WorldWideScience

Sample records for ground beetle diversity

  1. Spatial Factors Play a Major Role as Determinants of Endemic Ground Beetle Beta Diversity of Madeira Island Laurisilva

    Science.gov (United States)

    Boieiro, Mário; Carvalho, José C.; Cardoso, Pedro; Aguiar, Carlos A. S.; Rego, Carla; de Faria e Silva, Israel; Amorim, Isabel R.; Pereira, Fernando; Azevedo, Eduardo B.; Borges, Paulo A. V.; Serrano, Artur R. M.

    2013-01-01

    The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (βrepl – species turnover and βrich - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (βrepl) and 40.7% of species richness variation (βrich) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: βrepl was influenced by climate, disturbance and soil organic matter content whilst βrich was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both βrepl and βrich, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles. PMID:23724065

  2. Sperm competition promotes diversity of sperm bundles in Ohomopterus ground beetles

    Science.gov (United States)

    Takami, Yasuoki; Sota, Teiji

    2007-07-01

    Diversification of sperm morphology has been investigated in the context of sperm competition, but the adaptive significance of sperm bundles is still unclear. In analyzing 10 taxa of the genus Carabus subgenus Ohomopterus and one related Carabus ground beetles, we found that dimorphic sperm bundles occurred in most species with varied degrees of bimodality, whereas sperm were generally monomorphic. Comparative analyses with phylogenetically independent contrasts revealed that the sizes of large and small sperm bundles evolved more rapidly than, and were not correlated with, the length of sperm, suggesting more intense selection on sperm bundle sizes and their independent responses to different evolutionary forces. The size of large sperm bundles was positively correlated with male genital morphology (pertinent to displacement of rival spermatophores) and postcopulatory guarding duration as well as male body length, suggesting that larger sperm bundles have been favored when the risk of spermatophore displacement is high. Larger sperm bundles may be advantageous because of their ability to migrate more rapidly into the spermatheca. In contrast, no clear association was detected between the small sperm bundle size and mating traits despite its rapid diversification. The present study provides the first record of heteromorphic sperm bundles, the diversity of which may be promoted by sperm competition.

  3. Effect of tillage and planting date on seasonal abundance and diversity of predacious ground beetles in cotton.

    Science.gov (United States)

    Shrestha, R B; Parajulee, M N

    2010-01-01

    other species. Ground beetle species abundance, diversity, and species richness were significantly higher in conservation tillage plots. This suggests that field conditions arising from the practice of conservation tillage may support higher predacious ground beetle activity than might be observed under field conditions arising from conventional tillage practices.

  4. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae) in a mature Asian temperate forest ecosystem.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  5. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae in a mature Asian temperate forest ecosystem.

    Directory of Open Access Journals (Sweden)

    Yi Zou

    Full Text Available A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  6. Changes in ground beetle diversity and community composition in age structured forests (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Kathryn Riley

    2011-11-01

    Full Text Available We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age.

  7. Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates.

    Directory of Open Access Journals (Sweden)

    Kyran M Staunton

    Full Text Available With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World

  8. Ground beetles of the Ukraine (Coleoptera, Carabidae).

    Science.gov (United States)

    Putchkov, Alexander

    2011-01-01

    A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species) of the lowlands of southern Ukraine (sandy biotopes), situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed.

  9. Ground beetles of the Ukraine (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Alexander Putchkov

    2011-05-01

    Full Text Available A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species of the lowlands of southern Ukraine (sandy biotopes, situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed.

  10. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  11. Using malaise traps to sample ground beetles (Coleoptera. Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Hanula, James L. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Horn, Scott [USDA Forest Service, Savannah River, New Ellenton, SC (United States)

    2012-04-02

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  12. Explaining the saproxylic beetle diversity of a protected Mediterranean area

    OpenAIRE

    Micó, Estefanía; García López, Alejandra; Brustel, Hervé; Padilla, Ascension; Galante, Eduardo

    2013-01-01

    Saproxylic beetle diversity is high at the Cabañeros National Park (central Spain), where woodland habitats exhibit remarkable heterogeneity. Our aim was to explain the diversity of saproxylic beetles, focusing on species turnover among mature woodland types. We surveyed five woodland types that represented the heterogeneity of the park’s woodland habitats. Beetles were collected using window traps over a period of 20 months. The Jaccard Similarity Index was used as indirect value of beta div...

  13. Allozyme gene diversities in some leaf beetles (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Krafsur, E S

    1999-08-01

    Gene diversity at allozyme loci was investigated in the bean leaf beetle, Ceratoma trifurcata Forster; the elm leaf beetle, Xanthogaleruca luteola (Muller); the cottonwood leaf beetle, Chrysomela scripta Fabricus; the western corn rootworm, Diabrotica virgifera virgifera LeConte; the southern corn rootworm, also called the spotted cucumber beetle, D. undecimpunctata howardi Baker; the northern corn rootworm, D. barberi Smith and Lawrence; and the Colorado potato beetle, Leptinotarsa decemlineata (Say). Six of these species are economically important pests of crops and display adaptive traits that may correlate with genetic diversity. Gene diversity H(E) in bean leaf beetles was 17.7 +/- 4.0% among 32 loci. In western corn rootworms, H(E) = 4.8 +/- 2.0% among 36 loci, and in spotted cucumber beetles, H(E) = 11.9 +/- 2.7% among 39 loci. Diversity among 27 loci was 10.5 +/- 4.3% in the Colorado potato beetle. The data were compared with gene diversity estimates from other leaf beetle species in which heterozygosities varied from 0.3 to 21% and no correlation was detected among heterozygosities, geographic ranges, or population densities. Distributions of single-locus heterozygosities were consistent with selective neutrality of alleles.

  14. Checklist of the Iranian Ground Beetles (Coleoptera; Carabidae).

    Science.gov (United States)

    Azadbakhsh, Saeed; Nozari, Jamasb

    2015-09-30

    An up-to-date checklist of the ground beetles of Iran is presented. Altogether 955 species and subspecies in 155 genera belonging to 26 subfamilies of Carabidae are reported; 25 taxa are recorded for Iran for the fist time. New localities are listed and some previous distributional records are discussed.

  15. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    Science.gov (United States)

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  16. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    Science.gov (United States)

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are naturally more eye-catching…

  17. What do we know about winter active ground beetles (Coleoptera, Carabidae in Central and Northern Europe?

    Directory of Open Access Journals (Sweden)

    Radomir Jaskula

    2011-05-01

    Full Text Available This paper summarizes the current knowledge on winter active Carabidae in Central and Northern Europe. In total 73 winter active species are listed, based on literature and own observations. Ground beetles are among the three most numerous Coleoptera families active during the autumn to spring period. The winter community of Carabidae is composed both of larvae (mainly autumn breeding species and adults, as well as of epigeic species and those inhabiting tree trunks. Supranivean fauna is characterized by lower species diversity than the subnivean fauna. The activity of ground beetles decreases in late autumn, is lowest during mid-winter and increases in early spring. Carabidae are noted as an important food source in the diet of insectivorous mammals. They are also predators, hunting small winter active invertebrates.

  18. Diversity and abundance of dung beetles (Coleoptera: Scaraebidae) at several different ecosystem functions in Peninsular Malaysia

    Science.gov (United States)

    Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah; Hazmi, Izfa Riza

    2015-09-01

    Dung beetles has known for its bioindicator characteristic. Sensitive towards forest disturbance, dung beetles population and diversity will be less in disturbed and modified area. The objective of this study is to evaluate the diversity and distribution of dung beetles in different type of ecosystems in Peninsular Malaysia. Fifteen baited pitfall traps aligned in three transects were used in this study. Samples were collected after 24 h and repeated three time collections and identified afterwards. Two ecosystem types were selected, which are forested and agricultural ecosystem (livestock and plantation). A total of 4249 individuals, 47 species, in 11 genera was successfully collected from all localities. The H' index for Fraser Hill, Langkawi, Bangi Reserve Forest, Selangor (HSB), Sungkai Reserve Forest, Perak (SRF), Chini Lake, Bera Lake, chicken farm, goat farm, Longan plantation, and palm oil plantation were 1.58, 1.74, 2.17, 2.63, 1.80, 1.52, 1.63, 0.46, 0.00 and 1.98 respectively.Forest ecosystem, SRF shows the highest abundance (1486 individuals) and diversity, while for agricultural ecosystem,palm oil plantation shows the highest with 273 individuals and 16 species. Based onDetrended Correspondence Analysis (DCA) shows two groups that separate forest ecosystem with the agricultural ecosystem, with palm oil is the nearest to the forest. Palm oil ecosystem can sustain a dung beetles population due to the area can provide the requirements for the dung beetles to survive, such as food which comes from local domestic cows, shade from sunlight provide by the palm oil trees, and ground cover from small plants and shrubs.Even though modified ecosystem should have lower diversity of dung beetles, but some factors must be measured as well in order to have a better point of view.

  19. Distribution of ground-dwelling beetles (Coleoptera) across a forest-clearcut ecotone in Wolong Natural Reserve, southwestern China

    Institute of Scientific and Technical Information of China (English)

    XIAO-DONG YU; TIAN-HONG LUO; JIAN YANG; HONG-ZHANG ZHOU

    2006-01-01

    The influence of edge effect on ground-dwelling beetles (Coleoptera) across a forest-clearcut ecotone was studied in Wolong Natural Reserve, southwestern China. During the field research, a total of 30 739 beetles were collected with pitfall traps along transects, which extending 100 m from the edge into the forest interior and 100 m into the clearcut. Of the collection, Carabidae comprised 92%, Staphylinidae 3%, Curculionidae 2%, and Tenebrionidae 2%, and these four families can be considered as abundant groups. Family richness, Shannon diversity and equitability display a significant decrease from forest interior, edge to clearcut. Based on the family composition and abundance, ground-dwelling beetles of the forest interior can be separated from those in the clearcut by Principal coordinate analysis ordination, and beetle assemblages in the forest edge were more similar to forest assemblages than to those found in the clearcut by cluster analysis. Seasonal dynamics of family richness showed a monotone peak in the middle season, with a highest value in the forest interior and a lowest value in the clearcut. Family abundance showed two peaks in the middle season, always with more individuals in the clearcut than in the forest interior or in the edge. Multiple linear regression analyses showed that the cover of shrub and fitter were the two most important factors in determining family richness, Shannon diversity, equitability and abundance. Our results show that the forest edge and clearcut have obviously different composition and diversity of ground-dwelling beetles from forest interior at the family level. However, more edges have been formed due to increasing forest fragmentation (clearcutting or logging), so it is necessary to preserve large and intact forest to protect the diversity of ground-dwelling beetles in Wolong Natural Reserve.

  20. Ground beetles from Sǎlaj county (Romania (coleoptera: carabidae

    Directory of Open Access Journals (Sweden)

    Kutasi Cs

    2016-01-01

    Full Text Available During a faunistical exploration of Sǎlaj county carried out in 2014 and 2015, 207 ground beetle (Carabidae species were recorded from the area. Considering the earlier literature data the total number of carabid species known from the county is 246. Carabus variolosus Fabricius, 1787 is a Natura 2000 species, Pterostichus bielzii Fuss, 1878 is a species endemic to the Western Apuseni Mountains. Further rare species from the area: Dromius quadraticollis A. Morawitz, 1862, Elaphropus parvulus (Dejean, 1831, Lebia marginata (Geoffroy, 1785, Ophonus ardosiacus (Lučnik, 1922, Trechus amplicollis Fairmaire, 1859.

  1. Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites.

    Science.gov (United States)

    Sipos, J; Hodecek, J; Kuras, T; Dolny, A

    2017-01-31

    Although ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.

  2. Toxicity of Monoterpene Structure, Diversity and Concentration to Mountain Pine Beetles, Dendroctonus ponderosae: Beetle Traits Matter More.

    Science.gov (United States)

    Reid, Mary L; Sekhon, Jagdeep K; LaFramboise, Lanielle M

    2017-03-03

    A high diversity of plant defenses may be a response to herbivore diversity or may be collectively more toxic than single compounds, either of which may be important for understanding insect-plant associations. Monoterpenes in conifers are particularly diverse. We tested the fumigant toxicity of four monoterpenes, alone and in combination, to mountain pine beetles, Dendroctonus ponderosae, in the context of the beetles' individual body traits. Chemical structures of tested monoterpene hydrocarbons had modest effects on beetle survival, mass loss, water content and fat content, with (R)-(+)-limonene tending to be more toxic than (-)-α-pinene, (-)-β-pinene, and (+)-3-carene. Monoterpene diversity (all qualitative combinations of one to four monoterpenes) did not affect toxicity. Concentration (0 to 1200 ppm) of individual monoterpenes was a strong determinant of toxicity. Beetle body size and body condition index strongly and positively affected survival during monoterpene treatments. Larger beetles in better condition lost proportionally less mass during exposure, where proportion mass loss negatively affected survivorship. Toxicity was much more associated with water loss than with fat loss, suggesting that a main cost of detoxification is excretion, a process that has received little attention. These results provide insight into the determinants of beetle success in historic and novel hosts that differ in monoterpene composition and concentration. We also suggest that water availability will affect beetle success directly through their ability to tolerate detoxification as well as indirectly through host responses to drought.

  3. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    Science.gov (United States)

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field.

  4. Ground beetle (Coleoptera: Carabidae) assemblages in conventional and diversified crop rotation systems.

    Science.gov (United States)

    O'Rourke, Megan E; Liebman, Matt; Rice, Marlin E

    2008-02-01

    Ground beetles (Coleoptera: Carabidae) are important in agro-ecosystems as generalist predators of invertebrate pests and weed seeds and as prey for larger animals. However, it is not well understood how cropping systems affect ground beetles. Over a 2-yr period, carabids were monitored two times per month using pitfall traps in a conventional chemical input, 2-yr, corn/soybean rotation system and a low input, 4-yr, corn/soybean/triticale-alfalfa/alfalfa rotation system. Carabid assemblages were largely dominated by a few species across all cropping treatments with Poecilus chalcites Say comprising >70% of pitfall catches in both years of study. Overall carabid activity density and species richness were higher in the low input, 4-yr rotation compared with the conventionally managed, 2-yr rotation. There were greater differences in the temporal activity density and species richness of carabids among crops than within corn and soybean treatments managed with different agrichemical inputs and soil disturbance regimes. Detrended correspondence analysis showed strong yearly variation in carabid assemblages in all cropping treatments. The increase in carabid activity density and species richness observed in the 4-yr crop rotation highlights the potential benefits of diverse crop habitats for carabids and the possibility for managing natural enemies by manipulating crop rotations.

  5. Occurrence of cavernicolous ground beetles in Anhui Province, eastern China (Coleoptera, Carabidae, Trechinae

    Directory of Open Access Journals (Sweden)

    Jie Fang

    2016-10-01

    Full Text Available Two new species of anophthalmic ground beetles belonging to the subfamily Trechinae are described: Cimmeritodes (Zhecimmerites parvus Tian & Li, sp. n. and Wanoblemus wui Tian & Fang, gen. n., sp. n. Both were discovered in the limestone caves of Anhui Province in eastern China. C. (Z. parvus was found in caves Ziwei Dong, Xianren Dong and Qingtai Dong, whereas W. wui was discovered in cave Baiyun Dong. This is the first record of cavernicolous ground beetles in Anhui Province, eastern China.

  6. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Directory of Open Access Journals (Sweden)

    Helena I Hanson

    Full Text Available In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  7. Changes in the phenology of the ground beetle Pterostichus madidus

    Institute of Scientific and Technical Information of China (English)

    Gabor Pozsgai; Nick A. Littlewood

    2011-01-01

    A growing body ofevidence shows that climate change can alter the phenology of plants and animals.In this study long-term data from the UK Environmental Change Network (ECN) were analyzed to investigate whether there has been a change in the phenology of the ground beetle Pterostichus madidus (Fabricius,1775).Pitfall trap data were available from 12 ECN sites across the United Kingdom,most of which have been in operation for more than 15 years.Weather and vegetation datasets were also utilized.Pitfall trap lines were categorized to eight vegetation types.Trend analysis over time was carried out first using all the available dates of capture events,then the datasets grouped by vegetation type and site.Shifts in high-activity periods were also analyzed.P.madidus appearance dates advanced significantly at seven sites and in five vegetation types.Peak activity advanced at two sites.At one site the timing of activity became significantly later.The last day of activity did not change significantly,supporting the theory that the cessation of the activity period is more likely to be controlled by photoperiod than temperature.The relationships between phenological variables and climatic factors were also investigated.However,no significant correlations were detected.These results demonstrate that between 1992 and 2008,phenology ofP madidus at seven sites from the eight analyzed has changed.Global warming may be driving these changes and future work will investigate underlying processes.

  8. Effects of Stand Types on the Community Diversity of Ground-Dwelling Beetles in the Invaded Regions of Eupatorium adenophorum Spreng.%林分类型对西昌紫茎泽兰入侵地地表甲虫群落的影响

    Institute of Scientific and Technical Information of China (English)

    亓东明

    2013-01-01

    The diversity of ground-dwelling beetles in 5 stand types from the suburbs of Xichang city was investigated with the bait-traps method.886 beetles' specimens were gathered and belonged to 15 families.The Geotrupidae,Rutelidae and Staphylinidae were the dominant groups whose individuals were the most.The number of individuals of ground-dwelling beetles was the highest in the Pinus yunnanensis forest among the five stand types (P<0.01).The study of diversity showed that the richness of the ground-dwelling in Pinus yunnanensis forest and the Cupressus funebris forest were significantly higher than that of the Quercus acutissima forest(P<0.05).The dominance and evenness of the 5 stand types had no significant difference.The diversity of the Pinus yunnanensis forest had very significant difference with the Abies sp.forest and Dodonaea viscose shrub (P<0.01).The study of similarity showed that most of the similarity was middling dissimilar and middling similar,but the similarity of the Abies sp.forest and shurb was significantly different.The results showed that the composition and individuals of the ground-dwelling beetles in the 5 stand types of the suburbs of Xichang city had significant difference with the natural pure forest.It was suggested to design stand rebuilding for the artificial pure forest to increase the biodiversity.%2010年7~9月主要采用巴氏罐诱法对四川西昌市郊紫茎泽兰入侵地5种类型林分的地表甲虫群落进行调查,共采集地表甲虫标本886份,隶属15科,其中粪金龟科、隐翅虫科和丽金龟科昆虫个体数量多,是西昌市郊林下地表甲虫的优势类群.云南松(Pinus yunnanensis)林林下地表甲虫个体数量极显著高于其他4种林分(P<0.01).多样性分析表明,云南松林与柏木(Cupressus funebris)林林下地表甲虫丰富度指数显著高于麻栎(Quercus acutissima)林(P<0.05).各林分类型地表甲虫优势度指数及均匀度指数差异不显著,柏木林优

  9. Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their response to laboratory rearing and antibiotic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Michael Lehman

    2008-06-01

    Ground beetles such as Poecilus chalcites (Coleoptera: Carabidae) are beneficial insects in agricultural systems where they contribute to the control of insect and weed pests. We assessed the complexity of bacterial communities occurring in the digestive tracts of field-collected P. chalcites using terminal restriction fragment length polymorphism analyses of polymerase chain reaction-amplified 16S rRNA genes. Bacterial identification was performed by the construction of 16S rRNA gene clone libraries and sequence analysis. Intestinal bacteria in field-collected beetles were then compared to those from groups of beetles that were reared in the lab on an artificial diet with and without antibiotics. Direct cell counts estimated 1.5 × 10S bacteria per milliliter of gut. The digestive tract of field-collected P. chalcites produced an average of 4.8 terminal restriction fragments (tRF) for each beetle. The most abundant clones were affiliated with the genus Lactobacillus, followed by the taxa Enterobacteriaceae, Clostridia, and Bacteriodetes. The majority of the sequences recovered were closely related to those reported from other insect gastrointestinal tracts. Lab-reared beetles produced fewer tRF, an average of 3.1 per beetle, and a reduced number of taxa with a higher number of clones from the family Enterobacteriaceae compared to the field-collected beetles. Antibiotic treatment significantly (p < 0.05) reduced the number of tRF per beetle and selected for a less diverse set of bacterial taxa. We conclude that the digestive tract of P. chalcites is colonized by a simple community of bacteria that possess autochthonous characteristics. Laboratory-reared beetles harbored the most common bacteria found in field-collected beetles, and these bacterial communities may be manipulated in the laboratory with the addition of antibiotics to the diet to allow study of functional roles.

  10. [Histological structure of tripartite mushroom bodies in ground beetles (Insecta, Coleoptera: Carabidae)].

    Science.gov (United States)

    Panov, A A

    2013-01-01

    Contrary to members of the suborder Polyphaga; ground beetles have been found to possess tripartite mushroom bodies, which are poorly developed in members of basal taxa and maximally elaborated in evolutionarily advanced groups. Nevertheless, they do not reach the developmental stage, which has been previously found in particular families of beetles. It has been pointed out that anew formation of the Kenyon cells occurs during at least the first months of adult life, and inactive neuroblasts are found even in one-year-old beetles. It has been suggested that there is a relation between the Kenyon cell number and development of the centers of Kenyon cell new-formation.

  11. Functional roles affect diversity-succession relationships for boreal beetles.

    Directory of Open Access Journals (Sweden)

    Heloise Gibb

    Full Text Available Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species. We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies. Species associated with microhabitats that accumulate with succession (fungi and dead wood thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  12. Urban forests sustain diverse carrion beetle assemblages in the New York City metropolitan area.

    Science.gov (United States)

    Fusco, Nicole A; Zhao, Anthony; Munshi-South, Jason

    2017-01-01

    Urbanization is an increasingly pervasive form of land transformation that reduces biodiversity of many taxonomic groups. Beetles exhibit a broad range of responses to urbanization, likely due to the high functional diversity in this order. Carrion beetles (Order: Coleoptera, Family: Silphidae) provide an important ecosystem service by promoting decomposition of small-bodied carcasses, and have previously been found to decline due to forest fragmentation caused by urbanization. However, New York City (NYC) and many other cities have fairly large continuous forest patches that support dense populations of small mammals, and thus may harbor relatively robust carrion beetle communities in city parks. In this study, we investigated carrion beetle community composition, abundance and diversity in forest patches along an urban-to-rural gradient spanning the urban core (Central Park, NYC) to outlying rural areas. We conducted an additional study comparing the current carrion beetle community at a single suburban site in Westchester County, NY that was intensively surveyed in the early 1970's. We collected a total of 2,170 carrion beetles from eight species at 13 sites along this gradient. We report little to no effect of urbanization on carrion beetle diversity, although two species were not detected in any urban parks. Nicrophorus tomentosus was the most abundant species at all sites and seemed to dominate the urban communities, potentially due to its generalist habits and shallower burying depth compared to the other beetles surveyed. Variation between species body size, habitat specialization, and % forest area surrounding the surveyed sites also did not influence carrion beetle communities. Lastly, we found few significant differences in relative abundance of 10 different carrion beetle species between 1974 and 2015 at a single site in Westchester County, NY, although two of the rare species in the early 1970's were not detected in 2015. These results indicate that

  13. Urban forests sustain diverse carrion beetle assemblages in the New York City metropolitan area

    Science.gov (United States)

    Fusco, Nicole A.; Zhao, Anthony

    2017-01-01

    Urbanization is an increasingly pervasive form of land transformation that reduces biodiversity of many taxonomic groups. Beetles exhibit a broad range of responses to urbanization, likely due to the high functional diversity in this order. Carrion beetles (Order: Coleoptera, Family: Silphidae) provide an important ecosystem service by promoting decomposition of small-bodied carcasses, and have previously been found to decline due to forest fragmentation caused by urbanization. However, New York City (NYC) and many other cities have fairly large continuous forest patches that support dense populations of small mammals, and thus may harbor relatively robust carrion beetle communities in city parks. In this study, we investigated carrion beetle community composition, abundance and diversity in forest patches along an urban-to-rural gradient spanning the urban core (Central Park, NYC) to outlying rural areas. We conducted an additional study comparing the current carrion beetle community at a single suburban site in Westchester County, NY that was intensively surveyed in the early 1970’s. We collected a total of 2,170 carrion beetles from eight species at 13 sites along this gradient. We report little to no effect of urbanization on carrion beetle diversity, although two species were not detected in any urban parks. Nicrophorus tomentosus was the most abundant species at all sites and seemed to dominate the urban communities, potentially due to its generalist habits and shallower burying depth compared to the other beetles surveyed. Variation between species body size, habitat specialization, and % forest area surrounding the surveyed sites also did not influence carrion beetle communities. Lastly, we found few significant differences in relative abundance of 10 different carrion beetle species between 1974 and 2015 at a single site in Westchester County, NY, although two of the rare species in the early 1970’s were not detected in 2015. These results indicate

  14. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    Science.gov (United States)

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  15. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  16. Effects of silvicultural operations in a Mississippi River bottomland hardwood forest on ground beetles in the genus Brachinus

    Science.gov (United States)

    Lynne C. Thompson; Brian Roy Lockhart

    2006-01-01

    Little information is available on how insects are affected by anthropogenic influences in the bottomland forests of the West Gulf Coastal Plain. This study investigates one genus of ground beetles that lives in managed forested landscapes to discover which species are positively and negatively influenced by human disturbances. Ground beetles (Carabidae) were collected...

  17. Dung Beetles along a Tropical Altitudinal Gradient: Environmental Filtering on Taxonomic and Functional Diversity

    Science.gov (United States)

    Nunes, Cássio Alencar; Braga, Rodrigo Fagundes; Figueira, José Eugênio Cortes; Neves, Frederico de Siqueira; Fernandes, G. Wilson

    2016-01-01

    Mountains provide an interesting context in which to study the many facets of biodiversity in response to macroclimate, since environmental conditions change rapidly due to elevation. Although the decrease in biodiversity with increasing elevation is generally accepted, our understanding of the variation of functional diversity along altitudinal gradients is still poorly known. The partitioning of diversity into spatial components can help to understand the processes that influence the distribution of species, and these studies are urgently needed in face of the increasing threats to mountain environments throughout the world. We describe the distribution of dung beetle diversity along an altitudinal gradient on a tropical mountain in southeastern Brazil, including the spatial partitioning of taxonomic and functional diversities. The altitudinal gradient ranged from 800 up to 1400 m a.s.l. and we collected dung beetles at every 100 m of altitude. We used the Rao Index to calculate γ, α and β diversity for taxonomic and functional diversity of dung beetles. Climatic, soil and vegetation variables were used to explain variation in community attributes along the altitudinal gradient. Dung beetle richness declined with altitude and was related to climatic and vegetation variables, but functional diversity did not follow the same pattern. Over 50% of γ taxonomic diversity was caused by among altitudes diversity (β), while almost 100% of functional diversity was due to the α component. Contrasting β taxonomic with β functional diversity, we suggest that there is ecological redundancy among communities and that the environment is filtering species in terms of the Grinnellian niche, rather than the Eltonian niche. β taxonomic diversity is caused mainly by the turnover component, reinforcing the hypothesis of environmental filtering. Global warming may have strong effects on mountain communities due to upslope range shifts and extinctions, and these events will

  18. Dung Beetles along a Tropical Altitudinal Gradient: Environmental Filtering on Taxonomic and Functional Diversity.

    Science.gov (United States)

    Nunes, Cássio Alencar; Braga, Rodrigo Fagundes; Figueira, José Eugênio Cortes; Neves, Frederico de Siqueira; Fernandes, G Wilson

    2016-01-01

    Mountains provide an interesting context in which to study the many facets of biodiversity in response to macroclimate, since environmental conditions change rapidly due to elevation. Although the decrease in biodiversity with increasing elevation is generally accepted, our understanding of the variation of functional diversity along altitudinal gradients is still poorly known. The partitioning of diversity into spatial components can help to understand the processes that influence the distribution of species, and these studies are urgently needed in face of the increasing threats to mountain environments throughout the world. We describe the distribution of dung beetle diversity along an altitudinal gradient on a tropical mountain in southeastern Brazil, including the spatial partitioning of taxonomic and functional diversities. The altitudinal gradient ranged from 800 up to 1400 m a.s.l. and we collected dung beetles at every 100 m of altitude. We used the Rao Index to calculate γ, α and β diversity for taxonomic and functional diversity of dung beetles. Climatic, soil and vegetation variables were used to explain variation in community attributes along the altitudinal gradient. Dung beetle richness declined with altitude and was related to climatic and vegetation variables, but functional diversity did not follow the same pattern. Over 50% of γ taxonomic diversity was caused by among altitudes diversity (β), while almost 100% of functional diversity was due to the α component. Contrasting β taxonomic with β functional diversity, we suggest that there is ecological redundancy among communities and that the environment is filtering species in terms of the Grinnellian niche, rather than the Eltonian niche. β taxonomic diversity is caused mainly by the turnover component, reinforcing the hypothesis of environmental filtering. Global warming may have strong effects on mountain communities due to upslope range shifts and extinctions, and these events will

  19. Enhancing floral diversity to increase the robustness of grassland beetle assemblages to environmental change

    OpenAIRE

    Woodcock, B. A.; Bullock, J.M.; Nowakowski, M.(Dept. de Fisica, Universidad de los Andes, Cra. 1E No. 18A-10, Santafe de Bogota, Colombia); Orr, R; Tallowin, J. R. B.; Pywell, R.F.

    2012-01-01

    Intensive grassland management has produced floristically species poor swards supporting a limited invertebrate fauna. Low cost seed mixtures can be used to increase floristic diversity and so diversify the food resource of phytophagous invertebrate. We quantify trophic links between plants and phytophagous beetles in grasslands established using three seed mixtures. Using food webs, we model secondary extinctions from the beetle communities caused by the loss of host-plants. Plant species we...

  20. Ground beetle (Coleoptera: Carabidae) assemblages in narrow hedgerows in a Danish agricultural landscape

    DEFF Research Database (Denmark)

    Lövei, G. L.; Magura, T.

    2015-01-01

    The role of hedgerows in supporting ground beetles (Coleoptera: Carabidae) in a Danish agricultural landscape was examined. Nine old, well established single-row hedges were selected for the study, three each of a native species (hawthorn, Crataegus monogyna), a non-native deciduous one (rowan...

  1. No increase in fluctuating asymmetry in ground beetles (Carabidae) as urbanisation progresses

    DEFF Research Database (Denmark)

    Elek, Zoltán; Lövei, Gabor L; Batki, Marton

    2014-01-01

    traits along an urbanisation gradient (forest - suburban forest - forest fragments in urban park) to test whether environmental stress created by urbanisation is reflected in FA. Ground beetles common along a Danish urbanisation gradient did not seem to indicate differences in habitat quality...

  2. Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution.

    Science.gov (United States)

    Stone, David; Jepson, Paul; Laskowski, Ryszard

    2002-05-01

    Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, P<0.001, respectively) compared with the reference site (OLK7). In addition, OLK3 females had significantly higher levels of CaE compared with the reference beetles (P=0.01). Male beetles did not differ in enzyme activity along the metal gradient. Overall, obvious trends in detoxification enzymes were not detected in ground beetles in association with metal body burdens.

  3. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    Science.gov (United States)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    Under natural conditions, river channels and floodplains are shaped by flow and sediment regime and are one of the most dynamic ecosystems. At present, European river floodplains are among the most endangered landscapes due to human modifications to river systems, including channel regulation and floodplain urbanization, and land use changes in the catchments. Situated in a transition zone between terrestrial and aquatic environments, exposed riverine sediments (ERS) play a key role in the functioning of riverine ecosystems. This study aimed to verify whether the bare granular substrate is the only factor responsible for sustaining the biota associated with ERS or the inundation frequency also plays a role, modifying the potential of particular species to colonize these habitats. Ground beetles (Col. Carabidae) were selected as the investigated group of organisms and the study was carried out in Porębianka, a Polish Carpathian stream flowing through both unconstrained channel sections and sections with varied channelization schemes (rapid hydraulic structures, concrete revetments or rip-rap of various age). In each of the distinguished channel types, four replicates of 10 pitfall traps were established in three rows varying in distance to the mean water level (at three different benches). Almost 7000 individuals belonging to 102 species were collected on 60 plots. Forward selection of redundancy analysis revealed four factors significantly describing the variation in ground beetle species data: bank modification, potential bankfull discharge, frequency of inundation and plant height. Most of the biggest species were ordered at the positive site of first axis having the highest values of periods between floods. Total biomass of ground beetles and mean biomass of individuals differed significantly between sites of various frequency of inundation, whereas the variation in abundance and species richness of ground beetles was independent of the river dynamics. The body

  4. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  5. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  6. Mimics here and there, but not everywhere: Müllerian mimicry in Ceroglossus ground beetles?

    Science.gov (United States)

    Muñoz-Ramírez, Carlos P; Bitton, Pierre-Paul; Doucet, Stéphanie M; Knowles, Lacey L

    2016-09-01

    The ground beetle genus Ceroglossus contains co-distributed species that show pronounced intraspecific diversity in the form of geographical colour morphs. While colour morphs among different species appear to match in some geographical regions, in others, there is little apparent colour matching. Mimicry is a potential explanation for covariation in colour patterns, but it is not clear whether the degree of sympatric colour matching is higher than expected by chance given the obvious mismatches among morphs in some regions. Here, we used reflectance spectrometry to quantify elytral coloration from the perspective of an avian predator to test whether colour similarity between species is, indeed, higher in sympatry. After finding no significant phylogenetic signal in the colour data, analyses showed strong statistical support for sympatric colour similarity between species despite the apparent lack of colour matching in some areas. We hypothesize Müllerian mimicry as the responsible mechanism for sympatric colour similarity in Ceroglossus and discuss potential explanations and future directions to elucidate why mimicry has not developed similar levels of interspecific colour resemblance across space.

  7. Eurajoki Olkiluoto study on species of ground beetles and ants 2008

    Energy Technology Data Exchange (ETDEWEB)

    Santaharju, J.; Helminen, S.-L.; Yrjoelae, R. (Environmental Research Yrjoelae Ltd, Helsinki (Finland))

    2009-02-15

    The species of ants and Ground beetles at Olkiluoto in Eurajoki were studied in the summer of 2008 during two trapping periods: in June and August. The research goal was to clarify the species on Olkiluoto island of the earlier mentioned groups, at least at the family level, and to collect samples for further examination by Posiva. The trapping areas were selected at Olkiluoto in Posiva test monitoring sectors, a part of the trapping areas was the same as the earlier study. Species of ants, depending on their particular species, are a very dominating group of insects. The ants are the most important predators, scavengers and soil movers in Finnish forests. It looks as if the biomass of ants may be more than 10% of the biomass of all animals in certain areas of Finnish forests. In Finland there are about 60 species of ants that have been observed. They have been divided into four sub-groups, which are Myrmicinae, Formicinae, Ponerinae and Dolichoderinae. In Finland there are close to 300 species of ground beetles (Carabidae), which are divided into dozens of different families. The species, to a great extent, consist mostly of predatory insects that prey on microbes in field layers, but a part of them are specialized in feeding on flora. Ground beetles are usually divided into three groups according to their choice of habitat: Species that favour open biotopes, species that favour forests, and generalist species that can thrive in a variety of environments. Ground beetles also reflect changes in their living environment, and possibly they can be significant as socalled bio-indicators. Pitfall traps were used as the method of research. The preservative fluid used was ethanol (50%) with dishwashing liquid to remove surface tension. The points were located in various different biotopes in fields, meadows and forests. The data collected was defined as a minimum for the family level of Ground beetles and for ants to the species or species pairs. The species of Ground

  8. Contrasting diversity dynamics of phoretic mites and beetles associated with vertebrate carrion.

    Science.gov (United States)

    Barton, Philip S; Weaver, Haylee J; Manning, Adrian D

    2014-05-01

    Carrion is an ephemeral and nutrient-rich resource that attracts a diverse array of arthropods as it decomposes. Carrion-associated mites often disperse between animal carcasses using phoresy, the transport of one species by another. Yet few studies have contrasted the dynamics of mite assemblages with other insect taxa present at carrion. We examined and compared the changes in abundance, species richness and composition of mite and beetle assemblages sampled at kangaroo carcasses in a grassy eucalypt woodland at four different times over a 6-month period. We found that the majority of mites were phoretic, with the mesostigmatid genera Uroseius (Uropodidae), Macrocheles (Macrochelidae) and Parasitus (Parasitidae) the most abundant taxa (excluding astigmatid mites). Abundance and richness patterns of mites and beetles were very different, with mites reaching peak abundance and richness at weeks 6 and 12, and beetles at weeks 1 and 6. Both mites and beetles showed clear successional patterns via changes in species presence and relative abundance. Our study shows that mesostigmatid mite assemblages have a delay in peak abundance and richness relative to beetle assemblages. This suggests that differences in dispersal and reproductive traits of arthropods may contribute to the contrasting diversity dynamics of carrion arthropod communities, and further highlights the role of carrion as a driver of diversity and heterogeneity in ecosystems.

  9. Copro-necrophagous beetle (Coleoptera: Scarabaeidae) diversity in an agroecosystem in Yucatan, Mexico.

    Science.gov (United States)

    Reyes Novelo, Enrique; Delfín-González, Hugo; Angel Morón, Miguel

    2007-03-01

    Scarabaeinae are sensitive to structural habitat changes caused by disturbance. We compared copronecrophagous beetle (Scarabaeinae) community structure in three differently managed zones within an agroeco-system of the northern Yucatan Peninsula, Mexico. We placed dung and carrion traps once a month from June 2004 through May 2005. The beetle community included 17 species from the genera Canthon, Canthidium, Deltochilum, Pseudocanthon, Malagoniella, Onthophagus, Phanaeus, Copris, Uroxys, Sisyphus and Ateuchus. The secondary vegetation had a higher beetle diversity than the other two zones. Species richness was highest in the Brosimum alicastrum plantation. The pasture had the lowest species diversity and richness, but exhibited the highest abundance of Scarabaeinae in the dry season. The two zones with extensive tree cover were the most diverse. Roller beetles were dominant over burrower species and small-sized species outnumbered large species. Our data show two important issues: beetle species in the pasture extended their activity to the beginning of the dry season, while abundances dropped in the other, unirrigated zones; and the possibility that the Scarabaeinae living in neotropical forests are opportunistic saprophages and have specialized habits for resources other than dung. The B. alicastrum plantation is beneficial to the entire ranch production system because it functions as a dispersion and development area for stenotopic species limited to tree cover.

  10. Initial Study of the Ground Beetles (Coleoptera: Carabidae and Other Invertebrates from “Leshnitsa” Nature Reserve(Central Stara Planina Mountains, Bulgaria

    Directory of Open Access Journals (Sweden)

    Teodora M. Teofilova

    2016-06-01

    Full Text Available The invertebrate fauna of the “Leshnitsa” nature reserve was studied, with particular consideration to the ground beetles. During the study altogether 394 specimens of carabid beetlesbelonging to 32 species and subspecies were captured, as well as 23 other invertebrate species,some of which are with a conservation significance (protected, Bulgarian and Balkan endemics.Ground beetles were characterized and classified according to their zoogeographical belonging,degree of endemism and the life forms they refer to. Threats for the invertebrate fauna and negativefactors of anthropogenic origin were determined and measures for diminishing of their effect wereproposed. So far the invertebrate fauna in this part of the mountain has been insufficiently studied.The real state of the diversity of this group in the area will be revealed only after futureinvestigations and discovery of additional new species for the region.

  11. Tree diversity mediates the distribution of longhorn beetles (Coleoptera: Cerambycidae in a changing tropical landscape (southern Yunnan, SW China.

    Directory of Open Access Journals (Sweden)

    Ling-Zeng Meng

    Full Text Available LONGHORN BEETLES (COLEOPTERA: Cerambycidae have been used to identify sites of high biological diversity and conservation value in cultivated landscapes, but were rarely studied in changing landscapes of humid tropics. This study was conducted in a region of southern Yunnan, China, which was dominated by natural rainforest until 30 years ago, but is successively transformed into commercial rubber monoculture plantations since that time. The objectives were to investigate longhorn beetle species diversity and distribution in the major land use types of this landscape and to estimate the effects of an expected expansion of rubber plantations on the longhorn beetle assemblages. The results showed that tree species diversity (181 species in total and longhorn beetle diversity (220 species in total were closely related with no significant differences between the tree and longhorn beetles assemblages shown by similarity distance analysis. There was a highly positive relationship between the estimated species richness of longhorn beetles and the number of tree species. Individual numbers of longhorn beetles and trees were also highly positive related at the sampling sites. Non-metric multidimensional scaling revealed that the degree of canopy coverage, succession age and tree diversity explained 78.5% of the total variation in longhorn beetle assemblage composition. Natural forest sites had significantly higher numbers of species and individuals than any other type of habitat. Although young rubber plantations bear the highest longhorn beetle diversity outside forests (half of the total number of longhorn beetle species recorded in total, they can not provide permanent habitats for most of these species, because they develop into closed canopy plantations with less suitable habitat conditions. Therefore, along with an expected expansion of rubber cultivation which largely proceeds at the expense of forest areas, the habitat conditions for longhorn

  12. The history of endemic Iberian ground beetle description (Insecta, Coleoptera, Carabidae): which species were described first?

    Science.gov (United States)

    Jiménez-Valverde, Alberto; Ortuño, Vicente M.

    2007-01-01

    iological correlates of species description dates can be used to predict the characteristics of yet-to-be-described species. Such information can be useful in the planning of biodiversity field surveys. This paper explores the influence of five factors—body size, geographic range size, geographic location, habitat and number of congeners—on the probability of description of endemic Iberian ground-beetles, and attempts to identify the effects of each factor, alone or in combination, through variation partitioning. Small-bodied and hypogean species were found to have been described later, as were those with smaller geographic ranges, while the number of congeners did not significantly affect description date. Additionally, Eastern hypogean species were described earlier than Western ones because of major lithology differences from east to west in the Iberian Peninsula, and concomitant geographic taxonomic bias. However, effects of each factor alone are quite small in comparison with effects of the combination of factors, due to their considerable correlation. Thus, "rarity", in its broadest sense, has been the determining factor of date of description of endemic Iberian ground-beetles. Previously, the technical difficulty encountered in the study of rare species retarded their description, whereas now they have become a "fashionable" object of study among carabidologists, due to the possibility of rapid publication. In order to improve the incomplete checklist of Iberian ground beetles it would be necessary to focus sampling efforts on marginal habitats and hypogean fauna.

  13. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles

    DEFF Research Database (Denmark)

    Hortal, Joaquín; Diniz-Filho, José Alexandre F.; Bini, Luis Mauricio;

    2011-01-01

    Current climate and Pleistocene climatic changes are both known to be associated with geographical patterns of diversity. We assess their associations with the European Scarabaeinae dung beetles, a group with high dispersal ability and well-known adaptations to warm environments. By assessing...

  14. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    Science.gov (United States)

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  15. Scale-dependence of processes structuring dung beetle metacommunities using functional diversity and community deconstruction approaches.

    Science.gov (United States)

    Silva, Pedro Giovâni da; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  16. An unprecedented role reversal: ground beetle larvae (Coleoptera: Carabidae lure amphibians and prey upon them.

    Directory of Open Access Journals (Sweden)

    Gil Wizen

    Full Text Available Amphibians often feed on beetle larvae, including those of ground beetles (Carabidae. Preliminary reports have detailed an unusual trophic interaction in which, in contrast, larvae of the ground beetle Epomis prey upon juvenile and adult amphibians. While it is known that these larvae feed exclusively on amphibians, how the predator-prey encounter occurs to the advantage of the beetle larvae had been unknown to date. Using laboratory observations and controlled experiments, we recorded the feeding behavior of Epomis larvae, as well as the behavior of their amphibian prey. Here we reveal that larvae of two species of Epomis (E. circumscriptus and E. dejeani lure their potential predator, taking advantage of the amphibian's predation behavior. The Epomis larva combines a sit-and-wait strategy with unique movements of its antennae and mandibles to draw the attention of the amphibian to the presence of a potential prey. The intensity of this enticement increases with decreasing distance between the larva and the amphibian. When the amphibian attacks, the larva almost always manages to avoid the predator's protracted tongue, exploiting the opportunity to attach itself to the amphibian's body and initiate feeding. Our findings suggest that the trophic interaction between Epomis larvae and amphibians is one of the only natural cases of obligatory predator-prey role reversal. Moreover, this interaction involves a small insect larva that successfully lures and preys on a larger vertebrate. Such role reversal is exceptional in the animal world, extending our perspective of co-evolution in the arms race between predator and prey, and suggesting that counterattack defense behavior has evolved into predator-prey role reversal.

  17. Negative impacts of human land use on dung beetle functional diversity.

    Directory of Open Access Journals (Sweden)

    Felipe Barragán

    Full Text Available The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (20 ha. Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed.

  18. Negative impacts of human land use on dung beetle functional diversity.

    Science.gov (United States)

    Barragán, Felipe; Moreno, Claudia E; Escobar, Federico; Halffter, Gonzalo; Navarrete, Dario

    2011-03-23

    The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (20 ha). Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed.

  19. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, Agnieszka J., E-mail: a.bednarska@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland)

    2009-05-15

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  20. Winklerites serbicus, a new endogean species of ground beetles (Coleoptera: Carabidae: Bembidiini from southeastern Serbia

    Directory of Open Access Journals (Sweden)

    Ćurčić S.

    2013-01-01

    Full Text Available A new endogean bembidiine ground beetle species, Winklerites serbicus sp. n., from a cave in the southeastern part of Serbia is both described and diagnosed. Male and female genital structures and other taxonomically important characters are illustrated. The new species is clearly distinct from its closest congeners. Fifteen species of the genus so far known are arranged in six groups. The new species is both endemic and relict, inhabiting southeastern Serbia only. [Projekat Ministarstva nauke Republike Srbije, br. 173038 i br. 47007

  1. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators.

    Science.gov (United States)

    Shearin, A F; Reberg-Horton, S C; Gallandt, E R

    2007-10-01

    Ground beetles are well known as beneficial organisms in agroecosystems, contributing to the predation of a wide range of animal pests and weed seeds. Tillage has generally been shown to have a negative effect on ground beetles, but it is not known whether this is because of direct mortality or the result of indirect losses resulting from dispersal caused by habitat deterioration. In 2005, field experiments measured direct, tillage-induced mortality, of four carabid weed seed predators, Harpalus rufipes DeGeer, Agonum muelleri Herbst, Anisodactylus merula Germar, and Amara cupreolata Putzeys, and one arthropod predator, Pterostichus melanarius Illiger, common to agroecosystems in the northeastern United States. Three tillage treatments (moldboard plow, chisel plow, and rotary tillage) were compared with undisturbed controls at two sites (Stillwater and Presque Isle) and at two dates (July and August) in Maine. Carabid activity density after disturbance was measured using fenced pitfall traps installed immediately after tillage to remove any effects of dispersal. Rotary tillage and moldboard plowing reduced weed seed predator activity density 52 and 54%, respectively. Carabid activity density after chisel plowing was similar to the undisturbed control. This trend was true for each of the weed seed predator species studied. However, activity density of the arthropod predator P. melanarius was reduced by all tillage types, indicating a greater sensitivity to tillage than the four weed seed predator species. These results confirm the need to consider both direct and indirect effects of management in studies of invertebrate seed predators.

  2. Seed Detection and Discrimination by Ground Beetles (Coleoptera: Carabidae) Are Associated with Olfactory Cues.

    Science.gov (United States)

    Kulkarni, Sharavari S; Dosdall, Lloyd M; Spence, John R; Willenborg, Christian J

    2017-01-01

    Olfactory ability is an element of fitness in many animals, guiding choices among alternatives such as mating partners or food. Ground beetles (Coleoptera; Carabidae), exhibit preferences for prey, and some species are well-known weed seed predators. We used olfactometer-based bioassays to determine if olfactory stimuli are associated with detection of Brassica napus L., Sinapis arvensis L., and Thlaspi arvense L. seeds by ground beetles characteristic of agroecosystems, and whether behavioural responses to seed odors depended on seed physiological state (imbibed or unimbibed). Imbibed B.napus seeds were preferred over other weed species by two of the three carabid species tested. Only A. littoralis responded significantly to unimbibed seeds of B. napus. Sensitivity to olfactory cues appeared to be highly specific as all carabid species discriminated between the olfactory cues of imbibed brassicaceous weed seeds, but did not discriminate between weed seeds that were unimbibed. Overall, our data suggest that depending on seed physiological state, odours can play an important role in the ability of carabids to find and recognize seeds of particular weed species.

  3. Diversity and distribution of polyphagan water beetles (Coleoptera in the Lake St Lucia system, South Africa

    Directory of Open Access Journals (Sweden)

    Matthew S. Bird

    2017-02-01

    Full Text Available Water beetles belonging to the suborder Polyphaga vary greatly in larval and adult ecologies, and fulfil important functional roles in shallow-water ecosystems by processing plant material, scavenging and through predation. This study investigates the species richness and composition of aquatic polyphagan assemblages in and around the St Lucia estuarine lake (South Africa, within the iSimangaliso Wetland Park, a UNESCO World Heritage Site. A total of 32 sites were sampled over three consecutive collection trips between 2013 and 2015. The sites encompassed a broad range of aquatic habitats, being representative of the variety of freshwater and estuarine environments present on the St Lucia coastal plain. Thirty-seven polyphagan taxa were recorded during the dedicated surveys of this study, in addition to seven species-level records from historical collections. Most beetles recorded are relatively widespread Afrotropical species and only three are endemic to South Africa. Samples were dominated by members of the Hydrophilidae (27 taxa, one of which was new to science (Hydrobiomorpha perissinottoi Bilton, 2016. Despite the fauna being dominated by relatively widespread taxa, five represent new records for South Africa, highlighting the poor state of knowledge on water beetle distribution patterns in the region. Wetlands within the dense woodland characterising the False Bay region of St Lucia supported a distinct assemblage of polyphagan beetles, whilst sites occurring on the Eastern and Western Shores of Lake St Lucia were very similar in their beetle composition. In line with the Afrotropical region as a whole, the aquatic Polyphaga of St Lucia appear to be less diverse than the Hydradephaga, for which 68 species were recorded during the same period. However, the results of the present study, in conjunction with those for Hydradephaga, show that the iSimangaliso Wetland Park contains a high beetle diversity. The ongoing and future ecological

  4. Diversity and distribution of polyphagan water beetles (Coleoptera) in the Lake St Lucia system, South Africa

    Science.gov (United States)

    Bird, Matthew S.; Bilton, David T.; Perissinotto, Renzo

    2017-01-01

    Abstract Water beetles belonging to the suborder Polyphaga vary greatly in larval and adult ecologies, and fulfil important functional roles in shallow-water ecosystems by processing plant material, scavenging and through predation. This study investigates the species richness and composition of aquatic polyphagan assemblages in and around the St Lucia estuarine lake (South Africa), within the iSimangaliso Wetland Park, a UNESCO World Heritage Site. A total of 32 sites were sampled over three consecutive collection trips between 2013 and 2015. The sites encompassed a broad range of aquatic habitats, being representative of the variety of freshwater and estuarine environments present on the St Lucia coastal plain. Thirty-seven polyphagan taxa were recorded during the dedicated surveys of this study, in addition to seven species-level records from historical collections. Most beetles recorded are relatively widespread Afrotropical species and only three are endemic to South Africa. Samples were dominated by members of the Hydrophilidae (27 taxa), one of which was new to science (Hydrobiomorpha perissinottoi Bilton, 2016). Despite the fauna being dominated by relatively widespread taxa, five represent new records for South Africa, highlighting the poor state of knowledge on water beetle distribution patterns in the region. Wetlands within the dense woodland characterising the False Bay region of St Lucia supported a distinct assemblage of polyphagan beetles, whilst sites occurring on the Eastern and Western Shores of Lake St Lucia were very similar in their beetle composition. In line with the Afrotropical region as a whole, the aquatic Polyphaga of St Lucia appear to be less diverse than the Hydradephaga, for which 68 species were recorded during the same period. However, the results of the present study, in conjunction with those for Hydradephaga, show that the iSimangaliso Wetland Park contains a high beetle diversity. The ongoing and future ecological protection

  5. Does selective logging change ground-dwelling beetle assemblages in a subtropical broad-leafed forest of China?

    Science.gov (United States)

    Yu, Xiao-Dong; Liu, Chong-Ling; Lü, Liang; Bearer, Scott L; Luo, Tian-Hong; Zhou, Hong-Zhang

    2017-04-01

    Selective logging with natural regeneration is advocated as a near-to-nature strategy and has been implemented in many forested systems during the last decades. However, the efficiency of such practices for the maintenance of forest species are poorly understood. We compared the species richness, abundance and composition of ground-dwelling beetles between selectively logged and unlogged forests to evaluate the possible effects of selective logging in a subtropical broad-leafed forest in southeastern China. Using pitfall traps, beetles were sampled in two naturally regenerating stands after clearcuts (ca. 50 years old, stem-exclusion stage: selectively logged 20 years ago) and two mature stands (> 80 years old, understory re-initiation stage: selectively logged 50 years ago) during 2009 and 2010. Overall, selective logging had no significant effects on total beetle richness and abundance, but saproxylic species group and some abundant forest species significantly decreased in abundance in selectively logged plots compared with unlogged plots in mature stands. Beetle assemblages showed significant differences between selectively logged and unlogged plots in mature stands. Some environmental characteristics associated with selective logging (e.g., logging strategy, stand age, and cover of shrub and moss layers) were the most important variables explaining beetle assemblage structure. Our results conclude that selective logging has no significant impacts on overall richness and abundance of ground-dwelling beetles. However, the negative effects of selective logging on saproxylic species group and some unlogged forest specialists highlight the need for large intact forested areas for sustaining the existence of forest specialist beetles.

  6. A nonlinear relationship between genetic diversity and productivity in a polyphagous seed beetle.

    Science.gov (United States)

    Burls, K J; Shapiro, J; Forister, M L; Hoelzer, G A

    2014-05-01

    There has been a renewed interest in the effects of genetic diversity on population-level and community-level processes. Many of these studies have found non-additive, positive effects of diversity, but these studies have rarely examined ecological mechanisms by which diverse populations increase productivity. We used the seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) to study genetic diversity in insect host preference and fecundity and its effects on total productivity and resource use. We created genetically distinct lineages that varied in host preference and fecundity and then assembled groups consisting of one, three, five, or all ten lineages. We found that lineages with intermediate diversity had the highest productivity, though resource use did not change in diverse groups. In addition, lineages showed substantial plasticity in host preference when preference was assayed either individually or in groups, and productivity was much lower in groups than predicted by individual assays. These results highlight the interplay of genetic diversity, resource variation, and phenotypic plasticity in determining the ecological consequences of genetic diversity. In addition, when plasticity modifies a population's response to population density, this may create a complex interaction between genetic diversity and density, influencing selective pressures on the population and potentially maintaining genetic diversity across generations.

  7. Soil management system in hazelnut groves (Corylus sp. versus the presence of ground beetles (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Nietupski Mariusz

    2015-01-01

    Full Text Available Sustaining biodiversity as well as taking advantage of the natural environment’s resistance are the key elements which should be considered when designing integrated plans for the protection of hazelnut groves. An effort has been made in this study to analyse the impact of different soil cultivation methods in hazelnut groves, on the species composition and number of individuals in carabid assemblages (Coleoptera: Carabidae. Another aim was to determine which method of inter-row soil management had the least negative effect on assemblages of these beetles. Because of the type of habitat, the xerothermic species characteristic for southeastern Europe, i.e. Calathus ambiguus, Poecilus lepidus, Harpalus calceatus, and H. griseus, were the most numerous. The qualitative and quantitative analysis of the captured individuals implied that the optimal soil tillage system in young hazelnut groves is when soil is kept fallow with machines or chemicals, or when soil is covered with manure. The least favourable practice for the appearance of ground beetles of the Carabidae family is the use of polypropylene fabric, bark or sawdust, to cover soil

  8. How Does Dung Beetle (Coleoptera: Scarabaeidae) Diversity Vary Along a Rainy Season in a Tropical Dry Forest?

    Science.gov (United States)

    Novais, Samuel M. A.; Evangelista, Lucas A.; Reis-Júnior, Ronaldo; Neves, Frederico S.

    2016-01-01

    Dung beetle community dynamics are determined by regional rainfall patterns. However, little is known about the temporal dynamics of these communities in tropical dry forests (TDFs). This study was designed to test the following predictions: 1) Peak diversity of dung beetle species occurs early in the wet season, with a decrease in diversity (α and β) and abundance throughout the season; 2) Nestedness is the primary process determining β-diversity, with species sampled in the middle and the end of the wet season representing subsets of the early wet season community. Dung beetles were collected in a TDF in the northern Minas Gerais state, Brazil over three sampling events (December 2009, February and April 2010). We sampled 2,018 dung beetles belonging to 39 species and distributed among 15 genera. Scarabaeinae α-diversity and abundance were highest in December and equivalent between February and April, while β-diversity among plots increased along the wet season. The importance of nestedness and species turnover varies between pairs of sample periods as the main process of temporal β-diversity. Most species collected in the middle and end of the wet season were found in greater abundance in early wet season. Thus, the dung beetle community becomes more homogeneous at the beginning of the wet season, and as the season advances, higher resource scarcity limits population size, which likely results in a smaller foraging range, increasing β-diversity. Our results demonstrate high synchronism between the dung beetle life cycle and seasonality of environmental conditions throughout the wet season in a TDF, where the onset of rains determines adult emergence for most species. PMID:27620555

  9. On some new cave-dwelling ground beetles (Coleoptera: Carabidae: Trechini from eastern Serbia

    Directory of Open Access Journals (Sweden)

    Vrbica Maja

    2013-01-01

    Full Text Available The following new cavernicolous ground beetle taxa are described from three caves in eastern Serbia: Duvalius (Paraduvalius trifunovici sp. n., from the Mandina Pećina Cave, village of Zlot, near Bor, Kučajske Planine Mts., D. (P. rtanjensis sp. n., from the Golema Porica Pit, Mt. Rtanj, and Glabroduvalius gen. n., G. tupiznicensis sp. n., from the Gornja Lenovačka Pećina Cave, village of Lenovac, near Zaječar, Mt. Tupižnica. The new taxa are easily distinguished from related organisms. All important morphological features have been listed, along with the diagnoses and illustrations of the taxa. The new taxa are relicts and endemics of eastern Serbia and probably belong to old phyletic lineages of Tertiary or even pre-Tertiary origin. [Projekat Ministarstva nauke Republike Srbije, br. 173038, br. 43001 i br. 43002

  10. Three new cave-dwelling trechine ground beetles from eastern and southeastern Serbia (Coleoptera: Carabidae: Trechinae

    Directory of Open Access Journals (Sweden)

    Ćurčić S.B.

    2014-01-01

    Full Text Available Three new troglobitic trechine ground beetle species are described from three caves in eastern and southeastern Serbia: Duvalius (Paraduvalius bogovinae sp. n., from the Bogovinska Pećina Cave, village of Bogovina, Kučajske Planine Mts., near Boljevac, eastern Serbia; D. (P. milutini sp. n., from the Samar cave system, village of Kopajkošara, Mt. Kalafat, near Svrljig, southeastern Serbia, and D. (P. beljanicae sp. n., from the Velika Atula Cave, village of Strmosten, Mt. Beljanica, near Despotovac, eastern Serbia. The new species are easily distinguished from relatives. All important morphological features, along with the diagnoses and illustrations of the new taxa are presented. The new species are relicts and endemics of eastern and southeastern Serbia. They probably belong to old phyletic lineages of Tertiary or even pre-Tertiary origin. [Projekat Ministarstva nauke Republike Srbije, br. 173038

  11. Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanisation gradient in Denmark

    Science.gov (United States)

    Elek, Zoltán; Lövei, Gábor L.

    2007-07-01

    The responses of ground beetles to an urbanisation gradient (forest-suburban area-urban park) were studied in and near Sorø, South Zealand, Denmark, during April-October 2004. The average number of species per trap did not differ significantly among the three urbanisation stages. The average number of forest species was significantly higher in the forest area (6.2 species/trap) than in either the suburban (4.12 spp/trap) or the urban (3.7 spp/trap) areas. Both the number of open-habitat species (1.8 spp/trap), and the generalist species (2.3 spp/trap) were highest in the urban area. The number of predaceous species was highest in the forest area (8.1 spp/trap), while the number of omnivorous species was highest in the urban area (0.9 spp/trap). Multivariate statistical procedures (NMDS, Sorensen similarity index) also confirmed that species composition changed remarkably along the forest-suburban-urban gradient. The highest number of species (S = 37) was found at the urban area, deviating from trends at other northern hemisphere sites (Canada, Finland) where the overall species richness was highest at the forest habitats. Urban green areas, including forest patches contribute to the quality of urban life and thus should be conserved. Apart from their recreational value, which is widely appreciated and enjoyed by human inhabitants, such green urban spaces provide seemingly adequate habitat for numerous species of ground beetles found in less developed forest areas some distance from the city core.

  12. Aquatic beetles of the alpine lakes: diversity, ecology and small-scale population genetics

    Directory of Open Access Journals (Sweden)

    Čiamporová-Zaovičová Z.

    2011-11-01

    Full Text Available In this study, we summarize water beetle fauna of the alpine lakes and ponds of the Tatra Mountains. The literature and recent data were used to assess species diversity. Out of around 95 studied alpine water bodies, beetles were found in 61. Altogether, 54 taxa from six families were identified. The different altitudinal zones and lake areas were compared with species richness and species incidence concerning the sites sampled. Besides faunistics, some ecological notes on Agabus bipustulatus are provided. The seasonal dynamics of this species is influenced by its life cycle. The larvae and adults comprised a regular part of the samples during the whole period of the study with a decrease in density from June to the late fall. During the summer and the early fall, fast growth of the larvae was observed. The adults reached their abundance peak in September–October. For the first time, analysis is provided of the genetic diversity of the macroinvertebrate species of the alpine lakes. We used a 345bp fragment of cytochrome b in two dytiscids, Agabus bipustulatus and A. guttatus. Seven and eight haplotypes were identified, respectively, with slightly different distribution patterns of genetic diversity across the study area in both species. A high proportion of the lakes was characterized by a single haplotype and the majority of the haplotypes were restricted to only one of the sampled valleys.

  13. Parasitism of Ground Beetles (Coleoptera: Carabidae) by a New Species of Hairworm (Nematomorpha: Gordiida) in Arctic Canada.

    Science.gov (United States)

    Ernst, Crystal M; Hanelt, Ben; Buddle, Christopher M

    2016-06-01

    The host-parasite associations between ground beetles (Coleoptera: Carabidae) and hairworms (Nematomorpha: Gordiida) collected from the Arctic (an understudied and ecologically important region) is described. Carabids and their parasites were collected from 12 sites spanning the 3 northernmost ecoclimatic zones of Canada (north boreal, subarctic, and high Arctic) using standardized methods. The beetles and hairworms were identified using traditional morphological approaches. Seven beetle species are recorded as hosts: Amara alpina, Pterostichus caribou, Pterostichus brevicornis, Pterostichus tareumiut, Pterostichus haematopus, Patrobus septentrionis, and Notiophilus borealis. All represent new host records (increasing the known North American host list from 14 to 21), and this is the first record of hairworm infection in the genus Notiophilus. Beetles from Banks Island, Northwest Territory, were infected in high numbers (11-19% per sampling period) and were used as an ecological case study. There was no significant relationship between infection status and host species, body size, or sex. Beetles collected in yellow pan traps and in wet habitats were more likely to be infected, likely due to water-seeking behavior induced by the parasites. Morphological examinations indicate that the hairworms collected from all locations represent a single, new species of Gordionus, making it only the sixth hairworm species and the third species of that genus found in Canada. Hosts are unknown for all other Canadian (and 1 Alaskan) Gordionus species.

  14. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae using nuclear rDNA expansion segments and DNA barcodes

    Directory of Open Access Journals (Sweden)

    Raupach Michael J

    2010-09-01

    Full Text Available Abstract Background The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. Results We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97% of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95% of the studied Carabidae. Conclusion Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  15. Diversity of saproxylic beetles in logging residues - preferences for tree species and dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Jonsell, Mats; Hansson, Jesper; Wedmo, Lena [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of entomology

    2005-09-01

    The growing interest for harvesting logging residues for energy will decrease the amount of fine wood in the forests. This might constitute a threat to saproxylic (wood-living) organisms that depend on this resource, especially if they prefer sun exposed material left on clear cuts. The threat include both decreased amount of substrate and trapping of insects in wood that is burnt. To see how many species that might be affected we collected 794 wood samples from about 60 clear cuts in south Sweden that were either one summer or 3-5 yrs old. Four tree species: aspen, birch, oak and spruce were represented in three diameter classes between 1 and 15 cm. Insects were reared out from the wood. In total we found 50,566 saproxylic beetles belonging to 160 species of which 22 were red-listed. Spruce was the least diverse tree species, especially regarding red-listed species and as this also is the most frequent tree species in Swedish forests, the harvest of spruce logging residues is the least problematic. All the deciduous tree species contained red-listed species and were diverse, so for them more care needs to be taken at forest operations. They all had conspicuously different beetle fauna from each other, so they can not be complementary to each other. For the deciduous tree species, especially aspen and birch, the 3-5 yr old wood was remarkably more diverse than the one summer old wood. Therefore, the recommendation of storing wood in order to rear out the diversity that might be trapped in the wood is probably contra-productive.

  16. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles.

    Science.gov (United States)

    Magura, Tibor; Lövei, Gábor L; Tóthmérész, Béla

    2017-02-01

    Most edges are anthropogenic in origin, but are distinguishable by their maintaining processes (natural vs. continued anthropogenic interventions: forestry, agriculture, urbanization). We hypothesized that the dissimilar edge histories will be reflected in the diversity and assemblage composition of inhabitants. Testing this "history-based edge effect" hypothesis, we evaluated published information on a common insect group, ground beetles (Coleoptera: Carabidae) in forest edges. A meta-analysis showed that the diversity-enhancing properties of edges significantly differed according to their history. Forest edges maintained by natural processes had significantly higher species richness than their interiors, while edges with continued anthropogenic influence did not. The filter function of edges was also essentially different depending on their history. For forest specialist species, edges maintained by natural processes were penetrable, allowing these species to move right through the edges, while edges still under anthropogenic interventions were impenetrable, preventing the dispersal of forest specialists out of the forest. For species inhabiting the surrounding matrix (open-habitat and generalist species), edges created by forestry activities were penetrable, and such species also invaded the forest interior. However, natural forest edges constituted a barrier and prevented the invasion of matrix species into the forest interior. Preserving and protecting all edges maintained by natural processes, and preventing anthropogenic changes to their structure, composition, and characteristics are key factors to sustain biodiversity in forests. Moreover, the increasing presence of anthropogenic edges in a landscape is to be avoided, as they contribute to the loss of biodiversity. Simultaneously, edges under continued anthropogenic disturbance should be restored by increasing habitat heterogeneity.

  17. Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles.

    Science.gov (United States)

    von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J C

    2016-02-01

    Army ants and their arthropod symbionts represent one of the most species-rich animal associations on Earth, and constitute a fascinating example of diverse host-symbiont interaction networks. However, despite decades of research, our knowledge of army ant symbionts remains fragmentary due to taxonomic ambiguity and the inability to study army ants in the laboratory. Here, we present an integrative approach that allows us to reliably determine species boundaries, assess biodiversity, match different developmental stages and sexes, and to study the life cycles of army ant symbionts. This approach is based on a combination of community sampling, DNA barcoding, morphology and physiology. As a test case, we applied this approach to the staphylinid beetle genus Vatesus and its different Eciton army ant host species at La Selva Biological Station, Costa Rica. DNA barcoding led to the discovery of cryptic biodiversity and, in combination with extensive community sampling, revealed strict host partitioning with no overlap in host range. Using DNA barcoding, we were also able to match the larval stages of all focal Vatesus species. In combination with studies of female reproductive physiology, this allowed us to reconstruct almost the complete life cycles of the different beetle species. We show that Vatesus beetles are highly adapted to the symbiosis with army ants, in that their reproduction and larval development are synchronized with the stereotypical reproductive and behavioural cycles of their host colonies. Our approach can now be used to study army ant-symbiont communities more broadly, and to obtain novel insights into co-evolutionary and ecological dynamics in species-rich host-symbiont systems.

  18. Phylogenetic diversification patterns and divergence times in ground beetles (Coleoptera: Carabidae: Harpalinae

    Directory of Open Access Journals (Sweden)

    Ober Karen A

    2010-08-01

    Full Text Available Abstract Background Harpalinae is a species rich clade of carabid beetles with many unusual morphological forms and ecological interactions. How this diversity evolved has been difficult to reconstruct, perhaps because harpalines underwent a rapid burst of diversification early in their evolutionary history. Here we investigate the tempo of evolution in harpalines using molecular divergence dating techniques and explore the rates of lineage accumulation in harpalines and their sister group. Results According to molecular divergence date estimates, harpalines originated in the mid Cretaceous but did not diversify extensively until the late Cretaceous or early Paleogene about 32 million years after their origin. In a relatively small window of time, harpalines underwent rapid speciation. Harpalines have a relative high net diversification rate and increased cladogenesis in some regions of the clade. We did not see a significant decrease in diversification rate through time in the MCCR test, but a model of diversification with two shift points to lower diversification rates fit the harpaline lineage accumulation through time the best. Conclusions Our results indicate harpalines are significantly more diverse and have higher diversification than their sistergroup. Instead of an immediate burst of explosive diversification, harpalines may have had a long "fuse" before major lineages diversified during the early Paleogene when other taxa such as mammals, birds, and some flowering plants were also rapidly diversifying.

  19. Copro-necrophagous beetle (Coleoptera: Scarabaeidae diversity in an agroecosystem in Yucatan, Mexico

    Directory of Open Access Journals (Sweden)

    Enrique Reyes Novelo

    2007-03-01

    Full Text Available Scarabaeinae are sensitive to structural habitat changes caused by disturbance. We compared copronecrophagous beetle (Scarabaeinae community structure in three differently managed zones within an agroecosystem of the northern Yucatan Peninsula, Mexico. We placed dung and carrion traps once a month from June 2004 through May 2005. The beetle community included 17 species from the genera Canthon, Canthidium, Deltochilum, Pseudocanthon, Malagoniella, Onthophagus, Phanaeus, Copris, Uroxys, Sisyphus and Ateuchus. The secondary vegetation had a higher beetle diversity than the other two zones. Species richness was highest in the Brosimum alicastrum plantation. The pasture had the lowest species diversity and richness, but exhibited the highest abundance of Scarabaeinae in the dry season. The two zones with extensive tree cover were the most diverse. Roller beetles were dominant over burrower species and small-sized species outnumbered large species. Our data show two important issues: beetle species in the pasture extended their activity to the beginning of the dry season, while abundances dropped in the other, unirrigated zones; and the possibility that the Scarabaeinae living in neotropical forests are opportunistic saprophages and have specialized habits for resources other than dung. The B. alicastrum plantation is beneficial to the entire ranch production system because it functions as a dispersion and development area for stenotopic species limited to tree cover. Rev. Biol. Trop. 55 (1: 83-99. Epub 2007 March. 31.Este estudio describe y compara la estructura de la comunidad de escarabajos copronecrófagos (Scarabaeinae en tres zonas con diferente manejo al interior de un agroecosistema localizado en el norte de la Península de Yucatán. A lo largo de un año de muestreo sistemático se encontraron 17 especies de los géneros Canthon, Canthidium, Deltochilum, Pseudocanthon, Malagoniella, Onthophagus, Phanaeus, Copris, Uroxys, Sisyphus y Ateuchus

  20. A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: The genus Bembidion Latreille, 1802 and allied taxa.

    Science.gov (United States)

    Raupach, Michael J; Hannig, Karsten; Morinière, Jérome; Hendrich, Lars

    2016-01-01

    As molecular identification method, DNA barcoding based on partial cytochrome c oxidase subunit 1 (COI) sequences has been proven to be a useful tool for species determination in many insect taxa including ground beetles. In this study we tested the effectiveness of DNA barcodes to discriminate species of the ground beetle genus Bembidion and some closely related taxa of Germany. DNA barcodes were obtained from 819 individuals and 78 species, including sequences from previous studies as well as more than 300 new generated DNA barcodes. We found a 1:1 correspondence between BIN and traditionally recognized species for 69 species (89%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for three species pairs, including two species pairs with haplotype sharing (Bembidion atrocaeruleum/Bembidion varicolor and Bembidion guttula/Bembidion mannerheimii). In contrast to this, deep intraspecific sequence divergences with distinct lineages were revealed for two species (Bembidion geniculatum/Ocys harpaloides). Our study emphasizes the use of DNA barcodes for the identification of the analyzed ground beetles species and represents an important step in building-up a comprehensive barcode library for the Carabidae in Germany and Central Europe as well.

  1. Effects of carbaryl-bran bait on trap catch and seed predation by ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Fielding, Dennis J; DeFoliart, Linda S; Hagerty, Aaron M

    2013-04-01

    Carbaryl-bran bait is effective against grasshoppers without many impacts on nontarget organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species and their consumption of weed seeds have not been previously studied in agricultural settings in Alaska. This study examined the effect of grasshopper bran bait on carabid activity-density, as measured by pitfall trap catches, and subsequent predation by invertebrates of seeds of three species of weed. Data were collected in fallow fields in agricultural landscape in the interior of Alaska, near Delta Junction, in 2008 and 2010. Bait applications reduced ground beetle activity-density by over half in each of 2 yr of bait applications. Seed predation was generally low overall (1-10%/wk) and not strongly affected by the bait application, but predation of lambsquarters (Chenopodium album L.) seed was lower on treated plots in 1 yr (340 seeds recovered versus 317 seeds, on treated versus untreated plots, respectively). Predation of dandelion (Taraxacum officinale G. H. Weber ex Wiggers) seeds was correlated with ground beetle activity-density in 1 yr, and predation of dragonhead mint (Dracocephalum parvifolium Nutt.) seed in the other year. We conclude that applications of carbaryl-bran bait for control of grasshoppers will have only a small, temporary effect on weed seed populations in high-latitude agricultural ecosystems.

  2. Antimicrobial activity of the pygidial gland secretion of three ground beetle species (Insecta: Coleoptera: Carabidae)

    Science.gov (United States)

    Nenadić, Marija; Soković, Marina; Glamočlija, Jasmina; Ćirić, Ana; Perić-Mataruga, Vesna; Ilijin, Larisa; Tešević, Vele; Vujisić, Ljubodrag; Todosijević, Marina; Vesović, Nikola; Ćurčić, Srećko

    2016-04-01

    The antimicrobial properties of the pygidial gland secretions released by the adults of the three ground beetle species, Carabus ullrichii, C. coriaceus, and Abax parallelepipedus, have been tested. Microdilution method was applied for detection of minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), and minimal fungicidal concentrations (MFCs). Additionally, morpho-histology of the pygidial glands is investigated. We have tested 16 laboratory and clinical strains of human pathogens—eight bacterial both gram-positive and gram-negative species and eight fungal species. The pygidial secretion samples of C. ullrichii have showed the strongest antimicrobial effect against all strains of treated bacteria and fungi. Staphylococcus aureus, Lysteria monocytogenes, and Salmonella typhimurium proved to be the most sensitive bacterial strains. Penicillium funiculosum proved to be the most sensitive micromycete, while P. ochrochloron and P. verrucosum var . cyclopium the most resistant micromycetes. The pygidial secretion of C. coriaceus has showed antibacterial potential solely against Pseudomonas aeruginosa and antifungal activity against Aspergillus fumigatus, A. versicolor, A. ochraceus, and P. ochrochloron. Antibacterial properties of pygidial gland secretion of A. parallelepipedus were achieved against P. aeruginosa, while antifungal activity was detected against five of the eight tested micromycetes (A. fumigatus, A. versicolor, A. ochraceus, Trichoderma viride, and P. verrucosum var . cyclopium). Commercial antibiotics Streptomycin and Ampicillin and mycotics Ketoconazole and Bifonazole, applied as the positive controls, showed higher antibacterial/antifungal properties for all bacterial and fungal strains. The results of this observation might have a significant impact on the environmental aspects and possible medical purpose in the future.

  3. Contribution of Alpha and Beta Diversity Across Land-Use Type to the Regional Diversity of Dung Beetles in Central Sulawesi

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2013-06-01

    Full Text Available The importance of spatial scale has been acknowledged as one of determining factors of species diversity in local and regional diversity. The aim of this study was to evaluate contribution of alpha ( and beta ( diversity across land-use type to gamma ( diversity at the margins of tropical forest in Central Sulawesi using dung beetles (Coleoptera: Scarabaeidae as a focal group. Baited pitfall traps set in four land-use types ranging from natural forest through cacao agroforestry systems to open areas during two years of sampling (2009 and 2012. A total of 28 dung beetle species belonging to four genera were captured during the study period. The results showed that contribution of  diversity was higher than that of  diversity of dung beetles. Each land-use type contributed about 56.5 to 62.5% of the total species richness ( diversity. The similar pattern of biodiversity between each spatial scale and during the two sampling years emphasized the large contribution of each land-use type to maintaining a high portion of the regional species richness. It suggests the importance of managing other land-use types, such as secondary forest and agroforestry as well as protecting the remaining natural forests.

  4. Crop cover the principal influence on non-crop ground beetle (Coleoptera, Carabidae) activity and assemblages at the farm scale in a long-term assessment.

    Science.gov (United States)

    Eyre, M D; Sanderson, R A; McMillan, S D; Critchley, C N R

    2016-04-01

    Ground beetle data were generated using pitfall traps in the 17-year period from 1993 to 2009 and used to investigate the effects of changes in surrounding crop cover on beetle activity and assemblages, together with the effects of weather variability. Beetles were recorded from non-crop field margins (overgrown hedges). Crop cover changes explained far more variation in the beetle assemblages recorded than did temperature and rainfall variation. A reduction in management intensity and disturbance in the crops surrounding the traps, especially the introduction and development of willow coppice, was concomitant with changes in individual species activity and assemblage composition of beetles trapped in non-crop habitat. There were no consistent patterns in either overall beetle activity or in the number of species recorded over the 17-year period, but there was a clear change from assemblages dominated by smaller species with higher dispersal capability to ones with larger beetles with less dispersal potential and a preference for less disturbed agroecosystems. The influence of surrounding crops on ground beetle activity in non-crop habitat has implications for ecosystem service provision by ground beetles as pest predators. These results are contrary to conventional assumptions and interpretations, which suggest activity of pest predators in crops is influenced primarily by adjacent non-crop habitat. The long-term nature of the assessment was important in elucidation of patterns and trends, and indicated that policies such as agri-environment schemes should take cropping patterns into account when promoting management options that are intended to enhance natural pest control.

  5. Tropical forests are both evolutionary cradles and museums of leaf beetle diversity.

    Science.gov (United States)

    McKenna, Duane D; Farrell, Brian D

    2006-07-18

    The high extant species diversity of tropical lineages of organisms is usually portrayed as a relatively recent and rapid development or as a consequence of the gradual accumulation or preservation of species over time. These explanations have led to alternative views of tropical forests as evolutionary "cradles" or "museums" of diversity, depending on the organisms under study. However, biogeographic and fossil evidence implies that the evolutionary histories of diversification among tropical organisms may be expected to exhibit characteristics of both cradle and museum models. This possibility has not been explored in detail for any group of terrestrial tropical organisms. From an extensively sampled molecular phylogeny of herbivorous Neotropical leaf beetles in the genus Cephaloleia, we present evidence for (i) comparatively ancient Paleocene-Eocene adaptive radiation associated with global warming and Cenozoic maximum global temperatures, (ii) moderately ancient lineage-specific diversification coincident with the Oligocene adaptive radiation of Cephaloleia host plants in the genus Heliconia, and (iii) relatively recent Miocene-Pliocene diversification coincident with the collision of the Panama arc with South America and subsequent bridging of the Isthmus of Panama. These results demonstrate that, for Cephaloleia and perhaps other lineages of organisms, tropical forests are at the same time both evolutionary cradles and museums of diversity.

  6. Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America.

    Science.gov (United States)

    Hulcr, Jiri; Adams, Aaron S; Raffa, Kenneth; Hofstetter, Richard W; Klepzig, Kier D; Currie, Cameron R

    2011-05-01

    Recent studies have revealed several examples of intimate associations between insects and Actinobacteria, including the Southern Pine Beetle Dendroctonus frontalis and the Spruce Beetle Dendroctonus rufipennis. Here, we surveyed Streptomyces Actinobacteria co-occurring with 10 species of Dendroctonus bark beetles across the United States, using both phylogenetic and community ecology approaches. From these 10 species, and 19 other scolytine beetles that occur in the same trees, we obtained 154 Streptomyces-like isolates and generated 16S sequences from 134 of those. Confirmed 16S sequences of Streptomyces were binned into 36 distinct strains using a threshold of 0.2% sequence divergence. The 16S rDNA phylogeny of all isolates does not correlate with the distribution of strains among beetle species, localities, or parts of the beetles or their galleries. However, we identified three Streptomyces strains occurring repeatedly on Dendroctonus beetles and in their galleries. Identity of these isolates was corroborated using a house-keeping gene sequence (efTu). These strains are not confined to a certain species of beetle, locality, or part of the beetle or their galleries. However, their role as residents in the woodboring insect niche is supported by the repeated association of their 16S and efTu from across the continent, and also having been reported in studies of other subcortical insects.

  7. Ground and rove beetles (Coleoptera: Carabidae and Staphylinidae) are affected by mulches and weeds in highbush blueberries.

    Science.gov (United States)

    Renkema, J M; Lynch, D H; Cutler, G C; Mackenzie, K; Walde, S J

    2012-10-01

    Biological control of insects by predators may be indirectly influenced by management practices that change the invertebrate community in agroecosystems. In this study we examined effects that mulching and weeding have on predatory beetles (Carabidae and Staphylinidae) and their potential prey in a highbush blueberry field. We compared beetle communities in unweeded control plots to those that were weeded and/or received a single application of compost or pine needle mulch. Compost mulch and weeding significantly affected the carabid community while the staphylinid community responded to compost and pine needle mulches. Effects because of mulch tended to intensify in the year after mulch application for both families. Estimates of species richness and diversity for Carabidae and Staphylinidae were similar in all plot types, but rarefaction curves suggested higher Carabidae richness in unmulched plots despite fewer individuals captured. Carnivorous Carabidae, dominated by Pterostichus melanarius, were most frequently captured in compost plots both years, and omnivores were most frequently captured in unweeded compost. Density of millipedes, the most abundant potential prey, was generally greater in mulched plots, whereas seasonal abundance of small earthworms varied among mulch types. Our results have potential implications for biological control in mulched highbush blueberries depending on beetle consumption rates for key pests and how rates are affected by alternative prey.

  8. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009).

    Science.gov (United States)

    Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro

    2014-04-01

    Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in 1980 in six stands below and above the treeline (1650-2250 m a.s.l.) with those sampled in the same sites almost 30 years later (2008/9). Quantitative data (species richness and abundance) have been compared by means of several diversity indexes and with a new index, the Index of Rank-abundance Change (IRC). Our work shows that species richness and abundance have changed after almost 30 years as a consequence of local extinctions, uphill increment of abundance and uphill shift of distribution range. The overall species number dropped from 36 to 27, while in the sites above the treeline, species richness and abundance changed more than in the forest sites. Two microtherm characteristic species of the pioneer cushion grass mats, Nebria germari and Trechus dolomitanus, became extinct or showed strong abundance reduction. In Nardetum pastures, several hygrophilic species disappeared, and xerophilic zoophytophagous elements raised their population density. In forest ecosystems, the precipitation reduction caused deep soil texture and watering changes, driving a transformation from Sphagnum-rich (peaty) to humus-rich soil, and as a consequence, soil invertebrate biomass strongly increased and thermophilic carabids enriched the species structure. In three decades, Carabid assemblages changed consistently with the hypothesis that climate change is one of the main factors triggering natural environment modifications. Furthermore, the level of human disturbance could enhance the

  9. CLASSIFICATION OF GROUND BEETLES (COLEOPTERA, CARABIDAE IN SPECIES AND GENERA USING ASC-ANALYSIS OF THEIR IMAGES

    Directory of Open Access Journals (Sweden)

    Lutsenko Y. V.

    2016-09-01

    Full Text Available From a huge number of the organisms inhabiting our planet, insects make 70%, being the most numerous of the invertebrate animal classes numbering more than 2 million types. It is difficult to find such place where it would be impossible to meet representatives of this huge class. They completely took over the entire environment - water, the land, air. For them, it is the common characteristic: complex instincts, omnivorous, high fecundity, and for some of them – a public way of life. Insects can be found at tremendous heights, reaching the level of 5000 meters, and they inhabit the desert where it practically never rains, not to mention the absence of any vegetation. Deep caves where no sunlight, nor the conditions for food and existence of living organisms — it is also the habitat of insects, they can be found far beyond the Arctic circle, and even on many Islands of Antarctica, where in addition to lifeless rock, it would seem that there is nothing else. Among insects, one of the largest and most numerous families are the ground beetles (Carabidae. They subtly respond to changes in soil and vegetation, hydrothermal and micro-climatic conditions of the environment, which makes them a convenient model subject to various environmental and Zoological researches. Ground beetles belong to a large number of genera and species, often difficult to see, in this regard, we use many different signs to diagnose. We have taken into consideration the coloration, body shape, external structure, surface structure, size, and arrangement of the genitals and chaetotaxy. Due to the fact, that the number of ground beetles is enormous, and, using their appearance, it is very difficult to determine their generic identity, there is a need of automation of the identification process, due to which we require a special mechanism that would increase the accuracy of these insects. In the previous work of the authors (http://ej.kubagro.ru/2016/05/pdf/01.pdf we

  10. Diversity and population dynamics of phytophagous scarabaeid beetles (Coleoptera: Scarabaeidae in different landscapes of Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Mandeep Pathania

    2015-06-01

    Full Text Available Scarabaeid beetles constitute a major group of defoliators of cultivated and wild plants. Therefore, it is important to understand their diversity, abundance and distribution for planning effective pest management programmes. We surveyed scarabaeid beetles from 8 landscapes from different zones in Himachal Pradesh (N 32o 29' and E 75o 10', India. In 2011 and 2012, surveys were conducted during 4 months period (May-August by using UV light traps. A total of 13,569 scarabaeid adults of 20 genera and 56 species belonging to subfamilies Melolonthinae, Rutelinae, Cetoniinae and Dynastinae were recorded. The five most common species were Brahmina coriacea, Adoretus lasiopygus, Anomala lineatopennis, Maladera insanabilis and Holotrichia longipennis. They comprised 9.88-10.05, 7.18-7.76, 7.13-7.27, 6.80-7.62 and 5.22-5.30 % during 2011-12, respectively. Anomala (10 species was the most dominant genus in the present study, whereas Melolonthinae was the most dominant subfamily accounting 53.23 percent of total scarabs collected from the study sites. Among different landscapes, Palampur had maximum diversity and abundance, while Shillaroo had least diversity but more abundance of single species B. coriacea. The value of alpha diversity indices viz. Shannon index was maximum (H'=3.01-3.03 at Palampur. This indicates maximum evenness and abundance of species at Palampur. Shillaroo had lowest Shannon index (H'=1.12-1.17 and Pielou's evenness index (J'=0.46-0.49. This showed least species diversity and higher unevenness of scarabaeid beetles at Shillaroo. The results of beta diversity analysis revealed poor similarity of scarabaeid species between different sites confirming that the scarabaeid community in the north western Himalayan regions is much diverse.

  11. Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across a habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2010-01-01

    Full Text Available Shahabuddin (2010 Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi. Biodiversitas 11: 29-33. Dung beetles are important component of most terrestrial ecosystems and used to assess the effects of habitat disturbance and deforestation. This study aimed at comparing dung beetle assemblages among several habitat types ranging from natural tropical forest and agroforestry systems to open cultivated areas at the margin of Lore Lindu National Park (LLNP, Central Sulawesi (one of Indonesia’s biodiversity hotspots. Therefore, 10 pitfall traps baited with cattle dung were exposed at each habitat type (n = 4 replicate sites per habitat type to collect the dung beetles. The results showed that species richness of dung beetles declined significantly from natural forest to open area. However cacao agroforestry systems seemed to be capable of maintaining a high portion of dung beetle species inhabiting at forest sites. The closer relationship between dung beetle assemblages recorded at forest and agroforestry sites reflects the high similarity of some measured habitat parameters (e.g. vegetation structure and microclimate between both habitat types, while species assemblages at open areas differed significantly from both other habitat groups. These results indicated that habitat type has importance effect on determining the species richness and community structure of dung beetles at the margin of LLNP.

  12. Effects of landscape design of forest reserves on Saproxylic beetle diversity.

    Science.gov (United States)

    Bouget, C; Parmain, G

    2016-02-01

    Increasing the density of natural reserves in the forest landscape may provide conservation benefits for biodiversity within and beyond reserve borders. We used 2 French data sets on saproxylic beetles and landscape cover of forest reserves (LCFR) to test this hypothesis: national standardized data derived from 252 assessment plots in managed and reserve stands in 9 lowland and 5 highland forests and data from the lowland Rambouillet forest, a forested landscape where a pioneer conservation policy led to creation of a dense network of reserves. Abundance of rare and common saproxylic species and total saproxylic species richness were higher in forest reserves than in adjacent managed stands only in highland forests. In the lowland regional case study, as LCFR increased total species richness and common species abundance in reserves increased. In this case study, when there were two or more reserve patches, rare species abundance inside reserves was higher and common species richness in managed stands was higher than when there was a single large reserve. Spillover and habitat amount affected ecological processes underlying these landscape reserve effects. When LCFR positively affected species richness and abundance in reserves or managed stands, >12-20% reserve cover led to the highest species diversity and abundance. This result is consistent with the target of 17% forested land area in reserves set at the Nagoya biodiversity summit in 2010. Therefore, to preserve biodiversity we recommend at least doubling the current proportion of forest reserves in European forested landscapes. © 2015 Society for Conservation Biology.

  13. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae reflecting environmental conditions

    Directory of Open Access Journals (Sweden)

    Matti Koivula

    2011-05-01

    Full Text Available Classic studies have successfully linked single-species abundances, life-history traits, assemblage structures and biomass of carabid beetles to past and present, human-caused environmental impacts and variation in ‘natural’ conditions. This evidence has led many to suggest carabids to function as ‘indicators’ − a term that bears multiple meanings. Here, a conservation-oriented definition for an indicator is used, carabid indicator potential from seven views is evaluated, and ways to proceed in indicator research are discussed. (1 Carabid species richness poorly indicates the richness and abundance of other taxa, which underlines the importance of using multiple taxa in environmental assessments. The ability of assemblage indices and specialist or functional-group abundances to reflect rare species and habitats should be examined in detail. (2 Experimental evidence suggests that carabids may potentially serve as keystone indicators. (3 Carabids are sensitive to human-altered abiotic conditions, such as pesticide use in agro-ecosystems and heavy metal contamination of soils. Carabids might thus reflect ecological sustainability and ‘ecosystem health’. (4 Carabid assemblages host abundant species characteristic of particular habitat types or successional stages, which makes them promising dominance indicators. (5 Carabids reflect variation in ‘natural’ conditions, but vegetation and structural features are more commonly adopted as condition indicators. Carabids nevertheless provide yet another, equally accurate, view on the structure of the environment. (6 Carabids may function as early-warning signalers, as suggested by recent studies linking climate and carabid distributions. (7 Carabids reflect natural and human-caused disturbances and management, but the usefulness of these responses for conservation purposes requires further research. In summary, European carabids appear useful model organisms and possibly indicators because

  14. Olfactory Cues, Visual Cues, and Semiochemical Diversity Interact During Host Location by Invasive Forest Beetles.

    Science.gov (United States)

    Kerr, Jessica L; Kelly, Dave; Bader, Martin K-F; Brockerhoff, Eckehard G

    2017-01-01

    Plant-feeding insects use visual and olfactory cues (shape, color, plant volatiles) for host location, but the relative importance of different cues and interactions with non-host-plant volatiles in ecosystems of varying plant biodiversity is unclear for most species. We studied invasive bark beetles and wood borers associated with pine trees to characterize interactions among color, host and non-host volatiles, by employing traps that mimic tree trunks. Cross-vane flight intercept traps (black, green, red, white, yellow, clear) and black funnel traps were used with and without attractants (α-pinene + ethanol), repellents (non-host green leaf volatiles, 'GLV'), and attractant/repellent combinations in four pine forests in New Zealand. We trapped 274,594 Hylurgus ligniperda, 7842 Hylastes ater, and 16,301 Arhopalus ferus. Trap color, attractant, and color × attractant effects were highly significant. Overall, black and red traps had the highest catches, irrespective of the presence of attractants. Alpha-pinene plus ethanol increased trap catch of H. ligniperda 200-fold but only 6-fold for H. ater and 2-fold for A. ferus. Green leaf volatiles had a substantial repellent effect on trap catch of H. ligniperda but less on H. ater and A. ferus. Attack by H. ligniperda was halved when logs were treated with GLV, and a similar effect was observed when logs were placed among broadleaved understory shrubs emitting GLV. Overall, H. ligniperda was most strongly affected by the olfactory cues used, whereas H. ater and A. ferus were more strongly affected by visual cues. Collectively, the results support the semiochemical diversity hypothesis, indicating that non-host plant volatiles from diverse plant communities or artificial dispensers can contribute to resistance against herbivores by partly disrupting host location.

  15. Longhorned beetle (Coleoptera: Cerambycidae diversity in a fragmented temperate forest landscape [v2; ref status: indexed, http://f1000r.es/yz

    Directory of Open Access Journals (Sweden)

    Daniel M Pavuk

    2013-03-01

    Full Text Available Longhorned beetles (Coleoptera: Cerambycidae are an important component of temperate forest ecosystems.  We trapped longhorned beetles in forests in northwest Ohio during 2008 to test the hypothesis that larger forests have greater species diversity than smaller forests.  Large forests had a significantly greater cerambycid species richness than small forests (t = 3.16. P = 0.02, and there was a significant relationship between forest size and cerambycid species richness.

  16. Ground Beetles (Coleoptera: Carabidae and Some Other Invertebrates from the Managed Nature Reserves "Dolna Topchiya" and "Balabana" (Lower Valley of the River of Tundzha, Bulgaria

    Directory of Open Access Journals (Sweden)

    Teodora M. Teofilova

    2017-06-01

    Full Text Available The invertebrate fauna of the "Balabana" and "Dolna Topchiya" managed nature reserves is studied, with particular consideration to the ground beetles. The area of study is interesting from a biological point of view, as the Tundzha River constitutes a corridor of penetration of southern and thermophilic elements. On the other hand, the specifics of the territory predetermine the presence of many typically forest and some mountain species, as well as a lot of inhabitants of open biotopes, in particular – steppe forms. During the study, altogether 2041 specimens of carabid beetles belonging to 88 species are captured, as well as 76 other invertebrate species, some of which are with a conservation significance – new, endemic, rare, protected or endangered. Forty-six carabid species are reported for the first time for the Sakar-Tundzha region. Ground beetles are characterized and classified according to their zoogeographical belonging and the life forms they refer to.

  17. Diversity of forensic rove beetles (Coleoptera, Staphylinidae) associated with decaying pig carcass in a forest biotope.

    Science.gov (United States)

    Dekeirsschieter, Jessica; Frederick, Christine; Verheggen, Francois J; Drugmand, Didier; Haubruge, Eric

    2013-07-01

    Most forensic studies are focused on Diptera pattern colonization while neglecting Coleoptera succession. So far, little information is available on the postmortem colonization by beetles and the decomposition process they initiate under temperate biogeoclimatic countries. These beetles have, however, been referred to as being part of the entomofaunal colonization of a dead body. Forensic entomologists need increased databases detailing the distribution, ecology, and phenology of necrophagous insects, including staphylinids (Coleoptera, Staphylinidae). While pig carcasses are commonly used in forensic entomology studies to surrogate human decomposition and to investigate the entomofaunal succession, very few works have been conducted in Europe on large carcasses. Our work reports the monitoring of the presence of adult rove beetles (Coleoptera, Staphylinidae) on decaying pig carcasses in a forest biotope during four seasons (spring, summer, fall, and winter). A total of 23 genera comprising 60 species of rove beetles were collected from pig carcasses.

  18. Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity.

    Science.gov (United States)

    Kolařík, Miroslav; Hulcr, Jiri; Tisserat, Ned; De Beer, Wilhelm; Kostovčík, Martin; Kolaříková, Zuzana; Seybold, Steven J; Rizzo, David M

    2017-01-01

    Fungi in the genus Geosmithia (Ascomycota: Hypocreales) are frequent associates of bark beetles and woodborers that colonize hardwood and coniferous trees. One species, Geosmithia morbida, is an economically damaging invasive species. The authors surveyed the Geosmithia species of California and Colorado, USA, to (i) provide baseline data on taxonomy of Geosmithia and beetle vector specificity across the western USA; (ii) investigate the subcortical beetle fauna for alternative vectors of the invasive G. morbida; and (iii) interpret the community composition of this region within the emerging global biogeography of Geosmithia. Geosmithia was detected in 87% of 126 beetle samples obtained from 39 plant species. Twenty-nine species of Geosmithia were distinguished, of which 13 may be new species. Bark beetles from hardwoods, Cupressus, and Sequoia appear to be regular vectors, with Geosmithia present in all beetle gallery systems examined. Other subcortical insects appear to vector Geosmithia at lower frequencies. Overall, most Geosmithia have a distinct level of vector specificity (mostly high, sometimes low) enabling their separation to generalists and specialists. Plant pathogenic Geosmithia morbida was not found in association with any other beetle besides Pityophthorus juglandis. However, four additional Geosmithia species were found in P. juglandis galleries. When integrated with recent data from other continents, a global pattern of Geosmithia distribution across continents, latitudes, and vectors is emerging: of the 29 Geosmithia species found in the western USA, 12 have not been reported outside of the USA. The most frequently encountered species with the widest global distribution also had the broadest range of beetle vectors. Several Geosmithia spp. with very narrow vector ranges in Europe exhibited the similar degree of specialization in the USA. Such strong canalization in association could reflect an ancient origin of each individual association, or a

  19. Uncovering the cultivable microbial diversity of costa rican beetles and its ability to break down plant cell wall components.

    Directory of Open Access Journals (Sweden)

    Gabriel Vargas-Asensio

    Full Text Available Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi and 16S rDNA (bacteria. The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total, while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total. Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp., two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose.

  20. Geographic distribution, large-scale spatial structure and diversity of parasitoids of the seed-feeding beetle Acanthoscelides macrophthalmus.

    Science.gov (United States)

    Wood, A; Haga, E B; Costa, V A; Rossi, M N

    2016-10-21

    Bruchine beetles are highly host-specific seed feeders during the larval stage. Although some specific parasitoid families have been recorded attacking bruchine beetles, most studies have been done at small spatial scales. Therefore, the current knowledge about the diversity and the geographic distribution of parasitoid species parasitizing bruchines is scarce, especially at a wide geographic area that extends over large distances through a latitudinal cline (i.e. large-scale spatial structure). The present study determined the species richness and evenness of parasitoids attacking the bruchine beetle Acanthoscelides macrophthalmus feeding on Leucaena leucocephala seeds, examined their geographic distribution, and characterized the large-scale spatial structure in parasitoid species composition. A total of 1420 parasitoids (all Hymenoptera) belonging to four families, five subfamilies and eight species were collected (genera: Horismenus, Paracrias, Urosigalphus, Stenocorse, Chryseida, Eupelmus). Most parasitoid species showed wide spatial distribution, high evenness in species abundance and the species richness estimators were close to stabilization (approximately eight species). Overall, greater similarity was observed in the species composition of plant populations near to each other than those farther apart, revealing a large-scale spatial structure in parasitoid species composition.

  1. Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize.

    Science.gov (United States)

    Svobodová, Z; Skoková Habuštová, O; Boháč, J; Sehnal, F

    2016-08-01

    Staphylinid beetles are recommended bioindicators for the pre-market environmental risk assessment of genetically modified (GM) insect protected maize expressing the Cry3Bb1 toxin. Our multiannual study is a unique European analysis of a staphylinid community within a 14 ha maize field. GM maize, its near-isogenic hybrid (with or without insecticide treatment), and two other reference hybrids were each grown in five 0.5 ha plots. The opportunity for exposure to Cry toxin from plant residues ploughed into the soil was shown by the presence of saprophagous dipteran larvae that are common prey of predatory staphylinid species and hosts of the parasitoid species. 2587 individuals belonging to 77 staphylinid species were sampled using pitfall traps. Lesteva longoelytrata (31%), Oxypoda acuminata (12%), Aloconota sulcifrons (8%) and Anotylus rugosus (7%) were the most abundant beetles in the field. Bionomics, food specialization, temperature requirements and size group were assigned for 25 most common species. These traits determine the occurrence of staphylinid beetles in the field, the food sources they could utilize and thus also their likely contact with the Cry3Bb1 toxin. Statistical analysis of activity abundance, Rao indices and multivariate analysis of distribution of particular categories of functional traits in the field showed negligible effects of the experimental treatments, including the GM maize, upon the staphylinid community. Staphylinid beetles represent a considerably diverse part of epigeic field fauna with wide food specialization; these features render them suitable for the assessment of environmental safety of GM insect protected maize. However, the availability of prey and the presence of particular staphylinid species and their abundance are highly variable; this complicates the interpretation of the results.

  2. Bark beetle management guidebook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This guidebook is designed to provide a background to bark beetle management practices consistent with the British Columbia Forest Practices Code, as well as specific practices for managing mountain pine beetle (Dendroctonus ponderosae), spruce beetle (Dendroctonus rufipennis), and Douglas-fir beetle (Dendroctonus pseudotsugae). It describes their general biology and distribution in British Columbia, their life cycles and population dynamics, and symptoms of bark beetle attack. General management strategies presented include prevention (a long-term approach), suppression, holding actions, and salvage. Strategies appropriate to specific bark beetles include aerial surveys, ground detection, baiting, harvesting, and use of insecticides. The guidebook includes brief mention of other bark beetles (Scolytids and other Dendroctonus species) and a glossary.

  3. Diversity and Abundance of Cerambycid Beetles in the Four Major Land-use Types Found in Jambi Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Fahri

    2016-04-01

    Full Text Available Longhorn beetles (Coleoptera: Cerambycidae have an important function in the ecosystem, i.e. bioindicators, saproxylic, pollinators, and as food of other organisms. Land cover changes due to land use can disrupt the natural balance of the ecosystem, which can result in a decrease of cerambycid diversity. Cerambycid species diversity was evaluated in four land types, i.e. jungle-rubber, rubber plantations, oil palm plantations, and felled jungle-rubber. Collections of cerambycid beetles were conducted by using artocarpus trap, made by freshly cut Artocarpus heterophyllus branches. Collections of beetles were made on day 4th, 7th, 10th, 13th, and 16th after the traps were set up. In the four land-use types in Jambi province, we collected 72 species including 34 morphospecies of cerambycids, consisting of 42 species from the jungle-rubber, 39 species from rubber plantations, 16 species from oil palm plantations, and 28 species from felled jungle-rubber. Cerambycid diversity was highest in jungle-rubber (H' = 3.23, followed by rubber plantation (H' = 2.67, felled jungle-rubber (H' = 2.38, and oil palm plantations (H' = 2.01. Highest similarities of cerambycid communities occurred in the rubber plantation–felled jungle-rubber (51.2, followed by jungle-rubber–rubber plantation (50.0, rubber plantations–oil palm plantations (43.5, oil palm plantation–felled jungle-rubber (42.4, jungle-rubber–oil palm plantations (35.3, and jungle-rubber–felled jungle rubber (34.8. The number of cerambycid species and individuals collected was highest on day 7th.

  4. Pharmacological properties of blister beetles (Coleoptera: Meloidae) promoted their integration into the cultural heritage of native rural Spain as inferred by vernacular names diversity, traditions, and mitochondrial DNA.

    Science.gov (United States)

    Percino-Daniel, Nohemí; Buckley, David; García-París, Mario

    2013-06-03

    Beetles of the family Meloidae (blister beetles) are often reported in pharmacological literature because of their content of cantharidin. Cantharidin has a long history in human medicine and was commonly applied in the 19th and the early 20th centuries, although its use has been progressively abandoned since then. Contrary to most, even common, large species of Coleoptera, blister beetles of the genera Berberomeloe, Physomeloe and to a lesser extent Meloe, are usually recognized and often incorporated into local folk taxonomy by inhabitants of rural areas in Spain. To demonstrate the role that pharmacological properties of blister beetles must have played in their integration in the culture of early Iberian human societies, but also in the preservation of their identity until today, a rare case for Spanish insects. To achieve this purpose we document the diversity of vernacular names applied in rural areas of Spain, and we determine, using molecular data, the antiquity of the presence of two species of the better-known blister beetle in rural Spain, Berberomeloe majalis and Berberomeloe insignis. We try to document the extent of traditional knowledge of meloid beetles in rural areas by interviewing about 120 people from villages in central and southern Spain. We also use mitochondrial DNA sequences (Cytochrome Oxidase I and 16SrRNA) obtained from several populations of two species of the better known blister beetle in rural Spain, Berberomeloe majalis and Berberomeloe insignis, to determine whether these beetles were already present in the Iberian Peninsula when earlier ancient cultures were developing. Our results show that, based on mitochondrial DNA, blister beetles of the genus Berberomeloe were present in the Iberian Peninsula long before humans arrived, so ancient Iberian cultures were in contact with the same beetle species occurring now in rural areas. On the other hand, people interviewed in rural communities provided us with more than 28 different

  5. How habitat change and rainfall affect dung beetle diversity in Caatinga, a Brazilian semi-arid ecosystem.

    Science.gov (United States)

    Liberal, Carolina Nunes; de Farias, Ângela Maria Isidro; Meiado, Marcos Vinicius; Filgueiras, Bruno K C; Iannuzzi, Luciana

    2011-01-01

    The aim of the present study was to evaluate how dung beetle communities respond to both environment and rainfall in the Caatinga, a semi-arid ecosystem in northeastern Brazil. The communities were sampled monthly from May 2006 to April 2007 using pitfall traps baited with human feces in two environments denominated "land use area" and "undisturbed area." Abundance and species richness were compared between the two environments and two seasons (dry and wet season) using a generalized linear model with a Poisson error distribution. Diversity was compared between the two environments (land use area and undisturbed area) and seasons (dry and wet) using the Two-Way ANOVA test. Non-metric multidimensional scaling was performed on the resemblance matrix of Bray-Curtis distances (with 1000 random restarts) to determine whether disturbance affected the abundance and species composition of the dung beetle communities. Spearman's correlation coefficient was used to determine whether rainfall was correlated with abundance and species richness. A total of 1097 specimens belonging to 13 species were collected. The most abundant and frequent species was Dichotomius geminatus Arrow (Coleoptera: Scarabaeidae). The environment exerted an influence over abundance. Abundance and diversity were affected by season, with an increase in abundance at the beginning of the wet season. The correlation coefficient values were high and significant for abundance and species richness, which were both correlated to rainfall. In conclusion, the restriction of species to some environments demonstrates the need to preserve these areas in order to avoid possible local extinction. Therefore, in extremely seasonable environments, such as the Caatinga, seasonal variation strongly affects dung beetle communities.

  6. Influence of Trap Height and Bait Type on Abundance and Species Diversity of Cerambycid Beetles Captured in Forests of East-Central Illinois.

    Science.gov (United States)

    Schmeelk, Thomas C; Millar, Jocelyn G; Hanks, Lawrence M

    2016-08-01

    We assessed how height of panel traps above the forest floor, and the type of trap bait used, influenced the abundance and diversity of cerambycid beetles caught in forested areas of east-central Illinois. Panel traps were suspended from branches of hardwood trees at three heights above the ground: understory (∼1.5 m), lower canopy (∼6 m), and midcanopy (∼12 m). Traps were baited with either a multispecies blend of synthesized cerambycid pheromones or a fermenting bait mixture. Traps captured a total of 848 beetles of 50 species in the cerambycid subfamilies Cerambycinae, Lamiinae, Lepturinae, and Parandrinae, and one species in the closely related family Disteniidae. The species caught in highest numbers was the cerambycine Anelaphus pumilus (Newman), represented by 349 specimens. The 17 most abundant species (mean ± 1 SD: 45 ± 80 specimens per species) included 12 cerambycine and five lamiine species. Of these most abundant species, 13 (77%) were attracted to traps baited with the pheromone blend. Only the cerambycine Eburia quadrigeminata (Say) was attracted by the fermenting bait. Three species were captured primarily in understory traps, and another five species primarily in midcanopy traps. Variation among cerambycid species in their vertical distribution in forests accounted for similar overall abundances and species richness across trap height treatments. These findings suggest that trapping surveys of native communities of cerambycids, and quarantine surveillance for newly introduced exotic species, would be optimized by including a variety of trap baits and distributing traps across vertical strata of forests.

  7. Beetle succession and diversity between clothed sun-exposed and shaded pig carrion in a tropical dry forest landscape in Southern Mexico.

    Science.gov (United States)

    Caballero, Ubaldo; León-Cortés, Jorge L

    2014-12-01

    Over a 31-day period, the decomposition process, beetle diversity and succession on clothed pig (Sus scrofa L.) carcasses were studied in open (agricultural land) and shaded habitat (secondary forest) in Southern Mexico. The decomposition process was categorised into five stages: fresh, bloated, active decay, advanced decay and remains. Except for the bloated stage, the elapsed time for each decomposition stage was similar between open and shaded habitats, all carcasses reached an advanced decay stage in seven days, and the fifth stage (remains) was not recorded in any carcass during the time of this study. A total of 6344 beetles, belonging to 130 species and 21 families, were collected during the entire decomposition process, and abundances increased from fresh to advanced decay stages. Staphylinidae, Scarabaeidae and Histeridae were taxonomically and numerically dominant, accounting for 61% of the species richness and 87% of the total abundance. Similar numbers of species (87 and 88 species for open and shaded habitats, respectively), levels of diversity and proportions (open 49%; shaded 48%) of exclusive species were recorded at each habitat. There were significantly distinct beetle communities between habitats and for each stage of decomposition. An indicator species analysis ("IndVal") identified six species associated to open habitats, 10 species to shaded habitats and eight species to advanced decay stages. In addition, 23 beetle species are cited for the first time in the forensic literature. These results showed that open and shaded habitats both provide suitable habitat conditions for the carrion beetle diversity with significant differences in community structure and identity of the species associated to each habitat. This research provides the first empirical evidence of beetle ecological succession and diversity on carrion in Mexican agro-pastoral landscapes.

  8. Functional diversity of non-lethal effects, chemical camouflage, and variation in fish avoidance in colonizing beetles.

    Science.gov (United States)

    Resetarits, William J; Pintar, Matthew R

    2016-12-01

    Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional

  9. An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by Euwallacea ambrosia beetles on avocado and other plant hosts

    Science.gov (United States)

    Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusu...

  10. Monitoring impacts of Tamarix leaf beetles (Diorhabda elongata) on the leaf phenology and water use of Tamarix spp. using ground and remote sensing methods

    Science.gov (United States)

    Nagler, P. L.; Brown, T.; Hultine, K. R.; van Riper, C.; Bean, D. A.; Murray, R.; Pearlstein, S.; Glenn, E. P.

    2010-12-01

    Tamarix leaf beetles (Diorhabda elongata) have been released in several locations on western U.S. rivers to control the introduced shrub, Tamarix ramosissima and related species. As they are expanding widely throughout the region, information is needed on their impact on Tamarix leaf phenology and water use over multiple cycles of annual defoliation. We used networked digital cameras (phenocams) and ground surveys to monitor the defoliation process from 2008-2010 at multiple sites on the Dolores River, and MODIS satellite imagery from 2000 to 2009 to monitor leaf phenology and evapotranspiration (ET) at beetle release sites on the Dolores, Lower Colorado, Carson, Walker and Bighorn Rivers. Enhanced Vegetation Index (EVI) values for selected MODIS pixels were used to estimate green foliage density before and after beetle releases at each site. EVI values were transformed into estimates of ET using an empirical algorithm relating ET to EVI and potential ET (ETo) at each site. Phenocam and ground observations show that beetle damage is temporary, and plants regenerate new leaves following an eight week defoliation period in summer. The original biocontrol model predicted that Tamarix mortality would reach 75-85% over several years of defoliation due to progressive weakening of the shrubs each year, but over the early stages of leaf beetle-Tamarix interactions studied here (3-8 years), our preliminary findings show actual reductions in EVI and ET of only 13-15% across sites due to the relatively brief period of defoliation and because not all plants at a site were defoliated. Also, baseline ET rates varied across sites but averaged only 329 mm yr-1 (23% of ETo), constraining the possibilities for water salvage through biocontrol of Tamarix. The spatial and temperol resolution of MODIS imagery were too coarse to capture the details of the defoliation process, and high-resolution imagery or expanded phenocam networks are needed for future monitoring programs.

  11. Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations

    Science.gov (United States)

    Nagler, Pamela L.; Pearlstein, Susanna; Glenn, Edward P.; Brown, Tim B.; Bateman, Heather L.; Bean, Dan W.; Hultine, Kevin R.

    2013-01-01

    We measured the rate of dispersal of saltcedar leaf beetles (Diorhabda carinulata), a defoliating insect released on western rivers to control saltcedar shrubs (Tamarix spp.), on a 63 km reach of the Virgin River, U.S. Dispersal was measured by satellite imagery, ground surveys and phenocams. Pixels from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite showed a sharp drop in NDVI in midsummer followed by recovery, correlated with defoliation events as revealed in networked digital camera images and ground surveys. Ground surveys and MODIS imagery showed that beetle damage progressed downstream at a rate of about 25 km yr−1 in 2010 and 2011, producing a 50% reduction in saltcedar leaf area index and evapotranspiration by 2012, as estimated by algorithms based on MODIS Enhanced Vegetation Index values and local meteorological data for Mesquite, Nevada. This reduction is the equivalent of 10.4% of mean annual river flows on this river reach. Our results confirm other observations that saltcedar beetles are dispersing much faster than originally predicted in pre-release biological assessments, presenting new challenges and opportunities for land, water and wildlife managers on western rivers. Despite relatively coarse resolution (250 m) and gridding artifacts, single MODIS pixels can be useful in tracking the effects of defoliating insects in riparian corridors.

  12. Condition-dependent dispersal of a patchily distributed riparian ground beetle in response to disturbance.

    Science.gov (United States)

    Bates, Adam J; Sadler, Jon P; Fowles, Adrian P

    2006-11-01

    In common with many habitat elements of riverine landscapes, exposed riverine sediments (ERS) are highly disturbed, naturally patchy and regularly distributed, whose specialists are strongly adapted to flood disturbance and loss of habitat due to succession. Investigations of dispersal in ERS habitats therefore provide an important contrast to the unnaturally fragmented, stable systems usually studied. The present investigation analysed the three interdependent stages of dispersal: (1) emigration, (2) inter-patch movement and (3) immigration of a common ERS specialised beetle, Bembidion atrocaeruleum (Stephens 1828) (Coleoptera, Carabidae), in a relatively unmodified section of river, using mark-resight methods. Dispersal was correlated with estimates of local population size and density, water level and patch quality in order to test for condition-dependent dispersal cues. Flood inundation of habitat was found to increase strongly the overall rate of dispersal, and the rate of emigration was significantly higher from patches that were heavily trampled by cattle. Strongly declining numbers of dispersers with distance suggested low dispersal rates during periods of low water level. Dispersal in response to habitat degradation by cattle trampling would likely lead to a higher overall population fitness than a random dispersal strategy. Dispersal distances were probably adapted to the underlying habitat landscape distribution, high-flow dispersal cues and ready means of long-distance dispersal through hydrochory. Species whose dispersal is adapted to the natural habitat distribution of riverine landscapes are likely to be strongly negatively affected by reduced flood frequency and intensity and habitat fragmentation through flow regulation or channelisation.

  13. Insect gravitational biology: ground-based and shuttle flight experiments using the beetle Tribolium castaneum

    Science.gov (United States)

    Bennett, R. L.; Abbott, M. K.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Many of the traditional experimental advantages of insects recommend their use in studies of gravitational and space biology. The fruit fly, Drosophila melanogaster, is an obvious choice for studies of the developmental significance of gravity vectors because of the unparalleled description of regulatory mechanisms controlling oogenesis and embryogenesis. However, we demonstrate that Drosophila could not survive the conditions mandated for particular flight opportunities on the Space Shuttle. With the exception of Drosophila, the red flour beetle, Tribolium castaneum, is the insect best characterized with respect to molecular embryology and most frequently utilized for past space flights. We show that Tribolium is dramatically more resistant to confinement in small sealed volumes. In preparation for flight experiments we characterize the course and timing of the onset of oogenesis in newly eclosed adult females. Finally, we present results from two shuttle flights which indicate that a number of aspects of the development and function of the female reproductive system are not demonstrably sensitive to microgravity. Available information supports the utility of this insect for future studies of gravitational biology.

  14. Initial responses of rove and ground beetles (Coleoptera, Staphylinidae, Carabidae to removal of logging residues following clearcut harvesting in the boreal forest of Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Timothy Work

    2013-01-01

    Full Text Available Increased interest in biomass harvesting for bioenergetic applications has raised questions regarding the potential ecological consequences on forest biodiversity. Here we evaluate the initial changes in the abundance, species richness and community composition of rove (Staphylinidae and ground beetles (Carabidae, immediately following 1 stem-only harvesting (SOH, in which logging debris (i.e., tree tops and branches are retained on site, and 2 whole-tree harvesting (WTH, in which stems, tops and branches are removed in mature balsam fir stands in Quebec, Canada. Beetles were collected throughout the summer of 2011, one year following harvesting, using pitfall traps. Overall catch rates were greater in uncut forest (Control than either stem-only or whole-tree harvested sites. Catch rates in WTH were greater than SOH sites. Uncut stands were characterized primarily by five species: Atheta capsularis, A. klagesi, A. strigosula, Tachinus fumipennis/frigidus complex (Staphylinidae and to a lesser extent to Pterostichus punctatissimus (Carabidae. Increased catch rates in WTH sites, where post-harvest biomass was less, were attributable to increased catches of rove beetles Pseudopsis subulata, Quedius labradorensis and to a lesser extent Gabrius brevipennis. We were able to characterize differences in beetle assemblages between harvested and non-harvested plots as well as differences between whole tree (WTH and stem only (SOH harvested sites where logging residues had been removed or left following harvest. However, the overall assemblage response was largely a recapitulation of the responses of several abundant species.

  15. Molecular phylogeny reveals high diversity, geographic structure and limited ranges in neotenic net-winged beetles platerodrilus (coleoptera: lycidae).

    Science.gov (United States)

    Masek, Michal; Palata, Vaclav; Bray, Timothy C; Bocak, Ladislav

    2014-01-01

    The neotenic Platerodrilus net-winged beetles have strongly modified development where females do not pupate and retain larval morphology when sexually mature. As a result, dispersal propensity of females is extremely low and the lineage can be used for reconstruction of ancient dispersal and vicariance patterns and identification of centres of diversity. We identified three deep lineages in Platerodrilus occurring predominantly in (1) Borneo and the Philippines, (2) continental Asia, and (3) Sumatra, the Malay Peninsula and Java. We document limited ranges of all species of Platerodrilus and complete species level turnover between the Sunda Islands and even between individual mountain regions in Sumatra. Few dispersal events were recovered among the major geographical regions despite long evolutionary history of occurrence; all of them were dated at the early phase of Platerodrilus diversification up to the end of Miocene and no exchange of island faunas was identified during the Pliocene and Pleistocene despite the frequently exposed Sunda Shelf as sea levels fluctuated with each glacial cycle. We observed high diversity in the regions with persisting humid tropical forests during cool periods. The origins of multiple species were inferred in Sumatra soon after the island emerged and the mountain range uplifted 15 million years ago with the speciation rate lower since then. We suppose that the extremely low dispersal propensity makes Platerodrilus a valuable indicator of uninterrupted persistence of rainforests over a long time span. Additionally, if the diversity of these neotenic lineages is to be protected, a high dense system of protected areas would be necessary.

  16. [Specific manifestations of polyvariant life cycles in ground beetles (Coleoptera, Carabidae) along latitudinal gradient].

    Science.gov (United States)

    Matalin, A V

    2014-01-01

    The life cycles of Carabidae are highly diverse, and 25 variants of these cycles are realized In the European part of Russia, from semideserts to continental tundras. The diversity of the life cycle spectrum sharply decreases (by more than half) upon transition from nemoral to boreal forest communities, and its phenological unification takes place at high latitudes. The greatest proportion of species with polyvariant development (25%) is characteristic of temporal latitudes, which may be explained by relatively long growing season and considerable cenotic diversity. In both southern (semidesert and steppe) and northern regions (middle and northern boreal forests), this proportion does not exceed 5%. At low latitudes, the polyvariant pattern of development is often manifested in the form of facultative bivoltine life cycles or as facultative biennial life cycles in species with the initial "spring" breeding type.

  17. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael, D.; Hanula, James L.; Horn, Scott; Kilgo, John, C.; Moorman, Christopher, E.

    2005-04-01

    We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest. Species richness was higher at the center of young gaps than in old gaps or in the forest, but there was no statistical difference in species richness between old gaps and the forests surrounding them. Carabid abundance followed the same trend, but only with the exclusion of Semiardistomis viridis (Say), a very abundant species that differed in its response to gap age compared to most other species. The carabid assemblage at the gap edge was very similar to that of the forest, and there appeared to be no distinct edge community. Species known to occur in open or disturbed habitats were more abundant at the center of young gaps than at any other location. Generalist species were relatively unaffected by the disturbance, but one species (Dicaelus dilatatus Say) was significantly less abundant at the centers of young gaps. Forest inhabiting species were less abundant at the centers of old gaps than in the forest, but not in the centers of young gaps. Comparison of community similarity at various trapping locations showed that communities at the centers of old and young gaps had the lowest similarity (46.5%). The community similarity between young gap centers and nearby forest (49.1%) and old gap centers and nearby forest (50.0%) was similarly low. These results show that while the abundance and richness of carabids in old gaps was similar to that of the surrounding forest, the species composition between the two sites differed greatly.

  18. Predatory Ground Beetles (Insecta: Coleoptera: Carabidae) of the Gaoligong Mountain Region of Western Yunnan Province, China: the Tribe Cyclosomini

    Science.gov (United States)

    Cueva-Dabkoski, M.; Kavanaugh, D.

    2013-12-01

    Between 1998 and 2007, the California Academy of Sciences (CAS) was the lead institution in a multi-national, multi-disciplinary biodiversity inventory project in the Gaoligong Shan region (GLGS) in the Yunnan province of China. The project surveyed the species diversity of both higher plants and bryophytes, fishes, amphibians, reptiles, birds, mammals and selected groups of arachnids and insects. The GLGS of China is one of the most biodiverse areas in all of Asia, yet it is also very poorly sampled and in great threat from increasing human activities in the region. CAS's biodiversity inventory project there has increased the number of carabid species known from just 50 to more than 550 species, an eleven-fold increase. The task that remains is to identify all of those 500 additional species and describe any that are new to science. This project is part of that larger biodiversity survey. Our objective was to identify and/or describe carabid beetles of the tribe Cyclosomini represented by nearly a hundred specimens collected in the GLSG. Among those specimens, six morphospecies were identified - one belonging to the genus Cyclosomus Latreille 1829, and the other five belonging to the genus Tetragonoderus Dejean 1829. Following this initial identification process, a list of known distributions of taxa in both genera was assembled to determine which described species to consider for comparative work. Original descriptions were then located for candidate species with known distributions in or near the GLGS; and these are being used now in morphological comparison of specimens. Type specimens for each of the candidate species have been requested from various academic institutions, and morphological comparisons with these types are underway. Morphological characteristics being examined include body proportions and overall shape, color of appendages, color and shape of pronotum, elytral color patterns, and shape and internal structure of male genitalia.

  19. Microsatellite analysis of the Genetic Diversity of Asian Longhorned Beetles from an Invasive Population in Ontario, Canada

    Science.gov (United States)

    Asian Longhorned Beetles (Anoplophora glabripennis Motschulsky) were discovered in Ontario, Canada in 2003 at a commercial warehouse site, where they likely arrived on solid wood packing materials from China. Trees in the area were heavily scarred with oviposition sites, and larvae and adult beetle...

  20. Asian longhorned beetle complicates the relationship between taxonomic diversity and pest vulnerability in street tree assemblages

    Science.gov (United States)

    Urban foresters routinely emphasise the importance of taxonomic diversity to reduce the vulnerability of tree assemblages to invasive pests, but it is unclear to what extent diversity reduces vulnerability to polyphagous (i.e. generalist) pests. Drawing on field data from seven c...

  1. Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions

    Institute of Scientific and Technical Information of China (English)

    Yan-Wen Cai; Xin-Yue Cheng; Ru-Mei Xu; Dong-Hong Duan; Lawrence R. Kirkendall

    2008-01-01

    Sequences of 479 bp region of the mitochondrial COI gene were applied to detect population genetic diversity and structure of Dendroctonus valens populations. By comparing the genetic diversity between native and invasive populations, it was shown that the genetic diversity of Chinese populations was obviously lower than that of native populations with both indices of haplotype diversity and Nei's genetic diversity, suggesting genetic bottleneck occurred in the invasive process of D. valens, and was then followed by a relatively quick population buildup. According to phylogenetic analyses of haplotypes, we suggested that the origin of the Chinese population was from California, USA. Phylogenetic and network analysis of native populations of D. valens revealed strong genetic structure at two distinct spatial and temporal scales in North America. The main cause resulting in current biogeographic pattern was supposedly due to recycled glacial events. Meanwhile, a cryptic species might exist in the Mexican and Guatemalan populations.

  2. Bark Beetles

    OpenAIRE

    Davis, Ryan S.; McAvoy, Darren

    2012-01-01

    Bark beetles are one of the most destructive forest pests in the world. They are different than the larger longhorned and roundheaded/metallic woodboring beetles commonly infesting the inner wood of trees. The largest bark beetle, the red turpentine beetle (Dendroctonus valens), reaches only 8.3 mm in length. Because of their tiny size, bark beetles are not effective tree killers as individuals.

  3. Asian longhorned beetle complicates the relationship between taxonomic diversity and pest vulnerability in street tree assemblages

    Data.gov (United States)

    U.S. Environmental Protection Agency — Urban foresters routinely emphasise the importance of taxonomic diversity to reduce the vulnerability of tree assemblages to invasive pests, but it is unclear to...

  4. Spatial-temporal modeling of forest gaps generated by colonization from below- and above-ground beetle species

    DEFF Research Database (Denmark)

    Zhu, J.; Rasmussen, Jakob Gulddahl; Møller, Jesper

    Studies of forest declines are important, because they both reduce timber production and aect successional trajectories of landscapes and ecosystems. Of partic- ular interest is the decline of red pines which is characterized by expanding areas of dead and chlorotic trees in plantations throughout...... among red turpentine beetle coloniza- tion, pine engraver bark beetle colonization, and mortality of red pine trees, while accounting for correlation across space and over time. For statistical inference, we adopt a Bayesian hierarchical model and devise Markov chain Monte Carlo algorithms for obtaining...

  5. Unexpected functional diversity in the fatty acid desaturases of the flour beetle Tribolium castaneum and identification of key residues determining activity.

    Science.gov (United States)

    Haritos, Victoria S; Horne, Irene; Damcevski, Katherine; Glover, Karen; Gibb, Nerida

    2014-08-01

    Desaturases catalyse modifications to fatty acids which are essential to homeostasis and for pheromone and defensive chemical production. All desaturases of the flour beetle Tribolium castaneum were investigated via query of the sequenced genome which yielded 15 putative acyl-Coenzyme A genes. Eleven desaturase mRNA were obtained in full length and functionally expressed in yeast. Phylogenetic analysis separated the desaturases into 4 distinct clades; one clade contained conserved beetle Δ9 desaturases, second clade was Tribolium-specific having diverse activities including Δ5, Δ9 and Δ12 desaturation and the other 2 clades had mixed insect representatives. Three members of this clade contained unusual inserted sequences of ∼20 residues in the C-terminal region and were related to desaturases that all contained similar inserts. Deletion of the entirety of the insert in the flour beetle Δ12 desaturase abolished its activity but this was partially restored by the reintroduction of two histidine residues, suggesting the histidine(s) are required for activity but the full length insert is not. Five new desaturase activities were discovered: Δ9 desaturation of C12:0-C16:0 substrates; two unprecedented Δ5 enzymes acting on C18:0 and C16:0; Δ9 activity exclusively on C16:0 and a further stearate Δ9 desaturase. qPCR analysis ruled out a role in sex pheromone synthesis for the Δ5 and Δ9/C16:0 desaturases. The flour beetle genome has underpinned an examination of all transcribed desaturases in the organism and revealed a diversity of novel and unusual activities, an improved understanding of the evolutionary relationships among insect desaturases and sequence determinants of activity.

  6. Spatial-temporal modeling of forest gaps generated by colonization from below- and above-ground bark beetle species

    DEFF Research Database (Denmark)

    Zhu, Jun; Rasmussen, Jakob Gulddahl; Møller, Jesper

    2008-01-01

    Studies of forest declines are important, because they both reduce timber production and affect successional trajectories of landscapes and ecosystems. Of particular interest is the decline of red pines, which is characterized by expanding areas of dead and chlorotic trees in plantations throughout...... red turpentine beetle colonization, pine engraver bark beetle colonization, and mortality of red pine trees while accounting for correlation across space and over time. We extend traditional Markov random-field models to include temporal terms and multiple-response variables aimed at developing...... a suitable set of statistical models for addressing the scientific questions about the forest ecosystem under study. For statistical inference, we adopt a Bayesian hierarchical modeling approach and devise Markov chain Monte Carlo algorithms for obtaining the posterior distributions of model parameters...

  7. Effects of Small-Scale Dead Wood Additions on Beetles in Southeastern U.S. Pine Forests

    Directory of Open Access Journals (Sweden)

    Chris E. Carlton

    2012-08-01

    Full Text Available Pitfall traps were used to sample beetles (Coleoptera in plots with or without inputs of dead loblolly pine (Pinus taeda L. wood at four locations (Louisiana, Mississippi, North Carolina and Texas on the coastal plain of the southeastern United States. The plots were established in 1998 and sampling took place in 1998, 1999, and 2002 (only 1998 for North Carolina. Overall, beetles were more species rich, abundant and diverse in dead wood addition plots than in reference plots. While these differences were greatest in 1998 and lessened thereafter, they were not found to be significant in 1998 due largely to interactions between location and treatment. Specifically, the results from North Carolina were inconsistent with those from the other three locations. When these data were excluded from the analyses, the differences in overall beetle richness for 1998 became statistically significant. Beetle diversity was significantly higher in the dead wood plots in 1999 but by 2002 there were no differences between dead wood added and control plots. The positive influence of dead wood additions on the beetle community can be largely attributed to the saproxylic fauna (species dependent on dead wood, which, when analyzed separately, were significantly more species rich and diverse in dead wood plots in 1998 and 1999. Ground beetles (Carabidae and other species, by contrast, were not significantly affected. These results suggest manipulations of dead wood in pine forests have variable effects on beetles according to life history characteristics.

  8. Notes on the Reproductive Ecology and Description of the Preimaginal Morphology of Elaphrus sugai Nakane, the Most Endangered Species of Elaphrus Fabricius (Coleoptera: Carabidae Ground Beetle Worldwide.

    Directory of Open Access Journals (Sweden)

    Kôji Sasakawa

    Full Text Available Elucidating the basic life-history of endangered species is the first important step in the conservation of such species. This study examined the reproductive ecology and the preimaginal morphology of the endangered ground beetle Elaphrus sugai Nakane (Coleoptera: Carabidae; currently, the Watarase wetland of the central Kanto Plain, Japan is the only confirmed locality of this beetle species. Laboratory rearing of reproductive adults collected in early April revealed that females can lay more than 131 eggs. Eggs were laid in mud, without an egg chamber. Larvae reached adulthood when fed a diet of mealworms, indicating that E. sugai larvae are insect larvae feeders. An earthworm diet, the optimal diet for larvae of a congeneric species (E. punctatus Motschulsky, was lethal to E. sugai larvae. The egg stage was 3-4 days in duration under a 16L8D cycle (22°C. The duration from hatching to adult eclosion was 23-42 days at various temperatures simulating those of the reproductive period. Larval morphology was similar to that of consubgeneric species described previously. The pupa is unusual, in that the setae on the abdominal tergites are long (twice as long as those of the abdominal segment and have somewhat "coiled" apices. Finally, the current endangered status of E. sugai was compared to that of E. viridis Horn, which has been regarded as the most endangered species of the genus worldwide.

  9. Notes on the Reproductive Ecology and Description of the Preimaginal Morphology of Elaphrus sugai Nakane, the Most Endangered Species of Elaphrus Fabricius (Coleoptera: Carabidae) Ground Beetle Worldwide

    Science.gov (United States)

    Sasakawa, Kôji

    2016-01-01

    Elucidating the basic life-history of endangered species is the first important step in the conservation of such species. This study examined the reproductive ecology and the preimaginal morphology of the endangered ground beetle Elaphrus sugai Nakane (Coleoptera: Carabidae); currently, the Watarase wetland of the central Kanto Plain, Japan is the only confirmed locality of this beetle species. Laboratory rearing of reproductive adults collected in early April revealed that females can lay more than 131 eggs. Eggs were laid in mud, without an egg chamber. Larvae reached adulthood when fed a diet of mealworms, indicating that E. sugai larvae are insect larvae feeders. An earthworm diet, the optimal diet for larvae of a congeneric species (E. punctatus Motschulsky), was lethal to E. sugai larvae. The egg stage was 3–4 days in duration under a 16L8D cycle (22°C). The duration from hatching to adult eclosion was 23–42 days at various temperatures simulating those of the reproductive period. Larval morphology was similar to that of consubgeneric species described previously. The pupa is unusual, in that the setae on the abdominal tergites are long (twice as long as those of the abdominal segment) and have somewhat “coiled” apices. Finally, the current endangered status of E. sugai was compared to that of E. viridis Horn, which has been regarded as the most endangered species of the genus worldwide. PMID:27415755

  10. Diversity and community structure of dung beetles (Coleoptera: Scarabaeinae associated with semi-urban fragmented agricultural land in the Malabar coast in southern India

    Directory of Open Access Journals (Sweden)

    K.S. Venugopal

    2012-07-01

    Full Text Available An evaluation of the diversity and community structure of dung beetles associated with semiurban agricultural land in the Malabar coast of southern India revealed that urbanization has led to decreased diversity compared to regional forests, and has affected the community status of dung beetles. However, contrary to expectations, species richness was observed to be equivalent to rural agricultural fields in the region. Low abundance of prominent agricultural habitat species indicates that the study area has changed as a result of habitat modification/urbanization, and the prevailing conditions are not ideal for the establishment of the most common species in agriculture belts. Prominence of two less common species, Tiniocellus spinipes and Caccobius vulcanus, indicates these generalist urban adaptable (synanthropic species have become increasingly widespread and locally abundant. The low abundance of tunnelers and rollers is attributed to fragmentation of the urban agricultural belt, low mammalian diversity and dung availability, and the hard nature of the laterite soil in the Malabar coast region.

  11. Semiochemical Diversity in Practice: Antiattractant Semiochemicals Reduce Bark Beetle Attacks on Standing Trees—A First Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Fredrik Schlyter

    2012-01-01

    Full Text Available Reduction of tree mortality caused by bark beetle attacks is not only important for forestry, but also essential for the preservation of biodiversity and forest carbon sinks in the face of climate change. While bark beetle mass trapping (a “pull” approach is implemented in practice, few studies exist to estimate its effect. The more complex “push-pull” tactic has, in contrast, been repeatedly tested during the last decade. I analysed published data from 32 experiments in 9 papers published during 2000–2011 on Ips typographus and Dendroctonus ponderosae, to test if there was an overall effect of antiattractant semiochemicals, that is, if treatments reduced the number of attacks on standing trees at the habitat or stand scale. This meta-analysis showed a substantial overall effect size (treatment-control means divided by their SD of −0.96, with some heterogeneity but little evidence of publication bias. There was no effect of beetle species or publication year. Heterogeneity resulted from different designs and beetle population levels (as year of study. The conventional “% Reduction” measure correlated well with effect size (2=0.7. Recommendations include more precise reporting of responses (avoiding dichotomous data, more unified experimental designs, and further meta-analyses that include “grey literature” and more beetle species.

  12. Ground beetles (Coleoptera: Carabidae of rice field banks and restored habitats in an agricultural area of the Po Plain (Lombardy, Italy

    Directory of Open Access Journals (Sweden)

    Nicola Pilon

    2013-11-01

    Full Text Available An entomological investigation was carried out in an agricultural area, mainly rice fields, of the Po river plain, located in the municipalities of Lacchiarella (MI and Giussago (PV (Lombardy, Italy. In 2009 and 2010, ground beetles (Coleoptera: Carabidae were sampled along rice field banks and in restored habitats, by means of pitfall traps. The area appeared as species-rich, compared to other anthropogenic habitats in the Po river pain. Most of the collected Carabids were species with a wide distribution in the Paleartic region, eurytopic and common in European agroecosystems. The assemblages were dominated by small-medium, macropterous species, with summer larvae. No endemic species were found. Species with southern distribution, rarely found north of the Po river, were also sampled. Amara littorea is recorded for the first time in Italy.

  13. Fungal diversity of Norway spruce litter: effects of site conditions and premature leaf fall caused by bark beetle outbreak.

    Science.gov (United States)

    Przybył, K; Karolewski, P; Oleksyn, J; Labedzki, A; Reich, P B

    2008-08-01

    Fungi play an important role in leaf litter decomposition due to their ability to break down the lignocellulose matrix, which other organisms are unable to digest. However, little is known regarding the factors affecting components of fungal diversity. Here, we quantified richness of internal fungi in relation to litter nutrient and phenolic concentrations, sampling season (spring or fall), and premature leaf shedding due to low precipitation and infestation of bark beetles (mainly Ips typographus and Ips duplicatus). The study was conducted in 37-year-old Norway spruce [Picea abies (L.) Karst.] stands, with three plots each in mixed forest (MF) and coniferous forest (CF) site conditions in south-central Poland. Fifty-four species of sporulating fungi were identified in 2,330 freshly fallen needles sampled during 2003-2005, including 45 species in MF and 31 in CF. The significantly higher number of species in MF was likely related to moister conditions at that site. Among isolated fungi, 22% (12 species) were identified as endophytes of Norway spruce in prior studies. During spring of 2005, we found less than half the number of isolates and fungal species at each forest site as compared to fall for the two prior years. This pattern was observed in typical soil fungi (e.g., Penicillium daleae, Penicillium purpurogenum) and endophytes/epiphytes (e.g., Aureobasidium pullulans, Alternaria alternata, Cladosporium spp., and Lophodermium piceae). Premature shedding of needles was the most likely cause of this decline because it shortened the time period for fungi to infect green needles while on the tree. For all sites and sampling periods, richness of internal fungi was strongly and positively related to the age of freshly fallen litter (assessed using needle Ca concentration as a needle age tracer) and was also negatively related to litter phenolic concentration. Richness of internal fungi in freshly fallen litter may be adversely affected by low soil moisture status

  14. Dermestid Beetles

    OpenAIRE

    Hodgson, Erin W.; Coats, Katherine; Roe, Alan H.

    2008-01-01

    Dermestid beetles are in the family Dermestidae and order Coleoptera. These beetles are sometimes called larder beetles or carpet beetles. Adults range from 1 to 12 mm in length and have variable body coloration. In general, they are hairy, dark-colored, elongated, and have clubbed antennae. The larvae are light brown and can be up to 13 mm long. Many larvae have spines, called setae, on the back of the abdomen that are helpful with identification. Dermestid larvae and adults have chewing mou...

  15. Pastoral practices to reverse shrub encroachment of sub-alpine grasslands: dung beetles (coleoptera, scarabaeoidea) respond more quickly than vegetation.

    Science.gov (United States)

    Tocco, Claudia; Probo, Massimiliano; Lonati, Michele; Lombardi, Giampiero; Negro, Matteo; Nervo, Beatrice; Rolando, Antonio; Palestrini, Claudia

    2013-01-01

    In recent decades, pastoral abandonment has produced profound ecological changes in the Alps. In particular, the reduction in grazing has led to extensive shrub encroachment of semi-natural grasslands, which may represent a threat to open habitat biodiversity. To reverse shrub encroachment, we assessed short-term effects of two different pastoral practices on vegetation and dung beetles (Coleoptera, Scarabaeoidea). Strategic placement of mineral mix supplements (MMS) and arrangement of temporary night camp areas (TNCA) for cattle were carried out during summer 2011 in the Val Troncea Natural Park, north-western Italian Alps. In 2012, one year after treatment, a reduction in shrub cover and an increase in bare ground cover around MMS sites was detected. A more intense effect was detected within TNCA through increases in forage pastoral value, and in the cover and height of the herbaceous layer. Immediately after treatment, changes in dung beetle diversity (total abundance, species richness, Shannon diversity, taxonomic and functional diversity) showed a limited disturbance effect caused by high cattle density. In contrast, dung beetle diversity significantly increased one year later both at MMS and TNCA sites, with a stronger effect within TNCA. Multivariate Regression Trees and associated Indicator Value analyses showed that some ecologically relevant dung beetle species preferred areas deprived of shrub vegetation. Our main conclusions are: i) TNCA are more effective than MMS in terms of changes to vegetation and dung beetles, ii) dung beetles respond more quickly than vegetation to pastoral practices, and iii) the main driver of the rapid response by dung beetles is the removal of shrubs. The resulting increase in dung beetle abundance and diversity, which are largely responsible for grassland ecosystem functioning, may have a positive effect on meso-eutrophic grassland restoration. Shrub encroachment in the Alps may therefore be reversed, and restoration of

  16. [Diversity and stability of arthropod community in peach orchard under effects of ground cover vegetation].

    Science.gov (United States)

    Jiang, Jie-xian; Wan, Nian-feng; Ji, Xiang-yun; Dan, Jia-gui

    2011-09-01

    A comparative study was conducted on the arthropod community in peach orchards with and without ground cover vegetation. In the orchard with ground cover vegetation, the individuals of beneficial, neutral, and phytophagous arthropods were 1.48, 1.84 and 0.64 times of those in the orchard without ground cover vegetation, respectively, but the total number of arthropods had no significant difference with that in the orchard without ground cover vegetation. The species richness, Shannon's diversity, and Pielou's evenness index of the arthropods in the orchard with ground cover vegetation were 83.733 +/- 4.932, 4.966 +/- 0.110, and 0.795 +/- 0.014, respectively, being significantly higher than those in the orchard without ground cover vegetation, whereas the Berger-Parker's dominance index was 0.135 +/- 0.012, being significantly lower than that (0.184 +/- 0.018) in the orchard without ground cover vegetation. There were no significant differences in the stability indices S/N and Sd/Sp between the two orchards, but the Nn/Np, Nd/Np, and Sn/Sp in the orchard with ground cover vegetation were 0.883 +/- 0.123. 1714 +/- 0.683, and 0.781 +/- 0.040, respectively, being significantly higher than those in the orchard without ground cover vegetation. Pearson's correlation analysis indicated that in the orchard with ground cover vegetation, the Shannon's diversity index was significantly negatively correlated with Nd/Np, Sd/Sp, and S/N but had no significant correlations with Nn/Np and Sn/Sp, whereas in the orchard without ground cover vegetation, the diversity index was significantly positively correlated with Nn/Np and Nd/Np and had no significant correlations with Sd/Sp, Sn/Sp, and S/N.

  17. Ensamble peridomiciliario de carábidos (Coleoptera: Carabidae en un talar del sudeste bonaerense, Argentina Peridomestic ground beetle assemblage (Coleoptera: Carabidae in a Celtis tala forest from southeastern Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Adela V. Castro

    2012-12-01

    Full Text Available Nuestro objetivo fue conocer la diversidad de carábidos en un área peridomiciliaria del talar de Laguna Nahuel Rucá, Mar Chiquita. Realizamos un inventario de las especies, comparamos la variación estacional en la diversidad alfa acumulada, la estructura del ensamble y los grupos funcionales. En el año de muestreo (marzo 2008-marzo 2009, capturamos 2.588 individuos distribuidos en 63 especies, que representaron el 84-93% de la riqueza estimada. La riqueza específica fue mayor en primavera y verano, en relación a otoño e invierno (pOur purpose was to perform a research on the peridomestic carabid diversity in a Celtis tala Guillies ex Planch forest, at Laguna Nahuel Rucá, Mar Chiquita district. A species inventory and the comparison of the seasonal variation of cumulative species richness, as well as community structure and functional groups were carried out. During one year (March 2008-March 2009, 2588 carabids belonging to 63 species were collected, representing the 84%-93% of the estimated richness. Cumulative species richness during spring and summer was higher than in autumn and winter (p<0.05. Two species, Argutoridius bonariensis (Dejean and Pachymorphus striatulus (Fabricius, represented a total of 47% of captures and were dominant in all seasons. Concerning trophic guilds, zoophagous represented more than 50% of the assemblage in all seasons, while phytophagous and omnivorous remained at low percentages in autumn-winter (<10%; the former reached a peak in spring (20%, and the latter in summer (34%. Regarding humidity affinities, mesophilous species conformed more than 70% of the assemblage and hygrophilous and xerophilous reached less than 20%. We discuss the probable causes of such higher carabid diversity wandering through the talar stand and their simplified surroundings, as well as the influence that these factors exert on composition and structure of the ground beetle assemblage.

  18. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    Science.gov (United States)

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  19. Persistent pods of the tree Acacia caven: a natural refuge for diverse insects including Bruchid beetles and the parasitoids Trichogrammatidae, Pteromalidae and Eulophidae.

    Science.gov (United States)

    Rojas-Rousse, D

    2006-01-01

    The persistent pods of the tree, Acacia caven that do not fall from the tree provide opportunities for the appearance of a diverse group of insects the following season. Such pods collected during the spring of 1999 in Chile were indehiscent with highly sclerified pod walls. In contrast, persistent pods collected in Uruguay after a wet winter and spring (2002) were partially dehiscent, inducing the deterioration of the woody pods, and consequently exposing the seeds. These persistent pods are a natural refuge for insect species, namely two bruchid beetles (Pseudopachymeria spinipes, Stator furcatus), one scolytidae (Dendroctonus sp), lepidopterous larvae, ant colonies (Camponotus sp), one species of oophagous parasitoid (Uscana espinae group senex), the gregarious larval-pupae parasitoid Monoksa dorsiplana (Pteromalidae) and two species of Horismenus spp. (Eulophidae). The patriline of M. dorsiplana is frequently formed by 1 son + 7 daughters.

  20. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    Science.gov (United States)

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  1. Ground Spider Guilds and Functional Diversity in Native Pine Woodlands and Eucalyptus Plantations.

    Science.gov (United States)

    Corcuera, Pablo; Valverde, Pedro Luis; Jiménez, María Luisa; Ponce-Mendoza, Alejandro; De la Rosa, Gabriela; Nieto, Gisela

    2016-04-01

    Vegetation structure and floristics have a strong influence on the relative abundance of spider guilds and functional diversity of terrestrial arthropods. Human activities have transformed much of the temperate woodlands. The aim of this study was to test five predictions related to the guild distribution and functional diversity of the ground spider communities of Eucalyptus plantations and native pine woodlands in western Mexico. Spiders were collected every fortnight from September to November from 15 pitfalls positioned in each of the eight sites. We also assessed the cover of grasses, herbs, shrubs, and leaf litter in each site. We found that the abundances of ground hunters and sheet weavers between plantations and pine woodlands were different. Nevertheless, there was not a consistent difference between sites of each of the vegetation types. Most species of ground hunters, sheet web weavers, and many other hunters were associated with litter and the grass cover. Nonetheless, in some cases, species of different families belonging to the same guild responded to different variables. Wolf spiders were related to the grass Aristida stricta Micheaux, 1803, while the species of the other families of ground hunters were associated with leaf litter. One Eucalyptus plantation and one pine woodland had the highest functional diversity of all sites. These sites have a well developed litter and grass cover. Our study suggests that the abundance of litter and a high cover of grasses explain the occurrence of species with different traits, and these habitat components results in a high functional diversity.

  2. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  3. Ground beetle (Coleoptera, Carabidae) assemblages inhabiting Scots pine stands of Puszcza Piska Forest: six-year responses to a tornado impact.

    Science.gov (United States)

    Skłodowski, Jarosław; Garbalińska, Paulina

    2011-01-01

    Ground beetle assemblages were studied during 2003-08 in the Pisz Forest by comparing stands disturbed by a tornado to undisturbed control stands. The following exploratory questions were put forward. (1) How do the carabid assemblages change during six years following the tornado impact? (2) Does the carabid assemblage recovery begin during the six first post-tornado years? To assess the state of carabid assemblages we used two indices: the MIB (Mean Individual Biomass) and the SPC (Sum of Progressive Characteristics). Carabid assemblages in the disturbed and in the control stands, as expressed by these two indices, were compared using the length of a regression distance (sample distance in a MIB:SPC coordinate system). A cluster analysis revealed that the assemblages of the disturbed and the control stands were different. The tornado-impacted stands produced lower carabid catch rates, but species richness was significantly higher there than in the control stands. They hosted lower proportions of individuals of European species, of large zoophages, and of forest and brachypterous species, than the control stands. The observed reduction in SPC and MIB, and an increase in the regression distances may indicate that the carabid assemblages had not started to recover from the tornado-caused disturbance. Carabid assemblages apparently responded to the tornado in two steps. Firstly, the first three years were characterized by moderate decreases of index values. Secondly, from the fourth to the sixth year after the tornado, many observed changes became magnified. We did not observe clear signals of the recovery of forest carabid assemblages during the six follow-up years.

  4. A new genus and a species of trechine ground beetles (Coleoptera: Carabidae: Trechinae from the Republic of Srpska (Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Ćurčić S.B.

    2012-01-01

    Full Text Available A new genus (Punctoduvalius gen. n. and a species of trechine ground beetles (Punctoduvalius orlovacensis sp. n. from Bosnia and Herzegovina have been described and diagnosed. Punctoduvalius gen. n. is clearly distinct from all other phenetically close genera in many important respects, such as: the presence of depigmented reduced eyes, the presence of a pigmented eye border, the presence of deep and complete frontal furrows, the presence of tiny setae on the genae, the presence of distinct longitudinal fissures on the protibias, the ratio of length/width of the first protarsal article in males, the presence of two elytral discal setae, the presence of numerous setiferous punctures in interstrial spaces, the specific position of the humeral setae, and the specific shape of the copulatory piece. This new genus comprises four species: Punctoduvalius pilifer (Ganglbauer, 1891 (endogean from Mts. Treskavica and Bjelašnica, and from a cave on Mt. Visočica, Bosnia and Herzegovina, P. protectus (Winkler, 1926 (from the Pećina kod Ostojića Cave, Mt. Treskavica, and endogean from Mt. Jahorina, Bosnia and Herzegovina, P. brevipilosus (Knirsch, 1927 (endogean from Lupoglav Peak, Mt. Prenj, Bosnia and Herzegovina, and P. orlovacensis sp. n. (from the Orlovača Cave, village of Donje Biševo, near Pale, Bosnia and Herzegovina. The four species clearly differ in many important respects. The following three taxonomic changes are proposed: Punctoduvalius pilifer (Ganglbauer, 1891, comb. n., P. protectus (Winkler, 1926, comb. n., and P. brevipilosus (Knirsch, 1927, comb. n. The new genus and its members belong to an old separate phyletic lineage, distinct from all other existing species groups. Additionally, these forms are relict and endemic to the deep soil and caves of Bosnia and Herzegovina. [Acknowledgments. This study was financially supported by the Serbian Ministry of Education and Science (Grant No. 173038.

  5. Performance analysis of MRC spatial diversity receiver system for satellite-to-ground downlink optical transmissions

    Science.gov (United States)

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Cao, Yubin

    2016-10-01

    The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed turbulence are studied for multiple apertures receiver system. Maximum ratio combining (MRC) technique is considered as a combining scheme to mitigate the atmospheric turbulence under thermal noise limited conditions. Bit-error rate (BER) performances for on-off keying (OOK) modulated direct detection optical communications are analyzed for MRC diversity receptions through an approximation method. To show the net diversity gain of multiple apertures receiver system, BER performances of MRC receiver system are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are also verified by Monte-Carlo (MC) simulations.

  6. Mountain Pine Beetle

    Science.gov (United States)

    Gene D. Amman; Mark D. McGregor; Robert E. Jr. Dolph

    1989-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a member of a group of beetles known as bark beetles: Except when adults emerge and attack new trees, the mountain pine beetle completes its life cycle under the bark. The beetle attacks and kills lodgepole, ponderosa, sugar, and western white pines. Outbreaks frequently develop in lodgepole pine stands that...

  7. Using carabid beetles coleptera:carabidae as a means to investigate the effect of forestry practices on soil diversity. PNFI technical reports No. 16

    Energy Technology Data Exchange (ETDEWEB)

    Duchesne, L.C.; McAlpine, R.S.

    1993-01-01

    Carabid beetles were collected through pitfall trapping on a sites at Frontier Lake from three undisturbed stands of jack pine and compared with carabid beetles from three clear-cut sites and three sites that had been clear-cut and burned-over. This technical report presents the results from the experiment.

  8. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains

    Science.gov (United States)

    Bray, Timothy C.; Bocak, Ladislav

    2016-09-01

    We demonstrate the controversial origin of a biological species within an area of a few kilometres in the absence of physical barriers. We employed nuclear rRNA/mitochondrial and genome-wide SNP approaches to infer relationships of four species of net-winged beetles characterised by female neoteny. Three species are distributed at low elevations and a single population colonised a 40 km2 highland plateau and established distinct biological species despite incomplete genetic isolation. The speciation process is extreme in the highly localised spatial scale, due to the low dispersal power of neotenics, and provides clear support for a microallopatric model based on ecological conditions. In contrast with neutral evolution in a homogenous environment, as demonstrated by the genetic divergence and morphological similarity of two widely distributed low-mountain species, the environmental characteristics of the high-mountain plateau led to the origin of a species adapted to the local mimetic pattern and characterised by morphologically distinct genitalia. We conclude that the low dispersal propensity promotes neutral genetic differentiation in the first stage, but environmental characteristics play an important role the final phase of the speciation process. The unexpected speciation at such an extreme geographic scale points to the in situ origin and uniqueness of the mountain fauna.

  9. Research Progress of Utilization of Medicinal and Edible Insects-Ground Beetle, Caterpillar Fungus and Ants%三种药食两用昆虫的研究与利用综述

    Institute of Scientific and Technical Information of China (English)

    葛正焱

    2012-01-01

    综述了三种药食两用昆虫地鳖虫、冬虫夏草和蚂蚁研究及利用现状,介绍它们的药用和营养保健价值以及使用方法,为进一步研究开发提供科学依据。%The paper summarized the research advancement and utilization status of medicinal and edible insects such as ground beetle, caterpillar fungus and ants, and their nutritional value, healthy function and use methods were included, which could be helpful to further research and development.

  10. Ground layer plant species turnover and beta diversity in southern-European old-growth forests.

    Science.gov (United States)

    Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

    2014-01-01

    Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests.

  11. Ground layer plant species turnover and beta diversity in southern-European old-growth forests.

    Directory of Open Access Journals (Sweden)

    Francesco Maria Sabatini

    Full Text Available Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests.

  12. A comparison of trap type and height for capturing cerambycid beetles (Coleoptera).

    Science.gov (United States)

    Graham, Elizabeth E; Poland, Therese M; McCullough, Deborah G; Millar, Jocelyn G

    2012-06-01

    Wood-boring beetles in the family Cerambycidae (Coleoptera) play important roles in many forest ecosystems. However, increasing numbers of invasive cerambycid species are transported to new countries by global commerce and threaten forest health in the United States and worldwide. Our goal was to identify effective detection tools for a broad array of cerambycid species by testing some known cerambycid attractants and a pheromone in different trap designs placed across a range of habitats. We compared numbers and species richness of cerambycid beetles captured with cross-vane panel traps and 12-unit Lindgren multiple-funnel traps, placed either at ground level (1.5 m high) or canopy level (approximately 3-10 m high), at eight sites classified as either residential, industrial, deciduous forest, or conifer forest. We captured 3,723 beetles representing 72 cerambycid species from 10 June to 15 July 2010. Species richness was highest for the subfamilies Cerambycinae and Lamiinae, which accounted for 33 and 46% of all species captured, respectively. Overall, the cross-vane panel traps captured approximately 1.5 times more beetles than funnel traps. Twenty-one species were captured exclusively in traps at one height, either in the canopy or at ground level. More species were captured in hardwood sites (59 species) where a greater diversity of host material was available than in conifer (34 species), residential (41 species), or industrial (49) sites. Low numbers of beetles (n < 5) were recorded for 28 of the beetle species. The number of species captured per week ranged from 49 species on 21 June to 37 species on 12 July. Cross-vane panel traps installed across a vertical gradient should maximize the number of cerambycid species captured.

  13. Cottonwood leaf beetle (Coleoptera: Chrysomelidae) defoliation impact on Populus growth and above-ground volume in a short-rotation woody crop plantation

    Science.gov (United States)

    David R. Coyle; Joel D. McMillin; Richard B. Hall; Elwood R. Hart

    2002-01-01

    AbstractThe impact of cottonwood leaf beetle Chrysomela scripta F. defoliation on four plantation-grown Populus clones was examined over three growing seasons. We used a split-plot design with two treatments: protected (by insecticides) and an unprotected control. Tree height and...

  14. Charles Darwin, beetles and phylogenetics.

    Science.gov (United States)

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  15. Charles Darwin, beetles and phylogenetics

    Science.gov (United States)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  16. Water beetles

    OpenAIRE

    Foster, G. N.; Nelson, B H; O'Connor, Á.

    2009-01-01

    EXECUTIVE SUMMARY: Based on ca 37,000 records for Ireland, 244 taxa of beetle are evaluated for their conservation status using the International Union for the Conservation of Nature (IUCN) regional criteria. Of the wetland species, eight are considered to be regionally extinct, eight critically endangered, eleven endangered, twenty two vulnerable, twenty four near threatened, and the rest at lower risk, of least concern or data‐deficient. Ninety‐three taxa are mapped. The importance of h...

  17. Connecting ground water influxes with fish species diversity in an urbanized watershed

    Science.gov (United States)

    Steffy, L.Y.; McGinty, A.L.; Welty, C.; Kilham, S.S.

    2004-01-01

    Valley Creek watershed is a small stream system that feeds the Schuylkill River near Philadelphia, Pennsylvania. The watershed is highly urbanized, including over 17 percent impervious surface cover (ISC) by area. Imperviousness in a watershed has been linked to fish community structure and integrity. Generally, above 10 to 12 percent ISC there is marked decline in fish assemblages with fish being absent above 25 percent ISC. This study quantifies the importance of ground water in maintaining fish species diversity in subbasins with over 30 percent ISC. Valley Creek contains an atypical fish assemblage in that the majority of the fish are warm-water species, and the stream supports naturally reproducing brown trout, which were introduced and stocked from the early 1900s to 1985. Fish communities were quantified at 13 stations throughout the watershed, and Simpson's species diversity index was calculated. One hundred and nine springs were located, and their flow rates measured. A cross covariance analysis between Simpson's species diversity index and spring flow rates upstream of fish stations was performed to quantify the spatial correlation between these two variables. The correlation was found to be highest at lag distances up to about 400 m and drop off significantly beyond lag distances of about 800 m.

  18. Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields

    DEFF Research Database (Denmark)

    Steenberg, T; Langer, V; Esbjerg, P

    1995-01-01

    Prevalence of entomopathogenic fungi was studied in overwintering ground beetles (Col.: Carabidae) and rove beetles (Col.: Staphylinidae) collected from fields of lucerne, white cabbage and white cabbage undersown with white clover. In general infection levels in adult ground beetles and rove bee...... (Zygomycetes: Entomophthorales). Two individuals of Anotylus rugosus were found to have a dual infection of Zoophthora philonthi and Beauveria bassiana...

  19. Longhorn beetles of the Ficuzza woods (W Sicily, Italy and their relationship with plant diversity (Coleoptera, Cerambycidae

    Directory of Open Access Journals (Sweden)

    Tommaso La Mantia

    2010-12-01

    Full Text Available The woods in Sicily are the result of centuries of anthropogenic activities that have reduced the surface of woodand changed the original composition even with the introduction of alien species to native flora. The value interms of biodiversity of these forests remains, however, high for they are the last refuge areas for many animalsand plant species. This study was conducted within the Ficuzza woods (West Sicily, extended about 5,000hectares on the slopes of limestone-dolomite rock of Busambra (1615 m asl, within which lies the largestremaining forest area in western Sicily. It is an area with a wide diversity of vegetation, represented mainly bynative forests (holm oak, cork oak, deciduous oaks, groups of riparian vegetation, shrubs, bushes, grasslands,and of non-native forest formations (Pinus and Eucalyptus woods. The study on Cerambycidae in this area isfragmented and does not specify a relation the species with the surrounding vegetation. This study wasperformed by choosing among various groups of insects, xylophagous Coleoptera Cerambycidae; existingliterature data and extensive collected field data were reviewed. The analysis was also performed by thecollection of dead wood in order to distinguish the relationship between the plant species and coleoptera. Theresults summarize and supplement the data registered so far, shedding further light on the ecological role ofthis group of insects that are also valid biomarkers of the integrity and complexity of the forest.

  20. Extremely alkaline (pH > 12) ground water hosts diverse microbial community.

    Science.gov (United States)

    Roadcap, George S; Sanford, Robert A; Jin, Qusheng; Pardinas, José R; Bethke, Craig M

    2006-01-01

    Chemically unusual ground water can provide an environment for novel communities of bacteria to develop. Here, we describe a diverse microbial community that inhabits extremely alkaline (pH > 12) ground water from the Lake Calumet area of Chicago, Illinois, where historic dumping of steel slag has filled in a wetland. Using microbial 16S ribosomal ribonucleic acid gene sequencing and microcosm experiments, we confirmed the presence and growth of a variety of alkaliphilic beta-Proteobacteria, Bacillus, and Clostridium species at pH up to 13.2. Many of the bacterial sequences most closely matched those of other alkaliphiles found in more moderately alkaline water around the world. Oxidation of dihydrogen produced by reaction of water with steel slag is likely a primary energy source to the community. The widespread occurrence of iron-oxidizing bacteria suggests that reduced iron serves as an additional energy source. These results extend upward the known range of pH tolerance for a microbial community by as much as 2 pH units. The community may provide a source of novel microbes and enzymes that can be exploited under alkaline conditions.

  1. An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts

    Science.gov (United States)

    Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the spectacular adaptive radiation that gave rise to at least 3,500 extant Xyleborini. Here we document the evolution of a clade within Fusarium associated with ambrosia beet...

  2. Selection indicates preference in diverse habitats: a ground-nesting bird (Charadrius melodus) using reservoir shoreline.

    Science.gov (United States)

    Anteau, Michael J; Sherfy, Mark H; Wiltermuth, Mark T

    2012-01-01

    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m(2)) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  3. Selection Indicates Preference in Diverse Habitats: A Ground-Nesting Bird (Charadrius melodus) Using Reservoir Shoreline

    Science.gov (United States)

    Anteau, Michael J.; Sherfy, Mark H.; Wiltermuth, Mark T.

    2012-01-01

    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006–2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m2) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies. PMID:22299037

  4. Selection indicates preference in diverse habitats: a ground-nesting bird (Charadrius melodus using reservoir shoreline.

    Directory of Open Access Journals (Sweden)

    Michael J Anteau

    Full Text Available Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers. We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m(2 that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median, but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  5. Performance analysis of satellite-to-ground downlink optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence

    Science.gov (United States)

    Li, Kangning; Ma, Jing; Belmonte, Aniceto; Tan, Liying; Yu, Siyuan

    2015-12-01

    The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed turbulence are studied for a multiple-aperture receiver system. Equal gain-combining (EGC) and selection-combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence under thermal-noise-limited conditions. Bit-error rate (BER) performances for on-off keying-modulated direct detection and outage probabilities are analyzed and compared for SC diversity receptions using analytical results and for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple-aperture receiver system, BER performances and outage probabilities of EGC and SC receiver systems are compared with a single monolithic-aperture receiver system with the same total aperture area (same average total incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are also verified by Monte-Carlo simulations.

  6. Seasonal distribution and diversity of ground arthropods in microhabitats following a shrub plantation age sequence in desertified steppe.

    Directory of Open Access Journals (Sweden)

    Rentao Liu

    Full Text Available In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was

  7. Seasonal distribution and diversity of ground arthropods in microhabitats following a shrub plantation age sequence in desertified steppe.

    Science.gov (United States)

    Liu, Rentao; Zhu, Fan; Song, Naiping; Yang, Xinguo; Chai, Yongqing

    2013-01-01

    In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii) in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation) was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was markedly affected by

  8. Biodiversity of carabidae beetles (Coleoptera: Carabidae in agroecosystems of Azadshahr region, Golestan province, Northern Iran

    Directory of Open Access Journals (Sweden)

    M. Rezaye-Nodeh

    2016-05-01

    Full Text Available Ground beetles (Family Carabidae with more than 40,000 described species worldwide are one of the most important generalist predators in agroecosystems. Because of their habit of feeding on agricultural pests and weed seeds, in this study we tried to assess their biodiversity in agroecosystems of Azadshahr region, eastern Golestan province. Samples were collected for some main crops, using pitfall traps during 2009 and 2010 and two indices, including SIMPSON'S RECIPROCAL INDEX and Shannon-Weaver index were used to measure diversity and structure of the community. Results showed that there were a high species richness of ground beetles in this region and 24, 22, 18, 18 and 12 species were identified in rape seed, wheat, tomato, broad bean and soybean fields, respectively. Dominant species in these crops were Harpalus distinguendus Duftchmid, Agonum dorsale (Pontoppidan, Poecilus cupreus (L., Agonum dorsale (Pontoppidan, and Harpalus rufipes (De Geer, respectively. The values of Shannon and Simpson indices in these ecosystems were 2.16, 2.57, 1.81, 2.22 and 2.00, and 4.93, 10.09, 4.21, 6.16 and 6.12, respectively. The highest (7.1±0.85 and the lowest (0.45±0.12 numbers of beetles were captured in margins of rape seed and soybean fields, respectively.

  9. Vast assembly of vocal marine mammals from diverse species on fish spawning ground.

    Science.gov (United States)

    Wang, Delin; Garcia, Heriberto; Huang, Wei; Tran, Duong D; Jain, Ankita D; Yi, Dong Hoon; Gong, Zheng; Jech, J Michael; Godø, Olav Rune; Makris, Nicholas C; Ratilal, Purnima

    2016-03-17

    Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species.

  10. Checklist of leaf beetles (Coleoptera: Chrysomelidae) from the state of Morelos, Mexico.

    Science.gov (United States)

    Niño-Maldonado, Santiago; Sánchez-Reyes, Uriel Jeshua; Clark, Shawn M; Toledo-Hernández, Victor Hugo; Corona-López, Angélica María; Jones, Robert W

    2016-03-07

    We record 116 genera and 366 species of Chrysomelidae from the state of Morelos, Mexico. This represents an increase of 9.3% in the species richness of these beetles for the state. Also, Morelos is currently the third most diverse state in leaf beetles within Mexico, with 16.78% of total species recorded for the country. The most diverse genera were Calligrapha, Disonycha, Blepharida, Leptinotarsa, Cryptocephalus, Systena, Alagoasa, Diabrotica and Pachybrachis, each with more than eight species. Most of these genera contain large, showy beetles. When the chrysomelid fauna is more fully understood, some of the genera of tiny beetles will likely prove to be more diverse.

  11. Pre-treatment assemblages of wood-boring beetles (Coleoptera: Buprestidae, Cerambycidae) of the hardwood ecosystem experiment

    Science.gov (United States)

    Jeffrey D. Holland; John T. Shukle; Hossam Eldien M. Abdel Moniem; Thomas W. Mager; Kapil R. Raje; Kyle Schnepp; Shulin. Yang

    2013-01-01

    Longhorned beetles are a diverse and important group of insects in forest ecosystems; several species attack weakened or stressed trees, relatively few attack healthy trees, and most species use only dead and decomposing wood. We surveyed longhorned beetles and metallic wood-boring beetles using four different types of traps at 36 Hardwood Ecosystem Experiment (Indiana...

  12. The diversity and abundance of ground herbs in lowland mixed dipterocarp forest and heath forest in Brunei Darussalam

    Directory of Open Access Journals (Sweden)

    Nurul Hazlina Zaini

    2014-12-01

    Full Text Available Herbaceous plants are important components of total plant species richness in tropical forests. Ground herb diversity and abundance were studied in a lowland Mixed Dipterocarp forest (Andulau and a heath forest (Bukit Sawat in Brunei Darussalam, Borneo. At each site, all ground herbs in twenty randomly selected 10 × 10 m subplots within a one hectare permanent plot were censused and identified. The study recorded a total of 20 families and 32 genera of ground herbs, with the family Zingiberaceae as the most abundant at both sites. Thirteen genera were recorded only at Andulau and 7 genera were exclusive to Bukit Sawat, with twelve genera common to both sites. Ground herb species richness appear higher at Andulau than Bukit Sawat (37 vs. 29, but this difference was not statistically significant at the subplot level. However, ground herb abundance and density were significantly higher at Bukit Sawat than Andulau (n =  846 vs. 385; 4230 vs. 1925 individuals ha-1. The more open canopy at Bukit Sawat may provide higher light availability here than at Andulau, which is characterised by a closed canopy. We suggest that light availability is the most important environmental factor influencing ground herb density and abundance at these sites. 

  13. Pheromone production in bark beetles.

    Science.gov (United States)

    Blomquist, Gary J; Figueroa-Teran, Rubi; Aw, Mory; Song, Minmin; Gorzalski, Andrew; Abbott, Nicole L; Chang, Eric; Tittiger, Claus

    2010-10-01

    The first aggregation pheromone components from bark beetles were identified in 1966 as a mixture of ipsdienol, ipsenol and verbenol. Since then, a number of additional components have been identified as both aggregation and anti-aggregation pheromones, with many of them being monoterpenoids or derived from monoterpenoids. The structural similarity between the major pheromone components of bark beetles and the monoterpenes found in the host trees, along with the association of monoterpenoid production with plant tissue, led to the paradigm that most if not all bark beetle pheromone components were derived from host tree precursors, often with a simple hydroxylation producing the pheromone. In the 1990 s there was a paradigm shift as evidence for de novo biosynthesis of pheromone components began to accumulate, and it is now recognized that most bark beetle monoterpenoid aggregation pheromone components are biosynthesized de novo. The bark beetle aggregation pheromones are released from the frass, which is consistent with the isoprenoid aggregation pheromones, including ipsdienol, ipsenol and frontalin, being produced in midgut tissue. It appears that exo-brevocomin is produced de novo in fat body tissue, and that verbenol, verbenone and verbenene are produced from dietary α-pinene in fat body tissue. Combined biochemical, molecular and functional genomics studies in Ips pini yielded the discovery and characterization of the enzymes that convert mevalonate pathway intermediates to pheromone components, including a novel bifunctional geranyl diphosphate synthase/myrcene synthase, a cytochrome P450 that hydroxylates myrcene to ipsdienol, and an oxidoreductase that interconverts ipsdienol and ipsdienone to achieve the appropriate stereochemistry of ipsdienol for pheromonal activity. Furthermore, the regulation of these genes and their corresponding enzymes proved complex and diverse in different species. Mevalonate pathway genes in pheromone producing male I. pini

  14. Economically Beneficial Ground Beetles. The specialized predators Pheropsophus aequinoctialis (L. and Stenaptinus jessoensis (Morawitz: Their laboratory behavior and descriptions of immature stages (Coleoptera: Carabidae: Brachininae

    Directory of Open Access Journals (Sweden)

    Howard Frank

    2009-07-01

    Full Text Available Adults of Pheropsophus aequinoctialis (L. (Coleoptera: Carabidae: Brachininae: Brachinini, are largely nocturnal predators and scavengers on animal and plant materials. The daily food consumption of a pair of adults is the equivalent to 1.2 - 2.3 large larvae of Trichoplusia ni (Hübner (Lepidoptera: Noctuidae. Larvae developed under laboratory conditions on a diet restricted to mole cricket eggs (Orthoptera: Gryllotalpidae; none survived under any other diet offered, thus they are specialists. Large numbers of brachinine eggs were laid in the laboratory, even on a paper towel substrate, and in all months of the year albeit with a strong suggestion of an annual peak in oviposition. Many eggs failed to hatch, but those that did so incubated an average 13.5 days. Many neonate larvae failed to feed and died. On average, the larvae that developed took 25.9 days to do so on an average 38.4 mole cricket eggs. The pupal period averaged 20.4 days, so the total developmental period was 59.9 days from oviposition to emergence of adult offspring at 26oC. After initial trials, an improved method of handling adults and rearing immature stages was developed, resulting in initiation of feeding by most neonate larvae and control of contaminating organisms (nematodes, mites, and Laboulbeniales. Most neonate larvae need to be in a cell or pit of sand (or earth resembling a mole cricket egg chamber before they will feed on mole cricket eggs. The cause of infertility of many eggs was not resolved because it continued under the improved handling method for adults which permitted weekly mating; the presence of Wolbachia spp. (Bacteria: Rickettsiae in the laboratory culture may be implicated. Sex ratios of emergent adults were not substantially different from 1:1. Larvae of the Asian bombardier beetle Stenaptinus jessoensis (Morawitz had been claimed in the literature to feed only on Gryllotalpa mole cricket eggs. We found they will feed on Neocurtilla and

  15. Field observations of climbing behavior and seed predation by adult ground beetles (Coleoptera: Carabidae) in a lowland area of the temperate zone.

    Science.gov (United States)

    Sasakawa, Kôji

    2010-10-01

    Granivory is a specialized food habit in the predominantly carnivorous beetle family Carabidae. Most studies of carabid granivory have been conducted under laboratory conditions; thus, our knowledge of the feeding ecology of granivorous carabids in the field is insufficient. I conducted field observations of climbing behavior and seed predation by adult carabids in a lowland area of eastern Japan, from early October to late November in 2008. This is the first systematic field observation of the feeding ecology of granivorous carabids in the temperate zone. In total, 176 carabid individuals of 11 species were observed, with 108 individuals feeding on plant seeds/flowers. Each carabid species was primarily observed feeding on a particular plant species. Frequently observed combinations were: Amara gigantea Motschulsky on Humulus scandens (Loureiro) Merrill (Moraceae) seed, Amara lucens Baliani on Artemisia indica Willdenow (Asteraceae) flower, and Amara macronota (Solsky) and Harpalus (Pseudoophonus) spp. on Digitaria ciliaris (Retzius) Koeler (Poaceae) seed. In all but one species, the sex ratio of individuals observed feeding was female-biased. In Am. gigantea and Am. macronota, a larger proportion of females than males ate seeds. In the three Amara species, copulations on plants, with the female feeding on its seeds/flowers, were often observed. These observations may indicate that, whereas females climb onto plants to feed on seeds, males climb to seek females for copulation rather than forage. Because granivorous carabids play important roles as weed-control agents in temperate agro-ecosystems, the present results would provide valuable basic information for future studies on this subject.

  16. Neoendemic ground beetles and private tree haplotypes: two independent proxies attest a moderate last glacial maximum summer temperature depression of 3-4 °C for the southern Tibetan Plateau

    Science.gov (United States)

    Schmidt, Joachim; Opgenoorth, Lars; Martens, Jochen; Miehe, Georg

    2011-07-01

    Previous findings regarding the Last Glacial Maximum LGM summer temperature depression (maxΔT in July) on the Tibetan Plateau varied over a large range (between 0 and 9 °C). Geologic proxies usually provided higher values than palynological data. Because of this wide temperature range, it was hitherto impossible to reconstruct the glacial environment of the Tibetan Plateau. Here, we present for the first time data indicating that local neoendemics of modern species groups are promising proxies for assessing the LGM temperature depression in Tibet. We used biogeographical and phylogenetic data from small, wingless edaphous ground beetles of the genus Trechus, and from private juniper tree haplotypes. The derived values of the maxΔT in July ranged between 3 and 4 °C. Our data support previous findings that were based on palynological data. At the same time, our data are spatially more specific as they are not bound to specific archives. Our study shows that the use of modern endemics enables a detailed mapping of local LGM conditions in High Asia. A prerequisite for this is an extensive biogeographical and phylogenetic exploration of the area and the inclusion of additional endemic taxa and evolutionary lines.

  17. Diverse Responses of Remotely Sensed Grassland Phenology to Interannual Climate Variability over Frozen Ground Regions in Mongolia

    Directory of Open Access Journals (Sweden)

    Zhigang Sun

    2014-12-01

    Full Text Available Frozen ground may regulate the phenological shifts of dry and cold grasslands at the southern edge of the Eurasian cryosphere. In this study, an investigation based on the MODIS Collection 5 phenology product and climatic data collected from 2001 to 2009 reveals the diverse responses of grassland phenology to interannual climate variability over various frozen ground regions in Mongolia. Compared with middle and southern typical steppe and desert steppe, the spring (start of season; SOS and autumn (end of season; EOS phenological events of northern forest steppe with lower air temperature tend to be earlier and later, respectively. Both the SOS and EOS are less sensitive to climate variability in permafrost regions than in other regions, whereas the SOS of typical steppe is more sensitive to both air temperature and precipitation over sporadic permafrost and seasonal frozen ground regions. Over various frozen ground regions in Mongolia; the SOS is mainly dominated by the prior autumn precipitation, and frozen ground plays a vital role in storing the precipitation of the previous autumn for the subsequent grass green-up. The EOS is mainly dominated by autumn air temperature. These findings could help to improve phenological models of grasslands in extremely dry and cold regions.

  18. The Classroom Animal: Flour Beetles.

    Science.gov (United States)

    Kramer, David C.

    1988-01-01

    Describes the flour beetle, "Tribolium confusum," and its life cycle, habitat, culturing requirements, and some possible uses of this beetle as a classroom animal. Discusses what children could learn from flour beetles. Explains how to get rid of beetles found in foods at home. (CW)

  19. Defense by foot adhesion in a beetle (Hemisphaerota cyanea)

    OpenAIRE

    Eisner, Thomas; Aneshansley, Daniel J.

    2000-01-01

    The beetle Hemisphaerota cyanea (Chrysomelidae; Cassidinae) responds to disturbance by activating a tarsal adhesion mechanism by which it secures a hold on the substrate. Its tarsi are oversized and collectively bear some 60,000 adhesive bristles, each with two terminal pads. While walking, the beetle commits but a small fraction of the bristles to contact with the substrate. But when assaulted, it presses its tarsi flatly down, thereby touching ground with all or nearly all of the bristles. ...

  20. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  1. The microbial diversity of Polar environments is a fertile ground for bioprospecting.

    Science.gov (United States)

    de Pascale, Donatella; De Santi, Concetta; Fu, Juan; Landfald, Bjarne

    2012-12-01

    The term bioprospecting has been adopted for systematic searches in nature for new bioactive compounds, genes, proteins, microorganisms and other products with potential for commercial use. Much effort has been focused on microorganisms able to thrive under harsh conditions, including the Polar environments. Both the lipid and protein cellular building blocks of Polar microorganisms are shaped by their adaptation to the permanently low temperatures. In addition, strongly differing environments, such as permafrost, glaciers and sea ice, have contributed to additional functional diversity. Emerging massive-parallel sequencing technologies have revealed the existence of a huge, hitherto unseen diversity of low-abundance phylotypes--the rare biosphere--even in the Polar environments. This realization has further strengthened the need to employ cultivation-independent approaches, including metagenomics and single-cell genomic sequencing, to get comprehensive access to the genetic diversity of microbial communities for bioprospecting purposes. In this review, we present an updated snapshot of recent findings on the molecular basis for adaptation to the cold and the phylogenetic diversities of different Polar environments. Novel approaches in bioprospecting are presented and we conclude by showing recent bioprospecting outcomes in terms of new molecules patented or applied by some biotech companies.

  2. Effect of carbofuran on the diversity and mean abundance of ground ...

    African Journals Online (AJOL)

    Jane

    2011-08-18

    Aug 18, 2011 ... major threat to the diversity and the abundance of spiders. *Corresponding ... treated with any insecticides in either study year and treated as control. .... 50. 60. 70. 17-M ay. 3-Jun. 18-Jun. 4-Jul. 19-Jul4-Aug. 19-Aug. 5-Sep.

  3. What's Slithering around on Your School Grounds? Transforming Student Awareness of Reptile & Amphibian Diversity

    Science.gov (United States)

    Tomasek, Terry M.; Matthews, Catherine E.; Hall, Jeff

    2005-01-01

    The protocols used in a research project on amphibian and reptile diversity at Cool Springs Environmental Education Center near New Bern, North Carolina is described. An increasing or stable number of amphibians and reptiles would indicate that the forest has a balance of invertebrates, leaf litter, moisture, pH, debris, burrows and habitat…

  4. Importance of Secondary Metabolites for Leaf Beetles (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. N. EKİZ

    2014-06-01

    Full Text Available Leaf beetles (Chrysomelidae are one of the most diverse families of herbivorous insects. Many of them are important agricultural pests and cause remarkable loss of crop and money as well. Plant leaves and roots are primary food source of both larva and adults of leaf beetles. Plants produce many secondary metabolites in reaction to herbivore insects. It is a well-known phenomenon that quantity and variety of secondary metabolites in plant leaves may change in response to insect attacks. Herbivore insects have to deal with such defensive secondary chemicals and overcome either by detoxifying or storing them. Accordingly, many specialist herbivores coevolved with their host plant. Certain phenolic glycosides may reduce leaf beetle feeding. Condensed tannins are anti-herbivore defenses against leaf chewing beetles, including leaf beetles. Flavonoid compounds are feeding deterrents for many flea leaf beetles. Cinnamic acid derivatives are other known feeding deterrents for leaf beetles. Secondary metabolites quantity and nutritional quality of host plants are not only important for feeding but also for providing enemy-free space and suitable oviposition sites.

  5. Diversidad y patrones de distribución de coleópteros en la Región del Biobío, Chile: una aproximación preliminar para la conservación de la diversidad Diversity and distributional patterns of beetles in the Biobío region, Chile: a preliminary approach to the conservation of the diversity

    Directory of Open Access Journals (Sweden)

    OLIVIA E VERGARA

    2006-09-01

    Full Text Available Los coleópteros, por estar asociados con formaciones vegetales, presentar gran abundancia y diversidad ecológica, rangos de distribución restringidos y alto endemismo, constituyen buenos indicadores de la biodiversidad de un territorio. En la Región del Biobío, área crítica de conservación, estudios sobre la riqueza taxonómica y distribución de coleópteros son muy pocos a pesar de su carácter transicional y de constituir una zona de "puntos calientes" de diversidad a nivel mundial. Nuestros objetivos fueron conocer la composición taxonómica y representatividad regional de coleópteros, determinar sectores con mayor riqueza de especies y relacionar los patrones de distribución de las especies con formaciones vegetales y áreas silvestres protegidas de la región. A partir de un mapa dividido en cuadrículas y una base de datos de localidades de colecta obtenidos de literatura y colecciones de referencia, se confeccionó una matriz de presencia/ausencia de especies en la región. Para cada cuadrícula se estableció la riqueza de especies y, para determinar áreas de concentración de especies y su relación con las formaciones vegetales se realizó un análisis de parsimonia de endemismos (PAE. Se registraron 53 familias, 361 géneros y 664 especies de coleópteros, siendo Staphylinidae y Curculionidae las familias más diversas. Los lugares con mayor número de registros corresponden a Chillán, Concepción, y Cordillera de Nahuelbuta. El análisis de parsimonia agrupa las especies en tres sectores: (1 Sector Costero, (2 Cordillera de los Andes y (3 Cordillera de Nahuelbuta. Estas áreas de concentración de especies no se relacionan con las áreas silvestres protegidas de la regiónBeetles constitute bioindicators because of their association with plant formations, their high abundance, ecological diversity, restricted geographic ranges and high endemism. The Biobío Region is a critical area for conserving the biodiversity

  6. Necrophilous beetles diversity (Coleoptera: Scarabaeidae, Silphidae, Staphylinidae and Trogidae) in a semiarid area of Zapotitlán de las Salinas valley, Puebla, Mexico

    OpenAIRE

    Jiménez Sánchez, Esteban; Quezada García, Roberto; Padilla Ramírez, Jorge

    2013-01-01

    Mexico is constituted of arid and semiarid areas in more than half of its land extension, where most of their resources are available only during the rainy season. For those species that recycle resources, such as the carrion fauna, this represents a highly active season; however, the biological and diversity patterns of carrion fauna are poorly understood in these areas. Here, we studied the abundance, diversity and richness of the Scarabaeidae, Silphidae, Staphylinidae and Trogidae families...

  7. Significantly higher Carabid beetle (Coleoptera: Carabidae) catch in conventionally than in organically managed Christmas tree plantations

    DEFF Research Database (Denmark)

    Bagge, Søren; Lund, Malthe; Rønn, Regin;

    2012-01-01

    Carabid beetles play an important role as consumers of pest organisms in forestry and agriculture. Application of pesticides may negatively affect abundance and activity of carabid beetles, thus reducing their potential beneficial effect. We investigated how abundance and diversity of pitfall...

  8. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest

    Science.gov (United States)

    de Novais, Samuel Matos Antunes; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; de Faria, Maurício Lopes; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969

  9. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus).

    Science.gov (United States)

    Richardson, David E; Marancik, Katrin E; Guyon, Jeffrey R; Lutcavage, Molly E; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J; Wildes, Sharon; Yates, Douglas A; Hare, Jonathan A

    2016-03-22

    Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors.

  10. Tree Species Composition, Diversity and Above Ground Biomass of Two Forest Types at Redang Island, Peninsula Malaysia

    Directory of Open Access Journals (Sweden)

    Mahmud KHAIRIL

    2013-02-01

    Full Text Available A study was conducted to determine the tree species composition, diversity and above ground biomass at Redang Island, Terengganu. Two plots of 0.1 ha were established at the inland forest and coastal forest of the island. As the result, a total of 387 trees ≥ 5 diameters at breast height (DBH were recorded. The coastal forest recorded 167 individuals representing 48 species from 37 genera and 26 families while the inland forest had 220 individuals representing 50 species from 43 genera and 25 families. Shorea glauca (Dipterocarpaceae was the most important species at the coastal forest with a Species Importance Value Index (SIVi of 10.5 % while Dipterocarpus costulatus (Dipterocarpaceae was the most important species at the inland forest with 13.8 %. Dipterocarpaceae was the most important family in both forest plots with FIVi at 20.4 % in the coastal and 21.5 % in the inland forest. The Shannon-Weiner Diversity Index (H’ was considered high in both forest plots with 3.4 (H’max = 3.9 at the coastal forest and 3.5 (H’max = 4.0 at the inland forest. Sorenson’s Community Similarity Coefficient (CCs showed that tree species communities between the two forest plots had moderate similarity with CC = 0.5. The Shannon Evenness Index (J’ in the two forest plots was 0.89. The total above ground biomass at the coastal forest was 491 t/ha and at the inland forest it was 408 t/ha. From all the species recorded in this study, 11 species were listed as threatened species by IUCN Red Data Book, of which four were listed as endangered and critically endangered, six were listed as lower risk and one species was listed as vulnerable.

  11. The effects of forest conversion to oil palm on ground-foraging ant communities depend on beta diversity and sampling grain.

    Science.gov (United States)

    Wang, Wendy Y; Foster, William A

    2015-08-01

    Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in

  12. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape.

    Science.gov (United States)

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  13. Toward an inordinate fondness for stars, beetles and Lobophora? Species diversity of the genus Lobophora (Dictyotales, Phaeophyceae) in New Caledonia.

    Science.gov (United States)

    Vieira, Christophe; D'hondt, Sofie; De Clerck, Olivier; Payri, Claude E

    2014-12-01

    Until the recent use of molecular markers, species diversity of Lobophora, an ecologically important brown algal genus with a worldwide distribution in temperate and tropical seas, has been critically underestimated. Using a DNA-based taxonomic approach, we re-examined diversity of the genus from New Caledonia in the Southwest Pacific Ocean. First, species were delineated using general mixed Yule coalescent-based and barcoding gap approaches applied to a mitochondrial cox3 data set. Results were subsequently confirmed using chloroplast psbA and rbcL data sets. Species delimitation analyses agreed well across markers and delimitation algorithms, with the barcoding gap approach being slightly more conservative. Analyses of the cox3 data set resulted in 31-39 molecular operational taxonomic units (MOTUs), four of which are previously described species (L. asiatica, L. crassa, L. nigrescens s.l., L. pachyventera). Of the remaining MOTUs for which we obtained a representative number of sequences and results are corroborated across analyses and genes, we described 10 species de novo: L. abaculusa, L. abscondita, L. densa, L. dimorpha, L. gibbera, L. hederacea, L. monticola, L. petila, L. rosacea, and L. undulata. Our study presents an excellent case of how a traditional morphology-based taxonomy fails to provide accurate estimates of algal diversity. Furthermore, the level of Lobophora diversity unveiled from a single locality in the Pacific Ocean raises important questions with respect to the global diversity of the genus, the distributions and range sizes of the individual species, as well as the mechanisms facilitating coexistence.

  14. Green turtle (Chelonia mydas) genetic diversity at Paranaguá Estuarine Complex feeding grounds in Brazil

    Science.gov (United States)

    Jordão, Juliana Costa; Bondioli, Ana Cristina Vigliar; Guebert, Flavia Maria; de Thoisy, Benoit; Toledo, Lurdes Foresti de Almeida

    2015-01-01

    Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs), where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas) at the Paranaguá Estuarine Complex (PEC), Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60), and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20–25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations. PMID:26500439

  15. Green turtle (Chelonia mydas) genetic diversity at Paranaguá Estuarine Complex feeding grounds in Brazil.

    Science.gov (United States)

    Jordão, Juliana Costa; Bondioli, Ana Cristina Vigliar; Guebert, Flavia Maria; de Thoisy, Benoit; Toledo, Lurdes Foresti de Almeida

    2015-01-01

    Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs), where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas) at the Paranaguá Estuarine Complex (PEC), Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60), and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20-25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations.

  16. Green turtle (Chelonia mydas genetic diversity at Paranaguá Estuarine Complex feeding grounds in Brazil

    Directory of Open Access Journals (Sweden)

    Juliana Costa Jordão

    2015-09-01

    Full Text Available Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs, where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas at the Paranaguá Estuarine Complex (PEC, Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60, and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20–25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations.

  17. What do dung beetles eat?

    DEFF Research Database (Denmark)

    Holter, Peter; Scholtz, Clarke H.

    2007-01-01

    Most adult coprophagous beetles feed on fresh dung of mammalian herbivores, confining ingestion to small particles with measured maximum diameters from 2-5 to 130 µm, according to body size and kind of beetle. This study explores benefits and costs of selective feeding in a ‘typical' dung beetle ...

  18. Do Ground-Dwelling Vertebrates Promote Diversity in a Neotropical Forest? Results from a Long-Term Exclosure Experiment

    Science.gov (United States)

    Kurten, Erin L.; Carson, Walter P.

    2015-01-01

    Using a decade-long exclosure experiment in Panama, we tested the hypothesis that ground-dwelling vertebrate herbivores and seed predators are crucial determinants of tropical tree diversity and abundance within the understory. Our exclosure experiment is a community-level test of the Janzen–Connell hypothesis. Therefore, we predicted that vertebrate exclusion would (a) increase plant densities and (b) lower richness, diversity, and evenness. Excluding vertebrates caused a 38%–46% increase in plant densities, which, in contrast to our predictions, caused species richness to increase by 12%–15%. Because vertebrate exclusion causes plant species richness to increase, not decrease, vertebrates are unlikely to be causal agents of Janzen–Connell effects. We synthesized this and previous studies to explore why plant richness responds differently to defaunation and exclosures in tropical forests worldwide. Likely because of their contrasting effects on mesoconsumers, defaunation and exclosures cause decreases and increases in plant density respectively, which in turn cause corresponding changes in richness. PMID:26955084

  19. Supporting a Diverse Community of Undergraduate Researchers in Satellite and Ground-Based Remote Sensing

    Science.gov (United States)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college

  20. Floral associations of cyclocephaline scarab beetles.

    Science.gov (United States)

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  1. The Beetle comparator implementation

    CERN Document Server

    Van Beuzekom, M G

    2003-01-01

    Measurements of the comparator thresholds on a Beetle 1.1 chip show large variations. The width of the threshold distribution is several tenths of a MIP signal for a 300 µm silicon detector, which is more than can be corrected for by individual threshold settings. Monte Carlo simulations of the production-process parameters have been performed to track the cause of this large offset spread. The main cause of the offset variation is the spread in the threshold voltage of the MOSFETs. Since this cannot easily be solved by a change in the design of the comparator as such, the solution is to increase the range of the individual threshold settings while maintaining the same resolution. This implies an increase in the number of bits for the individual thresholds. The note describes measurements and simulations for the Beetle versions 1.1 and 1.2, and the changes in the design for the Beetle 1.3.

  2. The Effects of the Intensification of Agriculture on Northern Temperate Dung Beetle Communities

    National Research Council Canada - National Science Library

    Stephen A. Hutton; Paul S. Giller

    2003-01-01

    .... To assess the impact of farm management on one group of important insects, the dung beetles, their abundance, biomass, diversity and species richness were examined using dung-baited pitfall traps...

  3. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic.

    Science.gov (United States)

    Timling, I; Walker, D A; Nusbaum, C; Lennon, N J; Taylor, D L

    2014-07-01

    Fungi are abundant and functionally important in the Arctic, yet comprehensive studies of their diversity in relation to geography and environment are not available. We sampled soils in paired plots along the North American Arctic Transect (NAAT), which spans all five bioclimatic subzones of the Arctic. Each pair of plots contrasted relatively bare, cryoturbated patterned-ground features (PGFs) and adjacent vegetated between patterned-ground features (bPGFs). Fungal communities were analysed via sequencing of 7834 ITS-LSU clones. We recorded 1834 OTUs - nearly half the fungal richness previously reported for the entire Arctic. These OTUs spanned eight phyla, 24 classes, 75 orders and 120 families, but were dominated by Ascomycota, with one-fifth belonging to lichens. Species richness did not decline with increasing latitude, although there was a decline in mycorrhizal taxa that was offset by an increase in lichen taxa. The dominant OTUs were widespread even beyond the Arctic, demonstrating no dispersal limitation. Yet fungal communities were distinct in each subzone and were correlated with soil pH, climate and vegetation. Communities in subzone E were distinct from the other subzones, but similar to those of the boreal forest. Fungal communities on disturbed PGFs differed significantly from those of paired stable areas in bPGFs. Indicator species for PGFs included lichens and saprotrophic fungi, while bPGFs were characterized by ectomycorrhizal and pathogenic fungi. Our results suggest that the Arctic does not host a unique mycoflora, while Arctic fungi are highly sensitive to climate and vegetation, with potential to migrate rapidly as global change unfolds.

  4. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites

    Directory of Open Access Journals (Sweden)

    Hofmann Alan F

    2010-05-01

    Full Text Available Abstract Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense. Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites

  5. [Necrophilous beetles diversity (Coleoptera: Scarabaeidae, Silphidae, Staphylinidae and Trogidae) in a semiarid area of Zapotitlán de las Salinas Valley, Puebla, México].

    Science.gov (United States)

    Jiménez-Sánchez, Esteban; Quezada-García, Roberto; Padilla-Ramírez, Jorge

    2013-09-01

    Mexico is constituted of arid and semiarid areas in more than half of its land extension, where most of their resources are available only during the rainy season. For those species that recycle resources, such as the carrion fauna, this represents a highly active season; however, the biological and diversity patterns of carrion fauna are poorly understood in these areas. Here, we studied the abundance, diversity and richness of the Scarabaeidae, Silphidae, Staphylinidae and Trogidae families in the Zapotitlán de las Salinas Valley in Puebla, Mexico. Over a one-year period, monthly samples were collected from five different vegetation systems that included the scrublands, a columnar cactus landscape, and altered vegetation. Samples were collected with the use of NTP-80 traps baited with squid, and data on abundance and richness were obtained and evaluated, with respect to monthly precipitation and sampling site location. We collected a total of 613 insects from 12 genera and 15 species. Across systems, Staphylinidae showed the greatest richness (nine species) and abundance (74.2%), followed by Scarabaeidae (21.9%), Silphidae (2.9%) and Trogidae (1%). Significant differences were observed between sites and months; nevertheless, no relationship was observed between abundance and temperature or precipitation. Across taxonomic groups, abundance and richness were most evident for scrub sites, while a greater abundance during the dry season was obtained. The results of this study indicated that the carrion faunal community composition is closely related to the type of vegetation and did not depend on the rainy season. In spite that lesser carrion fauna was observed in this area when compared to other regions of Mexico, this report constitutes a significant contribution to our understanding of the ecological role of this fauna in arid areas.

  6. Use of habitat resources by scarab dung beetles in an Savanna

    DEFF Research Database (Denmark)

    Carpaneto, Giuseppe Maria; Mazziotta, Adriano; Ieradi, Michele

    2010-01-01

    In the Queen Elizabeth National Park, Uganda, we compared the scarab beetle assemblages in the dung of three wild ungulates (African buffalo, a ruminant foregut fermenter; hippopotamus, nonruminant foregut fermenter; and warthog, nonruminant hindgut fermenter). Dung was collected from two sandy......-clay soils with different percentage of coarse sand. We aimed at investigating habitat resource selection by dung beetle species within a savanna natural contest with abundant and diverse food availability. Analyses were performed to detect differences for dung beetle assemblages in abundance, diversity...

  7. Walking to survive. Searching, feeding and egg production of the carabid beetle Pterostichus coerulescens L. (= Poecilus versicolor Sturm).

    NARCIS (Netherlands)

    Mols, P.J.M.

    1993-01-01

    This study concerns the prey-searching and feeding behaviour of the polyphagous groundbeetle Pterostichus coerulescens L. ( = Poecilus versicolor Sturm), a common species on sandy soils. This ground beetle rarely flies, thus preysearching behaviour involves walking. The beetle is diurnal. As object

  8. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface.

    Science.gov (United States)

    McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen

    2016-11-11

    Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.

  9. Rove Beetles (Coleoptera: Staphylinidae of Lanjak Entimau, Sarawak, East Malaysia

    Directory of Open Access Journals (Sweden)

    Fauziah Abdullah

    2009-01-01

    Full Text Available A study to determine the abundance of rove beetle (Coleoptera: Staphylinidae was conducted from 15 to 28 June, 2008 at the dipterocarp forest of Lanjak Entimau, Sarawak, Malaysia. Collections were made at five sites namely Kawi River, Menyaring II, Satap, Begua and Joh River. A total of 175 rove beetles comprising of 17 species were sampled from all 5 sites of Lanjak Entimau. There was a high abundance (Margalef index, 3.097 and moderate diversity (Simpson diversity index, 0.798 of rove beetles at Lanjak Entimau. Four species were identified to species level, Orphnebius bakerianus Motschulscky, 1858, Eleusis kraatzi LeConte, 1863, Belonuchus quadratu Nordman, 1837, Bledius gracilicornis Casey, 1889. Seven species were identified to genus level Orphnebius sp., Coproporus sp., Paederus sp1, Paederus sp2, Hesperus sp., Lispinus sp., Bledius sp. and six species could not be identified even to genus level. Six unidentified species probably new for Science. Moderate diversity and high abundance of rove beetles at Lanjak Entimau are due to diverse habitats. Some differences in species sampled from peninsular Malaysia is explained in terms of isolation between Sarawak in Borneo island with peninsular Malaysia.

  10. Structure and diversity of ground mesofauna inUlmus and Populus consortia in the industrial areas of mining and smelting complex of krivyi rig basin

    Directory of Open Access Journals (Sweden)

    V. V. Kachinskaya

    2010-05-01

    Full Text Available The structure and biological diversity of ground mesofauna on a consortium level of organisation of ecosystems are considered. Indicators of structural organisation and biodiversity of ground mesofauna were analised in Ulmus and Populus consortia in the conditions of industrial territories of mining and smelting complex of Krivyi Rig Basin. It is established that taxonomical structure of ground mesofauna is characterised by insignificant number and quantity of taxonomical groups. Prevalence of hortobionts and herpetobionts in morpho-ecological structure of the community testifies to their attachment to consortium’s determinants and influence of steppe climate on its structure. Dominance of phytophages and polyphages in trophic structure is caused by a combination of consortium determinants specificity and «a zone source» of the fauna formations. The structural organisation of ground mesofauna in consortia of Ulmus and Populus in the conditions of industrial sites is characterised by simplified taxonomical structure with low biodiversity at all levels.

  11. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts

    Science.gov (United States)

    A.S. Adams; C.R. Currie; Y. Cardoza; K.D. Klepzig; K.F. Raffa

    2009-01-01

    Bark beetles are associated with diverse assemblages of microorganisms, many of which affect their interactions with host plants and natural enemies. We tested how bacterial associates of three bark beetles with various types of host relationships affect growth and reproduction of their symbiotic fungi. Fungi were exposed to volatiles...

  12. Jumping without using legs: the jump of the click-beetles (Elateridae is morphologically constrained.

    Directory of Open Access Journals (Sweden)

    Gal Ribak

    Full Text Available To return to their feet, inverted click-beetles (Elateridae jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant "takeoff" angle (79.9°±1.56°, n = 9 beetles that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing.

  13. Defense by foot adhesion in a beetle (Hemisphaerota cyanea)

    Science.gov (United States)

    Eisner, Thomas; Aneshansley, Daniel J.

    2000-06-01

    Departments of * Neurobiology and Behavior and Agricultural and Biological Engineering, Cornell University, Ithaca, NY 14853 Contributed by Thomas Eisner, April 12, 2000 The beetle Hemisphaerota cyanea (Chrysomelidae; Cassidinae) responds to disturbance by activating a tarsal adhesion mechanism by which it secures a hold on the substrate. Its tarsi are oversized and collectively bear some 60,000 adhesive bristles, each with two terminal pads. While walking, the beetle commits but a small fraction of the bristles to contact with the substrate. But when assaulted, it presses its tarsi flatly down, thereby touching ground with all or nearly all of the bristles. Once so adhered, it can withstand pulling forces of up to 0.8 g (≈60 times its body mass) for 2 min, and of higher magnitudes, up to >3 g, for shorter periods. Adhesion is secured by a liquid, most probably an oil. By adhering, the beetle is able to thwart attacking ants, given that it is able to cling more persistently than the ant persists in its assault. One predator, the reduviid Arilus cristatus, is able to feed on the beetle, possibly because by injecting venom it prevents the beetle from maintaining its tarsal hold.

  14. Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula.

    Science.gov (United States)

    Lombardero, María J; Ayres, Matthew P

    2011-10-01

    Fires are among the most globally important disturbances in forest ecosystems. Forest fires can be followed by bark beetle outbreaks. Therefore, the dynamic interactions between bark beetle outbreaks and fire appear to be of general importance in coniferous forests throughout the world. We tested three hypotheses of how forest fires in pine ecosystems (Pinus pinaster Alton and P. radiata D. Don) in Spain could alter the population dynamics of bark beetles and influence the probability of further disturbance from beetle outbreaks: fire could affect the antiherbivore resin defenses of trees, change their nutritional suitability, or affect top-down controls on herbivore populations. P. radiata defenses decreased immediately after fire, but trees with little crown damage soon recovered with defenses higher than before. Fire either reduced or did not affect nutritional quality of phloem and either reduced or had no effect on the abundance, diversity, and relative biomass of natural enemies. After fire, bark beetle abundance increased via rapid aggregation of reproductive adults on scorched trees. However, our results indicate that for populations to increase to an outbreak situation, colonizing beetles must initiate attacks before tree resin defenses recover, host trees must retain enough undamaged phloem to facilitate larval development, and natural enemies should be sufficiently rare to permit high beetle recruitment into the next generation. Coincidence of these circumstances may promote the possibility of beetle populations escaping to outbreak levels.

  15. Coarse woody material has value as habitat for saproxylic beetles

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.M.; Spence, J.R. [Alberta Univ., Edmonton, AB (Canada). Dept of Renewable Resources; Langor, D.W. [Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada)

    2010-07-01

    Biomass harvesting practices are expected to alter the abundance and natural range of variation in coarse woody material (CWM), which in turn may change soil productivity as well as the hydrological balance and structure of tree stands and habitats needed to ensure forest biodiversity. Ecosystem sustainability should be a main criterion for the development of biomass energy production schemes. Studies in northern Europe indicate that the hyperdiverse saproxylic fauna is sensitive to changes in CWM. Saproxylic beetles are dependent on decaying wood, and play an important role in forest nutrient cycling. Approximately 11 per cent of European saproxylic beetles are at risk of regional extirpation. This study sampled saproxylic beetle species from CWM in mature trembling aspen stands in Alberta. Over 150 species were collected, including 4 species new to science. The study showed that the beetles use numerous CWM habitats and exhibit high habitat specificity. A diversity of CWM substrates are needed to maintain saproxylic beetle habitats. Further research is needed to minimize the loss of species and their ecosystem functions.

  16. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    Science.gov (United States)

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  17. Monitoring of saproxylic beetles in Croatia: following the path of the stag beetle

    Directory of Open Access Journals (Sweden)

    Luka Katušić

    2017-07-01

    Full Text Available As a member of the European Union, Croatia is obliged to report on the conservation status of 220 animal non-bird species listed in the annexes of the Habitats Directive (92/43/EEC, for which purpose a monitoring system is being established. Concerning saproxylic beetles, seven species present in its territory have to be monitored: Lucanus cervus, Cerambyx cerdo, Morimus funereus, Rhysodes sulcatus, Cucujus cinnaberinus, Rosalia alpina and Osmoderma eremita complex. Out of these species, a monitoring programme has only been established for Lucanus cervus, which partially includes participation of non-experts. In 2015 and 2016, a public campaign was organised in order to collect observations of Lucanus cervus and two other saproxylic beetles that are easily recognisable by the public: Morimus funereus and Rosalia alpina. Data gathered through this campaign serve as an addition to the mapping activities and monitoring of the species’ range. So far, more than 650 citizen observations have been collected, providing data on species presence in 216 10×10 km2 grid cells intended for reporting on the species’ range. Besides the public campaign, since 2014, public institutions for managing nature protected values have been involved in population monitoring for which they received education through several workshops. Altogether, 21 sites have been included in the monitoring of the stag beetle so far. Data collected for Lucanus cervus on standard transects, by tree and ground pitfall traps and tree trunk surveys at night will be discussed. To the present time, eight public institutions have been involved in stag beetle population monitoring and the number has been continuously increasing.

  18. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms.

    Science.gov (United States)

    Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo

    2014-12-01

    The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity.

  19. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA.

    Directory of Open Access Journals (Sweden)

    Davide Rassati

    Full Text Available Non-native bark and ambrosia beetles represent a threat to forests worldwide. Their invasion patterns are, however, still unclear. Here we investigated first, if the spread of non-native bark and ambrosia beetles is a gradual or a discontinuous process; second, which are the main correlates of their community structure; third, whether those correlates correspond to those of native species. We used data on species distribution of non-native and native scolytines in the continental 48 USA states. These data were analyzed through a beta-diversity index, partitioned into species richness differences and species replacement, using Mantel correlograms and non-metric multidimensional scaling (NMDS ordination for identifying spatial patterns, and regression on distance matrices to test the association of climate (temperature, rainfall, forest (cover area, composition, geographical (distance, and human-related (import variables with β-diversity components. For both non-native bark and ambrosia beetles, β-diversity was mainly composed of species richness difference than species replacement. For non-native bark beetles, a discontinuous invasion process composed of long distance jumps or multiple introduction events was apparent. Species richness differences were primarily correlated with differences in import values while temperature was the main correlate of species replacement. For non-native ambrosia beetles, a more continuous invasion process was apparent, with the pool of non-native species arriving in the coastal areas that tended to be filtered as they spread to interior portions of the continental USA. Species richness differences were mainly correlated with differences in rainfall among states, while rainfall and temperature were the main correlates of species replacement. Our study suggests that the different ecology of bark and ambrosia beetles influences their invasion process in new environments. The lower dependency that bark beetles have

  20. Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil.

    Science.gov (United States)

    Rodrigues, M M; Uchôa, M A; Ide, S

    2013-02-01

    Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Dung Beetles are important for biological control of intestinal worms and dipterans of economic importance to cattle, because they feed and breed in dung, killing parasites inside it. They are also very useful as bioindicators of species diversity in agricultural or natural environments. The aims of this paper were to study the species richness, and abundance of dung beetles, helping to answer the question: are there differences in the patterns of dung beetle diversity in three environments (pasture, agriculture and forest) in the municipality of Dourados, in the state of Mato Grosso do Sul. A total of 105 samplings were carried out weekly, from November 2005 to November 2007, using three pitfall traps in each environment. The traps were baited with fresh bovine dung, and 44,355 adult dung beetles from 54 species were captured: two from Hyborosidae and 52 from Scarabaeidae. Five species were constant, very abundant and dominant on the pasture, two in the agricultural environment, and two in the environment of Semideciduous forest. Most of the species were characterised as accessories, common and not-dominant. The species with higher abundance was Ataenius platensis Blanchard, 1844. The indexes of Shannon-Wiener diversity were: 2.90 in the pasture, 2.84 in the agricultural environment and 2.66 in the area of native forest. The medium positive presence of dung beetles in the traps in each environment were: 36.88, 42.73 and 20.18 individuals per trap, in the pasture, agricultural environment and in the native forest, respectively. The pasture environment presented a higher diversity index. The species diversity of dung beetles was superior where there was higher abundance and regularity of resource (bovine dung).

  1. Dung beetles (Coleoptera: Scarabaeoidea in three landscapes in Mato Grosso do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    MM. Rodrigues

    Full Text Available Dung beetles (Coleoptera: Scarabaeoidea in three landscapes in Mato Grosso do Sul, Brazil. Dung Beetles are important for biological control of intestinal worms and dipterans of economic importance to cattle, because they feed and breed in dung, killing parasites inside it. They are also very useful as bioindicators of species diversity in agricultural or natural environments. The aims of this paper were to study the species richness, and abundance of dung beetles, helping to answer the question: are there differences in the patterns of dung beetle diversity in three environments (pasture, agriculture and forest in the municipality of Dourados, in the state of Mato Grosso do Sul. A total of 105 samplings were carried out weekly, from November 2005 to November 2007, using three pitfall traps in each environment. The traps were baited with fresh bovine dung, and 44,355 adult dung beetles from 54 species were captured: two from Hyborosidae and 52 from Scarabaeidae. Five species were constant, very abundant and dominant on the pasture, two in the agricultural environment, and two in the environment of Semideciduous forest. Most of the species were characterised as accessories, common and not-dominant. The species with higher abundance was Ataenius platensis Blanchard, 1844. The indexes of Shannon-Wiener diversity were: 2.90 in the pasture, 2.84 in the agricultural environment and 2.66 in the area of native forest. The medium positive presence of dung beetles in the traps in each environment were: 36.88, 42.73 and 20.18 individuals per trap, in the pasture, agricultural environment and in the native forest, respectively. The pasture environment presented a higher diversity index. The species diversity of dung beetles was superior where there was higher abundance and regularity of resource (bovine dung.

  2. Functional value of elytra under various stresses in the red flour beetle, Tribolium castaneum

    Science.gov (United States)

    Linz, David M.; Hu, Alan W.; Sitvarin, Michael I.; Tomoyasu, Yoshinori

    2016-01-01

    Coleoptera (beetles) is a massively successful order of insects, distinguished by their evolutionarily modified forewings called elytra. These structures are often presumed to have been a major driving force for the successful radiation of this taxon, by providing beetles with protection against a variety of harsh environmental factors. However, few studies have directly demonstrated the functional significance of the elytra against diverse environmental challenges. Here, we sought to empirically test the function of the elytra using Tribolium castaneum (the red flour beetle) as a model. We tested four categories of stress on the beetles: physical damage to hindwings, predation, desiccation, and cold shock. We found that, in all categories, the presence of elytra conferred a significant advantage compared to those beetles with their elytra experimentally removed. This work provides compelling quantitative evidence supporting the importance of beetle forewings in tolerating a variety of environmental stresses, and gives insight into how the evolution of elytra have facilitated the remarkable success of beetle radiation. PMID:27708390

  3. Ground flora, small mammal and bird species diversity in miscanthus (Miscanthusxgiganteus) and reed canary-grass (Phalaris arundinacea) fields

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.M. [Cardiff University, School of Biosciences, Llysdinam Field Centre, Newbridge-on-Wye, Llandrindod Wells, Powys LD1 6NB (United Kingdom)

    2007-01-15

    Wildlife monitoring of two miscanthus and two reed canary-grass fields in Herefordshire, England was carried out in 2002, 2003 and 2004 to investigate the ecological impact of perennial biomass grass crops on ground flora, small mammals and birds. Quadrats were used to record percentage ground vegetation cover within and around the periphery of each crop. Small mammals were sampled by live trapping using Longworth traps. The common bird census technique was used to monitor populations of birds. Miscanthus fields were richer in weed vegetation than reed canary-grass or arable fields. Bird use of the biomass crop fields varied depending on species. There were considerably more open-ground bird species such as skylarks (Alauda arvensis), lapwings (Vanellus vanellus) and meadow pipits (Anthus pratensis) within miscanthus than within reed canary-grass fields. There was no particular crop-type preference by the small mammal species, but rather a preference for good ground cover and little land disturbance, which was provided by both biomass crops. Ground flora, small mammals and most of the bird species (except open-ground birds) were found more abundantly within field margins and boundaries than in crop fields indicating the importance of retaining field structure when planting biomass crops. The miscanthus work relates entirely to young crops, which may be representative of part of the national crop if large areas are cultivated for rhizomes. The findings from the current project indicate that perennial biomass grass crops can provide substantially improved habitat for many forms of native wildlife, due to the low intensity of the agricultural management system and the untreated headlands. (author)

  4. The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling.

    Directory of Open Access Journals (Sweden)

    F Andrew Jones

    Full Text Available BACKGROUND: Plants interact with each other, nutrients, and microbial communities in soils through extensive root networks. Understanding these below ground interactions has been difficult in natural systems, particularly those with high plant species diversity where morphological identification of fine roots is difficult. We combine DNA-based root identification with a DNA barcode database and above ground stem locations in a floristically diverse lowland tropical wet forest on Barro Colorado Island, Panama, where all trees and lianas >1 cm diameter have been mapped to investigate richness patterns below ground and model rooting distributions. METHODOLOGY/PRINCIPAL FINDINGS: DNA barcode loci, particularly the cpDNA locus trnH-psba, can be used to identify fine and small coarse roots to species. We recovered 33 species of roots from 117 fragments sequenced from 12 soil cores. Despite limited sampling, we recovered a high proportion of the known species in the focal hectare, representing approximately 14% of the measured woody plant richness. This high value is emphasized by the fact that we would need to sample on average 13 m(2 at the seedling layer and 45 m(2 for woody plants >1 cm diameter to obtain the same number of species above ground. Results from inverse models parameterized with the locations and sizes of adults and the species identifications of roots and sampling locations indicates a high potential for distal underground interactions among plants. CONCLUSIONS: DNA barcoding techniques coupled with modeling approaches should be broadly applicable to studying root distributions in any mapped vegetation plot. We discuss the implications of our results and outline how second-generation sequencing technology and environmental sampling can be combined to increase our understanding of how root distributions influence the potential for plant interactions in natural ecosystems.

  5. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  6. Genetics of Ophraella leaf beetles

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This proposal is to collect samples of each species of Ophraella leaf beetle encountered, not to exceed 50 specimens per species, for genetic analysis using DNA...

  7. Faunal diversity of Fagus sylvatica forests: A regional and European perspective based on three indicator groups

    Directory of Open Access Journals (Sweden)

    H. Walentowski

    2014-12-01

    Full Text Available While the postglacial history of European beech (Fagus sylvatica and the plant species composition of beech forests in  Central Europe are fairly well understood, the faunal biodiversity has been less well investigated. We studied three groups of  mostly sedentary organisms in beech forest at regional and European scales by combining field studies with a compilation of existing literature and expert knowledge. Specifically, we examined the relationship between host tree genera and saproxylic  beetles, and the diversity and composition of forest ground-dwelling molluscs and ground beetles in relation to the abundance  of beech. At a west central European scale (Germany, where beech has a “young” ecological and biogeographical history,  we found 48 primeval forest relict species of saproxylic beetles associated with beech, 124 ground beetles and 91 molluscs  inhabiting beech forest, yet none exclusive of west central European beech forests. High levels of faunal similarity between beech and other woodland trees suggested that many of the beech forest dwelling species are euryoecious and likely to  originate from mid-Holocene mixed broadleaf forests. Beech forests of the mountain ranges in southern and east central  Europe, which are ecologically and biogeographically “old”, were found to harbour distinct species assemblages, including  beech forest specialists (such as 10 carabid species in the Carpathians and narrow-range endemics of broadleaf forest. The  observed biodiversity patterns suggest differentiated conservation priorities in “young” and “old” European beech forest  regions.

  8. The saproxylic beetle assemblage associated with different host trees in Southwest China

    Institute of Scientific and Technical Information of China (English)

    Jie Wu; Xiao-Dong Yu; Hong-Zhang Zhou

    2008-01-01

    Dead wood is a habitat for many insects and other small animals,some of which may be rare or endangered and in need of effective protection.In this paper,saproxylic beetle assemblages associated with different host trees in the subtropical forests in southwestern China were investigated.A total of 277 species (1 439 specimens) in 36 beetle families were collected from 117 dead wood samples,of which 101 samples were identified and respectively belonged to 12 tree genera.The number of saproxylic beetle species varied greatly among logs of different tree genera,with the highest diversity on logs of Juglans.Generally,broad-leaved trees had a higher richness and abundance of saproxylic species than coniferous trees.Cluster analysis revealed that assemblages from broad-leaved tree genera were generally similar (except for Betula) and assemblages from coniferous trees formed another distinct cluster.The subsequent indicator analysis proposed that there are different characteristic species for different cluster groups of host tree genera.In our study,log diameter has no positive influence on beetle species density.Conversely,comparisons of individual-based rarefaction curves suggested that beetle species richness was highest in the small diameter class both in coniferous and broad-leaved tree genera.With increased wood decay,proportion of habitat specialists (saproxylic beetles living on one tree genus)decreased,whereas proportion of habitat generalists (living on more than three tree genera)increased.The beetle species density was found to be higher in early stages,and decreased in later stages as well.A negative influence of altitude on saproxylic beetle species richness and abundance was detected.It was indicated that different tree genera and altitudes possibly display cross effects in modulating the altitudinal distribution and host preference of the beetles.

  9. Linking ground observations, simulation model output, and remote sensing data to characterize phenology across diverse arid landscapes

    Science.gov (United States)

    We combined long-term data on plant phenology with simulation modeling output and remote sensing data to characterize diverse landscapes at the Jornada Experimental Range in the northern Chihuahuan Desert of southern New Mexico. Phenology of 15 key species in Chihuahuan Desert plant communities have...

  10. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  11. The value of grounded theory for disentangling inequalities in maternal-childhealthcare in contexts of diversity: A psycho-sociopolitical approach

    Directory of Open Access Journals (Sweden)

    Sonia Hernández Plaza

    2014-07-01

    Full Text Available Adopting a psycho-sociopolitical approach, the present paper describes the results of a community-basedparticipatory needs assessment focusing on the perceived needs of women of reproductive age as users ofprimary healthcare in contexts of migration-driven diversity and socioeconomic vulnerability in theMetropolitan Area of Lisbon. The investigation comprised 64 in-depth interviews with women, includingnatives and immigrants to Portugal from the main origin countries in the context under study (Brazil, CapeVerde, and other Portuguese- speaking African countries and a survey of 125 women, again natives andimmigrants from these countries. The central role of qualitative methodology and grounded theory, in theframework of a multi-method research, allowed understanding the needs of women as embedded incontexts characterized by asymmetrical power relations, in terms of unequal opportunities and resources,at multiple interrelated ecological levels (personal, relational, organizational, community, socioeconomic,health system/policy, cultural/migration. The priority perceived needs of women were primarily related tosocioeconomic disadvantage, severely aggravated in the current contexts of crisis; and factors at the healthsystem level, mainly unequal access to family doctors, excessive waiting lists, and increases in the directcosts of healthcare. Results allow questioning the adequacy of cultural competence approaches for thereduction of inequalities in maternal-child healthcare in the context under study, showing the critical andinnovative value of qualitative methodology and grounded theory in research on social justice and healthin contexts of diversity characterized by unequal power dynamics.

  12. Effects of knowledge of an endangered species on recreationists' attitudes and stated behaviors and the significance of management compliance for ohlone tiger beetle conservation.

    Science.gov (United States)

    Cornelisse, Tara M; Duane, Timothy P

    2013-12-01

    Recreation is a leading cause of species decline on public lands, yet sometimes it can be used as a tool for conservation. Engagement in recreational activities, such as hiking and biking, in endangered species habitats may even enhance public support for conservation efforts. We used the case of the endangered Ohlone tiger beetle (Cicindela ohlone) to investigate the effect of biking and hiking on the beetle's behavior and the role of recreationists' knowledge of and attitudes toward Ohlone tiger beetle in conservation of the species. In Inclusion Area A on the University of California Santa Cruz (U.S.A.) campus, adult Ohlone tiger beetles mate and forage in areas with bare ground, particularly on recreational trails; however, recreation disrupts these activities. We tested the effect of recreation on Ohlone tiger beetles by observing beetle behavior on trails as people walked and road bikes at slow and fast speed and on trails with no recreation. We also surveyed recreationists to investigate how their knowledge of the beetle affected their attitudes toward conservation of the beetle and stated compliance with regulations aimed at beetle conservation. Fast cycling caused the beetles to fly off the trail more often and to fly farther than slow cycling or hiking. Slow cycling and hiking did not differ in their effect on the number of times and distance the beetles flew off the trail. Recreationists' knowledge of the beetle led to increased stated compliance with regulations, and this stated compliance is likely to have tangible conservation outcomes for the beetle. Our results suggest management and education can mitigate the negative effect of recreation and promote conservation of endangered species. Efectos del Conocimiento de una Especie en Peligro sobre las Actitudes y Comportamientos Declarados de los Recreacionistas y el Significado del Manejo de la Conformidad para la Conservación del Escarabajo Tigre de Ohlone. © 2013 Society for Conservation Biology.

  13. Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing.

    Science.gov (United States)

    Sheen, Shiowshuh; Cassidy, Jennifer; Scullen, Butch; Sommers, Christopher

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are regularly implicated in foodborne illness outbreaks and recalls of ground beef. In this study we determined the High Pressure Processing (HPP) D10 value (the processing conditions needed to reduce the microbial population by 1 log) of 39 STEC isolates, including the "big six" serovars, O104 and O157:H7. STEC isolates included those isolated from animals and environmental sources in addition to those associated with illness in humans. Individual STEC were inoculated into 80% lean ground beef and treated with HPP (350 MPa, 4 °C, up to 40 min). The mean D10 was 9.74 min, with a range of 0.89-25.70 min. The D10 of the STEC involved in human illness was 9.25 vs. 10.40 min for those not involved in human illness (p > 0.05). The presence or absence of genes encoding virulence factors (e.g. Shiga toxin 1 or 2, intimin, or enterohemolysin) had no effect on the HPP D10 (p > 0.05). The high D10 of some STEC involved in human illness should be considered in selecting HPP processing parameters for ground beef. This study demonstrates the heterogeneity of STEC resistance to HPP. Risk assessors and the food industry can use this information to provide safer meat products to consumers.

  14. A dynamical model for bark beetle outbreaks.

    Science.gov (United States)

    Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew

    2016-10-21

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the

  15. Biological pest control in beetle agriculture.

    Science.gov (United States)

    Aanen, Duur K; Slippers, Bernard; Wingfield, Michael J

    2009-05-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics against an antagonist of the beetles' mutualistic fungus. In addition to highlighting the ecological complexity of bark-beetle-microbial symbioses, this work reveals a potential source of novel antibiotics.

  16. Early Cretaceous angiosperms and beetle evolution

    OpenAIRE

    Bo eWang; Haichun eZhang; Edmund eJarzembowski

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoide...

  17. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests.

    Science.gov (United States)

    Griffiths, Hannah M; Bardgett, Richard D; Louzada, Julio; Barlow, Jos

    2016-12-14

    Anthropogenic activities are causing species extinctions, raising concerns about the consequences of changing biological communities for ecosystem functioning. To address this, we investigated how dung beetle communities influence seed burial and seedling recruitment in the Brazilian Amazon. First, we conducted a burial and retrieval experiment using seed mimics. We found that dung beetle biomass had a stronger positive effect on the burial of large than small beads, suggesting that anthropogenic reductions in large-bodied beetles will have the greatest effect on the secondary dispersal of large-seeded plant species. Second, we established mesocosm experiments in which dung beetle communities buried Myrciaria dubia seeds to examine plant emergence and survival. Contrary to expectations, we found that beetle diversity and biomass negatively influenced seedling emergence, but positively affected the survival of seedlings that emerged. Finally, we conducted germination trials to establish the optimum burial depth of experimental seeds, revealing a negative relationship between burial depth and seedling emergence success. Our results provide novel evidence that seed burial by dung beetles may be detrimental for the emergence of some seed species. However, we also detected positive impacts of beetle activity on seedling recruitment, which are probably because of their influence on soil properties. Overall, this study provides new evidence that anthropogenic impacts on dung beetle communities could influence the structure of tropical forests; in particular, their capacity to regenerate and continue to provide valuable functions and services.

  18. Juvenile hormone regulates extreme mandible growth in male stag beetles.

    Directory of Open Access Journals (Sweden)

    Hiroki Gotoh

    Full Text Available The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle mandibles (or indeed any insect structure remain largely unknown. Here, we demonstrate that during the development of male stag beetles (Cyclommatus metallifer, juvenile hormone (JH titers are correlated with the extreme growth of an exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of the evolutionary diversification of the insects.

  19. Intraguild predation and native lady beetle decline.

    Directory of Open Access Journals (Sweden)

    Mary M Gardiner

    Full Text Available Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows

  20. The Beetle Reference Manual

    CERN Document Server

    Van Bakel, N; Van den Brand, J F J; Feuerstack-Raible, M; Harnew, N; Hofmann, W; Knöpfle, K-T; Löchner, S; Schmelling, M; Sexauer, E; Smale, N J; Trunk, U; Verkooijen, H

    2001-01-01

    This paper details the port de nitions, electrical speci cations, modes of operation and programming sequences of the 128 channel readout chip Beetle . The chip is developed for the LHCb experiment and ful lls the requirements of the silicon vertex detector, the inner tracker, the pile-up veto trigger and the RICH detector in case of multianode photomultiplier readout. It integrates 128 channels with low-noise charge-sensitive preampli ers and shapers. The risetime of the shaped pulse is 25 ns with a 30% remainder of the peak voltage after 25 ns. A comparator per channel with con gurable polarity provides a binary signal. Four adjacent comparator channels are being ORed and brought o chip via LVDS ports. Either the shaper or comparator output is sampled with the LHC-bunch-crossing frequency of 40 MHz into an analogue pipeline with a programmable latency of max. 160 sampling intervalls and an integrated derandomizing bu er of 16 stages. For analog readout data is multiplexed with up to 40 MHz onto 1 or 4 ports...

  1. Possible living fossil in Bolivia: A new genus of flea beetles with modified hind legs (Coleoptera, Chrysomelidae, Galerucinae, Alticini).

    Science.gov (United States)

    Konstantinov, Alexander S

    2016-01-01

    A new genus (Chanealtica) with three new species (Chanealtica cuevas, Chanealtica ellimon, and Chanealtica maxi) from Bolivia is described and illustrated. It is compared with Aphthonoides Jacoby, 1885, Argopistes Motschulsky, 1860, Metroserrapha Bechyne, 1958, Psylliodes Berthold, 1827 and Psyllototus Nadein, 2010. Remarkably, based on the available characters, among all the flea beetles, Chanealtica is mostly similar to an extinct genus Psyllototus. A discussion of diversity and function of the hind leg in flea beetles is provided.

  2. Complex plant-disperser-pest interactions in NW Amazonia : beetle larvae and companions travelling inside Attalea maripa palm nuts

    OpenAIRE

    Guix, Juan Carlos

    2006-01-01

    The dispersal and predation, by vertebrates, of bruchid beetle larvae living inside Attalea maripa palm nuts are described in the region of the Middle Negro river (state of Amazonas, Brazil). The complexity of the ecological relationships between palm trees, seed dispersers, beetle seed predators and parasitic or commensal organisms is discussed and their importance to the biological diversity of the Amazonian ecosystems is argued. Se describe la dispersión y depredación por vertebrados de...

  3. Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.

    Science.gov (United States)

    Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying

    2016-12-28

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up.

  4. Linking functional group richness and ecosystem functions of dung beetles: an experimental quantification.

    Science.gov (United States)

    Milotić, Tanja; Quidé, Stijn; Van Loo, Thomas; Hoffmann, Maurice

    2017-01-01

    Dung beetles form an insect group that fulfils important functions in terrestrial ecosystems throughout the world. These include nutrient cycling through dung removal, soil bioturbation, plant growth, secondary seed dispersal and parasite control. We conducted field experiments at two sites in the northern hemisphere temperate region in which dung removal and secondary seed dispersal were assessed. Dung beetles were classified in three functional groups, depending on their size and dung manipulation method: dwellers, large and small tunnelers. Other soil inhabiting fauna were included as a fourth functional group. Dung removal and seed dispersal by each individual functional group and combinations thereof were estimated in exclusion experiments using different dung types. Dwellers were the most diverse and abundant group, but tunnelers were dominant in terms of biomass. All dung beetle functional groups had a clear preference for fresh dung. The ecosystem services in dung removal and secondary seed dispersal provided by dung beetles were significant and differed between functional groups. Although in absolute numbers more dwellers were found, large tunnelers were disproportionally important for dung burial and seed removal. In the absence of dung beetles, other soil inhabiting fauna, such as earthworms, partly took over the dung decomposing role of dung beetles while most dung was processed when all native functional groups were present. Our results, therefore, emphasize the need to conserve functionally complete dung ecosystems to maintain full ecosystem functioning.

  5. A cross-continental comparison of plant and beetle responses to retention of forest patches during timber harvest.

    Science.gov (United States)

    Baker, Susan C; Halpern, Charles B; Wardlaw, Timothy J; Kern, Christel; Edgar, Graham J; Thomson, Russell J; Bigley, Richard E; Franklin, Jerry F; Gandhi, Kamal J K; Gustafsson, Lena; Johnson, Samuel; Palik, Brian J; Spies, Thomas A; Steel, E Ashley; Weslien, Jan; Strengbom, Joachim

    2016-12-01

    Timber harvest can adversely affect forest biota. Recent research and application suggest that retention of mature forest elements (retention forestry), including unharvested patches (or aggregates) within larger harvested units, can benefit biodiversity compared to clearcutting. However, it is unclear whether these benefits can be generalized among the diverse taxa and biomes in which retention forestry is practiced. Lack of comparability in methods for sampling and analyzing responses to timber harvest and edge creation presents a challenge to synthesis. We used a consistent methodology (similarly spaced plots or traps along transects) to investigate responses of vascular plants and ground-active beetles to aggregated retention at replicate sites in each of four temperate and boreal forest types on three continents: Douglas-fir forests in Washington, USA; aspen forests in Minnesota, USA; spruce forests in Sweden; and wet eucalypt forests in Tasmania, Australia. We assessed (1) differences in local (plot-scale) species richness and composition between mature (intact) and regenerating (previously harvested) forest; (2) the lifeboating function of aggregates (capacity to retain species of unharvested forest); and whether intact forests and aggregates (3) are susceptible to edge effects and (4) influence the adjacent regenerating forest. Intact and harvested forests differed in composition but not richness of plants and beetles. The magnitude of this difference was generally similar among regions, but there was considerable heterogeneity of composition within and among replicate sites. Aggregates within harvest units were effective at lifeboating for both plant and beetle communities. Edge effects were uncommon even within the aggregates. In contrast, effects of forest influence on adjacent harvested areas were common and as strong for aggregates as for larger blocks of intact forest. Our results provide strong support for the widespread application of aggregated

  6. Diversidad, fluctuación poblacional y plantas huésped de escolitinos (Coleoptera: Curculionidae asociados con el agroecosistema cacao en Tabasco, México Diversity, dynamic population and host plants of bark and ambrosia beetles (Coleoptera: Curculionidae associated to the cocoa agroecosystem in Tabasco, Mexico

    Directory of Open Access Journals (Sweden)

    Manuel Pérez-De La Cruz

    2009-12-01

    Full Text Available Se estudió la diversidad de escolitinos asociados con el agroecosistema cacao en Tabasco, México durante el año 2007. Los insectos adultos fueron recolectados en 4 localidades con trampas de alcohol etílico, trampas de atracción luminosa y captura directa sobre sus plantas huésped. Se recolectaron 19 263 ejemplares, pertenecientes a 51 especies y 26 géneros. Araptus hymenaeae y Cnesinus squamosus son nuevos registros para México. La máxima diversidad de insectos capturados con los 3 métodos de recolecta se obtuvo en El Bajío (H'=2.45 y Dmg=4.83, la mínima en Río Seco (H'=2.29 y Km. 21 (Dmg=3.85, y el máximo valor de equidad (J lo obtuvo El Bajío (0.67. El índice de similitud de Sorensen (Is mostró que los sitios de estudio tienden a presentar la misma composición de especies. Los índices de diversidad, equidad y similitud, aplicados a la fauna de escolitinos capturados con cada uno de los métodos empleados, mostraron diferencias, excepto en las trampas de alcohol. La fluctuación presenta picos poblacionales marcados al inicio y al final del año de estudio. Las plantas en las que se recolectó el mayor número de especies fueron Theobroma cacao (16 y Swietenia macrophylla (13.The bark and ambrosia beetle diversity in cocoa agroecosystems was studied during 2007 in Tabasco, Mexico. Adult insects were gathered in 4 localities with ethanol and light traps and by direct collecting in their host plants. 19 263 specimens were gathered, belonging to 51 species and 26 genera. Araptus hymenaeae and Cnesinus squamosus are new records for Mexico. The maximum diversity of insects captured with the 3 collecting methods was obtained in El Bajío (H'=2.45 and Dmg=4.83, the minimum in Río Seco (H'=2.29 and Km. 21 (Dmg=3.85, and the maximum value of justness (J was obtained in El Bajío (0.67. The Sorensen similarity index (Is showed that the study places present the same species composition. The diversity, justness and similarity indices

  7. Interaction and common ground in dementia: Communication across linguistic and cultural diversity in a residential dementia care setting.

    Science.gov (United States)

    Strandroos, Lisa; Antelius, Eleonor

    2017-09-01

    Previous research concerning bilingual people with a dementia disease has mainly focused on the importance of sharing a spoken language with caregivers. While acknowledging this, this article addresses the multidimensional character of communication and interaction. As using spoken language is made difficult as a consequence of the dementia disease, this multidimensionality becomes particularly important. The article is based on a qualitative analysis of ethnographic fieldwork at a dementia care facility. It presents ethnographic examples of different communicative forms, with particular focus on bilingual interactions. Interaction is understood as a collective and collaborative activity. The text finds that a shared spoken language is advantageous, but is not the only source of, nor a guarantee for, creating common ground and understanding. Communicative resources other than spoken language are for example body language, embodiment, artefacts and time. Furthermore, forms of communication are not static but develop, change and are created over time. Ability to communicate is thus not something that one has or has not, but is situationally and collaboratively created. To facilitate this, time and familiarity are central resources, and the results indicate the importance of continuity in interpersonal relations.

  8. Gene discovery in the horned beetle Onthophagus taurus

    Directory of Open Access Journals (Sweden)

    Yang Youngik

    2010-12-01

    Full Text Available Abstract Background Horned beetles, in particular in the genus Onthophagus, are important models for studies on sexual selection, biological radiations, the origin of novel traits, developmental plasticity, biocontrol, conservation, and forensic biology. Despite their growing prominence as models for studying both basic and applied questions in biology, little genomic or transcriptomic data are available for this genus. We used massively parallel pyrosequencing (Roche 454-FLX platform to produce a comprehensive EST dataset for the horned beetle Onthophagus taurus. To maximize sequence diversity, we pooled RNA extracted from a normalized library encompassing diverse developmental stages and both sexes. Results We used 454 pyrosequencing to sequence ESTs from all post-embryonic stages of O. taurus. Approximately 1.36 million reads assembled into 50,080 non-redundant sequences encompassing a total of 26.5 Mbp. The non-redundant sequences match over half of the genes in Tribolium castaneum, the most closely related species with a sequenced genome. Analyses of Gene Ontology annotations and biochemical pathways indicate that the O. taurus sequences reflect a wide and representative sampling of biological functions and biochemical processes. An analysis of sequence polymorphisms revealed that SNP frequency was negatively related to overall expression level and the number of tissue types in which a given gene is expressed. The most variable genes were enriched for a limited number of GO annotations whereas the least variable genes were enriched for a wide range of GO terms directly related to fitness. Conclusions This study provides the first large-scale EST database for horned beetles, a much-needed resource for advancing the study of these organisms. Furthermore, we identified instances of gene duplications and alternative splicing, useful for future study of gene regulation, and a large number of SNP markers that could be used in population

  9. Recalibrated tree of leaf beetles (Chrysomelidae indicates independent diversification of angiosperms and their insect herbivores.

    Directory of Open Access Journals (Sweden)

    Jesús Gómez-Zurita

    Full Text Available BACKGROUND: The great diversity of the "Phytophaga" (weevils, longhorn beetles and leaf beetles has been attributed to their co-radiation with the angiosperms based on matching age estimates for both groups, but phylogenetic information and molecular clock calibrations remain insufficient for this conclusion. METHODOLOGY: A phylogenetic analysis of the leaf beetles (Chrysomelidae was conducted based on three partial ribosomal gene markers (mitochondrial rrnL, nuclear small and large subunit rRNA including over 3000 bp for 167 taxa representing most major chrysomelid lineages and outgroups. Molecular clock calibrations and confidence intervals were based on paleontological data from the oldest (K-T boundary leaf beetle fossil, ancient feeding traces ascribed to hispoid Cassidinae, and the vicariant split of Nearctic and Palearctic members of the Timarchini. PRINCIPAL FINDINGS: The origin of the Chrysomelidae was dated to 73-79 Mya (confidence interval 63-86 Mya, and most subfamilies were post-Cretaceous, consistent with the ages of all confirmed body fossils. Two major monocot feeding chrysomelid lineages formed widely separated clades, demonstrating independent colonization of this ancient (early Cretaceous angiosperm lineage. CONCLUSIONS: Previous calibrations proposing a much older origin of Chrysomelidae were not supported. Therefore, chrysomelid beetles likely radiated long after the origin of their host lineages and their diversification was driven by repeated radiaton on a pre-existing diverse resource, rather than ancient host associations.

  10. Associations of Conifer-Infesting Bark Beetles and Fungi in Fennoscandia

    Science.gov (United States)

    Linnakoski, Riikka; de Beer, Z. Wilhelm; Niemelä, Pekka; Wingfield, Michael J.

    2012-01-01

    Bark beetles (Coleoptera, Scolytinae) have a widespread association with fungi, especially with ophiostomatoid fungi (Ascomycota) that cause blue staining of wood, and in some cases, serious tree diseases. In Fennoscandia, most studies of these fungi have focused on economically important bark beetle species and this is likely to have led to a biased view of the fungal biodiversity in the region. Recently, the associations between fungi and bark beetles in Fennoscandia have been shown to be more diverse than previously thought. Furthermore, they form complex and dynamic associations that are only now beginning to emerge. This review examines the current knowledge of the rather poorly known interactions between bark beetles, fungi and their conifer host trees in Fennoscandia. The diversity of ophiostomatoid species is discussed and the possible factors that influence the assemblages of fungal associates are considered for all species that are known to occur in the region. For many ophiostomatoid species found in Fennoscandia, little or nothing is known regarding their pathogenicity, particularly if they were to be transferred to new environments. We, therefore, draw attention to the possible threats of timber trade and climate change-induced invasions of new habitats by bark beetles and the fungi that can be moved along with them. PMID:26467956

  11. [Blister beetle dermatitis: Dermatitis linearis].

    Science.gov (United States)

    Dieterle, R; Faulde, M; Erkens, K

    2015-05-01

    Several families of beetles cause toxic reactions on exposed human skin. Cantharidin provokes nearly asymptomatic vesicles and blisters, while pederin leads to itching and burning erythema with vesicles and small pustules, later crusts. Paederi are attracted by fluorescent light especially after rain showers and cause outbreaks in regions with moderate climate. Clinical findings and patient history lead to the diagnosis: dermatitis linearis.

  12. Raising Beetles in a Classroom.

    Science.gov (United States)

    Hackett, Erla

    This guide is designed to provide elementary school teachers with a harmless, inexpensive, clean, odorless, and easy-to-care-for insect-rearing project for the classroom. The following topics are included: (1) instructions for the care and feeding of the beetle larvae; (2) student activities for observing larval characteristics and behavior…

  13. The Influence of Exotic Lady Beetle (Coleoptera: Coccinellidae) Establishment on the Species Composition of the Native Lady Beetle Community in Missouri.

    Science.gov (United States)

    Diepenbrock, Lauren M; Fothergill, Kent; Tindall, Kelly V; Losey, John E; Smyth, Rebecca R; Finke, Deborah L

    2016-08-01

    The diversity and abundance of native lady beetles (Coccinellidae) in North America has declined in recent decades. This decline is often correlated with the introduction and establishment of exotic lady beetle species, including Coccinella septempunctata L. and Harmonia axyridis Pallas, suggesting that exotic species precipitated the decline of native lady beetles. We examined species records of native coccinellids in Missouri over 118 yr and asked whether the species composition of the community experienced a shift following the establishment of the exotic species. We found that the contemporary native coccinellid community is different from the community that was present nearly a century ago. However, there was no evidence for a recent abrupt shift in composition triggered by the establishment of exotic species. Instead, our data suggest that the native lady beetle community has been undergoing consistent and gradual change over time, with some species decreasing in abundance and others increasing. While not excluding exotic species as a factor contributing to the decline of native lady beetle species, our findings suggest that other continuous factors, like land use change, may have played a more influential role in determining the composition of the native coccinellid communities within our region. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The (w)hole story : Facilitation of dead wood fauna by bark beetles?

    NARCIS (Netherlands)

    Zuo, Juan; Cornelissen, Johannes H. C.; Hefting, Mariet M.; Sass-Klaassen, Ute; van Logtestijn, Richard S. P.; van Hal, Jurgen; Goudzwaard, Leo; Liu, Jin C.; Berg, Matty P.

    2016-01-01

    Facilitation between species is thought to be a key mechanism in community assembly and diversity, as certain species create microhabitats for others. A profound characteristic of forest ecosystems is a large amount of dead wood which is colofiised by a vast array of invertebrate species. Bark beetl

  15. The (w)hole story : Facilitation of dead wood fauna by bark beetles?

    NARCIS (Netherlands)

    Zuo, Juan; Cornelissen, Johannes H. C.; Hefting, Mariet M.; Sass-Klaassen, Ute; van Logtestijn, Richard S. P.; van Hal, Jurgen; Goudzwaard, Leo; Liu, Jin C.; Berg, Matty P.

    2016-01-01

    Facilitation between species is thought to be a key mechanism in community assembly and diversity, as certain species create microhabitats for others. A profound characteristic of forest ecosystems is a large amount of dead wood which is colofiised by a vast array of invertebrate species. Bark beetl

  16. Evaluating Alpha and Beta Taxonomy in Ant-Nest Beetles (Coleoptera, Carabidae, Paussini

    Directory of Open Access Journals (Sweden)

    Simone Fattorini

    2013-01-01

    Full Text Available We evaluated completeness, accuracy, and historical trend of the taxonomic knowledge on the myrmecophilous ground beetle tribe Paussini (Coleoptera, Carabidae, Paussinae. Accumulation curves for valid names and synonyms of species, subgenera, and genera were modelled using logistic functions. Analyses of trends in synonymies suggest that few currently accepted taxa will be recognized to be synonymous in the future. This may indicate that Paussini are a taxonomically relatively stable tribe of carabid beetles. However, this result might also be due to the lack of recent taxonomic work in some biogeographical regions.

  17. Oedemerid blister beetle dermatosis: a review.

    Science.gov (United States)

    Nicholls, D S; Christmas, T I; Greig, D E

    1990-05-01

    Blister beetle dermatosis is a distinctive vesiculobullous eruption that occurs after contact with three major groups of beetles (Order: Coleoptera). It is caused by a vesicant chemical contained in the body fluids of the beetles. The smallest and least known family is the Oedemeridae. Although there are few references in the medical literature, blister beetle dermatosis caused by oedemerids may be more common and widespread than currently recognized. The best known family is the Meloidae with numerous species worldwide causing blistering. The vesicant chemical in both Oedemeridae and Meloidae is cantharidin. The third group of blister beetles includes species of the genus Paederus (Family: Staphylinidae). The clinicopathologic picture differs because this genus contains a different vesicant agent, pederin. The clinicopathologic features of oedemerid blister beetle dermatosis are described. The world medical and relevant entomologic literature is reviewed.

  18. Selected beetle assemblages captured in pitfall traps baited with deer dung or meat in balsam fir and sugar maple forests of central Quebec.

    Science.gov (United States)

    Brousseau, Pierre-Marc; Cloutier, Conrad; Hébert, Christian

    2010-08-01

    Vertebrate dung and carrion are rich and strongly attractive resources for numerous beetles that are often closely linked to them. The presence and abundance of beetles exploiting such resources are influenced by various ecological factors including climate and forest cover vegetation. We studied selected assemblages of coprophilous and necrophagous beetles in Quebec along a 115-km north-south transect in three balsam fir (Abies balsamea (L.) Miller) forest sites and in a fourth forest site dominated by sugar maple (Acer saccharum Marshall), close to the southern fir site. Beetle abundance was estimated using a sampling design comprising replicated pitfall traps baited with red deer meat or dung in each site. A total of 8,511 beetles were caught and identified to family level, 95.7% of which belonged to families with known coprophilous or necrophagous behavior. Meat-baited pitfall traps caught nearly 15 times as many beetles as dung-baited traps. All Histeridae, Hydrophilidae, Scarabaeidae, and Silphidae were identified to species to examine specific diversity variation among sites. For the beetles caught in the meat-baited traps (majority of captures), decreases in abundance and species richness were observed from south to north along the fir forest transect, with evidence of decreasing specific diversity as measured by the Shannon index of diversity. Strong differences in species assemblages were also observed between the southern maple and fir forest sites. The Silphidae and Histeridae were more abundant in the maple forest, whereas the Hydrophilidae and Ptilidae were more abundant in the fir forest.

  19. Effect of summer fire on cursorial spider (Aranei and beetle (Coleoptera assemblages in meadow steppes of Central European Russia

    Directory of Open Access Journals (Sweden)

    Polchaninova Nina

    2016-12-01

    Full Text Available Fire is an important structuring force for grassland ecosystems. Despite increased incidents of fire in European steppes, their impact on arthropod communities is still poorly studied. We assessed short-term changes in cursorial beetle and spider assemblages after a summer fire in the meadow steppe in Central European Russia. The responses of spider and beetle assemblages to the fire event were different. In the first post-fire year, the same beetle species dominated burnt and unburnt plots, the alpha-diversity of beetle assemblages was similar, and there were no pronounced changes in the proportions of trophic groups. Beetle species richness and activity density increased in the second post-fire year, while that of the spiders decreased. The spider alpha-diversity was lowest in the first post-fire year, and the main dominants were pioneer species. In the second year, the differences in spider species composition and activity density diminished. The main conclusion of our study is that the large-scale intensive summer fire caused no profound changes in cursorial beetle and spider assemblages of this steppe plot. Mitigation of the fire effect is explained by the small plot area, its location at the edge of the fire site and the presence of adjacent undisturbed habitats with herbaceous vegetation.

  20. From the turtle to the beetle

    OpenAIRE

    Romagosa Carrasquer, Bernat

    2016-01-01

    Beetle Blocks is a visual, blocks-based programming language/environment for 3D design and fabrication, implemented on top of Berkeley Snap! and the ThreeJS 3D graphics library. Beetle Blocks programs move a graphical beetle around a 3D world, where it can place 3D shapes, extrude its path as a tube and generate geometry in other ways. The resulting 3D geometry can be exported as a 3D-printable file. Beetle Blocks also aims to offer a cloud system and social platform meant to provide the comm...

  1. Ginger and the beetle: Evidence of primitive pollination system in a Himalayan endemic alpine ginger (Roscoea alpina, Zingiberaceae).

    Science.gov (United States)

    Paudel, Babu Ram; Shrestha, Mani; Dyer, Adrian G; Li, Qing-Jun

    2017-01-01

    The Himalayan endemic alpine genus Roscoea, like other members of ginger family, exhibits the combination of floral traits that would fit pollination by long distant foragers such as bees, birds or flies. We studied the pollination biology of Roscoea alpina, observed potential floral visitors and determined their foraging behaviour, visitation frequency and pollination efficiency, to seek evidence in support of the pollination syndrome hypothesis. We also measured the floral spectra of R. alpina flowers to evaluate if signals fit with the currently known framework for observed floral visitors. We found that R. alpina have autonomous selfing and pollinator-mediated crossing, but lack apomixis. We observed that a beetle (Mylabris sp.), and a moth (Macroglossum nycteris) visit the flowers of R. alpina for pollen and nectar feeding respectively. Our field observations, the stigmatic pollen count and fruit set data indicated that the visit by the beetle was legitimate, while that of the moth was illegitimate. Emasculated flowers visited by beetles set as many fruits and seeds/fruit as auto-selfed and naturally pollinated flowers, while emasculated flowers excluded from beetle visits did not set fruit and seed; indicating that a single visit of a beetle to the flowers of R. alpina can facilitate pollination. We found that flower spectral signal of R. alpina does not fit typical spectra previously reported for beetle or bee-visited flowers. Our results suggest that, to ensure reproductive success in alpine habitat, R. alpina has evolved autonomous selfing as a predominant mode of reproduction, while beetle pollination would promote genetic diversity of this plant species. The visitation of beetles to the flowers of R. alpina, despite floral signal mismatch with the classically associated beetle vision, suggests that a different visual processing may operate in this plant-pollinator interaction at high altitudes.

  2. Ginger and the beetle: Evidence of primitive pollination system in a Himalayan endemic alpine ginger (Roscoea alpina, Zingiberaceae)

    Science.gov (United States)

    Shrestha, Mani; Dyer, Adrian G.; Li, Qing-Jun

    2017-01-01

    The Himalayan endemic alpine genus Roscoea, like other members of ginger family, exhibits the combination of floral traits that would fit pollination by long distant foragers such as bees, birds or flies. We studied the pollination biology of Roscoea alpina, observed potential floral visitors and determined their foraging behaviour, visitation frequency and pollination efficiency, to seek evidence in support of the pollination syndrome hypothesis. We also measured the floral spectra of R. alpina flowers to evaluate if signals fit with the currently known framework for observed floral visitors. We found that R. alpina have autonomous selfing and pollinator-mediated crossing, but lack apomixis. We observed that a beetle (Mylabris sp.), and a moth (Macroglossum nycteris) visit the flowers of R. alpina for pollen and nectar feeding respectively. Our field observations, the stigmatic pollen count and fruit set data indicated that the visit by the beetle was legitimate, while that of the moth was illegitimate. Emasculated flowers visited by beetles set as many fruits and seeds/fruit as auto-selfed and naturally pollinated flowers, while emasculated flowers excluded from beetle visits did not set fruit and seed; indicating that a single visit of a beetle to the flowers of R. alpina can facilitate pollination. We found that flower spectral signal of R. alpina does not fit typical spectra previously reported for beetle or bee-visited flowers. Our results suggest that, to ensure reproductive success in alpine habitat, R. alpina has evolved autonomous selfing as a predominant mode of reproduction, while beetle pollination would promote genetic diversity of this plant species. The visitation of beetles to the flowers of R. alpina, despite floral signal mismatch with the classically associated beetle vision, suggests that a different visual processing may operate in this plant-pollinator interaction at high altitudes. PMID:28723912

  3. Prey preference and host suitability of the predatory and parasitoid carabid beetle, Lebia grandis, for several species of Leptinotarsa beetles.

    Science.gov (United States)

    Weber, Donald C; Rowley, Daniel L; Greenstone, Matthew H; Athanas, Michael M

    2006-01-01

    Lebia grandis (Coleoptera: Carabidae), recorded as a parasitoid only on Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), is capable of parasitizing the false potato beetle, L. juncta, and also L. haldemani. Historical records show that L. decemlineata, while the only recorded host, was not present in much of the original range of L. grandis, and may not have been its host prior to its expansion into eastern North America, where L. juncta is endemic. Our laboratory comparisons suggest that L. juncta, the presumptive original host, best supports the development of the parasitoid larval L. grandis, based on 43.6% successful emergence of the adult carabid parasitoid, compared to 11.5% from the two other Leptinotarsa species. L. grandis adults accept eggs and larvae of all 3 Leptinotarsa species as adult food. Naive, newly-emerged adults show no preference when presented the 3 species of third-instar larvae, which they consume at a mean rate of 3.3 per day, a rate which does not differ significantly by sex, larval host, or weight at emergence. When presented with equal amounts by weight of the 3 species of Leptinotarsa eggs, such adults consume the equivalent of 23.0 L. decemlineata eggs per day, with consumption of L. juncta eggs 67% higher by weight than L. decemlineata consumption. Insight into the biotic and abiotic limitations on L. grandis should aid in determining its potential for suppression of Colorado potato beetle by biological control in diverse agroecosystems.

  4. Scarab Beetle (Coleoptera: Scarabaeidae Fauna in Ardabil Province, North West Iran

    Directory of Open Access Journals (Sweden)

    G Mowlavi

    2008-12-01

    Full Text Available "nBackground: Dung beetles of Coleoptera associated to undisturbed cattle droppings in pastures present great diver¬sity and abundance. Dung beetles also play an important role for transmission of some helminthes to human and cat¬tle. This study was made to survey the biodiversity and abundance of these beetles in Ardebil Province, western Iran."nMethods: According to the field study all beetles attracted to fresh cow dung in five areas of Ardebil Province in¬cluding Namin, Ardabil, Meshkinshahr, Neer and Sarein were collected and identified. They were collected during summer 2007 from June to September, with general peaks appearing to be correlated with temperature mainly at 11 a.m to 15 p.m. The samples were identified using appropriate systematic key "nResults: A total of 231 specimens belonging to 9 beetle genera and at least 15 species were identified as Euoniticel¬lus fulvus, Sisyphus schaffaer, Euonthophagus taurus, Copris lunaris, Chironitis pamphilus, Gymnopleurus coriarus, Euonthophagus amyntas, Caccobius schreberi, Onthophagus speculifer, Onthophagus furcatus, Aphodius, lugens, Apho¬dius fimetarius, A. scrutator, Geotrupes spiniger and G. stercorarius"nThe most abundant and diverse subfamilies were Coprinae, Geotrupinae, and Aphodiinae. "nConclusion: We found 15 species of dung beetles occurred in the region. The prevalence of each species is varied depending on location. Some of them play an important role for helminths transmission of veterinary and public health importance. The finding will provide a clue for pasture management as well as public health monitoring and surveillance of the disease transmitted by dung beetles

  5. Scarab Beetle (Coleoptera: Scarabaeidae Fauna in Ardabil Province, North West Iran

    Directory of Open Access Journals (Sweden)

    G Mowlavi

    2008-12-01

    Full Text Available Background: Dung beetles of Coleoptera associated to undisturbed cattle droppings in pastures present great diver¬sity and abundance. Dung beetles also play an important role for transmission of some helminthes to human and cat¬tle. This study was made to survey the biodiversity and abundance of these beetles in Ardebil Province, western Iran.Methods: According to the field study all beetles attracted to fresh cow dung in five areas of Ardebil Province in¬cluding Namin, Ardabil, Meshkinshahr, Neer and Sarein were collected and identified. They were collected during summer 2007 from June to September, with general peaks appearing to be correlated with temperature mainly at 11 a.m to 15 p.m. The samples were identified using appropriate systematic key Results: A total of 231 specimens belonging to 9 beetle genera and at least 15 species were identified as Euoniticel¬lus fulvus, Sisyphus schaffaer, Euonthophagus taurus, Copris lunaris, Chironitis pamphilus, Gymnopleurus coriarus, Euonthophagus amyntas, Caccobius schreberi, Onthophagus speculifer, Onthophagus furcatus, Aphodius, lugens, Apho¬dius fimetarius, A. scrutator, Geotrupes spiniger and G. stercorariusThe most abundant and diverse subfamilies were Coprinae, Geotrupinae, and Aphodiinae. Conclusion: We found 15 species of dung beetles occurred in the region. The prevalence of each species is varied depending on location. Some of them play an important role for helminths transmission of veterinary and public health importance. The finding will provide a clue for pasture management as well as public health monitoring and surveillance of the disease transmitted by dung beetles

  6. Differences between different regions in south Sweden in species richness of saproxylic beetles in logging residues

    Energy Technology Data Exchange (ETDEWEB)

    Jonsell, Mats [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of entomology

    2005-09-01

    The Swedish policy for nature conservation measures in forest operation (outside nature reserves) has generally aimed to have the same level of care-takings on all grounds. However, recent theories suggest that for conserving sustainable populations of threatened organisms it would be more efficient to concentrate the measures to regions where a high diversity still exists. If there are such regional differences between hot spot areas ('rich' sites, areas with know high diversity) and more ordinary regions ('poor' sites) was tested in this project. We selected seven pairs of rich and poor sites distributed over the south of Sweden. On each site we sampled logging residues of aspen, birch, oak and spruce from one one-summer old clear cut and from one 3-5 yrs old clear cut. The samples consisted of wood which were brought to lab where insects were reared out. There was a large variation in the data, so few statistically significant trends were detected. However, for birch and spruce our hypothesis was not supported or even contradicted, both for total species number and number of red-listed species. In aspen and especially oak we found some support for our hypothesis. The differences probably depends on that aspen and oak are frequent only in some regions, and therefore their respective beetle fauna is more diverse in these regions. The results suggest that logging residues should be extracted with more care, especially as regards other tree species than the most widely distributed ones in forest areas where biological values are high.

  7. "Going beyond the call of doula": a grounded theory analysis of the diverse roles community-based doulas play in the lives of pregnant and parenting adolescent mothers.

    Science.gov (United States)

    Gentry, Quinn M; Nolte, Kim M; Gonzalez, Ainka; Pearson, Magan; Ivey, Symeon

    2010-01-01

    This article presents some of the most salient qualitative results from a larger program evaluation of pregnant and parenting adolescents who participated in a community-based doula program. Using grounded theory analysis, seven problem-solving strategies emerged that doulas apply in helping pregnant and parenting adolescents navigate multiple social and health settings that often serve as barriers to positive maternal- and child-health outcomes. The ethnographic findings of this study suggest that the doulas provide valuable assistance to pregnant and parenting adolescents by addressing social-psychological issues and socio-economic disparities. "Diverse role-taking" results in doulas helping pregnant adolescents navigate more successfully through fragmented social and health service systems that are less supportive of low-income adolescents, who are often perceived to be draining scarce resources. The findings have implications for the roles of community-based doulas assigned to low-income adolescents of color seeking to overcome obstacles and attain better educational and economic opportunities.

  8. Unusual coloration in scarabaeid beetles

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D J [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Berg, N G van der [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Prinsloo, L C [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Hodgkinson, I J [Department of Physics, University of Otago, Dunedin (New Zealand)

    2007-04-07

    In this paper we investigate the reflection of circularly polarized light from the exocuticle of the scarabaeid beetle Gymnopleurus virens. Reflection spectra are deeply modulated, exhibiting a number of relatively narrow well-defined peaks, which differ from previously studied specimens. By comparing model calculations and electron microscopy work with the recorded spectra, we can propose the presence of specific structural defects responsible for the unusual spectra.

  9. Unusual coloration in scarabaeid beetles

    Science.gov (United States)

    Brink, D. J.; van der Berg, N. G.; Prinsloo, L. C.; Hodgkinson, I. J.

    2007-04-01

    In this paper we investigate the reflection of circularly polarized light from the exocuticle of the scarabaeid beetle Gymnopleurus virens. Reflection spectra are deeply modulated, exhibiting a number of relatively narrow well-defined peaks, which differ from previously studied specimens. By comparing model calculations and electron microscopy work with the recorded spectra, we can propose the presence of specific structural defects responsible for the unusual spectra.

  10. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera).

    Science.gov (United States)

    Seago, Ainsley E; Brady, Parrish; Vigneron, Jean-Pol; Schultz, Tom D

    2009-04-01

    Members of the order Coleoptera are sometimes referred to as 'living jewels', in allusion to the strikingly diverse array of iridescence mechanisms and optical effects that have arisen in beetles. A number of novel and sophisticated reflectance mechanisms have been discovered in recent years, including three-dimensional photonic crystals and quasi-ordered coherent scattering arrays. However, the literature on beetle structural coloration is often redundant and lacks synthesis, with little interchange between the entomological and optical research communities. Here, an overview is provided for all iridescence mechanisms observed in Coleoptera. Types of iridescence are illustrated and classified into three mechanistic groups: multilayer reflectors, three-dimensional photonic crystals and diffraction gratings. Taxonomic and phylogenetic distributions are provided, along with discussion of the putative functions and evolutionary pathways by which iridescence has repeatedly arisen in beetles.

  11. Preferential host switching and codivergence shaped radiation of bark beetle symbionts, nematodes of Micoletzkya (Nematoda: Diplogastridae).

    Science.gov (United States)

    Susoy, V; Herrmann, M

    2014-05-01

    Host-symbiont systems are of particular interest to evolutionary biology because they allow testable inferences of diversification processes while also providing both a historical basis and an ecological context for studies of adaptation. Our investigations of bark beetle symbionts, predatory nematodes of the genus Micoletzkya, have revealed remarkable diversity of the group along with a high level of host specificity. Cophylogenetic analyses suggest that evolution of the nematodes was largely influenced by the evolutionary history of beetles. The diversification of the symbionts, however, could not be attributed to parallel divergence alone; our results indicate that adaptive radiation of the nematodes was shaped by preferential host shifts among closely related beetles along with codivergence. Whereas ecological and geographic isolation have played a major role in the diversification of Micoletzkya at shallow phylogenetic depths, adaptations towards related hosts have played a role in shaping cophylogenetic structure at a larger evolutionary scale.

  12. Ancient associations of aquatic beetles and tank bromeliads in the Neotropical forest canopy.

    Science.gov (United States)

    Balke, Michael; Gómez-Zurita, Jesús; Ribera, Ignacio; Viloria, Angel; Zillikens, Anne; Steiner, Josephina; García, Mauricio; Hendrich, Lars; Vogler, Alfried P

    2008-04-29

    Water reservoirs formed by the leaf axils of bromeliads are a highly derived system for nutrient and water capture that also house a diverse fauna of invertebrate specialists. Here we investigate the origin and specificity of bromeliad-associated insects using Copelatinae diving beetles (Dytiscidae). This group is widely distributed in small water bodies throughout tropical forests, but a subset of species encountered in bromeliad tanks is strictly specialized to this habitat. An extensive molecular phylogenetic analysis of Neotropical Copelatinae places these bromeliadicolous species in at least three clades nested within other Copelatus. One lineage is morphologically distinct, and its origin was estimated to reach back to 12-23 million years ago, comparable to the age of the tank habitat itself. Species of this clade in the Atlantic rainforest of southern Brazil and mountain ranges of northern Venezuela and Trinidad show marked phylogeographical structure with up to 8% mtDNA divergence, possibly indicating allopatric speciation. The other two invasions of bromeliad water tanks are more recent, and haplotype distributions within species are best explained by recent expansion into newly formed habitat. Hence, bromeliad tanks create a second stratum of aquatic freshwater habitat independent of that on the ground but affected by parallel processes of species and population diversification at various temporal scales, possibly reflecting the paleoclimatic history of neotropical forests.

  13. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    Directory of Open Access Journals (Sweden)

    Renata Calixto Campos

    Full Text Available Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h, a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  14. Keratin decomposition by trogid beetles: evidence from a feeding experiment and stable isotope analysis

    Science.gov (United States)

    Sugiura, Shinji; Ikeda, Hiroshi

    2014-03-01

    The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable isotope ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the isotopic signatures of the trogids with the feathers to investigate isotopic shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable isotope analysis provided strong evidence of keratin decomposition by trogid beetles.

  15. Carcass Fungistasis of the Burying Beetle Nicrophorus nepalensis Hope (Coleoptera: Silphidae

    Directory of Open Access Journals (Sweden)

    Wenbe Hwang

    2013-01-01

    Full Text Available Our study investigated the fungistatic effects of the anal secretions of Nicrophorus nepalensis Hope on mouse carcasses. The diversity of fungi on carcasses was investigated in five different experimental conditions that corresponded to stages of the burial process. The inhibition of fungal growth on carcasses that were treated by mature beetles before burial was lost when identically treated carcasses were washed with distilled water. Compared with control carcasses, carcasses that were prepared, buried, and subsequently guarded by mature breeding pairs of beetles exhibited the greatest inhibition of fungal growth. No significant difference in fungistasis was observed between the 3.5 g and the 18 to 22 g guarded carcasses. We used the growth of the predominant species of fungi on the control carcasses, Trichoderma sp., as a biological indicator to examine differences in the fungistatic efficiency of anal secretions between sexually mature and immature adults and between genders. The anal secretions of sexually mature beetles inhibited the growth of Trichoderma sp., whereas the secretions of immature beetles did not. The secretions of sexually mature females displayed significantly greater inhibition of the growth of Trichoderma sp. than those of sexually mature males, possibly reflecting a division of labor in burying beetle reproduction.

  16. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex.

    Science.gov (United States)

    Durand, Audrey-Anne; Bergeron, Amélie; Constant, Philippe; Buffet, Jean-Philippe; Déziel, Eric; Guertin, Claude

    2015-11-26

    Many bark beetles belonging to the Dendroctonus genus carry bacterial and fungal microbiota, forming a symbiotic complex that helps the insect to colonize the subcortical environment of the host tree. However, the biodiversity of those bacteria at the surface of the cuticle or inside the body parts of bark beetles is not well established. The aim of this study was to characterize the bacterial microbiome associated with the eastern larch beetle, Dendroctonus simplex, using bacterial 16S rRNA gene pyrosequencing. The ecto- and endomicrobiome and the subcortical galleries were investigated. Several bacterial genera were identified, among which Pseudomonas, Serratia and Yersinia are associated with the surface of the beetle cuticle, and genera belonging to Enterobacteriaceae and Gammaproteobacteria with the interior of the insect body. The index of dissimilarity indicates that the bacterial microbiome associated with each environment constitutes exclusive groups. These results suggest the presence of distinct bacterial microbiota on the surface of the cuticle and the interior of D. simplex body. Additionally, the bacterial diversity identified in the galleries is substantially different from the ectomicrobiome, which could indicate a selection by the insect. This study reports for the first time the identification of the eastern larch beetle microbiome.

  17. Dung beetle assemblages (Coleoptera, Scarabaeinae in Atlantic forest fragments in southern Brazil

    Directory of Open Access Journals (Sweden)

    Renata C. Campos

    2013-03-01

    Full Text Available Dung beetle assemblages (Coleoptera, Scarabaeinae in Atlantic forest fragments in southern Brazil. The beetles of the subfamily Scarabaeinae are important organisms that participate in the cycle of decomposition, especially in tropical ecosystems. Most species feed on feces (dung or carcasses (carrion and are associated with animals that produce their food resources. Dung beetles are divided into three functional groups: rollers, tunnelers and dwellers. This present work aims to study the diversity of dung beetle communities inhabiting fragments of the Atlantic Forest, with the purpose of describing the ecology of the species in southern Brazil. This study was conducted in the region of Campos Novos, in Santa Catarina, where twenty sites of Atlantic forest fragments were sampled. Samplings of dung beetles were conducted using 200 pitfall traps, of which 100 were baited with human feces and another 100 with carrion. Size and environmental complexity were also measured for each forest fragment. A total of 1,502 dung beetles, belonging to six tribes, 12 genera and 33 species, were collected. Results of the Levin's index of niche breadth indicated that 11 species were categorized as being coprophagous, ten as generalists, and two as necrophagous. Most species are tunnelers (19, nine of rollers and four of dwellers. The great diversity of Scarabaeinae in the region of Campos Novos, including several rare species, adds important data to the Scarabaeinae fauna in the central-western region of Santa Catarina. It may also help choosing priority areas for conservation in the region, where human impact, with large areas of monoculture, increasingly threatens the fragments of Mixed Ombrophilous Forest.

  18. Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi

    Science.gov (United States)

    Richard W. Hofstetter; John Moser; Stacy Blomquist

    2014-01-01

    The role that mites play in many ecosystems is often overlooked or ignored. Within bark beetle habitats, more than 100 mite species exist and they have important impacts on community dynamics, ecosystem processes, and biodiversity of bark beetle systems. Mites use bark beetles to access and disperse among beetle-infested trees and the associations may range from...

  19. Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels.

    Science.gov (United States)

    Dill-McFarland, Kimberly A; Neil, Katie L; Zeng, Austin; Sprenger, Ryan J; Kurtz, Courtney C; Suen, Garret; Carey, Hannah V

    2014-09-01

    The gut microbiota plays important roles in animal nutrition and health. This relationship is particularly dynamic in hibernating mammals where fasting drives the gut community to rely on host-derived nutrients instead of exogenous substrates. We used 16S rRNA pyrosequencing and caecal tissue protein analysis to investigate the effects of hibernation on the mucosa-associated bacterial microbiota and host responses in 13-lined ground squirrels. The mucosal microbiota was less diverse in winter hibernators than in actively feeding spring and summer squirrels. UniFrac analysis revealed distinct summer and late winter microbiota clusters, while spring and early winter clusters overlapped slightly, consistent with their transitional structures. Communities in all seasons were dominated by Firmicutes and Bacteroidetes, with lesser contributions from Proteobacteria, Verrucomicrobia, Tenericutes and Actinobacteria. Hibernators had lower relative abundances of Firmicutes, which include genera that prefer plant polysaccharides, and higher abundances of Bacteroidetes and Verrucomicrobia, some of which can survive solely on host-derived mucins. A core mucosal assemblage of nine operational taxonomic units shared among all individuals was identified with an average total sequence abundance of 60.2%. This core community, together with moderate shifts in specific taxa, indicates that the mucosal microbiota remains relatively stable over the annual cycle yet responds to substrate changes while potentially serving as a pool for 'seeding' the microbiota once exogenous substrates return in spring. Relative to summer, hibernation reduced caecal crypt length and increased MUC2 expression in early winter and spring. Hibernation also decreased caecal TLR4 and increased TLR5 expression, suggesting a protective response that minimizes inflammation.

  20. Necrophagous beetles associated with carcasses in a semi-arid environment in northeastern Brazil: implications for forensic entomology.

    Science.gov (United States)

    Mayer, Ana C G; Vasconcelos, Simão D

    2013-03-10

    Data on the ecology and bionomics of necrophagous beetles are scarce in tropical countries despite their relevance in forensic investigations. We performed a survey on the diversity and temporal pattern of colonization of beetles on pig carcasses in a fragment of dry forest in northeastern Brazil. We collected 1550 adults of diverse feeding habits from 12 families, of which 96% had necrophagous and/or copro-necrophagous habits and belonged to four families: Dermestidae, Scarabaeidae, Cleridae and Trogidae. Three species, Dermestes maculatus, Necrobia rufipes and Omorgus suberosus are reported for the first time with an expanded geographical distribution that includes the semi-arid region in Brazil. Adult beetles were collected as early as 24h after death. One endemic species, Deltochilum verruciferum, stood out in terms of numerical dominance and temporal occurrence during different stages of decomposition. Its intimate association with carrion emphasizes their potential role in forensic entomology in the region.

  1. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.; Kilgo, J., C.; Moorman, C., E.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gaps than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.

  2. Associational Patterns of Scavenger Beetles to Decomposition Stages.

    Science.gov (United States)

    Zanetti, Noelia I; Visciarelli, Elena C; Centeno, Nestor D

    2015-07-01

    Beetles associated with carrion play an important role in recycling organic matter in an ecosystem. Four experiments on decomposition, one per season, were conducted in a semirural area in Bahía Blanca, Argentina. Melyridae are reported for the first time of forensic interest. Apart from adults and larvae of Scarabaeidae, thirteen species and two genera of other coleopteran families are new forensic records in Argentina. Diversity, abundance, and species composition of beetles showed differences between stages and seasons. Our results differed from other studies conducted in temperate regions. Four guilds and succession patterns were established in relation to decomposition stages and seasons. Dermestidae (necrophages) predominated in winter during the decomposition process; Staphylinidae (necrophiles) in Fresh and Bloat stages during spring, summer, and autumn; and Histeridae (necrophiles) and Cleridae (omnivores) in the following stages during those seasons. Finally, coleopteran activity, diversity and abundance, and decomposition rate change with biogeoclimatic characteristics, which is of significance in forensics. © 2015 American Academy of Forensic Sciences.

  3. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape?

    Science.gov (United States)

    Grimbacher, Peter S; Stork, Nigel E

    2009-09-01

    There are surprisingly few studies documenting effects of tropical cyclones (including hurricanes and typhoons) on rainforest animals, and especially insects, considering that many tropical forests are frequently affected by cyclonic disturbance. Consequently, we sampled a beetle assemblage inhabiting 18 upland rainforest sites in a fragmented landscape in north-eastern Queensland, Australia, using a standardised sampling protocol in 2002 and again 12 months after the passage of Severe Tropical Cyclone Larry (March 2006). The spatial configuration of sites allowed us to test if the effects of a cyclone and those from fragmentation interact. From all insect samples we extracted 12,568 beetles of 382 species from ten families. Beetle species composition was significantly different pre-and post-cyclone although the magnitude of faunal change was not large with 205 species, representing 96% of all individuals, present in both sampling events. Sites with the greatest changes to structure had the greatest changes in species composition. At the site level, increases in woody debris and wood-feeding beetle (Scolytinae) counts were significantly correlated but changes in the percent of ground vegetation were not mirrored by changes in the abundance of foliage-feeding beetles (Chrysomelidae). The overall direction of beetle assemblage change was consistent with increasing aridity, presumably caused by the loss of canopy cover. Sites with the greatest canopy loss had the strongest changes in the proportion of species previously identified in the pre-cyclone study as preferring arid or moist rainforest environments. The magnitude of fragmentation effects was virtually unaltered by the passage of Cyclone Larry. We postulate that in the short-term the effects of cyclonic disturbance and forest fragmentation both reduce the extent of moist, interior habitat.

  4. Walking to survive : searching feeding and egg production of carabid beetle Pterostichus coerulescens L. (= Poecilus versicolor Sturm)

    NARCIS (Netherlands)

    Mols, P.J.M.

    1993-01-01

    This study concerns the prey-searching and feeding behaviour of the polyphagous groundbeetle Pterostichus coerulescens L. ( = Poecilus versicolor Sturm), a common species on sandy soils. This ground beetle rarely flies, thus preysearching behaviour

  5. Next generation sequencing based transcriptome analysis of septic-injury responsive genes in the beetle Tribolium castaneum.

    Science.gov (United States)

    Altincicek, Boran; Elashry, Abdelnaser; Guz, Nurper; Grundler, Florian M W; Vilcinskas, Andreas; Dehne, Heinz-Wilhelm

    2013-01-01

    Beetles (Coleoptera) are the most diverse animal group on earth and interact with numerous symbiotic or pathogenic microbes in their environments. The red flour beetle Tribolium castaneum is a genetically tractable model beetle species and its whole genome sequence has recently been determined. To advance our understanding of the molecular basis of beetle immunity here we analyzed the whole transcriptome of T. castaneum by high-throughput next generation sequencing technology. Here, we demonstrate that the Illumina/Solexa sequencing approach of cDNA samples from T. castaneum including over 9.7 million reads with 72 base pairs (bp) length (approximately 700 million bp sequence information with about 30× transcriptome coverage) confirms the expression of most predicted genes and enabled subsequent qualitative and quantitative transcriptome analysis. This approach recapitulates our recent quantitative real-time PCR studies of immune-challenged and naïve T. castaneum beetles, validating our approach. Furthermore, this sequencing analysis resulted in the identification of 73 differentially expressed genes upon immune-challenge with statistical significance by comparing expression data to calculated values derived by fitting to generalized linear models. We identified up regulation of diverse immune-related genes (e.g. Toll receptor, serine proteinases, DOPA decarboxylase and thaumatin) and of numerous genes encoding proteins with yet unknown functions. Of note, septic-injury resulted also in the elevated expression of genes encoding heat-shock proteins or cytochrome P450s supporting the view that there is crosstalk between immune and stress responses in T. castaneum. The present study provides a first comprehensive overview of septic-injury responsive genes in T. castaneum beetles. Identified genes advance our understanding of T. castaneum specific gene expression alteration upon immune-challenge in particular and may help to understand beetle immunity in general.

  6. Diversidade e distribuição espacial de artrópodes associados ao solo em agroecossistemas Diversity and spatial distribution of ground arthropods in agroecosystems

    Directory of Open Access Journals (Sweden)

    Francisco Jorge Cividanes

    2009-01-01

    Full Text Available O conhecimento da diversidade e distribuição de artrópodes associados ao solo contribui para o desenvolvimento de sistemas agrícolas sustentáveis. O presente estudo foi realizado em Jaboticabal (SP, durante o período de fevereiro a abril de 2004. O objetivo foi analisar a comunidade de Carabidae, Staphylinidae, Formicidae e Araneae através de índices faunísticos e determinar a distribuição espacial e a interação interespecífica de espécies predominantes em soja (Glycine max (L. Merr., milho (Zea mays L. e seringueira (Hevea brasiliensis Muell. Arg.. Os artrópodes foram amostrados com armadilhas de solo distribuídas a cada 10 m em dois transectos de 210 m de comprimento, que atravessaram o seringal e avançaram 60 m no interior das culturas. A fauna foi caracterizada pelos índices de diversidade de Shannon-Wiener, de equitabilidade e de similaridade de Morisita. As diferenças entre a ocorrência das espécies predominantes nos hábitats foram determinadas por análise de variância e a interação interespecífica por correlação de Pearson. A soja e o milho cultivados em sistema de plantio direto propiciaram comunidades de carabídeos, formigas e aranhas mais bem estruturadas que o seringal. Entre as 88 espécies capturadas, 20 espécies foram predominantes cuja distribuição espacial mostrou que Odontocheila nodicornis (Dejean, Glenus chrysis Gravenhorst, Castianeira sp. e oito espécies de formigas foram mais abundantes no seringal em comparação às culturas de soja e do milho. A abundância dos carabídeos Calosoma granulatum Perty e O. nodicornis diminuiu conforme aumentou a densidade dos formicídeos Pheidole sp.1 e Odontomachus chelifer Latreille respectivamente.The knowledge of the diversity and distribution of ground arthropods contributes for the development of sustainable agricultural systems. This work was carried out at the Paulista State University, Jaboticabal campus, State of São Paulo, Brazil, during the

  7. Convergent Reduction of Ovariole Number Associated with Subterranean Life in Beetles

    Science.gov (United States)

    Faille, Arnaud; Pluot-Sigwalt, Dominique

    2015-01-01

    Background Some species of obligate cavernicolous beetles are known to possess a unique feature—a contraction of the larval cycle. In contrast to many other subterranean beetles, life-cycle contraction in Trechini ground beetles (Carabidae) is correlated with a reduction in the number of eggs and a drastic reduction in the number of ovarioles. This remarkable peculiarity has only been reported for a small number of closely related species. Results We give a description of the female internal reproductive system for six species of Trechini, including five subterranean species, with a particular focus on the western Pyrenean radiation of Aphaenops, a group for which nothing is known regarding the early life stages. We redescribe the internal female genitalia of A. crypticola Linder. Study of the ovarioles allowed us to infer the postembryonic development of the larvae for each species examined. We then used a phylogenetic framework to recognize two independent reductions in the number of ovarioles in the Pyrenean lineage. We discuss the multiple convergent evolutions in ovariole number and the potential link between a reduction of ovariole number and troglobiomorphism in a phylogenetic context. Conclusions There is an extreme reduction in ovariole number and size within the species studied; the eggs produced by small ovarioles have a remarkably large size. A reduction to one ovariole has occurred independently at least twice in this subterranean group. A reduction in the number of ovarioles in ground beetles is one of the striking consequences of subterranean specialization and it is correlated with another remarkable adaptation of subterranean beetles, a reduction in the number of larval instars. PMID:26151557

  8. Determining the vulnerability of Mexican pine forests to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    Y. Salinas-Moreno; A. Ager; C.F. Vargas; J.L. Hayes; G. Zuniga

    2010-01-01

    Bark beetles of the genus Dendroctonus are natural inhabitants of forests; under particular conditions some species of this genus can cause large-scale tree mortality. However, only in recent decades has priority been given to the comprehensive study of these insects in Mexico. Mexico possesses high ecological diversity in Dendroctonus-...

  9. American burying beetle site records : Valentine NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is specific site records of American burying beetle on Valentine Nationl Wildlife Refuge to date. It includes a map of site location. A discussion...

  10. Polarisation vision: beetles see circularly polarised light.

    Science.gov (United States)

    Warrant, Eric J

    2010-07-27

    It has long been known that the iridescent cuticle of many scarab beetles reflects circularly polarised light. It now turns out that scarabs can also see this light, potentially using it as a covert visual signal.

  11. US Forest Service Western Bark Beetle Strategy

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting Western Bark Beetle Strategy (WBBS) activities reported through the U.S. Forest Service FACTS database. Activities include...

  12. APPROACHES TO ENGINEER STABILITY OF BEETLE LUCIFERASES

    Directory of Open Access Journals (Sweden)

    Mikhail I. Koksharov

    2012-09-01

    Full Text Available Luciferase enzymes from fireflies and other beetles have many important applications in molecular biology, biotechnology, analytical chemistry and several other areas. Many novel beetle luciferases with promising properties have been reported in the recent years. However, actual and potential applications of wild-type beetle luciferases are often limited by insufficient stability or decrease in activity of the enzyme at the conditions of a particular assay. Various examples of genetic engineering of the enhanced beetle luciferases have been reported that successfully solve or alleviate many of these limitations. This mini-review summarizes the recent advances in development of mutant luciferases with improved stability and activity characteristics. It discusses the common limitations of wild-type luciferases in different applications and presents the efficient approaches that can be used to address these problems.

  13. Approaches to engineer stability of beetle luciferases

    Directory of Open Access Journals (Sweden)

    Mikhail Koksharov

    2012-09-01

    Full Text Available Luciferase enzymes from fireflies and other beetles have many important applications in molecular biology, biotechnology, analytical chemistry and several other areas. Many novel beetle luciferases with promising properties have been reported in the recent years. However, actual and potential applications of wild-type beetle luciferases are often limited by insufficient stability or decrease in activity of the enzyme at the conditions of a particular assay. Various examples of genetic engineering of the enhanced beetle luciferases have been reported that successfully solve or alleviate many of these limitations. This mini-review summarizes the recent advances in development of mutant luciferases with improved stability and activity characteristics. It discusses the common limitations of wild-type luciferases in different applications and presents the efficient approaches that can be used to address these problems.

  14. EST and microarray analysis of horn development in Onthophagus beetles

    Directory of Open Access Journals (Sweden)

    Tang Zuojian

    2009-10-01

    Full Text Available Abstract Background The origin of novel traits and their subsequent diversification represent central themes in evo-devo and evolutionary ecology. Here we explore the genetic and genomic basis of a class of traits that is both novel and highly diverse, in a group of organisms that is ecologically complex and experimentally tractable: horned beetles. Results We developed two high quality, normalized cDNA libraries for larval and pupal Onthophagus taurus and sequenced 3,488 ESTs that assembled into 451 contigs and 2,330 singletons. We present the annotation and a comparative analysis of the conservation of the sequences. Microarrays developed from the combined libraries were then used to contrast the transcriptome of developing primordia of head horns, prothoracic horns, and legs. Our experiments identify a first comprehensive list of candidate genes for the evolution and diversification of beetle horns. We find that developing horns and legs show many similarities as well as important differences in their transcription profiles, suggesting that the origin of horns was mediated partly, but not entirely, by the recruitment of genes involved in the formation of more traditional appendages such as legs. Furthermore, we find that horns developing from the head and prothorax differ in their transcription profiles to a degree that suggests that head and prothoracic horns are not serial homologs, but instead may have evolved independently from each other. Conclusion We have laid the foundation for a systematic analysis of the genetic basis of horned beetle development and diversification with the potential to contribute significantly to several major frontiers in evolutionary developmental biology.

  15. Pupal remodeling and the evolution and development of alternative male morphologies in horned beetles

    Directory of Open Access Journals (Sweden)

    Moczek Armin P

    2007-08-01

    Full Text Available Abstract Background How novel morphological traits originate and diversify represents a major frontier in evolutionary biology. Horned beetles are emerging as an increasingly popular model system to explore the genetic, developmental, and ecological mechanisms, as well as the interplay between them, in the genesis of novelty and diversity. The horns of beetles originate during a rapid growth phase during the prepupal stage of larval development. Differential growth during this period is either implicitly or explicitly assumed to be the sole mechanism underlying differences in horn expression within and between species. Here I focus on male horn dimorphisms, a phenomenon at the center of many studies in behavioral ecology and evolutionary development, and quantify the relative contributions of a previously ignored developmental process, pupal remodeling, to the expression of male dimorphism in three horned beetle species. Results Prepupal growth is not the only determinant of differences in male horn expression. Instead, following their initial prepupal growth phase, beetles may be extensively remodeled during the subsequent pupal stage in a sex and size-dependent manner. Specifically, male dimorphism in the three Onthophagus species studied here was shaped not at all, partly or entirely by such pupal remodeling rather than differential growth, suggesting that pupal remodeling is phylogenetically widespread, evolutionarily labile, and developmentally flexible. Conclusion This study is the first to document that male dimorphism in horned beetles is the product of two developmentaly dissociated processes: prepupal growth and pupal remodeling. More generally, adult morphology alone appears to provide few clues, if any, as to the relative contributions of both processes to the expression of alternative male morphs, underscoring the importance of developmental studies in efforts aimed at understanding the evolution of adult diversity patterns.

  16. Longhorned beetles (Coleoptera: Cerambycidae from Chhattisgarh, India

    Directory of Open Access Journals (Sweden)

    A. Majumder

    2014-01-01

    Full Text Available An inventory of longhorned beetles of Chhattisgarh state has been attempted for the first time resulting in the enumeration of 10 species belonging to 8 genera and 6 tribes under 2 subfamilies. The descriptions of these species and distribution in Chhattisgarh and India are provided. Being economically important, the present account on longhorned beetles is important as it might help the state forest authorities to adopt control measures to minimize damage caused by these insects.

  17. New longhorn beetles (Coleoptera: Cerambycidae from Serbia

    Directory of Open Access Journals (Sweden)

    Pil Nataša

    2005-01-01

    Full Text Available The most recent data (Ilić, 2005 indicate the presence of 245 longhorn beetle species (Coleoptera: Cerambycidae in Serbia. Not included in the mentioned publication, the following five species should be added to the list: Cortodera discolor Fairmaire, 1866; Stenopterus similatus Holzschuh 1979; Chlorophorus aegyptiacus (Fabricius, 1775; Agapanthia osmanlis (Reiche, 1858; Agapanthia maculicornis (Gyllenhal, 1817 (Pil and Stojanović in press. A total number of 250 species are presently known for the Serbian longhorn beetle fauna.

  18. The diversity and biogeography of the Coleoptera of Churchill: insights from DNA barcoding

    National Research Council Canada - National Science Library

    Woodcock, Thomas S; Boyle, Elizabeth E; Roughley, Robert E; Kevan, Peter G; Labbee, Renee N; Smith, Andrew B T; Goulet, Henri; Steinke, Dirk; Adamowicz, Sarah J

    2013-01-01

    .... We conducted an intensive biodiversity survey from 2006-2010 at Churchill, Manitoba, Canada in order to quantify beetle species diversity in this model region, and to prepare a barcode library...

  19. Predisposition to bark beetle attack by root herbivores and associated pathogens: Roles in forest decline, gap formation, and persistence of endemic bark beetle populations

    DEFF Research Database (Denmark)

    Aukema, Brian H.; Zhu, Jun; Møller, Jesper

    2010-01-01

    , however, due to the requirement of long-term monitoring and high degrees of spatial and temporal covariance. We censused more than 2700 trees annually over 7 years, and at the end of 17 years, in a mature red pine plantation. Trees were measured for the presence of bark beetles and wood borers that breed...... within the primary stem, root weevils that breed in root collars, and bark beetles that breed in basal stems. We quantify the sequence of events that drive this decline syndrome, with the primary emergent pattern being an interaction between below- and above-ground herbivores and their fungal symbionts....... Almost all trees colonized by Ips were subsequently colonized by wood borers, likely a source of negative feedback. We discuss implications to our overall understanding of cross-scale interactions, between-guild interactions, forest declines, and eruptive thresholds....

  20. Specialized adaptations for springtail predation in Mesozoic beetles.

    Science.gov (United States)

    Yin, Zi-Wei; Cai, Chen-Yang; Huang, Di-Ying; Li, Li-Zhen

    2017-12-01

    Insects exhibit a variety of morphological specializations specific to particular behaviors, and these permit the reconstruction of palaeobiological traits. Despite the critical importance of predator-prey strategies in insect evolution, the appearance of particular aspects of predation are often difficult to determine from the fossil record of hexapods. Here we report the discovery of highly specialized, mid-Cretaceous ant-like stone beetles (Staphylinidae: Scydmaeninae) displaying morphological modifications unknown among living scydmaenids and associated with predation on springtails (Collembola), a widespread and abundant group of significantly greater geological age. Cascomastigus monstrabilis gen. et sp. nov. exhibits an extremely large body size, elongate clubbed maxillary palpi, toothed mandibles, and more importantly, slender and highly modified antennae that functioned as an antennal setal trap. Such an antennal modification is analogous to that of the modern ground beetle genus Loricera (Carabidae: Loricerinae), a group possessing a specialized antennal setal trap exclusively for the capture of springtails. The presence of an identical antennal setal trap in C. monstrabilis demonstrates a unique and dramatic form of obligate predation among the late Mesozoic insects.

  1. Hypogean carabid beetles as indicators of global warming?

    Science.gov (United States)

    Brandmayr, Pietro; Giorgi, Filippo; Casale, Achille; Colombetta, Giorgio; Mariotti, Laura; Vigna Taglianti, Augusto; Weber, Friedrich; Pizzolotto, Roberto

    2013-12-01

    Climate change has been shown to impact the geographical and altitudinal distribution of animals and plants, and to especially affect range-restricted polar and mountaintop species. However, little is known about the impact on the relict lineages of cave animals. Ground beetles (carabids) show a wide variety of evolutionary pathways, from soil-surface (epigean) predatory habits to life in caves and in other subterranean (hypogean) compartments. We reconstructed an unprecedented set of species/time accumulation curves of the largest carabid genera in Europe, selected by their degree of ‘underground’ adaptation, from true epigean predators to eyeless highly specialized hypogean beetles. The data show that in recent periods an unexpectedly large number of new cave species were found lying in well established European hotspots; the first peak of new species, especially in the most evolved underground taxa, occurred in the 1920-30s and a second burst after the 70s. Temperature data show large warming rates in both periods, suggesting that the temperature increase in the past century might have induced cave species to expand their habitats into large well-aired cavities and superficial underground compartments, where they can be easily sampled. An alternative hypothesis, based on increased sampling intensity, is less supported by available datasets.

  2. Malpighian tubule development in the red flour beetle (Tribolium castaneum).

    Science.gov (United States)

    King, Benedict; Denholm, Barry

    2014-11-01

    Malpighian tubules (MpTs) are the major organ for excretion and osmoregulation in most insects. MpT development is characterised for Drosophila melanogaster, but not other species. We therefore do not know the extent to which the MpT developmental programme is conserved across insects. To redress this we provide a comprehensive description of MpT development in the beetle Tribolium castaneum (Coleoptera), a species separated from Drosophila by >315 million years. We identify similarities with Drosophila MpT development including: 1) the onset of morphological development, beginning when tubules bud from the gut and proliferate to increase organ size. 2) the tubule is shaped by convergent-extension movements and oriented cell divisions. 3) differentiated tip cells activate EGF-signalling in distal MpT cells through the ligand Spitz. 4) MpTs contain two main cell types - principal and stellate cells, differing in morphology and gene expression. We also describe development of the beetle cryptonephridial system, an adaptation for water conservation, which represents a major modification of the MpT ground plan characterised by intimate association between MpTs and rectum. This work establishes a new model to compare MpT development across insects, and provides a framework to help understand how an evolutionary novelty - the cryptonephridial system - arose during organ evolution.

  3. [Habitat heterogeneity, richness and structure of assemblages of dung beetles (Scarabaeidae: Scarabaeinae) in areas of cerrado in the Chapada dos Parecis, Mato Grosso state, Brazil].

    Science.gov (United States)

    Silva, Ricardo J da; Diniz, Soraia; Vaz-de-Mello, Fernando Z

    2010-01-01

    Ecological theory of habitat heterogeneity and limited niche-similarity assumes that more heterogeneous environments provide a greater amount and diversity of resources than simple environments, resulting in a greater diversity of species. This study aimed to evaluate the effect of the habitat heterogeneity on the richness of dung beetles and to examine the spatial patterns of assemblage structure in relation to patterns of habitat heterogeneity. Dung beetles were collected using pitfall traps without bait in 30 points distributed in an area of cerrado sensu lato, in the region of Tangará da Serra, MT, Brazil, including areas of cerrado sensu stricto, campo sujo, cerradão and gallery forest. A total of 1,291 dung beetles were collected, distributed in 16 genera and 29 species. Overall habitat heterogeneity exerted a negative effect on patterns of dung beetles richness. Higher levels of species richness were observed in areas of cerrado campo sujo, while the areas of gallery forest were the most species poor. Regarding assembly structure, it was found that the dung beetles were separated into two major groups, one formed by the presence of specialized species in forest areas and other composed of species that occurred predominantly in cerrado. In conclusion, it was found that habitat complexity influenced the distribution of dung beetles, but the level of turnover in species composition along the heterogeneity gradient was relatively weak.

  4. Dung beetles (Scarabaeidae: Scarabeinae from the Reserva Nacional Tambopata, Madre de Dios, Peru

    Directory of Open Access Journals (Sweden)

    Luis Figueroa

    2011-08-01

    Full Text Available This study reports the species of Scarabaeinae (Coleoptera: Scarabaeidae collected in Tambopata National Reserve in 2009. A total of 38 species and 874 individuals were collected. The tribe Canthonini showed the highest diversity and abundance. Coprophagy is clearly preferred over necrophagy by the dung beetle fauna in the area. A comparison of the species collected during the rainy and dry seasons is presented.

  5. Dung-beetles (Coleoptera: Scarabeidae) from the Zona Protectora Las Tablas, Talamanca, Costa Rica

    OpenAIRE

    Mata-Lorenzen, J.; González-Maya, J. F.

    2008-01-01

    Dung-beetle species are considered an important focal indicator group in tropical forests. During 2007,eighteen traps were set in two permanent biodiversity plots during one week surveys in Las Tablas Protected Zonewithin La Amistad Biosphere Reserve. The main purpose of this study was to determine the group composition anddiversity as the basis for permanent monitoring and to measure potential impacts of land use change and climate changeon mountain diversity. Pitfall traps were placed rando...

  6. Diversity and stability of arthropod community in peach orchard under effects of ground cover vegetation%桃园生草对桃树节肢动物群落多样性与稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    蒋杰贤; 万年峰; 季香云; 淡家贵

    2011-01-01

    A comparative study was conducted on the arthropod community in peach orchards with and without ground cover vegetation. In the orchard with ground cover vegetation, the individuals of beneficial, neutral, and phytophagous arthropods were 1. 48, 1. 84 and 0. 64 times of those in the orchard without ground cover vegetation, respectively, but the total number of arthropods had no significant difference with that in the orchard without ground cover vegetation. The species richness, Shannon' s diversity, and Pielou' s evenness index of the arthropods in the orchard with ground cov-er vegetation were 83. 733±4. 932, 4. 966±0. 110, and 0. 795±0. 014, respectively, being signifi-cantly higher than those in the orchard without ground cover vegetation, whereas the Berger-Parker' s dominance index was 0. 135±0. 012, being significantly lower than that (0. 184±0. 018) in the orchard without ground cover vegetation. There were no significant differences in the stability indices S/N and Sd/Sp between the two orchards, but the Nn/Np, Nd/Np, and Sn/Sp in the orchard with ground cover vegetation were 0. 883±0. 123. 1714±0. 683, and 0. 781 ±0. 040, respectively, being significantly higher than those in the orchard without ground cover vegetation. Pearson' s cor-relation analysis indicated that in the orchard with ground cover vegetation, the Shannon' s diversity index was significantly negatively correlated with Nd/Np, Sd/Sp, and S/N but had no significant correlations with Nn/Np and Sn/Sp, whereas in the orchard without ground cover vegetation, the di-versity index was significantly positively correlated with Nn/Np and Nd/Np and had no significant correlations with Sd/Sp ,Sn/Sp, and S/N.%对种植白三叶草的桃园(生草桃园)和非生草桃园的桃树节肢动物群落进行分析比较.结果表明:生草桃园桃树天敌、中性类群和植食类群数量分别是非生草桃园的1.48、1.84和0.64倍,而节肢动物群落个体总数无显著差异;与非

  7. Atomic force microscopy study of nano-physiological response of ladybird beetles to photostimuli.

    Directory of Open Access Journals (Sweden)

    Natalia V Guz

    Full Text Available BACKGROUND: Insects are of interest not only as the most numerous and diverse group of animals but also as highly efficient bio-machines varying greatly in size. They are the main human competitors for crop, can transmit various diseases, etc. However, little study of insects with modern nanotechnology tools has been done. METHODOLOGY/PRINCIPAL FINDINGS: Here we applied an atomic force microscopy (AFM method to study stimulation of ladybird beetles with light. This method allows for measuring of the internal physiological responses of insects by recording surface oscillations in different parts of the insect at sub-nanometer amplitude level and sub-millisecond time. Specifically, we studied the sensitivity of ladybird beetles to light of different wavelengths. We demonstrated previously unknown blindness of ladybird beetles to emerald color (∼500nm light, while being able to see UV-blue and green light. Furthermore, we showed how one could study the speed of the beetle adaptation to repetitive flashing light and its relaxation back to the initial stage. CONCLUSIONS: The results show the potential of the method in studying insects. We see this research as a part of what might be a new emerging area of "nanophysiology" of insects.

  8. New Raffaelea species (Ophiostomatales) from the USA and Taiwan associated with ambrosia beetles and plant hosts.

    Science.gov (United States)

    Simmons, D Rabern; de Beer, Z Wilhelm; Huang, Yin-Tse; Bateman, Craig; Campbell, Alina S; Dreaden, Tyler J; Li, You; Ploetz, Randy C; Black, Adam; Li, Hou-Feng; Chen, Chi-Yu; Wingfield, Michael J; Hulcr, Jiri

    2016-12-01

    Raffaelea (Ophiostomatales) is a genus of more than 20 ophiostomatoid fungi commonly occurring in symbioses with wood-boring ambrosia beetles. We examined ambrosia beetles and plant hosts in the USA and Taiwan for the presence of these mycosymbionts and found 22 isolates representing known and undescribed lineages in Raffaelea. From 28S rDNA and β-tubulin sequences, we generated a molecular phylogeny of Ophiostomatales and observed morphological features of seven cultures representing undescribed lineages in Raffaelea s. lat. From these analyses, we describe five new species in Raffaelea s. lat.: R. aguacate, R. campbellii, R. crossotarsa, R. cyclorhipidia, and R. xyleborina spp. nov. Our analyses also identified two plant-pathogenic species of Raffaelea associated with previously undocumented beetle hosts: (1) R. quercivora, the causative agent of Japanese oak wilt, from Cyclorhipidion ohnoi and Crossotarsus emancipatus in Taiwan, and (2) R. lauricola, the pathogen responsible for laurel wilt, from Ambrosiodmus lecontei in Florida. The results of this study show that Raffaelea and associated ophiostomatoid fungi have been poorly sampled and that future investigations on ambrosia beetle mycosymbionts should reveal a substantially increased diversity.

  9. Mechanical and Frictional Properties of the Elytra of Five Species of Beetles

    Institute of Scientific and Technical Information of China (English)

    Min Yu; Ilja Hermann; Zhendong Dai; Norm Gitis

    2013-01-01

    The mechanical and frictional properties of different parts of the elytra of five species of beetle were measured using a nano-indenter and a micro-tribometer.The surface microstructures of the elytra were observed by optical microscopy and scanning white light interferometry.The surface microstructures of the elytra of all five species are characterized as non-smooth concavo-convex although specific morphological differences demonstrate the diversity of beetle elytra.Young's modulus and the hardness of the elytral materials vary with the species of beetle and the sampling locations,ranging from 1.80 GPa to 12.44 GPa,and from 0.24 GPa to 0.75 GPa,respectively.In general,both the Young's modulus and the hardness are lower in samples taken from the center of the elytra than those taken from other regions,which reflects the functional heterogeneity of biological material in the process of biological evolution.The elytra have very low friction coefficient,ranging from 0.037 to 0.079,which is related to their composition and morphology.Our measurements indicate that the surface texture and its microstructural size of beetle elytra contribute to anti-friction effects.

  10. Atomic force microscopy study of nano-physiological response of ladybird beetles to photostimuli.

    Science.gov (United States)

    Guz, Natalia V; Dokukin, Maxim E; Sokolov, Igor

    2010-09-22

    Insects are of interest not only as the most numerous and diverse group of animals but also as highly efficient bio-machines varying greatly in size. They are the main human competitors for crop, can transmit various diseases, etc. However, little study of insects with modern nanotechnology tools has been done. Here we applied an atomic force microscopy (AFM) method to study stimulation of ladybird beetles with light. This method allows for measuring of the internal physiological responses of insects by recording surface oscillations in different parts of the insect at sub-nanometer amplitude level and sub-millisecond time. Specifically, we studied the sensitivity of ladybird beetles to light of different wavelengths. We demonstrated previously unknown blindness of ladybird beetles to emerald color (∼500nm) light, while being able to see UV-blue and green light. Furthermore, we showed how one could study the speed of the beetle adaptation to repetitive flashing light and its relaxation back to the initial stage. The results show the potential of the method in studying insects. We see this research as a part of what might be a new emerging area of "nanophysiology" of insects.

  11. Biological factors contributing to bark and ambrosia beetle species diversification.

    Science.gov (United States)

    Gohli, Jostein; Kirkendall, Lawrence R; Smith, Sarah M; Cognato, Anthony I; Hulcr, Jiri; Jordal, Bjarte H

    2017-05-01

    The study of species diversification can identify the processes that shape patterns of species richness across the tree of life. Here, we perform comparative analyses of species diversification using a large dataset of bark beetles. Three examined covariates-permanent inbreeding (sibling mating), fungus farming, and major host type-represent a range of factors that may be important for speciation. We studied the association of these covariates with species diversification while controlling for evolutionary lag on adaptation. All three covariates were significantly associated with diversification, but fungus farming showed conflicting patterns between different analyses. Genera that exhibited interspecific variation in host type had higher rates of species diversification, which may suggest that host switching is a driver of species diversification or that certain host types or forest compositions facilitate colonization and thus allopatric speciation. Because permanent inbreeding is thought to facilitate dispersal, the positive association between permanent inbreeding and diversification rates suggests that dispersal ability may contribute to species richness. Bark beetles are ecologically unique; however, our results indicate that their impressive species diversity is largely driven by mechanisms shown to be important for many organism groups. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Effects of nitrogen application on beetle communities in tea plantations

    Institute of Scientific and Technical Information of China (English)

    Shao-Bo Chen; Zhi-Juan Wei; Zhao-Hua Zeng; Li-Lin Chen; Hui-Tao Chen; Min-Sheng You

    2009-01-01

    In contrast to grassland and forest ecosystems, little is known about insect response to nitrogen deposition in agricultural ecosystems. This study was carried out to investigate the effects of short-term (1-2 years) nitrogen application (0, 172.5, 345.0, 690.0, families, 89 species of beetles, was obtained from a tea plantation in Wuyishan, China. Among them, herbivores, predators and detritivores had 52, 29, and eight species, respectively. Species richness, effective diversity and abundance (measured as the number of individuals and insect biomass) of the beetle community were not significantly related to the rate of nitrogen application. However, nitrogen application changed the species distribution and weakly increased the evenness of species distribution, while this did not significantly change the species evenness. Species richness and abundance of herbivores and predators were not significantly related to the rate of nitrogen application. However, there were some variations in trophic responses to nitrogen. Species richness and abundance of detritivores increased with increasing nitrogen application.

  13. Larval RNA interference in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Linz, David M; Clark-Hachtel, Courtney M; Borràs-Castells, Ferran; Tomoyasu, Yoshinori

    2014-10-13

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle's body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting.

  14. Saproxylic Beetle Assemblage Selection as Determining Factor of Species Distributional Patterns: Implications for Conservation.

    Science.gov (United States)

    García-López, A; Galante, E; Micó, E

    2016-01-01

    The knowledge of the distributional patterns of saproxylic beetles is essential for conservation biology due to the relevance of this fauna in the maintenance of ecological processes and the endangerment of species. The complex community of saproxylic beetles is shaped by different assemblages that are composed of species linked by the microhabitats they use. We evaluate how different the species distribution patterns that are obtained can be, depending on the analyzed assemblage and to what extent these can affect conservation decisions. Beetles were sampled using hollow emergence and window traps in three protected areas of the Iberian Peninsula. Species richness, composition, and diversity turnover were analyzed for each sampling method and showed high variation depending on the analyzed assemblage. Beta diversity was clearly higher among forests for the assemblage captured using window traps. This method collects flying insects from different tree microhabitats and its captures are influenced by the forest structuring. Within forests, the assemblages captured by hollow emergence traps, which collect the fauna linked to tree hollows, showed the largest turnover of species, as they are influenced by the characteristics of each cavity. Moreover, the selection of the forest showing the highest species richness strongly depended on the studied assemblage. This study demonstrates that differences in the studied assemblages (group of species co-occurring in the same habitat) can also lead to significant differences in the identified patterns of species distribution and diversity turnover. This fact will be necessary to take into consideration when making decisions about conservation and management.

  15. BeetleBase: the model organism database for Tribolium castaneum

    OpenAIRE

    Wang, Liangjiang; Wang, Suzhi; Li, Yonghua; Paradesi, Martin S. R.; Brown, Susan J

    2006-01-01

    BeetleBase () is an integrated resource for the Tribolium research community. The red flour beetle (Tribolium castaneum) is an important model organism for genetics, developmental biology, toxicology and comparative genomics, the genome of which has recently been sequenced. BeetleBase is constructed to integrate the genomic sequence data with information about genes, mutants, genetic markers, expressed sequence tags and publications. BeetleBase uses the Chado data model and software component...

  16. Aquatic beetle species and their distributions in Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ling; JIA Feng-long; Tursun Dilbar; ZHENG Zhe-min

    2009-01-01

    The species of aquatic beetles and their distributions in lotic and lentic habitats were investigated during July to August of 2005 and 2006 in Xinjiang Uygur Autonomous Region, China. A total of 66 species belonging to 7 beetle families (Dytiscidae, Gyrinidae, Haliplidae, Helophoridae, Noteridae, Hydraenidae, Hydrophilidae) are recorded, of which 16 are new records of aquatic beetles for China.

  17. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Science.gov (United States)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  18. Adhesive performance of the stick-capture apparatus of rove beetles of the genus Stenus (Coleoptera, Staphylinidae) toward various surfaces.

    Science.gov (United States)

    Koerner, Lars; Gorb, Stanislav N; Betz, Oliver

    2012-01-01

    Rove beetles of the genus Stenus possess a unique adhesive prey-capture apparatus that enables them to catch elusive prey such as springtails over a distance of several millimeters. The prey-capture device combines the hierarchically organized morphology of dry adhesive systems with the properties of wet ones, since an adhesive secretion is released into the contact zone. We hypothesize that this combination enables Stenus species successfully to capture prey possessing a wide range of surface structures and chemistries. We have investigated the influence of both surface energy and roughness of the substrate on the adhesive performance of the prey-capture apparatus in two Stenus species. Force transducers have been used to measure both the compressive and adhesive forces generated during the predatory strike of the beetles on (1) epoxy resin surfaces with defined roughness values (smooth versus rough with asperity diameters ranging from 0.3 to 12 μm) and (2) hydrophobic versus hydrophilic glass surfaces. Our experiments show that neither the surface roughness nor the surface energy significantly influences the attachment ability of the prey-capture apparatus. Thus, in contrast to the performance of locomotory adhesive systems in geckos, beetles, and flies, no critical surface roughness exists that might impede adhesion of the prey-capture apparatus of Stenus beetles. The prey-capture apparatus of Stenus beetles is therefore well adapted to adhere to the various unpredictable surfaces with diverse roughness and surface energy occurring in a wide range of potential prey.

  19. Extraordinary Adaptive Plasticity of Colorado Potato Beetle: “Ten-Striped Spearman” in the Era of Biotechnological Warfare

    Directory of Open Access Journals (Sweden)

    Aleksandar Cingel

    2016-09-01

    Full Text Available Expanding from remote areas of Mexico to a worldwide scale, the ten-striped insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say, has risen from being an innocuous beetle to a prominent global pest. A diverse life cycle, phenotypic plasticity, adaptation to adverse conditions, and capability to detoxify or tolerate toxins make this insect appear to be virtually “indestructible”. With increasing advances in molecular biology, tools of biotechnological warfare were deployed to combat CPB. In the last three decades, genetically modified potato has created a new challenge for the beetle. After reviewing hundreds of scientific papers dealing with CPB control, it became clear that even biotechnological means of control, if used alone, would not defeat the Colorado potato beetle. This control measure once again appears to be provoking the potato beetle to exhibit its remarkable adaptability. Nonetheless, the potential for adaptation to these techniques has increased our knowledge of this pest and thus opened possibilities for devising more sustainable CPB management programs.

  20. New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles

    Science.gov (United States)

    Bateman, Craig C.; Short, Dylan P. G.; Kasson, Matthew T.; Rabaglia, Robert J.; Hulcr, Jiri

    2015-01-01

    Ambrosia symbiosis is an obligate, farming-like mutualism between wood-boring beetles and fungi. It evolved at least 11 times and includes many notorious invasive pests. All ambrosia beetles studied to date cultivate ascomycotan fungi: early colonizers of recently killed trees with poor wood digestion. Beetles in the widespread genus Ambrosiodmus, however, colonize decayed wood. We characterized the mycosymbionts of three Ambrosiodmus species using quantitative culturing, high-throughput metabarcoding, and histology. We determined the fungi to be within the Polyporales, closely related to Flavodon flavus. Culture-independent sequencing of Ambrosiodmus minor mycangia revealed a single operational taxonomic unit identical to the sequences from the cultured Flavodon. Histological sectioning confirmed that Ambrosiodmus possessed preoral mycangia containing dimitic hyphae similar to cultured F. cf. flavus. The Ambrosiodmus-Flavodon symbiosis is unique in several aspects: it is the first reported association between an ambrosia beetle and a basidiomycotan fungus; the mycosymbiont grows as hyphae in the mycangia, not as budding pseudo-mycelium; and the mycosymbiont is a white-rot saprophyte rather than an early colonizer: a previously undocumented wood borer niche. Few fungi are capable of turning rotten wood into complete animal nutrition. Several thousand beetle-fungus symbioses remain unstudied and promise unknown and unexpected mycological diversity and enzymatic innovations. PMID:26367271

  1. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes?

    Science.gov (United States)

    Gray, Claudia L; Slade, Eleanor M; Mann, Darren J; Lewis, Owen T

    2014-04-01

    Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest-dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm-dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the

  2. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    Directory of Open Access Journals (Sweden)

    Simone D Langhans

    Full Text Available Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m, distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest, and time of the year (February-November across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy, to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  3. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    Science.gov (United States)

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  4. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae.

    Directory of Open Access Journals (Sweden)

    Ming Bai

    Full Text Available This study examines the evolution hindwing shape in Chinese dung beetle species using morphometric and phylogenetic analyses. Previous studies have analyzed the evolution of wing shape within a single or very few species, or by comparing only a few wing traits. No study has analyzed wing shape evolution of a large number of species, or quantitatively compared morphological variation of wings with proposed phylogenetic relationships. This study examines the morphological variation of hindwings based on 19 landmarks, 119 morphological characters, and 81 beetle species. Only one most parsimonious tree (MPT was found based on 119 wing and body characters. To better understand the possible role of the hindwing in the evolution of Scarabaeinae, additional phylogenetic analyses were proposed based on the only body features (106 characters, wing characters excluded. Two MPT were found based on 106 body characters, and five nodes were collapsed in a strict consensus. There was a strong correlation between the morphometric tree and all phylogenetic trees (r>0.5. Reconstructions of the ancestral wing forms suggest that Scarabaeinae hindwing morphology has not changed substantially over time, but the morphological changes that do occur are focused at the base of the wing. These results suggest that flight has been important since the origin of Scarabaeinae, and that variation in hindwing morphology has been limited by functional constraints. Comparison of metric disparity values and relative evolutionary sequences among Scarabaeinae tribes suggest that the primitive dung beetles had relatively diverse hindwing morphologies, while advanced dung beetles have relatively similar wing morphologies. The strong correlation between the morphometric tree and phylogenetic trees suggest that hindwing features reflect the evolution of whole body morphology and that wing characters are suitable for the phylogenetic analyses. By integrating morphometric and cladistic

  5. On the wettability diversity of C/SiC surface: Comparison of the ground C/SiC surface and ablated C/SiC surface from three aspects

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.

    2016-11-01

    The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process

  6. Small hive beetles survive in honeybee prisons by behavioural mimicry

    Science.gov (United States)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  7. A Culture Method for Darkling Beetles, Blapstinus spp. (Coleoptera:Tenebrionidae).

    Science.gov (United States)

    Zilkowski, Bruce W; Cossé, Allard A

    2015-06-01

    Darkling beetles, Blapstinus spp., have become a serious pest of Cucurbitaceae crops, especially in California. A culture method was sought to provide large numbers (>500) of adult beetles of known age and sex that could be used for laboratory testing when needed. A method previously developed for Alphitobius diaperinus (Panzer) using a diet of ground chick feed, with apple slices as a moisture source, was modified for use with Blapstinus spp. and then compared with the same method substituting apple slices with zucchini as the moisture source. Rearing boxes set up with apple slices produced significantly more pupae and adults than boxes containing zucchini slices. However, using either zucchini or apples as a moisture source yielded over the target of 500 adults per rearing box. A previous method designed to sex A. diaperinus based on the presence (♀) or absence (♂) of second valvifers in the pupal stage also proved to be effective for sexing the Blapstinus spp.

  8. The effect of fertilization on the below-ground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (Tsuga heterophylla).

    Science.gov (United States)

    Wright, Shannon H A; Berch, Shannon M; Berbee, Mary L

    2009-04-01

    Fertilization typically reduces ectomycorrhizal diversity shortly after its application but less is known about its longer-term influence on fungal species. Long-term effects are important in forests where fertilizer is rarely applied. We compared fungal species composition in western hemlock control plots with plots last fertilized 7 years ago with nitrogen (N) or nitrogen plus phosphorus (N + P). The N + P fertilization had a significant lingering effect, increasing the tree size and foliar P content of the western hemlocks. From ectomycorrhizal roots of 24-year-old trees from northern Vancouver Island, Canada, we identified fungi from 12 samples per treatment, by amplifying, cloning, and sequencing fungal ribosomal DNA fragments, placing sequences with 97% or more identity in the same operational taxonomic unit (OTU). Diversity was high across treatments; we detected 77 fungal OTUs, 52 from ectomycorrhizal genera, among 922 clone sequences. The five most frequent OTUs were similar in abundance across treatments. Only 19 OTUs matched any of the 197 previously reported ectomycorrhizal species of western hemlock. Species composition but not diversity in nitrogen plus phosphorus plots differed significantly from control or nitrogen plots. Two Cortinarius OTUs were indicator species for nitrogen plus phosphorus plots and presence of Cortinarius cinnamomeus was correlated with control or nitrogen plots. After 7 years, fertilization history had made no detectable difference in ectomycorrhizal fungal diversity, but long-lasting changes in environment resulting from fertilization had a lingering effect on fungal ectomycorrhizal species composition.

  9. Low doses of the common alpha-cypermethrin insecticide affect behavioural thermoregulation of the non-targeted beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae).

    Science.gov (United States)

    Merivee, Enno; Tooming, Ene; Must, Anne; Sibul, Ivar; Williams, Ingrid H

    2015-10-01

    Sub-lethal effects of pesticides on behavioural endpoints are poorly investigated in non-targeted beneficial carabids. Conspicuous changes in locomotor activity of carabids exposed to sub-lethal doses of neurotoxic insecticides suggest that many other behaviours of these insects might be severely injured as well. We hypothesize that behavioural thermoregulation of carabids may be affected by low doses of neurotoxic pyrethroid insecticide alpha-cypermethrin which may have direct deleterious consequences for the fitness and populations of the beetles in the field. Automated video tracking of the carabid beetle Platynus assimilis Paykull (Coleoptera: Carabidae) on an experimental thermal mosaic arena using EthoVision XT Version 9 software (Noldus Information Technology, Wageningen, The Netherlands) showed that brief exposure to alpha-cypermethrin at sub-lethal concentrations (0.1-10mgL(-1)) drastically reduces the ability of the beetles for behavioural thermoregulation. At noxious high temperature, a considerable number of the beetles died due to thermo-shock. Other intoxicated beetles that survived exposure to high temperature displayed behavioural abnormalities. During heating of the arena from 25 to 45°C, insecticide treated beetles showed a significant fall in tendency to hide in a cool shelter (20°C) and prolonged exposure to noxious high temperatures, accompanied by changes in locomotor activity. Next day after insecticide treatment the beetles recovered from behavioural abnormalities to a large extent but they still were considerably longer exposed to noxious high temperatures compared to the negative control beetles. Our results demonstrated that behavioural thermoregulation is a sensitive and important etho-toxicological biomarker in ground-dwelling carabids. Prolonged exposure to unfavourably high temperatures has an array of negative effects decreasing fitness and survival of these insects at elevated thermal conditions with deep temperature gradients

  10. Yeast Associated with the Ambrosia Beetle, Platypus koryoensis, the Pest of Oak Trees in Korea.

    Science.gov (United States)

    Yun, Yeo Hong; Suh, Dong Yeon; Yoo, Hun Dal; Oh, Man Hwan; Kim, Seong Hwan

    2015-12-01

    Oak tree death caused by symbiosis of an ambrosia beetle, Platypus koryoensis, and an ophiostomatoid filamentous fungus, Raffaelea quercus-mongolicae, has been a nationwide problem in Korea since 2004. In this study, we surveyed the yeast species associated with P. koryoensis to better understand the diversity of fungal associates of the beetle pest. In 2009, a total of 195 yeast isolates were sampled from larvae and adult beetles (female and male) of P. koryoensis in Cheonan, Goyang, and Paju; 8 species were identified by based on their morphological, biochemical and molecular analyses. Meyerozyma guilliermondii and Candida kashinagacola were found to be the two dominant species. Among the 8 species, Candida homilentoma was a newly recorded yeast species in Korea, and thus, its mycological characteristics were described. The P. koryoensis symbiont R. quercusmongolicae did not show extracelluar CM-cellulase, xylanase and avicelase activity that are responsible for degradation of wood structure; however, C. kashinagacola and M. guilliermondii did show the three extracellular enzymatic activities. Extracelluar CM-cellulase activity was also found in Ambrosiozyma sp., C. homilentoma, C. kashinagacola, and Candida sp. Extracelluar pectinase activity was detected in Ambrosiozyma sp., C. homilentoma, Candida sp., and M. guilliermondii. All the 8 yeast species displayed compatible relationships with R. quercus-mongolicae when they were co-cultivated on yeast extract-malt extract plates. Overall, our results demonstrated that P. koryoensis carries the yeast species as a symbiotic fungal associate. This is first report of yeast diversity associated with P. koryoensis.

  11. Dispersal of the spruce beetle, `dendroctonus rufipennis`, and the engraver beetle, `ips perturbatus`, in Alaska. Forest Service research paper

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.A.; Holsten, E.H.

    1997-09-01

    Mark-release-recapture experiments were performed with spruce beetles (Dendroctonus rufipennis (Kirby)) and Ips engraver beetles (Ips perturbatus (Eichhoff)) to determine distance and direction of dispersal. The recapture rate of beetles marked with fluorescent powder was extremely low. Most I. perturbatus beetles dispersed up to 30 m from their overwintering sites compared to most D. rufipennis, which dispersed from 90 to 300 m. Ips perturbatus beetles were caught up to 90 m and D. rufipennis up to 600 m from the point of release.

  12. The implications of habitat management on the population viability of the endangered Ohlone tiger beetle (Cicindela ohlone metapopulation.

    Directory of Open Access Journals (Sweden)

    Tara M Cornelisse

    Full Text Available Despite their role in providing ecosystem services, insects remain overlooked in conservation planning, and insect management approaches often lack a rigorous scientific basis. The endangered Ohlone tiger beetle (Cicindela ohlone occurs in a 24-km(2 area in Santa Cruz County, California. The once larger metapopulation now consists of subpopulations inhabiting five patches of coastal prairie where it depends on bare ground for mating, foraging, and oviposition. Human activities have eliminated natural disturbances and spread invasive grasses, reducing C. ohlone's bare-ground habitat. Management actions to restore critical beetle habitat consist of cattle and horse grazing, maintaining slow bicycle speeds on occupied public trails, and artificial creation of bare-ground plots. Recreational biking trails help maintain bare ground, but can cause beetle mortality if left unregulated. We tracked C. ohlone survivorship and estimated fecundity for three years. We then constructed a stage-structured population projection matrix model to estimate population viability among the five patches, and to evaluate the success of management interventions. We demonstrate that habitat creation, regulation of bicycle speed, and migration between patches increase C. ohlone survival and population viability. Our results can be directly applied to management actions for conservation outcomes that will reduce species extinction risk and promote recolonization of extirpated patches.

  13. The implications of habitat management on the population viability of the endangered Ohlone tiger beetle (Cicindela ohlone) metapopulation.

    Science.gov (United States)

    Cornelisse, Tara M; Bennett, Michelle K; Letourneau, Deborah K

    2013-01-01

    Despite their role in providing ecosystem services, insects remain overlooked in conservation planning, and insect management approaches often lack a rigorous scientific basis. The endangered Ohlone tiger beetle (Cicindela ohlone) occurs in a 24-km(2) area in Santa Cruz County, California. The once larger metapopulation now consists of subpopulations inhabiting five patches of coastal prairie where it depends on bare ground for mating, foraging, and oviposition. Human activities have eliminated natural disturbances and spread invasive grasses, reducing C. ohlone's bare-ground habitat. Management actions to restore critical beetle habitat consist of cattle and horse grazing, maintaining slow bicycle speeds on occupied public trails, and artificial creation of bare-ground plots. Recreational biking trails help maintain bare ground, but can cause beetle mortality if left unregulated. We tracked C. ohlone survivorship and estimated fecundity for three years. We then constructed a stage-structured population projection matrix model to estimate population viability among the five patches, and to evaluate the success of management interventions. We demonstrate that habitat creation, regulation of bicycle speed, and migration between patches increase C. ohlone survival and population viability. Our results can be directly applied to management actions for conservation outcomes that will reduce species extinction risk and promote recolonization of extirpated patches.

  14. Developmental and Ecological Benefits of the Maternally Transmitted Microbiota in a Dung Beetle.

    Science.gov (United States)

    Schwab, Daniel B; Riggs, Hailey E; Newton, Irene L G; Moczek, Armin P

    2016-12-01

    To complete their development, diverse animal species rely on the presence of communities of symbiotic microbiota that are vertically transmitted from mother to offspring. In the dung beetle genus Onthophagus, newly hatched larvae acquire maternal gut symbionts by the consumption of a maternal fecal secretion known as the pedestal. Here, we investigate the role of pedestal symbionts in mediating the normal development of Onthophagus gazella. Through the stepwise removal of environmental and maternal sources of microbial inoculation, we find that pedestal microbiota can enhance both overall growth and developmental rate in O. gazella. Further, we find that the beneficial effects of symbionts on developmental outcomes are amplified in the presence of ecologically relevant temperature and desiccation stressors. Collectively, our results suggest that the pedestal may provide an adaptive function by transmitting beneficial microbiota to developing dung beetle larvae and that the importance of microbiota for developmental and fitness outcomes may be context dependent.

  15. Microbe inhibition by Tribolium flour beetles varies with beetle species, strain, sex, and microbe group.

    Science.gov (United States)

    Prendeville, Holly R; Stevens, Lori

    2002-06-01

    Tribolium flour beetles produce defensive compounds, including quinones, putatively aimed at deterring predators and inhibiting microbes. Here we examine how effective the defensive secretions of Tribolium confusum and T. castaneum are at inhibiting growth of various microbes and how this varies with species, geographic strain, and sex of the beetles. We explore differences at both the kingdom and species level of common flour microbes in their susceptibility to defensive compounds. Beetle species and strains vary in their ability to inhibit microbial growth. In addition, microbes vary in their sensitivity to the beetles' defense compounds. The capability to suppress microbial growth is likely under stabilizing selection with optimum quinone production varying among populations and may be dependent on several environmental factors including temperature, humidity, and predators.

  16. Studies on tiger beetles : 84. Additions to the tiger beetle fauna of Sulawesi, Indonesia (Coleoptera: Cicindelidae)

    NARCIS (Netherlands)

    Cassola, F.

    1996-01-01

    Distributional new data are provided for several interesting or poorly known tiger beetle species from Sulawesi, Indonesia. The generic attribution of Wallacedela brendelli Cassola, 1991, is confirmed, and moreover two new species, Wallacedela? problematica spec. nov. and Wallacedela butonensis spec

  17. Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control.

    Science.gov (United States)

    Kandasamy, Dineshkumar; Gershenzon, Jonathan; Hammerbacher, Almuth

    2016-09-01

    Conifer bark beetles attack and kill mature spruce and pine trees, especially during hot and dry conditions. These beetles are closely associated with ophiostomatoid fungi of the Ascomycetes, including the genera Ophiostoma, Grosmannia, and Endoconidiophora, which enhance beetle success by improving nutrition and modifying their substrate, but also have negative impacts on beetles by attracting predators and parasites. A survey of the literature and our own data revealed that ophiostomatoid fungi emit a variety of volatile organic compounds under laboratory conditions including fusel alcohols, terpenoids, aromatic compounds, and aliphatic alcohols. Many of these compounds already have been shown to elicit behavioral responses from bark beetles, functioning as attractants or repellents, often as synergists to compounds currently used in bark beetle control. Thus, these compounds could serve as valuable new agents for bark beetle management. However, bark beetle associations with fungi are very complex. Beetle behavior varies with the species of fungus, the stage of the beetle life cycle, the host tree quality, and probably with changes in the emission rate of fungal volatiles. Additional research on bark beetles and their symbiotic associates is necessary before the basic significance of ophiostomatoid fungal volatiles can be understood and their applied potential realized.

  18. A quarter of a century succession of epigaeic beetle assemblages in remnant habitats in an urbanized matrix (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Kamal Gandhi

    2011-11-01

    Full Text Available We studied the long-term (23-24 years species turnover and succession of epigaeic beetle assemblages (Coleoptera: Carabidae, Cicindellidae in three remnant habitats [cottonwood (Populus spp. and oak (Quercus spp. stands, and old fields] that are embedded within highly urbanized areas in central Minnesota. A total of 9,710 beetle individuals belonging to 98 species were caught in two sampling years: 1980 and 2005 in pitfall traps in identical locations within each habitat. Results indicate that there were 2-3 times greater trap catches in 2005 than in 1980 (cottonwood and oak stands, and old fields and 1.4-1.7 times greater species diversity of beetles in 2005 than in the 1980-1981 suggesting increased habitat association by beetles over time. Although there were no significant differences in catches between 2005 and 1981 (only cottonwood stands and old fields, there was a trend where more beetles were caught in 2005. At the species-level, 10 times more of an open-habitat carabid species, Cyclotrachelus sodalis sodalis LeConte, was caught in 2005 than in 1980. However, trap catches of five other abundant carabid species [Pterostichus novus Straneo, Platynus decentis (Say, P. mutus (Say, Calathus gregarius (Say, and Poecilus lucublandus lucublandus (Say] did not change indicating population stability of some beetle species. These remnant habitats were increasingly colonized by exotic carabid species as Carabus granulatus granulatus Linneaus, Clivina fossor (Linneaus and P. melanarius (Illiger, that were trapped for the first time in 2005. Species composition of epigaeic beetles was quite distinct in 2005 from 1980 with 39 species reported for the first time in 2005, indicating a high turnover of assemblages. At the habitat-level, greatest species diversity was in cottonwood stands and lowest was in old fields, and all habitat types in 2005 diverged from those in 1980s, but not cottonwood stands in 1981. As our sampled areas are among some of the

  19. If Dung Beetles (Scarabaeidae: Scarabaeinae Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?

    Directory of Open Access Journals (Sweden)

    Nicole L Gunter

    Full Text Available The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day

  20. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?

    Science.gov (United States)

    Gunter, Nicole L.; Weir, Tom A.; Cameron, Stephen L.

    2016-01-01

    The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed “out of Africa” hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of

  1. Dung beetle (Coleoptera, Scarabaeidae assemblage of a highly fragmented landscape of Atlantic forest: from small to the largest fragments of northeastern Brazilian region

    Directory of Open Access Journals (Sweden)

    Renato P. Salomão

    2015-06-01

    Full Text Available Human activities in tropical forests are the main causes of forest fragmentation. According to historical factor in deforestation processes, forest remnants exhibit different sizes and shapes. The aim of the present study was to evaluate the dung beetle assemblage on fragments of different degree of sizes. Sampling was performed during rainy and dry season of 2010 in six fragments of Atlantic forest, using pitfall traps baited with excrement and carrion. Also, we used two larger fragments as control. We used General Linear Models to determine whether the fragments presented distinguished dung beetle abundance and richness. Analysis of Similarities and Non-Metric Multidimensional Scaling were used to determine whether the dung beetle assemblage was grouped according to species composition. A total of 3352 individuals were collected and 19 species were identified in the six fragments sampled. Dung beetle abundance exhibited a shift according to fragment size; however, richness did not change among fragments evaluated. Also, fragments sampled and the two controls exhibited distinct species composition. The distinction on abundance of dung beetles among fragments may be related to different amount of resource available in each one. It is likely that the dung beetle richness did not distinguish among the different fragments due to the even distribution of the mammal communities in these patches, and consequent equal dung diversity. We conclude that larger fragments encompass higher abundance of dung beetle and distinct species. However, for a clearer understanding of effects of fragmentation on dung beetles in Atlantic forest, studies evaluating narrower variations of larger fragments should be conducted.

  2. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages.

    Science.gov (United States)

    Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg

    2014-01-01

    Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention

  3. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages.

    Directory of Open Access Journals (Sweden)

    Simon Thorn

    Full Text Available Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green

  4. Tiger beetle's pursuit of prey depends on distance

    Science.gov (United States)

    Noest, Robert; Wang, Jane

    2015-03-01

    Tiger beetles are fast predators capable of chasing prey under closed-loop visual guidance. We investigated their control system using high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Analysis reveals that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The system gain is shown to depend on the beetle-prey distance in a pattern indicating three hunting phases over the observed distance domain. We show that to explain this behavior the tiger beetle must be capable of visually determining the distance to its target and using that to adapt the gain in its proportional control law. We will end with a discussion on the possible methods for distance detection by the tiger beetle and focus on two of them. Motion parallax, using the natural head sway induced by the walking gait of the tiger beetle, is shown to have insufficient distance range. However elevation in the field of vision, using the angle with respect to the horizon at which a target is observed, has a much larger distance range and is a prime candidate for the mechanism of visual distance detection in the tiger beetle.

  5. Tenebrionid Beetles of the West Indies

    NARCIS (Netherlands)

    Marcuzzi, Giorgio

    1962-01-01

    The present paper deals with the results of my investigations regarding the tenebrionid beetles of the Antilles, north of Trinidad. For this work, use has been made of the magnificent collections assembled by Dr. P. WAGENAAR HUMMELINCK, of a number of specimens gathered by Dr. H. J. MAC GILLAVRY as

  6. Chirality determines pheromone activity for flour beetles

    Science.gov (United States)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  7. Isolation of pristionchus nematodes from beetles.

    Science.gov (United States)

    Rae, Robbie; Schlager, Benjamin; Sommer, Ralf J

    2008-10-01

    INTRODUCTIONIn this procedure, nematodes disembark from a beetle carcass and feed on Escherichia coli OP50. The nematodes are then monitored for a few days and identified using simple morphological characteristics. This method is rapid, easy, and biased for Pristionchus species.

  8. Cuticle formation and pigmentation in beetles.

    Science.gov (United States)

    Noh, Mi Young; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki

    2016-10-01

    Adult beetles (Coleoptera) are covered primarily by a hard exoskeleton or cuticle. For example, the beetle elytron is a cuticle-rich highly modified forewing structure that shields the underlying hindwing and dorsal body surface from a variety of harmful environmental factors by acting as an armor plate. The elytron comes in a variety of colors and shapes depending on the coleopteran species. As in many other insect species, the cuticular tanning pathway begins with tyrosine and is responsible for production of a variety of melanin-like and other types of pigments. Tanning metabolism involves quinones and quinone methides, which also act as protein cross-linking agents for cuticle sclerotization. Electron microscopic analyses of rigid cuticles of the red flour beetle, Tribolium castaneum, have revealed not only numerous horizontal chitin-protein laminae but also vertically oriented columnar structures called pore canal fibers. This structural architecture together with tyrosine metabolism for cuticle tanning is likely to contribute to the rigidity and coloration of the beetle exoskeleton.

  9. The Japanese jewel beetle : a painter's challenge

    NARCIS (Netherlands)

    Schenk, F.; Wilts, B.D.; Stavenga, D.G.

    2013-01-01

    Colours as dynamic as the metallic-like hues adorning the Japanese jewel beetle have never been captured on canvas before. Unlike, and unmatched by, the chemical pigments of the artist's palette, the effect is generated by layered microstructures that refract and reflect light to make colour visible

  10. The Japanese jewel beetle : a painter's challenge

    NARCIS (Netherlands)

    Schenk, F.; Wilts, B.D.; Stavenga, D.G.

    2013-01-01

    Colours as dynamic as the metallic-like hues adorning the Japanese jewel beetle have never been captured on canvas before. Unlike, and unmatched by, the chemical pigments of the artist's palette, the effect is generated by layered microstructures that refract and reflect light to make colour

  11. A functional genetic analysis in flour beetles (Tenebrionidae) reveals an antennal identity specification mechanism active during metamorphosis in Holometabola.

    Science.gov (United States)

    Smith, Frank W; Angelini, David R; Jockusch, Elizabeth L

    2014-05-01

    The antenna was the first arthropod ventral appendage to evolve non-leg identity. Models of antennal evolution have been based on comparisons of antennal and leg identity specification mechanisms in Drosophila melanogaster, a species in which appendages develop from highly derived imaginal discs during the larval period. We test for conservation of the Drosophila antennal identity specification mechanism at metamorphosis in Tribolium castaneum and three other flour beetle species (Tribolium confusum, Tribolium brevicornis and Latheticus oryzae) in the family Tenebrionidae. In Drosophila, loss of function of four transcription factors-homothorax, extradenticle, Distal-less, and spineless-causes large-scale transformations of the antenna to leg identity. Distal-less and spineless function similarly during metamorphosis in T. castaneum. RNA interference (RNAi) targeting homothorax (hth) or extradenticle (exd) caused transformation of the proximal antenna to distal leg identity in flour beetles, but did not affect the identity of the distal antenna. This differs from the functional domain of these genes in early instar Drosophila, where they are required for identity specification throughout the antenna, but matches their functional domain in late instar Drosophila. The similarities between antennal identity specification at metamorphosis in flour beetles and in late larval Drosophila likely reflect the conservation of an ancestral metamorphic developmental mechanism. There were two notable differences in hth/exd loss of function phenotypes between flies and beetles. Flour beetles retained all of their primary segments in both the antenna and legs, whereas flies undergo reduction and fusion of primary segments. This difference in ground state appendage morphology casts doubt on interpretations of developmental ground states as evolutionary atavisms. Additionally, adult Tribolium eyes were transformed to elytron-like structures; we provide a developmental hypothesis for

  12. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    Science.gov (United States)

    Saab, Victoria A.; Latif, Quresh S.; Rowland, Mary M.; Johnson, Tracey N.; Chalfoun, Anna D.; Buskirk, Steven W.; Heyward, Joslin E.; Dresser, Matthew A.

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1‐30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB

  13. Resiliency of an Interior Ponderosa Pine Forest to Bark Beetle Infestations Following Fuel-Reduction and Forest-Restoration Treatments

    Directory of Open Access Journals (Sweden)

    Christopher J. Fettig

    2014-01-01

    Full Text Available Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the Western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest in California. Twelve experimental plots, ranging in size from 77–144 ha, were established to create two distinct forest structural types: mid-seral stage (low structural diversity; LoD and late-seral stage (high structural diversity; HiD. Following harvesting, half of each plot was treated with prescribed fire (B. A total of 16,473 trees (8.7% of all trees died during the 10-year period. Mortality was primarily attributed to bark beetles (Coleoptera: Curculionidae, Scolytinae (10,655 trees, specifically fir engraver, Scolytus ventralis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, western pine beetle, D. brevicomis LeConte, pine engraver, Ips pini (Say, and, to a much lesser extent, Jeffrey pine beetle, D. jeffreyi Hopkins. Trees of all ages and size classes were killed, but mortality was concentrated in the smaller-diameter classes (19–29.2 and 29.3–39.3 cm at 1.37 m in height. Most mortality occurred three to five years following prescribed burns. Higher levels of bark beetle-caused tree mortality were observed on LoD + B (8.7% than LoD (4.2%. The application of these and other results to the   management of interior P. ponderosa forests are discussed, with an emphasis on the maintenance of large trees.

  14. Spatial distribution of the ground beatles populations in industrial cities (on the example of Nikopol

    Directory of Open Access Journals (Sweden)

    V. V. Bolgarin

    2010-04-01

    Full Text Available The influence of abiotic factors on species of Amara, Ophonus, Harpalus in the urban environment has been studied. The features of the ground beetles distribution in the districts of Nikopol have been analysed. The influence of roadway on the vital fuctions of ground beetles has been cleared up. Quantitative data of Amara, Ophonus, Harpalus numbers in the town of Nikopol have been discussed. The advantage of natural factors over anthropogenic ones for the existence of soil mesofauna in industrial town has been established.

  15. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment.

  16. Monkey and dung beetle activities influence soil seed bank structure

    OpenAIRE

    Feer, François; Ponge, Jean-François; Jouard, Sylvie; Gomez, Doris

    2013-01-01

    International audience; In Neotropical forests, dung beetles act as efficient secondary dispersers of seeds that are dispersed primarily by red howler monkeys. Here, we investigated the origins of soil seed bank variability in relation to monkey and dung beetle activity, to assess the impact of dung beetles on seed fate, and their adaptability to resource availability. This question is important to better understand the process of tree regeneration, and is especially timely in the current con...

  17. Measuring Phenological Changes due to Defoliation of the Non-Native Species, Saltcedar (Tamarisk) Following Episodic Foliage Removal by the Beetle Diorhabda elongate and Phenological Impacts on Forage Quality for Insectivorous Birds on the Dolores River

    Science.gov (United States)

    Nagler, P. L.; Dennison, P. E.; Hultine, K. R.; van Riper, C.; Glenn, E. P.

    2008-12-01

    Since its introduction to the western U.S. more than a century ago, tamarisk (Tamarix spp.) has become dominant or sub-dominant over many major arid, and semi-arid river systems and their tributaries. The presence of tamarisk has been cited for reducing water availability for human enterprise and biodiversity, displacing native vegetation and for reducing habitat quality for wildlife. With increasing emphasis by public and private sectors on controlling saltcedar (Tamarix chinensis) in the western US, there will likely be a dramatic change in riparian vegetation composition over the course of the next several decades. The rates at which these changes will occur, and the resultant effects on riparian insects and birds that utilize insects for food, are presently unknown. Effects on riparian vegetation communities, resulting from changes in host plant species composition, will likely include changes in plant biomass, microclimate changes, and plant species diversity. These changes could potentially have a profound impact on migratory and breeding birds within riparian corridors throughout the southwest. Recently, the saltcedar leaf beetle (Diorhabda elongata) was released as a tamarisk biocontrol agent. This beetle has successfully defoliated tamarisk where it has been introduced, but there are currently no comprehensive programs in place for monitoring the rapid spread of Diorhabda, the impact of defoliation on habitat and water resources, or the long-term impact of defoliation on tamarisk. We used higher spatial resolution ASTER data and coarser MODIS data for monitoring defoliation caused by Diorhabda elongata and subsequent changes in evapotranspiration (ET). Widespread tamarisk defoliation was observed in an eastern Utah study area during summers 2007, 2008. We measured stem sap flux, leaf carbon isotope ratios, leaf area, LAI, and vegetation indices from mounted visible and infrared cameras and satellite imagery. The cameras were paired on towers installed 30

  18. Trade-offs between force and fit: extreme morphologies associated with feeding behavior in carabid beetles.

    Science.gov (United States)

    Konuma, Junji; Chiba, Satoshi

    2007-07-01

    We explored how functional trade-offs in resource handling strategies are associated with the divergent morphology of predators. The malacophagous carabid Damaster blaptoides shows two extreme morphologies in the forebody; there is an elongate small-headed type and a stout large-headed type. A feeding experiment showed that the small-headed type obtained a high feeding performance on snails with a thick shell and a large aperture by penetrating the shell with its head. In contrast, the large-headed type showed a high feeding performance on snails that had a thin shell and a small aperture, and they ate these prey by crushing the shell. The large-headed, strong-jawed beetles are efficient at shell crushing but are ineffective at shell entry; the large mandibles and musculature that allow for shell crushing make the beetle's head too wide to penetrate shell apertures. On the other hand, small-headed, weak-jawed beetles crush poorly but can reach into shells for direct predation on snail bodies. These findings are hypothesized to be functional trade-offs between force and fit due to morphological constraints. This trade-off would be a primary mechanism affecting both resource handling ability in animals and phenotypic diversity in predators and prey.

  19. Deep-Time Convergence in Rove Beetle Symbionts of Army Ants.

    Science.gov (United States)

    Maruyama, Munetoshi; Parker, Joseph

    2017-03-20

    Recent adaptive radiations provide striking examples of convergence [1-4], but the predictability of evolution over much deeper timescales is controversial, with a scarcity of ancient clades exhibiting repetitive patterns of phenotypic evolution [5, 6]. Army ants are ecologically dominant arthropod predators of the world's tropics, with large nomadic colonies housing diverse communities of socially parasitic myrmecophiles [7]. Remarkable among these are many species of rove beetle (Staphylinidae) that exhibit ant-mimicking "myrmecoid" body forms and are behaviorally accepted into their aggressive hosts' societies: emigrating with colonies and inhabiting temporary nest bivouacs, grooming and feeding with workers, but also consuming the brood [8-11]. Here, we demonstrate that myrmecoid rove beetles are strongly polyphyletic, with this adaptive morphological and behavioral syndrome having evolved at least 12 times during the evolution of a single staphylinid subfamily, Aleocharinae. Each independent myrmecoid clade is restricted to one zoogeographic region and highly host specific on a single army ant genus. Dating estimates reveal that myrmecoid clades are separated by substantial phylogenetic distances-as much as 105 million years. All such groups arose in parallel during the Cenozoic, when army ants diversified into modern genera [12] and rose to ecological dominance [13, 14]. This work uncovers a rare example of an ancient system of complex morphological and behavioral convergence, with replicate beetle lineages following a predictable phenotypic trajectory during their parasitic adaptation to host colonies.

  20. Colorado potato beetle toxins revisited: evidence the beetle does not sequester host plant glycoalkaloids.

    Science.gov (United States)

    Armer, Christine A

    2004-04-01

    The Colorado potato beetle feeds only on glycoalkaloid-laden solanaceous plants, appears to be toxic to predators, and has aposematic coloration, suggesting the beetle may sequester alkaloids from its host plants. This study tested 4th instars and adults, as well as isolated hemolymph and excrement, to determine if the beetles sequester, metabolize, or excrete alkaloids ingested from their host plants. HPLC analysis showed: that neither the larvae nor the adults sequestered either solanine or chaconine from potato foliage; that any alkaloids in the beetles were at concentrations well below 1 ppm; and that alkaloids were found in the excrement of larvae at approximately the same concentrations as in foliage. Analysis of alkaloids in the remains of fed-upon leaflet halves plus excreta during 24 hr feeding by 4th instars, as compared to alkaloids in the uneaten halves of the leaflets, showed that equal amounts of alkaloids were excreted as were ingested. The aposematic coloration probably warns of a previously-identified toxic dipeptide instead of a plant-derived alkaloid, as the Colorado potato beetle appears to excrete, rather than sequester or metabolize, the alkaloids from its host plants.

  1. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.

  2. What is Next in Bark Beetle Phylogeography?

    Directory of Open Access Journals (Sweden)

    Dimitrios N. Avtzis

    2012-05-01

    Full Text Available Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km2 of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree’s defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi or even by reducing the resistance of host trees (blue-stain fungi. Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava. A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel

  3. The small impact of various partial charge distributions in ground and excited state on the computational Stokes shift of 1-methyl-6-oxyquinolinium betaine in diverse water models

    Science.gov (United States)

    Heid, Esther; Harringer, Sophia; Schröder, Christian

    2016-10-01

    The influence of the partial charge distribution obtained from quantum mechanics of the solute 1-methyl-6-oxyquinolinium betaine in the ground- and first excited state on the time-dependent Stokes shift is studied via molecular dynamics computer simulation. Furthermore, the effect of the employed solvent model — here the non-polarizable SPC, TIP4P and TIP4P/2005 and the polarizable SWM4 water model — on the solvation dynamics of the system is investigated. The use of different functionals and calculation methods influences the partial charge distribution and the magnitude of the dipole moment of the solute, but not the orientation of the dipole moment. Simulations based on the calculated charge distributions show nearly the same relaxation behavior. Approximating the whole solute molecule by a dipole results in the same relaxation behavior, but lower solvation energies, indicating that the time scale of the Stokes shift does not depend on peculiarities of the solute. However, the SPC and TIP4P water models show too fast dynamics which can be ascribed to a too large diffusion coefficient and too low viscosity. The calculated diffusion coefficient and viscosity for the SWM4 and TIP4P/2005 models coincide well with experimental values and the corresponding relaxation behavior is comparable to experimental values. Furthermore we found that for a quantitative description of the Stokes shift of the applied system at least two solvation shells around the solute have to be taken into account.

  4. The type-specimens of Caraboidea beetles (Coleoptera, Adephaga) deposited in the collections of the I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine.

    Science.gov (United States)

    Putshkov, Alexander V; Martynov, Alexander V

    2017-03-01

    A catalogue of type specimens of species and subspecies of caraboid beetles, tiger-beetles here treated as family Cicindelidae, and ground-beetles (Carabidae) of suborder Adephaga deposited in the I.I. Schmalhausen Institute of Zoology NAS of Ukraine is provided. For all type-specimens original photos of each specimen (with label) and label data are given in the original spelling (translated to English if the original label was in Cyrillic alphabet). In some cases data concerning the current status of taxons are discussed. Nominal taxa names are alphabethically listed within each family. Altogether, 372 type specimens of 133 taxa names (species and subspecies) are included in the catalogue: 15 holotypes, 344 paratypes (120 species and subspecies) and 13 specimens (9 taxa) with other type status.

  5. Behavioral niche partitioning in a sympatric tiger beetle assemblage and implications for the endangered Salt Creek tiger beetle

    OpenAIRE

    Brosius, Tierney R.; Higley, Leon G.

    2013-01-01

    How behavioral patterns are related to niche partitioning is an important question in understanding how closely related species within ecological communities function. Behavioral niche partitioning associated with thermoregulation is well documented in tiger beetles as a group. Co-occurring species of salt flat tiger beetles have adapted many thermoregulatory behaviors to cope with this harsh ecosystem. On first examination these beetles appear to occur in overlapping microhabitats and theref...

  6. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    Science.gov (United States)

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  7. Development of fauna of water beetles (Coleoptera in waters bodies of a river valley – habitat factors, landscape and geomorphology

    Directory of Open Access Journals (Sweden)

    Pakulnicka Joanna

    2016-01-01

    Full Text Available The goal of the study was to identify the beetle fauna of a small lowland river valley against its spatial arrangement and the directions of beetle migrations between habitats, as well as to determine which environmental factors affect the characteristics of water beetle populations in a river valley's lentic water bodies. The field studies were carried out in various types of water bodies. 112 species of beetles with various ecological characteristics were identified. It was demonstrated that the diversity of water bodies in the valley is conducive to high local species richness. At the same time, the observed high degree of faunistic individualism may be regarded as a sign of poor symmetry in the directions of fauna propagation, particularly that of stagnobionts. The authors argue that high individualism is the consequence of poor hydrological contact between the water bodies due to topography and rare instances of high tide in the river, which, in turn, is the reason for active overflights remaining the main mean of migration between those water bodies. The factors restricting migration of fauna between the water bodies include certain landscape characteristics of the catchment which form topographical obstacles, mainly numerous and dense forest areas. The character of fauna in the respective types of water bodies is affected also by internal environmental factors, particularly the degree to which they are overgrown with macrophytes, type of bottom, type of mineral and organic matter as well as physical parameters of water, such as saturation, pH, temperature and biological oxygen demand.

  8. Insights into the development and evolution of exaggerated traits using de novo transcriptomes of two species of horned scarab beetles.

    Directory of Open Access Journals (Sweden)

    Ian A Warren

    Full Text Available Scarab beetles exhibit an astonishing variety of rigid exo-skeletal outgrowths, known as "horns". These traits are often sexually dimorphic and vary dramatically across species in size, shape, location, and allometry with body size. In many species, the horn exhibits disproportionate growth resulting in an exaggerated allometric relationship with body size, as compared to other traits, such as wings, that grow proportionately with body size. Depending on the species, the smallest males either do not produce a horn at all, or they produce a disproportionately small horn for their body size. While the diversity of horn shapes and their behavioural ecology have been reasonably well studied, we know far less about the proximate mechanisms that regulate horn growth. Thus, using 454 pyrosequencing, we generated transcriptome profiles, during horn growth and development, in two different scarab beetle species: the Asian rhinoceros beetle, Trypoxylus dichotomus, and the dung beetle, Onthophagus nigriventris. We obtained over half a million reads for each species that were assembled into over 6,000 and 16,000 contigs respectively. We combined these data with previously published studies to look for signatures of molecular evolution. We found a small subset of genes with horn-biased expression showing evidence for recent positive selection, as is expected with sexual selection on horn size. We also found evidence of relaxed selection present in genes that demonstrated biased expression between horned and horn-less morphs, consistent with the theory of developmental decoupling of phenotypically plastic traits.

  9. Southern pine beetle, Dendroctonus frontalis, antennal and behavioral responses to nonhost leaf and bark volatiles.

    Science.gov (United States)

    Shepherd, William P; Sullivan, Brian T

    2013-04-01

    A growing body of evidence suggests that bark beetles detect and avoid release points of volatile compounds associated with nonhost species, and thus such nonhost volatiles may have potential utility in the management of bark beetles. We used a coupled gas chromatograph-electroantennographic detector (GC-EAD) to assay the olfactory sensitivity of the southern pine beetle, Dendroctonus frontalis Zimmermann, to volatiles from leaves and bark of eight species of nonhost angiosperm trees that are common in the range of D. frontalis. Tree species sampled were red maple (Acer rubrum L.), mockernut hickory [Carya alba (L.) Nutt. ex Ell.], sweetgum (Liquidambar styraciflua L.), black tupelo (Nyssa sylvatica Marsh.), black cherry (Prunus serotina Ehrh.), southern red oak (Quercus falcata Michx.), blackjack oak [Quercus marilandica (L.) Muenchh.], and water oak (Quercus nigra L.). Beetle antennae responded to a total of 28 identifiable compounds in these samples. The relative olfactory responsiveness to 14 of these, as well as to nonanoic acid and four additional volatiles reported to be associated with nonhost angiosperms, was assessed in GC-EAD analyses of synthetic dilutions spanning six orders of magnitude. The largest response voltage amplitudes were obtained with trans-conophthorin, nonanoic acid, terpinen-4-ol, phenylethyl alcohol, and eucalyptol, whereas the lowest response thresholds were to nonanoic acid, nonanal, linalool, (E)-2-hexen-1-ol, and phenylethyl alcohol. Funnel traps baited with various combinations of eleven antennally-active angiosperm volatiles along with a standard attractant captured significantly fewer male and female D. frontalis than traps baited with the standard attractant alone. Our data suggest that a diversity of semiochemicals may be involved in host species discrimination by D. frontalis, and several may have utility in their management.

  10. Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub-mountainous landscape of Central Italy

    Directory of Open Access Journals (Sweden)

    Mattia Tonelli

    2017-01-01

    Full Text Available Grazing extensification and intensification are among the main problems affecting European grasslands. We analyze the impact of grazing intensity (low and moderate and the use of veterinary medical products (VMPs on the dung beetle community in the province of Pesaro-Urbino (Italy. Grazing intensity is a key factor in explaining the diversity of dung beetles. In the case of the alpha diversity component, sites with a low level of grazing activity—related in a previous step to the subsequent abandonment of traditional farming—is characterized by a loss of species richness (q = 0 and a reduction in alpha diversity at the levels q = 1 and q = 2. In the case of beta diversity, sites with a different grazing intensity show remarkable differences in terms of the composition of their species assemblages. The use of VMPs is another important factor in explaining changes in dung beetle diversity. In sites with a traditional use of VMPs, a significant loss of species richness and biomass is observed, as is a notable effect on beta diversity. In addition, the absence of indicator species in sites with a historical use of VMPs corroborates the hypothesis that these substances have a ubiquitous effect on dung beetles. However, the interaction between grazing activity and VMPs when it comes to explaining changes in dung beetle diversity is less significant (or is not significant than the main effects (each factor separately for alpha diversity, biomass and species composition. This may be explained if we consider that both factors affect the various species differently. In other words, the reduction in dung availability affects several larger species more than it does very small species, although this does not imply that the former are more susceptible to injury caused by the ingestion of dung contaminated with VMPs. Finally, in order to prevent negative consequences for dung beetle diversity, we propose the maintenance of a moderate grazing intensity and

  11. Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub-mountainous landscape of Central Italy

    Science.gov (United States)

    Tonelli, Mattia; Zunino, Mario E.

    2017-01-01

    Grazing extensification and intensification are among the main problems affecting European grasslands. We analyze the impact of grazing intensity (low and moderate) and the use of veterinary medical products (VMPs) on the dung beetle community in the province of Pesaro-Urbino (Italy). Grazing intensity is a key factor in explaining the diversity of dung beetles. In the case of the alpha diversity component, sites with a low level of grazing activity—related in a previous step to the subsequent abandonment of traditional farming—is characterized by a loss of species richness (q = 0) and a reduction in alpha diversity at the levels q = 1 and q = 2. In the case of beta diversity, sites with a different grazing intensity show remarkable differences in terms of the composition of their species assemblages. The use of VMPs is another important factor in explaining changes in dung beetle diversity. In sites with a traditional use of VMPs, a significant loss of species richness and biomass is observed, as is a notable effect on beta diversity. In addition, the absence of indicator species in sites with a historical use of VMPs corroborates the hypothesis that these substances have a ubiquitous effect on dung beetles. However, the interaction between grazing activity and VMPs when it comes to explaining changes in dung beetle diversity is less significant (or is not significant) than the main effects (each factor separately) for alpha diversity, biomass and species composition. This may be explained if we consider that both factors affect the various species differently. In other words, the reduction in dung availability affects several larger species more than it does very small species, although this does not imply that the former are more susceptible to injury caused by the ingestion of dung contaminated with VMPs. Finally, in order to prevent negative consequences for dung beetle diversity, we propose the maintenance of a moderate grazing intensity and the rational

  12. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. III. Modification of elytral mobility or shape in flying beetles.

    Science.gov (United States)

    Frantsevich, Leonid; Gorb, Stanislav; Radchenko, Vladimir; Gladun, Dmytro

    2015-03-01

    Some flying beetles have peculiar functional properties of their elytra, if compared with the vast majority of beetles. A "typical" beetle covers its pterothorax and the abdomen from above with closed elytra and links closed elytra together along the sutural edges. In the open state during flight, the sutural edges diverge much more than by 90°. Several beetles of unrelated taxa spread wings through lateral incisions on the elytra and turn the elytron during opening about 10-12° (Cetoniini, Scarabaeus, Gymnopleurus) or elevate their elytra without partition (Sisyphus, Tragocerus). The number of campaniform sensilla in their elytral sensory field is diminished in comparison with beetles of closely related taxa lacking that incision. Elytra are very short in rove beetles and in long-horn beetles Necydalini. The abundance of sensilla in brachyelytrous long-horn beetles Necydalini does not decrease in comparison with macroelytrous Cerambycinae. Strong reduction of the sensory field was found in brachyelytrous Staphylinidae. Lastly, there are beetles lacking the linkage of the elytra down the sutural edge (stenoelytry). Effects of stenoelytry were also not uniform: Oedemera and flying Meloidae have the normal amount of sensilla with respect to their body size, whereas the sensory field in the stenoelytrous Eulosia bombyliformis is 5-6 times less than in chafers of the same size but with normally linking broad elytra.

  13. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles.

    Science.gov (United States)

    Kirsch, Roy; Gramzow, Lydia; Theißen, Günter; Siegfried, Blair D; Ffrench-Constant, Richard H; Heckel, David G; Pauchet, Yannick

    2014-09-01

    Plant cell walls are the largest reservoir of organic carbon on earth. To breach and utilize this carbohydrate-rich protective barrier, microbes secrete plant cell wall degrading enzymes (PCWDEs) targeting pectin, cellulose and hemicelluloses. There is a growing body of evidence that genomes of some herbivorous insects also encode PCWDEs, raising questions about their evolutionary origins and functions. Among herbivorous beetles, pectin-degrading polygalacturonases (PGs) are found in the diverse superfamilies Chrysomeloidea (leaf beetles, long-horn beetles) and Curculionoidea (weevils). Here our aim was to test whether these arose from a common ancestor of beetles or via horizontal gene transfer (HGT), and whether PGs kept their ancestral function in degrading pectin or evolved novel functions. Transcriptome data derived from 10 beetle species were screened for PG-encoding sequences and used for phylogenetic comparisons with their bacterial, fungal and plant counterparts. These analyses revealed a large family of PG-encoding genes of Chrysomeloidea and Curculionoidea sharing a common ancestor, most similar to PG genes of ascomycete fungi. In addition, 50 PGs from beetle digestive systems were heterologously expressed and functionally characterized, showing a set of lineage-specific consecutively pectin-degrading enzymes, as well as conserved but enzymatically inactive PG proteins. The evidence indicates that a PG gene was horizontally transferred ∼200 million years ago from an ascomycete fungus to a common ancestor of Chrysomeloidea and Curculionoidea. This has been followed by independent duplications in these two lineages, as well as independent replacement in two sublineages of Chrysomeloidea by two other subsequent HGTs. This origin, leading to subsequent functional diversification of the PG gene family within its new hosts, was a key event promoting the evolution of herbivory in these beetles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid moth outbreaks in sub-arctic mountain birch forest.

    Directory of Open Access Journals (Sweden)

    Ole Petter Laksforsmo Vindstad

    Full Text Available Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects. Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak.

  15. Atlas of Iberian water beetles (ESACIB database).

    Science.gov (United States)

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A; Ribera, Ignacio

    2015-01-01

    The ESACIB ('EScarabajos ACuáticos IBéricos') database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the "Atlas de los Coleópteros Acuáticos de España Peninsular". In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format.

  16. Phenotypic plasticity and diversity in insects

    OpenAIRE

    Moczek, Armin P.

    2010-01-01

    Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary pr...

  17. Medically important beetles (insecta: coleoptera) of Iran

    OpenAIRE

    MR Nikbakhtzadeh; TIRGARI, S.

    2008-01-01

    This study focused on coleopteran species that are responsible for the emergence of recent cases of dermatological manifestations in Iran. To the best of our knowledge, five species of the family Meloidae and nine species of the genus Paederus are by far the only beetles recognized as medically important in Iran. The staphylinids consists of Paederus ilsae, P. iliensis, P. fuscipes, P. kalalovae, P. balcanicus, P. lenkoranus, P. littoralis, P. carpathicus, P. nigricornis, while the meloids ar...

  18. FAUNÍSTIC STUDY OF BEETLES (COLEOPTERA IN A SILVICULTURAL-PASTORAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Alexander Machado Auad

    2011-03-01

    Full Text Available The aim of this study was to conduct a survey of beetles (Coleoptera in a silvicultural-pastoral system, estimating constancy, abundance, richness, diversity of families and seasonality, from July 2006 to June 2008. The study was carried out at the Embrapa Dairy Cattle station, in Coronel Pacheco, Minas Gerais, Brazil. The beetles were collected in Malaise traps, every two weeks, and taken to the laboratory for analysis. A total of 26 families, 294 morphospecies and 1,606 specimens were found. The Elateridae, Mordelidae, Chrysomelidae, Coccinellidae and Curculionidae families were the most abundant, rich and diverse. The Scarabaeidae and Scolytidae families were also among the most abundant, and the Cerambycidae family was among the richest, while the Bruchidae and Carabidae families presented high diversity.  The largest number of individuals and morphospecies sampled occurred during the period of rain. November 2007 presented the most (n = 535 specimens captures of any month, followed by October 2006, September 2007, March and April of 2008.

  19. Life forms of endemic carabid beetles (Coleoptera, Carabidae in the forest eco-systems of gorgany mountains

    Directory of Open Access Journals (Sweden)

    V. S. Pushkar

    2010-09-01

    Full Text Available In the forest ecosystems of Gorgany Mountains 11 endemic carabids are found. It is about 12.2 % of all ground-beetles fauna of the investigated region. As a result of the morphometric analysis the life forms of endemic carabids are determined. The system of ground beetles’ life forms developed by I. Sharova (1981 is supplemented. All endemics we have rated among 1 class (Zoophages, 2 subclasses (Epigeobionts, Stratobionts and 5 life forms. The analysis of the carabid beetles’ life form spectrum in the forest ecosystems of Gorgany mountains attests to their broad settlement of ecological niches in the investigated region.

  20. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  1. Tenebrio beetles use magnetic inclination compass

    Science.gov (United States)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  2. Contrasting Patterns of Diterpene Acid Induction by Red Pine and White Spruce to Simulated Bark Beetle Attack, and Interspecific Differences in Sensitivity Among Fungal Associates.

    Science.gov (United States)

    Mason, Charles J; Klepzig, Kier D; Kopper, Brian J; Kersten, Philip J; Illman, Barbara L; Raffa, Kenneth F

    2015-06-01

    Conifers possess a suite of physiochemical defenses that protect their subcortical tissues from bark beetle - fungal complexes. These defenses include rapid induction of terpenoids and phenolics at the site of attack. Studies of the distribution, induction, and bioactivity of conifer terpenoids have focused heavily on monoterpenes. We assessed induction of diterpene acids in white spruce (Picea glauca) and red pine (Pinus resinosa) to fungal associates of two bark beetles, and the responses of four spruce beetle (Dendroctonus rufipennis)-associated fungi to three diterpene acids. Constitutive phloem contents differed between species, in that red pine had extremely low concentrations of diterpene acids, whereas white spruce had substantial constitutive levels. Induction differed quantitatively. Both red pine and white spruce exhibited marked increases, but red pine underwent greater increases and achieved higher concentrations than white spruce. Induction also differed qualitatively in that red pine showed lower diversity and fewer compositional changes during induction than white spruce. In red pine,fungal inoculation accompanying wounding elicited greater increases than wounding alone, but in white spruce total concentrations were higher following wounding alone. Spruce beetle fungal symbiont growth varied among species and compounds. Some diterpenes elicited both stimulatory and inhibitory effects on fungi, depending on concentration. All four fungi exhibited higher tolerances compared to those associated with pine bark beetles in previous studies. Variation in tolerances to, and potentially metabolism of, diterpene acids by symbionts may reflect differences in constitutive levels between spruce and pine, and partially explain differences in concentrations achieved during induction.

  3. Proceedings from the Third Workshop on Genetics of Bark Beetles and Associated Microorganisms

    Science.gov (United States)

    Barbara Bentz; Anthony Cognato; Kenneth Raffa

    2007-01-01

    These proceedings provide a synopsis of the Third Workshop on Genetics of Bark Beetles and Association Microorganisms, which was held May 20-2, 2006 in Asheville, NC. Twenty- five participants from five countries attended the meeting. The proceedings are structured into four parts: Phylogenetics of Bark Beetles, Population Genetics of Bark Beetles, Bark Beetle Gene...

  4. Predaceous water beetles (Coleoptera, Hydradephaga) of the Lake St Lucia system, South Africa: biodiversity, community ecology and conservation implications

    Science.gov (United States)

    Perissinotto, Renzo; Bird, Matthew S.; Bilton, David T.

    2016-01-01

    Abstract Water beetles are one of the dominant macroinvertebrate groups in inland waters and are excellent ecological indicators, reflecting both the diversity and composition of the wider aquatic community. The predaceous water beetles (Hydradephaga) make up around one-third of known aquatic Coleoptera and, as predators, are a key group in the functioning of many aquatic habitats. Despite being relatively well-known taxonomically, ecological studies of these insects in tropical and subtropical systems remain rare. A dedicated survey of the hydradephagan beetles of the Lake St Lucia wetlands (South Africa) was undertaken between 2013 and 2015, providing the first biodiversity census for this important aquatic group in the iSimangaliso Wetland Park, a UNESCO World Heritage Site within the Maputaland biodiversity hotspot. A total of 32 sites covering the entire spectrum of waterbody types were sampled over the course of three collecting trips. The Lake St Lucia wetlands support at least 68 species of Hydradephaga, a very high level of diversity comparing favourably with other hotspots on the African continent and elsewhere in the world and a number of taxa are reported for South Africa for the first time. This beetle assemblage is dominated by relatively widespread Afrotropical taxa, with few locally endemic species, supporting earlier observations that hotspots of species richness and centres of endemism are not always coincident. Although there was no significant difference in the number of species supported by the various waterbody types sampled, sites with the highest species richness were mostly temporary depression wetlands. This contrasts markedly with the distribution of other taxa in the same system, such as molluscs and dragonflies, which are most diverse in permanent waters. Our study is the first to highlight the importance of temporary depression wetlands and emphasises the need to maintain a variety of wetland habitats for aquatic conservation in this

  5. Predaceous water beetles (Coleoptera, Hydradephaga) of the Lake St Lucia system, South Africa: biodiversity, community ecology and conservation implications.

    Science.gov (United States)

    Perissinotto, Renzo; Bird, Matthew S; Bilton, David T

    2016-01-01

    Water beetles are one of the dominant macroinvertebrate groups in inland waters and are excellent ecological indicators, reflecting both the diversity and composition of the wider aquatic community. The predaceous water beetles (Hydradephaga) make up around one-third of known aquatic Coleoptera and, as predators, are a key group in the functioning of many aquatic habitats. Despite being relatively well-known taxonomically, ecological studies of these insects in tropical and subtropical systems remain rare. A dedicated survey of the hydradephagan beetles of the Lake St Lucia wetlands (South Africa) was undertaken between 2013 and 2015, providing the first biodiversity census for this important aquatic group in the iSimangaliso Wetland Park, a UNESCO World Heritage Site within the Maputaland biodiversity hotspot. A total of 32 sites covering the entire spectrum of waterbody types were sampled over the course of three collecting trips. The Lake St Lucia wetlands support at least 68 species of Hydradephaga, a very high level of diversity comparing favourably with other hotspots on the African continent and elsewhere in the world and a number of taxa are reported for South Africa for the first time. This beetle assemblage is dominated by relatively widespread Afrotropical taxa, with few locally endemic species, supporting earlier observations that hotspots of species richness and centres of endemism are not always coincident. Although there was no significant difference in the number of species supported by the various waterbody types sampled, sites with the highest species richness were mostly temporary depression wetlands. This contrasts markedly with the distribution of other taxa in the same system, such as molluscs and dragonflies, which are most diverse in permanent waters. Our study is the first to highlight the importance of temporary depression wetlands and emphasises the need to maintain a variety of wetland habitats for aquatic conservation in this biodiverse

  6. Local and regional effects on community structure of dung beetles in a mainland-island scenario.

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    Full Text Available Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites. We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal

  7. Chemical ecology and lure development for redbay ambrosia beetle

    Science.gov (United States)

    The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the U.S., currently established in nine southeastern states. Female beetles are the primary vectors of a pathogenic fungus (Raffaelea lauricola) that causes laurel wilt. This lethal vascular dise...

  8. Origin and Diversification of Dung Beetles in Madagascar

    DEFF Research Database (Denmark)

    Miraldo, Andreia; Wirta, Helena; Hanski, Ilkka

    2011-01-01

    and diversification of Malagasy dung beetles. Based on molecular phylogenies, the extant dung beetles originate from eight colonizations, of which four have given rise to extensive radiations. These radiations have occurred in wet forests, while the few extant species in the less successfulradiations occur in open...

  9. Formulating entompathogens for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  10. Bark beetle outbreaks in western North America: causes and consequences

    Science.gov (United States)

    Bentz, Barbara; Logan, Jesse; MacMahon, James A.; Allen, Craig D.; Ayres, Matt; Berg, Edward E; Carroll, Allan; Hansen, Matt; Hicke, Jeff H.; Joyce, Linda A.; Macfarlane, Wallace; Munson, Steve; Negron, Jose; Paine, Tim; Powell, Jim; Raffa, Kenneth; Regniere, Jacques; Reid, Mary; Romme, Bill; Seybold, Steven J.; Six, Diana; Vandygriff, Jim; Veblen, Tom; White, Mike; Witcosky, Jeff; Wood, David

    2005-01-01

    Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded history.

  11. Efficacy of plant extracts against the cowpea beetle, Callosobruchus maculatus

    NARCIS (Netherlands)

    Boeke, S.J.; Barnaud, B.; Loon, van J.J.A.; Kossou, D.K.; Huis, van A.; Dicke, M.

    2004-01-01

    Traditionally used African plant powders, with a known effect against the cowpea beetle Callosobruchus maculatus in stored cowpea, were extracted with water. The extracts, 13 volatile oils, 2 non-volatile oils and 8 slurries, were evaluated for their toxic and repellent effects against the beetle. A

  12. Callosobruchus maculatus: A Seed Beetle with a Future in Schools.

    Science.gov (United States)

    Dockery, Michael

    1997-01-01

    Recommends the use of seed beetles for studying animal behavior and provides suggestions for practical and project assignments. Sources for obtaining the beetles and a list of the equipment needed for their study and maintenance are provided. Answers to common concerns are addressed. (DDR)

  13. Endocrine control of exaggerated traits in rhinoceros beetles

    Science.gov (United States)

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  14. Changes in food resources and conservation of scarab beetles

    DEFF Research Database (Denmark)

    Carpaneto, Giuseppe Maria; Mazziotta, Adriano; Piattella, Emanuele

    2005-01-01

    The aim of the research was to show how a change in land use influences the structure of a dung beetle assemblage and affect its conservation. In the Pineto Urban Regional Park (Rome), dog dung is the sole food resource currently available for scarab dung beetles, after the recent removal of wild...

  15. Interactions among the mountain pine beetle, fires, and fuels

    Science.gov (United States)

    Michael J. Jenkins; Justin B. Runyon; Christopher J. Fettig; Wesley G. Page; Barbara J. Bentz

    2014-01-01

    Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with...

  16. Method for continuously rearing Coccinella lady beetles (Coleoptera: Coccinellidae)

    Science.gov (United States)

    Coccinella novemnotata L., the ninespotted lady beetle, and Coccinella transversoguttata richardsoni Brown, the transverse lady beetle, are predatory species whose abundance has declined significantly over the last few decades in North America. An ex situ system for continuously rearing these two b...

  17. Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes

    Science.gov (United States)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert

    2016-10-01

    Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle (D endroctonus ponderosae) outbreak and its associated blue stain fungi (Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine (Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater

  18. Microorganisms in the gut of beetles: evidence from molecular cloning.

    Science.gov (United States)

    Zhang, Ning; Suh, Sung-Oui; Blackwell, Meredith

    2003-11-01

    We have regularly cultured yeasts from the gut of certain beetles in our ongoing research. In this study cloned PCR products amplified from the gut contents of certain mushroom-feeding and wood-ingesting beetles in four families (Erotylidae, Tenebrionidae, Ciidae, and Passalidae) were sequenced and compared with culture results. Cultural techniques detected some yeasts present in the gut of the beetles, including a Pichia stipitis-like yeast associated with wood-ingesting passalid beetles. Clone sequences similar to several ascomycete yeasts and Malassezia restricta, a fastidious basidiomycetous yeast requiring special growth media, however, were not detected by culturing. Unexpectedly, phylogenetic analysis of additional clone sequences discovered from passalid beetles showed similarity to members of the Parabasalia, protists known from other wood-ingesting insects, termites, and wood roaches. Examination of all gut regions of living passalids, however, failed to reveal parabasalids, and it is possible that they were parasites in the gut tissue present in low numbers.

  19. Annotated catalogue of the carabid beetles of the Republic of Macedonia (Coleoptera: Carabidae).

    Science.gov (United States)

    Hristovski, Slavčo; Guéorguiev, Borislav

    2015-08-20

    The catalogue of the ground beetles (Coleoptera: Carabidae) of the Republic of Macedonia is the result of our permanent investigation during 15 years. It is based on the critical review of the data in 255 scientific publications and the revision of the collections deposited in the museums in Macedonia (Skopje and Struga), other European countries (Berlin, Budapest, Vienna, Sofia) and the first author's private collection. For all of the species and subspecies we have presented the known literature references, precise data for the studied material and overall distribution in the Republic of Macedonia. The study of the material resulted in new country records of 10 genera, 101 species and 25 subspecies. First detailed records are provided for another 47 species and subspecies, and additional material was studied of 482 species and subspecies. Type material of 18 species and subspecies was also examined. Thirteen species and one subspecies were rejected from the list of Macedonian ground beetles. Six more species are treated as questionable and were not included in the present list. As a result, the presence of 571 species and 234 subspecies (626 taxa in total) in Macedonia is confirmed. These taxa are arranged in 104 genera, 31 subtribes, 35 tribes and 13 subfamilies. The most numerous in term of the species are the genera Bembidion (60), Harpalus (48) and Amara (46), as well as Pterostichus (26), Ophonus (19), Carabus (16), Trechus (16), Brachinus (16) and Dyschirius (15).

  20. Grounded cognition.

    Science.gov (United States)

    Barsalou, Lawrence W

    2008-01-01

    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  1. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees

    Science.gov (United States)

    Ranger, Christopher M.; Schultz, Peter B.; Frank, Steven D.; Chong, Juang H.; Reding, Michael E.

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  2. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees.

    Science.gov (United States)

    Ranger, Christopher M; Schultz, Peter B; Frank, Steven D; Chong, Juang H; Reding, Michael E

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  3. Regional scale impacts of Tamarix leaf beetles (Diorhabda carinulata) on the water availability of western U.S. rivers as determined by multi-scale remote sensing methods

    Science.gov (United States)

    Nagler, Pamela L.; Brown, Tim; Hultine, Kevin R.; van Riper, Charles; Bean, Daniel W.; Dennison, Philip E.; Murray, R. Scott; Glenn, Edward P.

    2012-01-01

    Tamarix leaf beetles (Diorhabda carinulata) have been widely released on western U.S. rivers to control introduced shrubs in the genus Tamarix. Part of the motivation to control Tamarix is to salvage water for human use. Information is needed on the impact of beetles on Tamarix seasonal leaf production and subsequent water use overwide areas andmultiple cycles of annual defoliation.Herewe combine ground data with high resolution phenocam imagery and moderate resolution (Landsat) and coarser resolution (MODIS) satellite imagery to test the effects of beetles on Tamarix evapotranspiration (ET) and leaf phenology at sites on six western rivers. Satellite imagery covered the period 2000 to 2010 which encompassed years before and after beetle release at each study site. Phenocam images showed that beetles reduced green leaf cover of individual canopies by about 30% during a 6-8 week period in summer, but plants produced new leaves after beetles became dormant in August, and over three years no net reduction in peak summer leaf production was noted. ETwas estimated by vegetation index methods, and both Landsat and MODIS analyses showed that beetles reduced ET markedly in the first year of defoliation, but ET recovered in subsequent years. Over all six sites, ET decreased by 14% to 15% by Landsat and MODIS estimates, respectively. However, resultswere variable among sites, ranging fromno apparent effect on ET to substantial reduction in ET. Baseline ET rates before defoliation were low, 394 mmyr-1 by Landsat and 314 mm yr-1 by MODIS estimates (20-25% of potential ET), further constraining the amount of water that could be salvaged. Beetle-Tamarix interactions are in their early stage of development on this continent and it is too soon to predict the eventual extent towhich Tamarix populationswill be reduced. The utility of remote sensing methods for monitoring defoliation was constrained by the small area covered by each phenocamimage, the low temporal resolution of

  4. Spruce Beetle Biology, Ecology and Management in the Rocky Mountains: An Addendum to Spruce Beetle in the Rockies

    Directory of Open Access Journals (Sweden)

    Michael J. Jenkins

    2014-01-01

    Full Text Available Spruce beetle outbreaks have been reported in the Rocky Mountains of western North America since the late 1800s. In their classic paper, Spruce Beetle in the Rockies, Schmid and Frye reviewed the literature that emerged from the extensive outbreaks in Colorado in the 1940s. A new wave of outbreaks has affected Rocky Mountain subalpine spruce-fir forests beginning in the mid-1980s and continuing to the present. These outbreaks have spurred another surge of basic and applied research in the biology, ecology and management of spruce and spruce beetle populations. This paper is a review of literature on spruce beetle focusing on work published since the late 1970s and is intended as an addendum to Spruce Beetle in the Rockies.

  5. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    Science.gov (United States)

    Hart, Sarah J; Veblen, Thomas T; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations.

  6. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    Directory of Open Access Journals (Sweden)

    Sarah J Hart

    Full Text Available Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1 how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis infestation of Engelmann spruce (Picea engelmannii across the Southern Rocky Mountains; and 2 how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height, not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations.

  7. “Going Beyond the Call of Doula”: A Grounded Theory Analysis of the Diverse Roles Community-Based Doulas Play in the Lives of Pregnant and Parenting Adolescent Mothers

    Science.gov (United States)

    Gentry, Quinn M.; Nolte, Kim M.; Gonzalez, Ainka; Pearson, Magan; Ivey, Symeon

    2010-01-01

    This article presents some of the most salient qualitative results from a larger program evaluation of pregnant and parenting adolescents who participated in a community-based doula program. Using grounded theory analysis, seven problem-solving strategies emerged that doulas apply in helping pregnant and parenting adolescents navigate multiple social and health settings that often serve as barriers to positive maternal- and child-health outcomes. The ethnographic findings of this study suggest that the doulas provide valuable assistance to pregnant and parenting adolescents by addressing social-psychological issues and socio-economic disparities. “Diverse role-taking” results in doulas helping pregnant adolescents navigate more successfully through fragmented social and health service systems that are less supportive of low-income adolescents, who are often perceived to be draining scarce resources. The findings have implications for the roles of community-based doulas assigned to low-income adolescents of color seeking to overcome obstacles and attain better educational and economic opportunities. PMID:21886419

  8. Predatory aquatic beetles, suitable trace elements bioindicators.

    Science.gov (United States)

    Burghelea, Carmen I; Zaharescu, Dragos G; Hooda, Peter S; Palanca-Soler, Antonio

    2011-05-01

    Predatory aquatic beetles are common colonizers of natural and managed aquatic environments. While as important components of the aquatic food webs they are prone to accumulate trace elements, they have been largely neglected from metal uptake studies. We aim to test the suitability of three dytiscid species, i.e.Hydroglyphus pusillus, Laccophilus minutus and Rhantus suturalis, as trace elements (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn) bioindicators. The work was carried out in a case area representing rice paddies and control sites (reservoirs) from an arid region known for its land degradation (Monegros, NE Spain). Categorical principal component analysis (CATPCA) was tested as a nonlinear approach to identify significant relationships between metals, species and habitat conditions so as to examine the ability of these species to reflect differences in metal uptake. Except Se and As, the average concentrations of all other elements in the beetles were higher in the rice fields than in the control habitats. The CATPCA determined that H. pusillus had high capacity to accumulate Fe, Ni and Mn regardless of the habitat type, and hence may not be capable of distinguishing habitat conditions with regards to these metals. On the other hand, L. minutus was found less sensitive for Se in non-managed habitats (i.e. reservoirs), while R. suturalis was good in accumulating Al, Mo and Pb in rice fields. The latter seems to be a promising bioindicator of metal enrichment in rice fields. We conclude that predatory aquatic beetles are good candidates for trace elements bioindication in impacted and non-impacted environments and can be used in environmental monitoring studies. CATPCA proved to be a reliable approach to unveil trends in metal accumulation in aquatic invertebrates according to their habitat status.

  9. [Dung beetles (Coleoptera: Scarabaeinae) of the northwestern slope of the Sierra Nevada of Santa Marta, Colombia].

    Science.gov (United States)

    Martínez, Neis J; García, Héctor; Pulido, Luz A; Ospino, Deibi; Harváez, Juan C

    2009-01-01

    The community structure of dung beetles in the middle and lower river basin of the Gaira river, Sierra Nevada de Santa Marta, Colombia, is described. Four sites were selected along an altitudinal gradient of 50-940 m for sampling from June to October, 2004. Dung beetles were captured using modified pitfall traps and manual recollections. We captured 7,872 individuals belonging to 29 species, distributed in 15 genera and five tribes of Scarabaeinae. Canthon and Onthophagus were the most diverse genera, each represented by six species. The sampled sites shared the following species: Onthophagus acuminatus Harold, O. clypeatus Blanchard, O. marginicollis Harold. Bocatoma was the most diverse site with 23 species; whereas Port Mosquito presented the highest abundance, with 3,262 individuals. Seven species represented 89% of all captures: Canthidium sp., Dichotomius sp., Uroxys sp. 1, Uroxys sp. 2, O. marginicollis, O. clypeatus and O. acuminatus. Of the 29 captured species, 17 belonged to the functional group of diggers and 10 were ball-rollers. We did not observe significant among-site differences in community structure. Abiotic factors such as altitude, temperature and humidity cannot explain observed variation in community structure across sites, indicating other variables such as vegetation cover, density of the vegetation and soil type may play a role in the community structure of these insects.

  10. Potential for Water Salvage by Release of the Biocontrol Beetle, Diorhabda carinulata, on Tamarisk (Tamarix ramosissima) Dominated Western U.S. Rivers

    Science.gov (United States)

    Murray, R. S.; Nagler, P. L.; van Riper, C.; Bean, D.; Glenn, E. P.

    2009-12-01

    The biocontrol beetle, Diorhabda carinulata, has been widely released in the upper basin of the Colorado River to control Tamarisk in the western U.S. A primary motivation for beetle release is to salvage water that would otherwise be lost to transpiration by Tamarisk. We summarize preliminary findings of our assessment of tamarisk, beetle and avian phenology and tamarisk water usage. We used the Enhanced Vegetation Index (EVI) from the MODIS sensors on the Terra satellite to evaluate the prospects for water salvage at 15 riparian release sites in Utah, Colorado, Nevada and Wyoming. EVI was combined with meteorological data to estimate evapotranspiration (ET) at the release sites and in adjacent sites to which the beetle might have spread. ET was estimated at 16-day intervals from 2000 to 2008, encompassing pre-release and post-release periods at each site. Baseline ET rates tended to be low, from 2-6 mm d-1 in summer (less than half of potential ET). At 4 of 15 sites, ET rates estimated by MODIS EVI decreased markedly one to two years after release. At other sites, however, no decrease in ET was detected, and ET tended to recover to pre-release levels at affected sites. Ground observations confirmed that beetles were active at all sites following release, defoliating stands of Tamarisk over areas as large as 200 ha. Along approximately 300 km of the Dolores and Colorado Rivers, ground based monitoring of tamarisk defoliation and refoliation was done using hand held GPS units and GIS software. Monitoring here began at the time beetles entered the system in 2004. Selected sites (15 ha) were also monitored for beetle presence and life stage as well as tamarisk condition. Additional ground data collected at four sites on the Dolores River includes vegetation structure, composition and phenology as well as bird monitoring and productivity. The four sites are dominated by saltcedar, with components of willow and cottonwood. For the last 3 years, monthly monitoring of

  11. Towards scaling interannual ecohydrological responses of conifer forests to bark beetle infestations from individuals to landscapes

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Peckham, S. D.; Savoy, P.; Reed, D. E.; Frank, J. M.

    2013-12-01

    Widespread epidemics of forest-damaging insects have severe implications for the interconnections between water and ecosystem processes under present-day climate. How these systems respond to future climates is highly uncertain, and so there is a need for a better understanding of the effects of such disturbances on plant hydraulics, and the consequent effects on ecosystem processes. Moreover, large-scale manifestations of such disturbances require scaling knowledge obtained from individual trees or stands up to a regional extent. This requires a conceptual framework that integrates physical and biological processes that are immutable and scalable. Indeed, in Western North America multiple conifer species have been impacted by the bark beetle epidemic, but the prediction of such widespread outbreaks under changing environmental conditions must be generalized from a relatively small number of ground-based observations. Using model-data fusion we examine the fundamental principles that drive ecological and hydrological responses to bark beetles infestation from individuals to regions. The study includes a mid-elevation (2750 m a.s.l) lodgepole pine forest and higher (3190 m a.s.l.) elevation Engelmann spruce - fir forest in southern Wyoming. The study included a suite of observations, comprising leaf gas exchange, non-structural carbon (NSC), plant hydraulics, including sap flux transpiration (E), vulnerability to cavitation, leaf water potentials, and eddy covariance, were made pre-, during-, and post-disturbance, as the bark beetle infestation moved through these areas. Numerous observations tested hypotheses generated by the Terrestrial Regional Ecosystem Exchange Simulator (TREES), which integrates soil hydraulics and dynamic tree hydraulics (cavitation) with canopy energy and gas exchange, and operates at scales from individuals to landscapes. TREES accurately predicted E and NSC dynamics among individuals spanning pre- and post-disturbance periods, with the 95

  12. Polarization Diversity for HF Ground Wave Radar

    Institute of Scientific and Technical Information of China (English)

    QIAO Xiaolin; JIN Ming

    2001-01-01

    A new method of single sample polar-ization filtering is proposed.The algorithm is fast andsuitable for the polarization processing of stationaryor nonstationary polarized disturbed signals with oneor more independent sources of disturbance.An HFground wave polarimetric radar with the ability of ra-dio disturbance suppression is then introduced.Somenumerical results demonstrate the effectiveness of sin-gle sample polarization filtering method for groundwave polarimetric radar.

  13. Epigenetic Mechanisms Underlying Developmental Plasticity in Horned Beetles

    Directory of Open Access Journals (Sweden)

    Sophie Valena

    2012-01-01

    Full Text Available All developmental plasticity arises through epigenetic mechanisms. In this paper we focus on the nature, origins, and consequences of these mechanisms with a focus on horned beetles, an emerging model system in evolutionary developmental genetics. Specifically, we introduce the biological significance of developmental plasticity and summarize the most important facets of horned beetle biology. We then compare and contrast the epigenetic regulation of plasticity in horned beetles to that of other organisms and discuss how epigenetic mechanisms have facilitated innovation and diversification within and among taxa. We close by highlighting opportunities for future studies on the epigenetic regulation of plastic development in these and other organisms.

  14. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    Energy Technology Data Exchange (ETDEWEB)

    Biro, L.P., E-mail: biro@mfa.kfki.h [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, POB 49 (Hungary)

    2010-05-25

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  15. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    Science.gov (United States)

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  16. Genome-Wide Survey of Nuclear Protein-Coding Markers for Beetle Phylogenetics and Their Application in Resolving both Deep and Shallow-Level Divergences.

    Science.gov (United States)

    Che, Li-Heng; Zhang, Shao-Qian; Li, Yun; Liang, Dan; Pang, Hong; Ślipiński, Adam; Zhang, Peng

    2017-03-03

    Beetles (Coleoptera) are the most diverse and species-rich insect group, representing an impressive explosive radiation in the evolutionary history of insects, and their evolutionary relationships are often difficult to resolve. The amount of "traditional markers" (e.g., mitochondrial genes and nuclear rDNAs) for beetle phylogenetics is small and these markers often lack sufficient signals in resolving relationships for such a rapidly radiating lineage. Here, based on the available genome data of beetles and other related insect species, we performed a genome-wide survey to search nuclear protein-coding (NPC) genes suitable for research on beetle phylogenetics. As a result, we identified 1470 candidate loci, which provided a valuable data resource to the beetle evolutionary research community for NPC marker development. We randomly chose 180 candidate loci from the database to design primers and successfully developed 95 NPC markers which can be PCR amplified from standard genomic DNA extracts. These new nuclear markers are universally applicable across Coleoptera, with an average amplification success rate of 90%. To test the phylogenetic utility, we used them to investigate the backbone phylogeny of Coleoptera (18 families sampled) and the family Coccinellidae (39 species sampled). Both phylogenies are well resolved (average bootstrap support > 95%), showing that our markers can be used to address phylogenetic questions of various evolutionary depth (from species level to family level). In general, the newly developed nuclear markers are much easier to use and more phylogenetically informative than the "traditional markers", and show great potential to expedite resolution of many parts in the Beetle Tree of Life. This article is protected by copyright. All rights reserved.

  17. Dew condensation on desert beetle skin.

    Science.gov (United States)

    Guadarrama-Cetina, J; Mongruel, A; Medici, M-G; Baquero, E; Parker, A R; Milimouk-Melnytchuk, I; González-Viñas, W; Beysens, D

    2014-11-01

    Some tenebrionind beetles inhabiting the Namib desert are known for using their body to collect water droplets from wind-blown fogs. We aim to determine whether dew water collection is also possible for desert insects. For this purpose, we investigated the infra-red emissivity, and the wetting and structural properties, of the surface of the elytra of a preserved specimen of Physasterna cribripes (Tenebrionidæ) beetle, where the macro-structure appears as a series of "bumps", with "valleys" between them. Dew formation experiments were carried out in a condensation chamber. The surface properties (infra-red emissivity, wetting properties) were dominated by the wax at the elytra surface and, to a lower extent, its micro-structure. We performed scanning electron microscope on histological sections and determined the infra-red emissivity using a scanning pyrometer. The emissivity measured (0.95±0.07 between 8-14 μm) was close to the black body value. Dew formation occurred on the insect's elytra, which can be explained by these surface properties. From the surface coverage of the condensed drops it was found that dew forms primarily in the valleys between the bumps. The difference in droplet nucleation rate between bumps and valleys can be attributed to the hexagonal microstructure on the surface of the valleys, whereas the surface of the bumps is smooth. The drops can slide when they reach a critical size, and be collected at the insect's mouth.

  18. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... infrastructures that utilize large databases with detailed individual-level information for targeting voters, and armies of dedicated volunteers and paid part-timers. Nielsen challenges the notion that political communication in America must be tightly scripted, controlled, and conducted by a select coterie...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  19. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity.

    Science.gov (United States)

    Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M

    2014-04-01

    Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. © 2013 Society for Conservation Biology.

  20. Flexible Wing Kinematics of a Free-Flying Beetle (Rhinoceros Beetle Trypoxylus Dichotomus)

    Institute of Scientific and Technical Information of China (English)

    Tien Van Truong; Tuyen Quang Le; Doyoung Byun; Hoon Choel Park; Minjun Kim

    2012-01-01

    Detailed 3-Dimensional (3D) wing kinematics was experimentally presented in free flight of a beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and flexible hind wings.The kinematic parameters such as the wing tip trajectory,angle of attack and camber deformation were obtained from a 3D reconstruction technique that involves the use of two synchronized high-speed cameras to digitize various points marked on the wings.Our data showed outstanding characteristics of deformation and flexibility of the beetle's hind wing compared with other measured insects,especially in the chordwise and spanwise directions during flapping motion.The hind wing produced 16% maximum positive camber deformation during the downstroke.It also experienced twisted shape showing large variation of the angle of attack from the root to the tip during the upstroke.

  1. A survey of carrion beetles on Seier National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Seier National Wildlife Refuge personnel conducted an inventory of flora and fauna found on the Refuge in 2011. The federally endangered American burying beetle...

  2. Pheromone Chemistry of the Smaller European Elm Bark Beetle.

    Science.gov (United States)

    Beck, Keith

    1978-01-01

    Discusses the aggregation pheromone of the smaller European elm bark beetle, Scolytus multistriatus (Marsham), with emphasis on information that could be used in the classroom as a practical application of organic chemistry. (Author/GA)

  3. Physiological benefits of nectar-feeding by a predatory beetle

    Science.gov (United States)

    Extrafloral nectar is an important food source for many animals, including predatory lady beetles (Coleoptera: Coccinellidae), although the physiological benefits of nectar consumption are poorly understood for most consumers. Under laboratory conditions, we confined new females of Coleomegilla macu...

  4. The artificial beetle, or a brief manifesto for engineered biomimicry

    Science.gov (United States)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  5. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  6. Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot?

    OpenAIRE

    Edwards, F.A.; D. P. Edwards; Larsen, T H; Hsu, W W; Benedick, S; Chung, A.; Vun Khen, C; Wilcove, D S; Hamer, K C

    2013-01-01

    Forests in Southeast Asia are rapidly being logged and converted to oil palm. These changes in land-use are known to affect species diversity but consequences for the functional diversity of species assemblages are poorly understood. Environmental filtering of species with similar traits could lead to disproportionate reductions in trait diversity in degraded habitats. Here, we focus on dung beetles, which play a key role in ecosystem processes such as nutrient recycling and seed dispersal. W...

  7. Vertical and seasonal distribution of flying beetles in a suburban temperate deciduous forest collected by water pan trap

    Institute of Scientific and Technical Information of China (English)

    AMINSETYOLEKSONO; KENTATAKADA; SHINSAKUKOJI; NOBUKAZUNAKAGOSHI; TJANDRAANGGRAENI; KOJINAKAMURA

    2005-01-01

    Vertical and seasonal distributions of flying beetles were investigated in asuburban temperate deciduous forest in Kanazawa, Japan using water pan traps to determine the abundance and composition among vertical strata, change in the abundance and composition through seasons and determinant factors in generating the distributions. Traps were placed at three levels (0.5 m, 10 m, and 20 m above ground) on a tower. Samplings were carried out seasonally from May to November in 1999 and 2000. Variations in the abundance of flying beetles were observed from different layers. The results showed that the abundance and composition of flying beetles varied among strata and seasons. In both 1999 and 2000,Elateridae was consistently most abundant in the bottom layer, while Attelabidae and Cantharidae were most abundant in the upper layer. In 1999, Eucnemidae and overall scavengers were most abundance in the bottom layer, but results were not consistent with those in 2000. In general, the abundance of herbivores reaches a peak in the early season(May/June) and decreases in the following months. Peaks of abundance in predators vary vertically. In the bottom layer a peak was observed in the early season (May/June), while in the upper layer this was observed in July. Scavengers had two peaks, in May/June and September. These patterns indicated that vertical distributions in the abundance of differentfeeding guilds varied through seasons.

  8. Bacteriome-localized intracellular symbionts in pollen-feeding beetles of the genus Dasytes (Coleoptera, Dasytidae

    Directory of Open Access Journals (Sweden)

    Benjamin Weiss

    2016-09-01

    Full Text Available Several insect taxa are associated with intracellular symbionts that provision limiting nutrients to their hosts. Such tightly integrated symbioses are especially common in insects feeding on nutritionally challenging diets like phloem sap or vertebrate blood, but also occur in seed-eating and omnivorous taxa. Here, we characterize an intracellular symbiosis in pollen-feeding beetles of the genus Dasytes (Coleoptera, Dasytidae. High-throughput tag-encoded 16S amplicon pyrosequencing of adult D. plumbeus and D. virens revealed a single gamma-proteobacterial symbiont that amounts to 52.4-98.7% of the adult beetles’ entire microbial community. Almost complete 16S rRNA sequences phylogenetically placed the symbiont into a clade comprising Buchnera and other insect endosymbionts, but sequence similarities to these closest relatives were surprisingly low (83.4 to 87.4%. Using histological examination, three-dimensional reconstructions, and fluorescence in situ hybridization, we localized the symbionts in three mulberry-shaped bacteriomes that are associated with the mid- to hind-gut transition in adult male and female beetles. Given the specialized pollen-feeding habits of the adults that contrasts with the larvae’s carnivorous lifestyle, the symbionts may provision limiting essential amino acids or vitamins as in other intracellular symbioses, or they might produce digestive enzymes that break up the fastidious pollen walls and thereby contribute to the host’s nutrition. In either case, the presence of gamma-proteobacterial symbionts in pollen-feeding beetles indicates that intracellular mutualists are more widely distributed across insects with diverse feeding habits than previously recognized.

  9. Phylogeography of the endangered darkling beetle species of Pimelia endemic to Gran Canaria (Canary Islands).

    Science.gov (United States)

    Contreras-Días, Hermans G; Moya, Oscar; Oromí, Pedro; Juan, Carlos

    2003-08-01

    geological history of the island may have shaped the pattern of the mitochondrial genetic diversity of these beetles.

  10. Untwisting the polarization properties of light reflected by scarab beetles

    Science.gov (United States)

    McDonald, Luke T.; Finlayson, Ewan D.; Vukusic, Peter

    2015-03-01

    The spectral and angle-dependent optical properties of two scarab beetle species belonging to the genus Chrysina are presented. The species display broadband reflectivity and selectively reflect left-circularly polarized light. We use electron microscopy to detail the left-handed, twisted lamellar structure present in these biological systems and imaging scatterometry to characterize their bidirectional reflectance distribution function. We show that the broadband nature of the beetles' reflectance originates due to the range of pitch dimensions found in the structure.

  11. Pulpability of beetle-killed spruce. Forest Service research paper

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.M.; Bormett, D.W.; Sutherland, N.R.; Abubakr, S.; Lowell, E.

    1996-08-01

    Infestation of the Dendroctonus rufipennis beetle has resulted in large stands of dead and dying timber on the Kenai Peninsula in Alaska. Tests were conducted to evaluate the value of beetle-killed spruce as pulpwood. The results showed that live and dead spruce wood can be pulped effectively. The two least deteriorated classes and the most deteriorated class of logs had similar characteristics when pulped; the remaining class had somewhat poorer pulpability.

  12. Target-site resistance to pyrethroid insecticides in German populations of the cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Zimmer, Christoph T; Müller, Andreas; Heimbach, Udo; Nauen, Ralf

    2014-01-01

    Cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) is a major pest of winter oilseed rape in several European countries particularly attacking young emerging plants in autumn. Over the last several decades, pyrethroid insecticides have been foliarly applied to control flea beetle outbreaks. Recent control failures in northern Germany suggested pyrethroid resistance development in cabbage stem flea beetles, which were confirmed by resistance monitoring bioassays using lambda-cyhalothrin in an adult vial test. The purpose of this study was to investigate the presence of polymorphisms in the para-type voltage-gated sodium channel gene of P. chrysocephala known to be involved in knock-down resistance (kdr). By using a degenerate primer approach we PCR amplified part of the para-type sodium channel gene and identified in resistant flea beetles a single nucleotide polymorphism resulting in an L1014F (kdr) mutation within domain IIS6 of the channel protein, known as one of the chief pyrethroid target-site resistance mechanisms in several other pest insects. Twenty populations including four archived museum samples collected between 1945 and 1958 were analyzed using a newly developed pyrosequencing diagnostic assay. The assay revealed a kdr allele frequency of 90-100% in those flea beetle populations expressing high-level cross-resistance in discriminating dose bioassays against different pyrethroids such as lambda-cyhalothrin, tau-fluvalinate, etofenprox and bifenthrin. The presence of target-site resistance to pyrethroids in cabbage stem flea beetle is extremely worrying considering the lack of effective alternative modes of action to control this pest in Germany and other European countries, and is likely to result in major control problems once it expands to other geographies. The striking fact that cabbage stem flea beetle is next to pollen beetle, Meligethes aeneus the second coleopteran pest in European winter oilseed rape resisting

  13. Medically important beetles (insecta: coleoptera of Iran

    Directory of Open Access Journals (Sweden)

    MR Nikbakhtzadeh

    2008-01-01

    Full Text Available This study focused on coleopteran species that are responsible for the emergence of recent cases of dermatological manifestations in Iran. To the best of our knowledge, five species of the family Meloidae and nine species of the genus Paederus are by far the only beetles recognized as medically important in Iran. The staphylinids consists of Paederus ilsae, P. iliensis, P. fuscipes, P. kalalovae, P. balcanicus, P. lenkoranus, P. littoralis, P. carpathicus, P. nigricornis, while the meloids are Mylabris impressa, M. guerini, Muzimes iranicus, Alosimus smyrnensis and Epicauta sharpi. Most cases of linear dermatitis in this country occur in areas bordering the Caspian Sea. This problem is caused by beetles of the genus Paederus which are present as adults from mid-April to October with particularly high incidences from May to August. Fars (in southern Iran ranks second in number of cases of insect-induced dermatitis. The third major region in which this type of dermatitis has been recorded is Hamedan Province, in the west of the country. Meloid dermatitis showed its highest severity in 2001, when a considerable number of patients sought medical help in Toyserkan and Nahavand counties. New cases of skin blistering were reported along the Persian Gulf coast and the agent was identified as Epicauta sharpi (Coleoptera: Meloidae. In all these regions, it was observed that recorded cases of lesions coincided precisely with the yearly peaks of the beetles. Paederus fuscipes and P. kalalovae are the predominant species along the Caspian Sea shore. It appears that P. fuscipes is homogeneously distributed throughout the Caspian Sea region while the distribution of the other species is more irregular. Paederus fuscipes is probably the major agent that causes linear dermatitis in northern Iran. Whereas this disease is a rural difficulty in the south, mainly in villages or small towns, it is an urban problem in northern provinces along the Caspian Sea shore

  14. Can Airborne Laser Scanning (ALS and Forest Estimates Derived from Satellite Images Be Used to Predict Abundance and Species Richness of Birds and Beetles in Boreal Forest?

    Directory of Open Access Journals (Sweden)

    Eva Lindberg

    2015-04-01

    Full Text Available In managed landscapes, conservation planning requires effective methods to identify high-biodiversity areas. The objective of this study was to evaluate the potential of airborne laser scanning (ALS and forest estimates derived from satellite images extracted at two spatial scales for predicting the stand-scale abundance and species richness of birds and beetles in a managed boreal forest landscape. Multiple regression models based on forest data from a 50-m radius (i.e., corresponding to a homogenous forest stand had better explanatory power than those based on a 200-m radius (i.e., including also parts of adjacent stands. Bird abundance and species richness were best explained by the ALS variables “maximum vegetation height” and “vegetation cover between 0.5 and 3 m” (both positive. Flying beetle abundance and species richness, as well as epigaeic (i.e., ground-living beetle richness were best explained by a model including the ALS variable “maximum vegetation height” (positive and the satellite-derived variable “proportion of pine” (negative. Epigaeic beetle abundance was best explained by “maximum vegetation height” at 50 m (positive and “stem volume” at 200 m (positive. Our results show that forest estimates derived from satellite images and ALS data provide complementary information for explaining forest biodiversity patterns. We conclude that these types of remote sensing data may provide an efficient tool for conservation planning in managed boreal landscapes.

  15. Spectral information as an orientation cue in dung beetles

    Science.gov (United States)

    el Jundi, Basil; Foster, James J.; Byrne, Marcus J.; Baird, Emily; Dacke, Marie

    2015-01-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. PMID:26538537

  16. Fungal associates of the lodgepole pine beetle, Dendroctonus murrayanae.

    Science.gov (United States)

    Six, Diana L; de Beer, Z Wilhelm; Duong, Tuan A; Carroll, Allan L; Wingfield, Michael J

    2011-08-01

    Bark beetles are well known vectors of ophiostomatoid fungi including species of Ophiostoma, Grosmannia and Ceratocystis. In this study, the most common ophiostomatoid fungi associated with the lodgepole pine beetle, Dendroctonus murrayanae, were characterized. Pre-emergent and post-attack adult beetles were collected from lodgepole pines at four sites in British Columbia, Canada. Fungi were isolated from these beetles and identified using a combination of morphology and DNA sequence comparisons of five gene regions. In all four populations, Grosmannia aurea was the most common associate (74-100% of all beetles) followed closely by Ophiostoma abietinum (29-75%). Other fungi isolated, in order of their relative prevalence with individual beetles were an undescribed Leptographium sp. (0-13%), Ophiostoma ips (0-15%), Ophiostoma piliferum (0-11%), a Pesotum sp. (0-11%) and Ophiostoma floccosum (0-1%). Comparisons of the DNA sequences of Leptographium strains isolated in this study, with ex-type isolates of G. aurea, Grosmannia robusta, Leptographium longiclavatum, and Leptographium terebrantis, as well as with sequences from GenBank, revealed a novel lineage within the Grosmannia clavigera complex. This lineage included some of the D. murrayane isolates as well as several isolates from previous studies referred to as L. terebrantis. However, the monophyly of this lineage is not well supported and a more comprehensive study will be needed to resolve its taxonomic status as one or more novel taxa.

  17. Study of the dung beetle (Coleoptera: Scarabaeidae) community at two sites: Atlantic forest and clear-cut, Pernambuco, Brazil.

    Science.gov (United States)

    Silva, F A B; Costa, C M Q; Moura, R C; Farias, A I

    2010-04-01

    The aim of this study was to compare the dung beetle (Coleoptera, Scarabaeidae: Scarabaeinae) community structure at two sites in the Charles Darwin Ecological Refuge in Igarassu, Pernambuco, Brazil. Dung beetles were collected in 2006 using monthly samples from 48 pitfall traps baited with human dung and bovine carrion. The dung beetle communities from the study sites were compared in terms of abundance, species richness, and diversity (Shannon index). Seasonality was analyzed by Spearman correlation between rainfall data and community parameters. In total, 2,560 individuals belonging to 40 species, 16 genera, and 6 tribes were collected. Species richness was higher for the clear-cut area compared with the forest habitat. Estimators of species richness suggested a total richness of 42-47 species in the entire study area. A positive correlation was observed between monthly rainfall and total abundance of individuals for the clear-cut area but not for the forest habitat. This study contributes to a better understanding of Scarabaeinae ecology in the Atlantic rainforest of northeastern Brazil.

  18. Seasonal Succession of Fungi Associated with Ips typographus Beetles and Their Phoretic Mites in an Outbreak Region of Finland.

    Science.gov (United States)

    Linnakoski, Riikka; Mahilainen, Saila; Harrington, Alison; Vanhanen, Henri; Eriksson, Miikka; Mehtätalo, Lauri; Pappinen, Ari; Wingfield, Michael J

    2016-01-01

    The ophiostomatoid fungi (Microascales and Ophiostomatales, Ascomycota) are common associates of Ips typographus, and include tree pathogens and species responsible for blue-stain of timber. Fungal assemblages associated with I. typographus have varied considerably between studies but few investigations have attempted to explain this variation. For this reason, we assessed the overall cultivable fungal diversity associated with I. typographus in a storm-felled spruce forest in south-eastern Finland. Fungi were isolated from the individually collected beetles as well as their phoretic mites in spring, summer and autumn, including different life stages of the beetle (hibernation, dispersal flight and first generation). The internal transcribed spacer (ITS) gene region was used to identify the fungi. A total of 32 operational taxonomic units (OTUs) were found and these resided in four fungal phyla/subphyla (24 Ascomycota, 2 Basidiomycota, 5 Mucoromycotina, 1 Mortierellomycotina) in association with adult bark beetles. Ophiostomatoid species were the most commonly detected fungal associates. A generalized linear model analysis showed a clear association between fungal communities and season, indicating seasonal succession among I. typographus-associated fungi. The season of sampling appears to be an important factor that has resulted in inconsistencies between results in previous studies. Many of these fungi were also found on phoretic mites and their presence or absence could have influenced variation in patterns of association.

  19. Effect of associated fungi on the immunocompetence of red turpentine beetle larvae, Dendroctonus valens (Coleoptera: Curculionidae: Scolytinae)

    Institute of Scientific and Technical Information of China (English)

    Zhang-Hong Shi; Bo Wang; Stephen R.Clarke; Jiang-Hua Sun

    2012-01-01

    Dendroctonus-fungus symbioses are often considered as the ideal model systems to study the development and maintenance ofectosymbioses,and diverse interactions,including antagonism,commensalism and mutualism,have been documented between these organisms.The red turpentine beetle,Dendroctonus valens LeConte (Coleoptera:Curculionidae:Scolytinae) is a pine-killing invasive beetle in northern China.Fungi species Ophiostoma minus,Leptographium sinoprocerum,L.terebrantis and L.procerum were associated with this bark beetle.Antagonistic interactions between D.valens and its associated fungi,such as O.minus and L.sinoprocerum,have been demonstrated,but the underlying causes of this phenomenon are unknown.Here,we first found the two tested fungi species retarded the net weight gain of D.valens larvae after completing 3-day feeding on their media.Furthermore,we provide direct evidence indicating the effect of associated fungi on the immunocompetence of D.valens larvae to explain the documented antagonism.Our results showed that the activity of phenoloxidase and total phenoloxidase in D.valens larvae were significantly upregulated by two strains of associated fungi,O.minus and L.sinoprocerum as compared with the controls.The phenoloxidase ratio increased significantly in the larvae which had fed for 3 days on media inoculated with O.minus.Because insect immune defenses are costly to be deployed,these results could be explored as one of the underlying mechanisms of the documented antagonism.

  20. The function and evolution of male and female genitalia in Phyllophaga Harris scarab beetles (Coleoptera: Scarabaeidae).

    Science.gov (United States)

    Richmond, M P; Park, J; Henry, C S

    2016-11-01

    Genitalia diversity in insects continues to fuel investigation of the function and evolution of these dynamic structures. Whereas most studies have focused on variation in male genitalia, an increasing number of studies on female genitalia have uncovered comparable diversity among females, but often at a much finer morphological scale. In this study, we analysed the function and evolution of male and female genitalia in Phyllophaga scarab beetles, a group in which both sexes exhibit genitalic diversity. To document the interaction between male and female structures during mating, we dissected flash-frozen mating pairs from three Phyllophaga species and investigated fine-scale morphology using SEM. We then reconstructed ancestral character states using a species tree inferred from mitochondrial and nuclear loci to elucidate and compare the evolutionary history of male and female genitalia. Our dissections revealed an interlocking mechanism of the female pubic process and male parameres that appears to improve the mechanical fit of the copulatory position. The comparative analyses, however, did not support coevolution of male and female structures and showed more erratic evolution of the female genitalia relative to males. By studying a group that exhibits obvious female genitalic diversity, we were able to demonstrate the relevance of female reproductive morphology in studies of male genital diversity.

  1. Prey preference and host suitability of the predatory and parasitoid carabid beetle, Lebia grandis, for several species of Leptinotarsa beetles

    OpenAIRE

    Donald C. Weber; Rowley, Daniel L.; Greenstone, Matthew H.; Athanas, Michael M.

    2006-01-01

    Lebia grandis (Coleoptera: Carabidae), recorded as a parasitoid only on Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), is capable of parasitizing the false potato beetle, L. juncta, and also L. haldemani. Historical records show that L. decemlineata, while the only recorded host, was not present in much of the original range of L. grandis, and may not have been its host prior to its expansion into eastern North America, where L. juncta is endemic. Our laborator...

  2. Sex chromosome rearrangements in Polyphaga beetles.

    Science.gov (United States)

    Dutrillaux, A M; Dutrillaux, B

    2009-01-01

    The presence of a parachute sex chromosome bivalent (Xyp) at metaphase I of male meiosis is a well-known characteristic of Coleoptera, present in almost all families of this order and assumed to represent their ancestral sex chromosome formula. Sex chromosomes appear to be manifold more frequently involved in inter-chromosomal rearrangements than the average of the nine autosomal pairs usually forming their karyotype. This leads to various formulae such as neo-sex, multiple sex and perhaps unique sex chromosomes. These rearrangements alter the intimate association between sex chromosomes and nucleolar proteins, which are usual components of the Xyp. Different situations, selected in a series of 125 mitotic and meiotic cytogenetic studies of Polyphaga beetle species, are reported and discussed, with the aim to improve our knowledge on the mechanisms of sex chromosome rearrangements, the relationships with nucleoli and the consequences on dosage compensation and chromosome segregation.

  3. Molecular evidence of facultative intraguild predation by Monochamus titillator larvae (Coleoptera: Cerambycidae) on members of the southern pine beetle guild

    Science.gov (United States)

    Schoeller, Erich N.; Husseneder, Claudia; Allison, Jeremy D.

    2012-11-01

    The southern pine bark beetle guild (SPBG) is arguably the most destructive group of forest insects in the southeastern USA. This guild contains five species of bark beetles (Coleoptera: Curculionidae: Scolytinae): Dendroctonus frontalis, Dendroctonus terebrans, Ips avulsus, Ips calligraphus, and Ips grandicollis. A diverse community of illicit receivers is attracted to pheromones emitted by the SPBG, including the woodborers Monochamus carolinensis and Monochamus titillator (Coleoptera: Cerambycidae). These woodborers have been traditionally classified as resource competitors; however, laboratory assays suggest that larval M. carolinensis may be facultative intraguild predators of SPBG larvae. This study used polymerase chain reaction (PCR)-based molecular gut content analyses to characterize subcortical interactions between M. titillator and members of the SPBG. The half-lives of SPBG DNA were estimated in the laboratory prior to examining these interactions in the field. A total of 271 field-collected M. titillator larvae were analyzed and 26 (9.6 %) tested positive for DNA of members of the SPBG. Of these larvae, 25 (96.2 %) tested positive for I. grandicollis and one (3.8 %) for I. calligraphus. Failure to detect D. terebrans and D. frontalis was likely due to their absence in the field. I. avulsus was present, but primers developed using adult tissues failed to amplify larval tissue. Results from this study support the hypothesis that larval Monochamus spp. are facultative intraguild predators of bark beetle larvae. Additionally, this study demonstrates the capabilities of PCR in elucidating the interactions of cryptic forest insects and provides a tool to better understand mechanisms driving southern pine beetle guild population fluctuations.

  4. Attraction modulated by spacing of pheromone components and anti-attractants in a bark beetle and a moth.

    Science.gov (United States)

    Andersson, Martin N; Binyameen, Muhammad; Sadek, Medhat M; Schlyter, Fredrik

    2011-08-01

    Orientation for insects in olfactory landscapes with high semiochemical diversity may be a challenging task. The partitioning of odor plumes into filaments that are interspersed with pockets of 'clean air' may help filament discrimination and upwind flight to attractive sources in the face of inhibitory signals. We studied the effect of distance between odor sources on trap catches of the beetle, Ips typographus, and the moth, Spodoptera littoralis. Insects were tested both to spatially separated pheromone components [cis-verbenol and 2-methyl-3-buten-2-ol for Ips; (Z,E)-9,11-tetradecadienyl acetate and (Z,E)-9,12-tetradecadienyl acetate for Spodoptera], and to separated pheromone and anti-attractant sources [non-host volatile (NHV) blend for Ips; (Z)-9-tetradecenyl acetate for Spodoptera]. Trap catch data were complemented with simulations of plume structure and plume overlap from two separated sources using a photo ionization detector and soap bubble generators. Trap catches of the beetle and the moth were both affected when odor sources in the respective traps were increasingly separated. However, this effect on trap catch occurred at smaller (roughly by an order of magnitude) odor source separation distances for the moth than for the beetle. This may reflect differences between the respective olfactory systems and central processing. For both species, the changes in trap catches in response to separation of pheromone components occurred at similar spacing distances as for separation of pheromone and anti-attractant sources. Overlap between two simulated plumes depended on distance between the two sources. In addition, the number of detected filaments and their concentration decreased with downwind distance. This implies that the response to separated odor sources in the two species might take place under different olfactory conditions. Deploying multiple sources of anti-attractant around a pheromone trap indicated long-distance (meter scale) effects of NHV on

  5. Saproxylic beetles in non-intervention and coppice-with-standards restoration management in Meerdaal forest (Belgium: an exploratory analysis

    Directory of Open Access Journals (Sweden)

    Vandekerkhove K

    2016-08-01

    Full Text Available For many centuries, coppice-with-standards management was applied in the mixed oak stands of Meerdaal forest (Belgium. Over the last century, these stands were gradually converted to high forest. On an area of 20 ha, the coppice-with-standards management is being restored, with specific adaptations for biodiversity (conservation of dead wood and veteran trees. A survey of saproxylic beetles was performed at 8 locations in the forest, including one site within the coppice-with-standards restoration. This survey not only allowed an evaluation of the saproxylic beetle richness of the forest complex, but also made exploratory observations on the effect of this type of management, as compared to non-intervention, on species richness and composition of saproxylic beetles. The results show that the overall species richness in the forest complex was quite high and comparable to forest reserves in Germany. Both coppice-with-standards and high forest options appear to be equally species-rich, but consist of different communities, both containing specific, rare and notable species, with more thermophilous and light-demanding species in the coppice-with-standards plot. Based on these observations we suggest that a diversified management approach may be the most suitable to conserve and enhance diverse saproxylic beetle communities in formerly intensively managed semi-natural woodlands. This could include areas of active conservation management aimed at producing open-canopy stands with considerable amounts of sun-exposed deadwood, combined with areas of non-intervention in a matrix of multifunctional forests, where conservation of dead wood and veteran trees is fully incorporated in the management.

  6. Oviposition by small hive beetles elicits hygienic responses from Cape honeybees.

    Science.gov (United States)

    Ellis, J D; Richards, C S; Hepburn, H R; Elzen, P J

    2003-11-01

    Two novel behaviours, both adaptations of small hive beetles ( Aethina tumida Murray) and Cape honeybees ( Apis mellifera capensis Esch.), are described. Beetles puncture the sides of empty cells and oviposit under the pupae in adjoining cells. However, bees detect this ruse and remove infested brood (hygienic behaviour), even under such well-disguised conditions. Indeed, bees removed 91% of treatment brood (brood cells with punctured walls caused by beetles) but only 2% of control brood (brood not exposed to beetles). Only 91% of treatment brood actually contained beetle eggs; the data therefore suggest that bees remove only that brood containing beetle eggs and leave uninfected brood alone, even if beetles have accessed (but not oviposited on) the brood. Although this unique oviposition strategy by beetles appears both elusive and adaptive, Cape honeybees are able to detect and remove virtually all of the infested brood.

  7. Biology, Behavior, and Management of Ambrosia Beetles Attacking Ornamental Nursery Stock

    Science.gov (United States)

    Ambrosia beetles are being increasingly recognized as significant pests of field-grown ornamental nursery stock. Two species are especially problematic in ornamental nurseries, namely the black stem borer, Xylosandrus germanus, and the granulate ambrosia beetle, Xylosandrus crassiusculus. Ambrosia b...

  8. Status Report for South Dakota Refuges: American Burying Beetle Searches, 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memo describes the efforts made throughout South Dakota attempting to locate American Burying Beetles. No beetles were found, but plans for a 1996 involve a...

  9. 2004 American Burying Beetle Annual Report - Pond Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Survey efforts for the endangered American Burying Beetle at Pond Creek NWR in 2004 are reported from 14 sampling locations on the refuge. American buring beetle was...

  10. Functional anatomy of the explosive defensive system of bombardier beetles (Coleoptera, Carabidae, Brachininae).

    Science.gov (United States)

    Di Giulio, Andrea; Muzzi, Maurizio; Romani, Roberto

    2015-09-01

    This paper provides the first comparative anatomical study of the explosive pygidial defensive system of bombardier beetles in species classified in three brachinine subtribes: Brachinus (Brachinina), Pheropsophus (Pheropsophina) and Aptinus (Aptinina). We investigated the morphology and ultrastructure of this system using optical, fluorescence, and focused ion beam (FIB/SEM) microscopy. In doing so, we characterized and comparatively discussed: (1) the ultrastructure of the gland tissues producing hydroquinones and hydrogen peroxide (secretory lobes), and those producing catalases and peroxidases (accessory glands); (2) the complex anatomy of the collecting duct; (3) the arrangement of the muscular bundles and the folding of the cuticle of the reservoir, suggesting a functional division of this chamber (dynamic part and storage part); (4) the great structural diversity of sculpticles inside the reaction chamber, where we could recognize six main types of microsculpture located in specific districts of the chamber. Additionally, using fluorescence microscopy, we highlighted the presence of resilin in two structures strongly subjected to mechanical stress during the discharge, the valve and the turrets of the reaction chamber. The results of this paper give a solid anatomic overview of the most popular beetle defensive system, contributing to the debate on its evolution within the Carabidae.

  11. Spatial and environmental correlates of species richness and turnover patterns in European cryptocephaline and chrysomeline beetles.

    Science.gov (United States)

    Freijeiro, Andrea; Baselga, Andrés

    2016-01-01

    Despite some general concordant patterns (i.e. the latitudinal richness gradient), species richness and composition of different European beetle taxa varies in different ways according to their dispersal and ecological traits. Here, the patterns of variation in species richness, composition and spatial turnover are analysed in European cryptocephaline and chrysomeline leaf beetles, assessing their environmental and spatial correlates. The underlying rationale to use environmental and spatial variables of diversity patterns is to assess the relative support for niche- and dispersal-driven hypotheses. Our results show that despite a broad congruence in the factors correlated with cryptocephaline and chrysomeline richness, environmental variables (particularly temperature) were more relevant in cryptocephalines, whereas spatial variables were more relevant in chrysomelines (that showed a significant longitudinal gradient besides the latitudinal one), in line with the higher proportion of flightless species within chrysomelines. The variation in species composition was also related to environmental and spatial factors, but this pattern was better predicted by spatial variables in both groups, suggesting that species composition is more linked to dispersal and historical contingencies than species richness, which would be more controlled by environmental limitations. Among historical factors, Pleistocene glaciations appear as the most plausible explanation for the steeper decay in assemblage similarity with spatial distance, both in cryptocephalines and chrysomelines.

  12. Uncommon formation of two antiparallel sperm bundles per cyst in tenebrionid beetles (Coleoptera)

    Science.gov (United States)

    Dias, Glenda; Yotoko, Karla S. C.; Gomes, Luiz F.; Lino-Neto, José

    2012-09-01

    Several species of Tenebrionidae are stored-grain pests. Since they belong to a specious family, the systematics of these beetles is still in doubt. In insects, spermatogenesis and the spermatozoa exhibit great diversity, and are therefore commonly used in phylogenetic and taxonomic analyses. During the spermatogenetic process in these organisms, the cells originating from a single spermatogonium develop synchronically in groups referred to as cysts. At the end of this process, there is usually only one sperm bundle per cyst, with all the cells in the same orientation. This paper details the spermiogenesis of the tenebrionid beetles Tenebrio molitor, Zophobas confusa, Tribolium castaneum and Palembus dermestoides using whole mount and histological sections of the cysts. In these species, spermatogenesis is similar to that which occurs in most insects. However, during spermiogenesis, the nuclei of the spermatids migrate to two opposite regions at the periphery of the cyst, leading to the uncommon formation of two bundles of spermatozoa per cyst. This feature is possibly an apomorphy for Tenebrionidae.

  13. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. I. General part and allometry.

    Science.gov (United States)

    Frantsevich, Leonid; Gorb, Stanislav; Radchenko, Vladimir; Gladun, Dmytro; Polilov, Alexey

    2014-11-01

    In this first of three articles we show the construction of the articular part of the elytron, the root. The root bears a conspicuous field of campaniform sensilla. This field was studied using light and scanning electron microscopes. The diversity of shape of the field among beetles, types of orientation of elongated sensilla within the field, individual variability of their number among conspecifics are demonstrated. Elongated sensilla point to the junction of the elytron with the second axillary plate. Presumably, they monitor twist movement in this junction, which is possible if the elytron is open. The goal of the whole project is to reveal the effect of both structure and function of the hind wings and elytra on the morphology of this mechanosensory field. Our data on allometric relationships between the animal size and quantitative characteristics of the field in normally flying beetles provide an important background for further functional analysis of this sensory organ. We selected 14 series of several species belonging to the same taxon but differing in size from big to small. It is revealed that the area of the sensory field is directly proportional to the elytral area, whereas the number of sensilla is proportional to the square root of the elytral area. Despite the great range in the elytral area (1500 times) in series of selected species the area of an external pit or cap of a single sensillum varies only 25-fold. The density of sensilla per unit area of the sensory field increases with decrease of the elytral area.

  14. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).

    Science.gov (United States)

    Rasmann, Sergio; Agrawal, Anurag A

    2011-06-01

    Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.

  15. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals.

    Science.gov (United States)

    Ahrens, Dirk; Schwarzer, Julia; Vogler, Alfried P

    2014-09-22

    Extant terrestrial biodiversity arguably is driven by the evolutionary success of angiosperm plants, but the evolutionary mechanisms and timescales of angiosperm-dependent radiations remain poorly understood. The Scarabaeoidea is a diverse lineage of predominantly plant- and dung-feeding beetles. Here, we present a phylogenetic analysis of Scarabaeoidea based on four DNA markers for a taxonomically comprehensive set of specimens and link it to recently described fossil evidence. The phylogeny strongly supports multiple origins of coprophagy, phytophagy and anthophagy. The ingroup-based fossil calibration of the tree widely confirmed a Jurassic origin of the Scarabaeoidea crown group. The crown groups of phytophagous lineages began to radiate first (Pleurostict scarabs: 108 Ma; Glaphyridae between 101 Ma), followed by the later diversification of coprophagous lineages (crown-group age Scarabaeinae: 76 Ma; Aphodiinae: 50 Ma). Pollen feeding arose even later, at maximally 62 Ma in the oldest anthophagous lineage. The clear time lag between the origins of herbivores and coprophages suggests an evolutionary path driven by the angiosperms that first favoured the herbivore fauna (mammals and insects) followed by the secondary radiation of the dung feeders. This finding makes it less likely that extant dung beetle lineages initially fed on dinosaur excrements, as often hypothesized. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. NEW DATA ABOUT COMPOSITION, GEOGRAPHIC DISTRIBUTION AND POSSIBLE WAYS OF FORMING OF DARKLING BEETLES FAUNA (COLEOPTERA: TENEBRIONIDAE IN PERI-CASPIAN AND ISLAND CASPIAN ECOSYSTEMS. PART 1

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2014-01-01

    Full Text Available Abstract. Aim is study of biological diversity of the Caspian coasts and islands ecosystems, the composition, especially geographical distribution and possible ways of forming of darkling beetles fauna (Coleoptera: Tenebrionidae.Methods. We used the traditional methods of collecting (hand collecting, soil traps, light traps, processing and material definition. List discussed tenebrionid fauna is composed using Abdurakhmanov and Medvedev (1994, Abdurakhmanov and Nabozhenko (2011.Results. The paper includes a comparative analysis of darkling beetles (341 species of 17 regions of 5 Caspian countries. Diversity of Tenebrionidae of the Caspian islands Chechen (32 species, Tyuleniy (29 species, Nordovyi (24 species, Kulaly (16 species is discussed for the first time. Faunistic base of discussed ecosystems includes species with turanian (sensu lato, 204 species, steppe (42 species, caucasian (30 species, including subendemics of the Caucasus, mediterranean (19 species, western asian (17 species biogeographic complexes with background of widespread euro-siberian, transpalearctic, paleotropical species. Сonnections and relations of regional and island faunas are discussed.Main conclusions. Results of the study will be a step in the determination of age of the islands through the biological diversity and the coastal level regime of the Caspian Sea, as well as possible changes in the population structure of darkling beetles (Coleoptera: Tenebrionidae on island ecosystems.

  17. Effects of ecological flooding on the temporal and spatial dynamics of carabid beetles (Coleoptera, Carabidae and springtails (Collembola in a polder habitat

    Directory of Open Access Journals (Sweden)

    Tanja Lessel

    2011-05-01

    Full Text Available Within the scope of the Integrated Rhine Program an ecological flood gate and channel was inserted into the polder “Ingelheim” to enhance animal and plant diversity. In 2008, carabid beetles and springtails were collected, using pitfall traps, to measure the effects of ecological flooding and a strong precipitation event at a flood-disturbed and a dry location in this area. At both localities, xerophilic and mesophilic carabid beetle species were dominant throughout the study period. The total number of individuals of hygrophilic species was comparatively constant, while species number increased, partly due to the changed moisture conditions caused by ecological flooding and strong precipitation. Carabid beetle diversity and evenness decreased marginally when ecological flooding was absent. Springtails represent a less mobile arthropod order, and as such the impact of ecological flooding was stronger. An increase in both numbers of species and individuals of hygrophilic and hygrotolerant species occurred in the flood-disturbed location after ecological flooding. After the sites at both locations had dried, the number of individuals belonging to these species declined rapidly. In contrast to carabid species, the strong precipitation event showed no influence on hygrophilic springtail species. Thus, collembolan diversity and evenness decreased markedly in the absence of flooding. We showed that ecological flooding has an influence on the spatial and temporal dynamics of different arthropod groups that inhabit the polder “Ingelheim”. These findings demonstrate the importance of using different arthropod groups as bioindicators in determining the ecological value of a particular polder design.

  18. Effects of ecological flooding on the temporal and spatial dynamics of carabid beetles (Coleoptera, Carabidae) and springtails (Collembola) in a polder habitat.

    Science.gov (United States)

    Lessel, Tanja; Marx, Michael Thomas; Eisenbeis, Gerhard

    2011-01-01

    Within the scope of the Integrated Rhine Program an ecological flood gate and channel was inserted into the polder "Ingelheim" to enhance animal and plant diversity. In 2008, carabid beetles and springtails were collected, using pitfall traps, to measure the effects of ecological flooding and a strong precipitation event at a flood-disturbed and a dry location in this area. At both localities, xerophilic and mesophilic carabid beetle species were dominant throughout the study period. The total number of individuals of hygrophilic species was comparatively constant, while species number increased, partly due to the changed moisture conditions caused by ecological flooding and strong precipitation. Carabid beetle diversity and evenness decreased marginally when ecological flooding was absent. Springtails represent a less mobile arthropod order, and as such the impact of ecological flooding was stronger. An increase in both numbers of species and individuals of hygrophilic and hygrotolerant species occurred in the flood-disturbed location after ecological flooding. After the sites at both locations had dried, the number of individuals belonging to these species declined rapidly. In contrast to carabid species, the strong precipitation event showed no influence on hygrophilic springtail species. Thus, collembolan diversity and evenness decreased markedly in the absence of flooding. We showed that ecological flooding has an influence on the spatial and temporal dynamics of different arthropod groups that inhabit the polder "Ingelheim". These findings demonstrate the importance of using different arthropod groups as bioindicators in determining the ecological value of a particular polder design.

  19. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages.

    Science.gov (United States)

    Briones-Roblero, Carlos Iván; Hernández-García, Juan Alfredo; Gonzalez-Escobedo, Roman; Soto-Robles, L Viridiana; Rivera-Orduña, Flor N; Zúñiga, Gerardo

    2017-01-01

    Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect's life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in β-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions.

  20. Population Status of Blister Beetle during Monsoon in Victoria Park Reserved Forest, Bhavnagar, Gujarat

    OpenAIRE

    B. M. Gohil; Devendra Solanki

    2013-01-01

    The Blister Beetles are widely distributed in the world. They have serious impacts, whether agronomic, veterinary or medical. The present investigation was carried out to know about population scenario of Blister Beetle in a reserve forest. Blister Beetle has special affinity to some plant species in particular season due to availability of food. In present study density of Blister Beetle was checked in form of density and its affinity towards plant Abutilon theophrastic was measured by RPE i...

  1. New species and new records of Pterosthetops: eumadicolous water beetles of the South African Cape (Coleoptera, Hydraenidae).

    Science.gov (United States)

    Bilton, David T

    2014-06-05

    Pterosthetops is one of a number of hydraenid genera endemic to the Cape of South Africa, whose minute moss beetle fauna is amongst the most diverse on earth. Here seven species are described as new: Pterosthetops baini sp. nov., Pterosthetops coriaceus sp. nov., Pterosthetops indwei sp. nov., Ptersothetops pulcherrimus sp. nov., Pterosthetops swartbergensis sp. nov., Pterosthetops tuberculatus sp. nov. and Pterosthetops uitkyki sp. nov., all from mountains in the Western Cape region. New collection records are also provided for all five previously described members of the genus, together with a revised key. Pterosthetops appear to be specialist inhabitants of seepages over rock faces (hygropetric/madicolous habitats), rarely being found outside such situations.

  2. Leaf beetle (Chrysomelidae: Coleoptera) assemblages in a mosaic of natural and altered areas in the Brazilian cerrado.

    Science.gov (United States)

    Pimenta, M; De Marco, P

    2015-06-01

    In landscape mosaics, species may use different vegetation types or be restricted to a single vegetation type or land-use feature highlighting the importance of the interaction of species requirements and environmental heterogeneity. In these systems, the determination of the overall pattern of β-diversity can indicate the importance of the environmental heterogeneity on diversity patterns. Here, we evaluate leaf beetles (Coleoptera: Chrysomelidae) as habitat quality bioindicators in a system with varying intensities of human impacts and different phyto-physiognomies (from open field to forests). We collected 1117 leaf beetles belonging to 245 species, of which 12 species and 5 genus were considered possible bioindicators based on IndVal measures. Higher species richness was observed in forests and regenerating fields, and habitats with lower species richness included pastures, mines, and veredas. Natural fields, regenerating fields, natural cerrado, and forest had higher values of β-diversity. Bioindicator systems that include not only species richness and abundance but also assemblage composition are needed to allow for a better understanding of Chrysomelidae response to environmental disturbance.

  3. Distance and sex determine host plant choice by herbivorous beetles.

    Directory of Open Access Journals (Sweden)

    Daniel J Ballhorn

    Full Text Available BACKGROUND: Plants respond to herbivore damage with the release of volatile organic compounds (VOCs. This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? METHODOLOGY: We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis when facing lima bean plants (Fabaceae: Phaseolus lunatus with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. CONCLUSION: Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores

  4. Salmonella recovery from broilers and litter following gavage with Salmonella colonized darkling beetles and larvae.

    Science.gov (United States)

    Transmission of Salmonella to broiler chicks with Salmonella colonized darkling beetles or larvae was evaluated by sampling litter and ceca during growout. In two trials, 1 or 2 day-of-hatch broiler chicks (in a pen of 40) were gavaged with either 4 darkling beetles, 4 beetle larvae, or 0.1 mL pept...

  5. Mountain pine beetle attack in ponderosa pine: Comparing methods for rating susceptibility

    Science.gov (United States)

    David C. Chojnacky; Barbara J. Bentz; Jesse A. Logan

    2000-01-01

    Two empirical methods for rating susceptibility of mountain pine beetle attack in ponderosa pine were evaluated. The methods were compared to stand data modeled to objectively rate each sampled stand for susceptibly to bark-beetle attack. Data on bark-beetle attacks, from a survey of 45 sites throughout the Colorado Plateau, were modeled using logistic regression to...

  6. Mountain pine beetle population sampling: inferences from Lindgren pheromone traps and tree emergence cages

    Science.gov (United States)

    Barbara J. Bentz

    2006-01-01

    Lindgren pheromone traps baited with a mountain pine beetle (Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae)) lure were deployed for three consecutive years in lodgepole pine stands in central Idaho. Mountain pine beetle emergence was also monitored each year using cages on infested trees. Distributions of beetles caught in...

  7. Losses of red-cockaded woodpecker cavity trees to southern pine beetles

    Science.gov (United States)

    Richard N. Conner; D. Craig Rudolph

    1995-01-01

    Over an 1 l-year period (1983-1993), we examined the southern pine beetle (Dendroctonus frontalis) infestation rate of single Red-cockaded Woodpecker (Picoides borealis) cavity trees on the Angelina National Forest in Texas. Southern pine beetles infested and killed 38 cavity trees during this period. Typically, within each cavity tree cluster, beetles infested only...

  8. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and...

  9. Olfaction in the Colorado beetle at the onset of host plant selection

    NARCIS (Netherlands)

    Visser, J.H.

    1979-01-01

    Long-range olfactory orientation of the adult Colorado beetle was studied in a low- speed wind tunnel. The odour of fully grown potato plants elicits an upwind locomotory response in Colorado beetles (odour-conditioned positive anemotaxis), and increases the beetles' speed of locomotion (direct chem

  10. Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection.

    Science.gov (United States)

    Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir

    2016-09-01

    Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores.

  11. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae).

    Science.gov (United States)

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.