Lacaux, J. P.; Delmas, R.

    1994-01-01

    Ozone has been observed in elevated concentrations by satellites over hitherto believed 'background' areas. There is meteorological evidence that these ozone 'plumes' found over the Atlantic ocean originate from biomass fires on the African continent. Therefore we have investigated ozone and assumed precursor compounds over African regions. The measurements revealed large photosmog layers in altitudes between 1.5 and 4 km. Here we will focus on some results of ozone mixing ratios obtained during the DECAFE 91/FOS experiment and estimate the relevance of biomass burning as a source by comparing the strength of this source to stratospheric input.

  2. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests

    Science.gov (United States)

    Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo

    2016-10-01

    Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.

  3. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jiao, Xiurong

    2017-01-01

    In order to supply future biorefineries there is a need to sustainably intensify the biomass production on current agricultural land. The aim of this work was to determine biomass yield and associated radiation utilisation for novel perennial grasses and annual crops in rotations optimised...... for biomass production, and compare their performance with traditional cropping systems commonly used in northern European agriculture. Measurements of biomass yield from 2012 to 2015 at two Danish sites differing in soil type and climatic conditions were conducted in three main cropping systems: i) optimised...... monocultures of maize and triticale, and a rotation of spring barley − winter barley − winter rapeseed). The results showed that on sandy loam soil, the highest biomass yield (mean of three years following the establishing year) was achieved by festulolium (20.4 Mg ha−1), followed by tall fescue (18.5 Mg ha−1...

  4. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2016-03-01

    Full Text Available The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating “greener” industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone, a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  5. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.

    Science.gov (United States)

    Tabasso, Silvia; Grillo, Giorgio; Carnaroglio, Diego; Calcio Gaudino, Emanuela; Cravotto, Giancarlo

    2016-03-26

    The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating "greener" industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone), a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA)-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA) is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  6. Removal of lead ions in drinking water by coffee grounds as vegetable biomass.

    Science.gov (United States)

    Tokimoto, Toshimitsu; Kawasaki, Naohito; Nakamura, Takeo; Akutagawa, Jyunichi; Tanada, Seiki

    2005-01-01

    In an attempt to reuse food waste for useful purposes, we investigated the possibility of using coffee grounds to remove lead ions from drinking water. We studied the lead ion adsorption characteristics of coffee beans and grounds by measuring their fat and protein content, adsorption isotherms for lead ions, and adsorption rates for lead ions. The number of lead ions adsorbed by coffee grounds did not depend on the kind of coffee beans or the temperature at which adsorption tests were performed. The rate of lead ion adsorption by coffee grounds was directly proportional to the amount of coffee grounds added to the solution. When coffee grounds were degreased or boiled, the number of lead ions decreased. When proteins contained in coffee grounds were denatured, the lead ion adsorption was considerably reduced. The lead ion adsorption capacity of coffee grounds decreased with increased concentration of perchloric acid used for treating them and disappeared with 10% perchloric acid. The experiments demonstrated that proteins contained in coffee beans depend upon the adsorption of lead ion. The present study gave an affirmative answer to the possibility of using coffee grounds, an abundant food waste, for removing lead ions from drinking water.

  7. Biomass for energy production. Economic evaluation, efficiency comparison and optimal utilization of biomass; Biomasse zur Energiegewinnung. Oekonomische Bewertung, Effizienzvergleich und optimale Biomassenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Zeddies, Juergen [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Landwirtschaftliche Betriebslehre; Schoenleber, Nicole

    2015-07-01

    An optimized and/or goal-oriented use of available biomass feedstock for energetic conversion requires a detailed analysis of bioenergy production lines according to technical and economic efficiency indicators. Accordingly, relevant parameters of selected production lines supplying heat, electricity and fuel have been studied and used as data base for an optimization model. Most favorable combination of bioenergy lines considering political and economic objectives are analyzed by applying a specifically designed linear optimization model. Modeling results shall allow evaluation of political courses of action.

  8. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, L.; Westerhof, Roel Johannes Maria; van Rossum, G.; Oudenhoven, Stijn; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the

  9. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints

    National Research Council Canada - National Science Library

    BERINGER, TIM; LUCHT, WOLFGANG; SCHAPHOFF, SIBYLL

    2011-01-01

    We estimate the global bioenergy potential from dedicated biomass plantations in the 21st century under a range of sustainability requirements to safeguard food production, biodiversity and terrestrial carbon storage. We use a process...

  10. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Science.gov (United States)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  11. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    , modelling and computational fluid dynamics (CFD) simulations are discussed in detail. The literature survey and discussions are primarily pertaining to grate-fired boilers burning biomass, though these issues are more or less general. Other technologies (e.g., fluidized bed combustion or suspension...

  12. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Science.gov (United States)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  13. Experimental study of the production of biomass by Sacharomyces ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... with 207.8 mol of sugar with low oxygen uptake rate. Also, the obtained specific .... A Bioengineering LP300 Pilot Plant (number 480625 Steinmann AG ... biomass produced as a function of time in the first 4 h. Respiration ...

  14. The Interpolation Method for Estimating the Above-Ground Biomass Using Terrestrial-Based Inventory

    Directory of Open Access Journals (Sweden)

    I Nengah Surati Jaya

    2014-08-01

    Full Text Available This paper examined several methods for interpolating biomass on logged-over dry land forest using terrestrial-based forest inventory in Labanan, East Kalimantan and Lamandau, Kota Wringing Barat, Central Kalimantan. The plot-distances examined was 1,000−1,050 m for Labanan and 1,000−899m for Lawanda. The main objective of this study was to obtain the best interpolation method having the most accurate prediction on spatial distribution of forest biomass for dry land forest. Two main interpolation methods were examined: (1 deterministic approach using the IDW method and (2 geo-statistics approach using Kriging with spherical, circular, linear, exponential, and Gaussian models. The study results at both sites consistently showed that the IDW method was better than the Kriging method for estimating the spatial distribution of biomass. The validation results using chi-square test showed that the IDW interpolation provided accurate biomass estimation. Using the percentage of mean deviation value (MD(%, it was also recognized that the IDWs with power parameter (p of 2 provided relatively low value , i.e., only 15% for Labanan, East Kalimantan Province and 17% for Lamandau, Kota Wringing Barat Central Kalimantan Province. In general, IDW interpolation method provided better results than the Kriging, where the Kriging method provided MD(% of about 27% and 21% for Lamandau and Labanan sites, respectively.

  15. Biomass energy production. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Moore, P. W.

    1980-01-01

    These 210 citations from the international literature describe the production and/or utilization of most forms of biomass as a source of energy, fuel, food, and chemical intermediates or feedstocks. Biomass conversion by incineration, gasification, pyrolysis, hydrolysis, anaerobic digestion, or fermentation, as well as by catalytic, photosynthetic, chemosynthetic, and bio-electrochemical means are among the conversion processes considered. Discussions include biomass plantation and material productivity, transportation and equipment requirements, effects, comparisons of means and efficiencies of utilization and conversion, assessments of limitations, and evaluations of economic potential.

  16. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris.

    Science.gov (United States)

    Hultberg, Malin; Jönsson, Helene Larsson; Bergstrand, Karl-Johan; Carlsson, Anders S

    2014-05-01

    In this study, the green microalga Chlorella vulgaris was exposed to monochromatic light at six different wavelengths in order to study the effect on biomass productivity and fatty acid content. A significantly higher amount of biomass by produced in the treatments with yellow, red and white light compared with blue, green and purple light. There were also significant differences in total lipid content and fatty acid profile between the treatments. The green light regime gave the lowest concentration of lipids, but increased the concentration of polyunsaturated fatty acids. Thus it can be concluded that light quality significantly affects biomass productivity, total lipid concentration and fatty acid profile in the microalga C. vulgaris.

  17. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared.

  18. The Interpolation Method for Estimating the Above-Ground Biomass Using Terrestrial-Based Inventory

    Directory of Open Access Journals (Sweden)

    I Nengah Surati Jaya

    2014-09-01

    Full Text Available This paper examined several methods for interpolating biomass on logged-over dry land forest using terrestrial-based forest inventory in Labanan, East Kalimantan and Lamandau, Kota Wringing Barat, Central Kalimantan.  The plot-distances examined was 1,000−1,050 m for Labanan and 1,000−899m for Lawanda.  The main objective of this study was to obtain the best interpolation method having the most accurate prediction on spatial distribution of forest biomass for dry land forest. Two main interpolation methods were examined: (1 deterministic approach using the IDW method and (2 geo-statistics approach  using Kriging with spherical, circular, linear, exponential, and Gaussian models.   The study results at both sites consistently showed that the IDW method was better than the Kriging method for estimating the spatial distribution of biomass.  The validation results using chi-square test showed that the IDW interpolation provided accurate biomass estimation.   Using the percentage of mean deviation value (MD(%, it was also recognized that the IDWs with power parameter (p of 2 provided relatively low value , i.e., only 15% for Labanan, East Kalimantan Province and 17% for Lamandau, Kota Wringing Barat Central Kalimantan Province. In general, IDW interpolation method provided better results than the Kriging, where the Kriging method provided MD(% of about 27% and 21% for Lamandau and Labanan sites, respectively.Keywords:  deterministic, geostatistics, IDW, Kriging, above-groung biomass

  19. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.;

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...... for photofermentative production. Due to these constraints biological hydrogen production from biomass has so far not been considered a significant source in most scenarios of a future hydrogen-based economy. In this review we briefly summarize the current state of art of biomass-based hydrogen production and suggest...... a combination of a biorefinery for the production of multiple fuels (hydrogen, ethanol, and methane) and chemical catalytic technologies which could lead to a yield of 10-12 mol hydrogen per mol glucose derived from biological waste products. Besides the high hydrogen yield, the advantage of the suggested...

  20. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field

    Directory of Open Access Journals (Sweden)

    Shiping Zhu

    2014-06-01

    Full Text Available The objectives of this study were to detect coarse tree root and to estimate root biomass in the field by using an advanced 3D Ground Penetrating Radar (3D GPR system. This study obtained full-resolution 3D imaging results of tree root system using 500 MHz and 800 MHz bow-tie antennas, respectively. The measurement site included two larch trees, and one of them was excavated after GPR measurements. In this paper, a searching algorithm, based on the continuity of pixel intensity along the root in 3D space, is proposed, and two coarse roots whose diameters are more than 5 cm were detected and delineated correctly. Based on the detection results and the measured root biomass, a linear regression model is proposed to estimate the total root biomass in different depth ranges, and the total error was less than 10%. Additionally, based on the detected root samples, a new index named “magnitude width” is proposed to estimate the root diameter that has good correlation with root diameter compared with other common GPR indexes. This index also provides direct measurement of the root diameter with 13%–16% error, providing reasonable and practical root diameter estimation especially in the field.

  1. A METHOD OF IMPROVING THE PRODUCTION OF BIOMASS OR A DESIRED PRODUCT FROM A CELL

    DEFF Research Database (Denmark)

    1998-01-01

    substrate to produce said biomass or product. This is conveniently done by expressing in said cell the soluble part (F¿1?) of the membrane bound (F¿0?F¿1? type) H?+¿-ATPase or a portion of F¿1? exhibiting ATPase activity. The organism from which the F¿1? ATPase or portions thereof is derived, or in which...... the F¿1? ATPase or portions thereof is expressed, may be selected from prokaryotes and eukaryotes. In particular the DNA encoding F¿1? or a portion thereof may be derived from bacteria and eukaryotic microorganisms such as yeasts, other fungi and cell lines of higher organisms and be selected from...

  2. Marine biomass system: anaerobic digestion and production of methane

    Energy Technology Data Exchange (ETDEWEB)

    Haven, K.F.; Henriquez, M.; Ritschard, R.L.

    1979-04-01

    Two approaches to kelp conversion to methane are described. First, a large (10.56 mi/sup 2/) oceanic farm using an artificial substrate and an upwelling system to deliver nutrient-rich deep ocean water to the kelp bed is described. This system can yield as much as 50 tons of kelp (dry ash free - DAF) per acre-year. Kelp are harvested by a specially designed 30,000 DWT ship and delivered to an onshore processing plant as a ground kelp slurry. The second system involves the use of a natrual coastal kelp bed. Growth rates in this bed are stimulated by a nutrient rich sewer outfall. A conceptual model is presented for calculation of the growth rate of kelp in this natural bed which can reach 15 tons (DAF) per acre-year. The harvest activity and processing plant are similar to those for oceanic farm system. In the next section of this report, the overall concept of kelp production and conversion to methane is discussed. In Section III the general design of the ocean farm system is presented and discussed while Section IV contains a similar description for the natural bed system. Section V presents the capital requirements and operational labor, resources and material requirements. Section VI describes the environmental residuals created by the operation of either system and, to the extent possible, quantifies the rate at which these residuals are generated. In addition to the technical data reported herein, cost data have been generated for the various processes and components utilized in each solar technology. The requirements for costing information basically arise from the need to compute parameters such as investment demands, employment patterns, material demands and residual levels associated with each technology for each of several national and regional scenarios.

  3. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Institute of Scientific and Technical Information of China (English)

    Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li

    2011-01-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method.The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass.The product gas was a mixed gas containing 72%H2,26%CO2,1.9%CO,and a trace amount of CH4.It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%).The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O.In addition,the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  4. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Science.gov (United States)

    Li, Xing-long; Ning, Shen; Yuan, Li-xia; Li, Quan-xin

    2011-08-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  5. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    Science.gov (United States)

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  6. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes.

  7. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  8. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    DEFF Research Database (Denmark)

    Bensah, Edem C.; Kádár, Zsófia; Mensah, Moses Y.

    2015-01-01

    Despite the abundance of diverse biomass resources in Africa, they have received little research and development focus. This study presents compositional analysis, sugar, and ethanol yields of hydrothermal pretreated (195 degrees C, 10 min) biomass from West Africa, including bamboo wood, rubber...... wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3.......5 times that of the untreated material, while the ethanol yield was nearly 2 times higher. Moreover, the sugar released by the elephant grass (30.8 g/100 g TS) was only slightly lower than by the wheat straw (33.1 g/100 g TS), while the ethanol yield (16.1 g/100 g TS) was higher than that of the straw (15...

  9. Methane and fertilizer production from seaweed biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Betzer, P.R.; Humm, H.J.

    1984-01-01

    It was demonstrated that several varieties of abundant benthic algae indigenous to Tampa Bay (Gracilaria, Hypnea, and Ulva) were readily degradable via anaerobic digestion to methane. The energy yield per unit weight biomass degraded was higher than any previously reported. Given the large masses of readily degradable plants which are annually produced in and around Tampa Bay, the resource is estimated to be at least equivalent to several million gallons of gasoline.

  10. Assessment of Above-Ground Biomass of Borneo Forests through a New Data-Fusion Approach Combining Two Pan-Tropical Biomass Maps

    Directory of Open Access Journals (Sweden)

    Andreas Langner

    2015-08-01

    Full Text Available This study investigates how two existing pan-tropical above-ground biomass (AGB maps (Saatchi 2011, Baccini 2012 can be combined to derive forest ecosystem specific carbon estimates. Several data-fusion models which combine these AGB maps according to their local correlations with independent datasets such as the spectral bands of SPOT VEGETATION imagery are analyzed. Indeed these spectral bands convey information about vegetation type and structure which can be related to biomass values. Our study area is the island of Borneo. The data-fusion models are evaluated against a reference AGB map available for two forest concessions in Sabah. The highest accuracy was achieved by a model which combines the AGB maps according to the mean of the local correlation coefficients calculated over different kernel sizes. Combining the resulting AGB map with a new Borneo land cover map (whose overall accuracy has been estimated at 86.5% leads to average AGB estimates of 279.8 t/ha and 233.1 t/ha for forests and degraded forests respectively. Lowland dipterocarp and mangrove forests have the highest and lowest AGB values (305.8 t/ha and 136.5 t/ha respectively. The AGB of all natural forests amounts to 10.8 Gt mainly stemming from lowland dipterocarp (66.4%, upper dipterocarp (10.9% and peat swamp forests (10.2%. Degraded forests account for another 2.1 Gt of AGB. One main advantage of our approach is that, once the best fitting data-fusion model is selected, no further AGB reference dataset is required for implementing the data-fusion process. Furthermore, the local harmonization of AGB datasets leads to more spatially precise maps. This approach can easily be extended to other areas in Southeast Asia which are dominated by lowland dipterocarp forest, and can be repeated when newer or more accurate AGB maps become available.

  11. Bioenergy production potential for aboveground biomass from a subtropical constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Chung [Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114 (China); Ko, Chun-Han [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Bioenergy Research Center, National Taiwan University, Taipei 10617 (China); Chang, Fang-Chih [The Instrument Center, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China); Chen, Pen-Yuan [Department of Landscape Architecture, National Chiayi University, Chiayi City 60004 (China); Liu, Tzu-Fen [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Sheu, Yiong-Shing [Department of Water Quality Protection, Environmental Protection Administration, Executive Yuan, Taipei 10042 (China); Shih, Tzenge-Lien [Department of Chemistry, Tamkang University, Tamsui, Taipei 25137 (China); Teng, Chia-Ji [Environmental Protection Bureau, Taipei County Government, Taipei 22001 (China)

    2011-01-15

    Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month. (author)

  12. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells.

    Science.gov (United States)

    Efremenko, E N; Nikolskaya, A B; Lyagin, I V; Senko, O V; Makhlis, T A; Stepanov, N A; Maslova, O V; Mamedova, F; Varfolomeev, S D

    2012-06-01

    The purpose of this work was to study the possible use of pretreated biomass of various microalgae and cyanobacteria as substrates for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum cells immobilized into poly(vinyl alcohol) cryogel. To this end, the biochemical composition of photosynthetic microorganisms cultivated under various conditions was studied. The most efficient technique for pretreating microalgal biomass for its subsequent conversion into biofuels appeared to be thermal decomposition at 108 °C. For the first time the maximum productivity of the ABE fermentation in terms of hydrogen (8.5 mmol/L medium/day) was obtained using pretreated biomass of Nannochloropsis sp. Maximum yields of butanol and ethanol were observed with Arthrospira platensis biomass used as the substrate. Immobilized Clostridium cells were demonstrated to be suitable for multiple reuses (for a minimum of five cycles) in ABE fermentation for producing biofuels from pretreated microalgal biomass.

  13. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  14. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.

    Science.gov (United States)

    Weschler, Matthew K; Barr, William J; Harper, Willie F; Landis, Amy E

    2014-02-01

    Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effects of Chemical Parameters on Spirulina platensis Biomass Production: Optimized Method for Phycocyanin Extraction

    Directory of Open Access Journals (Sweden)

    B. Vasanthi

    2008-01-01

    Full Text Available The micro alga, Spirulina is a rich source of protein, which is used as a protein supplement for humans, chicks and also in aquaculture. Among the cultures, CS-1 registered maximum biomass production and S-20 showed highest biomass production among the local isolates. Optimum temperature of 35C was the best for maximum biomass production of S. platensis cultures. Among the cultures CS-1 culture, put forth maximum biomass production at 35C. The biomass production of all S. platensis cultures was maximum at pH 10.0. Among the cultures, CS-1 recorded maximum biomass at pH 10.0. S. platensis culture S-20 showed highest biomass production among the local isolates. S. platensis cultures were grown under different light wave lengths ranging from 340-700 nm and observed that it grows best in red light but later on there was no significant difference between the biomass produced under red and normal white lights. S. platensis culture CS-1 has shown the highest chlorophyll, carotenoids and phycocyanin and protein contents. When the extracted protein was resolved on a 15% SDS-PAGE gel, the cultures have polypeptide subunits ranging from the molecular weights 20 to 95 kDa. The liquid nitrogen method was found to be the best by extraction higher quantity of phycocyanin from all S. platensis cultures. Among the cultures, S. platensis culture CS-1 recorded the highest phycocyanin content and among the local isolates SM-2 showed the highest pigment content. SDS-PAGE analysis of phycocyanin pigment revealed two characteristic bands with a molecular weights of 14.3 and 20.1 kDa approximately for a and subunits.

  16. Assessing Nutrient Removal Kinetics in Flushed Manure Using Chlorella vulgaris Biomass Production

    Directory of Open Access Journals (Sweden)

    Pramod Pandey

    2017-07-01

    Full Text Available The utilization of dairy wastewater for producing algal biomass is seen as a two-fold opportunity to treat wastewater and produce algae biomass, which can be potentially used for production of biofuels. In animal agriculture system, one of the major waste streams is dairy manure that contains high levels of nitrogen and phosphorus. Furthermore, it is produced abundantly in California’s dairy industry, as well as many other parts of the world. We hypothesized that flushed manure, wastewater from a dairy farm, can be used as a potential feedstock after pretreatment to grow Chlorella vulgaris biomass and to reduce nutrients of manure. In this study, we focused on investigating the use of flushed manure, produced in a dairy farm for growing C. vulgaris biomass. A series of batch-mode experiments, fed with manure feedstock and synthetic medium, were conducted and corresponding C. vulgaris production was analyzed. Impacts of varying levels of sterilized manure feedstock (SMF and synthetic culture medium (SCM (20–100% on biomass production, and consequential changes in total nitrogen (TN and total phosphorus (TP were determined. C. vulgaris production data (Shi et al., 2016 were fitted into a model (Aslan and Kapdan, 2006 for calculating kinetics of TN and TP removal. Results showed that the highest C. vulgaris biomass production occurs, when SMF and SCM were mixed with ratio of 40%:60%. With this mixture, biomass on Day 9 was increased by 1,740% compared to initial biomass; and on Day 30, it was increased by 2,456.9%. The production was relatively low, when either only SCM or manure feedstock medium (without pretreatment, i.e., no sterilization was used as a culture medium. On this ratio, TN and TP were reduced by 29.9 and 12.3% on Day 9, and these reductions on Day 30 were 76 and 26.9%, respectively.

  17. 76 FR 76890 - Nutrition Labeling of Single-Ingredient Products and Ground or Chopped Meat and Poultry Products...

    Science.gov (United States)

    2011-12-09

    ... Products and Ground or Chopped Meat and Poultry Products; Delay of Effective Date and Correction AGENCY... products and ground or chopped meat and poultry products that were published in the Federal Register on... of Single-Ingredient Products and Ground or Chopped Meat and Poultry Products'' in the Federal...

  18. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  19. Production of Carotenoid-/Ergosterol-Supplemented Biomass by Red Yeast Rhodotorula glutinis Grown Under External Stress

    Directory of Open Access Journals (Sweden)

    Ivana Marova

    2010-01-01

    Full Text Available The aim of this study is to compare the production of biomass enriched with carotenoids and ergosterol by yeast strain Rhodotorula glutinis CCY 20-2-26 grown under optimal growth conditions and in the presence of exogenous stress factors. R. glutinis cells were exposed to UV irradiation, oxidative stress (2–10 mmol/L H2O2 and osmotic stress (2–10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. Experiments were carried out in Erlenmeyer flasks and in laboratory fermentor. First, R. glutinis cells were exposed to higher concentration of stress factors added into the production medium. Further, low concentrations of NaCl and H2O2 were added to the inoculum medium or to both inoculum and production media. Exposure of red yeast cells to all tested stress factors resulted in higher production of carotenoids as well as ergosterol, while biomass production was changed only slightly. Under high stress, 2–3 times increase of β-carotene was observed. The addition of low salt or peroxide concentration into the inoculation media led to about 2-fold increase of carotenoid production. In Erlenmeyer flasks the best effect on the carotenoid and ergosterol production (3- to 4-fold increase was exhibited by the combined stress: the addition of low amount of NaCl (2 mmol/L into the inoculum medium, followed by the addition of H2O2 (5 mmol/L into the production medium. The production of ergosterol in most cases increased simultaneously with the production of carotenoids. Cultivation of R. glutinis carried out in a 2-litre laboratory fermentor was as follows: under optimal conditions about 37 g/L of yeast biomass were obtained containing approx. 26.30 mg/L of total carotenoids and 7.8 mg/L of ergosterol. After preincubation with a mild stress factor, the yield of biomass as well as the production of carotenoids and ergosterol substantially increased. The best production of enriched

  20. Genetic selection of American sycamore for biomass production in the mid-south

    Science.gov (United States)

    Land, S. B., Jr.

    1982-09-01

    Biomass prediction equations were developed to examine genetic, site, and propagule effects on above stump biomass. Accuracy and precision of subsampling procedures which utilized green weight ratios were high for stem wood and bark, slightly less for limb components, and poorest for the leaf component. The best predictor variables for stem biomass equations were DBH2, (DBH), and (DBH)2, and DBH)2 times height. Crown width, crown surface area, and (DBH)2 times the crown length/tree height ratio were more appropriate predictors for limb of leaf biomass. Specific gravity and moisture content varied within the tree, among sites, and among families within seed sources, but not among sources. Survival, biomass per tree, and biomass per hectare were lowest for trees established from seedling top cuttings, higher for top pruned seedlings, and highest for whole seedlings. Site differences were very large for biomass production, with the best site having nearly as much stem plus limb dry weight per hectare at age five as three other sites combined. Geographic seed sources from south of each planting site produced more biomass per hectare than sources from north of the site. Family differences within sources were significant, as were site-by-family interactions.

  1. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Hechun Cao

    2013-01-01

    Full Text Available A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  2. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production. PMID:24195081

  3. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  4. Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Thakur Upadhyay

    2012-12-01

    Full Text Available Efficient procurement and utilization of woody biomass for bioenergy production requires a good understanding of biomass supply chains. In this paper, a dynamic optimization model has been developed and applied to estimate monthly supply and procurement costs of woody biomass required for the Atikokan Generating Station (AGS in northwestern Ontario, based on its monthly electricity production schedule. The decision variables in the model are monthly harvest levels of two types of woody biomass, forest harvest residues and unutilized biomass, from 19,315 forest depletion cells (each 1 km2 for a one year planning horizon. Sixteen scenarios are tested to examine the sensitivity of the cost minimization model to changing economic and technological parameters. Reduction in moisture content and improvement of conversion efficiency showed relatively higher reductions in monthly and total costs of woody biomass feedstock for the AGS. The results of this study help in understanding and designing decision support systems for optimal biomass supply chains under dynamic operational frameworks.

  5. Production of biomass by Spirulina at different groundwater type. Case of Ouargla-Southeast Algeria

    Science.gov (United States)

    Saggaï, Ali; Dadamoussa, Belkheir; Djaghoubi, Afaf; Bissati, Samia

    2016-07-01

    In this paper, Spirulina platensis was cultivated to estimate the biomass production with different groundwater type in Ouargla. Growth experiments were undertaken in flasks under shelter in outdoor condition. For this, the temperature, pH and salinity value was recorded between two days of growth. Biomass concentration in the culture media was calculated by measuring the DO625. The combination of the Mioplocen water with the nutriments gave the highest values of biomass concentration with avenge of 1.78 ±0.91g/l. All the three-type water supported the growth of Spirulina that appeared as good as a culture media.

  6. Biomass production and nutritional value of Artemia sp. (Anostraca: Artemiidae) in Campeche, México.

    Science.gov (United States)

    Maldonado-Montiel, Teresita D N J; Rodríguez-Canché, Leticia G

    2005-01-01

    Biomass of the crustacean Artemia sp. has multiple uses. The biochemical composition and biomass production of Artemia grown from cysts produced by a native population from Real de Salinas were evaluated under laboratory conditions. Nauplii (instar I) were stocked at density of 10 nauplii/ml in 1.5 l tanks, fed with rice bran from day 2 to day 6, and with the microalgae Tetraselmis suecica from day 7 to day 15. At the end of the trial (day 15) the average length was 5.34 mm, biomass production was 15.72 g/l (wet weight), and survival was 79%. The proximal analysis and biochemical composition of Artemia biomass indicated that its nutrient percentages are closely similar to Artemia from other regions, making this species a suitable food for cultured fish and crustacean.

  7. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  8. Effects of nurse trees, spacing, and tree species on biomass production in mixed forest plantations

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Meilby, Henrik

    2016-01-01

    Growing concern about increasing concentrations of greenhouse gases in the atmosphere, and resulting global climate change, has spurred a growing demand for renewable energy. In this study, we hypothesized that a nurse tree crop may provide additional early yields of biomass for fuel, while...... observed among the different sites (P growing seasons. Compared to pure beech stands, mixtures with beech and Japanese larch on average produced 4.4 t ha−1 yr−1 more biomass. The additional biomass production was similar to what was obtained in stands...... in the longterm leading to deciduous stands that are believed to better meet the demands for other ecosystem services. Ten different species combinations were planted, with two different stocking densities, at three different sites in Denmark. Significant differences, with regard to biomass production, were...

  9. Influence of plant community composition on biomass production in planted grasslands.

    Science.gov (United States)

    Henschell, Max A; Webster, Christopher R; Flaspohler, David J; Fortin, Chad R

    2015-01-01

    United States energy policy mandates increased use of renewable fuels. Restoring grasslands could contribute to a portion of this requirement through biomass harvest for bioenergy use. We investigated which plant community characteristics are associated with differences in biomass yield from a range of realistic native prairie plantings (n = 11; i.e., conservation planting, restoration, and wildlife cover). Our primary goal was to understand whether patterns in plant community composition and the Floristic Quality Index (FQI) were related to productivity as evidenced by dormant season biomass yield. FQI is an objective measure of how closely a plant community represents that of a pre-European settlement community. Our research was conducted in planted fields of native tallgrass prairie species, and provided a gradient in floristic quality index, species richness, species diversity, and species evenness in south-central Wisconsin during 2008 and 2009. We used a network of 15 randomly located 1 m2 plots within each field to characterize the plant community and estimate biomass yield by clipping the plots at the end of each growing season. While plant community composition and diversity varied significantly by planting type, biomass yield did not vary significantly among planting types (ANOVA; P >0.05). Biomass yield was positively correlated with plant community evenness, richness, C4 grass cover, and floristic quality index, but negatively correlated with plant species diversity in our multi-season multiple linear mixed effects models. Concordantly, plots with biomass yield in the lowest quartile (biomass yield biomass yield > 5800 kh/ha). Our results suggest that promoting the establishment of fields with high species evenness and floristic quality may increase biomass yield, while simultaneously supporting biodiversity.

  10. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Hawkes; J. E. O' Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  11. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Hawkes; J. E. O' Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  12. Additives initiate selective production of chemicals from biomass pyrolysis.

    Science.gov (United States)

    Leng, Shuai; Wang, Xinde; Wang, Lei; Qiu, Huizhe; Zhuang, Guilin; Zhong, Xing; Wang, Jianguo; Ma, Fengyun; Liu, Jingmei; Wang, Qiang

    2014-03-01

    To improve chemicals selectivity under low temperature, a new method that involves the injection of additives into biomass pyrolysis is introduced. This method allows biomass pyrolysis to achieve high selectivity to chemicals under low temperature (300°C), while nothing was obtained in typical pyrolysis under 300°C. However, by using the new method, the first liquid drop emerged at the interval between 140°C and 240°C. Adding methanol to mushroom scrap pyrolysis obtained high selectivity to acetic acid (98.33%), while adding ethyl acetate gained selectivity to methanol (65.77%) in bagasse pyrolysis and to acetone (72.51%) in corncob pyrolysis. Apart from basic chemicals, one high value-added chemical (2,3-dihydrobenzofuran) was also detected, which obtained the highest selectivity (10.33%) in corncob pyrolysis through the addition of ethyl acetate. Comparison of HZSM-5 and CaCO3 catalysis showed that benzene emerged in the liquid because of the larger degree of cracking and hydrodeoxygenation over HZSM-5.

  13. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  14. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  15. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production.

    Science.gov (United States)

    Yazdani, Parviz; Zamani, Akram; Karimi, Keikhosro; Taherzadeh, Mohammad J

    2015-01-01

    Nizimuddinia zanardini macroalgae, harvested from Persian Gulf, was chemically characterized and employed for the production of ethanol, seaweed extract, alginic acid, and biogas. In order to improve the products yields, the biomass was pretreated with dilute sulfuric acid and hot water. The pretreated and untreated biomasses were subjected to enzymatic hydrolysis by cellulase (15FPU/g) and β-glucosidase (30IU/g). Hydrolysis yield of glucan was 29.8, 82.5, and 72.7g/kg for the untreated, hot-water pretreated, and acid pretreated biomass, respectively. Anaerobic fermentation of hydrolysates by Saccharomycescerevisiae resulted in the maximum ethanol yield of 34.6g/kg of the dried biomass. A seaweed extract containing mannitol and a solid residue containing alginic acid were recovered as the main byproducts of the ethanol production. On the other hand, the biogas yield from the biomass was increased from 170 to 200m(3) per ton of dried algae biomass by hot water pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW{sub th}) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW{sub th}) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are

  17. Characterization of residual biomass from the Arequipa region for the production of biofuels

    Directory of Open Access Journals (Sweden)

    María Laura Stronguiló Leturia

    2015-12-01

    Full Text Available The aim of this work is to select residual biomass from the Arequipa Region for the production of biofuels (biodiesel, bioethanol and biogas. In each case, the initial point is a matrix based on products with residual biomass available in the region, from the agricultural and livestock sectors, information that was obtained from the regional Management of Agriculture web site. Specific factors of the resudue that will be used as raw material for each biofuel production would be considered for the selection process. For the production of biodiesel it is necessary to start from the oil extracted from oilseeds. Regarding obtaining bioethanol, it requires that the residual biomass has high percent of cellulose. With regard to the generation of biogas, we will use animal droppings. Finally, the raw materials selected are: squash and avocado seeds for biodiesel, rice chaff and deseeded corncob for bioethanol and cow and sheep droppings for biogas

  18. Briquetting and carbonization of biomass products for the sustainable productions of activated carbons

    Science.gov (United States)

    Khorasgani, Nasrin B.; Karimibavani, Bahareh; Alamir, Mohammed; Alzahrani, Naif; McClain, Amy P.; Asmatulu, Ramazan

    2017-04-01

    One of the most environmental concerns is the climate change because of the greenhouse gasses, such as CO2, N2O, CH4, and fluorinated gases. The big majority of CO2 is coming from burning of fossil fuels to generate steam, heat and power. In order to address some of the major environmental concerns of fossil fuels, a number of different alternatives for renewable energy sources have been considered, including sunlight, wind, rain, tides and geothermal heat and biomass. In the present study, two different biomass products (three leaves and grasses) were collected from the local sources, cleaned, chopped, and mixed with corn starch as a binder prior to the briquetting process at different external loads in a metallic mold. A number of tests, including drop, ignition and mechanical compression were conducted on the prepared briquettes before and after stabilizations and carbonization processes at different conditions. The test results indicated that briquetting pressure and carbonizations are the primary factors to produce stable and durable briquettes for various industrial applications. Undergraduate students have been involved in every step of the project and observed all the details of the process during the laboratory studies, as well as data collection, analysis and presentation. This study will be useful for the future trainings of the undergraduate engineering students on the renewable energy and related technologies.

  19. Energy biomass tree seedling production study. Fuels from woody biomass. Progress report, September 1978-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Foote, K.R.

    1980-03-01

    The research to date has centered around the establishment of baseline growing conditions for a number of species of tree seedlings, primarily deciduous hardwoods. As these baseline conditions were established for each specie, the shoot and root environments were manipulated in an attempt to establish techniques to increase seedling growth and reduce production times. Seedlings were outplanted in an attempt to establish baseline survival rates for seedlings grown in totally controlled environments. Studies to determine the optimum container for tree seedling production have been run and will continue as other containers are identified and made available. The most significant of the research results has been in the maximization of seedling growth. Seedling production times have been decreased in some species by as much as 50% under the baseline production times. Controlled environment production techniques provide for plant densities as high as 144 seedlings per square foot of growing space. Investigations of growing media indicate a significant species specific responses. Preliminary results of outplanting indicate survival rates as high as 90% plus.

  20. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  1. Woody biomass production lags stem-girth increase by over one month in coniferous forests.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Frank, David; Fonti, Patrick; Mäkinen, Harri; Prislan, Peter; Rossi, Sergio; Del Castillo, Edurne Martinez; Campelo, Filipe; Vavrčík, Hanuš; Camarero, Jesus Julio; Bryukhanova, Marina V; Jyske, Tuula; Gričar, Jožica; Gryc, Vladimír; De Luis, Martin; Vieira, Joana; Čufar, Katarina; Kirdyanov, Alexander V; Oberhuber, Walter; Treml, Vaclav; Huang, Jian-Guo; Li, Xiaoxia; Swidrak, Irene; Deslauriers, Annie; Liang, Eryuan; Nöjd, Pekka; Gruber, Andreas; Nabais, Cristina; Morin, Hubert; Krause, Cornelia; King, Gregory; Fournier, Meriem

    2015-10-26

    Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

  2. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  3. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    Science.gov (United States)

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use.

  4. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  5. Fresh pasta production enriched with Spirulina platensis biomass

    Directory of Open Access Journals (Sweden)

    Ailton Cesar Lemes

    2012-10-01

    Full Text Available The aim of this work was to study the enrichment of Spirulina platensis in wheat flour to prepare fresh pasta to evaluate the green color and nutritional enrichment in addition to functional properties due to the presence of the bioactive compounds in the cyanobacterium. The pastas were evaluated for the centesimal composition, microbiological contamination, sensorial acceptance and technological characteristics such as cooking time, water absorption, volume displacement and loss of solids. The superior protein contents and the satisfactory technological and sensorial attributes compared with the control with no cyanobacterium showed the usefulness of incorporating S. platensis biomass in the fresh pastas. The microbiological quality was in compliance with the legislation in force. The sensorial quality was considered satisfactory (“liked very much” and purchase intention high (“probably would buy”.

  6. Formic acid production from carbohydrates biomass by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J; Kishita, A; Tohji, K; Enomoto, H [Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Jin, F, E-mail: yun@bucky1.kankyo.tohoku.ac.j [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200091 (China)

    2010-03-01

    The formation of formic acid or formate salts by hydrothermal oxidation of model biomass materials (glucose, starch and cellulose) was investigated. All experiments were conducted in a batch reactor, made of SUS 316 tubing, providing an internal volume of 5.7 cm{sup 3}. A 30 wt% hydrogen peroxide aqueous solution was used as an oxidant. The experiments were carried out with temperature of 250{sup 0}C, reaction time varying from 0.5 min to 5 min, H{sub 2}O{sub 2} supply of 240%, and alkaline concentration varying from 0 to 1.25 M. Similar to glucose, in the cases of the oxidation of hydrothermal starch and cellulose, the addition of alkaline can also improve the yield of formic acid. And the yield were glucose>starch> cellulose in cases of with or without of alkaline addition.

  7. Bio-oil production from biomass via supercritical fluid extraction

    Science.gov (United States)

    Durak, Halil

    2016-04-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  8. Environmental assessment of energy production from waste and biomass

    DEFF Research Database (Denmark)

    Tonini, Davide

    Optimal utilization of biomass and waste for energy purposes offers great potentials for reducing fossil fuel dependency and resource consumption. The common understanding is that bioenergy decreases greenhouse gas (GHG) emissions as the carbon released during energy conversion has previously been...... a consistent framework for the environmental assessment of innovative bioenergy and waste-to-energy systems including the integration of LCA with other tools (mentioned earlier). The focus was on the following aspects: - Evaluation of potential future energy scenarios for Denmark. This was doneby integrating...... the results of energy system analysis into life cycle assessment scenarios. - Identification of the criticalities of bioenergy systems, particularly in relation to land use changes. - Identification of potentials and criticalities associated with innovative waste refinery technologies. This was done...

  9. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    Science.gov (United States)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  10. Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground.

    Science.gov (United States)

    Cho, Dong-Wan; Cho, Seong-Heon; Song, Hocheol; Kwon, Eilhann E

    2015-01-01

    This work mainly presents the influence of CO2 as a reaction medium in the thermo-chemical process (pyrolysis) of waste biomass. Our experimental work mechanistically validated two key roles of CO2 in pyrolysis of biomass. For example, CO2 expedited the thermal cracking of volatile organic compounds (VOCs) evolved from the thermal degradation of spent coffee ground (SCG) and reacted with VOCs. This enhanced thermal cracking behavior and reaction triggered by CO2 directly led to the enhanced generation of CO (∼ 3000%) in the presence of CO2. As a result, this identified influence of CO2 also directly led to the substantial decrease (∼ 40-60%) of the condensable hydrocarbons (tar). Finally, the morphologic change of biochar was distinctive in the presence of CO2. Therefore, a series of the adsorption experiments with dye were conducted to preliminary explore the physico-chemical properties of biochar induced by CO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor

    NARCIS (Netherlands)

    Tuantet, K.; Temmink, B.G.; Zeeman, G.; Janssen, M.G.J.; Wijffels, R.H.; Buisman, C.J.N.

    2014-01-01

    Due to the high nitrogen and phosphorus content, source-separated urine can serve as a major nutrient source for microalgae production. The aim of this study was to evaluate the nutrient removal rate and the biomass production rate of Chlorella sorokiniana being grown continuously in urine employing

  12. Challenges and perspectives for catalysis in production of diesel from biomass

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Søndergaard, Helle; Fehrmann, Rasmus

    2011-01-01

    The production of biofuels is expected to increase in the future due to environmental concerns, accelerating oil prices and the desire to achieve independence from mineral oil sources. Of the proposed methods for diesel production from biomass, the esterification and transesterification of plant...

  13. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Science.gov (United States)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  14. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    Biorefinery has the potential of displacing fossil fuels and oil-refinery based products. Within the biorefinery a palette of marketable commodities can be produced from biomass, including food, feed, biochemicals and biofuels. Which bioproducts are produced is largely dependent on the chemical c...... and fertilizer, thereby diversifying the biorefinery product portfolio....

  15. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor

    NARCIS (Netherlands)

    Tuantet, K.; Temmink, B.G.; Zeeman, G.; Janssen, M.G.J.; Wijffels, R.H.; Buisman, C.J.N.

    2014-01-01

    Due to the high nitrogen and phosphorus content, source-separated urine can serve as a major nutrient source for microalgae production. The aim of this study was to evaluate the nutrient removal rate and the biomass production rate of Chlorella sorokiniana being grown continuously in urine employing

  16. Petrochemicals from oil, natural gas, coal and biomass: production costs in 2030–2050

    NARCIS (Netherlands)

    Ren, T.; Daniëls, B.; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2009-01-01

    Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in

  17. Petrochemicals from oil, natural gas, coal and biomass: production costs in 2030–2050

    NARCIS (Netherlands)

    Ren, T.; Daniëls, B.; Patel, M.K.; Blok, K.

    2009-01-01

    Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in 2030–20

  18. Tree Species Composition, Diversity and Above Ground Biomass of Two Forest Types at Redang Island, Peninsula Malaysia

    Directory of Open Access Journals (Sweden)

    Mahmud KHAIRIL

    2013-02-01

    Full Text Available A study was conducted to determine the tree species composition, diversity and above ground biomass at Redang Island, Terengganu. Two plots of 0.1 ha were established at the inland forest and coastal forest of the island. As the result, a total of 387 trees ≥ 5 diameters at breast height (DBH were recorded. The coastal forest recorded 167 individuals representing 48 species from 37 genera and 26 families while the inland forest had 220 individuals representing 50 species from 43 genera and 25 families. Shorea glauca (Dipterocarpaceae was the most important species at the coastal forest with a Species Importance Value Index (SIVi of 10.5 % while Dipterocarpus costulatus (Dipterocarpaceae was the most important species at the inland forest with 13.8 %. Dipterocarpaceae was the most important family in both forest plots with FIVi at 20.4 % in the coastal and 21.5 % in the inland forest. The Shannon-Weiner Diversity Index (H’ was considered high in both forest plots with 3.4 (H’max = 3.9 at the coastal forest and 3.5 (H’max = 4.0 at the inland forest. Sorenson’s Community Similarity Coefficient (CCs showed that tree species communities between the two forest plots had moderate similarity with CC = 0.5. The Shannon Evenness Index (J’ in the two forest plots was 0.89. The total above ground biomass at the coastal forest was 491 t/ha and at the inland forest it was 408 t/ha. From all the species recorded in this study, 11 species were listed as threatened species by IUCN Red Data Book, of which four were listed as endangered and critically endangered, six were listed as lower risk and one species was listed as vulnerable.

  19. Decomposition of ground biomass of secondary forest and yield of annual crops in no tillage

    Directory of Open Access Journals (Sweden)

    Déborah Verçoza da Silva

    2015-12-01

    Full Text Available ABSTRACT The objective of this work was to evaluate the dynamics of decomposition process of chopped secondary forest system, previously enriched with legumes Inga velutina Willd. and Stryphnodendron pulcherrimum (Willd. Hochr. and the contribution of this process to the nutrient input to the cultivation of corn and bean under no-tillage. The experimental design was a randomized block, split plot with four replications. The plots were two species (I. velutina and S. pulcherrimum and the subplots were seven times of evaluation (0, 7, 28, 63, 189, 252, 294 days after experiment installation. There was no difference (p ≥ 0.05 between the secondary forest systems enriched and no interaction with times for biomass waste, decomposition constant and half-life time. The waste of S. pulcherrimum trees had higher (p 0.05 yield in both areas, regardless of the waste origin.

  20. Utilisation of biomass gasification by-products for onsite energy production.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency. © The Author(s) 2016.

  1. Biomass performance : monitoring and control in bio-pharmaceutical production

    NARCIS (Netherlands)

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this

  2. Biomass Performance : Monitoring and Control in Pharmaceutical Production

    NARCIS (Netherlands)

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this thesis p

  3. Yeast biomass production: a new approach in glucose-limited feeding strategy

    Directory of Open Access Journals (Sweden)

    Érika Durão Vieira

    2013-01-01

    Full Text Available The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h-1 in contrast to the predicted value of 0.180 h-1 in the second stage simulation.

  4. Biomass production and carbon sequestration potential in poplar plantations with different management patterns.

    Science.gov (United States)

    Fang, S; Xue, J; Tang, L

    2007-11-01

    Biomass production and carbon storage in short-rotation poplar plantations over 10 years were evaluated at the Hanyuan Forestry Farm, Baoying County, China. Experimental treatments applied in a split-plot design included four planting densities (1111, 833, 625 and 500 stems ha(-1)) and three poplar clones (NL-80351, I-69 and I-72). Based on the model of total biomass production developed, total plantation biomass production was significantly different in the plantations. The ranking of the plantation biomass production by planting density was 1111>833 more more than 625>500 stems ha(-1), and by components was stem>root>or=branch>leaf for all plantations. At 10 years, the highest total biomass in the plantation of 1111 stems ha(-1) reached about 146 t ha(-1), which was 5.3%, 11.6% and 24.2% higher than the plantations of 833, 625 and 500 stems ha(-1), respectively. The annual increment of biomass production over 10 years differed significantly among initial planting densities and stand ages (pplantation carbon storage by planting density was similar to that of total biomass production. At age 10, the highest total plantation carbon storage in the plantation of 1111 stems ha(-1) reached about 72.0 t ha(-1), which was 5.4%, 11.9% and 24.8% higher than in the plantations of 833, 625 and 500 stems ha(-1), respectively. The annual carbon storage increment over 10 years differed significantly among initial planting densities and stand ages (pplantations. The results suggest that biomass production and carbon storage potential were highest for planting densities of 1111 and 833 stems ha(-1) grown over 5- and 6-year cutting cycles, respectively. If 3- or 4-year cutting cycles are used, the planting density should be higher than 1111 stems ha(-1) (e.g., 1667 or 2500 stems ha(-1)). Based on the mean annual carbon storage for the plantation of 625 stems ha(-1), as an estimation, the mean carbon storage in the biomass of poplar plantations (excluding leaves) amounts to 3.75x10

  5. Challenges for the production of bioethanol from biomass using recombinant yeasts.

    Science.gov (United States)

    Kricka, William; Fitzpatrick, James; Bond, Ursula

    2015-01-01

    Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels.

  6. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance.

    Science.gov (United States)

    Zhu, J Y; Pan, Xuejun; Zalesny, Ronald S

    2010-07-01

    This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the total sugar recovery divided by total energy consumption for pretreatment, should be used to evaluate the performance of a pretreatment process. A post-chemical pretreatment wood size-reduction approach was proposed to significantly reduce energy consumption. The review also emphasizes using a low liquid-to-wood ratio (L/W) to reduce thermal energy consumption for any thermochemical/physical pretreatment in addition to reducing pretreatment temperature.

  7. Pretreatment of woody biomass for biofuel production. Energy efficiency, technologies, and recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.Y. [USDA Forest Service, Madison, WI (United States). Forest Products Lab.; Wisconsin Univ., Madison, WI (United States). Dept. of Biological Systems Engineering; Pan, Xuejun [Wisconsin Univ., Madison, WI (United States). Dept. of Biological Systems Engineering; Zalesny, Ronald S. Jr. [USDA Forest Service, Rhinelander, WI (United States). Northern Research Station

    2010-07-15

    This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the total sugar recovery divided by total energy consumption for pretreatment, should be used to evaluate the performance of a pretreatment process. A post-chemical pretreatment wood size-reduction approach was proposed to significantly reduce energy consumption. The review also emphasizes using a low liquid-to-wood ratio (L/W) to reduce thermal energy consumption for any thermochemical/physical pretreatment in addition to reducing pretreatment temperature. (orig.)

  8. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  9. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    Science.gov (United States)

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production.

  10. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  11. Biomass Accumulation and Net Primary Production during the Early Stage of Secondary Succession after a Severe Forest Disturbance in Northern Japan

    Directory of Open Access Journals (Sweden)

    Tomotsugu Yazaki

    2016-11-01

    Full Text Available Quantitative evaluations of biomass accumulation after disturbances in forests are crucially important for elucidating and predicting forest carbon dynamics in order to understand the carbon sink/source activities. During early secondary succession, understory vegetation often affects sapling growth. However, reports on biomass recovery in naturally-regenerating sites are limited in Japan. Therefore, we traced annual or biennial changes in plant species, biomass, and net primary production (NPP in a naturally regenerating site in Japan after windthrow and salvage-logging plantation for nine years. The catastrophic disturbance depleted the aboveground biomass (AGB from 90.6 to 2.7 Mg·ha−1, changing understory dominant species from Dryopteris spp. to Rubus idaeus. The mean understory AGB recovered to 4.7 Mg·ha−1 in seven years with the dominant species changing to invasive Solidago gigantea. Subsequently, patches of deciduous trees (mainly Betula spp. recovered whereas the understory AGB decreased. Mean understory NPP increased to 272 g·C·m−2·year−1 within seven years after the disturbance, but decreased thereafter to 189 g·C·m−2·year−1. Total NPP stagnated despite increasing overstory NPP. The biomass accumulation is similar to that of naturally regenerating sites without increase of trees in boreal and temperate regions. Dense ground vegetation and low water and nutrient availability of the soil in the study site restrict the recovery of canopy-forming trees and eventually influence the biomass accumulation.

  12. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  13. Optimal Conditions for Biomass and Recombinant Glycerol Kinase Production Using the Yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Sandro R. Valentini

    2011-01-01

    Full Text Available The extracellular glycerol kinase gene from Saccharomyces cerevisiae (GUT1 was cloned into the expression vector pPICZα A and integrated into the genome of the methylotrophic yeast Pichia pastoris X-33. The presence of the GUT1 insert was confirmed by PCR analysis. Four clones were selected and the functionality of the recombinant enzyme was assayed. Among the tested clones, one exhibited glycerol kinase activity of 0.32 U/mL, with specific activity of 0.025 U/mg of protein. A medium optimized for maximum biomass production by recombinant Pichia pastoris in shaker cultures was initially explored, using 2.31 % (by volume glycerol as the carbon source. Optimization was carried out by response surface methodology (RSM. In preliminary experiments, following a Plackett-Burman design, glycerol volume fraction (φ(Gly and growth time (t were selected as the most important factors in biomass production. Therefore, subsequent experiments, carried out to optimize biomass production, followed a central composite rotatable design as a function of φ(Gly and time. Glycerol volume fraction proved to have a significant positive linear effect on biomass production. Also, time was a significant factor (at linear positive and quadratic levels in biomass production. Experimental data were well fitted by a convex surface representing a second order polynomial model, in which biomass is a function of both factors (R²=0.946. Yield and specific activity of glycerol kinase were mainly affected by the additions of glycerol and methanol to the medium. The optimized medium composition for enzyme production was: 1 % yeast extract, 1 % peptone, 100 mM potassium phosphate buffer, pH=6.0, 1.34 % yeast nitrogen base (YNB, 4·10^–5 % biotin, 1 % methanol and 1 % glycerol, reaching 0.89 U/mL of glycerol kinase activity and 14.55 g/L of total protein in the medium after 48 h of growth.

  14. Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

    Directory of Open Access Journals (Sweden)

    Minerva Singh

    2015-04-01

    Full Text Available This study develops a modelling framework for utilizing very high-resolution (VHR aerial imagery for monitoring stocks of above-ground biomass (AGB in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM, Gabor wavelets and Fourier-based textural ordination (FOTO were used in conjunction with two different machine learning (ML-based regression techniques (support vector regression (SVR and random forest (RF regression. These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i horizontal canopy variables (i.e., canopy cover and texture variables plus vertical canopy height; (ii horizontal variables only; and (iii texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.

  15. Oligosaccharides and monomeric carbohydrates production from olive tree pruning biomass.

    Science.gov (United States)

    Mateo, Soledad; Puentes, Juan G; Sánchez, Sebastián; Moya, Alberto J

    2013-04-02

    Using the severity factor, it has been possible to study cellulose and hemicellulose fractional conversion, sugar yields change and oligosaccharides variation through olive tree pruning biomass pretreatments with acid or liquid hot water under pressure. The temperatures tested were in the range 180-230°C, operation time varying between 0 and 30min and acid concentration used did not exceed 0.05M. Complete hemicellulose solubilization in autohydrolysis was achieved using severity factors (logR0) close to 3.9 (most sugars are like oligomers), while if sulfuric acid 0.025M is employed, this parameter could be smaller (≥3.4). With these treatments, we have obtained cellulose conversions between 30 and 42% from liquid hot water experiments, 40-51% with sulfuric acid 0.025M and 42-57% when the acid concentration was 0.05M. The best results in terms of maximum yield in total sugars, d-glucose and d-xylose, with a low amount of acetic acid and hydroxymethylfurfural, was obtained at 200°C, 0min (what means that there is no time of temperature maintenance, only heating and cooling) and H2SO4 0.025M.

  16. Hydrogen production from algal biomass via steam gasification.

    Science.gov (United States)

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata.

  17. Influence of lignin on biochemical methane potential of biomass for biogas production

    DEFF Research Database (Denmark)

    Triolo, J M; Sommer, S G; Møller, H B

    2011-01-01

    Biochemical methane potential (BMP) of biomass is of great importance in assessing biodegradability as well as predicting biogas yield for biogas production. Since the current BMP determination methods are costly and time-consuming, innovative techniques for predicting BMP are needed. The objective...... of this study was to examine the influence of fibrous fractions of biomass on BMP to develop an economical and easy-to-use predicting model of BMP, and hence the biodegradability of organic materials for biogas production. The model was developed either for energy crops or for animal manures, or as a combined...

  18. Effect of caffeine concentration on biomass production, caffeine degradation, and morphology of Aspergillus tamarii

    OpenAIRE

    Gutierrez-Sanchez, G.; Roussos, Sevastianos; Augur, Christopher

    2013-01-01

    The aim of the present study was to evaluate the effect of the initial caffeine concentration (1-8 g/L) on growth and caffeine consumption by Aspergillus tamarii as well as pellet morphology, in submerged fermentation. Caffeine was used as sole nitrogen source. At 1 g/L of initial caffeine concentration, caffeine degradation was not affected, resulting in a production of 8.7 g/L of biomass. The highest biomass production (12.4-14.8 g/L) was observed within a range of 2 to 4 g/L of initial caf...

  19. Synergies between bio- and oil refineries for the production of fuels from biomass.

    Science.gov (United States)

    Huber, George W; Corma, Avelino

    2007-01-01

    As petroleum prices continue to increase, it is likely that biofuels will play an ever-increasing role in our energy future. The processing of biomass-derived feedstocks (including cellulosic, starch- and sugar-derived biomass, and vegetable fats) by catalytic cracking and hydrotreating is a promising alternative for the future to produce biofuels, and the existing infrastructure of petroleum refineries is well-suited for the production of biofuels, allowing us to rapidly transition to a more sustainable economy without large capital investments for new reaction equipment. This Review discusses the chemistry, catalysts, and challenges involved in the production of biofuels.

  20. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... is determined by substrates and microbial communities available as well as the operating conditions applied. In this review, we evaluate the recent biotechnological approaches employed in ethanol and ABE fermentation. Practical applicability of different technologies is discussed taking into account...... the microbiology and biochemistry of the processes....

  1. Development of Value-Added Products from Residual Algae to Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Craig [Sapphire Energy, San Diego, CA (United States)

    2016-02-29

    DOE Award # EE0000393 was awarded to fund research into the development of beneficial uses of surplus algal biomass and the byproducts of biofuel production. At the time of award, Sapphire’s intended fuel production pathway was a fairly conventional extraction of lipids from biomass, resulting in a defatted residue which could be processed using anaerobic digestion. Over the lifetime of the award, we conducted extensive development work and arrived at the conclusion that anaerobic digestion presented significant technical challenges for this high-nitrogen, high-ash, and low carbon material. Over the same timeframe, Sapphire’s fuel production efforts came to focus on hydrothermal liquefaction. As a result of this technology focus, the residue from fuel production became unsuitable for either anaerobic digestion (or animal feed uses). Finally, we came to appreciate the economic opportunity that the defatted biomass could represent in the animal feed space, as well as understanding the impact of seasonal production on a biofuels extraction plant, and sought to develop uses for surplus biomass produced in excess of the fuel production unit’s capacity.

  2. Characterization of biofilm-forming cyanobacteria for biomass and lipid production.

    Science.gov (United States)

    Bruno, L; Di Pippo, F; Antonaroli, S; Gismondi, A; Valentini, C; Albertano, P

    2012-11-01

    This work reports on one of the first attempts to use biofilm-forming cyanobacteria for biomass and lipid production. Three isolates of filamentous cyanobacteria were obtained from biofilms at different Italian sites and characterized by a polyphasic approach, involving microscopic observations, ecology and genetic diversity (studying the 16S rRNA gene). The isolates were grown in batch systems and in a semi-continuous flow incubator, specifically designed for biofilms development. Culture system affected biomass and lipid production, but did not influence the fatty acid profile. The composition of fatty acids was mainly palmitic acid (>50%) and less amounts of other saturated and monounsaturated fatty acids. Only two isolates contained two polyunsaturated fatty acids. Data obtained from the flow-lane incubator system would support a more economical and sustainable use of the benthic micro-organisms for biomass production. The produced lipids contained fatty acids suitable for a high-quality biodiesel production, showing high proportions of saturated and monounsaturated fatty acids. Data seem promising when taking into account the savings in cost and time derived from easy procedures for biomass harvesting, especially when being able to obtain the co-production of other valuable by-products. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  3. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    Science.gov (United States)

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    Directory of Open Access Journals (Sweden)

    Jos Barlow

    Full Text Available Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001 community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  5. Geographic and habitat origin influence biomass production and storage translocation in the clonal plant Aegopodium podagraria.

    Directory of Open Access Journals (Sweden)

    Tina D'Hertefeldt

    Full Text Available Through physiological integration, clonal plants can support ramets in unfavourable patches, exploit heterogeneously distributed resources and distribute resources that are taken up over large areas. Physiological integration generally increases in adverse conditions, but it is not well known which factors determine the evolution of physiological integration. The aim of this study was to investigate if clonal plants from Southern and Northern populations of the clonal herb Aegopodium podagraria differed in physiological integration in terms of translocation of carbon to the rhizomes, and in biomass production using a reciprocal transplant experiment. Aegopodium podagraria from shaded conditions have been suggested to share more resources than clones from open conditions and therefore, plants from forest and open populations within the Southern and Northern regions were included. The regional growing conditions greatly affected biomass production. Plants grown in North Sweden produced more biomass and allocated more biomass to shoots, while plants grown in South Sweden allocated more biomass to rhizomes. There was a regional origin effect as plants originating from North Sweden produced more biomass in both regions. Within the Northern region, plants from shaded habitats translocated more (14C to the rhizomes, suggesting more storage there than in plants from open habitats. In addition to genetic differentiation in biomass production between Northern and Southern populations, probably as a response to a shorter growing season in the North, there appeared to be genetic differentiation in physiological integration within the Northern region. This shows that both regional and local conditions need to be taken into account in future studies of genetic differentiation of physiological integration in clonal plants.

  6. Geographic and habitat origin influence biomass production and storage translocation in the clonal plant Aegopodium podagraria.

    Science.gov (United States)

    D'Hertefeldt, Tina; Eneström, Johanna M; Pettersson, Lars B

    2014-01-01

    Through physiological integration, clonal plants can support ramets in unfavourable patches, exploit heterogeneously distributed resources and distribute resources that are taken up over large areas. Physiological integration generally increases in adverse conditions, but it is not well known which factors determine the evolution of physiological integration. The aim of this study was to investigate if clonal plants from Southern and Northern populations of the clonal herb Aegopodium podagraria differed in physiological integration in terms of translocation of carbon to the rhizomes, and in biomass production using a reciprocal transplant experiment. Aegopodium podagraria from shaded conditions have been suggested to share more resources than clones from open conditions and therefore, plants from forest and open populations within the Southern and Northern regions were included. The regional growing conditions greatly affected biomass production. Plants grown in North Sweden produced more biomass and allocated more biomass to shoots, while plants grown in South Sweden allocated more biomass to rhizomes. There was a regional origin effect as plants originating from North Sweden produced more biomass in both regions. Within the Northern region, plants from shaded habitats translocated more (14)C to the rhizomes, suggesting more storage there than in plants from open habitats. In addition to genetic differentiation in biomass production between Northern and Southern populations, probably as a response to a shorter growing season in the North, there appeared to be genetic differentiation in physiological integration within the Northern region. This shows that both regional and local conditions need to be taken into account in future studies of genetic differentiation of physiological integration in clonal plants.

  7. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2015-09-01

    Full Text Available The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%, the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.

  8. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production.

    Science.gov (United States)

    Khan, Muhammad Imran; Lee, Moon Geon; Shin, Jin Hyuk; Kim, Jong Deog

    2017-12-01

    Microalgae are considered to be the future promising sources of biofuels and bio products. The algal carbohydrates can be fermented to bioethanol after pretreatment process. Efficient pretreatment of the biomass is one of the major requirements for commercialization of the algal based biofuels. In present study the microalga, M. aeruginsa was used for pretreatment optimization and bioethanol production. Treatment of algal biomass with CaO before acid and/or enzymatic hydrolysis enhanced the degradation of algal cells. Monomeric sugars yield was increased more than twice when biomass was pretreated with CaO. Similarly, an increase was noted in the amount of fermentable sugars when biomass was subjected to invertase saccharification after acid or lysozyme pretreatment. Highest yield of fermentable sugars (16 mM/ml) in the centrifuged algal juice was obtained. 4 Different microorganisms' species were used individually and in combination for converting centrifuged algal juice to bioethanol. Comparatively higher yield of bioethanol (60 mM/ml) was obtained when the fermenter microorganisms were used in combination. The results demonstrated that M. arginase biomass can be efficiently pretreated to get higher yield of fermentable sugars for enhanced yield of bioethanol production.

  9. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.

    Science.gov (United States)

    Gupta, Prabuddha L; Choi, Hee-Jeong; Pawar, Radheshyam R; Jung, Sokhee P; Lee, Seung-Mok

    2016-12-15

    The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil.

  10. Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production.

    Science.gov (United States)

    González-Fernández, C; Sialve, B; Bernet, N; Steyer, J P

    2012-04-01

    Ultrasound at 20Hz was applied at different energy levels (Es) to treat Scenedesmus biomass, and organic matter solubilization, particle size distribution, cell disruption and biochemical methane potential were evaluated. An Es of 35.5 and 47.2MJ/kg resulted in floc deagglomeration but no improvement in methane production compared to untreated biomass. At an Es of 128.9, cell wall disruption was observed together with a 3.1-fold organic matter solubilization and an approximately 2-fold methane production in comparison with untreated biomass. Thermal pretreatment at 80°C caused cell wall disruption and improved anaerobic biodegradability 1.6-fold compared to untreated biomass. Since sonication caused a temperature increase in samples to as high as 85°C, it is likely that thermal effects accounted for much of the observed changes in the biomass. Given that ultrasound treatment at the highest Es studied only increased methane production by 1.2-fold over thermal treatment at 80°C, the higher energy requirement of sonication might not justify the use of this approach over thermal treatment.

  11. Uncertainty analysis for regional-level above-ground biomass estimates based on individual tree biomass model%单木生物量模型估计区域尺度生物量的不确定性

    Institute of Scientific and Technical Information of China (English)

    傅煜; 雷渊才; 曾伟生

    2015-01-01

    采用系统抽样体系江西省固定样地杉木连续观测数据和生物量数据,通过Monte Carlo法反复模拟由单木生物量模型推算区域尺度地上生物量的过程,估计了江西省杉木地上总生物量。基于不同水平建模样本量n及不同决定系数R2的设计,分别研究了单木生物量模型参数变异性及模型残差变异性对区域尺度生物量估计不确定性的影响。研究结果表明:2009年江西省杉木地上生物量估计值为(19.84±1.27) t/hm2,不确定性占生物量估计值约6.41%。生物量估计值和不确定性值达到平稳状态所需的运算时间随建模样本量及决定系数R2的增大而减小;相对于模型参数变异性,残差变异性对不确定性的影响更小。%Above-ground forest biomass at regional-level is typically estimated by adding model predictions of biomass from individual trees in a plot, and subsequently aggregating predictions from plots to large areas. There are multiple sources of uncertainties in model predictions during this aggregated process. These uncertainties always affect the precision of large area biomass estimates, and the effects are generally overlooked; however, failure to account for these uncertainties will cause erroneously optimistic precision estimates. Monte Carlo simulation is an effective method for estimating large-scale biomass and assessing the uncertainty associated with multiple sources of errors and complex models. In this paper, we applied the Monte Carlo approach to simulate regional-level above-ground biomass and to assess uncertainties related to the variability from model residuals and parameters separately. A nonlinear model form was used. Data were obtained from permanent sample plots and biomass observation of Cunninghamia lanceolata in JiangXi Province, China. Overall, 70 individual trees were destructively sampled for biomass estimation from June to September, 2009. Based on the commonly used allometric model

  12. Effect of disturbance on biomass, production and carbon dynamics in moist tropical forest of eastern Nepal

    Directory of Open Access Journals (Sweden)

    Tilak Prasad Gautam

    2016-04-01

    Full Text Available Background: Forest biomass is helpful to assess its productivity and carbon (C sequestration capacity. Several disturbance activities in tropical forests have reduced the biomass and net primary production (NPP leading to climate change. Therefore, an accurate estimation of forest biomass and C cycling in context of disturbances is required for implementing REDD (Reducing Emissions from Deforestation and Forest Degradation policy. Methods: Biomass and NPP of trees and shrubs were estimated by using allometric equations while herbaceous biomass was estimated by harvest method. Fine root biomass was determined from soil monolith. The C stock in vegetation was calculated by multiplying C concentration to dry weight. Results: Total stand biomass (Mg∙ha–1 in undisturbed forest stand (US was 960.4 while in disturbed forest stand (DS it was 449.1. The biomass (Mg∙ha–1 of trees, shrubs and herbs in US was 948.0, 4.4 and 1.4, respectively, while in DS they were 438.4, 6.1 and 1.2, respectively. Total NPP (Mg∙ha–1∙yr–1 was 26.58 (equivalent to 12.26 Mg C∙ha–1∙yr–1 in US and 14.91 (6.88 Mg C∙ha–1∙yr–1 in DS. Total C input into soil through litter plus root turnover was 6.78 and 3.35 Mg∙ha–1∙yr–1 in US and DS, respectively. Conclusions: Several disturbance activities resulted in the significant loss in stand biomass (53 %, NPP (44 %, and C sequestration capacity of tropical forest in eastern Nepal. The net uptake of carbon by the vegetation is far greater than that returned to the soil by the turnover of fine root and litter. Therefore, both stands of present forest act as carbon accumulating systems. Moreover, disturbance reflects higher C emissions which can be reduced by better management. Keywords: Tropical forest, Disturbance, Biomass, Production, Carbon cycling, Nepal

  13. Yield prediction of young black locust (Robinia pseudoacacia L. plantations for woody biomass production using allometric relations

    Directory of Open Access Journals (Sweden)

    Christian Böhm

    2011-11-01

    Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.

  14. Yield prediction of young black locust (Robinia pseudoacacia L. plantations for woody biomass production using allometric relations

    Directory of Open Access Journals (Sweden)

    Christian Böhm

    2013-12-01

    Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.

  15. Yield prediction of young black locust (Robinia pseudoacacia L. plantations for woody biomass production using allometric relations

    Directory of Open Access Journals (Sweden)

    Christian Böhm

    2013-12-01

    Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.

  16. Above- and Below-ground Biomass, Net Ecosystem Carbon Exchange, and Soil Respiration in a Poplar Populus deltoides Bartr.) stand : Changes after 3 years of Growth under Elevated CO2

    Science.gov (United States)

    Barron-Gafford, G. A.; Grieve, K.; Bil, K.; Kudeyarov, V.; Handley, L.; Murthy, R.

    2003-12-01

    Stands of cottonwood (Populus deltoides Bartr.) trees were grown as a coppiced system under ambient (40 Pa), twice ambient (80 Pa), and three times ambient (120 Pa) partial pressure CO2 for the past three years in the Intensively-managed Forest Mesocosm (IFM) of the Biosphere 2 Center. Over three years Net Ecosystem CO2 exchange (NECE) was measured continuously and in the third year, nine whole trees were harvested from each CO2 treatment over the growing season. Both above- and below-ground parameters were measured. Three years of growth under elevated CO2 showed the expected stimulation in foliar biomass (8.7, 11.9, and 13.1 kg for the 40, 80, and 120 Pa treatments, respectively). Rates of NECE also followed an expected increase with elevated atmospheric CO2 concentrations, with maximum CO2 uptake rates reaching 10.5, 15.6, and 19.6 μ moles m-2 s-1 in the 40, 80, and 120 Pa treatments, respectively. However, above ground woody biomass and root biomass were not much stimulated beyond 80 Pa CO2. Wood/foliage and above/below ground biomass ratios reflect this decline. Under conditions of non-limiting nutrients and water, we found consistent increases in the above/below ground biomass ratio and wood to foliage biomass ratios in the 80 compared to the 40 Pa pCO2. Woody biomass production and the above/below ground biomass ratio were lower under the 120 Pa than any other treatment. Although biomass production did not change appreciably between 80 and 120 Pa CO2 treatments, both substrate induced and in-situ soil respiration values are also significantly higher in the 120Pa treatment, though no differences were present prior to CO2 treatments (Murthy et al. 2003). The unique closed-system operation of the IFM allowed for measures of soil CO2 efflux to be measured at both the soil collar and stand scales using a box model that takes into account all inputs and outputs from the stand. In-situ soil respiration rates increased significantly with increased atmospheric CO2

  17. Maximum hydrogen production from genetically modified microalgae biomass

    Science.gov (United States)

    Vargas, Jose; Kava, Vanessa; Ordonez, Juan

    A transient mathematical model for managing microalgae derived H2 production as a source of renewable energy is developed for a well stirred photobioreactor, PBR. The model allows for the determination of microalgae and H2 mass fractions produced by the PBR in time. A Michaelis-Menten expression is proposed for modeling the rate of H2 production, which introduces an expression to calculate the resulting effect on H2 production rate after genetically modifying the microalgae. The indirect biophotolysis process was used. Therefore, an opportunity was found to optimize the aerobic to anaerobic stages time ratio of the cycle for maximum H2 production rate, i.e., the process rhythm. A system thermodynamic optimization is conducted with the model equations to find accurately the optimal system operating rhythm for maximum H2 production rate, and how wild and genetically modified species compare to each other. The maxima found are sharp, showing up to a ~60% variation in hydrogen production rate within 2 days around the optimal rhythm, which highlights the importance of system operation in such condition. Therefore, the model is expected to be useful for design, control and optimization of H2 production. Brazilian National Council of Scientific and Technological Development, CNPq (project 482336/2012-9).

  18. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates.

    Science.gov (United States)

    Obruca, Stanislav; Petrik, Sinisa; Benesova, Pavla; Svoboda, Zdenek; Eremka, Libor; Marova, Ivana

    2014-07-01

    Spent coffee grounds (SCG), an important waste product of the coffee industry, contain approximately 15 wt% of coffee oil. The aim of this work was to investigate the utilization of oil extracted from SCG as a substrate for the production of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16. When compared to other waste/inexpensive oils, the utilization of coffee oil resulted in the highest biomass as well as PHB yields. Since the correlation of PHB yields and the acid value of oil indicated a positive effect of the presence of free fatty acids in oil on PHB production (correlation coefficient R (2) = 0.9058), superior properties of coffee oil can be probably attributed to the high content of free fatty acids which can be simply utilized by the bacteria culture. Employing the fed-batch mode of cultivation, the PHB yields, the PHB content in biomass, the volumetric productivity, and the Y P/S yield coefficient reached 49.4 g/l, 89.1 wt%, 1.33 g/(l h), and 0.82 g per g of oil, respectively. SCG are annually produced worldwide in extensive amounts and are disposed as solid waste. Hence, the utilization of coffee oil extracted from SCG is likely to improve significantly the economic aspects of PHB production. Moreover, since oil extraction decreased the calorific value of SCG by only about 9 % (from 19.61 to 17.86 MJ/kg), residual SCG after oil extraction can be used as fuel to at least partially cover heat and energy demands of fermentation, which should even improve the economic feasibility of the process.

  19. Ground cover rice production system facilitates soil carbon and nitrogen stocks at regional scale

    Directory of Open Access Journals (Sweden)

    M. Liu

    2015-02-01

    Full Text Available Rice production is increasingly challenged by irrigation water scarcity, however covering paddy rice soils with films (ground cover rice production system: GCRPS can significantly reduce water demand as well as overcome temperature limitations at the beginning of the vegetation period resulting in increased grain yields in colder regions of rice production with seasonal water shortages. It has been speculated that the increased soil aeration and temperature under GCRPS may result in losses of soil organic carbon and nitrogen stocks. Here we report on a regional scale experiment, conducted by sampling paired adjacent Paddy and GCRPS fields at 49 representative sites in the Shiyan region, which is typical for many mountainous areas across China. Parameters evaluated included soil C and N stocks, soil physical and chemical properties, potential carbon mineralization rates, fractions of soil organic carbon and stable carbon isotopic composition of plant leaves. Furthermore, root biomass was quantified at maximum tillering stage at one of our paired sites. Against expectations the study showed that: (1 GCRPS significantly increased soil organic C and N stocks 5–20 years following conversion of production systems, (2 there were no differences between GCRPS and Paddy in soil physical and chemical properties for the various soil depths with the exception of soil bulk density, (3 GCRPS had lower mineralization potential for soil organic C compared with Paddy over the incubation period, (4 GCRPS showed lower δ15N in the soils and plant leafs indicating less NH3 volatilization in GCRPS than in Paddy; and (5 GCRPS increased yields and root biomass in all soil layers down to 40 cm depth. Our results suggest that GCRPS is an innovative rice production technique that not only increases yields using less irrigation water, but that it also is environmentally beneficial due to increased soil C and N stocks at regional scale.

  20. PRODUCTION OF ENRICHED BIOMASS BY RED YEASTS OF SPOROBOLOMYCES SP. GROWN ON WASTE SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Emilia Breierova

    2012-02-01

    Full Text Available Carotenoids and ergosterol are industrially significant metabolites probably involved in yeast stress response mechanisms. Thus, controlled physiological and nutrition stress including use of waste substrates can be used for their enhanced production. In this work two red yeast strains of the genus Sporobolomyces (Sporobolomyces roseus, Sporobolomyces shibatanus were studied. To increase the yield of metabolites at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract and vitamin mixtures as well as some waste materials (whey, apple fibre, wheat, crushed pasta were used as nutrient sources. Peroxide and salt stress were applied too, cells were exposed to oxidative stress (2-10 mM H2O2 and osmotic stress (2-10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. In optimal conditions tested strains substantially differed in biomass as well as metabolite production. S.roseus produced about 50 % of biomass produced by S.shibatanus (8 g/L. Oppositely, production of pigments and ergosterol by S.roseus was 3-4 times higher than in S.shibatanus. S.roseus was able to use most of waste substrates, the best production of ergosterol (8.9 mg/g d.w. and beta-carotene (4.33 mg/g d.w. was obtained in medium with crushed pasta hydrolyzed by mixed enzyme from Phanerochaetae chrysosporium. Regardless very high production of carotenes and ergosterol, S.roseus is probably not suitable for industrial use because of relatively low biomass production.

  1. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus

    Energy Technology Data Exchange (ETDEWEB)

    Ntaikou, I.; Gavala, H.N.; Lyberatos, G. [Department of Chemical Engineering, University of Patras, Karatheodori 1 st., 26500 Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras (Greece); Kornaros, M. [Department of Chemical Engineering, University of Patras, Karatheodori 1 st., 26500 Patras (Greece)

    2008-02-15

    In the present work the production of hydrogen from sorghum biomass by pure cultures of the bacterium Ruminococcus albus was investigated. R. albus, an important fibrolytic bacterium of the rumen, can ferment hexoses and pentoses as well as cellulose and hemicelluloses. Therefore, R. albus seems to be very promising for the production of hydrogen from energy crops such as sweet sorghum, with the potential of utilizing not only the free sugars but also the cellulosic/hemicellulosic biomass as well. Batch and continuous stirred tank reactor (CSTR) experiments were carried out using glucose as carbon source in order to investigate the metabolism and calculate the growth kinetics of R. albus. Besides hydrogen, the main metabolic products detected were acetic and formic acids and ethanol. Hydrogen yield ranged from 0.47 to 2.52 mol of hydrogen per mole of glucose in continuous and batch experiments, respectively. Moreover, sorghum water extract containing soluble sugars and the lignocellulosic sorghum biomass before and after water extraction were also tested as potential substrates for hydrogen production using R. albus. The hydrogen productivity of sorghum extract plus that of sorghum residues equaled the hydrogen productivity obtained from the sorghum stalks suggesting that the process could be designed as a single-step process, thus avoiding the separate fermentation of soluble and insoluble carbohydrates as well as the extraction process. Hydrogen productivity has been estimated to be approximately 60 l of hydrogen per kg of wet sorghum biomass, thus suggesting that R. albus is suitable for efficient hydrogen production from sweet sorghum biomass. (author)

  2. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements

    NARCIS (Netherlands)

    Gallaun, H.; Zanchi, G.; Nabuurs, G.J.; Hengeveld, G.M.; Schardt, M.; Verkerk, P.J.

    2010-01-01

    The overall objective of this study was to combine national forest inventory data and remotely sensed data to produce pan-European maps on growing stock and above-ground woody biomass for the two species groups " broadleaves" and " conifers" An automatic up-scaling approach making use of satellite

  3. Bioethanol fuel production from rambutan fruit biomass as reducing ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... Full Length Research Paper. Bioethanol fuel production from ... in waste disposal management and reducing global warming. The aim of the study of ... When burning gasoline, there are some emissions produced like carbon ...

  4. Lutein production from biomass: marigold flowers versus microalgae.

    Science.gov (United States)

    Lin, Jian-Hao; Lee, Duu-Jong; Chang, Jo-Shu

    2015-05-01

    Microalgae have faster growth rates and more free lutein than marigold flowers, the current source of lutein. However, no commercial lutein production uses microalgae. This review compares lutein content, cultivation, harvesting, cell disruption, and extraction stages of lutein production using marigold flowers and those using microalgae as feedstock. The lutein production rate of microalgae is 3-6 times higher than that of marigold flowers. To produce 1 kg of pure lutein, marigolds need more land and water, but require less nutrients (N, P, K) and less energy than microalgae. Since lutein is tightly bound in microalgae and microalgae are small, cell disruption and subsequent extraction stages consume a considerable amount of energy. Research and development of affordable lutein production from microalgae are discussed.

  5. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    Science.gov (United States)

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain.

  6. Production of Leuconostoc oenos Biomass under pH Control †

    Science.gov (United States)

    Champagne, Claude P.; Gardner, Nancy; Doyon, Gilles

    1989-01-01

    Leuconostoc oenos was grown on apple juice-based media. The effect of pH control on metabolism and biomass production was studied. Without pH control, L. oenos acidified the apple juice media to approximately pH 3.6. More than 75% of the malic acid was used under these conditions, but less than half of the carbohydrates was assimilated. Under pH control, biomass yields increased by 60%; most of the malic acid was used, but high levels of unfermented carbohydrates remained. The addition of tomato juice, vitamins, nucleotides, Mn+, and malic acid did not permit further increases in the cell counts; however, malic acid did induce further acidification. Growth without pH control favored a more homofermentative metabolism. Biomass production was higher in filter-sterilized apple juice media compared with that in the autoclaved media. PMID:16348025

  7. Influence of starch on microalgal biomass recovery, settleability and biogas production.

    Science.gov (United States)

    Gutiérrez, Raquel; Ferrer, Ivet; García, Joan; Uggetti, Enrica

    2015-06-01

    In the context of wastewater treatment with microalgae cultures, coagulation-flocculation followed by sedimentation is one of the suitable options for microalgae harvesting. This process is enabled by the addition of chemicals (e.g. iron). However, in a biorefinery perspective, it is important to avoid possible contamination of downstream products caused by chemicals addition. The aim of this study was to evaluate the effect of potato starch as flocculant for microalgal biomass coagulation-flocculation and sedimentation. The optimal flocculant dose (25mg/L) was determined with jar tests. Such a concentration led to more than 95% biomass recovery (turbidity70% the percentage of particles with settling velocities >6.5m/h. Finally, biochemical methane potential tests showed that starch biodegradation increased the biogas production from harvested biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool.

    Science.gov (United States)

    Kimura, Hiroyuki; Mori, Kousuke; Nashimoto, Hiroaki; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-02-01

    Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.

  9. Comparison of biomass productivity and nitrogen fixing potential of Azolla SPP

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Singh, P.K. [Indian Agricultural Research Inst., New Delhi (India)

    2003-03-01

    Study was conducted on six different Azolla species, available in the germplasm collection of NCCUBGA, IARI, New Delhi namely A. filiculoides, A. mexicana, A. microphylla, A. pinnata, A. rubra and A. caroliniana in a polyhouse to assess their growth potential by determining their maximal biomass productivity, doubling time and relative growth rates. Their nitrogen fixing potential was assessed by acetylene reduction assay. Among them Azolla microphylla gave highest biomass production and relative growth rate followed by Azolla caroliniana. Both these had high nitrogenase activity also. Peak nitrogenase activity of these strains was found on 14th day of growth and it declined on further incubation. Azolla microphylla and Azolla rubra were more tolerant to salinity than others. On the other hand Azolla pinnata, which is endemic species found in India, exhibited low biomass production, relative growth rate and lower nitrogenase activity compared to other species. It was unable to sustain growth in saline medium. Under polyhouse conditions, A. microphylla was found to perform better than other cultures in terms of biomass productivity, N fixing ability and salt tolerance. Hence it is taken up for mass production.(author)

  10. Planting Date and Seeding Rate Effects on Sunn Hemp Biomass and Nitrogen Production for a Winter Cover Crop

    Directory of Open Access Journals (Sweden)

    Kipling S. Balkcom

    2011-01-01

    Full Text Available Sunn hemp (Crotalaria juncea L. is a tropical legume that produces plant biomass and nitrogen (N quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a rye (Secale cereale L. cover crop in east-central Alabama from 2007 to 2009. Plant populations, plant height, stem diameter, biomass production, and N content were determined for two sunn hemp planting dates, following corn (Zea mays L. and wheat (Triticum aestivum L. harvest, across different seeding rates (17, 34, 50, and 67 kg/ha. Rye biomass was measured the following spring. Sunn hemp biomass production was inconsistent across planting dates, but did relate to growing degree accumulation. Nitrogen concentrations were inversely related to biomass production, and subsequent N contents corresponded to biomass levels. Neither planting date nor seeding rate affected rye biomass production, but rye biomass averaged over both planting dates following wheat/sunn hemp averaged 43% and 33% greater than rye following fallow. Rye biomass following corn/sunn hemp was equivalent to fallow plots. Early planting dates are recommended for sunn hemp with seeding rates between 17 and 34 kg/ha to maximize biomass and N production.

  11. Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus.

    Science.gov (United States)

    Kirsch, Larissa de Souza; de Macedo, Ana Júlia Porto; Teixeira, Maria Francisca Simas

    2016-01-01

    Edible mushroom species are considered as an adequate source of food in a healthy diet due to high content of protein, fiber, vitamins, and a variety of minerals. The representatives of Pleurotus genus are characterized by distinct gastronomic, nutritional, and medicinal properties among the edible mushrooms commercialized worldwide. In the present study, the growth of mycelial biomass of Pleurotus albidus cultivated in submerged fermentation was evaluated. Saccharose, fructose, and maltose were the three main carbon sources for mycelial biomass formation with corresponding yields of 7.28gL(-1), 7.07gL(-1), and 6.99gL(-1). Inorganic nitrogen sources did not stimulate growth and the optimal yield was significantly higher with yeast extract (7.98gL(-1)). The factorial design used to evaluate the influence of saccharose and yeast extract concentration, agitation speed, and initial pH indicated that all variables significantly influenced the production of biomass, especially the concentration of saccharose. The greater amount of saccharose resulted in the production of significantly more biomass. The highest mycelial biomass production (9.81gL(-1)) was reached in the medium formulated with 30.0gL(-1) saccharose, 2.5gL(-1) yeast extract, pH 7.0, and a speed of agitation at 180rpm. Furthermore, P. albidus manifested different aspects of morphology and physiology under the growth conditions employed. Media composition affected mycelial biomass production indicating that the diversification of carbon sources promoted its improvement and can be used as food or supplement.

  12. Considerations for Sustainable Biomass Production in Quercus-Dominated Forest Ecosystems

    Science.gov (United States)

    Bruckman, Viktor; Yan, Shuai; Hochbichler, Eduard

    2013-04-01

    Our current energy system is mainly based on carbon (C) intensive metabolisms, resulting in great effects on the earth's biosphere. The majority of the energy sources are fossil (crude oil, coal, natural gas) and release CO2 in the combustion (oxidation) process which takes place during utilization of the energy. C released to the atmosphere was once sequestered by biomass over a time span of millions of years and is now being released back into the atmosphere within a period of just decades. In the context of green and CO2 neutral Energy, there is an on-going debate regarding the potentials of obtaining biomass from forests on multiple scales, from stand to international levels. Especially in the context of energy, it is highlighted that biomass is an entirely CO2 neutral feedstock since the carbon stored in wood originates from the atmospheric CO2 pool and it was taken up during plant growth. It needs systems approaches in order to justify this statement and ensure sustainability covering the whole life-cycle from biomass production to (bio)energy consumption. There are a number of Quercus woodland management systems focussing solely on woody biomass production for energetic utilization or a combination with traditional forestry and high quality timber production for trades and industry. They have often developed regionally as a consequence of specific demands and local production capacities, which are mainly driven by environmental factors such as climate and soil properties. We assessed the nutritional status of a common Quercus-dominated forest ecosystem in northern Austria, where we compared biomass- with belowground C and nutrient pools in order to identify potential site limits if the management shifts towards systems with a higher level of nutrient extraction. Heterogeneity of soils, and soil processes are considered, as well as other, growth-limiting factors (e.g. precipitation) and species-specific metabolisms and element translocation.

  13. Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus

    Directory of Open Access Journals (Sweden)

    Larissa de Souza Kirsch

    Full Text Available ABSTRACT Edible mushroom species are considered as an adequate source of food in a healthy diet due to high content of protein, fiber, vitamins, and a variety of minerals. The representatives of Pleurotus genus are characterized by distinct gastronomic, nutritional, and medicinal properties among the edible mushrooms commercialized worldwide. In the present study, the growth of mycelial biomass of Pleurotus albidus cultivated in submerged fermentation was evaluated. Saccharose, fructose, and maltose were the three main carbon sources for mycelial biomass formation with corresponding yields of 7.28 g L−1, 7.07 g L−1, and 6.99 g L−1. Inorganic nitrogen sources did not stimulate growth and the optimal yield was significantly higher with yeast extract (7.98 g L−1. The factorial design used to evaluate the influence of saccharose and yeast extract concentration, agitation speed, and initial pH indicated that all variables significantly influenced the production of biomass, especially the concentration of saccharose. The greater amount of saccharose resulted in the production of significantly more biomass. The highest mycelial biomass production (9.81 g L−1 was reached in the medium formulated with 30.0 g L−1 saccharose, 2.5 g L−1 yeast extract, pH 7.0, and a speed of agitation at 180 rpm. Furthermore, P. albidus manifested different aspects of morphology and physiology under the growth conditions employed. Media composition affected mycelial biomass production indicating that the diversification of carbon sources promoted its improvement and can be used as food or supplement.

  14. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  15. Production of methanol from biomass waste via pyrolysis.

    Science.gov (United States)

    Kamarudin, S K; Shamsul, N S; Ghani, J A; Chia, S K; Liew, H S; Samsudin, A S

    2013-02-01

    The production of methanol from agricultural, forestry, livestock, poultry, and fishery waste via pyrolysis was investigated. Pyrolysis was conducted in a tube furnace at 450-500 °C. Sugarcane bagasse showed the methanol production (5.93 wt.%), followed by roots and sawdust with 4.36 and 4.22 wt.%, respectively. Animal waste offered the lowest content of methanol, as only 0.46, 0.80, and 0.61 wt.% were obtained from fishery, goat, and cow waste, respectively. It was also observed that the percentage of methanol increased with an increase in volatile compounds while the percentage of ethanol increased with the percentage of ash and fix carbon. The data indicate that, pyrolysis is a means for production of methanol and ethanol after further optimization of the process and sample treatment.

  16. Methods and materials for deconstruction of biomass for biofuels production

    Science.gov (United States)

    Schoeniger, Joseph S; Hadi, Masood Zia

    2015-05-05

    The present invention relates to nucleic acids, peptides, vectors, cells, and plants useful in the production of biofuels. In certain embodiments, the invention relates to nucleic acid sequences and peptides from extremophile organisms, such as SSO1949 and Ce1A, that are useful for hydrolyzing plant cell wall materials. In further embodiments, the invention relates to modified versions of such sequences that have been optimized for production in one or both of monocot and dicot plants. In other embodiments, the invention provides for targeting peptide production or activity to a certain location within the cell or organism, such as the apoplast. In further embodiments, the invention relates to transformed cells or plants. In additional embodiments, the invention relates to methods of producing biofuel utilizing such nucleic acids, peptides, targeting sequences, vectors, cells, and/or plants.

  17. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  18. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  19. Biodiesel production potential of wastewater treatment high rate algal pond biomass.

    Science.gov (United States)

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2016-12-01

    This study investigates the year-round production potential and quality of biodiesel from wastewater treatment high rate algal pond (WWT HRAP) biomass and how it is affected by CO2 addition to the culture. The mean monthly pond biomass and lipid productivities varied between 2.0±0.3 and 11.1±2.5gVSS/m(2)/d, and between 0.5±0.1 and 2.6±1.1g/m(2)/d, respectively. The biomass fatty acid methyl esters were highly complex which led to produce low-quality biodiesel so that it cannot be used directly as a transportation fuel. Overall, 0.9±0.1g/m(2)/d (3.2±0.5ton/ha/year) low-quality biodiesel could be produced from WWT HRAP biomass which could be further increased to 1.1±0.1g/m(2)/d (4.0ton/ha/year) by lowering culture pH to 6-7 during warm summer months. CO2 addition, had little effect on both the biomass lipid content and profile and consequently did not change the quality of biodiesel.

  20. Using data on biomass and fishing mortality in stock production modelling of flatfish

    Science.gov (United States)

    IK Zhang, Chang; Gunderson, Donald R.; Sullivan, Patrick J.

    Stock production modelling was used to estimate population parameters such as the carrying capacity (B ∞), as well as management parameters such as maximum sustainable yield (MSY), the instantaneous rate of fishing mortality at MSY (F MSY) and the sustainable biomass at MSY (B MSY). The input data were not catch and effort data, which usually require adjustments for changes in catchability, but biomass and catch (or fishing mortality), which are frequently available from cohort analysis or direct surveys. The model does not require the assumption of stock equilibrium for estimating parameters. The model was applied to data from the Alaska plaice, Pleuronectes quadrituberculatus, and yellowfin sole, Limanda aspera stocks in the eastern Bering Sea, and the Pacific halibut, Hippoglossus stenolepis, stock in the Gulf of Alaska and Bering Sea. All three stocks are characterized by separation of nursery area and exploitable population. There are at least five age groups present in nursery areas and ten or more in the exploitable stock so that recruitment levels and exploitable stock sizes are well-buffered. Predictions from the surplus production model provided reasonable fits to the biomass time series for all three stocks examined, given the sources of uncertainty in the biomass estimates available. It appears that the stock dynamics for the three species can be described by a relatively simple density-dependent model assuming instantaneous responses in stock biomass via recruitment and growth.

  1. Influence of temperature on biomass production of clones of Atriplex halimus

    Science.gov (United States)

    Dessena, Leonarda; Mulas, Maurizio

    2016-05-01

    A very effective tool to combat desertification is revegetation. Promising species for this purpose are the evergreen shrubs of the genus Atriplex. The objective of the research was to study the growing responses of Atriplex halimus under different thermal regimes and to evaluate the biomass accumulation of selected clones. The test was carried out in four sites of Sardinia Island (Italy) characterized by different latitude, altitude and air temperature trends along the year. In every site, potted plants of five clones of A. halimus were compared for biomass production as measured by linear growth of plants (central axis and secondary shoots), as well as by dry weight of leaves, shoots and roots per plant. Correlations between sums of hour-degrees under or above the thresholds of critical air temperatures, comprised between 0 and 35 °C, and the plant growth indicators were analysed. Differences among the five clones, with regard to the influence of low temperatures on plant growth and on the biomass production were evaluated. Among five tested clones, GIO1 and SAN3 resulted more sensitive to low temperatures. Clones MAR1, PAL1 and FAN3 resulted less sensitive to low temperatures and in the site characterized by the lowest minimum temperatures also have shown greater adaptability and thus biomass growth in the observed period. The clone PAL1 showed a lower shoot/root biomass ratio as adaptation to cold temperature, and the clone FAN3, the opposite behaviour and a general preference to temperate thermal regimes.

  2. Application of response surface methodology to enhancement of biomass production by Lactobacillus rhamnosus E/N

    Directory of Open Access Journals (Sweden)

    Magdalena Polak-Berecka

    2011-12-01

    Full Text Available Response surface methodology (RSM was employed to study the effects of various medium components on biomass production by Lactobacillus rhamnosus E/N. This strain is commonly used in the pharmaceutical and food industries due to its beneficial effect on the human gut and general health. The best medium composition derived from RSM regression was (in g/l glucose 15.44, sodium pyruvate 3.92, meat extract 8.0, potassium phosphate 1.88, sodium acetate 4.7, and ammonium citrate 1.88. With this medium composition biomass production was 23 g/l of dry cell weight after 18 h of cultivation in bioreactor conditions, whereas on MRS the yield of biomass was 21 g/l of dry cell weight. The cost of 1 g of biomass obtained on MRS broth was calculated at the level of 0.44 € whereas on the new optimal medium it was 25% lower. It may be concluded then, that the new medium, being cheaper than the control MRS allows large scale commercial cultivation of the L. rhamnosus strain. This study is of relevance to food industry because the possibility to obtain high yield of bacterial biomass is necessary step in manufacturing of probiotic food.

  3. Decreasing costs of ground data processing system development using a software product line

    Science.gov (United States)

    Chaffin, Brian

    2005-01-01

    In this paper, I describe software product lines and why a Ground Data Processing System should use one. I also describe how to develop a software product line, using examples from an imaginary Ground Data Processing System.

  4. Abundance and biomass of meiobenthos in the spawning ground of anchovy (Engraulis japanicus) in the southern Huanghai Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoshou; ZHANG Zhinan; HUANG Yong

    2005-01-01

    A grid of 22 stations, giving a broad coverage of the spawning ground of anchovy in the southern Huanghai Sea was selected. Undisturbed sediments were taken from sampling stations during the cruise in June 2003. The average abundance of meiofauna is (1 584 ±686) ind./10cm2, with corresponding biomass (dwt) of(1 086+425) μg/10cm2. The pattem of abundance of meiofauna is similar to the pattern ofbiomass. There are 65.88% meiofauna in 0~2 cm sediments, 27.66% in 2~5 cm sediments and 6.47% in 5~8 cm sediments.The Spearman correlation analysis between meiofauna and environmental factors shows that abundance of meiofauna, free living marine nematodes, benthic copepods has significant positive correlations with Chl-a. And the abundance of copepods has significant positive correlations with several factors such as Chl-a, Pha-a, Chl-a plus Pha-a and organic matter. A total of 18 meiofauna groups are identified. Nematode is the most dominant group, average abundance (1 404 ± 670) ind/10cm2, accounting for 88.65%, and the following groups are also important: benthic copepods (5.48%), kinorhyncha (1.26%), polychaeta (1.07%). By biomass, dominant groups are nematodes (51.72%), polychaeta (21.84%), copepods (14.87%), ostracoda (4.92%), kinorhyncha (3.67%). A total of 90 species of nematodes are identified. The species composition of nematodes is listed based on selected two stations 7794 (coastal area) and 10694(cold water mass in deep waters).

  5. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    Science.gov (United States)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the

  6. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2010-08-01

    Full Text Available The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB (and thus carbon content of vegetation and leaf area index (LAI and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a undisturbed forest growth and (b a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size. The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91% if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60% between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a

  7. Modeling belowground biomass of black cohosh, a medicinal forest product.

    Science.gov (United States)

    James Chamberlain; Gabrielle Ness; Christine Small; Simon Bonner; Elizabeth Hiebert

    2014-01-01

    Tens of thousands of kilograms of rhizomes and roots of Actaea racemosa L., a native Appalachian forest perennial, are harvested every year and used for the treatment of menopausal conditions. Sustainable management of this and other wild-harvested non-timber forest products requires the ability to effectively and reliably inventory marketable plant...

  8. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  9. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    NARCIS (Netherlands)

    Achinas, Spyridon; Euverink, Gerrit Jan Willem

    2016-01-01

    Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower v

  10. Buffers for biomass production in temperate European agriculture

    DEFF Research Database (Denmark)

    Christen, Benjamin; Dalgaard, Tommy

    2013-01-01

    , environmental pressures from intensive agriculture and policy developments. Use of conservation buffers by farmers outside of designated schemes is limited to date, but the increasing demand for bioenergy and the combination of agricultural production with conservation calls for a much wider implementation...

  11. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  12. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    NARCIS (Netherlands)

    Achinas, Spyridon; Euverink, Gerrit Jan Willem

    2016-01-01

    Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower

  13. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  14. Photoautotrophic Production of Biomass, Laurate, and Soluble Organics by Synechocystis sp. PCC 6803

    Science.gov (United States)

    Nguyen, Binh Thanh

    Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 muE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 muE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI. How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently. Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (mumax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 muE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its mumax with a modest Ci concentration (≥1.0 mM). Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall

  15. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    NARCIS (Netherlands)

    Faaij, A.; Meuleman, B.

    2006-01-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated with help of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from o

  16. A biomass derived N/C-catalyst for the electrochemical production of hydrogen peroxide.

    Science.gov (United States)

    Yang, Yiran; He, Fei; Shen, Yanfei; Chen, Xinghua; Mei, Hao; Liu, Songqin; Zhang, Yuanjian

    2017-09-16

    Pomelo peel, a waste biomass, was used as an all-in-one (carbon source, self-template, and heteroatom) precursor to develop a nanoporous N/C-electrocatalyst for highly selective and energy-saving H2O2 production, in which disordered carbonous defects and five-membered rings (pyrrolic-N) played vital roles.

  17. A reanalysis of North Sea plaice spawning-stock biomass using the annual egg production method

    NARCIS (Netherlands)

    Damme, van C.J.G.; Bolle, L.J.; Fossum, P.; Kraus, G.; Dickey-Collas, M.

    2009-01-01

    Uncertainty about the quality of current virtual population analysis-based stock assessment for North Sea plaice (Pleuronectes platessa) has led to various abundance indices. We compared biomass estimates from the annual egg production (AEP) method with current stock assessments based on catch-at-ag

  18. Toward concise metrics for the production of chemicals from renewable biomass

    NARCIS (Netherlands)

    Sheldon, R.A.; Sanders, J.P.M.

    2015-01-01

    The development of a set of sustainability metrics for quickly evaluating the production of commodity chemicals from renewable biomass is described. The method is based on four criteria: material and energy efficiency, land use and process economics. The method will be used for comparing the

  19. Power production from radioactively contaminated biomass and forest litter in Belarus - Phase 1b

    DEFF Research Database (Denmark)

    Roed, Jørn; Andersson, Kasper Grann; Fogh, C.L.

    2000-01-01

    The Chernobyl accident has led to radioactive contamination of vast Belarussian forest areas. A total scheme for remediation of contaminated forest areas and utilisation of the removed biomass in safe energy production is being investigated in aBelarussian-American-Danish collaborative project. H...... from the stream by using a combination of a cyclone and a baghouse filter....

  20. Progress on lipid extraction from wet algal biomass for biodiesel production.

    Science.gov (United States)

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass.

  1. Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy

    NARCIS (Netherlands)

    Cho, M.A.; Skidmore, A.K.

    2009-01-01

    The research objective was to determine robust hyperspectral predictors for monitoring grass/herb biomass production on a yearly basis in the Majella National Park, Italy. HyMap images were acquired over the study area on 15 July 2004 and 4 July 2005. The robustness of vegetation indices and red-edg

  2. Leaf Biomass and Acorn Production in a Thinned 30-Year-Old Cherrybark Oak Plantation

    Science.gov (United States)

    Erika L. Stelzer; Jim L. Chamgers; James S. Meadows; Kenneth F. Ribbeck

    2004-01-01

    Objectives of this study were to determine the effects of two levels of thinning on leaf biomass and acorn production of cherrybark oak (Quercus pagoda Raf.). To evaluate the effects of thinning 2 years after treatment, treatment plots were selected and blocked on the basis of initial stocking levels. Two levels of stocking and a control were...

  3. Biomass Program 2007 Program Peer Review - Biochemical and Products Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biochemical and Products Platform Review held on August 7-9, 2007 in Denver, Colorado.

  4. A reanalysis of North Sea plaice spawning-stock biomass using the annual egg production method

    NARCIS (Netherlands)

    Damme, van C.J.G.; Bolle, L.J.; Fossum, P.; Kraus, G.; Dickey-Collas, M.

    2009-01-01

    Uncertainty about the quality of current virtual population analysis-based stock assessment for North Sea plaice (Pleuronectes platessa) has led to various abundance indices. We compared biomass estimates from the annual egg production (AEP) method with current stock assessments based on

  5. Case studies on sugar production from underutilized woody biomass using sulfite chemistry

    Science.gov (United States)

    J.Y. Zhu; M. Subhosh Chandra; Roland Gleisner; William Gilles; Johnway Gao; Gevan Marrs; Dwight Anderson; John Sessions

    2015-01-01

    We examined two case studies to demonstrate the advantages of sulfite chemistry for pretreating underutilized woody biomass to produce sugars through enzymatic saccharification. In the first case study, we evaluated knot rejects from a magnesium-basedsulfite mill for direct enzymatic sugar production.We found that the sulfite mill rejects are an excellent feedstock for...

  6. Improvement of biomass production and glucoamylase activity by Candida famata using factorial design.

    Science.gov (United States)

    Mosbah, Habib; Aissa, Imen; Hassad, Nahla; Farh, Dhaker; Bakhrouf, Amina; Achour, Sami

    2016-07-01

    To improve biomass production and glucoamylase activity (GA) by Candida famata, culture conditions were optimized. A 2(3) full factorial design (FFD) with a response surface model was used to evaluate the effects and interactions of pH (X1 ), time of cultivation (X2 ), and starch concentration (X3 ) on the biomass production and enzyme activity. A total of 16 experiments were conducted toward the construction of an empiric model and a first-order equation. It was found that all factors (X1 , X2 , and X3 ) and their interactions were significant at a certain confidence level (P biomass production and GA of C. famata. Under this optimized medium, the experimental biomass production and GA obtained were 1.8 ± 0.54 g/L and 0.078 ± 0.012 µmol/L/Min, about 1.5- and 1.8-fold, respectively, higher than those in basal medium. The (R(2) ) coefficients obtained were 0.997 and 0.990, indicating an adequate degree of reliability in the model. Approximately 99% of validity of the predicted value was achieved.

  7. Radiation use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance

    Science.gov (United States)

    Drought tolerant (DT) maize (Zea mays L.) hybrids have potential to increase yield under drought conditions. However, little information is known about the physiological determinations of yield in DT hybrids. Our objective was to assess radiation use efficiency (RUE), biomass production, and yield ...

  8. Analysis and optimisation of plant biomass degrading enzyme production in Aspergillus

    NARCIS (Netherlands)

    Culleton, H.M.

    2015-01-01

    Much research over the past 25 years has been applied to the development of filamentous fungi, most notably Aspergillus, as hosts for recombinant protein production. Their inherent abilities to grow at high rates and to high biomass densities and their exceptional capacity to secrete high levels of

  9. Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis

    NARCIS (Netherlands)

    Ignaciuk, A.; Vöhringer, F.; Ruijs, A.J.W.; Ierland, van E.C.

    2006-01-01

    Bioenergy has several advantages over fossil fuels. For example, it delivers energy at low net CO2 emission levels and contributes to sustaining future energy supplies. The concern, however, is that an increase in biomass plantations will reduce the land available for agricultural production. The

  10. Toward concise metrics for the production of chemicals from renewable biomass

    NARCIS (Netherlands)

    Sheldon, R.A.; Sanders, J.P.M.

    2015-01-01

    The development of a set of sustainability metrics for quickly evaluating the production of commodity chemicals from renewable biomass is described. The method is based on four criteria: material and energy efficiency, land use and process economics. The method will be used for comparing the sustain

  11. Biomass production and water use efficiency in perennial grasses during and after drought stress

    DEFF Research Database (Denmark)

    Sørensen, Kirsten Kørup; Lærke, Poul Erik; Sørensen, Helle Baadsgaard

    2017-01-01

    Drought is a great challenge to agricultural production, and cultivation of drought-tolerant or water use-efficient cultivars is important to ensure high biomass yields for bio-refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amb...

  12. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges.

    Science.gov (United States)

    Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

    2013-12-01

    Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy. © 2013.

  13. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Plugge, C.M.; Buisman, C.J.N.

    2011-01-01

    This research introduces an alternative mixed culture fermentation technology for anaerobic digestion to recover valuable products from low grade biomass. In this mixed culture fermentation, organic waste streams are converted to caproate and caprylate as precursors for biodiesel or chemicals. It wa

  15. Intrinsic autotrophic biomass yield and productivity in algae: modeling spectral and mixing-rate dependence.

    Science.gov (United States)

    Holland, Alexandra D; Wheeler, Dean R

    2011-05-01

    For non-inhibitory irradiances, the rate of algal biomass synthesis was modeled as the product of the algal autotrophic yield Φ(DW) and the flux of photons absorbed by the culture, as described using Beer-Lambert law. As a contrast to earlier attempts, the use of scatter-corrected extinction coefficients enabled the validation of such approach, which bypasses determination of photosynthesis-irradiance (PI) kinetic parameters. The broad misconception that PI curves, or the equivalent use of specific growth rate expressions independent of the biomass concentration, can be extended to adequately model biomass production under light-limitation is addressed. For inhibitory irradiances, a proposed mechanistic model, based on the photosynthetic units (PSU) concept, allows one to estimate a target speed νT across the photic zone in order to limit the flux of photons per cell to levels averting significant reductions in Φ(DW) . These modeled target speeds, on the order of 5-20 m s(-1) for high outdoor irradiances, call for fundamental changes in reactor design to optimize biomass productivity. The presented analysis enables a straightforward bioreactor parameterization, which, in-turn, guides the establishment of conditions ensuring maximum productivity and complete nutrients consumption. Additionally, solar and fluorescent lighting spectra were used to calculate energy to photon-counts conversion factors.

  16. Modified Light Use Efficiency Model for Assessment of Carbon Sequestration in Grasslands of Kazakhstan: Combining Ground Biomass Data and Remote-sensing

    Science.gov (United States)

    Propastin, Pavel A.; Kappas, Martin W.; Herrmann, Stefanie M.; Tucker, Compton J.

    2012-01-01

    A modified light use efficiency (LUE) model was tested in the grasslands of central Kazakhstan in terms of its ability to characterize spatial patterns and interannual dynamics of net primary production (NPP) at a regional scale. In this model, the LUE of the grassland biome (en) was simulated from ground-based NPP measurements, absorbed photosynthetically active radiation (APAR) and meteorological observations using a new empirical approach. Using coarse-resolution satellite data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly NPP was calculated from 1998 to 2008 over a large grassland region in Kazakhstan. The modelling results were verified against scaled up plot-level observations of grassland biomass and another available NPP data set derived from a field study in a similar grassland biome. The results indicated the reliability of productivity estimates produced by the model for regional monitoring of grassland NPP. The method for simulation of en suggested in this study can be used in grassland regions where no carbon flux measurements are accessible.

  17. Methane and hydrogen production from crop biomass through anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, O.

    2011-07-01

    The feasibility of methane and hydrogen production from energy crops through anaerobic digestion was evaluated in this thesis. The effects of environmental conditions, e.g. pH and temperature, as well as inoculum source on H{sub 2} yield were studied in batch assays. In addition, the effects of pre-treatments on methane and hydrogen yield as well as the feasibility of two-stage H{sub 2} + CH{sub 4} production was evaluated. Moreover, the effect of storage on methane yield of grasses was evaluated. Monodigestion of grass silage for methane production was studied, as well as shifting the methanogenic process to hydrogenic. Hydrogen production from grass silage and maize was shown to be possible with heat-treated inoculum in batch assays, with highest H{sub 2} yields of 16.0 and 9.9 ml gVS{sub added}-1 from untreated grass silage and maize, respectively. Pre-treatments (NaOH, HCl and water-extraction) showed some potential in increasing H{sub 2} yields, while methane yields were not affected. Two-stage H{sub 2} + CH{sub 4} producing process was shown to improve CH{sub 4} yields when compared to traditional one-stage CH{sub 4} process. Methane yield from grass silage monodigestion in continuously stirred tank reactor (CSTR) with organic loading rate (OLR) of 2 kgVS (m3d)-1 and hydraulic retention time (HRT) of 30 days was at most 218 l kgVS{sub fed}-1. Methanogenic process was shifted to hydrogenic by increasing the OLR to 10 kgVS (m3d)-1 and shortening the HRT to 6 days. Highest H{sub 2} yield from grass silage was 42 l kgVS{sub fed}-1 with a maximum H{sub 2} content of 24 %. Energy crops can be successfully stored even for prolonged periods without decrease in methane yield. However, under sub-optimal storage conditions loss in volatile solids (VS) content and methane yield can occur. According to present results energy crops such as grass silage and maize can be converted to hydrogen or methane in AD process. Hydrogen energy yields are typically only 2-5 % of the

  18. USE OF AGRICULTURAL WASTES FOR BIOMASS PRODUCTION OF THE PLANT GROWTH PROMOTER ACTINOBACTERIA, Streptomyces sp. MCR26

    Directory of Open Access Journals (Sweden)

    Iván Ávila-Cortes

    2014-10-01

    Full Text Available The use of agricultural wastes for plant growth promoting rhizobacteria (PGPR biomass production has not been widely explored. This study focuses on the development a culture medium for PGPR Streptomyces sp. MCR26, evaluating the influence of carnation harvest waste, yeast extract and ammonium sulfate on biomass production, as well as, the effect of biomass produced in the designed culture medium on the maintenance of PGPR MCR26 traits. The experiments were conducted by a full factorial design, varying nutritional sources concentrations, with duplicate experiments at the central point. Yeast extract and carnation harvest waste were the most influential factors, showing a positive effect on biomass production. The statistical model predicted optimal conditions for maximal biomass production at 20.0 g/L carnation harvest waste and 4.0 g/L yeast extract. Shake flask validation experiments resulted in 8.087 g/L of MCR26 biomass, 80.6% higher compared to carboxymetil cellulose (CMC broth. MCR26 biomass produced on designed culture medium enhanced hydroxamate production, and maintained phosphatases and indole-3-acetic acid synthesis. In addition, white clover inoculated plants presented higher shoot biomass accumulation compared to control treatment; nevertheless, there were no effects on seed germination. These results demonstrated that the designed culture medium effectively induced Streptomyces sp. MCR26 biomass production and maintained its plant growth promotion traits.

  19. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  20. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  1. Management of warm-season grass mixtures for biomass production in South Dakota USA.

    Science.gov (United States)

    Mulkey, V R; Owens, V N; Lee, D K

    2008-02-01

    Switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii Vitman), and indiangrass (Sorghastrum nutans (L.) Nash) are native warm-season grasses commonly used for pasture, hay, and conservation. More recently switchgrass has also been identified as a potential biomass energy crop, but management of mixtures of these species for biomass is not well documented. Therefore, the objectives of our study were to: (1) determine the effects of harvest timing and N rate on yield and biomass characteristics of established warm-season grass stands containing a mixture of switchgrass, big bluestem, and indiangrass, and (2) evaluate the impact of harvest management on species composition. Five N rates (0, 56, 112, and 224 kg ha(-1) applied annually in spring and 224 kg ha(-1) evenly split between spring and fall) and two harvest timings (anthesis and killing frost) were applied to plots at two South Dakota USA locations from 2001 to 2003. Harvesting once a year shortly after a killing frost produced the greatest yields with high concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) along with lower concentrations of total nitrogen (TN) and ash. This harvest timing also allowed for the greatest percentage of desirable species while maintaining low grass weed percentages. While N rates of 56 and 112 kg ha(-1) tended to increase total biomass without promoting severe invasion of grass and broadleaf weed species, N application did not always result in significant increases in biomass production. Based on these results, mixtures of switchgrass and big bluestem were well suited for sustainable biomass energy production. Furthermore, N requirements of these mixtures were relatively low thus reducing production input costs.

  2. Biomass torrefaction: modeling of volatile and solid product evolution kinetics.

    Science.gov (United States)

    Bates, Richard B; Ghoniem, Ahmed F

    2012-11-01

    The aim of this work is the development of a kinetics model for the evolution of the volatile and solid product composition during torrefaction conditions between 200 and 300°C. Coupled to an existing two step solid mass loss kinetics mechanism, this model describes the volatile release kinetics in terms of a set of identifiable chemical components, permitting the solid product composition to be estimated by mass conservation. Results show that most of the volatiles released during the first stage include highly oxygenated species such as water, acetic acid, and carbon dioxide, while volatiles released during the second step are composed primarily of lactic acid, methanol, and acetic acid. This kinetics model will be used in the development of a model to describe reaction energy balance and heat release dynamics.

  3. Simulation of Fuel Ethanol Production from Lignocellulosic Biomass

    Institute of Scientific and Technical Information of China (English)

    张素平; Francois Maréchal; Martin Gassner; 任铮伟; 颜涌捷; Daniel Favrat

    2009-01-01

    Models for hydrolysis, fermentation and concentration process, production and utilization of biogas as well as lignin gasification are developed to calculate the heat demand of ethanol production process and the amounts of heat and power generated from residues and wastewater of the process. For the energy analysis, all relevant information about the process streams, physical properties, and mass and energy balances are considered. Energy integration is investigated for establishing a network of facilities for heat and power generation from wastewater and residues treatment aiming at the increase of energy efficiency. Feeding the lignin to an IGCC process, the electric efficiency is increased by 4.4% compared with combustion, which leads to an overall energy efficiency of 53.8%. A detailed sensitivity analysis on energy efficiency is also carried out.

  4. Commercial production of specialty chemicals and pharmaceuticals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    McChesney, J.D. [Univ. of Mississippi, University, MS (United States)

    1993-12-31

    The chemical substances utilized in consumer products, and for pharmaceutical and agricultural uses are generally referred to as specialty chemicals. These may be flavor or fragrance substances, intermediates for synthesis of drugs or agrochemicals or the drugs or agrochemicals themselves, insecticides or insect pheromones or antifeedants, plant growth regulators, etc. These are in contrast to chemicals which are utilized in large quantities for fuels or preparation of plastics, lubricants, etc., which are usually referred to as industrial chemicals. The specific utilization of specialty chemicals is associated with a specific important physiochemical or biological property. They may possess unique properties as lubricants or waxes or have a very desirable biological activity such as a drug, agrochemical or perfume ingredient. These unique properties convey significant economic value to the specific specialty chemical. The economic commercial production of specialty chemicals commonly requires the isolation of a precursor or the specialty chemical itself from a natural source. The discovery, development and commercialization of specialty chemicals is presented and reviewed. The economic and sustainable production of specialty chemicals is discussed.

  5. Productivity ranges of sustainable biomass potentials from non-agricultural land

    Science.gov (United States)

    Schueler, Vivian; Fuss, Sabine; Steckel, Jan Christoph; Weddige, Ulf; Beringer, Tim

    2016-07-01

    Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha-1 a-1), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha-1 a-1: some regions lose less of their highly productive potentials to sustainability concerns than others and regional contributions to bioenergy potentials shift when less productive land is considered. Challenges to limit developments to the exploitation of sustainable potentials arise in Latin America, Africa and Developing Asia, while new opportunities emerge for Transition Economies and OECD countries to cultivate marginal land.

  6. Culture of Spirulina platensis in human urine for biomass production and O2 evolution

    Institute of Scientific and Technical Information of China (English)

    Feng Dao-lun; WU Zu-cheng

    2006-01-01

    Attempts were made to culture Spirulina platensis in human urine directly to achieve biomass production and O2 evolution, for potential application to nutrient regeneration and air revitalization in life support system. The culture results showed that Spirulinaplatensis grows successfully in diluted human urine, and yields maximal biomass at urine dilution ratios of 140~240.Accumulation of lipid and decreasing of protein occurred due to N deficiency. O2 release rate of Spirulina platensis in diluted human urine was higher than that in Zarrouk medium.

  7. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  8. Which smallholder farmers benefit most from biomass production for food and biofuel? The case of Gondola district, central Mozambique

    NARCIS (Netherlands)

    Leonardo, W.J.; Florin, M.J.; Ven, van de G.W.J.; Udo, H.M.J.; Giller, K.E.

    2015-01-01

    We analysed the influence of the mode of participation in biomass production for biofuels on food security of different farm types. We studied two modes of participation in biomass production: an outgrower scheme for sunflower and a jatropha plantation offering full time employment and assessed the

  9. Humin based by-products from biomass processing as a potential carbonaceous source for synthesis gas production

    NARCIS (Netherlands)

    Hoang, T.M.C.; Eck, van E.R.H.; Bula, W.P.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2015-01-01

    Lignocellulosic biomass is addressed as potential sustainable feedstock for green fuels and chemicals. (Hemi)cellulose is the largest constituent of the material. Conversion of these polysaccharides to bio-based platform chemicals is important in green chemical/fuel production and biorefinery. Hydro

  10. Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes

    Science.gov (United States)

    Rodrigo Hakamada; Robert M. Hubbard; Silvio Ferraz; Jose Luiz Stape; Cristiane Lemos

    2017-01-01

    The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However, few studies have investigated this relationship,...

  11. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Sukumaran, Rajeev K.; Singhania, Reeta Rani; Mathew, Gincy Marina; Pandey, Ashok [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum-695 019 (India)

    2009-02-15

    A major constraint in the enzymatic saccharification of biomass for ethanol production is the cost of cellulase enzymes. Production cost of cellulases may be brought down by multifaceted approaches which include the use of cheap lignocellulosic substrates for fermentation production of the enzyme, and the use of cost efficient fermentation strategies like solid state fermentation (SSF). In the present study, cellulolytic enzymes for biomass hydrolysis were produced using solid state fermentation on wheat bran as substrate. Crude cellulase and a relatively glucose tolerant BGL were produced using fungi Trichoderma reesei RUT C30 and Aspergillus niger MTCC 7956, respectively. Saccharification of three different feed stock, i.e. sugar cane bagasse, rice straw and water hyacinth biomass was studied using the enzymes. Saccharification was performed with 50 FPU of cellulase and 10 U of {beta}-glucosidase per gram of pretreated biomass. Highest yield of reducing sugars (26.3 g/L) was obtained from rice straw followed by sugar cane bagasse (17.79 g/L). The enzymatic hydrolysate of rice straw was used as substrate for ethanol production by Saccharomyces cerevisiae. The yield of ethanol was 0.093 g per gram of pretreated rice straw. (author)

  12. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    are residual lignocellulose (wastes) created from forest industries or from agricultural food crops (wheat straw, corn stover, rice straw). The lignocellulose contains lignin, which binds carbohydrate polymers (cellulose and hemicellulose) forming together a rather resistant structure. In this regards, a pre...... xylose conversion, effective glucose/xylose co-fermentation, and ethanol productivity of 1 g/l/h required for an economically viable bioethanol process. Furthermore, the fermentation of two undetoxified feed streams of industrial interest (acid hydrolyzed corn stover and wet-exploded wheat straw...

  13. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    Science.gov (United States)

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  14. Bioethanol production from Scenedesmus obliquus sugars. The influence of photobioreactors and culture conditions on biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.R.; Passarinho, P.C.; Gouveia, L. [Laboratorio Nacional de Energia e Geologia (LNEG), Lisbon (Portugal). Unidade de Bioenergia

    2012-10-15

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L. (orig.)

  15. Modelling above Ground Biomass in Tanzanian Miombo Woodlands Using TanDEM-X WorldDEM and Field Data

    Directory of Open Access Journals (Sweden)

    Stefano Puliti

    2017-09-01

    Full Text Available The use of Interferometric Synthetic Aperture Radar (InSAR data has great potential for monitoring large scale forest above ground biomass (AGB in the tropics due to the increased ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height data is crucial for the development of large scale forest monitoring programs. This study provides an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands. The primary objective was to assess the accuracy of a model linking AGB with InSAR height from WorldDEM after the subtraction of ground heights. The secondary objective was to assess the possibility of obtaining InSAR height for field plots when the terrain heights were derived from global navigation satellite systems (GNSS; i.e., as an alternative to using airborne laser scanning (ALS. The results revealed that the AGB model using InSAR height had a predictive accuracy of R M S E = 24.1 t·ha−1; or 38.8% of the mean AGB when terrain heights were derived from ALS. The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB was improved when compared to a previous study using TanDEM-X for a sub-area of the area of interest and was of similar magnitude to what was achieved in the same sub-area using ALS data. Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for large scale AGB modelling in tropical woodlands.

  16. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  17. C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective

    Institute of Scientific and Technical Information of China (English)

    Caitlin S.Byrt; Christopher P.L.Grof; Robert T.Furbank

    2011-01-01

    The main feedstocks for bioethanol are sugarcane (Saccharum offic-inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.

  18. Sustainable Production of Algal Biomass and Biofuels Using Swine Wastewater in North Carolina, US

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-05-01

    Full Text Available Algae were recently considered as a promising third-generation biofuel feedstock due to their superior productivity, high oil content, and environmentally friendly nature. However, the sustainable production became the major constraint facing commercial development of algal biofuels. For this study, firstly, a factorial experimental design was used to analyze the effects of the process parameters including temperatures of 8–25 °C, light intensity of 150–900 μmol·m−2s−1, and light duration of 6–24 h on the biomass yields of local alga Chlamydomonas debaryana in swine wastewater. The results were fitted with a quadratic equation (R2 = 0.9706. The factors of temperature, light duration, the interaction of light intensity-light duration, and the quadratic effect of temperature were statistically significant. When evaluating different scenarios for the sustainable production of algal biomass and biofuels in North Carolina, US, it showed that: (a Growing C. debaryana in a 10-acre pond on swine wastewater under local weather conditions would yield algal biomass of 113 tonnes/year; (b If all swine wastewater generated in North Carolina was treated with algae, it will require 137–485 acres of ponds, yielding biomass of 5048–10,468 tonnes/year and algal oil of 1010–2094 tonnes/year. Annually, hundreds of tonnes of nitrogen and phosphorus could be removed from swine wastewater. The required area is mainly dependent on the growth rate of algal species.

  19. Evaluation of some biotechnological parameters influencing the Pleurotus ostreatus biomass production by submerged cultivation

    Directory of Open Access Journals (Sweden)

    Vicenţiu-Bogdan HORINCAR

    2015-12-01

    Full Text Available The submerged culture of mushrooms represents a future for biotechnological processes at industrial level, in order to obtain biomass with economical value (food and ingredients, nutraceuticals and pharmaceuticals. Pleurotus ostreatus is well known worldwide for its culinary and medicinal value. The aim of the present study was to evaluate the most important biotechnological parameters that have influence on the biomass production of P. ostreatus, by cultivation in submerged conditions. Applying the Plackett-Burman experimental design, the significant parameters influencing the P. ostreatus biomass production were found to be the concentration of dextrose and yeast extract and time of cultivation. The best results in terms of maximising the biomass production (25.71 g·L-1 were obtained when the “+1” level of each independent variables was used in the Plackett-Burman experimental design. Analysis of variance (ANOVA exhibited a high correlation coefficient (R2 value of 0.9908, which certifies that the mathematical model was relevant for the biotechnological process.

  20. THE POSSIBILITY OF USING WASTEWATER FOR THE PRODUCTION OF PLATYMONAS SUBCORDIFORMIS ALGAE BIOMASS

    Directory of Open Access Journals (Sweden)

    Magda Dudek

    2016-06-01

    Full Text Available The aim of the research was to determine the possibility of treated dairy wastewater using in the process of microalgae Platymonas subcordiformis biomass production. Researches were conducted in the laboratory scale with vertical photobioreactors using. Experiment was divided on the three variants based on the amount of wastewater introduced to culture medium. The researches proved the tested wastewater can be used in the intensive culture biomass of microalgae Platymonas subcordiformis. The highest technological effects associated with the increase in algal biomass obtained in the control sample where the concentration of algae cells at the end of the expansion process was nearly 3500 mgs.m.o./dm3. In embodiments using waste water as a component of the culture medium obtained microalgae increase over 2000 mgs.m.o./dm3.