WorldWideScience

Sample records for ground beetle biodiversity

  1. Habitat preferences of ground beetle (Coleoptera: Carabidae) species in the northern Black Hills of South Dakota.

    Science.gov (United States)

    Bergmann, David J; Brandenburg, Dylan; Petit, Samantha; Gabel, Mark

    2012-10-01

    Ground beetles (Coleoptera: Carabidae) are a major component of terrestrial invertebrate communities and have been used as bioindicators of habitat change and disturbance. The Black Hills of South Dakota is a small area with a high biodiversity, but the ground beetles of this region are little studied. The habitat preferences of ground beetles in the Black Hills are unknown, and baseline data must be collected if these beetles are to be used in the future as bioindicators. Ground beetles (Coleoptera: Carabidae) were collected from pitfall traps at two sites in each of five kinds of habitats (grassland, bur oak-ironwood forests, ponderosa pine-common juniper forests, aspen-pine forests, and a spruce forest) from which habitat structure characteristics and plant abundance data also were collected. In total, 27 species of ground beetles were identified. Although some species, such as Dicaelus sculptilis Say were found in most habitats, other species showed distinct habitat preferences: Poecilus lucublandus (Say) preferred oak forests, Pasimachus elongatus LeConte preferred grasslands, and Calathus ingratus Dejean preferred high-elevation aspen-pine forests. Pterostichus adstrictus Escholtz was found only in woodlands, and Carabus taedatus Say strictly in higher elevation (over 1,500 m) aspen or coniferous woods, and may represent relict populations of boreal species. Elevation, exposure to sunlight, and cover of woody plants strongly influence the structure of carabid communities in the Black Hills.

  2. Landscape patterns of species-level association between ground-beetles and overstory trees in boreal forests of western Canada (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Colin Bergeron

    2011-11-01

    Full Text Available Spatial associations between species of trees and ground-beetles (Coleoptera: Carabidae involve many indirect ecological processes, likely reflecting the function of numerous forest ecosystem components. Describing and quantifying these associations at the landscape scale is basic to the development of a surrogate-based framework for biodiversity monitoring and conservation. In this study, we used a systematic sampling grid covering 84 km2 of boreal mixedwood forest to characterize the ground-beetle assemblage associated with each tree species occurring on this landscape. Projecting the distribution of relative basal area of each tree species on the beetle ordination diagram suggests that the carabid community is structured by the same environmental factors that affects the distribution of trees, or perhaps even by trees per se. Interestingly beetle species are associated with tree species of the same rank order of abundance on this landscape, suggesting that conservation of less abundant trees will concomitantly foster conservation of less abundant beetle species. Landscape patterns of association described here are based on characteristics that can be directly linked to provincial forest inventories, providing a basis that is already available for use of tree species as biodiversity surrogates in boreal forest land management.

  3. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  4. The ground-beetles (Coleoptera, Carabidae) of Nukatlinskiy watershed

    OpenAIRE

    G. M. Nahibasheva; Sh. M. Imanaliev

    2008-01-01

    The article is devoted to studying of ground-beetles fauna of Nukatlinskiy watershed of Republic Dagestan. For the first time the specific structure of ground-beetles this area, the numbering 109 kinds concerning 31 sort is resulted. The analysis of sexual structure of populations and seasonal dynamics of activity ground-beetles is lead.

  5. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    Science.gov (United States)

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  6. Quantifying beetle-macrofungal associations in a temperate biodiversity hot spot.

    Science.gov (United States)

    Epps, Mary Jane; Arnold, A Elizabeth

    2018-01-29

    Beetles (Coleoptera) are often among the most abundant and diverse insects that feed on sporocarps of macrofungi, but little is known regarding their relative specialism or generalism in most communities. We surveyed >9000 sporocarps in montane hardwood forest in the Appalachian Mountains (USA) to characterize associations of mycophagous beetles and macrofungi. We used traditional metrics and network analyses to quantify relationships between sporocarp traits (mass, age, persistence, and toughness) and assemblages of adult beetles, drawing from >50 000 beetles collected over two survey years. Strict-sense specificity was rare in these associations: most beetle species were found on multiple fungal genera, and most fungi hosted multiple beetle species. Sporocarp age and fresh mass were positively associated with beetle diversity in fungi with ephemeral sporocarps (here including 12 genera of Agaricales and Russulales), but sporocarp persistence was not. In Polyporales, beetle diversity was greater in softer sporocarps than in tough or woody sporocarps. The increase of beetle diversity in aging sporocarps could not be attributed to increases in sporocarp mass or sampling point in the growing season, suggesting that age-related changes in chemistry or structure may support increasingly diverse beetle communities. Interaction networks differed as a function of sporocarp age, revealing that community-wide measures of generalism (i.e., network connectance) and evenness (i.e., variance in normalized degree) change as sporocarps mature and senesce. Beetles observed on Agaricales and Russulales with more persistent sporocarps had narrower interaction breadth (i.e., were more host-specific) than those on less persistent sporocarps, and beetles on Polyporales with tougher sporocarps had narrower interaction breadth than those on soft sporocarps. In addition to providing a large-scale evaluation of sporocarp use by adult beetles in this temperate biodiversity hot spot, this

  7. Ground beetle populations near a kraft mill

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, R.; Hastings, L.; Mercer, W.R.; Smith, A.

    1973-02-01

    Twenty species of ground beetles (Family Carabidae) and one species of carrion beetle (Family Silphidae) were collected in six stations east of a kraft paper mill in Thunder Bay, Ontario, from May to August, 1971. The beetle population decreased markedly towards the mill. There was no apparent statistical difference in size variation of specimens near the mill and those further away.

  8. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Directory of Open Access Journals (Sweden)

    Helena I Hanson

    Full Text Available In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  9. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Science.gov (United States)

    Hanson, Helena I; Palmu, Erkki; Birkhofer, Klaus; Smith, Henrik G; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  10. Ground beetles of the Ukraine (Coleoptera, Carabidae).

    Science.gov (United States)

    Putchkov, Alexander

    2011-01-01

    A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species) of the lowlands of southern Ukraine (sandy biotopes), situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed.

  11. Ground beetles of the Ukraine (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Alexander Putchkov

    2011-05-01

    Full Text Available A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species of the lowlands of southern Ukraine (sandy biotopes, situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed.

  12. Ground beetles as indicators of past management of old-growth forests

    Directory of Open Access Journals (Sweden)

    Mazzei A

    2017-06-01

    Full Text Available Old-growth forests are terrestrial ecosystems with the highest level of biodiversity and the main environments for the study of conservation and dynamics of the forest system. In Mediterranean Europe, two millennia of human exploitation deeply altered the structural complexity of the native forests. Some animal groups, including insects, may be used as a proxy of such changes. In this paper we explored the possible effects of forest management on the functional diversity (species traits of carabid beetle communities. Three old-growth forests of the Sila National Park were sampled by pitfall traps set up in pure beech, beech-silver fir and Calabrian black pine forests. In each forest, five managed vs. five unmanaged stands were considered. Managed sites were exploited until the sixties of the past century and then left unmanaged. More than 6000 carabid specimens belonging to 23 species were collected. The functional diversity in carabid groups is influenced by forest management especially in beech and beech-silver fir stands. Body size, specialized predators, endemic species and forest species were negatively affected by stand management. On the contrary, omnivorous ground beetles populations (or species with a high dispersal power (macropterous and large geographic distribution were positively influenced by stand management. In pine forests the old-growth community seems less sensitive to past management and more affected by soil evolution. Soil erosion and disturbance may reduce species diversity of ground beetles. Anyway, the composition of the carabid community shows that 50-60 years of forest restoration are enough for the reconstruction of a fairly diverse assemblage reflecting a “subclimax” situation.

  13. Structure of domination and dynamics of activity of ground-beetles in agroecosistems of Derbent area

    OpenAIRE

    G. M. Nahibasheva; A. A. Bagomaev; R. A. Musaeva

    2008-01-01

    For the first time for area of research 61 kind of ground-beetles, concerning to 28 sorts and 13 vital  structure of ground-beetles of agroecosistems are studied. New data about structure and character biotopical are obtained distributions, seasonal dynamics of activity of ground-beetles. Phenological change prepotent of ground-beetles ofagroecosistems of Derbent area is revealed.

  14. Biodiversity of ground beetles (Coleoptera: Carabidae) in genetically modified (Bt) and conventional (non-Bt) potato fields in Bulgaria

    Czech Academy of Sciences Publication Activity Database

    Kalushkov, P.; Gueorguiev, B.; Spitzer, L.; Nedvěd, Oldřich

    2009-01-01

    Roč. 23, č. 3 (2009), s. 1346-1350 ISSN 1310-2818 Grant - others:Bulgarian National Research Fund(BG) B-1508; Bulgarian National Research Fund(BG) B-1105 Institutional research plan: CEZ:AV0Z50070508 Keywords : ground beetles * Bt potatoes * non-Bt potatoes Subject RIV: EH - Ecology, Behaviour Impact factor: 0.291, year: 2009

  15. Structure of domination and dynamics of activity of ground-beetles in agroecosistems of Derbent area

    Directory of Open Access Journals (Sweden)

    G. M. Nahibasheva

    2008-01-01

    Full Text Available For the first time for area of research 61 kind of ground-beetles, concerning to 28 sorts and 13 vital  structure of ground-beetles of agroecosistems are studied. New data about structure and character biotopical are obtained distributions, seasonal dynamics of activity of ground-beetles. Phenological change prepotent of ground-beetles ofagroecosistems of Derbent area is revealed.

  16. Ground beetles (Coleoptera, Carabidae agrocenoses of spring and winter wheat

    Directory of Open Access Journals (Sweden)

    Luboš Purchart

    2005-01-01

    Full Text Available On two monitoring areas of the Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ loaded with risk elements we carried out investigations of beetles of the family Carabidae (Coleoptera in agricultural stands of winter and spring wheat. The focus of the present study is on synecological characteristics and in some extent on the impact of agricultural practise on the population and seasonal dynamics of the most important representatives of ground beetles. This paper precedes the following article aimed to contents of heavy metals in ground beetles.

  17. Effects of insecticides intended for Ceutorhynchus napi Gyll. control in oilseed rape on ground beetles

    Directory of Open Access Journals (Sweden)

    Sivčev Lazar

    2017-01-01

    Full Text Available The effects of insecticides that are commonly used for conventional and integrated oilseed rape (OSR management on ground beetles were studied. Monitoring of harmful species showed that only insecticides intended against Ceutorhynchus napi should be applied. There were no differences in beetle numbers and phenology of settling of C. napi in the OSR fields that received different management practices. The type of OSR management has a primary and significant impact on ground beetles abundance. Early in the spring, ground beetles settled more massively on the non-tilled OSR field with abundant weed cover and mulch on soil surface. However, there were no significant differences in species richness between the OSR fields managed differently. A total of 22 species were recorded. Early in the spring, the granivorous ground beetles Amara aenea (47.3% and Harpalus distinguendus (32.5% were dominant. When insecticides were applied, immigration of ground beetles began, so that their adverse effect was minimal. In both management systems the number of ground beetles and their diversity increased after spraying. In conclusion, no significant harmful effects of the insecticides on ground beetles were detected in OSR fields managed in two different ways.

  18. an assessment of methods for sampling carabid beetles

    African Journals Online (AJOL)

    Mgina

    collection of epigaeic (ground-dwelling) invertebrates (Southwood and Henderson,. 2000). It has been widely used for sampling carabid beetles in biodiversity inventories. (Niemela et al. 1994, Davies 2000, Nyundo. 2002), population and community ecology. (Greenslade 1968, Refseth, 1980,. Niemela1988, Niemela et al.

  19. Heavy metal concentrations in ground beetles, leaf litter, and soil of a forest ecosystem.

    Science.gov (United States)

    Jelaska, Lucija Serić; Blanusa, Maja; Durbesić, Paula; Jelaska, Sven D

    2007-01-01

    The objective of this study was to quantify the relationships between heavy metal concentrations in soil, leaf litter, and ground beetles at four sampling sites of a forest ecosystem in Medvednica Nature Park, Croatia. Ground beetles were sampled by pitfall trapping. Specimens were dry-ashed and soil and beetle samples digested with nitric acid. Lead, cadmium, copper, zinc, manganese, and iron were analyzed using atomic absorption spectrometry. Statistically significant differences between plots were found for lead, cadmium, and iron in ground beetles. Correlations between ground beetles and soil or leaf litter were positive for lead and cadmium concentrations and negative for iron concentration. Differences in species metal concentrations were recorded. Higher concentrations of all studied metals were found in female beetles. However, a significant difference between sexes was found only for manganese. Significant differences in species metal concentrations were found for species that differ in feeding strategies and age based on breeding season and emergence of young adults.

  20. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest.

    Science.gov (United States)

    S. Horn; M.D. Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles...

  1. Eurajoki Olkiluoto study on species of ground beetles and ants 2008

    International Nuclear Information System (INIS)

    Santaharju, J.; Helminen, S.-L.; Yrjoelae, R.

    2009-02-01

    The species of ants and Ground beetles at Olkiluoto in Eurajoki were studied in the summer of 2008 during two trapping periods: in June and August. The research goal was to clarify the species on Olkiluoto island of the earlier mentioned groups, at least at the family level, and to collect samples for further examination by Posiva. The trapping areas were selected at Olkiluoto in Posiva test monitoring sectors, a part of the trapping areas was the same as the earlier study. Species of ants, depending on their particular species, are a very dominating group of insects. The ants are the most important predators, scavengers and soil movers in Finnish forests. It looks as if the biomass of ants may be more than 10% of the biomass of all animals in certain areas of Finnish forests. In Finland there are about 60 species of ants that have been observed. They have been divided into four sub-groups, which are Myrmicinae, Formicinae, Ponerinae and Dolichoderinae. In Finland there are close to 300 species of ground beetles (Carabidae), which are divided into dozens of different families. The species, to a great extent, consist mostly of predatory insects that prey on microbes in field layers, but a part of them are specialized in feeding on flora. Ground beetles are usually divided into three groups according to their choice of habitat: Species that favour open biotopes, species that favour forests, and generalist species that can thrive in a variety of environments. Ground beetles also reflect changes in their living environment, and possibly they can be significant as socalled bio-indicators. Pitfall traps were used as the method of research. The preservative fluid used was ethanol (50%) with dishwashing liquid to remove surface tension. The points were located in various different biotopes in fields, meadows and forests. The data collected was defined as a minimum for the family level of Ground beetles and for ants to the species or species pairs. The species of Ground

  2. Eurajoki Olkiluoto study on species of ground beetles and ants 2008

    Energy Technology Data Exchange (ETDEWEB)

    Santaharju, J.; Helminen, S.-L.; Yrjoelae, R. (Environmental Research Yrjoelae Ltd, Helsinki (Finland))

    2009-02-15

    The species of ants and Ground beetles at Olkiluoto in Eurajoki were studied in the summer of 2008 during two trapping periods: in June and August. The research goal was to clarify the species on Olkiluoto island of the earlier mentioned groups, at least at the family level, and to collect samples for further examination by Posiva. The trapping areas were selected at Olkiluoto in Posiva test monitoring sectors, a part of the trapping areas was the same as the earlier study. Species of ants, depending on their particular species, are a very dominating group of insects. The ants are the most important predators, scavengers and soil movers in Finnish forests. It looks as if the biomass of ants may be more than 10% of the biomass of all animals in certain areas of Finnish forests. In Finland there are about 60 species of ants that have been observed. They have been divided into four sub-groups, which are Myrmicinae, Formicinae, Ponerinae and Dolichoderinae. In Finland there are close to 300 species of ground beetles (Carabidae), which are divided into dozens of different families. The species, to a great extent, consist mostly of predatory insects that prey on microbes in field layers, but a part of them are specialized in feeding on flora. Ground beetles are usually divided into three groups according to their choice of habitat: Species that favour open biotopes, species that favour forests, and generalist species that can thrive in a variety of environments. Ground beetles also reflect changes in their living environment, and possibly they can be significant as socalled bio-indicators. Pitfall traps were used as the method of research. The preservative fluid used was ethanol (50%) with dishwashing liquid to remove surface tension. The points were located in various different biotopes in fields, meadows and forests. The data collected was defined as a minimum for the family level of Ground beetles and for ants to the species or species pairs. The species of Ground

  3. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  4. Using malaise traps to sample ground beetles (Coleoptera. Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Hanula, James L. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Horn, Scott [USDA Forest Service, Savannah River, New Ellenton, SC (United States)

    2012-04-02

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  5. BIOECOLOGICAL FEATURES OF GROUND BEETLES OF GUMBETOVSKY DISTRICT OF DAGHESTAN REPUBLIC

    Directory of Open Access Journals (Sweden)

    G. M. NAKHIBASHEVA

    2010-01-01

    Full Text Available Ground beetles of the Gumbetovskiy area are studied. For the first time for the territory there are defined 95 species of the beetles related to 28 genus. Bioecological features of the species are presented and the analysis of the received materials is lead.

  6. Soil management system in hazelnut groves (Corylus sp. versus the presence of ground beetles (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Nietupski Mariusz

    2015-01-01

    Full Text Available Sustaining biodiversity as well as taking advantage of the natural environment’s resistance are the key elements which should be considered when designing integrated plans for the protection of hazelnut groves. An effort has been made in this study to analyse the impact of different soil cultivation methods in hazelnut groves, on the species composition and number of individuals in carabid assemblages (Coleoptera: Carabidae. Another aim was to determine which method of inter-row soil management had the least negative effect on assemblages of these beetles. Because of the type of habitat, the xerothermic species characteristic for southeastern Europe, i.e. Calathus ambiguus, Poecilus lepidus, Harpalus calceatus, and H. griseus, were the most numerous. The qualitative and quantitative analysis of the captured individuals implied that the optimal soil tillage system in young hazelnut groves is when soil is kept fallow with machines or chemicals, or when soil is covered with manure. The least favourable practice for the appearance of ground beetles of the Carabidae family is the use of polypropylene fabric, bark or sawdust, to cover soil

  7. Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates.

    Directory of Open Access Journals (Sweden)

    Kyran M Staunton

    Full Text Available With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World

  8. Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates.

    Science.gov (United States)

    Staunton, Kyran M; Robson, Simon K A; Burwell, Chris J; Reside, April E; Williams, Stephen E

    2014-01-01

    With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These

  9. Community composition and diversity of ground beetles (Coleoptera: Carabidae) in Yaoluoping National Nature Reserve

    Science.gov (United States)

    Li, Wen-Bo; Liu, Nai-Yi; Wu, Yun-He; Zhang, Yu-Cai; Xu, Qin; Chu, Jun; Wang, Shu-Yan

    2017-01-01

    Abstract This study used pitfall trapping to examine community composition and diversity of ground beetles in five different habitats (coniferous, deciduous, mixed coniferous, farmland, and settlements) within Anhui Yaoluoping National Nature Reserve from May to September 2014. In total, 1,352 ground beetles were collected, belonging to 16 genera and 44 species. Of these, four dominant species Dolichus halensis, Harpalus pastor, Carabus casaleianus, and Pheropsophus jessoensis were identified, respectively, comprising 370, 177, 131, and 123 individuals. The deciduous forest showed greater diversity (3.78 according to Shannon–Weiner index), equitability (0.80 according to Pielou’s index), and dominance (9.52 according to Simpson’s index) when compared with farmland, but species richness in the deciduous forest (27) was lower than that in farmland (35). One-way analysis of variance showed that ground beetle species composition and abundance among different habitats varied significantly. Cluster analysis and principal coordinate analysis showed that farmland shared low community similarity with other habitat types, and coniferous and mixed coniferous forests shared similar community types. Our results indicate that species composition, abundance, and diversity of ground beetles are affected by different habitat types, with deciduous forest types being critical in maintaining the diversity of rare species. We recommend reducing cultivated farmland area and increasing the area of carefully planned deciduous forest in order to better protect ground beetle diversity in the region.

  10. Using Malaise traps to sample ground beetles (Coleoptera: Carabidae)

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages...

  11. Predaceous water beetles (Coleoptera, Hydradephaga) of the Lake St Lucia system, South Africa: biodiversity, community ecology and conservation implications.

    Science.gov (United States)

    Perissinotto, Renzo; Bird, Matthew S; Bilton, David T

    2016-01-01

    Water beetles are one of the dominant macroinvertebrate groups in inland waters and are excellent ecological indicators, reflecting both the diversity and composition of the wider aquatic community. The predaceous water beetles (Hydradephaga) make up around one-third of known aquatic Coleoptera and, as predators, are a key group in the functioning of many aquatic habitats. Despite being relatively well-known taxonomically, ecological studies of these insects in tropical and subtropical systems remain rare. A dedicated survey of the hydradephagan beetles of the Lake St Lucia wetlands (South Africa) was undertaken between 2013 and 2015, providing the first biodiversity census for this important aquatic group in the iSimangaliso Wetland Park, a UNESCO World Heritage Site within the Maputaland biodiversity hotspot. A total of 32 sites covering the entire spectrum of waterbody types were sampled over the course of three collecting trips. The Lake St Lucia wetlands support at least 68 species of Hydradephaga, a very high level of diversity comparing favourably with other hotspots on the African continent and elsewhere in the world and a number of taxa are reported for South Africa for the first time. This beetle assemblage is dominated by relatively widespread Afrotropical taxa, with few locally endemic species, supporting earlier observations that hotspots of species richness and centres of endemism are not always coincident. Although there was no significant difference in the number of species supported by the various waterbody types sampled, sites with the highest species richness were mostly temporary depression wetlands. This contrasts markedly with the distribution of other taxa in the same system, such as molluscs and dragonflies, which are most diverse in permanent waters. Our study is the first to highlight the importance of temporary depression wetlands and emphasises the need to maintain a variety of wetland habitats for aquatic conservation in this biodiverse

  12. Mesostigmatic Mites (Acari) Associated with Ground, Burying, Roving Carrion and Dung Beetles (Coleoptera) in Sapporo and Tomakomai, Hokkaido, Northern Japan

    OpenAIRE

    Takaku, Gen; Katakura, Haruo; Yoshida, Nobuyo

    1994-01-01

    A total of 19 species belonging to 5 families of mesostigmatic mites were collected in Sapporo and Tomakomai, northern Japan, on four groups of beetles, i.e., ground beetles (Carabinae, Carabidae), burying beetles (Nicrophorini, Silphinae, Silphidae), roving carrion beetles (Silphini, Silphinae, Silphidae) and dung beetles (Scarabaeidae and Geotrupidae), all of which mainly forage on the ground surface. No mite species was found on more than one group of beetles except for Poecilochirus carab...

  13. Mesostigmatic Mites (Acari) Associated with Ground, Burying, Roving Carrion and Dung Beetles (Coleoptera) in Sapporo and Tomakomai, Hokkaido, Northern Japan

    OpenAIRE

    Gen, Takaku; Haruo, Katakura; Nobuyo, Yoshida; Division of Biological Sciences, Graduate School of Science, Hokkaido University; Division of Biological Sciences, Graduate School of Science, Hokkaido University; Tohoku Agricultural Experiment Station

    1994-01-01

    A total of 19 species belonging to 5 families of mesostigmatic mites were collected in Sapporo and Tomakomai, northern Japan, on four groups of beetles, i. e. , ground beetles (Carabinae, Carabidae), burying beetles (Nicrophorini, Silphinae, Silphidae), roving carrion beetles (Silphini, Silphinae, Silphidae) and dung beetles (Scarabaeidae and Geotrupidae), all of which mainly forage on the ground surface. No mite species was found on more than one group of beetles except for Poecilochirus car...

  14. Habitat disturbance and hydrological parameters determine the body size and reproductive strategy of alluvial ground beetles.

    Science.gov (United States)

    Gerisch, Michael

    2011-01-01

    Environmental variability is the main driver for the variation of biological characteristics (life-history traits) of species. Therefore, life-history traits are particularly suited to identify mechanistic linkages between environmental variability and species occurrence and can help in explaining ecological patterns. For ground beetles, few studies directly related species traits to environmental variables. This study aims to analyse how life-history traits of alluvial ground beetles are controlled by environmental factors. I expected that the occurrence of species and the occurrence of specific traits are closely related to hydrological and disturbance parameters. Furthermore I expected most of the trait-variation to be explained by a combination of environmental variables, rather than by their isolated effects. Ground beetles were sampled in the year 2005 in floodplain grassland along the Elbe River in Germany. I used redundancy analysis to quantify the effects of hydrological, sediment, and disturbance related parameters on both species occurrence and species traits. I applied variation partitioning to analyse which environmental compartments explain most of the trait variation. Species occurrence and trait variation were both mainly controlled by hydrological and flood disturbance parameters. I could clearly identify reproductive traits and body size as key traits for floodplain ground beetles to cope with the environmental variability. Furthermore, combinations of hydrological, habitat disturbance, habitat type, and species diversity parameters, rather than their isolated effects, explained large parts of ground beetle trait variation. Thus, a main conclusion of this study is that ground beetle occurrence is mainly determined by complex, multi-scale interactions between environmental variability and their life-history traits.

  15. Checklist of the Iranian Ground Beetles (Coleoptera; Carabidae).

    Science.gov (United States)

    Azadbakhsh, Saeed; Nozari, Jamasb

    2015-09-30

    An up-to-date checklist of the ground beetles of Iran is presented. Altogether 955 species and subspecies in 155 genera belonging to 26 subfamilies of Carabidae are reported; 25 taxa are recorded for Iran for the fist time. New localities are listed and some previous distributional records are discussed.

  16. Occurrence of cavernicolous ground beetles in Anhui Province, eastern China (Coleoptera, Carabidae, Trechinae).

    Science.gov (United States)

    Fang, Jie; Li, Wenbo; Tian, Mingyi

    2016-01-01

    Two new species of anophthalmic ground beetles belonging to the subfamily Trechinae are described: Cimmeritodes (Zhecimmerites) parvus Tian & Li, sp. n. and Wanoblemus wui Tian & Fang, gen. n., sp. n. Both were discovered in the limestone caves of Anhui Province in eastern China. Cimmeritodes (Zhecimmerites) parvus was found in caves Ziwei Dong, Xianren Dong and Qingtai Dong, whereas Wanoblemus wui was discovered in cave Baiyun Dong. This is the first record of cavernicolous ground beetles in Anhui Province, eastern China.

  17. Occurrence of cavernicolous ground beetles in Anhui Province, eastern China (Coleoptera, Carabidae, Trechinae

    Directory of Open Access Journals (Sweden)

    Jie Fang

    2016-10-01

    Full Text Available Two new species of anophthalmic ground beetles belonging to the subfamily Trechinae are described: Cimmeritodes (Zhecimmerites parvus Tian & Li, sp. n. and Wanoblemus wui Tian & Fang, gen. n., sp. n. Both were discovered in the limestone caves of Anhui Province in eastern China. C. (Z. parvus was found in caves Ziwei Dong, Xianren Dong and Qingtai Dong, whereas W. wui was discovered in cave Baiyun Dong. This is the first record of cavernicolous ground beetles in Anhui Province, eastern China.

  18. Ground beetle habitat templets and riverbank integrity

    OpenAIRE

    Van Looy, Kris; Vanacker, Stijn; Jochems, Hans; De Blust, Geert; Dufrêne, M

    2006-01-01

    The habitat templet approach was used in a scale-sensitive bioindicator assessment for the ecological integrity of riverbanks and for specific responses to river management. Ground beetle habitat templets were derived from a catchment scale sampling, integrating the overall variety of bank types. This coarse-filter analysis was integrated in the reach scale fine-filtering approaches of community responses to habitat integrity and river management impacts. Higher species diversity was associat...

  19. Ecology and behavior of ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Lövei, G L; Sunderland, K D

    1996-01-01

    The ground beetles from the speciose beetle family Carabidae and, since their emergence in the Tertiary, have populated all habitats except deserts. Our knowledge about carabids is biased toward species living in north-temperate regions. Most carabids are predatory, consume a wide range of food types, and experience food shortages in the field. Feeding on both plant and animal material and scavenging are probably more significant than currently acknowledged. The most important mortality sources are abiotic factors and predators; pathogens and parasites can be important for some developmental stages. Although competition among larvae and adults does occur, the importance of competition as a community organization is not proven. Carabids are abundant in agricultural fields all over the world and may be important natural enemies of agricultural pests.

  20. Supplementary feeding of wild birds indirectly affects ground beetle populations in suburban gardens.

    Science.gov (United States)

    Orros, Melanie E; Thomas, Rebecca L; Holloway, Graham J; Fellowes, Mark D E

    Supplementary feeding of wild birds by domestic garden-holders is a globally widespread and popular form of human-wildlife interaction, particularly in urban areas. Vast amounts of energy are thus being added to garden ecosystems. However, the potential indirect effects of this activity on non-avian species have been little studied to date, with the only two previous studies taking place under experimentally manipulated conditions. Here we present the first evidence of a localised depletive effect of wild bird feeding on ground beetles (Coleoptera: Carabidae) in suburban gardens under the usual feeding patterns of the garden-holders. We trapped significantly fewer ground beetles directly under bird-feeding stations than in matched areas of habitat away from feeders. Video analysis also revealed significantly higher activity by ground-foraging birds under the feeding stations than in the control areas. Small mammal trapping revealed no evidence that these species differ in abundance between gardens with and without bird feeders. We therefore suggest that local increases in ground-foraging activity by bird species whose diets encompass arthropods as well as seed material are responsible for the reduction in ground beetle numbers. Our work therefore illustrates that providing food for wild birds can have indirect negative effects on palatable prey species under typical conditions.

  1. A COMPARATIVE ANALYSIS OF SPECIES COMPOSITION OF GROUND BEETLES OF COASTAL AND ISLAND ECOSYSTEMS OF THE WESTERN CASPIAN

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2011-01-01

    Full Text Available For the first time studied the species composition of ground beetles of coastal and island ecosystems of the Western Caspian. The article provides a comparative analysis of species composition of ground beetles and adjacent areas.

  2. POLICY FRAMEWORK FOR UTILIZATION AND CONSERVATION OF BELOW-GROUND BIODIVERSITY IN KENYA

    Directory of Open Access Journals (Sweden)

    Celline Achieng

    2009-10-01

    Full Text Available The reasons for the lack of inclusion of below-ground biodiversity in the Kenyan policy and legal framework were sought. Gaps were identified in the relevant sectoral policies and laws in regard to the domestication of the Convention on Biological Diversity (CBD. Below -ground biodiversity had no specific schedule in any of the sectoral laws. Most sectoral laws were particular about the larger biodiversity and soils but had no mention of below-ground biodiversity. Material Transfer Agreements and Material Acquisition Agreements that are regarded as tools of domestication of the CBD to guide transfers, exchanges and acquisition of soil organisms lacked a regulating policy. The lack of regulating policy could be attributed to the delay in approval of draft regulations by the Ministry of Environment while the lack of inclusion of below-ground biodiversity in Kenya’s legal and policy framework could be as a result of lack of awareness and appreciation among stakeholders.

  3. Effects of golf courses on local biodiversity.

    OpenAIRE

    Gange, A.C.; Tanner, R.A.

    2005-01-01

    There are approximately 2600 golf courses in the UK, occupying 0.7% of the total land cover. However, it is unknown whether these represent a significant resource, in terms of biodiversity conservation, or if they are significantly less diverse than the surrounding habitats. The diversity of vegetation (tree and herbaceous species) and three indicator taxa (birds, ground beetles (Coleoptera, Carabidae) and bumblebees (Hymenoptera, Apidae)) was studied on nine golf courses and nine adja...

  4. Ground beetles (Carabidae on quarry terraces in the vicinity of Brno (Czech Republic

    Directory of Open Access Journals (Sweden)

    Lucie Novotná

    2012-01-01

    Full Text Available The occurrence of ground beetles (Carabidae, Coleoptera was monitored in the exhausted limestone quarry of massif Hády near Brno using formaldehyde pitfall traps with a monthly interval of collection. Research was conducted from April to October in 2009 and 2010. The obtained material was investigated on some synecological characteristics and species affiliation to bioindication groups. In total for both years, 462 specimens of 43 species were captured. Most species were found in habitats with vegetation cover in the immediate vicinity of cultivated agricultural land – 441 specimens of 39 species. In the quarry itself only a minimal amount of ground beetles was found – 21 specimens of 11 species. Decrease in the abundance of ground beetles towards the center of the quarry was demonstrated. Next, significant species of Brachinus crepitans, Brachinus explodens and Cicindela sylvicola (endangered species pursuant to Decree 395/1992 Coll. and species listed in the Red List were reported – near threatened Ophonus sabulicola and vulnerable Cylindera germanica (also endangered species pursuant to Decree 395/1992 Coll.

  5. Elevational Distribution of Flightless Ground Beetles in the Tropical Rainforests of North-Eastern Australia.

    Science.gov (United States)

    Staunton, Kyran M; Nakamura, Akihiro; Burwell, Chris J; Robson, Simon K A; Williams, Stephen E

    2016-01-01

    Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of relatively distinct assemblages containing a high level of regional endemic species. Species richness was most strongly and positively associated with historical and current climatic stabilities and negatively associated with severity of recent disturbance (treefalls). Assemblage composition was associated with latitude and historical and current climatic conditions. Although the results need to be interpreted carefully due to inter-correlation between historical and current climatic variables, our study is in agreement with the hypothesis that upland refugia provided stable climatic conditions since the last glacial maximum, and supported a diverse fauna of flightless beetle species. These findings are important for conservation

  6. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    Science.gov (United States)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    Under natural conditions, river channels and floodplains are shaped by flow and sediment regime and are one of the most dynamic ecosystems. At present, European river floodplains are among the most endangered landscapes due to human modifications to river systems, including channel regulation and floodplain urbanization, and land use changes in the catchments. Situated in a transition zone between terrestrial and aquatic environments, exposed riverine sediments (ERS) play a key role in the functioning of riverine ecosystems. This study aimed to verify whether the bare granular substrate is the only factor responsible for sustaining the biota associated with ERS or the inundation frequency also plays a role, modifying the potential of particular species to colonize these habitats. Ground beetles (Col. Carabidae) were selected as the investigated group of organisms and the study was carried out in Porębianka, a Polish Carpathian stream flowing through both unconstrained channel sections and sections with varied channelization schemes (rapid hydraulic structures, concrete revetments or rip-rap of various age). In each of the distinguished channel types, four replicates of 10 pitfall traps were established in three rows varying in distance to the mean water level (at three different benches). Almost 7000 individuals belonging to 102 species were collected on 60 plots. Forward selection of redundancy analysis revealed four factors significantly describing the variation in ground beetle species data: bank modification, potential bankfull discharge, frequency of inundation and plant height. Most of the biggest species were ordered at the positive site of first axis having the highest values of periods between floods. Total biomass of ground beetles and mean biomass of individuals differed significantly between sites of various frequency of inundation, whereas the variation in abundance and species richness of ground beetles was independent of the river dynamics. The body

  7. [Histological structure of tripartite mushroom bodies in ground beetles (Insecta, Coleoptera: Carabidae)].

    Science.gov (United States)

    Panov, A A

    2013-01-01

    Contrary to members of the suborder Polyphaga; ground beetles have been found to possess tripartite mushroom bodies, which are poorly developed in members of basal taxa and maximally elaborated in evolutionarily advanced groups. Nevertheless, they do not reach the developmental stage, which has been previously found in particular families of beetles. It has been pointed out that anew formation of the Kenyon cells occurs during at least the first months of adult life, and inactive neuroblasts are found even in one-year-old beetles. It has been suggested that there is a relation between the Kenyon cell number and development of the centers of Kenyon cell new-formation.

  8. Habitat disturbance and hydrological parameters determine the body size and reproduction strategy of alluvial ground beetles

    OpenAIRE

    Gerisch, Michael

    2011-01-01

    Abstract Environmental variability is the main driver for the variation of biological characteristics (life-history traits) of species. Therefore, life-history traits are particularly suited to identify mechanistic linkages between environmental variability and species occurrence and can help in explaining ecological patterns. For ground beetles, few studies directly related species traits to environmental variables. This study aims to analyse how life-history traits of alluvial ground beetle...

  9. Ground beetle (Coleoptera: Carabidae) assemblages in narrow hedgerows in a Danish agricultural landscape

    DEFF Research Database (Denmark)

    Lövei, G. L.; Magura, T.

    2015-01-01

    Sorbus intermedia), and the non-native spruce (Picea spp.). We hypothesised that hedgerows with deciduous trees harbour more diverse ground beetle assemblages than hedges composed of non-native conifer trees. We also investigated which vegetation structure characteristics might influence the ground...

  10. Distribution and diversity of ground beetles in Başkonuş Mountain National Park of Turkey.

    Science.gov (United States)

    Avgin, Sakine Serap

    2006-07-01

    This study was carried out in National Park Başkonuş Mountain (Kahramanmaraş, Turkey), in Mediterranean region from April to October of 2004 and 2005. A total 31 species of ground beetles (Coleoptera, Carabidae) were recorded in the pitfall traps. Among them, Carabus (Archicarabus) gotschi caramanus Fairmaire, 1886, Carabus (Procrustes) coriaceus mopsucrenae Peyron, 1858 and Nebria (Nebria) hemprichi Klug, 1832 were the most abundant species. Distribution, diversity and monthly distribution of species in steppes, forest edge and forest interior, and chorotypes and ecology of these species were separately given in this study. It was recorded that the diversity of ground beetles was significantly higher in the forest edge and steppes than in the forest interior. There was no significant difference in the diversity of ground beetles in the steppes and the forest edge.

  11. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  12. Effects of silvicultural operations in a Mississippi River bottomland hardwood forest on ground beetles in the genus Brachinus

    Science.gov (United States)

    Lynne C. Thompson; Brian Roy Lockhart

    2006-01-01

    Little information is available on how insects are affected by anthropogenic influences in the bottomland forests of the West Gulf Coastal Plain. This study investigates one genus of ground beetles that lives in managed forested landscapes to discover which species are positively and negatively influenced by human disturbances. Ground beetles (Carabidae) were collected...

  13. Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution.

    Science.gov (United States)

    Stone, David; Jepson, Paul; Laskowski, Ryszard

    2002-05-01

    Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, Pground beetles in association with metal body burdens.

  14. Field evidence for the exposure of ground beetles to Cry1Ab from transgenic corn.

    Science.gov (United States)

    Zwahlen, Claudia; Andow, David A

    2005-01-01

    Non-target organisms associated with the soil might be adversely affected by exposure to the CrylAb protein from Bacillus thuringiensis (Bt) in transgenic corn (Zea mays L.). To check for such exposure, we used ELISA to test for Cry1Ab in ground beetles collected live from fields with Bt corn residues and Bt corn (Bt/Bt), Bt corn residues and non-Bt crops (Bt/non-Bt), or non-Bt corn residues and non-Bt crops (non-Bt/non-Bt). In fields with Bt corn residues (Bt/Bt and Bt/non-Bt), Cry1Ab was present in all seven species of ground beetles examined (Agonum placidum, Bembidion rupicola, Clivina impressefrons, Cyclotrachelus iowensis, Harpalus pensylvanicus, Poecilus chalcites, and Poecilus lucublandus). For the two most abundant species, P. chalcites and P. lucublandus, the proportion of beetles with Cry1Ab was significantly higher in Bt/Bt fields (0.50-1.0) and Bt/non-Bt fields (0.41-0.50) than in non-Bt/non-Bt fields (0.0). This is the first field evidence that some ground beetle species are exposed to Cry1Ab. The implications of exposure on the performance of these non-target organisms are unclear.

  15. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    Science.gov (United States)

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  16. No increase in fluctuating asymmetry in ground beetles (Carabidae) as urbanisation progresses

    DEFF Research Database (Denmark)

    Elek, Zoltán; Lövei, Gabor L; Batki, Marton

    2014-01-01

    fluctuating asymmetry in three common predatory ground beetles, Carabus nemoralis, Nebria brevicollis and Pterostichus melanarius. Eight metrical (length of the second and third antennal segments, elytral length, length of the first tarsus segment, length of the first and second tibiae, length of the proximal......Environmental stress can lead to a reduction in developmental homeostasis, which could be reflected in increased variability of morphological traits. Fluctuating asymmetry (FA) is one possible manifestation of such a stress, and is often taken as a proxy for individual fitness. To test...... the usefulness of FA in morphological traits as an indicator of environmental quality, we studied the effect of urbanisation on FA in ground beetles (Carabidae) near a Danish city. First, we performed a critical examina- tion whether morphological character traits suggested in the literature displayed true...

  17. Biodiversity in School Grounds: Auditing, Monitoring and Managing an Action Plan

    Science.gov (United States)

    Mansell, Michelle

    2010-01-01

    The idea of using site biodiversity action plans to introduce biodiversity management initiatives into school grounds is outlined. Selected parts of a case study, involving the use of such an action plan to record, monitor and plan for biodiversity on a university campus, are described and ideas for applying a similar plan to a school setting are…

  18. [Characteristics of wintering in ground beetles (Coleoptera, Carabidae) in forest ecosystems of the East European Plain].

    Science.gov (United States)

    Griuntal', S Iu

    2000-01-01

    Specific features of wintering of the ground beetles in three habitats (litter, soil, and bark of fallen trees and stumps) were comparatively studied in the forests of forest-steppe (Voronezh District) and subzone of broad-leaved-spruce forests (Moscow District). The main mass of ground beetles is concentrated in the upper 10-cm soil layer, irrespective of the type of watering (automorphous or hydromorphous soils). Wintering under the bark is a facultative feature of the most species occurring in these biocoenoses.

  19. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia.

    Science.gov (United States)

    Chung, A Y; Eggleton, P; Speight, M R; Hammond, P M; Chey, V K

    2000-12-01

    The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.

  20. Deep-sea sponge grounds: Reservoirs of biodiversity

    NARCIS (Netherlands)

    Hogg, M.M.; Tendal, O.S.; Conway, K.W.; Pomponi, S.A.; van Soest, R.W.M.; Gutt, J.; Krautter, M.; Roberts, J.M.

    2010-01-01

    This report draws together scientific understanding of deep-water sponge grounds alongside the threats they face and ways in which they can be conserved. Beginning with a summary of research approaches, sponge biology and biodiversity, the report also gives up-to-date case studies of particular

  1. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    Science.gov (United States)

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  2. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    Science.gov (United States)

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  3. Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: a rapid assessment of ecological functions associated to biodiversity.

    Directory of Open Access Journals (Sweden)

    Rodrigo F Braga

    Full Text Available Although there is increasing interest in the effects of habitat disturbance on community attributes and the potential consequences for ecosystem functioning, objective approaches linking biodiversity loss to functional loss are uncommon. The objectives of this study were to implement simultaneous assessment of community attributes (richness, abundance and biomass, each calculated for total-beetle assemblages as well as small- and large-beetle assemblages and three ecological functions of dung beetles (dung removal, soil perturbation and secondary seed dispersal, to compare the effects of habitat disturbance on both sets of response variables, and their relations. We studied dung beetle community attributes and functions in five land-use systems representing a disturbance gradient in the Brazilian Amazon: primary forest, secondary forest, agroforestry, agriculture and pasture. All response variables were affected negatively by the intensification of habitat disturbance regimes, but community attributes and ecological functions did not follow the same pattern of decline. A hierarchical partitioning analysis showed that, although all community attributes had a significant effect on the three ecological functions (except the abundance of small beetles on all three ecological functions and the biomass of small beetles on secondary dispersal of large seed mimics, species richness and abundance of large beetles were the community attributes with the highest explanatory value. Our results show the importance of measuring ecological function empirically instead of deducing it from community metrics.

  4. Effect of tillage and planting date on seasonal abundance and diversity of predacious ground beetles in cotton.

    Science.gov (United States)

    Shrestha, R B; Parajulee, M N

    2010-01-01

    A 2-year field study was conducted in the southern High Plains region of Texas to evaluate the effect of tillage system and cotton planting date window on seasonal abundance and activity patterns of predacious ground beetles. The experiment was deployed in a split-plot randomized block design with tillage as the main-plot factor and planting date as the subplot factor. There were two levels for each factor. The two tillage systems were conservation tillage (30% or more of the soil surface is covered with crop residue) and conventional tillage. The two cotton planting date window treatments were early May (normal planting) and early June (late planting). Five prevailing predacious ground beetles, Cicindela sexguttata F., Calosoma scrutator Drees, Pasimachus spp., Pterostichus spp., and Megacephala Carolina L. (Coleoptera: Carabidae), were monitored using pitfall traps at 2-week intervals from June 2002 to October 2003. The highest total number of ground beetles (6/trap) was observed on 9 July 2003. Cicindela sexguttata was the dominant ground dwelling predacious beetle among the five species. A significant difference between the two tillage systems was observed in the abundances of Pterostichus spp. and C. sexguttata. In 2002. significantly more Pterostichus spp. were recorded from conventional plots (0.27/trap) than were recorded from conservation tillage plots (0.05/trap). Significantly more C. sexguttata were recorded in 2003 from conservation plots (3.77/trap) than were recorded from conventional tillage plots (1.04/trap). There was a significant interaction between year and tillage treatments. However, there was no significant difference in the abundances of M. Carolina and Pasimachus spp. between the two tillage practices in either of the two years. M. Carolina numbers were significantly higher in late-planted cotton compared with those observed in normal-planted cotton. However, planting date window had no significant influence on the activity patterns of the

  5. Initial responses of rove and ground beetles (Coleoptera, Staphylinidae, Carabidae) to removal of logging residues following clearcut harvesting in the boreal forest of Quebec, Canada.

    Science.gov (United States)

    Work, Timothy T; Klimaszewski, Jan; Thiffault, Evelyne; Bourdon, Caroline; Paré, David; Bousquet, Yves; Venier, Lisa; Titus, Brian

    2013-01-01

    Increased interest in biomass harvesting for bioenergetic applications has raised questions regarding the potential ecological consequences on forest biodiversity. Here we evaluate the initial changes in the abundance, species richness and community composition of rove (Staphylinidae) and ground beetles (Carabidae), immediately following 1) stem-only harvesting (SOH), in which logging debris (i.e., tree tops and branches) are retained on site, and 2) whole-tree harvesting (WTH), in which stems, tops and branches are removed in mature balsam fir stands in Quebec, Canada. Beetles were collected throughout the summer of 2011, one year following harvesting, using pitfall traps. Overall catch rates were greater in uncut forest (Control) than either stem-only or whole-tree harvested sites. Catch rates in WTH were greater than SOH sites. Uncut stands were characterized primarily by five species: Atheta capsularis, Atheta klagesi, Atheta strigosula, Tachinus fumipennis/frigidus complex (Staphylinidae) and to a lesser extent to Pterostichus punctatissimus(Carabidae). Increased catch rates in WTH sites, where post-harvest biomass was less, were attributable to increased catches of rove beetles Pseudopsis subulata, Quedius labradorensis and to a lesser extent Gabrius brevipennis. We were able to characterize differences in beetle assemblages between harvested and non-harvested plots as well as differences between whole tree (WTH) and stem only (SOH) harvested sites where logging residues had been removed or left following harvest. However, the overall assemblage response was largely a recapitulation of the responses of several abundant species.

  6. Initial responses of rove and ground beetles (Coleoptera, Staphylinidae, Carabidae to removal of logging residues following clearcut harvesting in the boreal forest of Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Timothy Work

    2013-01-01

    Full Text Available Increased interest in biomass harvesting for bioenergetic applications has raised questions regarding the potential ecological consequences on forest biodiversity. Here we evaluate the initial changes in the abundance, species richness and community composition of rove (Staphylinidae and ground beetles (Carabidae, immediately following 1 stem-only harvesting (SOH, in which logging debris (i.e., tree tops and branches are retained on site, and 2 whole-tree harvesting (WTH, in which stems, tops and branches are removed in mature balsam fir stands in Quebec, Canada. Beetles were collected throughout the summer of 2011, one year following harvesting, using pitfall traps. Overall catch rates were greater in uncut forest (Control than either stem-only or whole-tree harvested sites. Catch rates in WTH were greater than SOH sites. Uncut stands were characterized primarily by five species: Atheta capsularis, A. klagesi, A. strigosula, Tachinus fumipennis/frigidus complex (Staphylinidae and to a lesser extent to Pterostichus punctatissimus (Carabidae. Increased catch rates in WTH sites, where post-harvest biomass was less, were attributable to increased catches of rove beetles Pseudopsis subulata, Quedius labradorensis and to a lesser extent Gabrius brevipennis. We were able to characterize differences in beetle assemblages between harvested and non-harvested plots as well as differences between whole tree (WTH and stem only (SOH harvested sites where logging residues had been removed or left following harvest. However, the overall assemblage response was largely a recapitulation of the responses of several abundant species.

  7. Molecular Diversity of Compounds from Pygidial Gland Secretions of Cave-Dwelling Ground Beetles: The First Evidence.

    Science.gov (United States)

    Vesović, Nikola; Ćurčić, Srećko; Vujisić, Ljubodrag; Nenadić, Marija; Krstić, Gordana; Perić-Mataruga, Vesna; Milosavljević, Slobodan; Antić, Dragan; Mandić, Boris; Petković, Matija; Vučković, Ivan; Marković, Đorđe; Vrbica, Maja; Ćurčić, Božidar; Makarov, Slobodan

    2015-06-01

    Three adult cave-dwelling ground beetle species were induced to discharge secretions of their pygidial glands into vials. Dichloromethane extraction was used to obtain the secretions. In total, 42 compounds were identified by GC/MS analysis. Pheggomisetes ninae contained 32 glandular compounds, Laemostenus (Pristonychus) punctatus 13, whereas Duvalius (Paraduvalius) milutini had nine compounds. Caproic, oleic, palmitic, and stearic acids were present in the samples of all analyzed species. Undecane was predominant in the extract of L. punctatus. Palmitic acid was the major component in the secretion of D. milutini. Finally, the most abundant compounds in P. ninae secretion were heptacosene and nonacosadienes. Herein, we present the first data on the identification of pygidial gland secretion components in both troglophilous and troglobite cave-dwelling ground beetles. Some compounds are reported for the first time in the secretions of ground beetles and other higher or lower taxa. The adaptation to underground life has not led to a reduction or changes in the chemical defense mechanism in the analyzed troglophilous and troglobitic Platyninae and Trechinae taxa.

  8. Influence of surface flattening on biodiversity of terrestrial arthropods during early stages of brown coal spoil heap restoration.

    Science.gov (United States)

    Moradi, Jabbar; Potocký, Pavel; Kočárek, Petr; Bartuška, Martin; Tajovský, Karel; Tichánek, Filip; Frouz, Jan; Tropek, Robert

    2018-08-15

    Heterogeneity of environmental conditions is the crucial factor supporting biodiversity in various habitats, including post-mining sites. The effects of micro-topographic heterogeneity on biodiversity and conservation potential of arthropod communities in post-industrial habitats had not been studied before now. At one of the largest European brown coal spoil heaps, we sampled eight groups of terrestrial arthropods with different life strategies (moths, spiders, ground beetles, ants, orthopteroids, centipedes, millipedes, and woodlice), in successionally young plots (5-18 y), with a heterogeneous wavy surface after heaping, and compared the communities with plots flattened by dozing. A combination of the standardized quantitative sampling, using two different methods, and a paired design of the plot selection enabled a robust analysis. Altogether, we recorded 380 species of the focal arthropods, 15 of them nationally threatened. We revealed the importance of the micro-topographic heterogeneity for the formation of the biodiversity of arthropods in their secondary refuges. The communities with higher biodiversity and conservation value were detected in the plots with heterogeneous surfaces; exceptions were ground beetles and millipedes. The surface flattening, often the first step of technical reclamation projects, thus suppress biodiversity of most terrestrial arthropods during the restoration of post-mining sites. Since the communities of both surface types differed, the proportional presence on both surfaces could be more efficient in supporting the local biodiversity. We suggest reducing the surface dozing for the cases with other concerns only, to achieve a proportional representation of both surface types. Such a combination of different restoration approaches would, thus, efficiently support high biodiversity of groups with various needs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Mass elevation and lee effects markedly lift the elevational distribution of ground beetles in the Himalaya-Tibet orogen.

    Science.gov (United States)

    Schmidt, Joachim; Böhner, Jürgen; Brandl, Roland; Opgenoorth, Lars

    2017-01-01

    Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya-Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle's elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya-Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide.

  10. [Life cycles of ground beetles (Coleoptera, Carabidae) from the mountain taiga and mountain forest-steppe in the Eastern Sayan].

    Science.gov (United States)

    Khobrakova, L Ts; Sharova, I Kh

    2005-01-01

    Seasonal dynamics and demographic structure was studied in 15 dominant ground beetle species in the mountain taiga and mountain forest-steppe belts of the Eastern Sayan (Okinskoe Plateau). Life cycles of the dominant ground beetle species were classified by developmental time, seasonal dynamics, and intrapopulation groups with different reproduction timing. The strategies of carabid life cycles adapted to severe mountain conditions of the Eastern Sayan were revealed.

  11. Effects of river restoration on riparian ground beetles (Coleoptera Carabidae) in Europe

    NARCIS (Netherlands)

    Januschke, Kathrin; Verdonschot, R.C.M.

    2016-01-01

    Studies addressing the effects of river and floodplain restoration on riparian ground beetles mainly focus on single river sections or regions. We conducted a large-scale study of twenty paired restored and degraded river sections throughout Europe. It was tested (i) if restoration had an overall

  12. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    Science.gov (United States)

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern. The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the

  13. Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups

    Science.gov (United States)

    Schmidt, Joachim; Opgenoorth, Lars; Höll, Steffen; Bastrop, Ralf

    2012-01-01

    The Himalayan mountain arc is one of the hotspots of biodiversity on earth, and species diversity is expected to be especially high among insects in this region. Little is known about the origin of the Himalayan insect fauna. With respect to the fauna of high altitude cloud forests, it has generally been accepted that Himalayan lineages are derived from ancestors that immigrated from Western Asia and from adjacent mountainous regions of East and Southeast Asia (immigration hypothesis). In this study, we sought to test a Tibetan Origin as an alternative hypothesis for groups with a poor dispersal ability through a phylogeographic analysis of the Ethira clade of the genus Pterostichus. We sequenced COI mtDNA and the 18S and 28S rDNA genes in 168 Pterostichini specimens, including 46 species and subspecies of the Ethira clade. In our analysis, we were able to show that the Ethira clade is monophyletic and, thus, represents a Himalayan endemic clade, supporting endemism of two of the basal lineages to the Central Himalaya and documenting large distributional gaps within the phylogeographic structure of the Ethira clade. Furthermore, the molecular data strongly indicate very limited dispersal abilities of species and subspecies of these primary wingless ground beetles. These results are consistent with the hypothesis of a Tibetan Origin, which explains the evolution, diversity and distribution of the Himalayan ground beetle Ethira clade much more parsimoniously than the original immigration hypothesis. PMID:23049805

  14. The effects of energy grass plantations on biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T; Slater, F

    2005-07-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI.

  15. The effects of energy grass plantations on biodiversity

    International Nuclear Information System (INIS)

    Semere, T.; Slater, F.

    2005-01-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI

  16. Ground beetles in city forests: does urbanization predict a personality trait?

    Science.gov (United States)

    Schuett, Wiebke; Delfs, Berit; Haller, Richard; Kruber, Sarah; Roolfs, Simone; Timm, Desiree; Willmann, Magdalena; Drees, Claudia

    2018-01-01

    Urbanization leads to substantial changes in natural habitats with profound effects on wildlife. Understanding behavioural responses to such environmental change is essential for identifying which organisms may adapt, as behaviour is often the first response to altered conditions. Individuals in more urbanized habitats may be expected to be more exploratory and bolder than their conspecifics in less urbanized habitats as they may be better able to cope with novel challenges. In a two-year field study we tested ground beetles from differently urbanized forests for their exploratory behaviour (in a novel environment) and their risk-taking (death-feigning). In total, we tested ca. 3,000 individuals of four forest-dwelling ground beetle species from eight within-city forest patches. In the second year, we also transferred ca. 800 tested individuals of two species to the laboratory to test for consistent behavioural differences (i.e. personality differences) under standardised conditions. Individuals were generally more exploratory in more urbanized than in less urbanized areas but only in one year of the study. Exploratory behaviour was not predicted by population density but increased with temperature or showed a temperature optimum. Exploration was consistent over time and individuals that were more exploratory also took higher risks. We demonstrated that species which are generally less directly exposed to human activities (e.g., most invertebrates) show behavioural responses to urbanization. Effects of urbanization were year-dependent, suggesting that other environmental conditions interacted with effects of urbanization on beetle behaviour. Furthermore, our results indicate that different personality compositions might cause behavioural differences among populations living in differently urbanized habitats.

  17. Limitations of outsourcing on-the-ground biodiversity conservation.

    Science.gov (United States)

    Iacona, Gwenllian D; Bode, Michael; Armsworth, Paul R

    2016-12-01

    To counteract global species decline, modern biodiversity conservation engages in large projects, spends billions of dollars, and includes many organizations working simultaneously within regions. To add to this complexity, the conservation sector has hierarchical structure, where conservation actions are often outsourced by funders (foundations, government, etc.) to local organizations that work on-the-ground. In contrast, conservation science usually assumes that a single organization makes resource allocation decisions. This discrepancy calls for theory to understand how the expected biodiversity outcomes change when interactions between organizations are accounted for. Here, we used a game theoretic model to explore how biodiversity outcomes are affected by vertical and horizontal interactions between 3 conservation organizations: a funder that outsourced its actions and 2 local conservation organizations that work on-the-ground. Interactions between the organizations changed the spending decisions made by individual organizations, and thereby the magnitude and direction of the conservation benefits. We showed that funders would struggle to incentivize recipient organizations with set priorities to perform desired actions, even when they control substantial amounts of the funding and employ common contracting approaches to enhance outcomes. Instead, biodiversity outcomes depended on priority alignment across the organizations. Conservation outcomes for the funder were improved by strategic interactions when organizational priorities were well aligned, but decreased when priorities were misaligned. Meanwhile, local organizations had improved outcomes regardless of alignment due to additional funding in the system. Given that conservation often involves the aggregate actions of multiple organizations with different objectives, strategic interactions between organizations need to be considered if we are to predict possible outcomes of conservation programs or

  18. Comparison of insect biodiversity between organic and conventional plantations in Kodagu, Karnataka, India

    Directory of Open Access Journals (Sweden)

    S. Mone

    2014-08-01

    Full Text Available We undertook a comparative analysis of ground insects and fruit eating butterflies on 29 different plantations in Kodagu District of Karnataka which is one of the rich biodiversity zones of the Western Ghats. These included organic and conventional coffee and cardamom plantations using different levels of chemical fertilizers and pesticides. A total number of 457 ground insect species were collected using pit-fall traps which included 92 species of ants and 123 species of beetles, among other insect taxa that we measured. Similarly, 25 species of butterflies belonging to the family Nymphalidae were collected using bait traps. We found a clear negative effect on the ground insect species diversity (Shannon index and evenness (Shannon evenness index in pesticide treated plantations as compared to the organic plantations. A similar negative effect was observed for butterfly diversity in plantations using pesticides. Our results corroborate the value of organic plantations in supporting higher levels of biodiversity.

  19. Mountain Pine Beetles, Salvage Logging, and Hydrologic Change: Predicting Wet Ground Areas

    Directory of Open Access Journals (Sweden)

    John Rex

    2013-04-01

    Full Text Available The mountain pine beetle epidemic in British Columbia has covered 18.1 million hectares of forest land showing the potential for exceptionally large-scale disturbance to influence watershed hydrology. Pine stands killed by the epidemic can experience reduced levels of evapotranspiration and precipitation interception, which can translate into an increase in soil moisture as observed by some forest practitioners during salvage logging in the epicenter of the outbreak. They reported the replacement of summer ground, dry firm soil areas, with winter ground areas identified by having wetter, less firm soils upon which forestry equipment operation is difficult or impossible before winter freeze-up. To decrease the likelihood of soil disturbance from harvesting, a set of hazard indicators was developed to predict wet ground areas in areas heavily infested by the mountain pine beetle. Hazard indicators were based on available GIS data, aerial photographs, and local knowledge. Indicators were selected by an iterative process that began with office-based selection of potential indicators, model development and prediction, field verification, and model refinement to select those indicators that explained most field data variability. Findings indicate that the most effective indicators were lodgepole pine content, understory, drainage density, soil texture, and the topographic index.

  20. Ground beetles from Sǎlaj county (Romania (coleoptera: carabidae

    Directory of Open Access Journals (Sweden)

    Kutasi Cs

    2016-01-01

    Full Text Available During a faunistical exploration of Sǎlaj county carried out in 2014 and 2015, 207 ground beetle (Carabidae species were recorded from the area. Considering the earlier literature data the total number of carabid species known from the county is 246. Carabus variolosus Fabricius, 1787 is a Natura 2000 species, Pterostichus bielzii Fuss, 1878 is a species endemic to the Western Apuseni Mountains. Further rare species from the area: Dromius quadraticollis A. Morawitz, 1862, Elaphropus parvulus (Dejean, 1831, Lebia marginata (Geoffroy, 1785, Ophonus ardosiacus (Lučnik, 1922, Trechus amplicollis Fairmaire, 1859.

  1. A comparison of ground beetle assemblages (Coleoptera: Carabidae in conventionally and ecologically managed alfalfa fields

    Directory of Open Access Journals (Sweden)

    P. Kolařík

    2014-12-01

    Full Text Available From 2007-2011, the occurrence of ground beetles (Coleoptera: Carabidae was studied using emergence traps in two differently managed alfalfa fields in the Czech Republic - a conventional and an ecological production system. In total, 784 specimens of ground beetles representing 58 species were trapped in these two alfalfa fields in South Moravia. A slightly higher number of specimens were trapped in the conventionally managed than in the ecological alfalfa stand (404 vs 380, respectively. In the conventionally managed alfalfa stand, the number of species was also higher than in the ecological stand (45 vs 40, respectively. With the exception of 2007 and 2009, Simpson’s indices of diversity were higher in the conventional stand than in the ecological in all study years. Shannon’s index was higher in the conventional alfalfa field in 2008, 2009, and 2011. Regarding distribution, species classified into group E (i.e., those without special demands on the type and quality of their habitat dominated in both types of management throughout the experimental period. The incidence of species classified into group R (i.e., those with narrow ecological amplitude was very low; i.e., only four species. These ground beetle species are included in the Red List of Threatened Species of the Czech Republic, and all of them (i.e. Acupalpus suturalis, Calosoma auropunctatum, Cicindela germanica and Ophonus cribricollis are listed as vulnerable.

  2. Ground beetles in city forests: does urbanization predict a personality trait?

    Directory of Open Access Journals (Sweden)

    Wiebke Schuett

    2018-02-01

    Full Text Available Background Urbanization leads to substantial changes in natural habitats with profound effects on wildlife. Understanding behavioural responses to such environmental change is essential for identifying which organisms may adapt, as behaviour is often the first response to altered conditions. Individuals in more urbanized habitats may be expected to be more exploratory and bolder than their conspecifics in less urbanized habitats as they may be better able to cope with novel challenges. Methods In a two-year field study we tested ground beetles from differently urbanized forests for their exploratory behaviour (in a novel environment and their risk-taking (death-feigning. In total, we tested ca. 3,000 individuals of four forest-dwelling ground beetle species from eight within-city forest patches. In the second year, we also transferred ca. 800 tested individuals of two species to the laboratory to test for consistent behavioural differences (i.e. personality differences under standardised conditions. Results Individuals were generally more exploratory in more urbanized than in less urbanized areas but only in one year of the study. Exploratory behaviour was not predicted by population density but increased with temperature or showed a temperature optimum. Exploration was consistent over time and individuals that were more exploratory also took higher risks. Discussion We demonstrated that species which are generally less directly exposed to human activities (e.g., most invertebrates show behavioural responses to urbanization. Effects of urbanization were year-dependent, suggesting that other environmental conditions interacted with effects of urbanization on beetle behaviour. Furthermore, our results indicate that different personality compositions might cause behavioural differences among populations living in differently urbanized habitats.

  3. Evolution of the carabid ground beetles.

    Science.gov (United States)

    Osawa, S; Su, Z H; Kim, C G; Okamoto, M; Tominaga, O; Imura, Y

    1999-01-01

    The phylogenetic relationships of the carabid ground beetles have been estimated by analysing a large part of the ND5 gene sequences of more than 1,000 specimens consisting of the representative species and geographic races covering most of the genera and subgenera known in the world. From the phylogenetic analyses in conjunction with the mtDNA-based dating, a scenario of the establishment of the present habitats of the respective Japanese carabids has been constructed. The carabid diversification took place ca. 40 MYA as an explosive radiation of the major genera. During evolution, occasional small or single bangs also took place, sometimes accompanied by parallel morphological evolution in phylogenetically remote as well as close lineages. The existence of silent periods, in which few morphological changes took place, has been recognized during evolution. Thus, the carabid evolution is discontinuous, alternatively having a phase of rapid morphological change and a silent phase.

  4. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009)

    OpenAIRE

    Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro

    2014-01-01

    Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in...

  5. Effects of carbaryl-bran bait on trap-catch and seed predation by ground beetles

    Science.gov (United States)

    Carbaryl-bran bait is effective against grasshoppers without many impacts on non-target organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species composition a...

  6. Short-Term Responses of Ground Beetles to Forest Changes Caused by Early Stages of Emerald Ash Borer (Coleoptera: Buprestidae)-Induced Ash Mortality.

    Science.gov (United States)

    Perry, Kayla I; Herms, Daniel A

    2016-04-22

    Emerald ash borer (Agrilus planipennis Fairmaire), an invasive wood-boring beetle native to Asia, has killed hundreds of millions of ash trees since its accidental introduction into North America, resulting in widespread formation of canopy gaps and accumulations of coarse woody debris (CWD) in forests. The objective was to quantify effects of canopy gaps and CWD caused by early stages of emerald ash borer-induced ash mortality, and their interaction on ground beetle assemblages. The impact of canopy gaps and CWD varied, as gaps affected beetle assemblages in 2011, while effects of CWD were only observed in 2012. Gaps decreased beetle activity-abundance, and marginally decreased richness, driving changes in species composition, but evenness and diversity were unaffected. Effects of the CWD treatment alone were minimal, but CWD interacted with the canopy treatment, resulting in an increase in activity-abundance of ground beetles in canopy gaps without CWD, and a marginal increase in species richness in canopy gaps with CWD. Although there were some initial changes in species composition, these were ephemeral, suggesting that ground beetle assemblages may be resilient to disturbance caused by emerald ash borer. This study contributes to our understanding of the cascading ecological impacts of biological invasions on forest ecosystems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. What do we know about winter active ground beetles (Coleoptera, Carabidae) in Central and Northern Europe?

    Science.gov (United States)

    Jaskuła, Radomir; Soszyńska-Maj, Agnieszka

    2011-01-01

    This paper summarizes the current knowledge on winter active Carabidae in Central and Northern Europe. In total 73 winter active species are listed, based on literature and own observations. Ground beetles are among the three most numerous Coleoptera families active during the autumn to spring period. The winter community of Carabidae is composed both of larvae (mainly autumn breeding species) and adults, as well as of epigeic species and those inhabiting tree trunks. Supranivean fauna is characterized by lower species diversity than the subnivean fauna. The activity of ground beetles decreases in late autumn, is lowest during mid-winter and increases in early spring. Carabidae are noted as an important food source in the diet of insectivorous mammals. They are also predators, hunting small winter active invertebrates.

  8. Effects of insecticide exposure on movement and population size estimates of predatory ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Prasifka, Jarrad R; Lopez, Miriam D; Hellmich, Richard L; Prasifka, Patricia L

    2008-01-01

    Estimates of arthropod population size may paradoxically increase following insecticide applications. Research with ground beetles (Coleoptera: Carabidae) suggests that such unusual results reflect increased arthropod movement and capture in traps rather than real changes in population size. However, it is unclear whether direct (hyperactivity) or indirect (prey-mediated) mechanisms produce increased movement. Video tracking of Scarites quadriceps Chaudior indicated that brief exposure to lambda-cyhalothrin or tefluthrin increased total distance moved, maximum velocity and percentage of time moving. Repeated measurements on individual beetles indicated that movement decreased 240 min after initial lambda-cyhalothrin exposure, but increased again following a second exposure, suggesting hyperactivity could lead to increased trap captures in the field. Two field experiments in which ground beetles were collected after lambda-cyhalothrin or permethrin application attempted to detect increases in population size estimates as a result of hyperactivity. Field trials used mark-release-recapture methods in small plots and natural carabid populations in larger plots, but found no significant short-term (<6 day) increases in beetle trap captures. The disagreement between laboratory and field results suggests mechanisms other than hyperactivity may better explain unusual changes in population size estimates. When traps are used as a primary sampling tool, unexpected population-level effects should be interpreted carefully or with additional data less influenced by arthropod activity.

  9. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    Science.gov (United States)

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field.

  10. What do we know about winter active ground beetles (Coleoptera, Carabidae in Central and Northern Europe?

    Directory of Open Access Journals (Sweden)

    Radomir Jaskula

    2011-05-01

    Full Text Available This paper summarizes the current knowledge on winter active Carabidae in Central and Northern Europe. In total 73 winter active species are listed, based on literature and own observations. Ground beetles are among the three most numerous Coleoptera families active during the autumn to spring period. The winter community of Carabidae is composed both of larvae (mainly autumn breeding species and adults, as well as of epigeic species and those inhabiting tree trunks. Supranivean fauna is characterized by lower species diversity than the subnivean fauna. The activity of ground beetles decreases in late autumn, is lowest during mid-winter and increases in early spring. Carabidae are noted as an important food source in the diet of insectivorous mammals. They are also predators, hunting small winter active invertebrates.

  11. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments.

    Science.gov (United States)

    Davis, Doreen E; Gagné, Sara A

    2018-01-01

    Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k -means clustering. Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. We

  12. Boundaries in ground beetle (Coleoptera: Carabidae and environmental variables at the edges of forest patches with residential developments

    Directory of Open Access Journals (Sweden)

    Doreen E. Davis

    2018-01-01

    Full Text Available Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. Methods We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k-means clustering. Results Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of

  13. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles.

    Science.gov (United States)

    Magura, Tibor; Lövei, Gábor L; Tóthmérész, Béla

    2017-02-01

    Most edges are anthropogenic in origin, but are distinguishable by their maintaining processes (natural vs. continued anthropogenic interventions: forestry, agriculture, urbanization). We hypothesized that the dissimilar edge histories will be reflected in the diversity and assemblage composition of inhabitants. Testing this "history-based edge effect" hypothesis, we evaluated published information on a common insect group, ground beetles (Coleoptera: Carabidae) in forest edges. A meta-analysis showed that the diversity-enhancing properties of edges significantly differed according to their history. Forest edges maintained by natural processes had significantly higher species richness than their interiors, while edges with continued anthropogenic influence did not. The filter function of edges was also essentially different depending on their history. For forest specialist species, edges maintained by natural processes were penetrable, allowing these species to move right through the edges, while edges still under anthropogenic interventions were impenetrable, preventing the dispersal of forest specialists out of the forest. For species inhabiting the surrounding matrix (open-habitat and generalist species), edges created by forestry activities were penetrable, and such species also invaded the forest interior. However, natural forest edges constituted a barrier and prevented the invasion of matrix species into the forest interior. Preserving and protecting all edges maintained by natural processes, and preventing anthropogenic changes to their structure, composition, and characteristics are key factors to sustain biodiversity in forests. Moreover, the increasing presence of anthropogenic edges in a landscape is to be avoided, as they contribute to the loss of biodiversity. Simultaneously, edges under continued anthropogenic disturbance should be restored by increasing habitat heterogeneity.

  14. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments

    OpenAIRE

    Davis, Doreen E.; Gagné, Sara A.

    2018-01-01

    Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond...

  15. Effects of carbaryl-bran bait on trap catch and seed predation by ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Fielding, Dennis J; DeFoliart, Linda S; Hagerty, Aaron M

    2013-04-01

    Carbaryl-bran bait is effective against grasshoppers without many impacts on nontarget organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species and their consumption of weed seeds have not been previously studied in agricultural settings in Alaska. This study examined the effect of grasshopper bran bait on carabid activity-density, as measured by pitfall trap catches, and subsequent predation by invertebrates of seeds of three species of weed. Data were collected in fallow fields in agricultural landscape in the interior of Alaska, near Delta Junction, in 2008 and 2010. Bait applications reduced ground beetle activity-density by over half in each of 2 yr of bait applications. Seed predation was generally low overall (1-10%/wk) and not strongly affected by the bait application, but predation of lambsquarters (Chenopodium album L.) seed was lower on treated plots in 1 yr (340 seeds recovered versus 317 seeds, on treated versus untreated plots, respectively). Predation of dandelion (Taraxacum officinale G. H. Weber ex Wiggers) seeds was correlated with ground beetle activity-density in 1 yr, and predation of dragonhead mint (Dracocephalum parvifolium Nutt.) seed in the other year. We conclude that applications of carbaryl-bran bait for control of grasshoppers will have only a small, temporary effect on weed seed populations in high-latitude agricultural ecosystems.

  16. The Trade-off Between Housing Density and Sprawl Area: Minimizing Impacts to Carabid Beetles (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Sara A. Gagné

    2010-12-01

    Full Text Available Increasing housing density has negative effects on native biodiversity. This implies that we should build at low density to conserve native species. However, for a given human population, low-density development must cover a large area, resulting in sprawl. A pertinent question is then, at what housing density are the impacts of a given human population on native biodiversity minimized? We addressed this question with carabid beetles in Ottawa and Gatineau, Canada. First, we collected beetles at 22 sites representing a range of housing densities. We then used these data to estimate beetle abundance and species richness in hypothetical development scenarios representing the housing density/sprawl area trade-off. Our results suggest that clustering development at a high housing density minimizes the impacts of a given human population on carabid beetles. If these results are general across all forest taxa, then planning that favors densification rather than sprawl would minimize urbanization effects on forest biodiversity.

  17. An unprecedented role reversal: ground beetle larvae (Coleoptera: Carabidae lure amphibians and prey upon them.

    Directory of Open Access Journals (Sweden)

    Gil Wizen

    Full Text Available Amphibians often feed on beetle larvae, including those of ground beetles (Carabidae. Preliminary reports have detailed an unusual trophic interaction in which, in contrast, larvae of the ground beetle Epomis prey upon juvenile and adult amphibians. While it is known that these larvae feed exclusively on amphibians, how the predator-prey encounter occurs to the advantage of the beetle larvae had been unknown to date. Using laboratory observations and controlled experiments, we recorded the feeding behavior of Epomis larvae, as well as the behavior of their amphibian prey. Here we reveal that larvae of two species of Epomis (E. circumscriptus and E. dejeani lure their potential predator, taking advantage of the amphibian's predation behavior. The Epomis larva combines a sit-and-wait strategy with unique movements of its antennae and mandibles to draw the attention of the amphibian to the presence of a potential prey. The intensity of this enticement increases with decreasing distance between the larva and the amphibian. When the amphibian attacks, the larva almost always manages to avoid the predator's protracted tongue, exploiting the opportunity to attach itself to the amphibian's body and initiate feeding. Our findings suggest that the trophic interaction between Epomis larvae and amphibians is one of the only natural cases of obligatory predator-prey role reversal. Moreover, this interaction involves a small insect larva that successfully lures and preys on a larger vertebrate. Such role reversal is exceptional in the animal world, extending our perspective of co-evolution in the arms race between predator and prey, and suggesting that counterattack defense behavior has evolved into predator-prey role reversal.

  18. New faunistic records of ground beetles (Coleoptera, Carabidae from Hormozgan province, Iran

    Directory of Open Access Journals (Sweden)

    Azadbakhsh Saeed

    2016-09-01

    Full Text Available This paper presents the results of a faunal study of ground beetles (Coleoptera: Carabidae from Hormozgan province in southern Iran, which was carried out from winter 2015 to winter 2016. A total of 30 species belonging to 18 genera were collected and identified. Two species – Calodromius mayeti and Elaphropus (Tachyura biblis – are reported from Iran for the first time; in addition, the occurrence of several species in Iran was confirmed.

  19. Seed Detection and Discrimination by Ground Beetles (Coleoptera: Carabidae) Are Associated with Olfactory Cues.

    Science.gov (United States)

    Kulkarni, Sharavari S; Dosdall, Lloyd M; Spence, John R; Willenborg, Christian J

    2017-01-01

    Olfactory ability is an element of fitness in many animals, guiding choices among alternatives such as mating partners or food. Ground beetles (Coleoptera; Carabidae), exhibit preferences for prey, and some species are well-known weed seed predators. We used olfactometer-based bioassays to determine if olfactory stimuli are associated with detection of Brassica napus L., Sinapis arvensis L., and Thlaspi arvense L. seeds by ground beetles characteristic of agroecosystems, and whether behavioural responses to seed odors depended on seed physiological state (imbibed or unimbibed). Imbibed B.napus seeds were preferred over other weed species by two of the three carabid species tested. Only A. littoralis responded significantly to unimbibed seeds of B. napus. Sensitivity to olfactory cues appeared to be highly specific as all carabid species discriminated between the olfactory cues of imbibed brassicaceous weed seeds, but did not discriminate between weed seeds that were unimbibed. Overall, our data suggest that depending on seed physiological state, odours can play an important role in the ability of carabids to find and recognize seeds of particular weed species.

  20. Spatial Factors Play a Major Role as Determinants of Endemic Ground Beetle Beta Diversity of Madeira Island Laurisilva

    Science.gov (United States)

    Boieiro, Mário; Carvalho, José C.; Cardoso, Pedro; Aguiar, Carlos A. S.; Rego, Carla; de Faria e Silva, Israel; Amorim, Isabel R.; Pereira, Fernando; Azevedo, Eduardo B.; Borges, Paulo A. V.; Serrano, Artur R. M.

    2013-01-01

    The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (βrepl – species turnover and βrich - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (βrepl) and 40.7% of species richness variation (βrich) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: βrepl was influenced by climate, disturbance and soil organic matter content whilst βrich was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both βrepl and βrich, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles. PMID:23724065

  1. A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: The genus Bembidion Latreille, 1802 and allied taxa.

    Science.gov (United States)

    Raupach, Michael J; Hannig, Karsten; Morinière, Jérome; Hendrich, Lars

    2016-01-01

    As molecular identification method, DNA barcoding based on partial cytochrome c oxidase subunit 1 (COI) sequences has been proven to be a useful tool for species determination in many insect taxa including ground beetles. In this study we tested the effectiveness of DNA barcodes to discriminate species of the ground beetle genus Bembidion and some closely related taxa of Germany. DNA barcodes were obtained from 819 individuals and 78 species, including sequences from previous studies as well as more than 300 new generated DNA barcodes. We found a 1:1 correspondence between BIN and traditionally recognized species for 69 species (89%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for three species pairs, including two species pairs with haplotype sharing (Bembidion atrocaeruleum/Bembidion varicolor and Bembidion guttula/Bembidion mannerheimii). In contrast to this, deep intraspecific sequence divergences with distinct lineages were revealed for two species (Bembidion geniculatum/Ocys harpaloides). Our study emphasizes the use of DNA barcodes for the identification of the analyzed ground beetles species and represents an important step in building-up a comprehensive barcode library for the Carabidae in Germany and Central Europe as well.

  2. Molecular polymorphism as a tool for differentiating ground beetles (Carabus species): application of ubiquitin PCR/SSCP analysis.

    Science.gov (United States)

    Boge, A; Gerstmeier, R; Einspanier, R

    1994-11-01

    Differentiation between Carabus species (ground beetle) and subspecies is difficult, although there have been extensive studies. To address this problem we have applied PCR in combination with SSCP analysis focussing on the evolutionally conservative ubiquitin gene to elaborate a new approach to molecular differentiation between species. We report that Carabidae possess an ubiquitin gene and that its gene has a multimeric structure. Differential SSCP analysis was performed with the monomeric form of the gene to generate a clear SSCP pattern. Such PCR/SSCP resulted in reproducible patterns throughout our experiments. Comparing different Carabus species (Carabus granulatus, C. irregularis, C. violaceus and C. auronitens) we could observe clear interspecies differences but no differences between genders. Some species showed some remarkable differences between the individuals. We suggest that the ubiquitin PCR-SSCP technique might be an additional tool for the differentiation of ground beetles.

  3. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-02-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.

  4. Ground beetle (Coleoptera: Carabidae) assemblages in the Conservation Reserve Program crop rotation systems in Interior Alaska

    Science.gov (United States)

    Adult ground beetles (Coleoptera: Carabidae) abundance and diversity were documented on Conservation Research Program (CRP) agricultural lands in Delta Junction, Alaska (64ºN, 145º W). Twenty species were documented based on a total sample of 6,116 specimens collected during 2006 and 2007. Two speci...

  5. Parachordodes tegonotus n. sp. (Gordioidea: Nematomorpha), a hairworm parasite of ground beetles (Carabidae: Coleoptera), with a summary of gordiid parasites of carabids.

    Science.gov (United States)

    Poinar, George; Rykken, Jessica; LaBonte, Jim

    2004-06-01

    A new species of hairworm, Parachordodes tegonotus n. sp. (Gordioidea: Nematomorpha) is described from three species of ground beetles (Carabidae: Coleoptera) from the state of Oregon. This is the first record of Parachordodes Camerano parasitising carabid beetles in North America. Diagnostic characters for the new species include size, colour, the nature and arrangement of the areoles, and the character, shape and extant of ornamentation on the ventral surface of the male tail. Encysted hairworm larvae found in the internal tissues of mayfly and caddisfly larvae at the type-locality were presumed to be those of P. tegonotus, indicating an indirect life-cycle involving paratenic hosts. A worldwide host list shows that some 70 species of ground beetles have been documented as developmental hosts to hairworms belonging to at least five genera, namely Gordius, Parachordodes, Dacochordodes, Gordionus and Paragordionus.

  6. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, Agnieszka J., E-mail: a.bednarska@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland)

    2009-05-15

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  7. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    International Nuclear Information System (INIS)

    Bednarska, Agnieszka J.; Laskowski, Ryszard

    2009-01-01

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  8. Chewing insect predation on artificial caterpillars is related to activity density of ground beetles (Coleoptera: Carabidae)

    DEFF Research Database (Denmark)

    Ferrante, M.; Lövei, G. L.

    2015-01-01

    traps in winter wheat (Triticum aestivum). Forty-six percent (n=756/1637) of the artificial sentinel prey were attacked after 24 h, mostly by chewing insects (88%, n=665/756), and 1102 carabids with a size of ≥15mm were collected. Ground beetles were also the most common predatory group, followed...

  9. Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields

    DEFF Research Database (Denmark)

    Steenberg, T; Langer, V; Esbjerg, P

    1995-01-01

    Prevalence of entomopathogenic fungi was studied in overwintering ground beetles (Col.: Carabidae) and rove beetles (Col.: Staphylinidae) collected from fields of lucerne, white cabbage and white cabbage undersown with white clover. In general infection levels in adult ground beetles and rove bee...

  10. Pterostichus neilgaimani sp. nov., a new species of ground beetles (Coleoptera: Carabidae) from relict sacred grove in Eastern Georgia.

    Science.gov (United States)

    Chaladze, Giorgi; Kalatozishvili, Levan; Janiashvili, Zurab; Bakuradze, Giorgi

    2017-10-03

    A new species of ground beetles (Coleoptea: Carabidae) belonging to the subgenus Aphaonus Reitter, 1887 (genus Pterostichus Bonelli, 1810) is described, based on two specimens collected from the sacred grove of Khevsha (Eastern Georgia).

  11. Parasitism of Ground Beetles (Coleoptera: Carabidae) by a New Species of Hairworm (Nematomorpha: Gordiida) in Arctic Canada.

    Science.gov (United States)

    Ernst, Crystal M; Hanelt, Ben; Buddle, Christopher M

    2016-06-01

    The host-parasite associations between ground beetles (Coleoptera: Carabidae) and hairworms (Nematomorpha: Gordiida) collected from the Arctic (an understudied and ecologically important region) is described. Carabids and their parasites were collected from 12 sites spanning the 3 northernmost ecoclimatic zones of Canada (north boreal, subarctic, and high Arctic) using standardized methods. The beetles and hairworms were identified using traditional morphological approaches. Seven beetle species are recorded as hosts: Amara alpina, Pterostichus caribou, Pterostichus brevicornis, Pterostichus tareumiut, Pterostichus haematopus, Patrobus septentrionis, and Notiophilus borealis. All represent new host records (increasing the known North American host list from 14 to 21), and this is the first record of hairworm infection in the genus Notiophilus. Beetles from Banks Island, Northwest Territory, were infected in high numbers (11-19% per sampling period) and were used as an ecological case study. There was no significant relationship between infection status and host species, body size, or sex. Beetles collected in yellow pan traps and in wet habitats were more likely to be infected, likely due to water-seeking behavior induced by the parasites. Morphological examinations indicate that the hairworms collected from all locations represent a single, new species of Gordionus, making it only the sixth hairworm species and the third species of that genus found in Canada. Hosts are unknown for all other Canadian (and 1 Alaskan) Gordionus species.

  12. Specific structure, sexual parity and seasonal dynamics of separate kinds of ground-beetles of Tljaratinskiy area of Daghestan

    Directory of Open Access Journals (Sweden)

    M. H. Imanmirzaev

    2008-01-01

    Full Text Available As a result of carried out research in fauna of ground-beetles of Tljaratinskiy area it is revealed 87 kinds concerning 24 sorts. The sexual parity is established and seasonal dynamics of prepotent kinds is certain.

  13. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Dirnböck, Thomas; Müller, Jörg; Kobler, Johannes; Katzensteiner, Klaus; Helm, Norbert; Seidl, Rupert

    2017-02-01

    1. The ongoing changes to climate challenge the conservation of forest biodiversity. Yet, in thermally limited systems, such as temperate forests, not all species groups might be affected negatively. Furthermore, simultaneous changes in the disturbance regime have the potential to mitigate climate-related impacts on forest species. Here, we (i) investigated the potential long-term effect of climate change on biodiversity in a mountain forest landscape, (ii) assessed the effects of different disturbance frequencies, severities and sizes and (iii) identified biodiversity hotspots at the landscape scale to facilitate conservation management. 2. We employed the model iLand to dynamically simulate the tree vegetation on 13 865 ha of the Kalkalpen National Park in Austria over 1000 years, and investigated 36 unique combinations of different disturbance and climate scenarios. We used simulated changes in tree cover and composition as well as projected temperature and precipitation to predict changes in the diversity of Araneae, Carabidae, ground vegetation, Hemiptera, Hymenoptera, Mollusca, saproxylic beetles, Symphyta and Syrphidae, using empirical response functions. 3. Our findings revealed widely varying responses of biodiversity indicators to climate change. Five indicators showed overall negative effects, with Carabidae, saproxylic beetles and tree species diversity projected to decrease by more than 33%. Six indicators responded positively to climate change, with Hymenoptera, Mollusca and Syrphidae diversity projected to increase more than twofold. 4. Disturbances were generally beneficial for the studied indicators of biodiversity. Our results indicated that increasing disturbance frequency and severity have a positive effect on biodiversity, while increasing disturbance size has a moderately negative effect. Spatial hotspots of biodiversity were currently found in low- to mid-elevation areas of the mountainous study landscape, but shifted to higher

  14. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape.

    Science.gov (United States)

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  15. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity.

    Science.gov (United States)

    Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M

    2014-04-01

    Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. © 2013 Society for Conservation Biology.

  16. Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations

    Science.gov (United States)

    Nagler, Pamela L.; Pearlstein, Susanna; Glenn, Edward P.; Brown, Tim B.; Bateman, Heather L.; Bean, Dan W.; Hultine, Kevin R.

    2013-01-01

    We measured the rate of dispersal of saltcedar leaf beetles (Diorhabda carinulata), a defoliating insect released on western rivers to control saltcedar shrubs (Tamarix spp.), on a 63 km reach of the Virgin River, U.S. Dispersal was measured by satellite imagery, ground surveys and phenocams. Pixels from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite showed a sharp drop in NDVI in midsummer followed by recovery, correlated with defoliation events as revealed in networked digital camera images and ground surveys. Ground surveys and MODIS imagery showed that beetle damage progressed downstream at a rate of about 25 km yr−1 in 2010 and 2011, producing a 50% reduction in saltcedar leaf area index and evapotranspiration by 2012, as estimated by algorithms based on MODIS Enhanced Vegetation Index values and local meteorological data for Mesquite, Nevada. This reduction is the equivalent of 10.4% of mean annual river flows on this river reach. Our results confirm other observations that saltcedar beetles are dispersing much faster than originally predicted in pre-release biological assessments, presenting new challenges and opportunities for land, water and wildlife managers on western rivers. Despite relatively coarse resolution (250 m) and gridding artifacts, single MODIS pixels can be useful in tracking the effects of defoliating insects in riparian corridors.

  17. Body volume in ground beetles (Carabidae reflects biotope disturbance

    Directory of Open Access Journals (Sweden)

    Langraf Vladimír

    2017-12-01

    Full Text Available Changes in body size of living organisms can indicate changes in environmental quality. The family Carabidae is frequently used as an indicator of environmental status. We collected ground beetles in 9 Slovakian localities (in the Veporské vrchy Mts and the Juhoslovenská kotlina Basin of various levels of disturbance, and evaluated the volume of individuals. The lowest average body volumes of individual were found for an intensively grazed pasture (locality 5 and a nitrophilous waterside vegetation (locality 6 (1,298 mm3–4,648 mm3 with predominantly macropterous species. We have confirmed the significantly higher average biovolume value of individual Carabidae in less disturbed habitats: a Picea abies plantation (locality 1, a Carpathian oak-hornbeam forest (locality 4 and a Carpathian turkey oak forest (locality 7 (from 9,837 mm3 to 13,038 mm3, where apterous and brachypterous species dominated.

  18. Can Airborne Laser Scanning (ALS and Forest Estimates Derived from Satellite Images Be Used to Predict Abundance and Species Richness of Birds and Beetles in Boreal Forest?

    Directory of Open Access Journals (Sweden)

    Eva Lindberg

    2015-04-01

    Full Text Available In managed landscapes, conservation planning requires effective methods to identify high-biodiversity areas. The objective of this study was to evaluate the potential of airborne laser scanning (ALS and forest estimates derived from satellite images extracted at two spatial scales for predicting the stand-scale abundance and species richness of birds and beetles in a managed boreal forest landscape. Multiple regression models based on forest data from a 50-m radius (i.e., corresponding to a homogenous forest stand had better explanatory power than those based on a 200-m radius (i.e., including also parts of adjacent stands. Bird abundance and species richness were best explained by the ALS variables “maximum vegetation height” and “vegetation cover between 0.5 and 3 m” (both positive. Flying beetle abundance and species richness, as well as epigaeic (i.e., ground-living beetle richness were best explained by a model including the ALS variable “maximum vegetation height” (positive and the satellite-derived variable “proportion of pine” (negative. Epigaeic beetle abundance was best explained by “maximum vegetation height” at 50 m (positive and “stem volume” at 200 m (positive. Our results show that forest estimates derived from satellite images and ALS data provide complementary information for explaining forest biodiversity patterns. We conclude that these types of remote sensing data may provide an efficient tool for conservation planning in managed boreal landscapes.

  19. [Behavioral mechanisms of spatial competition between red wood ants (Formica aquilonia) and ground beetles (Carabidae)].

    Science.gov (United States)

    Dorosheva, E A; Reznikova, Zh I

    2006-01-01

    Behavioral aspects of spatial competition between red wood ants (Formica aquilonia) and six mass species of Carabidae were studied in field and laboratory experiments. We showed that red wood ants essentially influence spatial distribution of ground beetles on their common territories. Transplantation experiments suggest that in newly established ants' settlements stronger forms of interrelations arise than in old stable colony. To examine the ability of beetles to avoid collisions with ants we used two experimental techniques. In laboratory, we tested carabids ability to avoid a clash in a Y-shaped labyrinth containing an active tethered ant in one section. In field experiments we compared quantitative characteristics of movements (such as crookedness of individual trajectories, speed of movement, the time spent on stops) for beetles placed close to ants foraging routes and on ant-free plots. All beetles studied displayed a clear tendency to learn, that is, to modity their behavior in order to avoid collisions with ants. Species that exhibited best parameters of learning were closer to ants by their size and characteristic movement, namely, Pterostichus oblogopunctatus and P. magus. Beetles' stereotyped behavioral tactics can be considered universal for avoiding collisions with any subject (for instance, with an ant) of a certain size and speed of movements. A set of tactics in the labyrinth included: (1) attempts to round the ant; (2) turns away after touching the ant with antennae; (3) turns away without a contact; (4) avoidances of a dangerous section; (5) stops near the ant with the antennae hidden. Comparing pairwise difference between four species shows that beetles use species-specific preference for definite combinations of tactics. Effective learning allows carabids to penetrate into ant foraging territory and partly avoide interference competition. It seems that red wood ants are not inclined to learn to avoid collisions with competing carabid species

  20. Terrestrial Biodiversity Analyses in Dalmatia (Croatia): A Complementary Approach Using Diversity and Rarity

    Science.gov (United States)

    Jelaska, Sven D.; Nikolić, Toni; Šerić Jelaska, Lucija; Kušan, Vladimir; Peternel, Hrvoje; Gužvica, Goran; Major, Zoran

    2010-03-01

    Here we present the methodology used for terrestrial biodiversity analysis and site selection in Phase B of the UNDP/GEF COAST project. The analysis was focused on the problem of biodiversity evaluation in four Croatian counties stretching from sea level to the highest mountain in Croatia. Data on habitats, vascular flora, and fauna (mammals, birds, reptiles, amphibians, butterflies, ground beetles, and underground invertebrates) were collected and analyzed for each of the four counties. Emphasis was given to the richness of endangered species and the rarity of endemic species. Based on the spatial analyses of habitat, fauna, and flora data, four to six areas were selected from each county and ranked according to their biodiversity importance. Overlap between areas important for richness and those important for rarity was highest for data on flora (65.5%) and lowest for data on fauna (16.7%). When different data sets were compared, the lowest overlap was between flora and fauna (17.1%) and largest between fauna and habitats (23.9%). Simultaneous overlap among all three data sets was found in just 6.5% of the overall selected areas. These results suggest that less specific data, with respect to taxa threat status, could better serve as surrogate data in estimating overall biodiversity. In summary, this analysis has demonstrated that Dalmatia is a region with a high overall biodiversity that is important in a broader European context.

  1. Monitoring Asian longhorned beetles in Massachusetts

    Science.gov (United States)

    Maya Nehme; Melody Keena; Aijun Zhang; Alan Sawyer; Kelli. Hoover

    2011-01-01

    An operationally effective trap to monitor the Asian longhorned beetle (Anoplophora glabripennis or ALB) has been a goal of the ALB eradication program since the first beetle was found in New York in 1996. Ground surveying is only ~20 percent effective at identifying infested trees and, although tree climbing is more effective, it is also...

  2. Effect of land use change on ecosystem function of dung beetles: experimental evidence from Wallacea Region in Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2011-07-01

    Full Text Available Shahabuddin (2011 Effect of land use change on ecosystem function of dung beetles: experimental evidence from Wallacea Region in Sulawesi, Indonesia. Biodiversitas 12: 177-181. The deforestation of tropical forests and their subsequent conversion to human-dominated land-use systems is one of the most significant causes of biodiversity loss. However clear understanding of the links between ecological functions and biodiversity is needed to evaluate and predict the true environmental consequences of human activities. This study provided experimental evidence comparing ecosystem function of dung beetles across a land use gradient ranging from natural tropical forest and agroforestry systems to open cultivated areas in Central Sulawesi. Therefore, standardized dung pats were exposed at each land-use type to assess dung removal and parasite suppression activity by dung beetles. The results showed that ecosystem function of dung beetles especially dung burial activity were remarkably disrupted by land use changes from natural forest to open agricultural area. Dung beetles presence enhanced about 53% of the total dung removed and reduced about 83% and 63% of fly population and species number respectively, indicating a pronounce contribution of dung beetles in our ecosystem.

  3. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae).

    Science.gov (United States)

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.

  4. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae.

    Directory of Open Access Journals (Sweden)

    Yuichi Oba

    Full Text Available Click beetles (Coleoptera: Elateridae represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation. These findings urge taxonomic reinvestigation of these mismatched taxa.

  5. The effects of energy grass plantations on biodiversity. 2nd annual report

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.

    2004-07-01

    This report, which covers the year 2003 growing season, is the second annual report about a project to investigate the ecological impact on biodiversity of plantations of biomass grass crops grown in Hertfordshire in the UK. Wildlife monitoring was carried out at five field sites growing the perennial rhizomatous grass crops Miscanthus, reed canary grass and switch grass. The report covers the findings from wildlife surveys for the 2003 season, the final results from the invertebrate identification from the 2002 season, data entry from the 2002 and 2003 seasons, and the continued invertebrate identification during the 2003 season. Butterfly assessments and an evaluation of crop characteristics such as plant height, plant/stem density and biomass yield were also performed. Results are presented with respect to crop field characteristics, pests and diseases, ground flora, ground beetles, birds, small mammals, butterflies and epigeal invertebrates. Plans for the next growing season are outlined.

  6. Initial Study of the Ground Beetles (Coleoptera: Carabidae and Other Invertebrates from “Leshnitsa” Nature Reserve(Central Stara Planina Mountains, Bulgaria

    Directory of Open Access Journals (Sweden)

    Teodora M. Teofilova

    2016-06-01

    Full Text Available The invertebrate fauna of the “Leshnitsa” nature reserve was studied, with particular consideration to the ground beetles. During the study altogether 394 specimens of carabid beetlesbelonging to 32 species and subspecies were captured, as well as 23 other invertebrate species,some of which are with a conservation significance (protected, Bulgarian and Balkan endemics.Ground beetles were characterized and classified according to their zoogeographical belonging,degree of endemism and the life forms they refer to. Threats for the invertebrate fauna and negativefactors of anthropogenic origin were determined and measures for diminishing of their effect wereproposed. So far the invertebrate fauna in this part of the mountain has been insufficiently studied.The real state of the diversity of this group in the area will be revealed only after futureinvestigations and discovery of additional new species for the region.

  7. Ground Beetles (Coleoptera: Carabidae and Some Other Invertebrates from the Managed Nature Reserves "Dolna Topchiya" and "Balabana" (Lower Valley of the River of Tundzha, Bulgaria

    Directory of Open Access Journals (Sweden)

    Teodora M. Teofilova

    2017-06-01

    Full Text Available The invertebrate fauna of the "Balabana" and "Dolna Topchiya" managed nature reserves is studied, with particular consideration to the ground beetles. The area of study is interesting from a biological point of view, as the Tundzha River constitutes a corridor of penetration of southern and thermophilic elements. On the other hand, the specifics of the territory predetermine the presence of many typically forest and some mountain species, as well as a lot of inhabitants of open biotopes, in particular – steppe forms. During the study, altogether 2041 specimens of carabid beetles belonging to 88 species are captured, as well as 76 other invertebrate species, some of which are with a conservation significance – new, endemic, rare, protected or endangered. Forty-six carabid species are reported for the first time for the Sakar-Tundzha region. Ground beetles are characterized and classified according to their zoogeographical belonging and the life forms they refer to.

  8. Winklerites serbicus, a new endogean species of ground beetles (Coleoptera: Carabidae: Bembidiini from southeastern Serbia

    Directory of Open Access Journals (Sweden)

    Ćurčić S.

    2013-01-01

    Full Text Available A new endogean bembidiine ground beetle species, Winklerites serbicus sp. n., from a cave in the southeastern part of Serbia is both described and diagnosed. Male and female genital structures and other taxonomically important characters are illustrated. The new species is clearly distinct from its closest congeners. Fifteen species of the genus so far known are arranged in six groups. The new species is both endemic and relict, inhabiting southeastern Serbia only. [Projekat Ministarstva nauke Republike Srbije, br. 173038 i br. 47007

  9. Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their response to laboratory rearing and antibiotic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Michael Lehman

    2008-06-01

    Ground beetles such as Poecilus chalcites (Coleoptera: Carabidae) are beneficial insects in agricultural systems where they contribute to the control of insect and weed pests. We assessed the complexity of bacterial communities occurring in the digestive tracts of field-collected P. chalcites using terminal restriction fragment length polymorphism analyses of polymerase chain reaction-amplified 16S rRNA genes. Bacterial identification was performed by the construction of 16S rRNA gene clone libraries and sequence analysis. Intestinal bacteria in field-collected beetles were then compared to those from groups of beetles that were reared in the lab on an artificial diet with and without antibiotics. Direct cell counts estimated 1.5 × 10S bacteria per milliliter of gut. The digestive tract of field-collected P. chalcites produced an average of 4.8 terminal restriction fragments (tRF) for each beetle. The most abundant clones were affiliated with the genus Lactobacillus, followed by the taxa Enterobacteriaceae, Clostridia, and Bacteriodetes. The majority of the sequences recovered were closely related to those reported from other insect gastrointestinal tracts. Lab-reared beetles produced fewer tRF, an average of 3.1 per beetle, and a reduced number of taxa with a higher number of clones from the family Enterobacteriaceae compared to the field-collected beetles. Antibiotic treatment significantly (p < 0.05) reduced the number of tRF per beetle and selected for a less diverse set of bacterial taxa. We conclude that the digestive tract of P. chalcites is colonized by a simple community of bacteria that possess autochthonous characteristics. Laboratory-reared beetles harbored the most common bacteria found in field-collected beetles, and these bacterial communities may be manipulated in the laboratory with the addition of antibiotics to the diet to allow study of functional roles.

  10. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2005-01-01

    We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest...

  11. Spray deposition from ground-based applications of carbaryl to protect individual trees from bark beetle attack.

    Science.gov (United States)

    Fettig, Christopher J; Munson, A Steven; McKelvey, Stephen R; Bush, Parshall B; Borys, Robert R

    2008-01-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) are recognized as the most important tree mortality agent in western coniferous forests. A common method of protecting trees from bark beetle attack is to saturate the tree bole with carbaryl (1-naphthyl methylcarbamate) using a hydraulic sprayer. In this study, we evaluate the amount of carbaryl drift (ground deposition) occurring at four distances from the tree bole (7.6, 15.2, 22.9, and 38.1 m) during conventional spray applications for protecting individual lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and Engelmann spruce (Picea engelmannii Parry ex Engelm.) from spruce beetle (D. rufipennis [Kirby]) attack. Mean deposition (carbaryl + alpha-naphthol) did not differ significantly among treatments (nozzle orifices) at any distance from the tree bole. Values ranged from 0.04 +/- 0.02 mg carbaryl m(-2) at 38.1 m to 13.30 +/- 2.54 mg carbaryl m(-2) at 7.6 m. Overall, distance from the tree bole significantly affected the amount of deposition. Deposition was greatest 7.6 m from the tree bole and quickly declined as distance from the tree bole increased. Approximately 97% of total spray deposition occurred within 15.2 m of the tree bole. Application efficiency (i.e., percentage of insecticide applied that is retained on trees) ranged from 80.9 to 87.2%. Based on review of the literature, this amount of drift poses little threat to adjacent aquatic environments. No-spray buffers of 7.6 m should be sufficient to protect freshwater fish, amphibians, crustaceans, bivalves, and most aquatic insects. Buffers >22.9 m appear sufficient to protect the most sensitive aquatic insects (Plecoptera).

  12. Living in Heterogeneous Woodlands - Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle?

    Directory of Open Access Journals (Sweden)

    Tamar Marcus

    Full Text Available Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwäbische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes.

  13. A Crispy Delicacy: Augosoma Beetle as Alternative Source of Protein in East Cameroon

    Directory of Open Access Journals (Sweden)

    F. J. Muafor

    2014-01-01

    Full Text Available Despite the fact that the exoskeleton of the Augosoma centaurus (Dynastinae is hard and difficult to chew, this insect is often gathered in Eastern Cameroon for food in periods of availability. Nine ethnic groups in Eastern Cameroon were surveyed to understand the role of this insect in assuring food security, using quantitative and qualitative social science approaches. Both the larvae and adult stages of this beetle are habitually consumed in the areas studied. In total, about 65% of consumers prefer consuming the adults, while 35% prefer consuming the larvae. About 24% of consumers derive the same satisfaction from the consumption of Augosoma or other edible insects. Close to 39% of consumers prefer other edible insects to Augosoma, while 37% prefer the consumption of Augosoma to other edible insects. This beetle usually occurs at a period when other edible insects are not available, therefore constituting a good source of alternative protein in this region where poverty, poaching, and biodiversity erosion are still a major problem. Furthermore, the gathering of this beetle for food is equally a means of biological pest control of raffia plants and a tool to enhance community-based conservation of the areas global biodiversity.

  14. Comparison of ground beetle (Coleoptera: Carabidae) assemblages in Rocky Mountain savannas invaded and un-invaded by an exotic forb, spotted knapweed

    Science.gov (United States)

    Allison K. Hansen; Yvette K. Ortega; Diana L. Six

    2009-01-01

    We compared ground beetle (Carabidae) assemblages between spotted knapweed (Centaurea maculosa Lam.) -invaded (invaded) and un-invaded (native) habitats in Rocky Mountain savannas. Carabids play important roles in biotic communities and are known as a good indictor group of environmental change. Carabid species activity-abundance and diversity were estimated, and...

  15. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae using nuclear rDNA expansion segments and DNA barcodes

    Directory of Open Access Journals (Sweden)

    Raupach Michael J

    2010-09-01

    Full Text Available Abstract Background The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. Results We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97% of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95% of the studied Carabidae. Conclusion Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  16. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes.

    Science.gov (United States)

    Raupach, Michael J; Astrin, Jonas J; Hannig, Karsten; Peters, Marcell K; Stoeckle, Mark Y; Wägele, Johann-Wolfgang

    2010-09-13

    The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae. Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  17. Asparagus Beetle and Spotted Asparagus Beetle

    OpenAIRE

    Hodgson, Erin W.; Drost, Dan

    2007-01-01

    Asparagus beetle, Crioceris asparagi, and spotted asparagus beetle, C. duodecimpunctata are leaf beetles in the family Chrysomelidae. These beetles feed exclusively on asparagus and are native to Europe. Asparagus beetle is the more economically injurious of the two species.

  18. Rain forest provides pollinating beetles for atemoya crops.

    Science.gov (United States)

    Blanche, Rosalind; Cunningham, Saul A

    2005-08-01

    Small beetles, usually species of Nitidulidae, are the natural pollinators of atemoya (Annona squamosa L. x A. cherimola Mill. hybrids; custard apple) flowers but commercial atemoya growers often need to carry out labor-intensive hand pollination to produce enough high-quality fruit. Because Australian rain forest has plant species in the same family as atemoya (Annonaceae) and because many rain forest plants are beetle pollinated, we set out to discover whether tropical rain forest in far north Queensland harbors beetles that could provide this ecosystem service for atemoya crops. Orchards were chosen along a gradient of increasing distance from tropical rain forest (0.1-24 km). We sampled 100 flowers from each of nine atemoya orchards and determined the identity and abundance of insects within each flower. To assess the amount of pollination due to insects, we bagged six flowers per tree and left another six flowers per tree accessible to insects on 10 trees at an orchard near rain forest. Results indicated that atemoya orchards pollinators that are likely to originate in tropical rain forest. These native beetles occurred reliably enough in crops near rain forest to have a positive effect on the quantity of fruit produced but their contribution was not great enough to satisfy commercial production needs. Management changes, aimed at increasing native beetle abundance in crops, are required before these beetles could eliminate the need for growers to hand pollinate atemoya flowers. Appreciation of the value of this resource is necessary if we are to develop landscapes that both conserve native biodiversity and support agricultural production.

  19. Predatory Ground Beetles (Insecta: Coleoptera: Carabidae) of the Gaoligong Mountain Region of Western Yunnan Province, China: the Tribe Cyclosomini

    Science.gov (United States)

    Cueva-Dabkoski, M.; Kavanaugh, D.

    2013-12-01

    Between 1998 and 2007, the California Academy of Sciences (CAS) was the lead institution in a multi-national, multi-disciplinary biodiversity inventory project in the Gaoligong Shan region (GLGS) in the Yunnan province of China. The project surveyed the species diversity of both higher plants and bryophytes, fishes, amphibians, reptiles, birds, mammals and selected groups of arachnids and insects. The GLGS of China is one of the most biodiverse areas in all of Asia, yet it is also very poorly sampled and in great threat from increasing human activities in the region. CAS's biodiversity inventory project there has increased the number of carabid species known from just 50 to more than 550 species, an eleven-fold increase. The task that remains is to identify all of those 500 additional species and describe any that are new to science. This project is part of that larger biodiversity survey. Our objective was to identify and/or describe carabid beetles of the tribe Cyclosomini represented by nearly a hundred specimens collected in the GLSG. Among those specimens, six morphospecies were identified - one belonging to the genus Cyclosomus Latreille 1829, and the other five belonging to the genus Tetragonoderus Dejean 1829. Following this initial identification process, a list of known distributions of taxa in both genera was assembled to determine which described species to consider for comparative work. Original descriptions were then located for candidate species with known distributions in or near the GLGS; and these are being used now in morphological comparison of specimens. Type specimens for each of the candidate species have been requested from various academic institutions, and morphological comparisons with these types are underway. Morphological characteristics being examined include body proportions and overall shape, color of appendages, color and shape of pronotum, elytral color patterns, and shape and internal structure of male genitalia.

  20. Fragmented habitats of traditional fruit orchards are important for dead wood-dependent beetles associated with open canopy deciduous woodlands.

    Science.gov (United States)

    Horak, Jakub

    2014-06-01

    The conservation of traditional fruit orchards might be considered to be a fashion, and many people might find it difficult to accept that these artificial habitats can be significant for overall biodiversity. The main aim of this study was to identify possible roles of traditional fruit orchards for dead wood-dependent (saproxylic) beetles. The study was performed in the Central European landscape in the Czech Republic, which was historically covered by lowland sparse deciduous woodlands. Window traps were used to catch saproxylic beetles in 25 traditional fruit orchards. The species richness, as one of the best indicators of biodiversity, was positively driven by very high canopy openness and the rising proportion of deciduous woodlands in the matrix of the surrounding landscape. Due to the disappearance of natural and semi-natural habitats (i.e., sparse deciduous woodlands) of saproxylic beetles, orchards might complement the functions of suitable habitat fragments as the last biotic islands in the matrix of the cultural Central European landscape.

  1. Context Matters: Contrasting Ladybird Beetle Responses to Urban Environments across Two US Regions

    Directory of Open Access Journals (Sweden)

    Monika Egerer

    2018-06-01

    Full Text Available Urban agroecosystems offer an opportunity to investigate the diversity and distribution of organisms that are conserved in city landscapes. This information is not only important for conservation efforts, but also has important implications for sustainable agricultural practices. Associated biodiversity can provide ecosystem services like pollination and pest control, but because organisms may respond differently to the unique environmental filters of specific urban landscapes, it is valuable to compare regions that have different abiotic conditions and urbanization histories. In this study, we compared the abundance and diversity of ladybird beetles within urban gardens in California and Michigan, USA. We asked what species are shared, and what species are unique to urban regions. Moreover, we asked how beetle diversity is influenced by the amount and rate of urbanization surrounding sampled urban gardens. We found that the abundance and diversity of beetles, particularly of unique species, respond in opposite directions to urbanization: ladybirds increased with urbanization in California, but decreased with urbanization in Michigan. We propose that in California water availability in gardens and the urbanization history of the landscape could explain the divergent pattern. Thus, urban context is likely a key contributor to biodiversity within habitats and an important consideration for sustainable agricultural practices in urban agroecosystems.

  2. Finding common ground for biodiversity and ecosystem services

    CSIR Research Space (South Africa)

    Reyers, B

    2012-05-01

    Full Text Available Recently, some members of the conservation community have used ecosystem services as a strategy to conserve biodiversity. Others in the community have criticized this strategy as a distraction from the mission of biodiversity conservation...

  3. Speciation below ground: Tempo and mode of diversification in a radiation of endogean ground beetles.

    Science.gov (United States)

    Andújar, Carmelo; Pérez-González, Sergio; Arribas, Paula; Zaballos, Juan P; Vogler, Alfried P; Ribera, Ignacio

    2017-11-01

    Dispersal is a critical factor determining the spatial scale of speciation, which is constrained by the ecological characteristics and distribution of a species' habitat and the intrinsic traits of species. Endogean taxa are strongly affected by the unique qualities of the below-ground environment and its effect on dispersal, and contrasting reports indicate either high dispersal capabilities favoured by small body size and mediated by passive mechanisms, or low dispersal due to restricted movement and confinement inside the soil. We studied a species-rich endogean ground beetle lineage, Typhlocharina, including three genera and more than 60 species, as a model for the evolutionary biology of dispersal and speciation in the deep soil. A time-calibrated molecular phylogeny generated from >400 individuals was used to delimit candidate species, to study the accumulation of lineages through space and time by species-area-age relationships and to determine the geographical structure of the diversification using the relationship between phylogenetic and geographic distances across the phylogeny. Our results indicated a small spatial scale of speciation in Typhlocharina and low dispersal capacity combined with sporadic long distance, presumably passive dispersal events that fuelled the speciation process. Analysis of lineage growth within Typhlocharina revealed a richness plateau correlated with the range of distribution of lineages, suggesting a long-term species richness equilibrium mediated by density dependence through limits of habitat availability. The interplay of area- and age-dependent processes ruling the lineage diversification in Typhlocharina may serve as a general model for the evolution of high species diversity in endogean mesofauna. © 2017 John Wiley & Sons Ltd.

  4. Rapid diversification of male genitalia and mating strategies in Ohomopterus ground beetles.

    Science.gov (United States)

    Takami, Y; Sota, T

    2007-07-01

    We analysed evolutionary diversification and covariation in male genitalia and four mating traits related to sexual selection, i.e. testis size, spermatophore size, copulation duration and post-copulatory guarding duration, in Ohomopterus ground beetles using phylogenetically independent contrasts. Male genital size and mating duration have evolved more rapidly than body size and the other traits studied. Male genital size was negatively correlated with copulation duration, suggesting that elongated male genitalia may enable decreased time investment in a single copulation because it is more effective at facilitating spermatophore deposition. Male genital size was positively correlated with spermatophore size, suggesting coevolution between offensive and defensive male mating tactics because the elongated male genitalia may be advantageous in displacement of rivals' plug-like spermatophores, and decreased mating duration may intensify sperm competition. Thus, the remarkable diversity of male genitalia in Ohomopterus may have been facilitated by the interplay between inter- and intrasexual selection processes.

  5. Comparative transcriptomic analysis of two closely related ground beetle species with marked genital divergence using pyrosequencing.

    Science.gov (United States)

    Fujimaki, Kotaro; Fujisawa, Tomochika; Yazawa, Shigenobu; Nishimura, Osamu; Sota, Teiji

    2014-09-01

    Ground beetles of the subgenus Ohomopterus (genus Carabus) show marked divergence in species-specific male and female genital morphologies, which contributes to reproductive isolation among species. Characterizing the genetic basis of species-specific genital morphology is essential for understanding their diversification, but genomic information on Ohomopterus is not yet available. We analyzed mRNA extracted from abdominal sections of the last instar larvae and pupae of two sister species, Carabus (Ohomopterus) iwawakianus and C. (O.) uenoi, which show marked differences in genital morphology, to compare transcriptomic profiles using Roche 454 pyrosequencing. We obtained 1,608,572 high-quality reads and assembled them into 176,278 unique sequences, of which 66,049 sequences were combined into 12,662 clusters. Differential expression analyses for sexed pupae suggested that four and five clusters were differentially expressed between species for males and females, respectively. We also identified orthologous sequences of genes involved in genital development in Drosophila, which potentially affect genital development and species-specific genital morphology in Ohomopterus. This study provides the first large transcriptomic data set for a morphologically diversified beetle group, which can facilitate future studies on the genetic basis of species-specific genitalia.

  6. Ground beetles in Mediterranean olive agroecosystems: Their significance and functional role as bioindicators (Coleoptera, Carabidae).

    Science.gov (United States)

    Pizzolotto, Roberto; Mazzei, Antonio; Bonacci, Teresa; Scalercio, Stefano; Iannotta, Nino; Brandmayr, Pietro

    2018-01-01

    The impact of agricultural practices and soil management on the communities of arthropods living in the agricultural landscape is acknowledged as a critical issue by the literature, and it needs to be better investigated to improve the ecological sustainability of agriculture. In the present study, we aimed to study how soil management affect carabid species distribution in one of the most typical agroecosystem of the Mediterranean region, i.e. the olive grove. In South Italy olive plantations feature different types of soil management, from tillage to half- or full-cover cropping. Species distribution has been examined for a total of 10,189 individuals and 62 species collected from 17 sites. Notably from our analysis we have observed that three factors (climax vegetation, soil features and soil management) explained half of the data variability. The composition of species groupings mirrors both bioclimatic conditions (climax vegetation) and soil features, especially watering, while soil management affects the species distribution, with different intensity from site to site. Eleven species have been recognized as the most abundant in the different facets of the studied olive groves and consequently designated as characteristics of the olive agroecosystem. The species traits of the sampled species have been weighted for a compelling evaluation of the effects of agricultural management on biodiversity, showing uniform traits distribution when coping with the ecological factors that characterize the different plantation facets. We have found that carabid beetles can be used as model organisms for studying the effects of agricultural practices. Our study suggests that the interaction of man-induced trasformation with the natural background of the olive agroecosystem may be difficult to disentangle, so that such complexity must be taken into account when carabid beetles are expected to provide an ecosystem service for good agricultural practices.

  7. Nuclear bodies in the oocyte nucleus of ground beetles are enriched in snRNPs.

    Science.gov (United States)

    Jaglarz, M K

    2001-08-01

    Within the oocyte nucleus of many insect species, a variable number of intensely stained spherical bodies occur. These nuclear bodies differ significantly from nucleoli and their precise role in nuclei has not been elucidated yet. I have examined some of the histochemical properties as well as the molecular composition of these structures in a representative of ground (carabid) beetles. I demonstrate, using molecular markers, that the nuclear bodies are composed of small nuclear RNAs and associated proteins, including p80 coilin. Hence, they correspond to Cajal bodies (= coiled bodies) described in somatic cell nuclei as well as oocyte germinal vesicles in plant and animal organisms. It is suggested that Cajal bodies in the carabid germinal vesicle serve as a storage site for splicing factors.

  8. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    Science.gov (United States)

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  9. Scarab Beetle (Coleoptera: Scarabaeidae Fauna in Ardabil Province, North West Iran

    Directory of Open Access Journals (Sweden)

    G Mowlavi

    2008-12-01

    Full Text Available "nBackground: Dung beetles of Coleoptera associated to undisturbed cattle droppings in pastures present great diver¬sity and abundance. Dung beetles also play an important role for transmission of some helminthes to human and cat¬tle. This study was made to survey the biodiversity and abundance of these beetles in Ardebil Province, western Iran."nMethods: According to the field study all beetles attracted to fresh cow dung in five areas of Ardebil Province in¬cluding Namin, Ardabil, Meshkinshahr, Neer and Sarein were collected and identified. They were collected during summer 2007 from June to September, with general peaks appearing to be correlated with temperature mainly at 11 a.m to 15 p.m. The samples were identified using appropriate systematic key "nResults: A total of 231 specimens belonging to 9 beetle genera and at least 15 species were identified as Euoniticel¬lus fulvus, Sisyphus schaffaer, Euonthophagus taurus, Copris lunaris, Chironitis pamphilus, Gymnopleurus coriarus, Euonthophagus amyntas, Caccobius schreberi, Onthophagus speculifer, Onthophagus furcatus, Aphodius, lugens, Apho¬dius fimetarius, A. scrutator, Geotrupes spiniger and G. stercorarius"nThe most abundant and diverse subfamilies were Coprinae, Geotrupinae, and Aphodiinae. "nConclusion: We found 15 species of dung beetles occurred in the region. The prevalence of each species is varied depending on location. Some of them play an important role for helminths transmission of veterinary and public health importance. The finding will provide a clue for pasture management as well as public health monitoring and surveillance of the disease transmitted by dung beetles

  10. On some new cave-dwelling ground beetles (Coleoptera: Carabidae: Trechini from eastern Serbia

    Directory of Open Access Journals (Sweden)

    Vrbica Maja

    2013-01-01

    Full Text Available The following new cavernicolous ground beetle taxa are described from three caves in eastern Serbia: Duvalius (Paraduvalius trifunovici sp. n., from the Mandina Pećina Cave, village of Zlot, near Bor, Kučajske Planine Mts., D. (P. rtanjensis sp. n., from the Golema Porica Pit, Mt. Rtanj, and Glabroduvalius gen. n., G. tupiznicensis sp. n., from the Gornja Lenovačka Pećina Cave, village of Lenovac, near Zaječar, Mt. Tupižnica. The new taxa are easily distinguished from related organisms. All important morphological features have been listed, along with the diagnoses and illustrations of the taxa. The new taxa are relicts and endemics of eastern Serbia and probably belong to old phyletic lineages of Tertiary or even pre-Tertiary origin. [Projekat Ministarstva nauke Republike Srbije, br. 173038, br. 43001 i br. 43002

  11. Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments

    Directory of Open Access Journals (Sweden)

    Thomas O. Crist

    2014-07-01

    Full Text Available The conservation of biodiversity in intensively managed agricultural landscapes depends on the amount and spatial arrangement of cultivated and natural lands. Conservation incentives that create semi-natural grasslands may increase the biodiversity of beneficial insects and their associated ecosystem services, such as pollination and the regulation of insect pests, but the effectiveness of these incentives for insect conservation are poorly known, especially in North America. We studied the variation in species richness, composition, and functional-group abundances of bees and predatory beetles in conservation grasslands surrounded by intensively managed agriculture in Southwest Ohio, USA. Characteristics of grassland patches and surrounding land-cover types were used to predict insect species richness, composition, and functional-group abundance using linear models and multivariate ordinations. Bee species richness was positively influenced by forb cover and beetle richness was positively related to grass cover; both taxa had greater richness in grasslands surrounded by larger amounts of semi-natural land cover. Functional groups of bees and predatory beetles defined by body size and sociality varied in their abundance according to differences in plant composition of grassland patches, as well as the surrounding land-cover diversity. Intensive agriculture in the surrounding landscape acted as a filter to both bee and beetle species composition in conservation grasslands. Our results support the need for management incentives to consider landscape-level processes in the conservation of biodiversity and ecosystem services.

  12. Spatial-temporal modeling of forest gaps generated by colonization from below- and above-ground bark beetle species

    DEFF Research Database (Denmark)

    Zhu, Jun; Rasmussen, Jakob Gulddahl; Møller, Jesper

    2008-01-01

    red turpentine beetle colonization, pine engraver bark beetle colonization, and mortality of red pine trees while accounting for correlation across space and over time. We extend traditional Markov random-field models to include temporal terms and multiple-response variables aimed at developing...... as well as posterior predictive distributions. In particular, we implement path sampling combined with perfect simulation for autologistic models while formally addressing the posterior propriety under an improper uniform prior. Our data analysis results suggest that red turpentine beetle colonization...... is associated with a higher likelihood of pine engraver bark beetle colonization and that pine engraver bark beetle colonization is associated with higher likelihood of red pine tree mortality, whereas there is no direct association between red turpentine beetle colonization and red pine tree mortality...

  13. A landscape ecology approach identifies important drivers of urban biodiversity.

    Science.gov (United States)

    Turrini, Tabea; Knop, Eva

    2015-04-01

    Cities are growing rapidly worldwide, yet a mechanistic understanding of the impact of urbanization on biodiversity is lacking. We assessed the impact of urbanization on arthropod diversity (species richness and evenness) and abundance in a study of six cities and nearby intensively managed agricultural areas. Within the urban ecosystem, we disentangled the relative importance of two key landscape factors affecting biodiversity, namely the amount of vegetated area and patch isolation. To do so, we a priori selected sites that independently varied in the amount of vegetated area in the surrounding landscape at the 500-m scale and patch isolation at the 100-m scale, and we hold local patch characteristics constant. As indicator groups, we used bugs, beetles, leafhoppers, and spiders. Compared to intensively managed agricultural ecosystems, urban ecosystems supported a higher abundance of most indicator groups, a higher number of bug species, and a lower evenness of bug and beetle species. Within cities, a high amount of vegetated area increased species richness and abundance of most arthropod groups, whereas evenness showed no clear pattern. Patch isolation played only a limited role in urban ecosystems, which contrasts findings from agro-ecological studies. Our results show that urban areas can harbor a similar arthropod diversity and abundance compared to intensively managed agricultural ecosystems. Further, negative consequences of urbanization on arthropod diversity can be mitigated by providing sufficient vegetated space in the urban area, while patch connectivity is less important in an urban context. This highlights the need for applying a landscape ecological approach to understand the mechanisms shaping urban biodiversity and underlines the potential of appropriate urban planning for mitigating biodiversity loss. © 2015 John Wiley & Sons Ltd.

  14. Visualization of soil structure and pore structure modifications by pioneering ground beetles (Cicindelidae) in surface sediments of an artificial catchment

    Science.gov (United States)

    Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter

    2010-05-01

    An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively

  15. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  16. Gondwanian relicts and oceanic dispersal in a cosmopolitan radiation of euedaphic ground beetles.

    Science.gov (United States)

    Andújar, Carmelo; Faille, Arnaud; Pérez-González, Sergio; Zaballos, Juan P; Vogler, Alfried P; Ribera, Ignacio

    2016-06-01

    Anillini are a tribe of minute, euedaphic ground beetles (Carabidae) characterized by the loss of eyes, loss of wings and high levels of local endemism. Despite their presumed low dispersal, they have a nearly cosmopolitan distribution, including isolated islands such as New Zealand and New Caledonia. We used a time calibrated molecular phylogeny to test, first, if the tribe as currently understood is monophyletic and, second, whether the time of divergence is compatible with an early vicariant diversification after the breakup of Gondwana. We sequenced portions of 6 mitochondrial and 3 nuclear genes for 66 specimens in 17 genera of Anillini plus 39 outgroups. The resulting phylogenetic tree was used to estimate the time of diversification using two independent calibration schemes, by applying molecular rates for the related genus Carabus or by dating the tree with fossil and geological information. Rates of molecular evolution and lineage ages were mostly concordant between both calibration schemes. The monophyly of Anillini was well-supported, and its age was consistent with a Gondwanian origin of the main lineages and an initial diversification at ca. 100Ma representing the split between the eyed Nesamblyops (New Zealand) and the remaining Anillini. The subsequent diversification, including the split of the Nearctic Anillinus and the subsequent splits of Palaearctic lineages, was dated to between 80 and 100Ma and thus was also compatible with a tectonic vicariant origin. On the contrary, the estimated age of the New Caledonian blind Orthotyphlus at ca. 30±20Ma was incompatible with a vicariant origin, suggesting the possibility of trans-oceanic dispersal in these endogean beetles. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Reduced-impact logging and biodiversity conservation: a case study from Borneo.

    Science.gov (United States)

    Edwards, David P; Woodcock, Paul; Edwards, Felicity A; Larsen, Trond H; Hsu, Wayne W; Benedick, Suzan; Wilcove, David S

    2012-03-01

    A key driver of rain forest degradation is rampant commercial logging. Reduced-impact logging (RIL) techniques dramatically reduce residual damage to vegetation and soils, and they enhance the long-term economic viability of timber operations when compared to conventionally managed logging enterprises. Consequently, the application of RIL is increasing across the tropics, yet our knowledge of the potential for RIL also to reduce the negative impacts of logging on biodiversity is minimal. We compare the impacts of RIL on birds, leaf-litter ants, and dung beetles during a second logging rotation in Sabah, Borneo, with the impacts of conventional logging (CL) as well as with primary (unlogged) forest. Our study took place 1-8 years after the cessation of logging. The species richness and composition of RIL vs. CL forests were very similar for each taxonomic group. Both RIL and CL differed significantly from unlogged forests in terms of bird and ant species composition (although both retained a large number of the species found in unlogged forests), whereas the composition of dung beetle communities did not differ significantly among forest types. Our results show little difference in biodiversity between RIL and CL over the short-term. However, biodiversity benefits from RIL may accrue over longer time periods after the cessation of logging. We highlight a severe lack of studies investigating this possibility. Moreover, if RIL increases the economic value of selectively logged forests (e.g., via REDD+, a United Nations program: Reducing Emissions from Deforestation and Forest Degradation in Developing Countries), it could help prevent them from being converted to agricultural plantations, which results in a tremendous loss of biodiversity.

  18. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    Science.gov (United States)

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  19. Abundance and species richness of overwintering ground beetles (Coleoptera: Carabidae) are higher in the edge than in the centre of a woodlot

    OpenAIRE

    Roume, Anthony; Ouin, Annie; Raison, Laurent; Deconchat, Marc

    2011-01-01

    Semi-natural habitats are key components of rural landscapes because they shelter a significant number of overwintering arthropods that are beneficial to agriculture. However, woodlots are semi-natural habitats with high patch-level heterogeneity and this aspect has been poorly studied. The purpose of this study was to determine the influence of woodlot heterogeneity on overwintering ground beetles. Woodlot heterogeneity was characterized in terms of distance from the woodl...

  20. Diversity and Abundance of Beetle (Coleoptera Functional Groups in a Range of Land Use System in Jambi, Sumatra

    Directory of Open Access Journals (Sweden)

    SURYO HARDIWINOTO

    2009-10-01

    Full Text Available Degradation of tropical rain forest might exert impacts on biodiversity loss and affect the function and stability of the related ecosystems. The objective of this study was to study the impact of land use systems (LUS on the diversity and abundance of beetle functional groups in Jambi area, Sumatra. This research was carried out during the rainy season (May-June of 2004. Inventory and collection of beetles have been conducted using winkler method across six land use systems, i.e. primary forest, secondary forest, Imperata grassland, rubber plantation, oilpalm plantation, and cassava garden. The result showed that a total of 47 families and subfamilies of beetles was found in the study area, and they were classified into four major functional groups, i.e. herbivore, predator, scavenger, and fungivore. There were apparent changes in proportion, diversity, and abundance of beetle functional groups from forests to other land use systems. The bulk of beetle diversity and abundance appeared to converge in primary forest and secondary forest and predatory beetles were the most diverse and the most abundant of the four major functional groups.

  1. Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites.

    Science.gov (United States)

    Sipos, J; Hodecek, J; Kuras, T; Dolny, A

    2017-08-01

    Although ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.

  2. Arboreallty and morphological evolution in ground beetles (Carabidae: Harpalinae): testing the taxon pulse model.

    Science.gov (United States)

    Ober, Karen A

    2003-06-01

    One-third to two-thirds of all tropical carabids, or ground beetles, are arboreal, and evolution of arboreality has been proposed to be a dead end in this group. Many arboreal carabids have unusual morphological features that have been proposed to be adaptations for life on vegetation, including large, hemispheric eyes; an elongated prothorax; long elytra; long legs; bilobed fourth tarsomeres; adhesive setae on tarsi; and pectinate claws. However, correlations between these features and arboreality have not been rigorously tested previously. I examined the evolution of arboreality and morphological features often associated with this habitat in a phylogenetic context. The number and rates of origins and losses of arboreality in carabids in the subfamily Harpalinae were inferred with parsimony and maximum-likelihood on a variety of phylogenetic hypotheses. Correlated evolution in arboreality and morphological characters was tested with concentrated changes tests, maximum-likelihood, and independent contrasts on optimal phylogenies. There is strong evidence that both arboreality and the morphological features examined originated multiple times and can be reversed, and in no case could the hypothesis of equal rates of gains and losses be rejected. Several features are associated with arboreality: adhesive setae on the tarsi, bilobed tarsomeres, and possibly pectinate claws and an elongated prothorax. Bulgy eyes, long legs, and long elytra were not correlated with arboreality and are probably not arboreal adaptations. The evolution of arboreal carabids has not been unidirectional. These beetles have experienced multiple gains and losses of arboreality and the morphological characters commonly associated with the arboreal habitat. The evolutionary process of unidirectional character change may not be as widespread as previously thought and reversal from specialized lifestyles or habitats may be common.

  3. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages.

    Directory of Open Access Journals (Sweden)

    Simon Thorn

    Full Text Available Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green

  4. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages.

    Science.gov (United States)

    Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg

    2014-01-01

    Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention

  5. Three new cave-dwelling trechine ground beetles from eastern and southeastern Serbia (Coleoptera: Carabidae: Trechinae

    Directory of Open Access Journals (Sweden)

    Ćurčić S.B.

    2014-01-01

    Full Text Available Three new troglobitic trechine ground beetle species are described from three caves in eastern and southeastern Serbia: Duvalius (Paraduvalius bogovinae sp. n., from the Bogovinska Pećina Cave, village of Bogovina, Kučajske Planine Mts., near Boljevac, eastern Serbia; D. (P. milutini sp. n., from the Samar cave system, village of Kopajkošara, Mt. Kalafat, near Svrljig, southeastern Serbia, and D. (P. beljanicae sp. n., from the Velika Atula Cave, village of Strmosten, Mt. Beljanica, near Despotovac, eastern Serbia. The new species are easily distinguished from relatives. All important morphological features, along with the diagnoses and illustrations of the new taxa are presented. The new species are relicts and endemics of eastern and southeastern Serbia. They probably belong to old phyletic lineages of Tertiary or even pre-Tertiary origin. [Projekat Ministarstva nauke Republike Srbije, br. 173038

  6. Sperm competition promotes diversity of sperm bundles in Ohomopterus ground beetles

    Science.gov (United States)

    Takami, Yasuoki; Sota, Teiji

    2007-07-01

    Diversification of sperm morphology has been investigated in the context of sperm competition, but the adaptive significance of sperm bundles is still unclear. In analyzing 10 taxa of the genus Carabus subgenus Ohomopterus and one related Carabus ground beetles, we found that dimorphic sperm bundles occurred in most species with varied degrees of bimodality, whereas sperm were generally monomorphic. Comparative analyses with phylogenetically independent contrasts revealed that the sizes of large and small sperm bundles evolved more rapidly than, and were not correlated with, the length of sperm, suggesting more intense selection on sperm bundle sizes and their independent responses to different evolutionary forces. The size of large sperm bundles was positively correlated with male genital morphology (pertinent to displacement of rival spermatophores) and postcopulatory guarding duration as well as male body length, suggesting that larger sperm bundles have been favored when the risk of spermatophore displacement is high. Larger sperm bundles may be advantageous because of their ability to migrate more rapidly into the spermatheca. In contrast, no clear association was detected between the small sperm bundle size and mating traits despite its rapid diversification. The present study provides the first record of heteromorphic sperm bundles, the diversity of which may be promoted by sperm competition.

  7. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  8. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae) in a mature Asian temperate forest ecosystem.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  9. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae in a mature Asian temperate forest ecosystem.

    Directory of Open Access Journals (Sweden)

    Yi Zou

    Full Text Available A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  10. Dung Beetles Associated with Agroecosystems of Southern Brazil: Relationship with Soil Properties

    Directory of Open Access Journals (Sweden)

    Patrícia Menegaz de Farias

    Full Text Available ABSTRACT Knowing the biodiversity of dung beetles in agricultural and livestock environments is the basis for understanding the contribution that these organisms make in nutrient cycling and ecosystem functions. The aim of the present study was to investigate the structure of copronecrophagous dung beetle communities inhabiting the main agroecosystems in southern Brazil and correlate the presence of these organisms with soil properties. From December 2012 to April 2013, samples of dung beetles were taken in the municipality of Tubarão, Santa Catarina, Brazil (28° 28’ S; 48° 56’ W in corn, bean, and sugarcane crops, and in cattle pastures. Beetles were captured in 16 sampling sites, four from each agroecosystem, following a standardized methodology: 10 baited pitfall traps (feces and rotting meat at a spacing of 50 m with exposure for 48 h. The beetles were identified, weighed, and measured. Soil analyses were performed in order to correlate data on organic matter, texture, macro and micronutrients, and pH with data on the abundance of beetle species using canonical correspondence analysis. A total of 110 individuals belonging to 10 species of dung beetles was found. Twenty-four individuals from seven species (with total biomass of 2.4 g were found in the corn crop; five individuals from three species (1.8 g were found in the bean crop; 81 individuals from nine species (30.3 g were found in cattle pasture areas; and lastly, there were no dung beetles recorded in the sugarcane crop. In areas of cattle grazing, the tunnelers Dichotomius nisus and Trichillum externepunctatum correlated positively with organic matter content, whereas the roller species Canthon chalybaeus correlated positively with soil texture, preferring sandier soils. In corn crop areas, D. nisus was again correlated with organic matter content. Paracoprid dung beetle species were correlated with organic matter content in the soil, and species belonging to the roller

  11. Contribution to biology and distribution studies on some ground beetles species (Coleoptera, Carabidae registered in the Red Data Book of Krasnodarsky Krai

    Directory of Open Access Journals (Sweden)

    Alexander S. Bondarenko

    2017-05-01

    Full Text Available Some biological features and distributional data on seven species of the ground beetles, registered in the Red Data Book of Krasnodarsky Krai, are presented, namely Carabus obtusus, Carabus kaljuzhnyji, Carabus miroshnikovi, Carabus caucasicus, Leistus spinibarbis, Poecilus lyroderus, and Harpalus petri. The results of the field researches, carried out by the authors in 2010–2015, expanded considerably the knowledge of their biological features and regional distribution areas; furthermore, life cycles were reconstructed for four of the above listed species.

  12. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    NARCIS (Netherlands)

    Wagg, C.; Bender, S.F.; Widmer, D.; van der Heijden, Marcellus|info:eu-repo/dai/nl/240923901

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally

  13. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    International Nuclear Information System (INIS)

    Hosaka, T; Yamada, T; Okuda, T

    2014-01-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests

  14. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    Science.gov (United States)

    Hosaka, T.; Yamada, T.; Okuda, T.

    2014-02-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests.

  15. Farmers' Interest in Nature and Its Relation to Biodiversity in Arable Fields

    Directory of Open Access Journals (Sweden)

    J. Ahnström

    2013-01-01

    Full Text Available Biodiversity declines in farmland have been attributed to intensification of farming at the field level and loss of heterogeneity at the landscape level. However, farmers are not solely optimizing production; their actions are also influenced by social factors, tradition and interest in nature, which indirectly influence biodiversity but rarely are incorporated in studies of farmland biodiversity. We used social science methods to quantify farmers' interest in nature on 16 farms with winter wheat fields in central Sweden, and combined this with biodiversity inventories of five organism groups (weeds, carabid beetles, bumblebees, solitary bees, and birds and estimates of landscape composition and management intensity at the field level. Agricultural intensity, measured as crop density, and farmers' interest in nature explained variation in biodiversity, measured as the proportion of the regional species richness found on single fields. Interest in nature seemed to incorporate many actions taken by farmers and appeared to be influenced by both physical factors, for example, the surrounding landscape, and social factors, for example, social motivations. This study indicates that conservation of biodiversity in farmland, and design of new agri-environmental subsidy systems, would profit from taking farmers' interest in nature and its relation to agricultural practices into account.

  16. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    Science.gov (United States)

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  17. Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across a habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2010-01-01

    Full Text Available Shahabuddin (2010 Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi. Biodiversitas 11: 29-33. Dung beetles are important component of most terrestrial ecosystems and used to assess the effects of habitat disturbance and deforestation. This study aimed at comparing dung beetle assemblages among several habitat types ranging from natural tropical forest and agroforestry systems to open cultivated areas at the margin of Lore Lindu National Park (LLNP, Central Sulawesi (one of Indonesia’s biodiversity hotspots. Therefore, 10 pitfall traps baited with cattle dung were exposed at each habitat type (n = 4 replicate sites per habitat type to collect the dung beetles. The results showed that species richness of dung beetles declined significantly from natural forest to open area. However cacao agroforestry systems seemed to be capable of maintaining a high portion of dung beetle species inhabiting at forest sites. The closer relationship between dung beetle assemblages recorded at forest and agroforestry sites reflects the high similarity of some measured habitat parameters (e.g. vegetation structure and microclimate between both habitat types, while species assemblages at open areas differed significantly from both other habitat groups. These results indicated that habitat type has importance effect on determining the species richness and community structure of dung beetles at the margin of LLNP.

  18. Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    2016-01-01

    Full Text Available The Brazilian Atlantic Forest is one of the world's biodiversity hotspots, and is currently highly fragmented and disturbed due to human activities. Variation in environmental conditions in the Atlantic Forest can influence the distribution of species, which may show associations with some environmental features. Dung beetles (Coleoptera: Scarabaeinae are insects that act in nutrient cycling via organic matter decomposition and have been used for monitoring environmental changes. The aim of this study is to identify associations between the spatial distribution of dung beetle species and Atlantic Forest structure. The spatial distribution of some dung beetle species was associated with structural forest features. The number of species among the sampling sites ranged widely, and few species were found in all remnant areas. Principal coordinates analysis indicated that species composition, abundance and biomass showed a spatially structured distribution, and these results were corroborated by permutational multivariate analysis of variance. The indicator value index and redundancy analysis showed an association of several dung beetle species with some explanatory environmental variables related to Atlantic Forest structure. This work demonstrated the existence of a spatially structured distribution of dung beetles, with significant associations between several species and forest structure in Atlantic Forest remnants from Southern Brazil. Keywords: Beta diversity, Species composition, Species diversity, Spatial distribution, Tropical forest

  19. Convergent Reduction of Ovariole Number Associated with Subterranean Life in Beetles

    Science.gov (United States)

    Faille, Arnaud; Pluot-Sigwalt, Dominique

    2015-01-01

    Background Some species of obligate cavernicolous beetles are known to possess a unique feature—a contraction of the larval cycle. In contrast to many other subterranean beetles, life-cycle contraction in Trechini ground beetles (Carabidae) is correlated with a reduction in the number of eggs and a drastic reduction in the number of ovarioles. This remarkable peculiarity has only been reported for a small number of closely related species. Results We give a description of the female internal reproductive system for six species of Trechini, including five subterranean species, with a particular focus on the western Pyrenean radiation of Aphaenops, a group for which nothing is known regarding the early life stages. We redescribe the internal female genitalia of A. crypticola Linder. Study of the ovarioles allowed us to infer the postembryonic development of the larvae for each species examined. We then used a phylogenetic framework to recognize two independent reductions in the number of ovarioles in the Pyrenean lineage. We discuss the multiple convergent evolutions in ovariole number and the potential link between a reduction of ovariole number and troglobiomorphism in a phylogenetic context. Conclusions There is an extreme reduction in ovariole number and size within the species studied; the eggs produced by small ovarioles have a remarkably large size. A reduction to one ovariole has occurred independently at least twice in this subterranean group. A reduction in the number of ovarioles in ground beetles is one of the striking consequences of subterranean specialization and it is correlated with another remarkable adaptation of subterranean beetles, a reduction in the number of larval instars. PMID:26151557

  20. Convergent Reduction of Ovariole Number Associated with Subterranean Life in Beetles.

    Directory of Open Access Journals (Sweden)

    Arnaud Faille

    Full Text Available Some species of obligate cavernicolous beetles are known to possess a unique feature-a contraction of the larval cycle. In contrast to many other subterranean beetles, life-cycle contraction in Trechini ground beetles (Carabidae is correlated with a reduction in the number of eggs and a drastic reduction in the number of ovarioles. This remarkable peculiarity has only been reported for a small number of closely related species.We give a description of the female internal reproductive system for six species of Trechini, including five subterranean species, with a particular focus on the western Pyrenean radiation of Aphaenops, a group for which nothing is known regarding the early life stages. We redescribe the internal female genitalia of A. crypticola Linder. Study of the ovarioles allowed us to infer the postembryonic development of the larvae for each species examined. We then used a phylogenetic framework to recognize two independent reductions in the number of ovarioles in the Pyrenean lineage. We discuss the multiple convergent evolutions in ovariole number and the potential link between a reduction of ovariole number and troglobiomorphism in a phylogenetic context.There is an extreme reduction in ovariole number and size within the species studied; the eggs produced by small ovarioles have a remarkably large size. A reduction to one ovariole has occurred independently at least twice in this subterranean group. A reduction in the number of ovarioles in ground beetles is one of the striking consequences of subterranean specialization and it is correlated with another remarkable adaptation of subterranean beetles, a reduction in the number of larval instars.

  1. Mimics here and there, but not everywhere: Müllerian mimicry in Ceroglossus ground beetles?

    Science.gov (United States)

    Muñoz-Ramírez, Carlos P; Bitton, Pierre-Paul; Doucet, Stéphanie M; Knowles, Lacey L

    2016-09-01

    The ground beetle genus Ceroglossus contains co-distributed species that show pronounced intraspecific diversity in the form of geographical colour morphs. While colour morphs among different species appear to match in some geographical regions, in others, there is little apparent colour matching. Mimicry is a potential explanation for covariation in colour patterns, but it is not clear whether the degree of sympatric colour matching is higher than expected by chance given the obvious mismatches among morphs in some regions. Here, we used reflectance spectrometry to quantify elytral coloration from the perspective of an avian predator to test whether colour similarity between species is, indeed, higher in sympatry. After finding no significant phylogenetic signal in the colour data, analyses showed strong statistical support for sympatric colour similarity between species despite the apparent lack of colour matching in some areas. We hypothesize Müllerian mimicry as the responsible mechanism for sympatric colour similarity in Ceroglossus and discuss potential explanations and future directions to elucidate why mimicry has not developed similar levels of interspecific colour resemblance across space. © 2016 The Author(s).

  2. Effects of an increase in population of sika deer on beetle communities in deciduous forests

    Directory of Open Access Journals (Sweden)

    Taichi Iida

    2016-10-01

    Full Text Available The overabundance of large herbivores is now recognized as a serious ecological problem. However, the resulting ecological consequences remain poorly understood. The ecological effects of an increase in sika deer, Cervus nippon Temminck (Cervidae, on three insect groups of beetles was investigated: ground beetles (Carabidae, carrion beetles (Silphidae, and dung beetles (Scarabaeidae and Geotrupidae on Nakanoshima Island, Hokkaido, northern Japan. We collected beetles on Nakanoshima Island (experimental site and lakeshore areas (control site and compared the species richness, abundance, diversity index, and community composition of beetles between the sites. Results showed that although both species diversity and abundance of carabid beetles were significantly higher at the lakeshore site, those of dung and carrion beetles were higher at the island site. It was additionally observed that abundance of larger carabid beetles was higher at the lakeshore site, whereas that of small-sized carabid beetles did not differ between the lakeshore and island sites. For dung beetles, abundance of smaller species was higher at the island site, whereas that of large species did not differ between the lakeshore and island sites. Abundance of two body sizes (small and large of carrion beetles were both higher at the island site. Overall, the findings of this study demonstrated that an increase in deer population altered the insect assemblages at an island scale, suggesting further changes in ecosystem functions and services in this region.

  3. [Characteristics of ground-dwelling soil macro-arthropod communities in a biodiversity monitoring plot of black soil cropland, northeastern China].

    Science.gov (United States)

    Liu, Jie; Gao, Mie Xiang; Wu, Dong Hui

    2017-12-01

    Agro-ecosystem is an important component of terrestrial ecosystems and it is one of the key areas of global ecological and environmental studies. A 16 hm 2 permanent plot in black soil cropland was built to study the community structure of soil biodiversity in typical black soil region in Northeast China. Pitfall trap was used to investigate the ground-dwelling soil macro-arthropods from August to October 2015 in accordance with the three crop growth stages: whirling stage, silking stage, and milk stage. A total of 5284 ground-dwelling soil macro-arthropods belonging to 47 species were captured sorted into 3 classes, 12 orders, 32 families. 3 dominant groups and 11 common groups were found. Phytophages and Omnivores were dominant groups. The individuals and species numbers of ground-dwelling soil macro-arthropods had significant changes with the vegetative growth period. The maximum values of the Shannon index, Margalef index, Pielou index of soil macro-arthropods all appeared in September, but the maximum dominant index appeared in August. From the variation coefficient (CV) and spatial interpolation of different species, it could be seen that there was heterogeneity in the horizontal direction of the ground-dwelling soil macro-arthropod communities. Regarding the relationships between the ground-dwelling soil macro-arthropod communities and soil environmental factors including soil pH, soil organic matter, total nitrogen and soil water content, the bivariate correlation analysis showed there was no significant correlation between them. Results of canonical correspondence analysis (CCA) further indicated that the dominant and common groups were adaptable to environmental factors and widely distributed in the study area. The results showed that the species richness of ground-dwelling soil macro-arthropods was very high in cropland, and the dynamic of soil arthropod's composition and spatial distribution pattern in diffe-rent crop growth stages were significantly

  4. Current knowledge on exocrine glands in carabid beetles: structure, function and chemical compounds.

    Science.gov (United States)

    Giglio, Anita; Brandmayr, Pietro; Talarico, Federica; Brandmayr, Tullia Zetto

    2011-01-01

    Many exocrine products used by ground beetles are pheromones and allomones that regulate intra- and interspecific interactions and contribute to their success in terrestrial ecosystems. This mini-review attempts to unify major themes related to the exocrine glands of carabid beetles. Here we report on both glandular structures and the role of secretions in carabid adults, and that little information is available on the ecological significance of glandular secretions in pre-imaginal stages.

  5. Microclimatic Divergence in a Mediterranean Canyon Affects Richness, Composition, and Body Size in Saproxylic Beetle Assemblages.

    Directory of Open Access Journals (Sweden)

    Jörn Buse

    Full Text Available Large valleys with opposing slopes may act as a model system with which the effects of strong climatic gradients on biodiversity can be evaluated. The advantage of such comparisons is that the impact of a change of climate can be studied on the same species pool without the need to consider regional differences. The aim of this study was to compare the assemblage of saproxylic beetles on such opposing slopes at Lower Nahal Oren, Mt. Carmel, Israel (also known as "Evolution Canyon" with a 200-800% higher solar radiation on the south-facing (SFS compared to the north-facing slope (NFS. We tested specific hypotheses of species richness patterns, assemblage structure, and body size resulting from interslope differences in microclimate. Fifteen flight-interception traps per slope were distributed over three elevation levels ranging from 50 to 100 m a.s.l. Richness of saproxylic beetles was on average 34% higher on the SFS compared with the NFS, with no detected influence of elevation levels. Both assemblage structure and average body size were determined by slope aspect, with more small-bodied beetles found on the SFS. Both the increase in species richness and the higher prevalence of small species on the SFS reflect ecological rules present on larger spatial grain (species-energy hypothesis and community body size shift hypothesis, and both can be explained by the metabolic theory of ecology. This is encouraging for the complementary use of micro- and macroclimatic gradients to study impacts of climate warming on biodiversity.

  6. The ground beetles (Coleoptera: Carabidae) of the Strandzha Mountain and adjacent coastal territories (Bulgaria and Turkey).

    Science.gov (United States)

    Kostova, Rumyana; Guéorguiev, Borislav

    2016-01-01

    The knowledge of the ground-beetle fauna of Strandzha is currently incomplete, and is largely based on data from the Bulgarian part of the region and on records resulting from casual collecting. This study represents a critical revision of the available literature, museum collections and a three years field study of the carabid beetles of the Bulgarian and Turkish parts of Strandzha Mountain and the adjacent Black Sea Coast territories. A total of 328 species and subspecies of Carabidae, belonging to 327 species from the region of Strandzha Mountain and adjacent seacoast area, have been listed. Of these, 77 taxa represent new records for the Bulgarian part of the region, and 110 taxa new records for Turkish part of the studied region. Two taxa, one subgenus (Haptotapinus Reitter, 1886) and one species (Pterostichus crassiusculus), are new to the fauna of Bulgaria. Based on a misidentification, the species Apotomus testaceus is excluded from the list of the Bulgarian fauna. Seven species (Carabus violaceus azurescens, Apotomus rufus, Platynus proximus, Molops alpestris kalofericus, M. dilatatus angulicollis, Pterostichus merklii, and Calathus metallicus) are treated as doubtful for the regional fauna, and one (Apotomus rufus) also for the Bulgarian fauna. Altogether, 43 taxa collected in the Turkish part of the region are new for European Turkey. New taxa for Turkey are the genera Myas and Oxypselaphus, the subgenus Feronidius, and nine species and subspecies (Carabus granulatus granulatus, Dyschirius tristis, Bembidion normannum apfelbecki, B. subcostatum vau, Acupalpus exiguus, Myas chalybaeus, Oxypselaphus obscurus, Pterostichus leonisi, Pt. melas). In addition, there are a further seven species that are here confirmed for Turkey.

  7. Current knowledge on exocrine glands in carabid beetles: structure, function and chemical compounds

    Directory of Open Access Journals (Sweden)

    Anita Giglio

    2011-05-01

    Full Text Available Many exocrine products used by ground beetles are pheromones and allomones that regulate intra- and interspecific interactions and contribute to their success in terrestrial ecosystems. This mini-review attempts to unify major themes related to the exocrine glands of carabid beetles. Here we report on both glandular structures and the role of secretions in carabid adults, and that little information is available on the ecological significance of glandular secretions in pre-imaginal stages.

  8. Kettle Holes in the Agrarian Landscape: Isolated and Ecological Unique Habitats for Carabid Beetles (Col.: Carabidae and Spiders (Arach.: Araneae

    Directory of Open Access Journals (Sweden)

    Platen Ralph

    2016-11-01

    Full Text Available Kettle holes are small depressional wetlands and because of the high variability of site factors they are potential hotspots of biodiversity in the monotone arable land. We investigated eight kettle holes and two agrarian reference biotopes for carabid beetles and spiders. The animals were captured with pitfall traps from May to August 2005, along with surveys of the soil and vegetation. We asked whether each kettle hole has specific ecological properties which match with characteristic carabid beetle and spider coenoses and whether they represent isolated biotopes. Differences in the composition of ecological and functional groups of carabid beetles and spiders between the plots were tested with an ANOVA. The impact of the soil variables and vegetation structure on the distribution of species was analyzed with a Redundancy Analysis. The assemblage similarities between the kettle hole plots were calculated by the Wainstein-Index. Ecological groups and habitat preferences of carabid beetles had maximal expressions in seven different kettle holes whereas most of the ecological characteristics of the spiders had maximal expression in only two kettle holes. High assemblage similarity values of carabid beetle coenoses were observed only in a few cases whereas very similar spider coenoses were found between nearly all of the kettle holes. For carabid beetles, kettle holes represent much more isolated habitats than that for spiders. We concluded that kettle holes have specific ecological qualities which match with different ecological properties of carabid beetles and spiders and that isolation effects affect carabid beetles more than spiders.

  9. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009).

    Science.gov (United States)

    Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro

    2014-04-01

    Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in 1980 in six stands below and above the treeline (1650-2250 m a.s.l.) with those sampled in the same sites almost 30 years later (2008/9). Quantitative data (species richness and abundance) have been compared by means of several diversity indexes and with a new index, the Index of Rank-abundance Change (IRC). Our work shows that species richness and abundance have changed after almost 30 years as a consequence of local extinctions, uphill increment of abundance and uphill shift of distribution range. The overall species number dropped from 36 to 27, while in the sites above the treeline, species richness and abundance changed more than in the forest sites. Two microtherm characteristic species of the pioneer cushion grass mats, Nebria germari and Trechus dolomitanus, became extinct or showed strong abundance reduction. In Nardetum pastures, several hygrophilic species disappeared, and xerophilic zoophytophagous elements raised their population density. In forest ecosystems, the precipitation reduction caused deep soil texture and watering changes, driving a transformation from Sphagnum-rich (peaty) to humus-rich soil, and as a consequence, soil invertebrate biomass strongly increased and thermophilic carabids enriched the species structure. In three decades, Carabid assemblages changed consistently with the hypothesis that climate change is one of the main factors triggering natural environment modifications. Furthermore, the level of human disturbance could enhance the

  10. Quantifying responses of dung beetles to fire disturbance in tropical forests: the importance of trapping method and seasonality.

    Science.gov (United States)

    de Andrade, Rafael Barreto; Barlow, Jos; Louzada, Julio; Vaz-de-Mello, Fernando Zagury; Souza, Mateus; Silveira, Juliana M; Cochrane, Mark A

    2011-01-01

    Understanding how biodiversity responds to environmental changes is essential to provide the evidence-base that underpins conservation initiatives. The present study provides a standardized comparison between unbaited flight intercept traps (FIT) and baited pitfall traps (BPT) for sampling dung beetles. We examine the effectiveness of the two to assess fire disturbance effects and how trap performance is affected by seasonality. The study was carried out in a transitional forest between Cerrado (Brazilian Savanna) and Amazon Forest. Dung beetles were collected during one wet and one dry sampling season. The two methods sampled different portions of the local beetle assemblage. Both FIT and BPT were sensitive to fire disturbance during the wet season, but only BPT detected community differences during the dry season. Both traps showed similar correlation with environmental factors. Our results indicate that seasonality had a stronger effect than trap type, with BPT more effective and robust under low population numbers, and FIT more sensitive to fine scale heterogeneity patterns. This study shows the strengths and weaknesses of two commonly used methodologies for sampling dung beetles in tropical forests, as well as highlighting the importance of seasonality in shaping the results obtained by both sampling strategies.

  11. Biodiversity management of organic orchard enhances both ecological and economic profitability.

    Science.gov (United States)

    Meng, Jie; Li, Lijun; Liu, Haitao; Li, Yong; Li, Caihong; Wu, Guanglei; Yu, Xiaofan; Guo, Liyue; Cheng, Da; Muminov, Mahmud A; Liang, Xiaotian; Jiang, Gaoming

    2016-01-01

    Organic farming has been regarded as an alternative solution for both agricultural sustainability and human health maintenance. Few researches have concentrated on the differences of biodiversity and eco-economic benefits between organic and conventional orchards. Organic management (OM) of orchards mainly includes taking advantage of natural enemies and beneficial weeds as well as soil organisms and controlling harmful pests. Here we conducted a three-year experiment on the effects of managing biodiversity in an organic apple orchard, using cattle manure to enrich soil biota, propagating native plant to suppress weeds and applying ecological pest management to control pests. The effect was assessed against the conventional management (CM) model. We found that OM enhanced soil organic carbon, total nitrogen, microbial biomass carbon and nitrogen. The 16S rDNA high-throughput sequencing results indicated that the dominant bacterial phyla of the top soil were Proteobacteria and Actinobacteria, and OM had richer bacteria diversity with a 7% higher Shannon's index than the CM. In particular, the relative abundance of rhizobium in the OM was higher than that of the CM. For OM, Duchesnea indica was an ideal ground-cover plant to control weeds through winning the niche competition and thus decreased weeds' Simpson, Shannon-Wiener and Pielou index by 38.2%, 53.8% and 16.9% separately. The phototactic pests' weight and scarab beetle's population were effectively decreased by 35% and 86% respectively through long time control and prevention. OM had an average of 20 times more earthworms than CM, and the maximum density had reached 369 m(-2) (0-20 cm soil). The dominant earthworm species of the OM were detritivores which preferring soil with high organic matter content. Due to no synthetic chemicals being used, the OM produced much safer apple fruits which were sold at high prices. Economically, up to a 103% increase of output-input ratio had been achieved in the OM. Our

  12. National forest inventory contributions to forest biodiversity monitoring

    DEFF Research Database (Denmark)

    Chirici, Cherardo; McRoberts, Ronald; Winter, Susanne

    2012-01-01

    . The primary international processes dealing with biodiversity and sustainable forest management, the Convention on Biological Diversity (CBD), Forest Europe, Streamlining European Biodiversity Indicators 2010 of the European Environmental Agency, and the Montréal Process, all include indicators related...... (ground vegetation and regeneration) NFIs should invest more in harmonization efforts. On the basis of these key findings, we recommend that NFIs should represent a main component of a future global biodiversity monitoring network as urgently requested by the CBD....

  13. Is it possible and necessary to control European spruce bark beetle Ips typographus (L. outbreak in the Białowieża Forest?

    Directory of Open Access Journals (Sweden)

    Hilszczański Jacek

    2017-03-01

    Full Text Available In response to the information published in ‘Forest Research Papers’ (vol. 77(4, 2016, regarding the problem of the European spruce bark beetle Ips typographus (L. in the Białowieża Forest, we present our viewpoint on this issue. The role of the European spruce bark beetle in the Białowieża Forest is discussed based on the experience gained in Europe’s forests. We present the effects of I. typographus outbreaks on forest biodiversity as well as outbreak mitigation in the context of the processes taking place in semi-natural forests.

  14. Responses of antennal campaniform sensilla to rapid temperature changes in ground beetles of the tribe platynini with different habitat preferences and daily activity rhythms.

    Science.gov (United States)

    Must, Anne; Merivee, Enno; Luik, Anne; Mänd, Marika; Heidemaa, Mikk

    2006-05-01

    Responses of temperature sensitive (cold) cells from the antenna of ground beetles (tribe Platynini) were compared in species with different ecological preferences and daily activity rhythms. Action potential rates were characterized at various temperatures (ranges 23-39 degrees C) and during rapid changes in it (Deltat=0.5-15 degrees C). The stationary firing frequencies were nearly twice as high in eurythermic open field ground beetles Agonum muelleri and Anchomenus dorsalis (firing rates ranging from 22 to 47imp/s) than in a stenothermic forest species Platynus assimilis. In the eurythermic species, the firing rate did not significantly depend on temperature (Anchomenus dorsalis range of 23-27 degrees C and Agonum muelleri range of 23-33 degrees C) but plots of firing rate versus temperature showed rapid declines when lethally high temperatures were approached. In contrast, a nearly linear decline of the firing rate/temperature curve was observed in Platynus assimilis. Responses to rapid temperature decreases were also considerably higher in eurythermic species. Both the peak frequency of the initial burst (maximum 420-650Hz) as well as the sustained discharge in the first 4s of the response were higher than in Platynus assimilis. Long silent periods, lasting up to several seconds, that occurred at the beginning of the response to rapid warming were significantly shorter in Agonum muelleri and Anchomenus dorsalis compared to Platynus assimilis. These findings suggest that the responses of thermoreceptors to temperature changes may be correlated with specific ecological preferences.

  15. A new method for electrophysiological identification of antennal pH receptor cells in ground beetles: the example of Pterostichus aethiops (Panzer, 1796) (Coleoptera, Carabidae).

    Science.gov (United States)

    Milius, Marit; Merivee, Enno; Williams, Ingrid; Luik, Anne; Mänd, Marika; Must, Anne

    2006-09-01

    The responses of antennal taste sensilla of the ground beetle Pterostichus aethiops to 100mM Na(+)-salts and their mixtures with 1 and 10mM NaOH were compared. An increase in pH by 0.3-0.6 units in 100mM Na(+)-salt solutions, caused by the content of 1mM NaOH, was too small, except for alkaline Na(2)HPO(4), to influence the firing rate of the cation cell and pH cell significantly. However, different sensitivity of the two cells to increased pH was clearly demonstrated when the concentration of NaOH in 100mM stimulating salt solutions was increased to 10mM. Increasing pH by 1.2-2 units caused the 1st s firing rate to increase by 140-1050% and 0-26% in the pH cell and cation cell, respectively. Compared to the buffer series method used for identification of the pH receptors in ground beetles earlier, considerably stronger responses of the pH cell to a similar increase in pH were observed when the NaOH method was used for testing. At the same time, undesirable changes in salt ions concentration that occur when stimulating solutions differing by 1-2 pH units are prepared were much smaller using the latter method. Behavioural and ecological relevance of the results is discussed.

  16. Forest restoration, biodiversity and ecosystem functioning

    Science.gov (United States)

    2011-01-01

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  17. European Atlas of Soil Biodiversity

    DEFF Research Database (Denmark)

    Krogh (contributor), Paul Henning

    Soil is one of the fundamental components for supporting life on Earth. Most ecosystem processes and global functions that occur within soil are driven by living organisms that, in turn, sustain life above ground. However, despite the fact that soils are home to a quarter of all living species on...... Biodiversity is an essential reference to the many and varied aspects of soil. The overall goal of this work is to convey the fundamental necessity to safeguard soil biodiversity in order to guarantee life on this planet.......Soil is one of the fundamental components for supporting life on Earth. Most ecosystem processes and global functions that occur within soil are driven by living organisms that, in turn, sustain life above ground. However, despite the fact that soils are home to a quarter of all living species...... on Earth, life within the soil is often hidden away and suffers by being 'out of sight and out of mind'. What kind of life is there in soil? What do we mean by soil biodiversity? What is special about soil biology? How do our activities affect soil ecosystems? What are the links between soil biota...

  18. Supporting biodiversity by prescribed burning in grasslands - A multi-taxa approach.

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid D; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2016-12-01

    There are contrasting opinions on the use of prescribed burning management in European grasslands. On the one hand, prescribed burning can be effectively used for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. On the other hand burning can have a detrimental impact on grassland biodiversity by supporting competitor grasses and by threatening several rare and endangered species, especially arthropods. We studied the effects of prescribed burning in alkaline grasslands of high conservation interest. Our aim was to test whether dormant-season prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in East-Hungary: in three sites, a prescribed fire was applied in November 2011, while three sites remained unburnt. We studied the effects of burning on soil characteristics, plant biomass and on the composition of vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soil pH, organic matter, potassium and phosphorous did not change, but soluble salt content increased significantly in the burnt sites. Prescribed burning had several positive effects from the nature conservation viewpoint. Shannon diversity and the number of flowering shoots were higher, and the cover of the dominant grass Festuca pseudovina was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control. The key finding of our study was that prescribed burning did not decrease the abundance and diversity of arthropod taxa. Species-level analyses showed that out of the most abundant invertebrate species, 10 were not affected, 1 was negatively and 1 was positively affected by burning. Moreover, our results suggest that prescribed burning leaving unburnt patches can be a viable management tool in open landscapes, because it supports plant diversity and does not threaten

  19. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  20. Bark and Ambrosia Beetle (Curculionidae: Scolytinae) Diversity Found in Agricultural and Fragmented Forests in Piracicaba-SP, Brazil.

    Science.gov (United States)

    Sandoval Rodríguez, Carla; Cognato, Anthony I; Righi, Ciro Abbud

    2017-12-08

    Land use changes and forest fragmentation result in biodiversity loss and displacement, with insects among the most affected groups. Among these, bark beetles (Curculionidae: Scolytinae) occupy a prominent position due to their close ties to food resources, i.e., trees, and importance as primary decomposers in forest ecosystems. Therefore, our study aimed to document scolytine biodiversity associated with landscape components that vary based on their physical or botanical composition. Bark beetle diversity was sampled monthly for 12 mo in an Atlantic forest remnant and five adjacent vegetation plots (mixed Agroforestry System-AFS, of native trees and fruit species; AFS of rubber trees and coffee plants; coffee monoculture; rubber monoculture; and pasture). In total, 1,833 individuals were sampled from 38 species of which 24 (63%) were detected in very low abundance. The remaining 14 species were more abundant and widespread almost in all areas. Hypothenemus hampei (Westwood), Premnobius cavipennis (Eichhoff), Hypothenemus sp1., and Xyleborus volvulus (Fabricius) were the most abundant. The greatest abundance and richness of bark beetles were found in the dry and cold season. The varied microclimatic conditions of the vegetation plots greatly affected the diversity of the Scolytinae. Solar radiation presented a significant negative effect on abundance in almost all the studied areas. The greatest scolytine diversity was found in anthropic areas with tree canopy structure. Open areas (pasture and coffee monocrop) had a lower species diversity. Similarly, a lower abundance and species richness were found for the Atlantic forest remnant. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Flow structures around a flapping wing considering ground effect

    Science.gov (United States)

    Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung

    2013-07-01

    Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.

  2. The implications of habitat management on the population viability of the endangered Ohlone tiger beetle (Cicindela ohlone metapopulation.

    Directory of Open Access Journals (Sweden)

    Tara M Cornelisse

    Full Text Available Despite their role in providing ecosystem services, insects remain overlooked in conservation planning, and insect management approaches often lack a rigorous scientific basis. The endangered Ohlone tiger beetle (Cicindela ohlone occurs in a 24-km(2 area in Santa Cruz County, California. The once larger metapopulation now consists of subpopulations inhabiting five patches of coastal prairie where it depends on bare ground for mating, foraging, and oviposition. Human activities have eliminated natural disturbances and spread invasive grasses, reducing C. ohlone's bare-ground habitat. Management actions to restore critical beetle habitat consist of cattle and horse grazing, maintaining slow bicycle speeds on occupied public trails, and artificial creation of bare-ground plots. Recreational biking trails help maintain bare ground, but can cause beetle mortality if left unregulated. We tracked C. ohlone survivorship and estimated fecundity for three years. We then constructed a stage-structured population projection matrix model to estimate population viability among the five patches, and to evaluate the success of management interventions. We demonstrate that habitat creation, regulation of bicycle speed, and migration between patches increase C. ohlone survival and population viability. Our results can be directly applied to management actions for conservation outcomes that will reduce species extinction risk and promote recolonization of extirpated patches.

  3. Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields

    DEFF Research Database (Denmark)

    Steenberg, T; Langer, V; Esbjerg, P

    1995-01-01

    beetles were low (Carabidae: max. 7.6%, Staphylinidae: max. 7.0%). in comparison, prevalence of entomopathogenic fungi in carabid larvae was high (19-50%). At one study site an epizootic of Beauveria bassiana was observed, infecting 67% of staphylinid Anotylus rugosus and 37% of the staphylinid Gyrohypnus...... angustatus. Beauveria bassiana was the predominant fungus isolated from ground beetles and rove beetles from all studied sites. Other fungal species included the hyphomycetes Metarhizium anisopliae, Paecilomyces farinosus and Verticillium lecanii as well as Zoophthora radicans and Zoophthora philonthi...... (Zygomycetes: Entomophthorales). Two individuals of Anotylus rugosus were found to have a dual infection of Zoophthora philonthi and Beauveria bassiana...

  4. Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles.

    Science.gov (United States)

    Slatyer, Rachel A; Schoville, Sean D

    2016-01-01

    A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species' elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system.

  5. Faunal diversity of Fagus sylvatica forests: A regional and European perspective based on three indicator groups

    Directory of Open Access Journals (Sweden)

    H. Walentowski

    2014-12-01

    Full Text Available While the postglacial history of European beech (Fagus sylvatica and the plant species composition of beech forests in  Central Europe are fairly well understood, the faunal biodiversity has been less well investigated. We studied three groups of  mostly sedentary organisms in beech forest at regional and European scales by combining field studies with a compilation of existing literature and expert knowledge. Specifically, we examined the relationship between host tree genera and saproxylic  beetles, and the diversity and composition of forest ground-dwelling molluscs and ground beetles in relation to the abundance  of beech. At a west central European scale (Germany, where beech has a “young” ecological and biogeographical history,  we found 48 primeval forest relict species of saproxylic beetles associated with beech, 124 ground beetles and 91 molluscs  inhabiting beech forest, yet none exclusive of west central European beech forests. High levels of faunal similarity between beech and other woodland trees suggested that many of the beech forest dwelling species are euryoecious and likely to  originate from mid-Holocene mixed broadleaf forests. Beech forests of the mountain ranges in southern and east central  Europe, which are ecologically and biogeographically “old”, were found to harbour distinct species assemblages, including  beech forest specialists (such as 10 carabid species in the Carpathians and narrow-range endemics of broadleaf forest. The  observed biodiversity patterns suggest differentiated conservation priorities in “young” and “old” European beech forest  regions.

  6. Exploring the Leaf Beetle Fauna (Coleoptera: Chrysomelidae of an Ecuadorian Mountain Forest Using DNA Barcoding.

    Directory of Open Access Journals (Sweden)

    Birthe Thormann

    Full Text Available Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates.Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs (n = 284-289. Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2 and 469-481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation.Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50% singletons, the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities. Therefore, DNA-based species delimitation is confirmed as a

  7. Positive biodiversity-productivity relationship predominant in global forests.

    Science.gov (United States)

    Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B

    2016-10-14

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.

  8. Deposition from ground-based sprays of carbaryl to protect individual trees from bark beetle attack in the western United States

    Science.gov (United States)

    C.J. Fettig; A.S. Munson; S.R. McKelvey; DeGomez T.E.

    2009-01-01

    Bark beetles are commonly recognized as important tree mortality agents in western coniferous forests, but relatively few species (<25) are capable of killing apparently-healthy trees. However, during the last decade extensive levels of tree mortality were attributed to bark beetle outbreaks in...

  9. Effects of a Commercial Chitosan Formulation on Bark Beetle (Coleoptera: Curculionidae) Resistance Parameters in Loblolly Pine

    Science.gov (United States)

    K. D. Klepzig; B. L. Strom

    2011-01-01

    A commercially available chitosan product, Beyond™, was evaluated for its effects on loblolly pine, Pinus taeda L., responses believed related to bark beetle resistance. Treatments were applied 4 times at approx. 6-wk intervals between May and November 2008. Five treatments were evaluated: ground application (soil drench), foliar application, ground...

  10. The effect of different trap height on the diversity of sap beetle (Coleoptera: Nitidulidae)

    Science.gov (United States)

    Rahim, Nor Atikah Abdul; Yaakop, Salmah

    2018-04-01

    This paper aim to measure the diversity and abundance of sap beetles in oil palm plantation in Malaysia on different heights, 1.5m and 2.5m above ground. A total 0f 20 baited traps were set up in Felda Lui Muda, Negeri Sembilan and located along three transects. The sap beetles collected weekly for a month and identified until species level and the diversity indexes were measured using Evenness Index (E), Shannon-Wiener Index (H'), Simpson's Index (D') and Margalef's Index (R'). All the diversity indexes indicated that the diversity on the lower height above the ground is higher than the upper height The result also shows that there are significant difference (p<0.05) when tested with t-test between the numbers of individuals on the different trap height although the number of species shows different results.

  11. Effects of Small-Scale Dead Wood Additions on Beetles in Southeastern U.S. Pine Forests

    Directory of Open Access Journals (Sweden)

    Chris E. Carlton

    2012-08-01

    Full Text Available Pitfall traps were used to sample beetles (Coleoptera in plots with or without inputs of dead loblolly pine (Pinus taeda L. wood at four locations (Louisiana, Mississippi, North Carolina and Texas on the coastal plain of the southeastern United States. The plots were established in 1998 and sampling took place in 1998, 1999, and 2002 (only 1998 for North Carolina. Overall, beetles were more species rich, abundant and diverse in dead wood addition plots than in reference plots. While these differences were greatest in 1998 and lessened thereafter, they were not found to be significant in 1998 due largely to interactions between location and treatment. Specifically, the results from North Carolina were inconsistent with those from the other three locations. When these data were excluded from the analyses, the differences in overall beetle richness for 1998 became statistically significant. Beetle diversity was significantly higher in the dead wood plots in 1999 but by 2002 there were no differences between dead wood added and control plots. The positive influence of dead wood additions on the beetle community can be largely attributed to the saproxylic fauna (species dependent on dead wood, which, when analyzed separately, were significantly more species rich and diverse in dead wood plots in 1998 and 1999. Ground beetles (Carabidae and other species, by contrast, were not significantly affected. These results suggest manipulations of dead wood in pine forests have variable effects on beetles according to life history characteristics.

  12. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Baltic Sea biodiversity status vs. cumulative human pressures

    DEFF Research Database (Denmark)

    Andersen, Jesper H.; Halpern, Benjamin S.; Korpinen, Samuli

    2015-01-01

    Abstract Many studies have tried to explain spatial and temporal variations in biodiversity status of marine areas from a single-issue perspective, such as fishing pressure or coastal pollution, yet most continental seas experience a wide range of human pressures. Cumulative impact assessments have...... been developed to capture the consequences of multiple stressors for biodiversity, but the ability of these assessments to accurately predict biodiversity status has never been tested or ground-truthed. This relationship has similarly been assumed for the Baltic Sea, especially in areas with impaired...... status, but has also never been documented. Here we provide a first tentative indication that cumulative human impacts relate to ecosystem condition, i.e. biodiversity status, in the Baltic Sea. Thus, cumulative impact assessments offer a promising tool for informed marine spatial planning, designation...

  14. Relations between species rarity, vulnerability, and range contraction for a beetle group in a densely populated region in the Mediterranean biodiversity hotspot.

    Science.gov (United States)

    Fattorini, Simone

    2014-02-01

    Rarity is often considered an indication of species extinction risk, and it is frequently used to obtain measures of species vulnerability. However, there is no strong evidence of a correlation between species vulnerability and threat. Moreover, there is no consensus about how rarity should be measured. I used a multidimensional characterization of species rarity to calculate a vulnerability index for tenebrionid beetles inhabiting an Italian region in the Mediterranean biodiversity hotspot. I used different metrics to examine 3 dimensions of rarity: species range, ecology, and population. Species with rarity values below the median were scored as rare for each dimension. I combined rarity scores into a vulnerability index. I then correlated species vulnerability with range trends (expanded vs. contracted). Different measures of the same rarity dimension were strongly correlated and produced similar vulnerability scores. This result indicates rarity-based vulnerability estimates are slightly affected by the way a certain rarity dimension is measured. Vulnerability was correlated with range trends; species with the highest vulnerability had the strongest range contraction. However, a large number of common species also underwent range contraction in the last 50 years, and there was no clear relation between range contraction and their ecology. This indicates that in general human-induced environmental changes affected species irrespective of their assumed vulnerability and that focusing only on rare species may severely bias perceptions of the extent of species decline. © 2013 Society for Conservation Biology.

  15. Ground beetles (Coleoptera: Carabidae) of rice field banks and restored habitats in an agricultural area of the Po Plain (Lombardy, Italy).

    Science.gov (United States)

    Pilon, Nicola; Cardarelli, Elisa; Bogliani, Giuseppe

    2013-01-01

    An entomological investigation was carried out in an agricultural area, mainly rice fields, of the Po river plain, located in the municipalities of Lacchiarella (MI) and Giussago (PV) (Lombardy, Italy). In 2009 and 2010, ground beetles (Coleoptera: Carabidae) were sampled along rice field banks and in restored habitats, by means of pitfall traps. The area appeared as species-rich, compared to other anthropogenic habitats in the Po river pain. Most of the collected Carabids were species with a wide distribution in the Paleartic region, eurytopic and common in European agroecosystems. The assemblages were dominated by small-medium, macropterous species, with summer larvae. No endemic species were found. Species with southern distribution, rarely found north of the Po river, were also sampled. Amaralittorea is recorded for the first time in Italy.

  16. Ground beetles (Coleoptera: Carabidae of rice field banks and restored habitats in an agricultural area of the Po Plain (Lombardy, Italy

    Directory of Open Access Journals (Sweden)

    Nicola Pilon

    2013-11-01

    Full Text Available An entomological investigation was carried out in an agricultural area, mainly rice fields, of the Po river plain, located in the municipalities of Lacchiarella (MI and Giussago (PV (Lombardy, Italy. In 2009 and 2010, ground beetles (Coleoptera: Carabidae were sampled along rice field banks and in restored habitats, by means of pitfall traps. The area appeared as species-rich, compared to other anthropogenic habitats in the Po river pain. Most of the collected Carabids were species with a wide distribution in the Paleartic region, eurytopic and common in European agroecosystems. The assemblages were dominated by small-medium, macropterous species, with summer larvae. No endemic species were found. Species with southern distribution, rarely found north of the Po river, were also sampled. Amara littorea is recorded for the first time in Italy.

  17. Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub-mountainous landscape of Central Italy

    Directory of Open Access Journals (Sweden)

    Mattia Tonelli

    2017-01-01

    Full Text Available Grazing extensification and intensification are among the main problems affecting European grasslands. We analyze the impact of grazing intensity (low and moderate and the use of veterinary medical products (VMPs on the dung beetle community in the province of Pesaro-Urbino (Italy. Grazing intensity is a key factor in explaining the diversity of dung beetles. In the case of the alpha diversity component, sites with a low level of grazing activity—related in a previous step to the subsequent abandonment of traditional farming—is characterized by a loss of species richness (q = 0 and a reduction in alpha diversity at the levels q = 1 and q = 2. In the case of beta diversity, sites with a different grazing intensity show remarkable differences in terms of the composition of their species assemblages. The use of VMPs is another important factor in explaining changes in dung beetle diversity. In sites with a traditional use of VMPs, a significant loss of species richness and biomass is observed, as is a notable effect on beta diversity. In addition, the absence of indicator species in sites with a historical use of VMPs corroborates the hypothesis that these substances have a ubiquitous effect on dung beetles. However, the interaction between grazing activity and VMPs when it comes to explaining changes in dung beetle diversity is less significant (or is not significant than the main effects (each factor separately for alpha diversity, biomass and species composition. This may be explained if we consider that both factors affect the various species differently. In other words, the reduction in dung availability affects several larger species more than it does very small species, although this does not imply that the former are more susceptible to injury caused by the ingestion of dung contaminated with VMPs. Finally, in order to prevent negative consequences for dung beetle diversity, we propose the maintenance of a moderate grazing intensity and

  18. Predisposition to bark beetle attack by root herbivores and associated pathogens: Roles in forest decline, gap formation, and persistence of endemic bark beetle populations

    DEFF Research Database (Denmark)

    Aukema, Brian H.; Zhu, Jun; Møller, Jesper

    2010-01-01

    , however, due to the requirement of long-term monitoring and high degrees of spatial and temporal covariance. We censused more than 2700 trees annually over 7 years, and at the end of 17 years, in a mature red pine plantation. Trees were measured for the presence of bark beetles and wood borers that breed...... within the primary stem, root weevils that breed in root collars, and bark beetles that breed in basal stems. We quantify the sequence of events that drive this decline syndrome, with the primary emergent pattern being an interaction between below- and above-ground herbivores and their fungal symbionts......, and elevated temperature slightly accentuates this effect. New gaps can arise from such trees as they subsequently become epicenters for the full complex of organisms associated with this decline, but this is not common. As Ips populations rise, there is some element of positive feedback...

  19. Spatial distribution of the ground beatles populations in industrial cities (on the example of Nikopol

    Directory of Open Access Journals (Sweden)

    V. V. Bolgarin

    2010-04-01

    Full Text Available The influence of abiotic factors on species of Amara, Ophonus, Harpalus in the urban environment has been studied. The features of the ground beetles distribution in the districts of Nikopol have been analysed. The influence of roadway on the vital fuctions of ground beetles has been cleared up. Quantitative data of Amara, Ophonus, Harpalus numbers in the town of Nikopol have been discussed. The advantage of natural factors over anthropogenic ones for the existence of soil mesofauna in industrial town has been established.

  20. Zombie soldier beetles: Epizootics in the goldenrod soldier beetle, Chauliognathus pensylvanicus (Coleoptera: Cantharidae) caused by Eryniopsis lampyridarum (Entomophthoromycotina: Entomophthoraceae).

    Science.gov (United States)

    Steinkraus, Donald C; Hajek, Ann E; Liebherr, Jim K

    2017-09-01

    Adult goldenrod soldier beetles, Chauliognathus pensylvanicus, were found infected by the fungus Eryniopsis lampyridarum (Entomophthoromycotina) in Arkansas during September - October (1996, 2001, 2015 and 2016). Living and dead infected beetles were found on flowering frost aster, Symphyotrichum pilosum, common boneset, Eupatorium perfoliatum, and Canada goldenrod, Solidago canadensis. Live and dead beetles (n=446) were collected in 1996 from S. pilosum flowers and held individually in the laboratory for determination of fungal prevalence. Of the beetles collected, 281 (63%) were males and 165 (37%) were females. A total of 90 beetles were infected with E. lampyridarum, an overall prevalence of 20.2%. Prevalence in males was 19.6% (n=55 infected/281 males total) and prevalence in females was 21.2% (n=35 infected /165 females total). Conidia were produced from 57% of the infected beetles, 23% of the infected beetles produced resting spores, and 20% contained the hyphal body stage. Infected beetles produced either conidia or resting spores but never both in the same host. Post-mortem morphological changes in the hosts due to E. lampyridarum were observed periodically for 24h. Shortly before death, by unknown mechanisms, dying infected beetles tightly clamped their mandibles into flower heads and ca. 15-22h later (between 2400 and 0700h) the fungus caused dead beetles to raise their elytra and expand their metathoracic wings. Copyright © 2017. Published by Elsevier Inc.

  1. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    Science.gov (United States)

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  2. Biodiversity losses: The downward spiral

    Science.gov (United States)

    Tomback, Diana F.; Kendall, Katherine C.; Tomback, Diana F.; Arno, Stephen F.; Keane, Robert E.

    2001-01-01

    The dramatic decline of whitebark pine (Pinus albicaulis) populations in the northwestern United States and southwestern Canada from the combined effects of fire exclusion, mountain pine beetles (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola), and the projected decline of whitebark pine populations rangewide (Chapters 10 and 11) do not simply add up to local extirpations of a single tree species. Instead, the loss of whitebark pine has broad ecosystem-level consequences, eroding local plant and animal biodiversity, changing the time frame of succession, and altering the distribution of subalpine vegetation (Chapter 1). One potential casualty of this decline may be the midcontinental populations of the grizzly bear (Ursus arctos horribilis), which use whitebark pine seeds as a major food source (Chapter 7). Furthermore, whitebark pine is linked to other white pine ecosystems in the West through its seed-disperser, Clark's nutcracker (Nucifraga columbiana) (Chapter 5). Major declines in nutcracker populations ultimately seal the fate of several white pine ecosystems, and raise the question of whether restoration is possible once a certain threshold of decline is reached.

  3. Impact of GM crops on biodiversity.

    Science.gov (United States)

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  4. Carabid beetle assemblages in three environments in the Araucaria humid forest of southern Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigo Milton Moraes

    2013-03-01

    Full Text Available Carabid beetle assemblages in three environments in the Araucaria humid forest of southern Brazil. Carabidae is composed mainly by ground-dwelling predator beetles. It is the fourth most diverse group within Coleoptera, but its diversity in the Neotropical region is understudied. Here we describe and analyze the diversity of carabid beetles in a region of subtropical rain forest dominated by Araucaria angustifolia with different landscapes. Three areas were chosen in an environmental integrity gradient: primary forests, secondary forests and old Pinus plantations. Pitfall traps were taken monthly, in a total of 14 samples per area. 1733 adult carabid beetles, belonging to 18 species, were sampled. There were differences in richness and abundance between the sampled areas. The total scores followed the same tendency: primary forests (14 species/747 individuals, secondary forests (13/631 and Pinus forests (10/355. An analysis of similarity shows differences in species composition, for both areas and seasons. Galerita lacordarei was the most abundant species for all samples and seasons. Carabid species show similar responses in accordance with habitat heterogeneity and disturbance. The abundance of Galerita lacordarei was influenced by temperature, for all sampled sites. Environmental changes affect the carabid assemblages and decrease diversity, possibly interfering in local dynamics. Seasonality patterns seem to indicate an increase in individual movement during summer, probably in search of resources. It is suggested that microhabitat patchiness is probably an important factor affecting carabid beetle diversity at small spatial scales.

  5. Crowdfunding biodiversity conservation.

    Science.gov (United States)

    Gallo-Cajiao, E; Archibald, C; Friedman, R; Steven, R; Fuller, R A; Game, E T; Morrison, T H; Ritchie, E G

    2018-05-26

    Raising funds is critical for conserving biodiversity and hence so too is scrutinizing emerging financial mechanisms that might help achieve this goal. In this context, anecdotal evidence indicates crowdfunding is being used to support a variety of activities needed for biodiversity conservation, yet its magnitude and allocation remain largely unknown. We conducted a global analysis to help address this knowledge gap, based on empirical data from conservation-focused projects extracted from crowdfunding platforms. For each project, we determined the funds raised, date, country of implementation, proponent characteristics, activity type, biodiversity realm, and target taxa. We identified 72 relevant platforms and 577 conservation-focused projects that have raised US$4 790 634 since 2009. Whilst proponents were based in 38 countries, projects were delivered across 80 countries, indicating a potential mechanism of resource mobilization. Proponents were from non-governmental organizations (35%), universities (30%), or were freelancers (26%). Most projects were for research (40%), persuasion (31%), and on-ground actions (21%). Projects have focused primarily on species (57.7%) and terrestrial ecosystems (20.3%), and less on marine (8.8%) and freshwater ecosystems (3.6%). Projects have focused on 208 species, including a disproportionate number of threatened bird and mammal species. Crowdfunding for biodiversity conservation has now become a global phenomenon and presents signals for potential expansion, despite possible pitfalls. Opportunities arise from its spatial amplifying effect, steady increase over time, inclusion of Cinderella species, adoption by multiple actors, and funding of a range of activities beyond research. Our study paves the way for further research on key questions, such as campaign success rates, effectiveness, and drivers of adoption. Even though the capital input of crowdfunding so far has been modest compared to other conservation finance

  6. Posteruption arthropod succession on the Mount St. Helens volcano: the ground-dwelling beetle fauna (Coleoptera).

    Science.gov (United States)

    R.R. Parmenter; C.M. Crisafulli; N. Korbe; G. Parsons; M. Edgar; J.A. MacMahon

    2005-01-01

    The 1980 eruptions of Mount St. Helens created a complex mosaic of disturbance types over a 600 km2 area. From 1980 through 2000 we monitored beetle species relative abundance and faunal composition of assemblages at undisturbed reference sites and in areas subjected to tephra-fall, blowdown, and pyroclastic flow volcanic disturbance. We...

  7. Charles Darwin, beetles and phylogenetics

    Science.gov (United States)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  8. Charles Darwin, beetles and phylogenetics.

    Science.gov (United States)

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  9. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics.

    Science.gov (United States)

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels.

  10. Patterns of movement of radioactive carabid beetles

    International Nuclear Information System (INIS)

    Baars, M.A.

    1980-01-01

    Tracking of individual 192 Ir-labelled ground beetles released in the field revealed that both the day-active and night-active species studied showed periods of small distances covered per day in random directions, alternating with periods of directed movement with large distances covered per day. This pattern occurred not only in the reproductive period but outside the breeding season as well in juvenile Pterostichus versicolor and spent Calathus melanocephalus. Although mean locomotory activity increased with temperature, great daily differences occurred between individuals, pointing to asynchronous behaviour. In an unfavorable habitat directed movement occurred both more frequently and more extremely, sometimes resulting in escape to more favorable areas. Most of the radioactive beetles died within 7 weeks due to radiation effects, but independent field experiments and simulations showed that the recorded patterns were valid. Simulated individuals of P. versicolor living on 1 ha spread over 49 ha, whereas simulated C. melanocephalus covered only 9 ha after one activity season. Normal locomotory activities lead to both exchange of individuals between subpopulations and dispersal out of the habitat. The significance of these phenomena for population stability and for the survival of the species is discussed. (orig.) [de

  11. Dung beetles in a Caatinga Natural Reserve: a threatened Brazilian dry-forest with high biological value

    Directory of Open Access Journals (Sweden)

    Letícia Vieira

    2017-12-01

    Full Text Available ABSTRACT The Caatinga is an endemic and threatened dry-forest biome distributed across northern Brazil. We evaluated the conservation value of a Caatinga Natural Reserve (NR - Floresta Nacional (FLONA Contendas do Sincorá - using Scarabaeinae dung beetles as a biodiversity indicator. Specifically, we contrasted two zones impacted by two distinct intensity of selective logging that happened inside the NR until 1997. Dung beetles were collected 14 years after logging, using baited pitfall traps within three main habitats (riparian forest, regenerating Caatinga or arboreal Caatinga found in two zones (Preservation and Management Zones. A total of 1,214 individuals from 21 species were sampled. The two zones presented distinct species composition, although the habitats did not exhibit such differences. Our results indicated that the secondary areas are in a conservation status similar to arboreal Caatinga and riparian forest, 14 y after logging. Furthermore, we identified seven habitat-indicator species, two of them typical to Caatinga biome, highlighting the importance of updates in NR management plan considering the Scarabaeinae regional diversity management.

  12. Disinfestation of whole and ground spices by gamma-irradiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Sharma, Arun; Amonkar, S.V.

    1987-01-01

    Number of insect species were identified in chilli (Capsicum annum Linn), turmeric (Curcuma longa Linn), ginger (Zingiber officinale Roscoe), pepper (Piper nigrum Linn) and coriander (Coriandrum sativum) and also in two commercial brands of prepacked ground spices. Lasioderma serricorne (Cigarette beetle), Oryzaephilus surinamensis (Saw toothed grain beetle), Rhizopertha dominica (Lesser grain borer), Sitotroga cerealella (Angoumois grain moth) and Tribolium castaneum (Red flour beetle) were the predominant pest species found in these spices. Exposure of spices to Co 60 gamma irradiation at 1 kGy dose level did not show adult emergence of insects in these species during storage at ambient temperature (28-30degC) indicating that the radiation dose (10 kGy) that has been shown to be effective for microbial decontamination of spices destroys insect pests as well. (author). 8 refs

  13. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Science.gov (United States)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Senior, Rebecca A; Bennett, Dominic J; Booth, Hollie; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; White, Hannah J; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Ancrenaz, Marc; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Báldi, András; Banks, John E; Barlow, Jos; Batáry, Péter; Bates, Adam J; Bayne, Erin M; Beja, Pedro; Berg, Åke; Berry, Nicholas J; Bicknell, Jake E; Bihn, Jochen H; Böhning-Gaese, Katrin; Boekhout, Teun; Boutin, Céline; Bouyer, Jérémy; Brearley, Francis Q; Brito, Isabel; Brunet, Jörg; Buczkowski, Grzegorz; Buscardo, Erika; Cabra-García, Jimmy; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Carrijo, Tiago F; Carvalho, Anelena L; Castro, Helena; Castro-Luna, Alejandro A; Cerda, Rolando; Cerezo, Alexis; Chauvat, Matthieu; Clarke, Frank M; Cleary, Daniel F R; Connop, Stuart P; D'Aniello, Biagio; da Silva, Pedro Giovâni; Darvill, Ben; Dauber, Jens; Dejean, Alain; Diekötter, Tim; Dominguez-Haydar, Yamileth; Dormann, Carsten F; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Elek, Zoltán; Entling, Martin H; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Ficetola, Gentile F; Filgueiras, Bruno K C; Fonte, Steven J; Fraser, Lauchlan H; Fukuda, Daisuke; Furlani, Dario; Ganzhorn, Jörg U; Garden, Jenni G; Gheler-Costa, Carla; Giordani, Paolo; Giordano, Simonetta; Gottschalk, Marco S; Goulson, Dave; Gove, Aaron D; Grogan, James; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hawes, Joseph E; Hébert, Christian; Helden, Alvin J; Henden, John-André; Hernández, Lionel; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Horgan, Finbarr G; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Jonsell, Mats; Jung, Thomas S; Kapoor, Vena; Kati, Vassiliki; Katovai, Eric; Kessler, Michael; Knop, Eva; Kolb, Annette; Kőrösi, Ádám; Lachat, Thibault; Lantschner, Victoria; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Letcher, Susan G; Littlewood, Nick A; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Marin-Spiotta, Erika; Marshall, E J P; Martínez, Eliana; Mayfield, Margaret M; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Naidoo, Robin; Nakamura, Akihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Neuschulz, Eike L; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Nöske, Nicole M; O'Dea, Niall; Oduro, William; Ofori-Boateng, Caleb; Oke, Chris O; Osgathorpe, Lynne M; Paritsis, Juan; Parra-H, Alejandro; Pelegrin, Nicolás; Peres, Carlos A; Persson, Anna S; Petanidou, Theodora; Phalan, Ben; Philips, T Keith; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Ribeiro, Danilo B; Richardson, Barbara A; Richardson, Michael J; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rosselli, Loreta; Rossiter, Stephen J; Roulston, T'ai H; Rousseau, Laurent; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Samnegård, Ulrika; Schüepp, Christof; Schweiger, Oliver; Sedlock, Jodi L; Shahabuddin, Ghazala; Sheil, Douglas; Silva, Fernando A B; Slade, Eleanor M; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Stout, Jane C; Struebig, Matthew J; Sung, Yik-Hei; Threlfall, Caragh G; Tonietto, Rebecca; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Vanbergen, Adam J; Vassilev, Kiril; Verboven, Hans A F; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Walker, Tony R; Wang, Yanping; Watling, James I; Wells, Konstans; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Woodcock, Ben A; Yu, Douglas W; Zaitsev, Andrey S; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy

    2014-01-01

    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015. PMID:25558364

  14. Southern Pine Beetle Information System (SPBIS)

    Science.gov (United States)

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  15. Why are there no long distance jumpers among click-beetles (Elateridae)?

    International Nuclear Information System (INIS)

    Ribak, Gal; Mordechay, Oded; Weihs, Daniel

    2013-01-01

    Click-beetles jump from an inverted position without using their legs. This unique mechanism results in high vertical jumps with the jump angle restricted by the rigid morphology of the exoskeleton. We explored the option to exploit this jumping mechanism for application to small mechanical devices having to extricate themselves from rough terrain. We combined experiments on a biomimetic jumping device with a physical–mathematical model of the jump to assess the effect of morphological variation on the jumping performance. We found that through morphological change of two non-dimensional (size independent) parameters, the propulsive force powering the jump can be directed at angles as small as 40°. However, in practice jumping at such angles is precluded by loss of traction with the ground during the push-off phase. This limitation to steep jump angles is inherent to the jumping mechanism which is based on rotation of body parts about a single hinge. Such a rotation dictates a curvilinear trajectory for the center of mass during takeoff so that the vertical and horizontal accelerations occur out of phase, implying loss of traction with the ground before substantial horizontal acceleration can be reached. Thus click-beetle inspired jumping is effective mainly for making steep-angle righting jumps. (paper)

  16. Diversification in a fluctuating island setting: rapid radiation of Ohomopterus ground beetles in the Japanese Islands.

    Science.gov (United States)

    Sota, Teiji; Nagata, Nobuaki

    2008-10-27

    The Japanese Islands have been largely isolated from the East Asian mainland since the Early Pleistocene, allowing the diversification of endemic lineages. Here, we explore speciation rates and historical biogeography of the ground beetles of the subgenus Ohomopterus (genus Carabus) based on nuclear and mitochondrial gene sequences. Ohomopterus diverged into 15 species during the Pleistocene. The speciation rate was 1.92 Ma(-1) and was particularly fast (2.37 Ma(-1)) in a group with highly divergent genitalia. Speciation occurred almost solely within Honshu, the largest island with complex geography. Species diversity is highest in central Honshu, where closely related species occur parapatrically and different-sized species co-occur. Range expansion of some species in the past has resulted in such species assemblages. Introgressive hybridization, at least for mitochondrial DNA, has occurred repeatedly between species in contact, but has not greatly disturbed species distinctness. Small-island populations of some species were separated from main-island populations only after the last glacial (or the last interglacial) period, indicating that island isolation had little role in speciation. Thus, the speciation and formation of the Ohomopterus assemblage occurred despite frequent opportunities for secondary contact and hybridization and the lack of persistent isolation. This radiation was achieved without substantial ecological differentiation, but with marked differentiation in mechanical agents of reproductive isolation (body size and genital morphology).

  17. Javorella, a new genus of endemic ground beetles (Trechini, Carabidae, Coleoptera from west and southwest Serbia

    Directory of Open Access Journals (Sweden)

    Ćurčić Srećko B.

    2003-01-01

    Full Text Available A new genus and species of cave ground beetles (Javorella javorensis n. gen. n. sp has been described from the Pećina pod Kapilijama Cave, village Trudovo, nr. Nova Varoš, southwestern Serbia. This new genus is clearly distinct from all other genera in many important respects such as: the presence of unfunctional flattened reduced eyes, the presence of 10-14 depigmented ommatidia, the presence of a pigmented oval eye border, the presence of deep and complete frontal furrows (but shallow and less visible in their posterior thirds, the presence of completely smooth cheeks, the presence of distinct furrows on fore tibias along their length, the ratio of the length/breadth of the first article of protarsomere in male; the presence of 2 elytral discal setae, the specific position of humeral setae and the unique shape of the copulatory piece. This new genus comprises also an additional species, J. suvoborensis (Pavićević and Popović, described elsewhere from the Pećina u Brezacima Cave, village Brezaci, Rajac, Mt. Suvobor, near Valjevo, western Serbia. The two species clearly differ in many important respects; the new genus and its members belong to an old and separate phyletic lineage, distinct from all other existing species groups. Additionally, these forms are relic and endemic to Serbian caves.

  18. A molecular phylogeny shows the single origin of the Pyrenean subterranean Trechini ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Faille, A; Ribera, I; Deharveng, L; Bourdeau, C; Garnery, L; Quéinnec, E; Deuve, T

    2010-01-01

    Trechini ground beetles include some of the most spectacular radiations of cave and endogean Coleoptera, but the origin of the subterranean taxa and their typical morphological adaptations (loss of eyes and wings, depigmentation, elongation of body and appendages) have never been studied in a formal phylogenetic framework. We provide here a molecular phylogeny of the Pyrenean subterranean Trechini based on a combination of mitochondrial (cox1, cyb, rrnL, tRNA-Leu, nad1) and nuclear (SSU, LSU) markers of 102 specimens of 90 species. We found all Pyrenean highly modified subterranean taxa to be monophyletic, to the exclusion of all epigean and all subterranean species from other geographical areas (Cantabrian and Iberian mountains, Alps). Within the Pyrenean subterranean clade the three genera (Geotrechus, Aphaenops and Hydraphaenops) were polyphyletic, indicating multiple origins of their special adaptations to different ways of life (endogean, troglobitic or living in deep fissures). Diversification followed a geographical pattern, with two main clades in the western and central-eastern Pyrenees respectively, and several smaller lineages of more restricted range. Based on a Bayesian relaxed-clock approach, and using as an approximation a standard mitochondrial mutation rate of 2.3% MY, we estimate the origin of the subterranean clade at ca. 10 MY. Cladogenetic events in the Pliocene and Pleistocene were almost exclusively within the same geographical area and involving species of the same morphological type.

  19. Duvalius (Paraduvalius petrovici sp.n. and D.(P. sotirovi sp.n. (Carabidae: Trechinae: Trechini: Two new troglobitic ground beetles from eastern and southeastern Serbia

    Directory of Open Access Journals (Sweden)

    Ćurčić S.

    2014-01-01

    Full Text Available The following two new troglobitic trechine ground beetle species are described from two caves in eastern and southeastern Serbia: Duvalius (Paraduvalius petrovici sp. n., from the Resavska Pećina Cave, village of Jelovac, near Despotovac, Kučajske Planine Mts., and D. (P. sotirovi sp. n., from the Ogorelička Pećina Cave, village of Sićevo, near Niš, Svrljiške Planine Mts. The new species considerably differ from the related taxa. All important morphological characteristics of the species, along with the diagnoses and images of the taxa are presented. These represent relicts and endemics of eastern and southeastern parts of Serbia and are of great age (probably Tertiary or even before. [Projekat Ministarstva nauke Republike Srbije, br. 173038

  20. Contribution of Alpha and Beta Diversity Across Land-Use Type to the Regional Diversity of Dung Beetles in Central Sulawesi

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2013-06-01

    Full Text Available The importance of spatial scale has been acknowledged as one of determining factors of species diversity in local and regional diversity. The aim of this study was to evaluate contribution of alpha (α and beta (β diversity across land-use type to gamma (γ diversity at the margins of tropical forest in Central Sulawesi using dung beetles (Coleoptera: Scarabaeidae as a focal group. Baited pitfall traps set in four land-use types ranging from natural forest through cacao agroforestry systems to open areas during two years of sampling (2009 and 2012. A total of 28 dung beetle species belonging to four genera were captured during the study period. The results showed that contribution of β diversity was higher than that of α diversity of dung beetles. Each land-use type contributed about 56.5 to 62.5% of the total species richness (γ diversity. The similar pattern of biodiversity between each spatial scale and during the two sampling years emphasized the large contribution of each land-use type to maintaining a high portion of the regional species richness. It suggests the importance of managing other land-use types, such as secondary forest and agroforestry as well as protecting the remaining natural forests.

  1. Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado

    Directory of Open Access Journals (Sweden)

    ETELVINO J.H. BECHARA

    Full Text Available ABSTRACT Bioluminescence - visible and cold light emission by living organisms - is a worldwide phenomenon, reported in terrestrial and marine environments since ancient times. Light emission from microorganisms, fungi, plants and animals may have arisen as an evolutionary response against oxygen toxicity and was appropriated for sexual attraction, predation, aposematism, and camouflage. Light emission results from the oxidation of a substrate, luciferin, by molecular oxygen, catalyzed by a luciferase, producing oxyluciferin in the excited singlet state, which decays to the ground state by fluorescence emission. Brazilian Atlantic forests and Cerrados are rich in luminescent beetles, which produce the same luciferin but slightly mutated luciferases, which result in distinct color emissions from green to red depending on the species. This review focuses on chemical and biological aspects of Brazilian luminescent beetles (Coleoptera belonging to the Lampyridae (fireflies, Elateridae (click-beetles, and Phengodidae (railroad-worms families. The ATP-dependent mechanism of bioluminescence, the role of luciferase tuning the color of light emission, the “luminous termite mounds” in Central Brazil, the cooperative roles of luciferase and superoxide dismutase against oxygen toxicity, and the hypothesis on the evolutionary origin of luciferases are highlighted. Finally, we point out analytical uses of beetle bioluminescence for biological, clinical, environmental, and industrial samples.

  2. Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado.

    Science.gov (United States)

    Bechara, Etelvino J H; Stevani, Cassius V

    2018-01-01

    Bioluminescence - visible and cold light emission by living organisms - is a worldwide phenomenon, reported in terrestrial and marine environments since ancient times. Light emission from microorganisms, fungi, plants and animals may have arisen as an evolutionary response against oxygen toxicity and was appropriated for sexual attraction, predation, aposematism, and camouflage. Light emission results from the oxidation of a substrate, luciferin, by molecular oxygen, catalyzed by a luciferase, producing oxyluciferin in the excited singlet state, which decays to the ground state by fluorescence emission. Brazilian Atlantic forests and Cerrados are rich in luminescent beetles, which produce the same luciferin but slightly mutated luciferases, which result in distinct color emissions from green to red depending on the species. This review focuses on chemical and biological aspects of Brazilian luminescent beetles (Coleoptera) belonging to the Lampyridae (fireflies), Elateridae (click-beetles), and Phengodidae (railroad-worms) families. The ATP-dependent mechanism of bioluminescence, the role of luciferase tuning the color of light emission, the "luminous termite mounds" in Central Brazil, the cooperative roles of luciferase and superoxide dismutase against oxygen toxicity, and the hypothesis on the evolutionary origin of luciferases are highlighted. Finally, we point out analytical uses of beetle bioluminescence for biological, clinical, environmental, and industrial samples.

  3. The Mexican bean beetle (Epilachna varivestis regurgitome and insights into beetle-borne virus specificity.

    Directory of Open Access Journals (Sweden)

    Cassidy R Gedling

    Full Text Available For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant's defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle "regurgitome" and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions.

  4. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  5. A Red List of Italian Saproxylic Beetles: taxonomic overview, ecological features and conservation issues (Coleoptera

    Directory of Open Access Journals (Sweden)

    Giuseppe Maria Carpaneto

    2015-12-01

    Full Text Available The main objectives of this review are: 1 the compilation and updating of a reference database for Italian saproxylic beetles, useful to assess the trend of their populations and communities in the next decades; 2 the identification of the major threats involving the known Italian species of saproxylic beetles; 3 the evaluation of the extinction risk for all known Italian species of saproxylic beetles; 4 the or- ganization of an expert network for studying and continuous updating of all known species of saproxylic beetle species in Italy; 5 the creation of a baseline for future evaluations of the trends in biodiversity conservation in Italy; 6 the assignment of ecological categories to all the Italian saproxylic beetles, useful for the aims of future researches on their communities and on forest environments. The assess- ments of extinction risk are based on the IUCN Red List Categories and Criteria and the most updated guidelines. The assessments have been carried out by experts covering different regions of Italy, and have been evaluated according to the IUCN standards. All the beetles whose larval biology is sufficiently well known as to be considered saproxylic have been included in the Red List, either the autochtho- nous species (native or possibly native to Italy or a few allochthonous species recently introduced or probably introduced to Italy in his- toric times. The entire national range of each saproxylic beetle species was evaluated, including large and small islands; for most species, the main parameters considered for evaluation were the extent of their geographical occurrence in Italy, and the number of known sites of presence. 2049 saproxylic beetle species (belonging to 66 families have been listed, assigned to a trophic category (Table 3 and 97% of them have been assessed. On the whole, threatened species (VU + EN + CR are 421 (Fig. 6, corresponding to 21 % of the 1988 as- sessed species; only two species are formally

  6. Naturally-Occurring Entomopathogenic Fungi on Three Bark Beetle Species (Coleoptera: Curculionidae in Bulgaria

    Directory of Open Access Journals (Sweden)

    Slavimira A. Draganova

    2010-01-01

    Full Text Available Bark beetles (Coleoptera: Curculionidae: Scolytinae belong to one of the most damaging groups of forest insects and the activity of their natural enemies –pathogens, parasitoids,parasites or predators suppressing their population density,is of great importance. Biodiversity of entomopathogenic fungi on bark beetles in Bulgaria has been investigated sporadically. The aim of this preliminary study was to find, identify and study morphological characteristics of fungal entomopathogens naturally-occurring in populations of three curculionid species – Ips sexdentatus Boern, Ips typographus (L. and Dryocoetes autographus (Ratz.. Dead pest adults were found under the bark of Pinus sylvestris and Picea abies trees collectedfrom forests in the Maleshevska and Vitosha Mountains. Fungal pathogens were isolated into pure cultures on SDAY (Sabouraud dextrose agar with yeast extract and were identified based on morphological characteristics both on the host and in a culture.Morphological characteristics of the isolates were studied by phenotypic methods. The fungal isolates obtained from dead adults of Ips sexdentatus, Ips typographus and D. autographus were found to belong to the species Beauveria bassiana (Bals. – Criv. Vuillemin,Beauveria brongniartii (Saccardo Petch and Isaria farinosa (Holmsk. Fries (anamorph Ascomycota, Sordariomycetes: Hypocreales, Cordycipitaceae. Morphological traits of the isolates are described.

  7. The Role of Field Margins in Agro-biodiversity Management at the Farm Level

    Directory of Open Access Journals (Sweden)

    Giulio Lazzerini

    2007-06-01

    Full Text Available The agroecosystem could be considered as a mosaic so large to involve fields with annual and perennial crops, pastures, spots of wildwood, semi-natural habitats, vegetation in the edges of fields. In the agroecosystem these ecological infrastructures have a positive effects on the crops because of the exchange among community of organisms, materials and energy. The aim of this research is to evaluate the effects of field margins on some biodiversity components (plant species and carabid beetles of four farms located in Val d’Orcia (Tuscany. We compared three types of field margins: 1. Cultivated margin strips; 2. Sown grass margin strips; 3. Wild margin strips with hedgerow. In a very simplified typology of farming system, like the one studied (Val d’Orcia, the presence of field margins (hedges, margin strips and semi-natural habitats associated with the boundary is very important for its ecological effects: it improves the planned biodiversity, gives habitat, refuge, food and corridors for the movement to the different species of organisms in the area. Applying the multivariate analysis to the experimental data, we can notice a positive effect of the presence of field margins on the trend of both components of biodiversity. This positive effect, which support the mechanisms of autoregulation of the agroecosystems, is very important especially for organic and biodynamic agriculture, where the use of pesticides is not allowed.

  8. Beetle-killed stands in the South Carolina piedmont: from fuel hazards to regenerating oak forests

    Science.gov (United States)

    Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop

    2012-01-01

    Impacts of spring prescribed fire, mechanical mastication, and no-treatment (control) on fuels and natural hardwood tree regeneration were examined in beetle-killed stands in the South Carolina Piedmont. Mechanical mastication ground the down and standing dead trees and live vegetation into mulch and deposited it onto the forest floor. The masticated debris layer had...

  9. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics

    Science.gov (United States)

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A.; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Abstract Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels. PMID:27408583

  10. Long-horned Beetles (Coleoptera: Cerambycidae and Tortoise Beetles (Chrysomelidae: Cassidinae of Tripura, northeastern India with some new additions

    Directory of Open Access Journals (Sweden)

    B.K. Agarwala

    2012-10-01

    Full Text Available This paper reports the occurrence of nineteen species of Long-horned Beetles (Cerambycidae and eleven species of Tortoise Beetles (Cassidinae from Tripura state, northeastern India. These include 11 species of Cerambycidae and seven species of Cassidinae, respectively, as new records from the state. Distribution of these beetles in different parts of the state are provided.

  11. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    Science.gov (United States)

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  12. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  13. A Tenebrionid beetle's dataset (Coleoptera, Tenebrionidae) from Peninsula Valdés (Chubut, Argentina).

    Science.gov (United States)

    Cheli, Germán H; Flores, Gustavo E; Román, Nicolás Martínez; Podestá, Darío; Mazzanti, Renato; Miyashiro, Lidia

    2013-12-18

    The Natural Protected Area Peninsula Valdés, located in Northeastern Patagonia, is one of the largest conservation units of arid lands in Argentina. Although this area has been in the UNESCO World Heritage List since 1999, it has been continually exposed to sheep grazing and cattle farming for more than a century which have had a negative impact on the local environment. Our aim is to describe the first dataset of tenebrionid beetle species living in Peninsula Valdés and their relationship to sheep grazing. The dataset contains 118 records on 11 species and 198 adult individuals collected. Beetles were collected using pitfall traps in the two major environmental units of Peninsula Valdés, taking into account grazing intensities over a three year time frame from 2005-2007. The Data quality was enhanced following the best practices suggested in the literature during the digitalization and geo-referencing processes. Moreover, identification of specimens and current accurate spelling of scientific names were reviewed. Finally, post-validation processes using DarwinTest software were applied. Specimens have been deposited at Entomological Collection of the Centro Nacional Patagónico (CENPAT-CONICET). The dataset is part of the database of this collection and has been published on the internet through GBIF Integrated Publishing Toolkit (IPT) (http://data.gbif.org/datasets/resource/14669/). Furthermore, it is the first dataset for tenebrionid beetles of arid Patagonia available in GBIF database, and it is the first one based on a previously designed and standardized sampling to assess the interaction between these beetles and grazing in the area. The main purposes of this dataset are to ensure accessibility to data associated with Tenebrionidae specimens from Peninsula Valdés (Chubut, Argentina), also to contribute to GBIF with primary data about Patagonian tenebrionids and finally, to promote the Entomological Collection of Centro Nacional Patagónico (CENPAT

  14. Aggregation pheromones for monitoring the coconut rhinoceros beetle (Oryctes rhinoceros) in Jerukwangi Village, Jepara, Indonesia

    Science.gov (United States)

    Indriyanti, D. R.; Lutfiana, J. E.; Widiyaningrum, P.; Susilowati, E.; Slamet, M.

    2018-03-01

    Oryctes rhinoceros (Coleoptera: Scarabaeidae) is the most serious pest of coconut plantations in Indonesia. Jerukwangi Village is O. rhinoceros attacked one of the coconuts producing villages with more than 75% of the coconut plant population O. rhinoceros. The study aimed to monitor the population and analyze the sex ratio of O. rhinoceros that were attracted to aggregation pheromones in the field. Aggregation pheromones is a chemical compound containing Ethyl 4-methyl octanoate. The pheromone compounds were placed in traps (buckets), hung 2 meters above the ground. The traps were observed, and the beetles trapped were counted every week. In 12 weeks of monitoring, the traps captured 101 insects consist of 90.1% O. rhinoceros and 9.9% other insect species (Rhynchophorus ferrugineus and Xylotrupes gideon). This result indicates the high population of O. rhinoceros in the field. Aggregation pheromone is useful for attracting females. Rhinoceros by 61% and the males by 39%. The advantage of research is it can be used in integrated pest management (IPM) packages for monitoring of beetle population, and removal of beetles.

  15. Assessment of species diversity of plants and carabid beetles at sample plots in Korean pine-broad-leaved stands of postfire origin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2018-06-01

    Full Text Available For natural pine forests in the southern part of the Primorsky Krai, an assessment of biological diversity has been performed based on the results of descriptions of valuable tree species, living ground cover and carabid beetles Carabus. Field work was carried out on the trial plots laid in the forest plantations of the pine and broad-leaved forest with the domination of Korean pine Pinus koraiensis Siebold & Zucc. Model sites contained a chronological sequence of development of forest plantations of fresh small-grass and different-bush type on the interval of age 50–200 years. In the process of reforestation, a decrease in the total projective coverage of living ground cover was observed, while the number of species characteristic for natural pine forests, as well as their leveling, increased at the same time. By the age of 200 years species richness and leveling of the number of ground beetle species have reached a maximum. Statistically significant difference was found between the total number of caught insects in the plantations of 50 and 200, 80 and 200 years. The most valuable in terms of biological diversity are the old-growth pine forests. A conclusion was made about the value of this group of forests for the protection of valuable communities and habitats of species. Among ground beetle species Carabus schrencki Motschulsky, Carabus maacki Morawitz and Carabus macleayi Dejean can serve as an indicator of forest value. With a minimum total projective coverage (8.3 %, 200-year-old pine forests are favorable for the growth of such characteristic species as the mountain peony Paeonia oreogeton S. Moore, pale-mountain Dryopteris crassirhizoma Nakai, and the Pale Indian Plantain Cacalia auriculata H. Rob. & Brettell. On this site the Shannon index of species of living ground cover was 3.6, the Carabus species is 1.4.

  16. Antimicrobial activity of the pygidial gland secretion of three ground beetle species (Insecta: Coleoptera: Carabidae)

    Science.gov (United States)

    Nenadić, Marija; Soković, Marina; Glamočlija, Jasmina; Ćirić, Ana; Perić-Mataruga, Vesna; Ilijin, Larisa; Tešević, Vele; Vujisić, Ljubodrag; Todosijević, Marina; Vesović, Nikola; Ćurčić, Srećko

    2016-04-01

    The antimicrobial properties of the pygidial gland secretions released by the adults of the three ground beetle species, Carabus ullrichii, C. coriaceus, and Abax parallelepipedus, have been tested. Microdilution method was applied for detection of minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), and minimal fungicidal concentrations (MFCs). Additionally, morpho-histology of the pygidial glands is investigated. We have tested 16 laboratory and clinical strains of human pathogens—eight bacterial both gram-positive and gram-negative species and eight fungal species. The pygidial secretion samples of C. ullrichii have showed the strongest antimicrobial effect against all strains of treated bacteria and fungi. Staphylococcus aureus, Lysteria monocytogenes, and Salmonella typhimurium proved to be the most sensitive bacterial strains. Penicillium funiculosum proved to be the most sensitive micromycete, while P. ochrochloron and P. verrucosum var . cyclopium the most resistant micromycetes. The pygidial secretion of C. coriaceus has showed antibacterial potential solely against Pseudomonas aeruginosa and antifungal activity against Aspergillus fumigatus, A. versicolor, A. ochraceus, and P. ochrochloron. Antibacterial properties of pygidial gland secretion of A. parallelepipedus were achieved against P. aeruginosa, while antifungal activity was detected against five of the eight tested micromycetes (A. fumigatus, A. versicolor, A. ochraceus, Trichoderma viride, and P. verrucosum var . cyclopium). Commercial antibiotics Streptomycin and Ampicillin and mycotics Ketoconazole and Bifonazole, applied as the positive controls, showed higher antibacterial/antifungal properties for all bacterial and fungal strains. The results of this observation might have a significant impact on the environmental aspects and possible medical purpose in the future.

  17. Asian longhorned beetle complicates the relationship ...

    Science.gov (United States)

    Urban foresters routinely emphasise the importance of taxonomic diversity to reduce the vulnerability of tree assemblages to invasive pests, but it is unclear to what extent diversity reduces vulnerability to polyphagous (i.e. generalist) pests. Drawing on field data from seven communities in metropolitan Cincinnati, Ohio, USA, we tested the hypothesis that communities with higher diversity would exhibit lower vulnerability to the polyphagous Asian longhorned beetle, which currently threatens the region. Based on street tree compositions and the beetle?s host preferences, Asian longhorned beetle threatened up to 35.6% of individual street trees and 47.5% of the total basal area across the study area, but we did not see clear connections between taxonomic diversity and beetle vulnerability among study communities. For example, the city of Fairfield was among the least diverse communities but had the lowest proportion of trees vulnerable to Asian longhorned beetle, whereas the city of Wyoming exhibited high diversity and high vulnerability. On the other hand, Forest Park aligned with our original hypothesis, as it was characterised by low diversity and high vulnerability. Our results demonstrate that relatively high taxonomic diversity in street tree assemblages does not necessarily lead to reduced vulnerability to a polyphagous pest. Considering the threats posed by polyphagous pests, selecting a set of relatively pest resistant trees known to perform well in urb

  18. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles.

    Science.gov (United States)

    Keller, Irene; Largiadèr, Carlo R

    2003-02-22

    Although habitat fragmentation is suspected to jeopardize the long-term survival of many species, few data are available on its impact on the genetic variability of invertebrates. We assess the genetic population structure of the flightless ground beetle Carabus violaceus L., 1758 in a Swiss forest, which is divided into several fragments by a highway and two main roads. Eight samples were collected from different forest fragments and analysed at six microsatellite loci. The largest genetic differentiation was observed between samples separated by roads and in particular by the highway. The number of roads between sites explained 44% of the variance in pairwise F(ST) estimates, whereas the age of the road and the geographical distance between locations were not significant factors. Furthermore, a comparison of allelic richness showed that the genetic variability in a small forest fragment isolated by the highway was significantly lower than in the rest of the study area. These findings strongly support the hypothesis that large roads are absolute barriers to gene flow in C. violaceus, which may lead to a loss of genetic variability in fragmented populations.

  19. Effects of knowledge of an endangered species on recreationists' attitudes and stated behaviors and the significance of management compliance for ohlone tiger beetle conservation.

    Science.gov (United States)

    Cornelisse, Tara M; Duane, Timothy P

    2013-12-01

    Recreation is a leading cause of species decline on public lands, yet sometimes it can be used as a tool for conservation. Engagement in recreational activities, such as hiking and biking, in endangered species habitats may even enhance public support for conservation efforts. We used the case of the endangered Ohlone tiger beetle (Cicindela ohlone) to investigate the effect of biking and hiking on the beetle's behavior and the role of recreationists' knowledge of and attitudes toward Ohlone tiger beetle in conservation of the species. In Inclusion Area A on the University of California Santa Cruz (U.S.A.) campus, adult Ohlone tiger beetles mate and forage in areas with bare ground, particularly on recreational trails; however, recreation disrupts these activities. We tested the effect of recreation on Ohlone tiger beetles by observing beetle behavior on trails as people walked and road bikes at slow and fast speed and on trails with no recreation. We also surveyed recreationists to investigate how their knowledge of the beetle affected their attitudes toward conservation of the beetle and stated compliance with regulations aimed at beetle conservation. Fast cycling caused the beetles to fly off the trail more often and to fly farther than slow cycling or hiking. Slow cycling and hiking did not differ in their effect on the number of times and distance the beetles flew off the trail. Recreationists' knowledge of the beetle led to increased stated compliance with regulations, and this stated compliance is likely to have tangible conservation outcomes for the beetle. Our results suggest management and education can mitigate the negative effect of recreation and promote conservation of endangered species. Efectos del Conocimiento de una Especie en Peligro sobre las Actitudes y Comportamientos Declarados de los Recreacionistas y el Significado del Manejo de la Conformidad para la Conservación del Escarabajo Tigre de Ohlone. © 2013 Society for Conservation Biology.

  20. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Diversity and abundance of dung beetles (Coleoptera: Scaraebidae) at several different ecosystem functions in Peninsular Malaysia

    Science.gov (United States)

    Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah; Hazmi, Izfa Riza

    2015-09-01

    Dung beetles has known for its bioindicator characteristic. Sensitive towards forest disturbance, dung beetles population and diversity will be less in disturbed and modified area. The objective of this study is to evaluate the diversity and distribution of dung beetles in different type of ecosystems in Peninsular Malaysia. Fifteen baited pitfall traps aligned in three transects were used in this study. Samples were collected after 24 h and repeated three time collections and identified afterwards. Two ecosystem types were selected, which are forested and agricultural ecosystem (livestock and plantation). A total of 4249 individuals, 47 species, in 11 genera was successfully collected from all localities. The H' index for Fraser Hill, Langkawi, Bangi Reserve Forest, Selangor (HSB), Sungkai Reserve Forest, Perak (SRF), Chini Lake, Bera Lake, chicken farm, goat farm, Longan plantation, and palm oil plantation were 1.58, 1.74, 2.17, 2.63, 1.80, 1.52, 1.63, 0.46, 0.00 and 1.98 respectively.Forest ecosystem, SRF shows the highest abundance (1486 individuals) and diversity, while for agricultural ecosystem,palm oil plantation shows the highest with 273 individuals and 16 species. Based onDetrended Correspondence Analysis (DCA) shows two groups that separate forest ecosystem with the agricultural ecosystem, with palm oil is the nearest to the forest. Palm oil ecosystem can sustain a dung beetles population due to the area can provide the requirements for the dung beetles to survive, such as food which comes from local domestic cows, shade from sunlight provide by the palm oil trees, and ground cover from small plants and shrubs.Even though modified ecosystem should have lower diversity of dung beetles, but some factors must be measured as well in order to have a better point of view.

  2. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?

    Science.gov (United States)

    Magnago, Luiz Fernando S; Magrach, Ainhoa; Laurance, William F; Martins, Sebastião V; Meira-Neto, João Augusto A; Simonelli, Marcelo; Edwards, David P

    2015-09-01

    Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon-based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above-ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red-listed species. We found that increasing fragment size has a positive relationship with above-ground carbon stock and with abundance of IUCN Red-listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red-listed species abundance. These resulted in positive congruence between carbon stocks and Red-listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer

  3. A Multiplex PCR Assay for Differentiating Coconut Rhinoceros Beetle (Coleoptera: Scarabaeidae) From Oriental Flower Beetle (Coleoptera: Scarabaeidae) in Early Life Stages and Excrement.

    Science.gov (United States)

    Watanabe, S; Melzer, M J

    2017-04-01

    The coconut rhinoceros beetle, Oryctes rhinoceros (L.), is a major pest of coconut and other palm trees. An incipient coconut rhinoceros beetle population was recently discovered on the island of Oahu, Hawaii and is currently the target of a large, mutiagency eradication program. Confounding this program is the widespread presence of another scarab beetle on Oahu, the oriental flower beetle, Protaetia orientalis (Gory and Percheron 1833). Eggs, early life stages, and fecal excrement of coconut rhinoceros beetle and oriental flower beetle are morphologically indistinguishable, thereby creating uncertainty when such specimens are discovered in the field. Here, we report the development of a multiplex PCR assay targeting cytochrome oxidase I of coconut rhinoceros beetle and oriental flower beetle that can rapidly detect and distinguish between these insects. This assay also features an internal positive control to ensure DNA of sufficient quantity and quality is used in the assay, increasing its reliability and reducing the chances of false negative results. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Hypogean carabid beetles as indicators of global warming?

    Science.gov (United States)

    Brandmayr, Pietro; Giorgi, Filippo; Casale, Achille; Colombetta, Giorgio; Mariotti, Laura; Vigna Taglianti, Augusto; Weber, Friedrich; Pizzolotto, Roberto

    2013-12-01

    Climate change has been shown to impact the geographical and altitudinal distribution of animals and plants, and to especially affect range-restricted polar and mountaintop species. However, little is known about the impact on the relict lineages of cave animals. Ground beetles (carabids) show a wide variety of evolutionary pathways, from soil-surface (epigean) predatory habits to life in caves and in other subterranean (hypogean) compartments. We reconstructed an unprecedented set of species/time accumulation curves of the largest carabid genera in Europe, selected by their degree of ‘underground’ adaptation, from true epigean predators to eyeless highly specialized hypogean beetles. The data show that in recent periods an unexpectedly large number of new cave species were found lying in well established European hotspots; the first peak of new species, especially in the most evolved underground taxa, occurred in the 1920-30s and a second burst after the 70s. Temperature data show large warming rates in both periods, suggesting that the temperature increase in the past century might have induced cave species to expand their habitats into large well-aired cavities and superficial underground compartments, where they can be easily sampled. An alternative hypothesis, based on increased sampling intensity, is less supported by available datasets.

  5. Hypogean carabid beetles as indicators of global warming?

    International Nuclear Information System (INIS)

    Brandmayr, Pietro; Pizzolotto, Roberto; Giorgi, Filippo; Mariotti, Laura; Casale, Achille; Colombetta, Giorgio; Taglianti, Augusto Vigna; Weber, Friedrich

    2013-01-01

    Climate change has been shown to impact the geographical and altitudinal distribution of animals and plants, and to especially affect range-restricted polar and mountaintop species. However, little is known about the impact on the relict lineages of cave animals. Ground beetles (carabids) show a wide variety of evolutionary pathways, from soil-surface (epigean) predatory habits to life in caves and in other subterranean (hypogean) compartments. We reconstructed an unprecedented set of species/time accumulation curves of the largest carabid genera in Europe, selected by their degree of ‘underground’ adaptation, from true epigean predators to eyeless highly specialized hypogean beetles. The data show that in recent periods an unexpectedly large number of new cave species were found lying in well established European hotspots; the first peak of new species, especially in the most evolved underground taxa, occurred in the 1920–30s and a second burst after the 70s. Temperature data show large warming rates in both periods, suggesting that the temperature increase in the past century might have induced cave species to expand their habitats into large well-aired cavities and superficial underground compartments, where they can be easily sampled. An alternative hypothesis, based on increased sampling intensity, is less supported by available datasets. (letter)

  6. Radiosensitivity of red flour beetle tribolium castaneum

    International Nuclear Information System (INIS)

    Sattar, A.; Khattak, S.; Hamed, M.

    1992-07-01

    In this report radiosensitivity of red beetle has been discussed. Red flour beetle is the most injurious pest causing great losses to stored grain. Radiation is one of the best tools of insect control. Different radiation doses (50 to 200 krads) were employed for different age groups from 1 to 60 days. It is concluded from these results that 200 krad radiation dose caused 100% mortality in red beetle in all age group. (A.B.)

  7. Importance of Secondary Metabolites for Leaf Beetles (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. N. EKİZ

    2014-06-01

    Full Text Available Leaf beetles (Chrysomelidae are one of the most diverse families of herbivorous insects. Many of them are important agricultural pests and cause remarkable loss of crop and money as well. Plant leaves and roots are primary food source of both larva and adults of leaf beetles. Plants produce many secondary metabolites in reaction to herbivore insects. It is a well-known phenomenon that quantity and variety of secondary metabolites in plant leaves may change in response to insect attacks. Herbivore insects have to deal with such defensive secondary chemicals and overcome either by detoxifying or storing them. Accordingly, many specialist herbivores coevolved with their host plant. Certain phenolic glycosides may reduce leaf beetle feeding. Condensed tannins are anti-herbivore defenses against leaf chewing beetles, including leaf beetles. Flavonoid compounds are feeding deterrents for many flea leaf beetles. Cinnamic acid derivatives are other known feeding deterrents for leaf beetles. Secondary metabolites quantity and nutritional quality of host plants are not only important for feeding but also for providing enemy-free space and suitable oviposition sites.

  8. Acoustic characteristics of rhinoceros beetle stridulations

    Science.gov (United States)

    Stridulation behavior has been reported for adults and larvae of many dynastids. This report describes acoustic recordings and analyses of stridulations by larvae of two Southeastern Asia rhinoceros beetle species and by adults of the coconut rhinoceros beetle. The behavioral context of the strid...

  9. Biological pest control in beetle agriculture

    NARCIS (Netherlands)

    Aanen, D.K.; Slippers, B.; Wingfield, M.J.

    2009-01-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics

  10. Notes on the Reproductive Ecology and Description of the Preimaginal Morphology of Elaphrus sugai Nakane, the Most Endangered Species of Elaphrus Fabricius (Coleoptera: Carabidae Ground Beetle Worldwide.

    Directory of Open Access Journals (Sweden)

    Kôji Sasakawa

    Full Text Available Elucidating the basic life-history of endangered species is the first important step in the conservation of such species. This study examined the reproductive ecology and the preimaginal morphology of the endangered ground beetle Elaphrus sugai Nakane (Coleoptera: Carabidae; currently, the Watarase wetland of the central Kanto Plain, Japan is the only confirmed locality of this beetle species. Laboratory rearing of reproductive adults collected in early April revealed that females can lay more than 131 eggs. Eggs were laid in mud, without an egg chamber. Larvae reached adulthood when fed a diet of mealworms, indicating that E. sugai larvae are insect larvae feeders. An earthworm diet, the optimal diet for larvae of a congeneric species (E. punctatus Motschulsky, was lethal to E. sugai larvae. The egg stage was 3-4 days in duration under a 16L8D cycle (22°C. The duration from hatching to adult eclosion was 23-42 days at various temperatures simulating those of the reproductive period. Larval morphology was similar to that of consubgeneric species described previously. The pupa is unusual, in that the setae on the abdominal tergites are long (twice as long as those of the abdominal segment and have somewhat "coiled" apices. Finally, the current endangered status of E. sugai was compared to that of E. viridis Horn, which has been regarded as the most endangered species of the genus worldwide.

  11. Phenological changes of the most commonly sampled ground beetle (Coleoptera: Carabidae) species in the UK environmental change network

    Science.gov (United States)

    Pozsgai, Gabor; Baird, John; Littlewood, Nick A.; Pakeman, Robin J.; Young, Mark R.

    2018-03-01

    Despite the important roles ground beetles (Coleoptera: Carabidae) play in ecosystems, the highly valued ecosystem services they provide, and ample descriptive documentation of their phenology, the relative impact of various environmental factors on carabid phenology is not well studied. Using the long-term pitfall trap capture data from 12 terrestrial Environmental Change Network (ECN) sites from the UK, we examined how changing climate influenced the phenology of common carabids, and the role particular climate components had on phenological parameters. Of the 28 species included in the analyses, 19 showed earlier start of their activity. This advance was particularly pronounced in the spring, supporting the view that early phenophases have a greater tendency to change and these changes are more directly controlled by temperature than later ones. Autumn activity extended only a few cases, suggesting a photoperiod-driven start of hibernation. No association was found between life-history traits and the ability of species to change their phenology. Air temperatures between April and June were the most important factors determining the start of activity of each species, whilst late season precipitation hastened the cessation of activity. The balance between the advantages and disadvantages of changing phenology on various levels is likely to depend on the species and even on local environmental criteria. The substantially changing phenology of Carabidae may influence their function in ecosystems and the ecosystem services they provide.

  12. Some ecological, economic, and social consequences of bark beetle infestations

    Science.gov (United States)

    Robert A. Progar; Adris Eglitis; John E. Lundquist

    2009-01-01

    Bark beetles are powerful agents of change in dynamic forest ecosystems. Most assessments of the effects of bark beetle outbreaks have been based on negative impacts on timber production. The positive effects of bark beetle activities are much less well understood. Bark beetles perform vital functions at all levels of scale in forest ecosystems. At the landscape...

  13. Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes

    Science.gov (United States)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert

    2018-01-01

    Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle ( D endroctonus ponderosae) outbreak and its associated blue stain fungi ( Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine ( Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater

  14. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.

    Science.gov (United States)

    Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang

    2017-06-01

    Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.

  15. Impact of cutting and sheep grazing on ground-active spiders and carabids in intertidal salt marshes (Western France

    Directory of Open Access Journals (Sweden)

    Pétillon, J.

    2007-12-01

    Full Text Available The aims of this study were to characterize spider (Araneae and ground beetle (Coleoptera Carabidae communities in managed (cutting and sheep grazing and non-managed salt marshes and to assess the efficiency of management regimes in these particular ecosystems. The two groups were studied during 2002 in salt marshes of the Mont Saint-Michel Bay (NW France using pitfall traps. By opening soil and vegetation structures cutting and grazing enhanced the abundances of some halophilic species of spiders and ground beetles. Nevertheless, grazing appeared to be too intensive as spider species richness decreased. We discuss the implications of management practices in terms of nature conservation and their application in the particular area of intertidal salt marshes.

  16. Bearing selection in ball-rolling dung beetles: is it constant?

    Science.gov (United States)

    Baird, Emily; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J; Dacke, Marie

    2010-11-01

    Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.

  17. Rhinoceros beetles suffer male-biased predation by mammalian and avian predators.

    Science.gov (United States)

    Kojima, Wataru; Sugiura, Shinji; Makihara, Hiroshi; Ishikawa, Yukio; Takanashi, Takuma

    2014-03-01

    Male sexually-selected traits often impose an increased risk of predation on their bearers, causing male-biased predation. We investigated whether males of the sap-feeding Japanese rhinoceros beetle Trypoxylus dichotomus were more susceptible to predation than females by comparing the morphology of beetles caught in bait traps with the remains of beetles found on the ground. The males of this species are larger than the females and have a horn on the head. We found that predation pressure was greater for males than for females, and that larger individuals of both sexes were more vulnerable to predation. We identified two predators, the raccoon dog Nyctereutes procyonoides and jungle crow Corvus macrorhynchos, by monitoring sap-site trees with infrared video cameras. Raccoon dogs visited sap-site trees at night, while crows came after daybreak. The highest frequency of visits by both predators was observed in the first half of August, which matches the peak season of T. dichotomus. Raccoon dogs often left bite marks on the remains of prey, whereas crows did not. Bite marks were found on most of the remains collected at two distant localities, which suggested that predation by raccoon dogs is common. Size- and sex-dependent differences in the conspicuousness and active period of T. dichotomus probably explain these biased predation patterns. Our results suggest that having a large horn/body is costly in terms of the increased risk of predation. Predation cost may act as a stabilizing selection pressure against the further exaggeration of male sexual traits.

  18. Arthropod diversity and assemblage structure response to deforestation and desertification in the Sahel of western Senegal

    Directory of Open Access Journals (Sweden)

    Brandon J. Lingbeek

    2017-07-01

    Full Text Available Drylands are highly vulnerable to desertification and among the most endangered ecosystems. To understand how biodiversity responds to environmental degradation in these fragile ecosystems, we examined whether arthropod, beetle, spider and ant diversity and assemblage structure differed (1 between seasons, (2 among locations (3 between protected areas of tropical dry forest and adjacent communal lands suffering from desertification, as well as (4 how vegetation impacts assemblage structures. We established 12 plots spaced homogenously throughout each protected area and the adjacent communal land at three locations: Beersheba, Bandia and Ngazobil. Within each plot, we measured canopy closure, vegetation height, percent cover of bare ground, leaf litter, grasses and forbs and collected arthropods using pitfall traps during the 2014 dry (May and rainy (September seasons. We collected 123,705 arthropods representing 733 morphospecies, 10,849 beetles representing 216 morphospecies, 4969 spiders representing 91 morphospecies and 59,183 ants representing 45 morphospecies. Results showed greater arthropod and beetle diversities (P = 0.002–0.040 in the rainy season, no difference in diversity among locations for any taxonomic group and a difference (P ≤ 0.001 in diversity for all taxa between protected areas and communal lands. Assemblage structures of all taxa responded (P = 0.001 to vegetation characteristics, differed (P = 0.015–0.045 between seasons and, with a few exceptions, locations and fragments. Our results illustrate the importance of a multi-taxa approach in understanding biodiversity response to anthropogenic disturbances as well as the value of protected areas in preserving biodiversity of the Sahel.

  19. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Science.gov (United States)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  20. Ground measured evapotranspiration scaled to stand level using MODIS and Landsat sensors to study Tamarix spp.response to repeated defoliation by the Tamarix leaf beetle at two sites

    Science.gov (United States)

    Pearlstein, S.; Nagler, P. L.; Glenn, E. P.; Hultine, K. R.

    2012-12-01

    The Dolores River in Southern Utah and the Virgin River in Southern Nevada are ecosystems under pressure from increased groundwater withdrawal due to growing populations and introduced riparian species. We studied the impact of the biocontrol Tamarix leaf beetles (Dirohabda carinulata and D. elongata) on the introduced riparian species, Tamarix spp., phenology and water use over multiple cycles of annual defoliation. Heat balance sap flow measurements, leaf area index (LAI), well data, allometry and satellite imagery from Landsat Thematic Mapper 5 and EOS-1 Moderate Resolution Imaging Spectrometer (MODIS) sensors were used to assess the distribution of beetle defoliation and its effect on evapotranspiration (ET). Study objectives for the Virgin River were to measure pre-beetle arrival ET, while the Dolores River site has had defoliation since 2004 and is a site of long-term beetle effect monitoring. This study focuses on measurements conducted over two seasons, 2010 and 2011. At the Dolores River site, results from 2010 were inconclusive due to sensor malfunctions but plant ET by sap flow in 2011 averaged 1.02 mm/m^2 leaf area/day before beetle arrival, dropping to an average of 0.75 mm/m^2 leaf area/day after beetle arrival. Stand level estimations from May - December, 2010 by MODIS were about 0.63 mm/ day, results from Landsat were 0.51 mm/day in June and 0.78 in August. For January -September, 2011, MODIS values were about 0.6 mm/day, and Landsat was 0.57 mm/day in June and 0.62 mm/day in August. These values are lower than previously reported ET values for this site meaning that repeated defoliation does diminish stand level water use. The Virgin River site showed plant ET from sap flow averaged about 3.9-4 mm/m^2 leaf area/day from mid-May - September, 2010. In 2011, ET from sap flow averaged 3.83 mm/m^2 leaf area/day during June - July, but dropped to 3.73 mm/ m^2 leaf area/day after beetle arrival in August. The slight drop in plant ET is not significant

  1. Origin and Diversification of Dung Beetles in Madagascar

    Directory of Open Access Journals (Sweden)

    Andreia Miraldo

    2011-04-01

    Full Text Available Madagascar has a rich fauna of dung beetles (Scarabaeinae and Aphodiinae withalmost 300 species described to date. Like most other taxa in Madagascar, dung beetles exhibit an exceptionally high level of endemism (96% of the species. Here,we review the current knowledge of the origin and diversification of Malagasy dung beetles. Based on molecular phylogenies, the extant dung beetles originate from eight colonizations, of which four have given rise to extensive radiations. These radiations have occurred in wet forests, while the few extant species in the less successfulradiations occur in open and semi-open habitats. We discuss the likely mechanisms of speciation and the ecological characteristics of the extant communities, emphasizing the role of adaptation along environmental gradients and allopatric speciation in generating the exceptionally high beta diversity in Malagasy dung beetles. Phylogeographic analyses of selected species reveal complex patterns with evidence for genetic introgression between old taxa. The introduction of cattle to Madagascar 1500 years ago created a new abundant resource, onto which a few species haveshifted and thereby been able to greatly expand their geographical ranges.

  2. Habitat manipulation of Exposed Riverine Sediments (ERS) how does microhabitat, microclimate and food availability influence beetle distributions?

    Science.gov (United States)

    Henshall, S. E.; Sadler, J. P.; Hannah, D. M.

    2009-04-01

    Exposed riverine sediments (ERS) are frequently inundated areas of relatively un-vegetated, fluvially deposited sediment (sand, silt, gravel and pebble). These habitats provide an important interface allowing the interaction of aquatic and terrestrial habitats and species. ERS are highly valuable for many rare and specialist invertebrates particularly beetles. Within an area of ERS, beetle species richness tends to be highest along the water's edge. This higher species richness may be linked to: (1) the availability of food items in the form of emerging and stranded aquatic invertebrates and (2) favourable physical microhabitat conditions in terms of temperature and moisture. This paper explores the role of microclimate and food availability by creating areas of ‘water's edge' habitat in the centre of a gravel bar. Typically these areas are drier, reach higher temperatures and devoid of emerging aquatic invertebrate prey. Four 2m x 2m experimental plots were created: one wet plot, one wet- fed plot, one dry-fed plot and one dry plot (control). These plots were each replicated on three separate areas of ERS. Sixty colour marked ERS specialist ground beetles (Bembidion atrocaeruleum) were released into each plot to monitor beetle persistence and movement on and between plots. The plots were maintained wet using a capillary pump system, and fed with dried blood worms for 30 days. Sediment temperature (0.05 m depth) was measured at 15 minute intervals and spot measurements of surface temperature were taken daily. A hand search was carried out on 25% of each plot after 7, 14, 21 and 30 days. Significant temperature differences were observed between the wet and dry sediment and air temperature. The wet plots on average were 1.8oC cooler than the dry plots and had a reduced temperature range. Both wet and dry sediments remained significantly warmer than air temperature. The wet and wet-fed plots yielded significantly greater numbers of beetles and marked beetles than

  3. Business and biodiversity

    DEFF Research Database (Denmark)

    Andersen, Rasmus Meyer; Lehmann, Martin; Christensen, Per

    Despite the overall importance of biodiversity, the quality measures of biodiversity show worrying figures. Numerous human impacts on nature impose serious hazard to its inherent diversity. This expansion of human activities leaves the battle against loss of biodiversity to be a great challenge......, but the effort has until now considered biodiversity actions relatively little, compared to other areas such as e.g. climate related actions. Nevertheless, the opportunity for businesses to meet their responsibilities and lift a share of the challenge is far from being just a romantic thought. Nor...... is the challenge of engaging businesses in responsible actions. The core challenge is to create awareness of the environmental phenomenon biodiversity, inform about the significance of business involvement, and encourage the business world to participate in this process of protecting biodiversity as the valuable...

  4. Impacts of silvicultural thinning treatments on beetle trap captures and tree attacks during low bark beetle populations in ponderosa pine forests of northern Arizona.

    Science.gov (United States)

    Gaylord, M L; Hofstetter, R W; Wagner, M R

    2010-10-01

    Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.

  5. The type-specimens of Caraboidea beetles (Coleoptera, Adephaga) deposited in the collections of the I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine.

    Science.gov (United States)

    Putshkov, Alexander V; Martynov, Alexander V

    2017-03-01

    A catalogue of type specimens of species and subspecies of caraboid beetles, tiger-beetles here treated as family Cicindelidae, and ground-beetles (Carabidae) of suborder Adephaga deposited in the I.I. Schmalhausen Institute of Zoology NAS of Ukraine is provided. For all type-specimens original photos of each specimen (with label) and label data are given in the original spelling (translated to English if the original label was in Cyrillic alphabet). In some cases data concerning the current status of taxons are discussed. Nominal taxa names are alphabethically listed within each family. Altogether, 372 type specimens of 133 taxa names (species and subspecies) are included in the catalogue: 15 holotypes, 344 paratypes (120 species and subspecies) and 13 specimens (9 taxa) with other type status.

  6. OCYS PHOCEUS N. SP., A NEW INTERESTING OROPHILOUS SPECIES OF CENTRAL GREECE (Coleoptera, Carabidae (*

    Directory of Open Access Journals (Sweden)

    Pier Mauro Giachino

    2012-04-01

    Full Text Available (* Results of the programme “Research Missions in the Mediterranean Basin” sponsored by the World Biodiversity Association onlus. XXVIIIth contribution.A new species of Trechinae ground beetles (Coleotera, Carabidae, Ocys phoceus n. sp., is described from Kokkiniás Mt. in the Vardoússia Mts. (Prefecture of Fokída, Greece. Ocys phoceus n. sp. is strictly related, and represents the Western vicariant, of O. rotundipennis Huber and Marggi, 2001, of the Parnassós Mt.

  7. Spectral information as an orientation cue in dung beetles.

    Science.gov (United States)

    El Jundi, Basil; Foster, James J; Byrne, Marcus J; Baird, Emily; Dacke, Marie

    2015-11-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. © 2015 The Author(s).

  8. Ground beetle (Coleoptera, Carabidae diversity in Finnish arable land

    Directory of Open Access Journals (Sweden)

    J.K. HELENIUS

    2008-12-01

    Full Text Available Carabid data compiled from six independent studies, consisting of 97 799 individuals trapped by pitfalls from Finnish agricultural fields and identified to 111 species were analyzed. Shannon-Wiener H' diversity index was typically around 2.5 and expected species number rarefied to 600 trapped individuals was typically around 30 species. The five most abundant species accounted for 42% of the total catch, and the thirty most abundant species made up 98% of the total catch. Percentage similarities among the assemblages by PS-index were from 16% to 48%. In comparison to published data about carabid diversity in boreal forests, which form the dominating habitat matrix in which Finnish farmland is embedded as relatively small patches, arable fields harbor more species rich assemblages, with more even rank-abundance distributions but variable species composition. Importance of landscape (regional level, instead of spatial level of crop fields, in understanding carabid diversity in farmland is discussed. Inclusion of carabids into monitoring schemes of agro-biodiversity at landscape level is suggested.

  9. Systematic temporal patterns in the relationship between housing development and forest bird biodiversity.

    Science.gov (United States)

    Pidgeon, Anna M; Flather, Curtis H; Radeloff, Volker C; Lepczyk, Christopher A; Keuler, Nicholas S; Wood, Eric M; Stewart, Susan I; Hammer, Roger B

    2014-10-01

    As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale-dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2-phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low-density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long-term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship

  10. What do dung beetles eat?

    DEFF Research Database (Denmark)

    Holter, Peter; Scholtz, Clarke H.

    2007-01-01

    Most adult coprophagous beetles feed on fresh dung of mammalian herbivores, confining ingestion to small particles with measured maximum diameters from 2-5 to 130 µm, according to body size and kind of beetle. This study explores benefits and costs of selective feeding in a ‘typical' dung beetle...... that of elephant and rhino (40-58%) was available to selective feeders. 3. Nitrogen concentrations were high - and C/N ratios low - in most types of bulk dung compared with the average food of terrestrial detritivores or herbivores. Exceptions were elephant and rhino dung with low nitrogen concentrations and high...... C/N ratios. 4. Estimated C/N ratios of 13-39 in bulk dung (sheep-elephant) were decreased by selective feeding to 7.3-12.6 in the ingested material. In assimilated food, ratios are probably only 5-7, as most assimilable nitrogen and carbon may be of microbial origin. If so, the assimilable food...

  11. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...

  12. Life forms of endemic carabid beetles (Coleoptera, Carabidae in the forest eco-systems of gorgany mountains

    Directory of Open Access Journals (Sweden)

    V. S. Pushkar

    2010-09-01

    Full Text Available In the forest ecosystems of Gorgany Mountains 11 endemic carabids are found. It is about 12.2 % of all ground-beetles fauna of the investigated region. As a result of the morphometric analysis the life forms of endemic carabids are determined. The system of ground beetles’ life forms developed by I. Sharova (1981 is supplemented. All endemics we have rated among 1 class (Zoophages, 2 subclasses (Epigeobionts, Stratobionts and 5 life forms. The analysis of the carabid beetles’ life form spectrum in the forest ecosystems of Gorgany mountains attests to their broad settlement of ecological niches in the investigated region.

  13. An unexpected clade of South American ground beetles (Coleoptera, Carabidae, Bembidion).

    Science.gov (United States)

    Maddison, David R

    2014-01-01

    Phylogenetic relationships of the Antiperyphanes Complex of the genus Bembidion are inferred using DNA sequences from seven genes (two nuclear ribosomal, four nuclear protein coding, and one mitochondrial protein coding). Redefined subgenera within the complex are each well-supported as monophyletic. Most striking was the discovery that a small set of morphologically and ecologically heterogeneous species formed a clade, here called subgenus Nothonepha. This unexpected result was corroborated by the discovery of deep pits in the lateral body wall (in the mesepisternum) of all Nothonepha, a trait unique within Bembidion. These pits are filled with a waxy substance in ethanol-preserved specimens. In one newly discovered species (Bembidion tetrapholeon sp. n., described here), these pits are so deep that their projections into the body cavity from the two sides touch each other internally. These structures in Bembidion (Nothonepha) are compared to very similar mesepisternal pits which have convergently evolved in two other groups of carabid beetles. The function of these thoracic pits is unknown. Most members of subgenus Nothonepha have in addition similar but smaller pits in the abdomen. A revised classification is proposed for the Antiperyphanes Complex.

  14. An unexpected clade of South American ground beetles (Coleoptera, Carabidae, Bembidion

    Directory of Open Access Journals (Sweden)

    David Maddison

    2014-06-01

    Full Text Available Phylogenetic relationships of the Antiperyphanes Complex of the genus Bembidion are inferred using DNA sequences from seven genes (two nuclear ribosomal, four nuclear protein coding, and one mitochondrial protein coding. Redefined subgenera within the complex are each well-supported as monophyletic. Most striking was the discovery that a small set of morphologically and ecologically heterogeneous species formed a clade, here called subgenus Nothonepha. This unexpected result was corroborated by the discovery of deep pits in the lateral body wall (in the mesepisternum of all Nothonepha, a trait unique within Bembidion. These pits are filled with a waxy substance in ethanol-preserved specimens. In one newly discovered species (Bembidion tetrapholeon sp. n., described here, these pits are so deep that their projections into the body cavity from the two sides touch each other internally. These structures in Bembidion (Nothonepha are compared to very similar mesepisternal pits which have convergently evolved in two other groups of carabid beetles. The function of these thoracic pits is unknown. Most members of subgenus Nothonepha have in addition similar but smaller pits in the abdomen. A revised classification is proposed for the Antiperyphanes Complex.

  15. Can joint carbon and biodiversity management in tropical agroforestry landscapes be optimized?

    Science.gov (United States)

    Kessler, Michael; Hertel, Dietrich; Jungkunst, Hermann F; Kluge, Jürgen; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Gerold, Gerhard; Gradstein, S Robbert; Köhler, Stefan; Leuschner, Christoph; Moser, Gerald; Pitopang, Ramadhanil; Saleh, Shahabuddin; Schulze, Christian H; Sporn, Simone G; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S; Tscharntke, Teja

    2012-01-01

    Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential 'win-win' scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227-362 Mg C ha(-1) to agroforests with 82-211 Mg C ha(-1) showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels.

  16. Organic Farming: Biodiversity Impacts Can Depend on Dispersal Characteristics and Landscape Context

    Science.gov (United States)

    Feber, Ruth E.; Johnson, Paul J.; Bell, James R.; Chamberlain, Dan E.; Firbank, Leslie G.; Fuller, Robert J.; Manley, Will; Mathews, Fiona; Norton, Lisa R.; Townsend, Martin; Macdonald, David W.

    2015-01-01

    Organic farming, a low intensity system, may offer benefits for a range of taxa, but what affects the extent of those benefits is imperfectly understood. We explored the effects of organic farming and landscape on the activity density and species density of spiders and carabid beetles, using a large sample of paired organic and conventional farms in the UK. Spider activity density and species density were influenced by both farming system and surrounding landscape. Hunting spiders, which tend to have lower dispersal capabilities, had higher activity density, and more species were captured, on organic compared to conventional farms. There was also evidence for an interaction, as the farming system effect was particularly marked in the cropped area before harvest and was more pronounced in complex landscapes (those with little arable land). There was no evidence for any effect of farming system or landscape on web-building spiders (which include the linyphiids, many of which have high dispersal capabilities). For carabid beetles, the farming system effects were inconsistent. Before harvest, higher activity densities were observed in the crops on organic farms compared with conventional farms. After harvest, no difference was detected in the cropped area, but more carabids were captured on conventional compared to organic boundaries. Carabids were more species-dense in complex landscapes, and farming system did not affect this. There was little evidence that non-cropped habitat differences explained the farming system effects for either spiders or carabid beetles. For spiders, the farming system effects in the cropped area were probably largely attributable to differences in crop management; reduced inputs of pesticides (herbicides and insecticides) and fertilisers are possible influences, and there was some evidence for an effect of non-crop plant species richness on hunting spider activity density. The benefits of organic farming may be greatest for taxa with lower

  17. Organic Farming: Biodiversity Impacts Can Depend on Dispersal Characteristics and Landscape Context.

    Directory of Open Access Journals (Sweden)

    Ruth E Feber

    Full Text Available Organic farming, a low intensity system, may offer benefits for a range of taxa, but what affects the extent of those benefits is imperfectly understood. We explored the effects of organic farming and landscape on the activity density and species density of spiders and carabid beetles, using a large sample of paired organic and conventional farms in the UK. Spider activity density and species density were influenced by both farming system and surrounding landscape. Hunting spiders, which tend to have lower dispersal capabilities, had higher activity density, and more species were captured, on organic compared to conventional farms. There was also evidence for an interaction, as the farming system effect was particularly marked in the cropped area before harvest and was more pronounced in complex landscapes (those with little arable land. There was no evidence for any effect of farming system or landscape on web-building spiders (which include the linyphiids, many of which have high dispersal capabilities. For carabid beetles, the farming system effects were inconsistent. Before harvest, higher activity densities were observed in the crops on organic farms compared with conventional farms. After harvest, no difference was detected in the cropped area, but more carabids were captured on conventional compared to organic boundaries. Carabids were more species-dense in complex landscapes, and farming system did not affect this. There was little evidence that non-cropped habitat differences explained the farming system effects for either spiders or carabid beetles. For spiders, the farming system effects in the cropped area were probably largely attributable to differences in crop management; reduced inputs of pesticides (herbicides and insecticides and fertilisers are possible influences, and there was some evidence for an effect of non-crop plant species richness on hunting spider activity density. The benefits of organic farming may be greatest for

  18. Conservation narratives in Peru: envisioning biodiversity in sustainable development

    Directory of Open Access Journals (Sweden)

    Yves M. Zinngrebe

    2016-06-01

    In a second step, a comparative analysis of the dominant and diverging political perspectives is made. I argue that by deconstructing underlying premises and ideologies, common ground and possible opportunities for collaboration can be identified. Moreover, although the presented results can serve as a discussion scaffold to organize conservation debates in Peru, this example demonstrates how the terms biodiversity and sustainability are operationalized in conservation narratives.

  19. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    Science.gov (United States)

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-02-09

    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  20. Quantifying sources of variation in the frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle-symbiont relationships.

    Science.gov (United States)

    Brian H. Aukema; Richard A. Werner; Kirsten E. Haberkern; Barbara L. Illman; Murray K. Clayton; Kenneth F. Raffa

    2005-01-01

    The spruce beetle, Dendroctonus rufipennis (Kirby), causes landscape level mortality to mature spruce (Picea spp.) throughout western and northern North America. As with other bark beetles, this beetle is associated with a variety of fungi, whose ecological functions are largely unknown. It has been proposed that the relative...

  1. red flour beetle

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... 2Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan. 3Department of ... most important energy source around the globe ... T. castaneum (red flour beetle) samples were collected from rice.

  2. Experimental porcine cysticercosis using infected beetles with Taenia solium eggs.

    Science.gov (United States)

    Gomez-Puerta, Luis A; Garcia, Hector H; Gonzalez, Armando E

    2018-07-01

    Beetles are intermediate hosts for human and animal parasites, and several beetle species have been shown to carry Taenia eggs. An experimental porcine cysticercosis infection model was developed using beetles (Ammophorus rubripes) infected with Taenia solium eggs and then using these beetles for oral pig challenge. A total of 18 three months-old Landrace pigs were divided in four groups. Pigs from groups 1, 2, and 3 (n = 6 pigs per group) were challenged with one, three, and six beetles infected with T. solium eggs, containing approximately 52, 156 or 312 eggs respectively. Pigs were necropsied 12 weeks after infection to assess the presence of T. solium metacestode. Porcine cysticercosis by T. solium was produced in 17 out of 18 pigs (94.4%) challenged with infected beetles, all infected pigs had viable cysts. Only one pig from group 1 was negative to the presence of cysts. The median number of metacestodes per pig in groups 1, 2, and 3 were 2 (range 0-71), 26 (range 5-33) and 40 cysts (range 4-111), respectively. Experimental porcine cysticercosis infection is consistently obtained using beetles as mechanical vectors for T. solium eggs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Weeds and ground-dwelling predators' response to two different weed management systems in glyphosate-tolerant cotton: A farm-scale study.

    Science.gov (United States)

    García-Ruiz, Esteban; Loureiro, Íñigo; Farinós, Gema P; Gómez, Pablo; Gutiérrez, Elena; Sánchez, Francisco Javier; Escorial, María Concepción; Ortego, Félix; Chueca, María Cristina; Castañera, Pedro

    2018-01-01

    The use of glyphosate, as a post-emergence broad-spectrum herbicide in genetically modified glyphosate-tolerant (GT) cotton, supposes a big change in weed management programs with respect to a conventional regime. Thus, alterations in arable flora and arthropod fauna must be considered when evaluating their potential impacts. A 3-year farm-scale study was conducted in a 2-ha GT cotton crop, in southern Spain, to compare the effects of conventional and glyphosate herbicide regimes on weed abundance and diversity and their consequences for ground-dwelling predators. Surveys reveal that weed density was relatively low within all treatments with a few dominant species, with significantly higher weed densities and modifications of the floristic composition in glyphosate-treated plots that led to an increase in the abundance of Portulaca oleracea and to a reduction in plant diversity. The activity-density of the main predatory arthropod taxa (spiders, ground beetles, rove beetles and earwigs) varied among years, but no significant differences were obtained between conventional and glyphosate herbicide regimes. However, significant differences between treatments were obtained for ground beetles species richness and diversity, being higher under the glyphosate herbicide regime, and a positive correlation with weed density could be established for both parameters. The implications of these findings to weed control in GT cotton are discussed.

  4. A new soldier beetle from Eocene Baltic amber

    Directory of Open Access Journals (Sweden)

    Fabrizio Fanti

    2017-11-01

    Full Text Available The family Cantharidae is a worldwide distributed group of flattened and soft-bodied beetles displaying aposematic colouration. These beetles, commonly known as soldier beetles, have an extensive fossil record dating back to the Lower Cretaceous. The majority of fossil material, referred to Cantharidae, is known from amber inclusions. In this paper we describe and illustrate a new soldier beetle Kuskaella macroptera gen. et sp. nov. from the Baltic amber. It is characterised by pronotum of the male parallel-sided in basal third and abruptly narrowed towards apex, and of the female gradually and steadily narrowing from the basal margin to the apex; globular head; unequal maxillary palpomeres with the last segment elongated-globular and pointed; long elytra slightly surpassing the last abdominal segment. This finding is the first described species of both sexes preserved in a single amber piece.

  5. Cloning and characterization of luciferase from a Fijian luminous click beetle.

    Science.gov (United States)

    Mitani, Yasuo; Futahashi, Ryo; Niwa, Kazuki; Ohba, Nobuyoshi; Ohmiya, Yoshihiro

    2013-01-01

    Luminous click beetle is distributed almost exclusively in Central and South America with a single genus in Melanesia. Among these click beetles, the description of Melanesian species has been fragmentary, and its luciferase gene and phylogenetic relation to other click beetles still remain uncertain. We collected a living luminous click beetle, Photophorus jansonii in Fiji. It emits green-yellow light from two spots on the pronotum and has no ventral luminous organ. Here, we cloned a luciferase gene from this insect by RT-PCR. The deduced amino acid sequence showed high identity of ~85% to the luciferases derived from other click beetle species. The luciferase of the Fijian click beetle was produced as a recombinant protein to characterize its biochemical properties. The Km for D-luciferin and ATP were 173 and 270 μm, respectively. The luciferase was pH-insensitive and the spectrum measured at pH 8.0 showed a peak at 559 nm, which was in the range of green-yellow light as seen in the luminous spot of the living Fijian click beetle. The Fijian click beetle luciferase was assigned to the Elateridae clade by a phylogenetic analysis, but it made a clearly different branch from Pyrophorus group examined in this study. © 2013 The American Society of Photobiology.

  6. How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring

    Directory of Open Access Journals (Sweden)

    Petteri Vihervaara

    2017-04-01

    Full Text Available Essential Biodiversity Variables (EBVs have been suggested to harmonize biodiversity monitoring worldwide. Their aim is to provide a small but comprehensive set of monitoring variables that would give a balanced picture of the development of biodiversity and the reaching of international and national biodiversity targets. Globally, GEO BON (Group on Earth Observations Biodiversity Observation Network has suggested 22 candidate EBVs to be monitored. In this article we regard EBVs as a conceptual tool that may help in making national scale biodiversity monitoring more robust by pointing out where to focus further development resources. We look at one country –Finland –with a relatively advanced biodiversity monitoring scheme and study how well Finland’s current biodiversity state indicators correspond with EBVs. In particular, we look at how national biodiversity monitoring could be improved by using available remote sensing (RS applications. Rapidly emerging new technologies from drones to airborne laser scanning and new satellite sensors providing imagery with very high resolution (VHR open a whole new world of opportunities for monitoring the state of biodiversity and ecosystems at low cost. In Finland, several RS applications already exist that could be expanded into national indicators. These include the monitoring of shore habitats and water quality parameters, among others. We hope that our analysis and examples help other countries with similar challenges. Along with RS opportunities, our analysis revealed also some needs to develop the EBV framework itself.

  7. The effect of Beetle leaves (Piper Betle Linn for dental caries formation

    Directory of Open Access Journals (Sweden)

    Adi Kurniawan

    2007-11-01

    Full Text Available Dental caries is still the main problem in dental and oral health. Caries is caused by several factors working simultaneously. The main principle of management caries is by prioritizing preventive action and avoiding invasive action. Beetle leaves are medicamentous plant which are widely cultivated and very beneficial for Indonesian people. Its active content enable beetle leaves to be used as antimicrobial, antiseptic, antifungal, antioxidant, and disinfectant. The government of Indonesia and WHO greatly support the utilization of natural resources as medical cure. Currently we can find a lot of toothpaste and mouthwash products which use beetle leaves as additional ingredient. Various researches have proved that the use of beetle leaves extract as mouthwash, toothpaste and chewing beetle leaves may decrease plaque score. Chavicol and chavibetol content enable beetle leaves to function as very good antimicrobial. Beetle leaves also contain charvacrol, eugenol, methyl eugenol, cadinene, and seskuiterpene, which can function as antiseptic. Beetle leaves may effect salivary function and secretion and also impede the forming of dental caries.

  8. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    Science.gov (United States)

    Saab, Victoria A.; Latif, Quresh S.; Rowland, Mary M.; Johnson, Tracey N.; Chalfoun, Anna D.; Buskirk, Steven W.; Heyward, Joslin E.; Dresser, Matthew A.

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1‐30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB

  9. Asteraceae - an evaluation of hutchinsons beetle-daisy hypothesis

    CSIR Research Space (South Africa)

    Midgley, JJ

    1993-05-01

    Full Text Available repel the beetles. However in this review of plant mimicry worldwide, it is considered an exceptionally intriguing example of Batesian mimicry. Despite the fact there still appears to be a dearth of information on the interaction between beetle...

  10. Groundwater quality characterization to protect biodiversity in SADC region (Southern African Development Community

    Directory of Open Access Journals (Sweden)

    Stefania Vitale

    2016-06-01

    requires a successful groundwater characterization and protection. Conservation of biodiversity depends on groundwater needs strategies that allows for the use of groundwater in a way that is compatible with the persistence of ecosystems in natural area, such as Limpopo Transfrontier Park, in the Southern African Region, which is an area rich in term of biological diversity and ecological complexity. In particular the quality of ground water in some parts of the country, especially shallow ground water, is changing as a result of human activities. The goal of the following study is to provide an assessment of the actual groundwater quality-monitoring network and in consideration of the growing demand for water, there is a need to understand the effects of planting on water resources to estimate crop water requirement for the focus area, as last step of the methodology.

  11. Ecological interactions of bark beetles with host trees

    Science.gov (United States)

    Certain species of bark beetles in the insect order Coleoptera, family Curculionidae (formerly Scolytidae) are keystone species in forest ecosystems. However, the tree-killing and woodboring bark and ambrosia beetles are also among the most damaging insects of forest products including lumber, paper...

  12. Endocrine control of exaggerated traits in rhinoceros beetles

    Science.gov (United States)

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  13. Up high and down low: Molecular systematics and insight into the diversification of the ground beetle genus Rhadine LeConte.

    Science.gov (United States)

    Gómez, R Antonio; Reddell, James; Will, Kipling; Moore, Wendy

    2016-05-01

    Rhadine LeConte is a Nearctic genus of flightless ground beetles that is poorly studied despite its relevance to evolutionary studies of subterranean fauna. Adults are notable for their slender and leggy habitus and the wide variety of habitat preferences among species, with several known only from mountaintops while others are restricted to caves or more general subterranean habitats. In central Texas, USA there are several cave endemics relevant to conservation. Here we present the first phylogenetic hypothesis for the overall structure of the genus with an emphasis on the troglobites in central Texas. We infer the phylogeny of Rhadine from ∼2.4-kb of aligned nucleotide sites from the nuclear genes, 28S rDNA and CAD, and the mitochondrial gene COI. These data were obtained for 30 species of Rhadine as well as from members of their putative sister group, Tanystoma Motschulsky. Results reveal that Rhadine is polyphyletic, and morphological characters that have been traditionally used to classify the genus into species groups are shown to be convergent in many cases. Rhadine aside from two species of uncertain placement is composed of two major clades, Clades I and II that both include epigean and subterranean species in very unequal proportions. Clade I is primarily composed of subterranean species, and Clade II includes many epigean species and high altitude montane endemics. A clade of troglobitic, cave-restricted species in Texas includes several species of large-eyed cave Rhadine. The slender habitus typical of some species [e.g., R. exilis (Barr and Lawrence), R. subterranea (Van Dyke), R. austinica Barr] evolved independently at least three times. Major biogeographic and evolutionary patterns based on these results include: troglobitic species north of the Colorado River in Texas (that also lack lateral pronotal setae) are found to comprise a monophyletic group, beetles in caves south of the Colorado River likely form another monophyletic group, and the

  14. Fungal associates of the lodgepole pine beetle, Dendroctonus murrayanae.

    Science.gov (United States)

    Six, Diana L; de Beer, Z Wilhelm; Duong, Tuan A; Carroll, Allan L; Wingfield, Michael J

    2011-08-01

    Bark beetles are well known vectors of ophiostomatoid fungi including species of Ophiostoma, Grosmannia and Ceratocystis. In this study, the most common ophiostomatoid fungi associated with the lodgepole pine beetle, Dendroctonus murrayanae, were characterized. Pre-emergent and post-attack adult beetles were collected from lodgepole pines at four sites in British Columbia, Canada. Fungi were isolated from these beetles and identified using a combination of morphology and DNA sequence comparisons of five gene regions. In all four populations, Grosmannia aurea was the most common associate (74-100% of all beetles) followed closely by Ophiostoma abietinum (29-75%). Other fungi isolated, in order of their relative prevalence with individual beetles were an undescribed Leptographium sp. (0-13%), Ophiostoma ips (0-15%), Ophiostoma piliferum (0-11%), a Pesotum sp. (0-11%) and Ophiostoma floccosum (0-1%). Comparisons of the DNA sequences of Leptographium strains isolated in this study, with ex-type isolates of G. aurea, Grosmannia robusta, Leptographium longiclavatum, and Leptographium terebrantis, as well as with sequences from GenBank, revealed a novel lineage within the Grosmannia clavigera complex. This lineage included some of the D. murrayane isolates as well as several isolates from previous studies referred to as L. terebrantis. However, the monophyly of this lineage is not well supported and a more comprehensive study will be needed to resolve its taxonomic status as one or more novel taxa.

  15. Net present biodiversity value and the design of biodiversity offsets.

    Science.gov (United States)

    Overton, Jacob McC; Stephens, R T Theo; Ferrier, Simon

    2013-02-01

    There is an urgent need to develop sound theory and practice for biodiversity offsets to provide a better basis for offset multipliers, to improve accounting for time delays in offset repayments, and to develop a common framework for evaluating in-kind and out-of-kind offsets. Here, we apply concepts and measures from systematic conservation planning and financial accounting to provide a basis for determining equity across type (of biodiversity), space, and time. We introduce net present biodiversity value (NPBV) as a theoretical and practical measure for defining the offset required to achieve no-net-loss. For evaluating equity in type and space we use measures of biodiversity value from systematic conservation planning. Time discount rates are used to address risk of non-repayment, and loss of utility. We illustrate these concepts and measures with two examples of biodiversity impact-offset transactions. Considerable further work is required to understand the characteristics of these approaches.

  16. Floral associations of cyclocephaline scarab beetles.

    Science.gov (United States)

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  17. 75 FR 81832 - Asian Longhorned Beetle; Quarantined Area and Regulated Articles

    Science.gov (United States)

    2010-12-29

    .... APHIS-2010-0004] Asian Longhorned Beetle; Quarantined Area and Regulated Articles AGENCY: Animal and... are adopting as a final rule, without change, an interim rule that amended the Asian longhorned beetle... prevent the artificial spread of Asian longhorned beetle to noninfested areas of the United States. As a...

  18. Spectral information as an orientation cue in dung beetles

    OpenAIRE

    el Jundi, Basil; Foster, James J.; Byrne, Marcus J.; Baird, Emily; Dacke, Marie

    2015-01-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue...

  19. Towards global interoperability for supporting biodiversity research on Essential Biodiversity Variables (EBVs)

    NARCIS (Netherlands)

    Kissling, W.D.; Hardisty, A.; García, E.A.; Santamaria, M.; De Leo, F.; Pesole, G.; Freyhof, J.; Manset, D.; Wissel, S.; Konijn, J.; Los, W.

    2015-01-01

    Essential biodiversity variables (EBVs) have been proposed by the Group on Earth Observations Biodiversity Observation Network (GEO BON) to identify a minimum set of essential measurements that are required for studying, monitoring and reporting biodiversity and ecosystem change. Despite the initial

  20. Balligratus, new genus of wingless ground beetles from equatorial Andean montane forest (Coleoptera: Carabidae: Lachnophorini).

    Science.gov (United States)

    Moret, Pierre; Ortuño, Vicente M

    2017-04-27

    A new carabid beetle genus, Balligratus gen. nov., belonging to the tribe Lachnophorini, is described. It is geographically restricted to the equatorial Andes, and ecologically linked to the montane pluvial forest ecosystem, at elevations ranging from 1,200 to 3,600 m. As other carabid lineages that have radiated in such environments, Balligratus gen. nov. is a wingless clade, characterized by the loss of flight wings associated with metathoracic reduction, constriction of the elytral base, and reduced eye size. This evolution is unique among Lachnophorini. Four new species are described, all of them from Ecuador: Balligratus brevis sp. nov., Balligratus globosus sp. nov., Balligratus gracilis sp. nov. and Balligratus humerangulus sp. nov.

  1. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface.

    Science.gov (United States)

    McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen

    2016-11-11

    Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.

  2. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    Science.gov (United States)

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  3. Changing Patterns of Emerging Zoonotic Diseases in Wildlife, Domestic Animals, and Humans Linked to Biodiversity Loss and Globalization.

    Science.gov (United States)

    Aguirre, A Alonso

    2017-12-15

    The fundamental human threats to biodiversity including habitat destruction, globalization, and species loss have led to ecosystem disruptions altering infectious disease transmission patterns, the accumulation of toxic pollutants, and the invasion of alien species and pathogens. To top it all, the profound role of climate change on many ecological processes has affected the inability of many species to adapt to these relatively rapid changes. This special issue, "Zoonotic Disease Ecology: Effects on Humans, Domestic Animals and Wildlife," explores the complex interactions of emerging infectious diseases across taxa linked to many of these anthropogenic and environmental drivers. Selected emerging zoonoses including RNA viruses, Rift Valley fever, trypanosomiasis, Hanta virus infection, and other vector-borne diseases are discussed in detail. Also, coprophagous beetles are proposed as important vectors in the transmission and maintenance of infectious pathogens. An overview of the impacts of climate change in emerging disease ecology within the context of Brazil as a case study is provided. Animal Care and Use Committee requirements were investigated, concluding that ecology journals have low rates of explicit statements regarding the welfare and wellbing of wildlife during experimental studies. Most of the solutions to protect biodiversity and predicting and preventing the next epidemic in humans originating from wildlife are oriented towards the developed world and are less useful for biodiverse, low-income economies. We need the development of regional policies to address these issues at the local level.

  4. Weeds and ground-dwelling predators′ response to two different weed management systems in glyphosate-tolerant cotton: A farm-scale study

    Science.gov (United States)

    Farinós, Gema P.; Gómez, Pablo; Gutiérrez, Elena; Sánchez, Francisco Javier; Escorial, María Concepción; Ortego, Félix; Chueca, María Cristina; Castañera, Pedro

    2018-01-01

    The use of glyphosate, as a post-emergence broad-spectrum herbicide in genetically modified glyphosate-tolerant (GT) cotton, supposes a big change in weed management programs with respect to a conventional regime. Thus, alterations in arable flora and arthropod fauna must be considered when evaluating their potential impacts. A 3-year farm-scale study was conducted in a 2-ha GT cotton crop, in southern Spain, to compare the effects of conventional and glyphosate herbicide regimes on weed abundance and diversity and their consequences for ground-dwelling predators. Surveys reveal that weed density was relatively low within all treatments with a few dominant species, with significantly higher weed densities and modifications of the floristic composition in glyphosate-treated plots that led to an increase in the abundance of Portulaca oleracea and to a reduction in plant diversity. The activity-density of the main predatory arthropod taxa (spiders, ground beetles, rove beetles and earwigs) varied among years, but no significant differences were obtained between conventional and glyphosate herbicide regimes. However, significant differences between treatments were obtained for ground beetles species richness and diversity, being higher under the glyphosate herbicide regime, and a positive correlation with weed density could be established for both parameters. The implications of these findings to weed control in GT cotton are discussed. PMID:29351549

  5. Belowground carabid beetle diversity in the western Palaearctic – effects of history and climate on range-restricted taxa (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Andreas Schuldt

    2011-05-01

    Full Text Available Broad-scale patterns of subterranean diversity are a fascinating but neglected part of biodiversity research. Carabid beetles adapted to belowground habitats form a particularly species-rich part of the subterranean fauna. We studied large-scale diversity patterns of these belowground carabids across the western Palaearctic and evaluated potential impacts of historical and contemporary environmental conditions on the distribution of these taxa, using available species richness and environmental data at country level. Regression modelling and variation partitioning showed a strong relationship between species richness and range in elevation. Potential effects of climatic variables, mainly those related to ambient energy input, were much weaker. We discuss the implications of this combination of effects, which suggests, concordant with the absence of subterranean carabids in northern and highest richness in southern Europe, a strong prevailing influence of historical processes on current richness distributions of these taxa. Previous studies did not provide clear indications for such an influence. In contrast to more mobile and widespread carabid beetles, dispersal limitation due to high adaptation of belowground carabids to subterranean habitats has probably hindered their re-colonization of former permafrost and glaciated regions. Hotspots of highest belowground diversity are located in regions with an assumed long-term stability of environmental conditions, correlating with patterns of other dispersal-limited taxa such as many endemic plants. Our study provides important new information in the discussion of potential determinants of the distinct geographic patterns of belowground diversity. Moreover, it contributes to a better understanding of range size related differences previously found in the distribution of diversity and environmental dependencies of widespread and range-restricted species within the highly diverse carabid beetles.

  6. Conservation of biodiversity through taxonomy, data publication, and collaborative infrastructures.

    Science.gov (United States)

    Costello, Mark J; Vanhoorne, Bart; Appeltans, Ward

    2015-08-01

    Taxonomy is the foundation of biodiversity science because it furthers discovery of new species. Globally, there have never been so many people involved in naming species new to science. The number of new marine species described per decade has never been greater. Nevertheless, it is estimated that tens of thousands of marine species, and hundreds of thousands of terrestrial species, are yet to be discovered; many of which may already be in specimen collections. However, naming species is only a first step in documenting knowledge about their biology, biogeography, and ecology. Considering the threats to biodiversity, new knowledge of existing species and discovery of undescribed species and their subsequent study are urgently required. To accelerate this research, we recommend, and cite examples of, more and better communication: use of collaborative online databases; easier access to knowledge and specimens; production of taxonomic revisions and species identification guides; engagement of nonspecialists; and international collaboration. "Data-sharing" should be abandoned in favor of mandated data publication by the conservation science community. Such a step requires support from peer reviewers, editors, journals, and conservation organizations. Online data publication infrastructures (e.g., Global Biodiversity Information Facility, Ocean Biogeographic Information System) illustrate gaps in biodiversity sampling and may provide common ground for long-term international collaboration between scientists and conservation organizations. © 2015 Society for Conservation Biology.

  7. New records of nematomorph parasites (Nematomorpha: Gordiida) of ground beetles (Coleoptera: Carabidae) and camel crickets (Orthoptera: Rhaphidophoridae) in Washington State.

    Science.gov (United States)

    Looney, Chris; Hanelt, Ben; Zack, Richard S

    2012-06-01

    From 1998 to 2003, beetles and crickets infected with hairworms were collected from 4 localities within the Hanford Nuclear Site and the Hanford Reach National Monument, located in a shrub-steppe region of Washington State along the Columbia River. Infected hosts comprised 6 species of carabid beetles within 5 genera and 2 camel crickets within 1 genus; all are newly documented insect-nematomorph associations. A large proportion of the infected hosts (48%) were collected from a single site during a single collecting period. Of the 38 infected hosts, 32 contained a single worm, 4 hosts contained 2 worms, and 2 hosts contained 3 worms. Five of the hosts with multiple infections contained at least 1 male and 1 female worm. Camel crickets were infected with Neochordodes occidentalis while carabids were infected with an undescribed species of Gordionus . As the majority of hairworms are collected in the post-parasitic adult phase, host data and hairworm-arthropod associations remain poorly documented and our work adds new data to this area of nematomorph biology.

  8. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles.

    Science.gov (United States)

    Nørgaard, Thomas; Dacke, Marie

    2010-07-16

    In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic. The differences in

  9. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles

    Directory of Open Access Journals (Sweden)

    Dacke Marie

    2010-07-01

    Full Text Available Abstract Background In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. Results The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to

  10. Decreases in beetle body size linked to climate change and warming temperatures.

    Science.gov (United States)

    Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina

    2018-05-01

    Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The

  11. Strategies for managing rival bacterial communities: Lessons from burying beetles.

    Science.gov (United States)

    Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M

    2018-03-01

    The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through

  12. Invertebrate populations in miscanthus (Miscanthusxgiganteus) and reed canary-grass (Phalaris arundinacea) fields

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.M. [Llysdinam Field Centre, School of Biosciences, Cardiff University, Newbridge-on-Wye, Llandrindod Wells, Powys, LD1 6NB (United Kingdom)

    2007-01-15

    Monitoring of invertebrates at four field sites in Herefordshire, England, growing miscanthus and reed canary-grass was carried out in 2002, 2003 and 2004 to investigate the ecological impact of these crops on ground beetles, butterflies and arboreal invertebrates. Ground beetles were sampled by pitfall trapping; and arboreal invertebrates by sweep netting and stem beating. The Centre for Ecology and Hydrology's Butterflies Monitoring Scheme methodology was used to record butterflies. The effects of the biomass crops on invertebrates were indirect, through the use of weeds as food resources and habitat. The greater diversity of weed flora within miscanthus fields than within reed canary-grass fields had a greater positive effect on invertebrates. Ground beetles, butterflies and arboreal invertebrates were more abundant and diverse in the most floristically diverse miscanthus fields. The difference in crop architecture and development between miscanthus and reed canary-grass was reflected in their differences in crop height and ground cover early on in the season. However, most of the difference in arthropod abundance between the two crops was attributed to the difference in the agronomic practice of growing the crops such as plant density, and the effect of this on weed growth. Since perennial rhizomatous grasses require a single initial planting and related tillage, and also no major chemical inputs; and because the crops are harvested in the spring and the land is not disturbed by cultivation every year, the fields were used as over-wintering sites for invertebrates suggesting immediate benefits to biodiversity. (author)

  13. Development of a Dung Beetle Robot and Investigation of Its Dung-Rolling Behavior

    Directory of Open Access Journals (Sweden)

    Jen-Wei Wang

    2018-04-01

    Full Text Available In this study, a bio-inspired dung beetle robot was developed that emulated the dung rolling motion of the dung beetle. Dung beetles, which can roll objects up to 1000 times their own body weight, are one of the strongest insect species in the world. While the locomotion of many insects, such as cockroaches, inchworms, and butterflies, has been studied widely, the locomotion of dung beetles has rarely been given attention. Here, we report on the development of a dung beetle robot made specifically to investigate dung-rolling behavior and to determine and understand the underlying mechanism. Two versions of the robot were built, and the leg trajectories were carefully designed based on kinematic analysis. Cylinder and ball rolling experiments were conducted, and the results showed that the dung beetle robot could successfully and reliably roll objects. This further suggests that the dung beetle robot, with its current morphology, is capable of reliably rolling dung without the need for complex control strategies.

  14. 77 FR 22663 - Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts

    Science.gov (United States)

    2012-04-17

    ...-0128] Asian Longhorned Beetle; Additions to Quarantined Areas in Massachusetts AGENCY: Animal and Plant... adopting as a final rule, without change, an interim rule that amended the Asian longhorned beetle (ALB... INFORMATION: Background The Asian longhorned beetle (ALB, Anoplophora glabripennis), an insect native to China...

  15. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael, D.; Hanula, James L.; Horn, Scott; Kilgo, John, C.; Moorman, Christopher, E.

    2005-04-01

    We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest. Species richness was higher at the center of young gaps than in old gaps or in the forest, but there was no statistical difference in species richness between old gaps and the forests surrounding them. Carabid abundance followed the same trend, but only with the exclusion of Semiardistomis viridis (Say), a very abundant species that differed in its response to gap age compared to most other species. The carabid assemblage at the gap edge was very similar to that of the forest, and there appeared to be no distinct edge community. Species known to occur in open or disturbed habitats were more abundant at the center of young gaps than at any other location. Generalist species were relatively unaffected by the disturbance, but one species (Dicaelus dilatatus Say) was significantly less abundant at the centers of young gaps. Forest inhabiting species were less abundant at the centers of old gaps than in the forest, but not in the centers of young gaps. Comparison of community similarity at various trapping locations showed that communities at the centers of old and young gaps had the lowest similarity (46.5%). The community similarity between young gap centers and nearby forest (49.1%) and old gap centers and nearby forest (50.0%) was similarly low. These results show that while the abundance and richness of carabids in old gaps was similar to that of the surrounding forest, the species composition between the two sites differed greatly.

  16. Biodiversity impact assessment (BIA+) - methodological framework for screening biodiversity.

    Science.gov (United States)

    Winter, Lisa; Pflugmacher, Stephan; Berger, Markus; Finkbeiner, Matthias

    2018-03-01

    For the past 20 years, the life cycle assessment (LCA) community has sought to integrate impacts on biodiversity into the LCA framework. However, existing impact assessment methods still fail to do so comprehensively because they quantify only a few impacts related to specific species and regions. This paper proposes a methodological framework that will allow LCA practitioners to assess currently missing impacts on biodiversity on a global scale. Building on existing models that seek to quantify the impacts of human activities on biodiversity, the herein proposed methodological framework consists of 2 components: a habitat factor for 14 major habitat types and the impact on the biodiversity status in those major habitat types. The habitat factor is calculated by means of indicators that characterize each habitat. The biodiversity status depends on parameters from impact categories. The impact functions, relating these different parameters to a given response in the biodiversity status, rely on expert judgments. To ensure the applicability for LCA practitioners, the components of the framework can be regionalized on a country scale for which LCA inventory data is more readily available. The weighting factors for the 14 major habitat types range from 0.63 to 1.82. By means of area weighting of the major habitat types in a country, country-specific weighting factors are calculated. In order to demonstrate the main part of the framework, examples of impact functions are given for the categories "freshwater eutrophication" and "freshwater ecotoxicity" in 1 major habitat type. The results confirm suitability of the methodological framework. The major advantages are the framework's user-friendliness, given that data can be used from LCA databases directly, and the complete inclusion of all levels of biodiversity (genetic, species, and ecosystem). It is applicable for the whole world and a wide range of impact categories. Integr Environ Assess Manag 2018;14:282-297.

  17. Towards scaling interannual ecohydrological responses of conifer forests to bark beetle infestations from individuals to landscapes

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Peckham, S. D.; Savoy, P.; Reed, D. E.; Frank, J. M.

    2013-12-01

    Widespread epidemics of forest-damaging insects have severe implications for the interconnections between water and ecosystem processes under present-day climate. How these systems respond to future climates is highly uncertain, and so there is a need for a better understanding of the effects of such disturbances on plant hydraulics, and the consequent effects on ecosystem processes. Moreover, large-scale manifestations of such disturbances require scaling knowledge obtained from individual trees or stands up to a regional extent. This requires a conceptual framework that integrates physical and biological processes that are immutable and scalable. Indeed, in Western North America multiple conifer species have been impacted by the bark beetle epidemic, but the prediction of such widespread outbreaks under changing environmental conditions must be generalized from a relatively small number of ground-based observations. Using model-data fusion we examine the fundamental principles that drive ecological and hydrological responses to bark beetles infestation from individuals to regions. The study includes a mid-elevation (2750 m a.s.l) lodgepole pine forest and higher (3190 m a.s.l.) elevation Engelmann spruce - fir forest in southern Wyoming. The study included a suite of observations, comprising leaf gas exchange, non-structural carbon (NSC), plant hydraulics, including sap flux transpiration (E), vulnerability to cavitation, leaf water potentials, and eddy covariance, were made pre-, during-, and post-disturbance, as the bark beetle infestation moved through these areas. Numerous observations tested hypotheses generated by the Terrestrial Regional Ecosystem Exchange Simulator (TREES), which integrates soil hydraulics and dynamic tree hydraulics (cavitation) with canopy energy and gas exchange, and operates at scales from individuals to landscapes. TREES accurately predicted E and NSC dynamics among individuals spanning pre- and post-disturbance periods, with the 95

  18. Low host-tree preferences among saproxylic beetles : acomparison of four deciduous species

    OpenAIRE

    Milberg, Per; Bergman, Karl-Olof; Johansson, Helena; Jansson, Nicklas

    2014-01-01

    Many wood-dwelling beetles rely on old hollow trees. In Europe, oaks are known to harbour a species-rich saproxylic beetle fauna, while less is known regarding other broad-leaved tree species. Furthermore, the extent to which saproxylic insect species have specialised on different tree species remains unknown. In this study, we sampled beetles through pitfall traps and window traps in four different tree species in a landscape with many old oaks. We recorded 242 saproxylic beetle species of w...

  19. Threats to North American Forests from Southern Pine Beetle with Warming Winters

    Science.gov (United States)

    Lesk, Corey; Coffel, Ethan; D'Amato, Anthony W.; Dodds, Kevin; Horton, Radley M.

    2016-01-01

    In coming decades, warmer winters are likely to lift range constraints on many cold-limited forest insects. Recent unprecedented expansion of the southern pine beetle (SPB, Dendroctonus frontalis) into New Jersey, New York, Connecticut, and Massachusetts in concert with warming annual temperature minima highlights the risk that this insect pest poses to the pine forests of the northern United States and Canada under continued climate change. Here we present the first projections of northward expansion in SPB-suitable climates using a statistical bioclimatic range modeling approach and current-generation general circulation model (GCM) output under the RCP 4.5 and 8.5 emissions scenarios. Our results show that by the middle of the 21st century, the climate is likely to be suitable for SPB expansion into vast areas of previously unaffected forests throughout the northeastern United States and into southeastern Canada. This scenario would pose a significant economic and ecological risk to the affected regions, including disruption oflocal ecosystem services, dramatic shifts in forest structure, and threats to native biodiversity.

  20. Effectiveness of amphibians as biodiversity surrogates in pond conservation.

    Science.gov (United States)

    Ilg, Christiane; Oertli, Beat

    2017-04-01

    Amphibian decline has led to worldwide conservation efforts, including the identification and designation of sites for their protection. These sites could also play an important role in the conservation of other freshwater taxa. In 89 ponds in Switzerland, we assessed the effectiveness of amphibians as a surrogate for 4 taxonomic groups that occur in the same freshwater ecosystems as amphibians: dragonflies, aquatic beetles, aquatic gastropods, and aquatic plants. The ponds were all of high value for amphibian conservation. Cross-taxon correlations were tested for species richness and conservation value, and Mantel tests were used to investigate community congruence. Species richness, conservation value, and community composition of amphibians were weakly congruent with these measures for the other taxonomic groups. Paired comparisons for the 5 groups considered showed that for each metric, amphibians had the lowest degree of congruence. Our results imply that site designation for amphibian conservation will not necessarily provide protection for freshwater biodiversity as a whole. To provide adequate protection for freshwater species, we recommend other taxonomic groups be considered in addition to amphibians in the prioritization and site designation process. © 2016 Society for Conservation Biology.

  1. Chemical ecology and lure development for redbay ambrosia beetle

    Science.gov (United States)

    The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the U.S., currently established in nine southeastern states. Female beetles are the primary vectors of a pathogenic fungus (Raffaelea lauricola) that causes laurel wilt. This lethal vascular dise...

  2. Analysis of the bark beetle outbreak in the forest “Alta Val Parma” (Corniglio, Parma, Italy and strategies for its regeneration

    Directory of Open Access Journals (Sweden)

    Vignali G

    2015-12-01

    Full Text Available Analysis of the bark beetle outbreak in the forest “Alta Val Parma” (Corniglio, Parma, Italy and strategies for its regeneration. Norway spruce plantations located in the Foresta Demaniale Alta Val Parma (Corniglio, province of Parma - Italy experienced since 2004 a massive outbreak of Norway spruce bark beetle (Ips typographus. This outbreak has been triggered by the exceptionally warm and dry summer of 2003. In the following years bark beetle attacks repeated and spread, raising concern about the future of this kind of stands. A survey program has been carried out to help local administration to chose the correct managements strategies. Monitoring of Ips typographus population, carried out between 2007 and 2013, confirmed the presence of two generations per year, with values above the risk threshold in 2007 and just below though very high in 2011. In the affected area, six survey plots have been realized to test different management options with the aim of favoring a fast regeneration of the forest cover. The tested options showed the great difficulty in the establishment of natural generation either for the lack of mother plants in such pure stands or for competition with tall grasses. Sowing brought no significative results, while direct plantation of indigenous broadleaves was more effective, with almost half of the individuals still alive after three years. Our results confirm the great difficulty to rebuild the forest cover after strong ecological disturbances in these artificial forests. Hybrid management strategies and ad hoc silvicultural choices seem to be the only way to manage such kind of situations in a National park, where the priority is biodiversity conservation.

  3. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    International Nuclear Information System (INIS)

    Biro, L.P.

    2010-01-01

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  4. Funding begets biodiversity

    DEFF Research Database (Denmark)

    Ahrends, Antje; Burgess, Neil David; Gereau, Roy E.

    2011-01-01

    Aim Effective conservation of biodiversity relies on an unbiased knowledge of its distribution. Conservation priority assessments are typically based on the levels of species richness, endemism and threat. Areas identified as important receive the majority of conservation investments, often...... facilitating further research that results in more species discoveries. Here, we test whether there is circularity between funding and perceived biodiversity, which may reinforce the conservation status of areas already perceived to be important while other areas with less initial funding may remain overlooked......, and variances decomposed in partial regressions. Cross-correlations are used to assess whether perceived biodiversity drives funding or vice versa. Results Funding explained 65% of variation in perceived biodiversity patterns – six times more variation than accounted for by 34 candidate environmental factors...

  5. Biodiversity and Climate Modeling Workshop Series: Identifying gaps and needs for improving large-scale biodiversity models

    Science.gov (United States)

    Weiskopf, S. R.; Myers, B.; Beard, T. D.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.

    2017-12-01

    At the global scale, well-accepted global circulation models and agreed-upon scenarios for future climate from the Intergovernmental Panel on Climate Change (IPCC) are available. In contrast, biodiversity modeling at the global scale lacks analogous tools. While there is great interest in development of similar bodies and efforts for international monitoring and modelling of biodiversity at the global scale, equivalent modelling tools are in their infancy. This lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity to bring together climate, ecosystem, and biodiversity modeling experts to promote development of integrated approaches in modeling global biodiversity. Improved models are needed to understand how we are progressing towards the Aichi Biodiversity Targets, many of which are not on track to meet the 2020 goal, threatening global biodiversity conservation, monitoring, and sustainable use. We brought together biodiversity, climate, and remote sensing experts to try to 1) identify lessons learned from the climate community that can be used to improve global biodiversity models; 2) explore how NASA and other remote sensing products could be better integrated into global biodiversity models and 3) advance global biodiversity modeling, prediction, and forecasting to inform the Aichi Biodiversity Targets, the 2030 Sustainable Development Goals, and the Intergovernmental Platform on Biodiversity and Ecosystem Services Global Assessment of Biodiversity and Ecosystem Services. The 1st In-Person meeting focused on determining a roadmap for effective assessment of biodiversity model projections and forecasts by 2030 while integrating and assimilating remote sensing data and applying lessons learned, when appropriate, from climate modeling. Here, we present the outcomes and lessons learned from our first E-discussion and in-person meeting and discuss the next steps for future meetings.

  6. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  7. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle.

    Science.gov (United States)

    Immonen, Esa-Ville; Dacke, Marie; Heinze, Stanley; El Jundi, Basil

    2017-06-01

    To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular. © 2017 Wiley Periodicals, Inc.

  8. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    Science.gov (United States)

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and

  9. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    Science.gov (United States)

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to

  10. Diversity of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) in roadside verges with grey hair-grass

    NARCIS (Netherlands)

    Noordijk, J.; Schaffers, A.P.; Sykora, K.V.

    2008-01-01

    Roadside verges in densely populated areas are often a significant addition to the total semi-natural area and as such may contribute to the conservation of biodiversity. Furthermore, they can enhance the ecological cohesion of a region, especially when the existing nature reserves are small and/or

  11. Biodiverse planting for carbon and biodiversity on indigenous land.

    Science.gov (United States)

    Renwick, Anna R; Robinson, Catherine J; Martin, Tara G; May, Tracey; Polglase, Phil; Possingham, Hugh P; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes.

  12. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    Science.gov (United States)

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Lack of nucleotide variability in a beetle pest with extreme inbreeding.

    Science.gov (United States)

    Andreev, D; Breilid, H; Kirkendall, L; Brun, L O; ffrench-Constant, R H

    1998-05-01

    The coffee berry borer beetle Hypothenemus hampei (Ferrari) (Curculionidae: Scolytinae) is the major insect pest of coffee and has spread to most of the coffee-growing countries of the world. This beetle also displays an unusual life cycle, with regular sibling mating. This regular inbreeding and the population bottlenecks occurring on colonization of new regions should lead to low levels of genetic diversity. We were therefore interested in determining the level of nucleotide variation in nuclear and mitochondrial genomes of this beetle worldwide. Here we show that two nuclear loci (Resistance to dieldrin and ITS2) are completely invariant, whereas some variability is maintained at a mitochondrial locus (COI), probably corresponding to a higher mutation rate in the mitochondrial genome. Phylogenetic analysis of the mitochondrial data shows only two clades of beetle haplotypes outside of Kenya, the proposed origin of the species. These data confirm that inbreeding greatly reduces nucleotide variation and suggest the recent global spread of only two inbreeding lines of this bark beetle.

  14. Measuring Phenological Changes due to Defoliation of the Non-Native Species, Saltcedar (Tamarisk) Following Episodic Foliage Removal by the Beetle Diorhabda elongate and Phenological Impacts on Forage Quality for Insectivorous Birds on the Dolores River

    Science.gov (United States)

    Nagler, P. L.; Dennison, P. E.; Hultine, K. R.; van Riper, C.; Glenn, E. P.

    2008-12-01

    Since its introduction to the western U.S. more than a century ago, tamarisk (Tamarix spp.) has become dominant or sub-dominant over many major arid, and semi-arid river systems and their tributaries. The presence of tamarisk has been cited for reducing water availability for human enterprise and biodiversity, displacing native vegetation and for reducing habitat quality for wildlife. With increasing emphasis by public and private sectors on controlling saltcedar (Tamarix chinensis) in the western US, there will likely be a dramatic change in riparian vegetation composition over the course of the next several decades. The rates at which these changes will occur, and the resultant effects on riparian insects and birds that utilize insects for food, are presently unknown. Effects on riparian vegetation communities, resulting from changes in host plant species composition, will likely include changes in plant biomass, microclimate changes, and plant species diversity. These changes could potentially have a profound impact on migratory and breeding birds within riparian corridors throughout the southwest. Recently, the saltcedar leaf beetle (Diorhabda elongata) was released as a tamarisk biocontrol agent. This beetle has successfully defoliated tamarisk where it has been introduced, but there are currently no comprehensive programs in place for monitoring the rapid spread of Diorhabda, the impact of defoliation on habitat and water resources, or the long-term impact of defoliation on tamarisk. We used higher spatial resolution ASTER data and coarser MODIS data for monitoring defoliation caused by Diorhabda elongata and subsequent changes in evapotranspiration (ET). Widespread tamarisk defoliation was observed in an eastern Utah study area during summers 2007, 2008. We measured stem sap flux, leaf carbon isotope ratios, leaf area, LAI, and vegetation indices from mounted visible and infrared cameras and satellite imagery. The cameras were paired on towers installed 30

  15. Semiochemical sabotage: behavioral chemicals for protection of western conifers from bark beetles

    Science.gov (United States)

    Nancy. E. Gillette; A. Steve Munson

    2009-01-01

    The discovery and elucidation of volatile behavioral chemicals used by bark beetles to locate hosts and mates has revealed a rich potential for humans to sabotage beetle host-finding and reproduction. Here, we present a description of currently available semiochemical methods for use in monitoring and controlling bark beetle pests in western conifer forests. Delivery...

  16. Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape.

    Science.gov (United States)

    Cantarello, Elena; Newton, Adrian C; Martin, Philip A; Evans, Paul M; Gosal, Arjan; Lucash, Melissa S

    2017-11-01

    Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one-off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications . The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience

  17. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    Energy Technology Data Exchange (ETDEWEB)

    Biro, L.P., E-mail: biro@mfa.kfki.h [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, POB 49 (Hungary)

    2010-05-25

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  18. Distance and sex determine host plant choice by herbivorous beetles.

    Directory of Open Access Journals (Sweden)

    Daniel J Ballhorn

    Full Text Available Plants respond to herbivore damage with the release of volatile organic compounds (VOCs. This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores?We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis when facing lima bean plants (Fabaceae: Phaseolus lunatus with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials.Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a slightly damaged

  19. Observations on the Cave-Associated Beetles (Coleoptera of Nova Scotia, Canada

    Directory of Open Access Journals (Sweden)

    Moseley M.

    2009-07-01

    Full Text Available The cave-associated invertebrates of Nova Scotia constitute a fauna at a very early stage of post-glacial recolonization. TheColeoptera are characterized by low species diversity. A staphylinid Quedius spelaeus spelaeus, a predator, is the only regularlyencountered beetle. Ten other terrestrial species registered from cave environments in the province are collected infrequently. Theyinclude three other rove-beetles: Brathinus nitidus, Gennadota canadensis and Atheta annexa. The latter two together with Catopsgratiosus (Leiodidae constitute a small group of cave-associated beetles found in decompositional situations. Quedius s. spelaeusand a small suite of other guanophiles live in accumulations of porcupine dung: Agolinus leopardus (Scarabaeidae, Corticariaserrata (Latrididae, and Acrotrichis castanea (Ptilidae. Two adventive weevils Otiorhynchus ligneus and Barypeithes pellucidus(Curculionidae collected in shallow cave passages are seasonal transients; Dermestes lardarius (Dermestidae, recorded fromone cave, was probably an accidental (stray. Five of the terrestrial beetles are adventive Palaearctic species. Aquatic beetles arecollected infrequently. Four taxa have been recorded: Agabus larsoni (Dytiscidae may be habitual in regional caves; another Agabussp. (probably semivittatus, Dytiscus sp. (Dytiscidae, and Crenitis digesta (Hydrophilidae are accidentals. The distribution andecology of recorded species are discussed, and attention is drawn to the association of beetles found in a Nova Scotia “ice cave”.

  20. Effects of Japanese beetle (Coleoptera: Scarabaeidae) and silk clipping in field corn.

    Science.gov (United States)

    Steckel, Sandy; Stewart, S D; Tindall, K V

    2013-10-01

    Japanese beetle (Popillia japonica Newman) is an emerging silk-feeding insect found in fields in the lower Corn Belt and Midsouthern United States. Studies were conducted in 2010 and 2011 to evaluate how silk clipping in corn affects pollination and yield parameters. Manually clipping silks once daily had modest effects on yield parameters. Sustained clipping by either manually clipping silks three times per day or by caging Japanese beetles onto ears affected total kernel weight if it occurred during early silking (R1 growth stage). Manually clipping silks three times per day for the first 5 d of silking affected the number of kernels per ear, total kernel weight, and the weight of individual kernels. Caged beetles fed on silks and, depending on the number of beetles caged per ear, reduced the number of kernels per ear. Caging eight beetles per ear significantly reduced total kernel weight compared with noninfested ears. Drought stress before anthesis appeared to magnify the impact of silk clipping by Japanese beetles. There was evidence of some compensation for reduced pollination by increasing the size of pollinated kernels within the ear. Our results showed that it requires sustained silk clipping during the first week of silking to have substantial impacts on pollination and yield parameters, at least under good growing conditions. Some states recommend treating for Japanese beetle when three Japanese beetles per ear are found, silks are clipped to < 13 mm, and pollination is < 50% complete, and that recommendation appears to be adequate.

  1. Influence of predators and parisitoids on bark beetle productivity

    Science.gov (United States)

    Jan Weslien

    1991-01-01

    In an earlier field experiment, natural enemies of the bark beetle, Ips typographus (L) were estimated to have reduced bark beetle productivity by more than 80 percent. To test this hypothesis, spruce logs (Picea abies) were placed in the forest in the spring, prior to commencement of flight by I. typographus....

  2. New records of water beetles (Coleoptera: Haliplidae, Dytiscidae, Gyrinidae from Montenegro (SE Europe

    Directory of Open Access Journals (Sweden)

    Pešić Vladimir M.

    2005-01-01

    Full Text Available The water beetle fauna of Montenegro is still poorly known. In the catalog dealing with water beetles (Hydrochantares and Palpicornia in Yugoslavia Gueorguiev (1971 gives a list of 116 water beetle species from Montenegro. Mikšić (1977 reported the presence of six water beetles species from the Ulcinj area. In the present paper, 19 water beetle species (Coleoptera Hydradephaga are reported, five of which are new for the fauna of Montenegro. All specimens have been deposited in the zoological collection of the department of Biology (Podgorica. In list of the species, we give the locality, the date of sampling, the total number of individuals and the names of collectors.

  3. The artificial beetle, or a brief manifesto for engineered biomimicry

    Science.gov (United States)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  4. Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Izzo, Victor M; Chen, Yolanda H; Schoville, Sean D; Wang, Cong; Hawthorne, David J

    2018-04-02

    Colorado potato beetle (Leptinotarsa decemlineata Say [Coleoptera: Chrysomelidae]) is a pest of potato throughout the Northern Hemisphere, but little is known about the beetle's origins as a pest. We sampled the beetle from uncultivated Solanum host plants in Mexico, and from pest and non-pest populations in the United States and used mitochondrial DNA and nuclear loci to examine three hypotheses on the origin of the pest lineages: 1) the pest beetles originated from Mexican populations, 2) they descended from hybridization between previously divergent populations, or 3) they descended from populations that are native to the Plains states in the United States. Mitochondrial haplotypes of non-pest populations from Mexico and Arizona differed substantially from beetles collected from the southern plains and potato fields in the United States, indicating that beetles from Mexico and Arizona did not contribute to founding the pest lineages. Similar results were observed for AFLP and microsatellite data . In contrast, non-pest populations from the states of Colorado, Kansas, Nebraska, New Mexico, and Texas were genetically similar to U.S. pest populations, indicating that they contributed to the founding of the pest lineages. Most of the pest populations do not show a significant reduction in genetic diversity compared to the plains populations in the United States. We conclude that genetically heterogeneous beetle populations expanded onto potato from native Solanum hosts. This mode of host range expansion may have contributed to the abundant genetic diversity of contemporary populations, perhaps contributing to the rapid evolution of climate tolerance, host range, and insecticide resistance.

  5. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences.

    Science.gov (United States)

    Kim, C G; Zhou, H Z; Imura, Y; Tominaga, O; Su, Z H; Osawa, S

    2000-01-01

    Most of the mitochondrial NADH dehydrogenase subunit 5 (ND5) gene and a part of nuclear 28S ribosomal RNA gene were sequenced for 14 species of ground beetles belonging to the genus Leptocarabus. In both the ND5 and the 28S rDNA phylogenetic trees of Leptocarabus, three major lineages were recognized: (1) L. marcilhaci/L. yokoael/Leptocarabus sp. from China, (2) L. koreanus/L. truncaticollis/L. seishinensis/L. semiopacus/L. canaliculatus/L. kurilensis from the northern Eurasian continent including Korea and Hokkaido, Japan, and (3) all of the Japanese species except L. kurilensis. Clustering of the species in the trees is largely linked to their geographic distribution and does not correlate with morphological characters. The species belonging to different species groups are clustered in the same lineages, and those in the same species group are scattered among the different lineages. One of the possible interpretations of the present results would be that morphological transformations independently took place in the different lineages, sometimes with accompanying parallel morphological evolution, resulting in the occurrence of the morphological species belonging to the same species group (= type) in the different lineages.

  6. Antibiotic-producing bacteria from stag beetle mycangia.

    Science.gov (United States)

    Miyashita, Atsushi; Hirai, Yuuki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-02-01

    The search for new antibiotics or antifungal agents is crucial for the chemotherapies of infectious diseases. The limited resource of soil bacteria makes it difficult to discover such new drug candidate. We, therefore, focused on another bacterial resource than soil bacteria, the microbial flora of insect species. In the present study, we isolated 40 strains of bacteria and fungi from the mycangia of three species of stag beetle, Dorcus hopei binodulosus, Dorcus rectus, and Dorcus titanus pilifer. We identified those species with their ribosomal DNA sequences, and revealed that Klebsiella spp. are the most frequent symbiont in the stag beetle mycangia. We examined whether these microorganisms produce antibiotics against a Gram-negative bacterium, Escherichia coli, a Gram-positive bacterium, Staphylococcus aureus, or a fungus, Cryptococcus neoformans. Culture supernatants from 33, 29, or 18 strains showed antimicrobial activity against E. coli, S. aureus, or C. neoformans, respectively. These findings suggest that bacteria present in the mycangia of stag beetles are useful resources for screening novel antibiotics.

  7. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe.

    Science.gov (United States)

    Seibold, Sebastian; Brandl, Roland; Buse, Jörn; Hothorn, Torsten; Schmidl, Jürgen; Thorn, Simon; Müller, Jörg

    2015-04-01

    To reduce future loss of biodiversity and to allocate conservation funds effectively, the major drivers behind large-scale extinction processes must be identified. A promising approach is to link the red-list status of species and specific traits that connect species of functionally important taxa or guilds to resources they rely on. Such traits can be used to detect the influence of anthropogenic ecosystem changes and conservation efforts on species, which allows for practical recommendations for conservation. We modeled the German Red List categories as an ordinal index of extinction risk of 1025 saproxylic beetles with a proportional-odds linear mixed-effects model for ordered categorical responses. In this model, we estimated fixed effects for intrinsic traits characterizing species biology, required resources, and distribution with phylogenetically correlated random intercepts. The model also allowed predictions of extinction risk for species with no red-list category. Our model revealed a higher extinction risk for lowland and large species as well as for species that rely on wood of large diameter, broad-leaved trees, or open canopy. These results mirror well the ecological degradation of European forests over the last centuries caused by modern forestry, that is the conversion of natural broad-leaved forests to dense conifer-dominated forests and the loss of old growth and dead wood. Therefore, conservation activities aimed at saproxylic beetles in all types of forests in Central and Western Europe should focus on lowlands, and habitat management of forest stands should aim at increasing the amount of dead wood of large diameter, dead wood of broad-leaved trees, and dead wood in sunny areas. © 2014 Society for Conservation Biology.

  8. Changes in ground beetle diversity and community composition in age structured forests (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Kathryn Riley

    2011-11-01

    Full Text Available We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age.

  9. Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Powell, Jeff R; Hamonts, Kelly; Reith, Frank; Mele, Pauline; Brown, Mark V; Dennis, Paul G; Ferrari, Belinda C; Fitzgerald, Anna; Young, Andrew; Singh, Brajesh K; Bissett, Andrew

    2017-08-01

    The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0-10 and 20-30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity-fertility and fertility-plant productivity are limited to the upper soil layer (0-10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity-fertility and/or fertility-plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. The Biodiversity Informatics Potential Index

    Science.gov (United States)

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  11. Essential Biodiversity Variables: A framework for communication between the biodiversity community and space agencies

    Science.gov (United States)

    Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.

    2017-12-01

    The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.

  12. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the Southern Pine Beetle Prevention Program

    Science.gov (United States)

    John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie

    2015-01-01

    Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....

  13. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    Science.gov (United States)

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  14. Making the case for biodiversity in South Africa: Re-framing biodiversity communications

    OpenAIRE

    Maze, Kristal; Barnett, Mandy; Botts, Emily A.; Stephens, Anthea; Freedman, Mike; Guenther, Lars

    2016-01-01

    Background: Biodiversity education and public awareness do not always contain the motivational messages that inspire action amongst decision-makers. Traditional messages from the biodiversity sector are often framed around threat, with a generally pessimistic tone. Aspects of social marketing can be used to support positive messaging that is more likely to inspire action amongst the target audience. Objectives: The South African biodiversity sector embarked on a market research process to ...

  15. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner.

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    Full Text Available Tree-killing bark beetles (Coleoptera, Scolytinae are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization.To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L. we inoculated 20 mature Norway spruce Picea abies (L. Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem. C. Moreau, and investigated induced terpene levels and beetle colonization in the bark.Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7 had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m(-2 and 2.6% as much gallery length (0.029 m m(-2 vs. 1.11 m m(-2 as trees with low terpene levels (n = 6. There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g(-1 dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g(-1 dry phloem trees were virtually unattacked.This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles.

  16. GEOSPATIAL CHARACTERIZATION OF BIODIVERSITY: NEED AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    P. S. Roy

    2012-08-01

    Full Text Available Explaining the distribution of species and understanding their abundance and spatial distribution at multiple scales using remote sensing and ground based observation have been the central aspect of the meeting of COP10 for achieving CBD 2020 targets. In this respect the Biodiveristy Characterization at Landscape Level for India is a milestone in biodiversity study in this country. Satellite remote sensing has been used to derive the spatial extent and vegetation composition patterns. Sensitivity of different multi-scale landscape metrics, species composition, ecosystem uniqueness and diversity in distribution of biological diversity is assessed through customized landscape analysis software to generate the biological richness surface. The uniqueness of the study lies in the creation of baseline geo-spatial data on vegetation types using multi-temporal satellite remote sensing data (IRS LISS III, deriving biological richness based on spatial landscape analysis and inventory of location specific information about 7964 unique plant species recorded in 20,000 sample plots in India and their status with respect to endemic, threatened and economic/medicinal importance. The results generated will serve as a baseline database for various assessment of the biodiversity for addressing CBD 2020 targets.

  17. Quantifying Beetle-Mediated Effects on Gas Fluxes from Dung Pats

    Science.gov (United States)

    Penttilä, Atte; Slade, Eleanor M.; Simojoki, Asko; Riutta, Terhi; Minkkinen, Kari; Roslin, Tomas

    2013-01-01

    Agriculture is one of the largest contributors of the anthropogenic greenhouse gases (GHGs) responsible for global warming. Measurements of gas fluxes from dung pats suggest that dung is a source of GHGs, but whether these emissions are modified by arthropods has not been studied. A closed chamber system was used to measure the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from dung pats with and without dung beetles on a grass sward. The presence of dung beetles significantly affected the fluxes of GHGs from dung pats. Most importantly, fresh dung pats emitted higher amounts of CO2 and lower amounts of CH4 per day in the presence than absence of beetles. Emissions of N2O showed a distinct peak three weeks after the start of the experiment – a pattern detected only in the presence of beetles. When summed over the main grazing season (June–July), total emissions of CH4 proved significantly lower, and total emissions of N2O significantly higher in the presence than absence of beetles. While clearly conditional on the experimental conditions, the patterns observed here reveal a potential impact of dung beetles on gas fluxes realized at a small spatial scale, and thereby suggest that arthropods may have an overall effect on gas fluxes from agriculture. Dissecting the exact mechanisms behind these effects, mapping out the range of conditions under which they occur, and quantifying effect sizes under variable environmental conditions emerge as key priorities for further research. PMID:23940758

  18. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera: Tenebrionidae) Beetles from Iran.

    Science.gov (United States)

    Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza

    2017-06-01

    Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010-2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12-14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97-100% with similar sequences from GenBank database. Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations.

  19. Ground beetle (Coleoptera, Carabidae) assemblages inhabiting Scots pine stands of Puszcza Piska Forest: six-year responses to a tornado impact.

    Science.gov (United States)

    Skłodowski, Jarosław; Garbalińska, Paulina

    2011-01-01

    Ground beetle assemblages were studied during 2003-08 in the Pisz Forest by comparing stands disturbed by a tornado to undisturbed control stands. The following exploratory questions were put forward. (1) How do the carabid assemblages change during six years following the tornado impact? (2) Does the carabid assemblage recovery begin during the six first post-tornado years? To assess the state of carabid assemblages we used two indices: the MIB (Mean Individual Biomass) and the SPC (Sum of Progressive Characteristics). Carabid assemblages in the disturbed and in the control stands, as expressed by these two indices, were compared using the length of a regression distance (sample distance in a MIB:SPC coordinate system). A cluster analysis revealed that the assemblages of the disturbed and the control stands were different. The tornado-impacted stands produced lower carabid catch rates, but species richness was significantly higher there than in the control stands. They hosted lower proportions of individuals of European species, of large zoophages, and of forest and brachypterous species, than the control stands. The observed reduction in SPC and MIB, and an increase in the regression distances may indicate that the carabid assemblages had not started to recover from the tornado-caused disturbance. Carabid assemblages apparently responded to the tornado in two steps. Firstly, the first three years were characterized by moderate decreases of index values. Secondly, from the fourth to the sixth year after the tornado, many observed changes became magnified. We did not observe clear signals of the recovery of forest carabid assemblages during the six follow-up years.

  20. Reconciling biodiversity and carbon conservation.

    Science.gov (United States)

    Thomas, Chris D; Anderson, Barbara J; Moilanen, Atte; Eigenbrod, Felix; Heinemeyer, Andreas; Quaife, Tristan; Roy, David B; Gillings, Simon; Armsworth, Paul R; Gaston, Kevin J

    2013-05-01

    Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process. © 2012 John Wiley & Sons Ltd/CNRS.

  1. Efficacy of plant extracts against the cowpea beetle, Callosobruchus maculatus

    NARCIS (Netherlands)

    Boeke, S.J.; Barnaud, B.; Loon, van J.J.A.; Kossou, D.K.; Huis, van A.; Dicke, M.

    2004-01-01

    Traditionally used African plant powders, with a known effect against the cowpea beetle Callosobruchus maculatus in stored cowpea, were extracted with water. The extracts, 13 volatile oils, 2 non-volatile oils and 8 slurries, were evaluated for their toxic and repellent effects against the beetle.

  2. 78 FR 27853 - Asian Longhorned Beetle; Quarantined Areas in Ohio

    Science.gov (United States)

    2013-05-13

    ...-0004] Asian Longhorned Beetle; Quarantined Areas in Ohio AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule and request for comments. SUMMARY: We are amending the Asian... to prevent the artificial spread of the Asian longhorned beetle to noninfested areas of the United...

  3. Formulating entompathogens for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  4. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA.

    Directory of Open Access Journals (Sweden)

    Davide Rassati

    Full Text Available Non-native bark and ambrosia beetles represent a threat to forests worldwide. Their invasion patterns are, however, still unclear. Here we investigated first, if the spread of non-native bark and ambrosia beetles is a gradual or a discontinuous process; second, which are the main correlates of their community structure; third, whether those correlates correspond to those of native species. We used data on species distribution of non-native and native scolytines in the continental 48 USA states. These data were analyzed through a beta-diversity index, partitioned into species richness differences and species replacement, using Mantel correlograms and non-metric multidimensional scaling (NMDS ordination for identifying spatial patterns, and regression on distance matrices to test the association of climate (temperature, rainfall, forest (cover area, composition, geographical (distance, and human-related (import variables with β-diversity components. For both non-native bark and ambrosia beetles, β-diversity was mainly composed of species richness difference than species replacement. For non-native bark beetles, a discontinuous invasion process composed of long distance jumps or multiple introduction events was apparent. Species richness differences were primarily correlated with differences in import values while temperature was the main correlate of species replacement. For non-native ambrosia beetles, a more continuous invasion process was apparent, with the pool of non-native species arriving in the coastal areas that tended to be filtered as they spread to interior portions of the continental USA. Species richness differences were mainly correlated with differences in rainfall among states, while rainfall and temperature were the main correlates of species replacement. Our study suggests that the different ecology of bark and ambrosia beetles influences their invasion process in new environments. The lower dependency that bark beetles have

  5. Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability

    Directory of Open Access Journals (Sweden)

    Yufeng Luo

    2014-09-01

    Full Text Available Rice paddies are artificial wetlands that supply people with food and provide wildlife with habitats, breeding areas, shelters, feeding grounds and other services, and rice paddies play an important part in agricultural ecological systems. However, modern agricultural practices with large-scale intensive farming have significantly accelerated the homogenization of the paddy field ecosystem. Modern agriculture mostly relies on chemically-driven modern varieties and irrigation to ensure high production, resulting in the deterioration and imbalance of the ecosystem. Consequently, outbreaks of diseases, insects and weeds have become more frequent in paddy fields. This paper describes the current situation of rice paddy biodiversity in China and analyzes the community characteristics of arthropods and weedy plants. Meanwhile, we discuss how biodiversity was affected by modern agriculture changes, which have brought about a mounting crisis threatening to animals and plants once common in rice paddies. Measures should be focused to firstly preventing further deterioration and, then, also, promoting restoration processes. Ecological sustainability can be achieved by restoring paddy field biodiversity through protecting the ecological environment surrounding the paddy fields, improving paddy cropping patterns, growing rice with less agricultural chemicals and chemical fertilizers, constructing paddy systems with animals and plants and promoting ecological education and public awareness.

  6. Evaluating productivity-biodiversity relationship and spectral diversity in prairie grasslands under different fire management treatments using in-situ and remote sensing hyperspectral data

    Science.gov (United States)

    Gholizadeh, H.; Gamon, J. A.; Zygielbaum, A. I.; Schweiger, A. K.; Cavender-Bares, J.; Yang, Y.; Knops, J. M. H.

    2017-12-01

    Grasslands cover as much as 25% of the Earth's surface and account for approximately 20% of overall terrestrial productivity and contribute to global biodiversity. To optimize the status of grasslands and to counteract their degradation, different management practices have been adopted. Fire has been shown to be an important management practice in the maintenance of grasslands. Our main goals were 1) to evaluate the productivity-biodiversity relationship in grasslands under fire treatment, and 2) to evaluate the capability of hyperspectral remote sensing in estimating biodiversity using spectral data (i.e. spectral diversity). We used above-ground biomass (as a surrogate for productivity), species richness (SR; as a surrogate for biodiversity), and airborne hyperspectral data from a natural grassland with fire treatment (20 plots), and a natural grassland without fire treatment (21 plots), all located at the Cedar Creek Ecosystem Science Reserve in Central Minnesota, USA. The productivity-biodiversity relationship for the fire treatment plots showed a hump-shaped model with adjusted R2=0.37, whereas the relationship for the non-burned plots were non-significant. The relationship between SR and spectral diversity (SD) were positive linear for both treatments; however, the relationship for plots with fire treatment was higher (adjusted R2 = 0.34 vs. 0.19). It is assumed that post-fire foliar nutrients increase soil nitrogen and phosphorus which facilitate post-fire growth and induce higher above-ground biomass and chlorophyll content in plants. Overall, the results of this study showed that management practices affect the productivity-biodiversity relationship and illustrated the effect of fire treatment on remote sensing of biodiversity.

  7. Book review of advances in insect physiology: pine bark beetles

    Science.gov (United States)

    If not the most destructive forest pest, bark beetles are probably a close second in their culpability for killing millions of trees in the Northern Hemisphere. This volume provides an aptly-timed interdisciplinary review on aspects of bark beetle physiology, especially how it relates to selecting, ...

  8. Mountain pine beetle infestations in relation to lodgepole pine diameters

    Science.gov (United States)

    Walter E. Cole; Gene D. Amman

    1969-01-01

    Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...

  9. Birds as biodiversity surrogates

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Bladt, Jesper Stentoft; Balmford, Andrew

    2012-01-01

    1. Most biodiversity is still unknown, and therefore, priority areas for conservation typically are identified based on the presence of surrogates, or indicator groups. Birds are commonly used as surrogates of biodiversity owing to the wide availability of relevant data and their broad popular...... and applications.?Good surrogates of biodiversity are necessary to help identify conservation areas that will be effective in preventing species extinctions. Birds perform fairly well as surrogates in cases where birds are relatively speciose, but overall effectiveness will be improved by adding additional data...... from other taxa, in particular from range-restricted species. Conservation solutions with focus on birds as biodiversity surrogate could therefore benefit from also incorporating species data from other taxa....

  10. Recovering biodiversity knowledge

    NARCIS (Netherlands)

    Meijerink, G.W.; Smolders, H.; Sours, S.; Pou, S.

    2005-01-01

    Cambodian¿s civil wars have seriously affected the country¿s agro-biodiversity and the farmers¿ traditional knowledge in this field. The PEDIGREA project aims at conserving on-farm agro-biodiversity conservation and in Cambodia it focuses on vegetable diversity. It tries to link the preservation of

  11. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera:Tenebrionidae Beetles from Iran

    Directory of Open Access Journals (Sweden)

    Mahsa Sadat Makki

    2017-06-01

    Full Text Available Background: Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran.Methods: The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010–2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene.Results: Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52% of laboratory-infected beetles showed infection with an average of 12–14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, includ­ing the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97–100% with similar sequences from GenBank database.Conclusion: Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations.

  12. Phylogenetic diversification patterns and divergence times in ground beetles (Coleoptera: Carabidae: Harpalinae).

    Science.gov (United States)

    Ober, Karen A; Heider, Thomas N

    2010-08-27

    Harpalinae is a species rich clade of carabid beetles with many unusual morphological forms and ecological interactions. How this diversity evolved has been difficult to reconstruct, perhaps because harpalines underwent a rapid burst of diversification early in their evolutionary history. Here we investigate the tempo of evolution in harpalines using molecular divergence dating techniques and explore the rates of lineage accumulation in harpalines and their sister group. According to molecular divergence date estimates, harpalines originated in the mid Cretaceous but did not diversify extensively until the late Cretaceous or early Paleogene about 32 million years after their origin. In a relatively small window of time, harpalines underwent rapid speciation. Harpalines have a relative high net diversification rate and increased cladogenesis in some regions of the clade. We did not see a significant decrease in diversification rate through time in the MCCR test, but a model of diversification with two shift points to lower diversification rates fit the harpaline lineage accumulation through time the best. Our results indicate harpalines are significantly more diverse and have higher diversification than their sistergroup. Instead of an immediate burst of explosive diversification, harpalines may have had a long "fuse" before major lineages diversified during the early Paleogene when other taxa such as mammals, birds, and some flowering plants were also rapidly diversifying.

  13. Phylogenetic diversification patterns and divergence times in ground beetles (Coleoptera: Carabidae: Harpalinae

    Directory of Open Access Journals (Sweden)

    Ober Karen A

    2010-08-01

    Full Text Available Abstract Background Harpalinae is a species rich clade of carabid beetles with many unusual morphological forms and ecological interactions. How this diversity evolved has been difficult to reconstruct, perhaps because harpalines underwent a rapid burst of diversification early in their evolutionary history. Here we investigate the tempo of evolution in harpalines using molecular divergence dating techniques and explore the rates of lineage accumulation in harpalines and their sister group. Results According to molecular divergence date estimates, harpalines originated in the mid Cretaceous but did not diversify extensively until the late Cretaceous or early Paleogene about 32 million years after their origin. In a relatively small window of time, harpalines underwent rapid speciation. Harpalines have a relative high net diversification rate and increased cladogenesis in some regions of the clade. We did not see a significant decrease in diversification rate through time in the MCCR test, but a model of diversification with two shift points to lower diversification rates fit the harpaline lineage accumulation through time the best. Conclusions Our results indicate harpalines are significantly more diverse and have higher diversification than their sistergroup. Instead of an immediate burst of explosive diversification, harpalines may have had a long "fuse" before major lineages diversified during the early Paleogene when other taxa such as mammals, birds, and some flowering plants were also rapidly diversifying.

  14. Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi

    Science.gov (United States)

    W. R. Jacobi; R. D. Koski; J. F. Negron

    2013-01-01

    Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophiostoma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus...

  15. Acorn consumption improves the immune response of the dung beetle Thorectes lusitanicus.

    Directory of Open Access Journals (Sweden)

    José R Verdú

    Full Text Available Thorectes lusitanicus, a typically coprophagous species is also actively attracted to oak acorns, consuming, burying them, and conferring ecophysiological and reproductive advantages to both the beetle and the tree. In this study, we explored the possible relation between diet shift and the health status of T. lusitanicus using a generalist entomopathogenic fungus (Metarhizium anisopliae as a natural pathogen. To measure the health condition and immune response of beetles, we analysed the protein content in the haemolymph, prophenoloxidase (proPO content, phenoloxidase (PO activity and mortality of beetles with diets based on either acorns or cow dung. Protein content, proPO levels and PO levels in the haemolymph of T. lusitanicus were found to be dependent on the type of diet. Furthermore, the beetles fed with acorns developed a more effective proPO-PO system than the beetles fed with cow dung. Furthermore, a significant decrease in mortality was observed when infected individuals were submitted to an acorn-based diet. In addition to enhancing an understanding of the relevance of dietary change to the evolutionary biology of dung beetles, these results provide a more general understanding of the ecophysiological implications of differential dietary selection in the context of fitness.

  16. Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity

    Science.gov (United States)

    Diego Juffe-Bignoli; Ian Harrison; Stuart HM Butchart; Rebecca Flitcroft; Virgilio Hermoso; Harry Jonas; Anna Lukasiewicz; Michele Thieme; Eren Turak; Heather Bingham; James Dalton; William Darwall; Marine Deguignet; Nigel Dudley; Royal Gardner; Jonathan Higgins; Ritesh Kumar; Simon Linke; G Randy Milton; Jamie Pittock; Kevin G Smith; Arnout van Soesbergen

    2016-01-01

    1. The Strategic Plan for Biodiversity (2011–2020), adopted at the 10th meeting of the Conference of the Parties to the Convention on Biological Diversity, sets 20 Aichi Biodiversity Targets to be met by 2020 to address biodiversity loss and ensure its sustainable and equitable use. Aichi Biodiversity Target 11 describes what an improved conservation network would look...

  17. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition.

    Directory of Open Access Journals (Sweden)

    Irene Piccini

    Full Text Available Cattle farming is a major source of greenhouse gases (GHGs. Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species, we ran six experimental treatments (four monospecific and two mixed and two controls (one with dung but without beetles, and one with neither dung nor beetles. In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux-an effect potentially traceable to the species' nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%. As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems.

  18. Chemical Strategies of the Beetle Metoecus Paradoxus, Social Parasite of the Wasp Vespula Vulgaris.

    Science.gov (United States)

    Van Oystaeyen, Annette; van Zweden, Jelle S; Huyghe, Hilde; Drijfhout, Falko; Bonckaert, Wim; Wenseleers, Tom

    2015-12-01

    The parasitoid beetle Metoecus paradoxus frequently parasitizes colonies of the common wasp, Vespula vulgaris. It penetrates a host colony as a larva that attaches itself onto a foraging wasp's body and, once inside the nest, it feeds on a wasp larva inside a brood cell and then pupates. Avoiding detection by the wasp host is crucial when the beetle emerges. Here, we tested whether adult M. paradoxus beetles avoid detection by mimicking the cuticular hydrocarbon profile of their host. The beetles appear to be chemically adapted to their main host species, the common wasp, because they share more hydrocarbon compounds with it than they do with the related German wasp, V. germanica. In addition, aggression tests showed that adult beetles were attacked less by common wasp workers than by German wasp workers. Our results further indicated that the host-specific compounds were, at least partially, produced through recycling of the prey's hydrocarbons, and were not acquired through contact with the adult host. Moreover, the chemical profile of the beetles shows overproduction of the wasp queen pheromone, nonacosane (n-C29), suggesting that beetles might mimic the queen's pheromonal bouquet.

  19. 77 FR 31720 - Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York

    Science.gov (United States)

    2012-05-30

    .... APHIS-2012-0003] Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York AGENCY...: We are amending the Asian longhorned beetle regulations to make changes to the list of quarantined... the artificial spread of Asian longhorned beetle to noninfested areas of the United States and to...

  20. Effects of available water on growth and competition of southern pine beetle associated fungi

    Science.gov (United States)

    Kier D. Klepzig; J. Flores-Otero; R.W. Hofstetter; M.P. Ayers

    2004-01-01

    Competitive interactions among bark beetle associated fungi are potentially influenced by abiotic factors. Water potential, in particular, undergoes marked changes over the course of beetle colonization of tree hosts. To investigate the impact of water potential on competition among three southern pine beetle associated fungi, Ophiostoma minus,

  1. Streetlights attract a broad array of beetle species

    Directory of Open Access Journals (Sweden)

    Bruno Augusto Souza de Medeiros

    2017-01-01

    Full Text Available Light pollution on ecosystems is a growing concern, and knowledge about the effects of outdoor lighting on organisms is crucial to understand and mitigate impacts. Here we build up on a previous study to characterize the diversity of all beetles attracted to different commonly used streetlight set ups. We find that lights attract beetles from a broad taxonomic and ecological spectrum. Lights that attract a large number of insect individuals draw an equally high number of insect species. While there is some evidence for heterogeneity in the preference of beetle species to different kinds of light, all species are more attracted to some light radiating ultraviolet. The functional basis of this heterogeneity, however, is not clear. Our results highlight that control of ultraviolet radiation in public lighting is important to reduce the number and diversity of insects attracted to lights. Keywords: Lighting, Coleoptera, Light pollution, Insects, Ultraviolet

  2. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Directory of Open Access Journals (Sweden)

    De Fine Licht Henrik H

    2012-06-01

    Full Text Available Abstract Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily

  3. Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil

    Directory of Open Access Journals (Sweden)

    Philipp Werner Hopp

    2011-06-01

    Full Text Available Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil. To evaluate the reliability of data obtained by Winkler extraction in Atlantic forest sites in southern Brazil, we studied litter beetle assemblages in secondary forests (5 to 55 years after abandonment and old-growth forests at two seasonally different points in time. For all regeneration stages, species density and abundance were lower in April compared to August; but, assemblage composition of the corresponding forest stages was similar in both months. We suggest that sampling of small litter inhabiting beetles at different points in time using the Winkler technique reveals identical ecological patterns, which are more likely to be influenced by sample incompleteness than by differences in their assemblage composition. A strong relationship between litter quantity and beetle occurrences indicates the importance of this variable for the temporal species density pattern. Additionally, the sampled beetle material was compared with beetle data obtained with pitfall traps in one old-growth forest. Over 60% of the focal species captured with pitfall traps were also sampled by Winkler extraction in different forest stages. Few beetles with a body size too large to be sampled by Winkler extraction were only sampled with pitfall traps. This indicates that the local litter beetle fauna is dominated by small species. Hence, being aware of the exclusion of large beetles and beetle species occurring during the wet season, the Winkler method reveals a reliable picture of the local leaf litter beetle community.

  4. Urban soil biomonitoring by beetle and earthworm populations

    Energy Technology Data Exchange (ETDEWEB)

    Janossy, L.; Bitto, A. [ELTE Univ., Budapest (Hungary)

    1995-12-31

    Two macro invertebrate groups were chosen for biomonitoring environmental changes. The beetle population was pitfall trapped (five month in 1994) at five downtown sites (parks) of Budapest and in a hilly original woodland as a control site 33km NW of Budapest. Earthworms were collected by using formol solution. Five heavy metals were measured (Pb, Co, Hg, Zn, Cu) in the upper soil layer at the same sampling sites. Pb, Hg, Zn and Cu was over the tolerable limit in a park near the railway, extreme high Pb (530 mg/kg dry soil) and Zn content was measured in one park. Roads are also salted in wintertime. The number of beetle species in the downtown parks varied 10 to 22 (226--462 specimen). Near to the edge of the city up to 45 beetle species were found in a park with 1,027 specimen. In the woodland area 52 beetle species with 1,061 specimen were found. Less dominance and higher specific diversity showed the direction from downtown to woodland. Only 2 or 3 cosmopolitan earthworm species existed in downtown parks with 30--35 specimen/m{sup 2}, in the control woodland area 7 mostly endemic earthworm species were found with 74 specimens/m{sup 2}. But earthworm biomass was higher in three well fertilized parks (43--157 g/m{sup 2}), than in the original woodland (25-g/m{sup 2}). The beetle populations seem to be good tools for biomonitoring. Earthworms are susceptible to environmental changes but they also strongly depend on the leaf litter and the organic matter of the soil. The change in the animal populations is the result of summarized environmental impacts in such a big city like Budapest.

  5. Plant cells which aid in pollen digestion within a beetle's gut.

    Science.gov (United States)

    Rickson, Fred R; Cresti, M; Beach, James H

    1990-03-01

    The peach palm, Bactris gasipaes H.B.K., in Costa Rica, possesses unusual trichomes on the inflorescence epidermal surface. Certain cells of the trichome possess a thick, highly lignified cell wall and are consumed by the beetle Cyclocephala amazona L. before it ingests pollen from the same inflorescence. Chemical analyses show the trichome to possess no nutritive value. The thick-walled trichome cells pass intact through the beetle's digestive system, while ingested pollen is crushed. We suggest that the specialized plant cells function as gastroliths in the beetle's digestive tract.

  6. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles.

    Science.gov (United States)

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C

    2016-04-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments.

  7. A comparison of outbreak dynamics of the spruce bark beetle in Sweden and the mountain pine beetle in Canada (Curculionidae: Scolytinae)

    OpenAIRE

    Kärvemo, Simon; Schroeder, Leif Martin

    2010-01-01

    The European spruce bark beetle (Ips typographus) and the North American mountain pine beetle (Dendroctonus ponderosae) may kill millions of trees during outbreak periods. Both species have also experienced large outbreaks in recent years. But the magnitude of the outbreaks of D. ponderosae is much larger. In this review we compare the outbreak history of I. typographus in Sweden with D. ponderosae in British Columbia in Canada. We also discuss some possible explanations for the difference in...

  8. Overwintering biology and tests of trap and relocate as a conservation measure for burying beetles.

    Science.gov (United States)

    2015-01-01

    Burying beetles are carrion beetles and utilize dead animal carcasses for feeding : and reproductive efforts. They assist with decomposition, prevent the spread of disease, : and reduce the number of pest species. The largest species of carrion beetl...

  9. Forecasting the future of biodiversity

    DEFF Research Database (Denmark)

    Fitzpatrick, M. C.; Sanders, Nate; Ferrier, Simon

    2011-01-01

    , but their application to forecasting climate change impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North America derived from ensembles of single-species models to those from a multi-species modeling approach, Generalized Dissimilarity Modeling (GDM...... climate change impacts on biodiversity....

  10. Scorpion biodiversity and interslope divergence at "evolution canyon", lower Nahal Oren microsite, Mt. Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Shmuel Raz

    Full Text Available BACKGROUND: Local natural laboratories, designated by us as the "Evolution Canyon" model, are excellent tools to study regional and global ecological dynamics across life. They present abiotic and biotic contrasts locally, permitting the pursuit of observations and experiments across diverse taxa sharing sharp microecological subdivisions. Higher solar radiation received by the "African savannah-like" south-facing slopes (AS in canyons north of the equator than by the opposite "European maquis-like" north-facing slopes (ES is associated with higher abiotic stress. Scorpions are a suitable taxon to study interslope biodiversity differences, associated with the differences in abiotic factors (climate, drought, due to their ability to adapt to dry environments. METHODOLOGY/PRINCIPAL FINDINGS: Scorpions were studied by the turning stone method and by UV light methods. The pattern observed in scorpions was contrasted with similar patterns in several other taxa at the same place. As expected, the AS proved to be significantly more speciose regarding scorpions, paralleling the interslope patterns in taxa such as lizards and snakes, butterflies (Rhopalocera, beetles (families Tenebrionidae, Dermestidae, Chrysomelidae, and grasshoppers (Orthoptera. CONCLUSIONS/SIGNIFICANCE: Our results support an earlier conclusion stating that the homogenizing effects of migration and stochasticity are not able to eliminate the interslope intra- and interspecific differences in biodiversity despite an interslope distance of only 100 m at the "EC" valley bottom. In our opinion, the interslope microclimate selection, driven mainly by differences in insolance, could be the primary factor responsible for the observed interslope pattern.

  11. Scorpion biodiversity and interslope divergence at "evolution canyon", lower Nahal Oren microsite, Mt. Carmel, Israel.

    Science.gov (United States)

    Raz, Shmuel; Retzkin, Sion; Pavlícek, Tomás; Hoffman, Adam; Kimchi, Hagay; Zehavi, Dan; Beiles, Avigdor; Nevo, Eviatar

    2009-01-01

    Local natural laboratories, designated by us as the "Evolution Canyon" model, are excellent tools to study regional and global ecological dynamics across life. They present abiotic and biotic contrasts locally, permitting the pursuit of observations and experiments across diverse taxa sharing sharp microecological subdivisions. Higher solar radiation received by the "African savannah-like" south-facing slopes (AS) in canyons north of the equator than by the opposite "European maquis-like" north-facing slopes (ES) is associated with higher abiotic stress. Scorpions are a suitable taxon to study interslope biodiversity differences, associated with the differences in abiotic factors (climate, drought), due to their ability to adapt to dry environments. Scorpions were studied by the turning stone method and by UV light methods. The pattern observed in scorpions was contrasted with similar patterns in several other taxa at the same place. As expected, the AS proved to be significantly more speciose regarding scorpions, paralleling the interslope patterns in taxa such as lizards and snakes, butterflies (Rhopalocera), beetles (families Tenebrionidae, Dermestidae, Chrysomelidae), and grasshoppers (Orthoptera). Our results support an earlier conclusion stating that the homogenizing effects of migration and stochasticity are not able to eliminate the interslope intra- and interspecific differences in biodiversity despite an interslope distance of only 100 m at the "EC" valley bottom. In our opinion, the interslope microclimate selection, driven mainly by differences in insolance, could be the primary factor responsible for the observed interslope pattern.

  12. Tenebrio beetles use magnetic inclination compass

    Science.gov (United States)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  13. Asymmetric hindwing foldings in rove beetles.

    Science.gov (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  14. Effectiveness of insecticide-incorporated bags to control stored-product beetles

    Science.gov (United States)

    Adults of seven stored-product beetle species were exposed on the inside and outside surfaces of polypropylene polymer bags incorporated with the insecticide deltamethrin (approx. concentration of 3,000 ppm; ZeroFly® Storage Bags (3g/kg). Beetles were exposed for 60, 120, and 180 min, and 1, 3 and 5...

  15. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles

    OpenAIRE

    Dacke Marie; Nørgaard Thomas

    2010-01-01

    Abstract Background In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another ...

  16. Seasonal flight patterns of the Spruce bark beetle (Ips typographus) in Sweden

    OpenAIRE

    Öhrn, Petter

    2012-01-01

    The major bark beetle threat to Norway spruce (Picea abies (L.) Karst.) in Eurasia is the spruce bark beetle Ips typographus. Beetles cause damage after population build-up in defenseless trees. To minimize attacks, timely removal of these trees is important. This is practiced by clearing of wind throws and sanitation felling. Thus, knowledge about the region-specific flight pattern and voltinism of I. typographus is necessary for efficient pest management. This thesis focuses on the ...

  17. Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.

    Science.gov (United States)

    Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying

    2016-12-28

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. © 2016 The Author(s).

  18. Dung beetles eat acorns to increase their ovarian development and thermal tolerance.

    Directory of Open Access Journals (Sweden)

    José R Verdú

    Full Text Available Animals eat different foods in proportions that yield a more favorable balance of nutrients. Despite known examples of these behaviors across different taxa, their ecological and physiological benefits remain unclear. We identified a surprising dietary shift that confers ecophysiological advantages in a dung beetle species. Thorectes lusitanicus, a Mediterranean ecosystem species adapted to eat semi-dry and dry dung (dung-fiber consumers is also actively attracted to oak acorns, consuming and burying them. Acorn consumption appears to confer potential advantages over beetles that do not eat acorns: acorn-fed beetles showed important improvements in the fat body mass, hemolymph composition, and ovary development. During the reproductive period (October-December beetles incorporating acorns into their diets should have greatly improved resistance to low-temperature conditions and improved ovarian development. In addition to enhancing the understanding of the relevance of dietary plasticity to the evolutionary biology of dung beetles, these results open the way to a more general understanding of the ecophysiological implications of differential dietary selection on the ecology and biogeography of these insects.

  19. Impact of planting date on sunflower beetle (Coleoptera: Chrysomelidae) infestation, damage, and parasitism in cultivated sunflower.

    Science.gov (United States)

    Charlet, Laurence D; Knodel, Janet J

    2003-06-01

    The sunflower beetle, Zygogramma exclamationis (F.), is the major defoliating pest of sunflower (Helianthus annuus L.). Planting date was evaluated as a potential management tool in a variety of production regions throughout North Dakota from 1997 to 1999, for its impact on sunflower beetle population density of both adults and larvae, defoliation caused by both feeding stages, seed yield, oil content, and larval parasitism in cultivated sunflower. Results from this 3-yr study revealed that sunflower beetle adult and larval populations decreased as planting date was delayed. Delayed planting also reduced defoliation from adult and larval feeding, which is consistent with the lower numbers of the beetles present in the later seeded plots. Even a planting delay of only 1 wk was sufficient to significantly reduce feeding damage to the sunflower plant. Yield reduction caused by leaf destruction of the sunflower beetle adults and larvae was clearly evident in the first year of the study. The other component of sunflower yield, oil content, did not appear to be influenced by beetle feeding. The tachinid parasitoid, Myiopharus macellus (Rheinhard), appeared to be a significant mortality factor of sunflower beetle larvae at most locations regardless of the dates of planting, and was able to attack and parasitize the beetle at various larval densities. The results of this investigation showed the potential of delayed planting date as an effective integrated pest management tactic to reduce sunflower beetle adults, larvae, and their resulting defoliation. In addition, altering planting dates was compatible with biological control of the beetle, because delaying the planting date did not reduce the effectiveness of the parasitic fly, M. macellus, which attacks the sunflower beetle larvae.

  20. Environmental filtering is the main assembly rule of ground beetles in the forest and its edge but not in the adjacent grassland.

    Science.gov (United States)

    Magura, Tibor; Lövei, Gábor L

    2017-07-04

    In a fragmented landscape, transitional zones between neighboring habitats are common, and our understanding of community organizational forces across such habitats is important. Edge studies are numerous, but the majority of them utilize information on species richness and abundance. Abundance and taxonomic diversity, however, provide little information on the functioning and phylogeny of the co-existing species. Combining the evaluation of their functional and phylogenetic relationships, we aimed to assess whether ground beetle assemblages are deterministically or stochastically structured along grassland-forest gradients. Our results showed different community assembly rules on opposite sides of the forest edge. In the grassland, co-occurring species were functionally and phylogenetically not different from the random null model, indicating a random assembly process. Contrary to this, at the forest edge and the interior, co-occurring species showed functional and phylogenetic clustering, thus environmental filtering was the likely process structuring carabid assemblages. Community assembly in the grassland was considerably affected by asymmetrical species flows (spillover) across the forest edge: more forest species penetrated into the grassland than open-habitat and generalist species entered into the forest. This asymmetrical species flow underlines the importance of the filter function of forest edges. As unfavorable, human-induced changes to the structure, composition and characteristics of forest edges may alter their filter function, edges have to be specifically considered during conservation management. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  1. Selective‐logging and oil palm: multitaxon impacts, biodiversity indicators, and trade‐offs for conservation planning.

    Science.gov (United States)

    Edwards, David P; Magrach, Ainhoa; Woodcock, Paul; Ji, Yinqiu; Lim, Norman T -L; Edwards, Felicity A; Larsen, Trond H; Hsu, Wayne W; Benedick, Suzan; Khen, Chey Vun; Chung, Arthur Y C; Reynolds, Glen; Fisher, Brendan; Laurance, William F; Wilcove, David S; Hamer, Keith C; Yu, Douglas W

    Strong global demand for tropical timber and agricultural products has driven large-scale logging and subsequent conversion of tropical forests. Given that the majority of tropical landscapes have been or will likely be logged, the protection of biodiversity within tropical forests thus depends on whether species can persist in these economically exploited lands, and if species cannot persist, whether we can protect enough primary forest from logging and conversion. However, our knowledge of the impact of logging and conversion on biodiversity is limited to a few taxa, often sampled in different locations with complex land-use histories, hampering attempts to plan cost-effective conservation strategies and to draw conclusions across taxa. Spanning a land-use gradient of primary forest, once- and twice-logged forests, and oil palm plantations, we used traditional sampling and DNA metabarcoding to compile an extensive data set in Sabah, Malaysian Borneo for nine vertebrate and invertebrate taxa to quantify the biological impacts of logging and oil palm, develop cost-effective methods of protecting biodiversity, and examine whether there is congruence in response among taxa. Logged forests retained high species richness, including, on average, 70% of species found in primary forest. In contrast, conversion to oil palm dramatically reduces species richness, with significantly fewer primary-forest species than found on logged forest transects for seven taxa. Using a systematic conservation planning analysis, we show that efficient protection of primary-forest species is achieved with land portfolios that include a large proportion of logged-forest plots. Protecting logged forests is thus a cost-effective method of protecting an ecologically and taxonomically diverse range of species, particularly when conservation budgets are limited. Six indicator groups (birds, leaf-litter ants, beetles, aerial hymenopterans, flies, and true bugs) proved to be consistently good

  2. Letting the managers manage: analyzing capacity to conserve biodiversity in a cross-border protected area network

    Directory of Open Access Journals (Sweden)

    Sarah Clement

    2016-09-01

    Full Text Available Biodiversity loss is one of the most significant drivers of ecosystem change and is projected to continue at a rapid rate. While protected areas, such as national parks, are seen as important refuges for biodiversity, their effectiveness in stemming biodiversity decline has been questioned. Public agencies have a critical role in the governance of many such areas, but there are tensions between the need for these agencies to be more "adaptive" and their current operating environment. Our aim is to analyze how institutions enable or constrain capacity to conserve biodiversity in a globally significant cross-border network of protected areas, the Australian Alps. Using a novel conceptual framework for diagnosing biodiversity institutions, our research examined institutional adaptive capacity and more general capacity for conserving biodiversity. Several intertwined issues limit public agencies' capacity to fulfill their conservation responsibilities. Narrowly defined accountability measures constrain adaptive capacity and divert attention away from addressing key biodiversity outcomes. Implications for learning were also evident, with protected area agencies demonstrating successful learning for on-ground issues but less success in applying this learning to deeper policy change. Poor capacity to buffer political and community influences in managing significant cross-border drivers of biodiversity decline signals poor fit with the institutional context and has implications for functional fit. While cooperative federalism provides potential benefits for buffering through diversity, it also means protected area agencies have restricted authority to address cross-border threats. Restrictions on staff authority and discretion, as public servants, have further implications for deploying capacity. This analysis, particularly the possibility of fostering "ambidexterity" - creatively responding to political pressures in a way that also achieves a desirable

  3. Children prioritize virtual exotic biodiversity over local biodiversity.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Ballouard

    Full Text Available Environmental education is essential to stem current dramatic biodiversity loss, and childhood is considered as the key period for developing awareness and positive attitudes toward nature. Children are strongly influenced by the media, notably the internet, about biodiversity and conservation issues. However, most media focus on a few iconic, appealing, and usually exotic species. In addition, virtual activities are replacing field experiences. This situation may curb children knowledge and concerns about local biodiversity. Focusing our analyses on local versus exotic species, we examined the level of knowledge and the level of diversity of the animals that French schoolchildren are willing to protect, and whether these perceptions are mainly guided by information available in the internet. For that, we collected and compared two complementary data sets: 1 a questionnaire was administered to schoolchildren to assess their knowledge and consideration to protect animals, 2 an internet content analysis (i.e. Google searching sessions using keywords was performed to assess which animals are the most often represented. Our results suggest that the knowledge of children and their consideration to protect animal are mainly limited to internet contents, represented by a few exotic and charismatic species. The identification rate of local animals by schoolchildren was meager, suggesting a worrying disconnection from their local environment. Schoolchildren were more prone to protect "virtual" (unseen, exotic rather than local animal species. Our results reinforce the message that environmental education must also focus on outdoor activities to develop conservation consciousness and concerns about local biodiversity.

  4. Multiple glacial refugia of the low-dispersal ground beetle Carabus irregularis: molecular data support predictions of species distribution models.

    Directory of Open Access Journals (Sweden)

    Katharina Homburg

    Full Text Available Classical glacial refugia such as the southern European peninsulas were important for species survival during glacial periods and acted as sources of post-glacial colonisation processes. Only recently, some studies have provided evidence for glacial refugia north of the southern European peninsulas. In the present study, we combined species distribution models (SDMs with phylogeographic analyses (using mitochondrial DNA = mtDNA to investigate if the cold-adapted, stenotopic and flightless ground beetle species, Carabus irregularis, survived the Last Glacial Maximum (LGM in classical and/or other refugia. SDMs (for both a western European and for a Carpathian subgroup were calculated with MAXENT on the basis of 645 species records to predict current and past distribution patterns. Two mtDNA loci (CO1 and ND5, concatenated sequence length: 1785 bp were analyzed from 91 C. irregularis specimens to reconstruct the phylogeography of Central and eastern European populations and to estimate divergence times of the given lineages. Strong intra-specific genetic differentiation (inter-clade ΦST values ranged from 0.92 to 0.99 implied long-term isolation of major clades and subsclades. The high divergence between the nominate subspecies and the Carpathian subspecies C. i. montandoni points to two independent species rather than subspecies (K-2P distance 0.042 ± 0.004; supposed divergence of the maternal lineages dated back 1.6 to 2.5 million years BP differing not only morphologically but also genetically and ecologically from each other. The SDMs also inferred classical as well as other refugia for C. irregularis, especially north of the Alps, in southeastern Europe and in the Carpathians. The coincidences between the results of both methods confirm the assumption of multiple glacial refugia for the studied species and the usefulness of combining methodological approaches for the understanding of the history of low-dispersal insect species.

  5. Effectiveness of GAEC cross-compliance Standard 4.2c for biodiversity conservation in set-asides, part II (ground-dwelling Arthropods and Vertebrates

    Directory of Open Access Journals (Sweden)

    Marta Biaggini

    2016-02-01

    Full Text Available The MO.NA.CO. project has been set up to evaluate the effectiveness of some GAECs (Good Agricultural and Environmental Conditions through the institution of a monitoring network throughout the Italian territory. The present work deals with the evaluation of the Standard 4.2c, concerning biomass and biodiversity in set-asides, in relation to fauna conservation. Monitoring was performed in three areas, using the following indicators: ground-dwelling Arthropods identified at the order level, Coleoptera identified at the family level and Lacertids. Our results seem to indicate that a mild management of set-asides, consisting in mowing once a year (mid July in the examined areas, may enhance faunal diversity, above all Arthropod diversity. After mowing, the set-asides managed following Standard 4.2, hosted higher levels of Arthropod diversity and a more balanced faunistic composition in comparison to unmoved set-asides and arable lands. On the contrary, we did not find significant effects of mowing on lizard abundance. We also discussed some measures to mitigate the negative direct effects of mechanical mowing on fauna. 

  6. Chemical ecology and serendipity: Developing attractants for Florida ambrosia beetle pests

    Science.gov (United States)

    Two exotic ambrosia beetles have become established in southern Florida: Xyleborus glabratus, the redbay ambrosia beetle (RAB), and Euwallacea fornicatus, the tea shot hole borer (TSHB). Both pests vector pathogenic fungal symbionts; the former for laurel wilt and the latter for Fusarium dieback d...

  7. The tiger beetles (Coleoptera, Carabidae, Cicindelinae) of Israel and adjacent lands.

    Science.gov (United States)

    Matalin, Andrey V; Chikatunov, Vladimir I

    2016-01-01

    Based on field studies, museums collections and literature sources, the current knowledge of the tiger beetle fauna of Israel and adjacent lands is presented. In Israel eight species occur, one of them with two subspecies, while in the Sinai Peninsula nine species of tiger beetles are now known. In the combined regions seven genera from two tribes were found. The Rift Valley with six cicindelids species is the most specious region of Israel. Cylindera contorta valdenbergi and Cicindela javeti azari have localized distributions and should be considered regional endemics. A similarity analysis of the tiger beetles faunas of different regions of Israel and the Sinai Peninsula reveal two clusters of species. The first includes the Great Rift Valley and most parts of the Sinai Peninsula, and the second incorporates most regions of Israel together with Central Sinai Foothills. Five distinct adult phenological groups of tiger beetles can be distinguished in these two clusters: active all-year (three species), spring-fall (five species), summer (two species), spring-summer (one species) and spring (one species). The likely origins of the tiger beetle fauna of this area are presented. An annotated list and illustrated identification key of the Cicindelinae of Israel and adjacent lands are provided.

  8. Carcass Fungistasis of the Burying Beetle Nicrophorus nepalensis Hope (Coleoptera: Silphidae

    Directory of Open Access Journals (Sweden)

    Wenbe Hwang

    2013-01-01

    Full Text Available Our study investigated the fungistatic effects of the anal secretions of Nicrophorus nepalensis Hope on mouse carcasses. The diversity of fungi on carcasses was investigated in five different experimental conditions that corresponded to stages of the burial process. The inhibition of fungal growth on carcasses that were treated by mature beetles before burial was lost when identically treated carcasses were washed with distilled water. Compared with control carcasses, carcasses that were prepared, buried, and subsequently guarded by mature breeding pairs of beetles exhibited the greatest inhibition of fungal growth. No significant difference in fungistasis was observed between the 3.5 g and the 18 to 22 g guarded carcasses. We used the growth of the predominant species of fungi on the control carcasses, Trichoderma sp., as a biological indicator to examine differences in the fungistatic efficiency of anal secretions between sexually mature and immature adults and between genders. The anal secretions of sexually mature beetles inhibited the growth of Trichoderma sp., whereas the secretions of immature beetles did not. The secretions of sexually mature females displayed significantly greater inhibition of the growth of Trichoderma sp. than those of sexually mature males, possibly reflecting a division of labor in burying beetle reproduction.

  9. Bark beetle outbreaks in western North America: Causes and consequences

    Science.gov (United States)

    Bentz, Barbara; Logan, Jesse; MacMahon, James A.; Allen, Craig D.; Ayres, Matt; Berg, Edward E; Carroll, Allan; Hansen, Matt; Hicke, Jeff H.; Joyce, Linda A.; Macfarlane, Wallace; Munson, Steve; Negron, Jose; Paine, Tim; Powell, Jim; Raffa, Kenneth; Regniere, Jacques; Reid, Mary; Romme, Bill; Seybold, Steven J.; Six, Diana; Vandygriff, Jim; Veblen, Tom; White, Mike; Witcosky, Jeff; Wood, David J. A.

    2005-01-01

    Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded history.

  10. Prescribed burning supports grassland biodiversity - A multi-species study

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2017-04-01

    During ancient times, fire was an important factor shaping European landscapes. Nowadays, prescribed burning can be one of the most effective conservation tools for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. In a prescribed burning experiment, we studied the effects of fire on dry alkaline grasslands. We tested whether autumn prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in Hungary: in three sites, prescribed burning was applied in November 2011, while three sites remained unburnt. We studied the effects of fire on soil characteristics, plant biomass and on the vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soluble salt content increased significantly in the burnt sites, but soil pH, organic matter, potassium and phosphorous did not change. We found that prescribed fire had several positive effects from the nature conservation viewpoint. Diversity and the number of flowering shoots were higher, and the cover of the dominant grass was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control ones. Our findings suggest that prescribed burning fire did not harm arthropods; species-level analyses showed that out of the most abundant invertebrate species, the abundance of ten was not affected, one decreased and one increased after burning. Our findings highlight that mosaic prescribed fire is a viable management tool in open landscapes, because it supports plant diversity and does not threaten arthropods.

  11. Options for promoting high-biodiversity REDD+

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Steve; Mcnally, Richard; Grieg-Gran, Maryanne; Roe, Dilys; Mohammed, Essam Yassin

    2011-11-15

    International climate and biodiversity conventions agree that to be effective in the long term, strategies to reduce emissions from deforestation, forest degradation, conservation and enhancement of forest carbon stocks, and sustainable forest management (REDD+), must not undermine biodiversity. But how do countries achieve 'high-biodiversity REDD+' in practice? At a global level, options include immediate policy strengthening in international negotiations; promotion of co-benefit standards; and financial incentives and preferences for buying countries. At a national level, developing countries can also promote high-biodiversity REDD+ through more coherent policies; integrated planning; regulatory and economic instruments; and improved monitoring of biodiversity impacts.

  12. Caribbean landscapes and their biodiversity

    Science.gov (United States)

    A. E. Lugo; E. H. Helmer; E. Santiago Valentín

    2012-01-01

    Both the biodiversity and the landscapes of the Caribbean have been greatly modified as a consequence of human activity. In this essay we provide an overview of the natural landscapes and biodiversity of the Caribbean and discuss how human activity has affected both. Our Caribbean geographic focus is on the insular Caribbean and the biodiversity focus is on the flora,...

  13. Effects of Deer Grazing on Vegetation and Ground-Dwelling Insects in a Larch Forest in Okutama, Western Tokyo

    Directory of Open Access Journals (Sweden)

    Hodaka Yamada

    2015-01-01

    Full Text Available Sika deer (Cervus nippon have experienced a rapid increase in the Japanese archipelago. Although the effects of deer grazing have been widely studied, the indirect effects have received little attention. Using an eight-year-old deer exclosure in western Tokyo (Japan, we studied the direct effects on plants and the indirect effects on insects and microenvironments. Plant biomass was 14 times higher inside the exclosure than outside. Shrubs (e.g., Aralia elata and Hydrangea paniculata and trees (e.g., Symplocos sawafutagi and Clethra barbinervis were more abundant inside, whereas only unpalatable trees in poor condition grew outside (e.g., Pterostyrax hispida and Cynanchum caudatum. In the summer months, the maximum temperature was 8–10°C higher outside the exclosure and humidity was lower. Soil movement was 80 times more pronounced outside than inside. These results suggest that the abiotic environment became less stable for ground-dwelling insects. Carabid beetles were less abundant outside than inside, suggesting that deer grazing reduced plants and subsequently lowered habitat quality for these beetles. In contrast, carrion beetles, dung beetles, and camel crickets were more abundant outside. The increase in these insects is attributed to the availability of deer feces and carcasses and is a direct effect of deer presence.

  14. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch).

    Science.gov (United States)

    Saremba, Brett M; Tymm, Fiona J M; Baethke, Kathy; Rheault, Mark R; Sherif, Sherif M; Saxena, Praveen K; Murch, Susan J

    2017-05-04

    American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses.

  15. Biodiversity monitoring in Europe: the EU FP7 EBONE project. European biodiversity observation NEtwork

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2008-09-01

    Full Text Available submission Presentation Poster presentation A) Title Biodiversity Monitoring in Europe: The EU FP7 EBONE project European Biodiversity Observation NEtwork B) Short title EBONE - European Biodiversity Observation NEtwork C) Author(s) Vogel, M. (1... stream_source_info Vogel_2008.pdf.txt stream_content_type text/plain stream_size 3055 Content-Encoding UTF-8 stream_name Vogel_2008.pdf.txt Content-Type text/plain; charset=UTF-8 BIOTA AFRICA Congress 2008 Abstract...

  16. Pheromones in White Pine Cone Beetle, Conophthorus coniperdu (Schwarz) (Coleoptera: Scolytidae)

    Science.gov (United States)

    Goran Birgersson; Gary L. DeBarr; Peter de Groot; Mark J. Dalusky; Harold D. Pierce; John H. Borden; Holger Meyer; Wittko Francke; Karl E. Espelie; C. Wayne Berisford

    1995-01-01

    Female white pine cone beetles, Conophrhorus coniperda, attacking second-year cones of eastern white pine, Pinus strobus L., produced a sex-specific pheromone that attracted conspecific males in laboratory bioassays and to field traps. Beetle response was enhanced by host monoterpenes. The female-produced compound was identified in...

  17. Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics.

    Science.gov (United States)

    Jeltsch, Florian; Bonte, Dries; Pe'er, Guy; Reineking, Björn; Leimgruber, Peter; Balkenhol, Niko; Schröder, Boris; Buchmann, Carsten M; Mueller, Thomas; Blaum, Niels; Zurell, Damaris; Böhning-Gaese, Katrin; Wiegand, Thorsten; Eccard, Jana A; Hofer, Heribert; Reeg, Jette; Eggers, Ute; Bauer, Silke

    2013-01-01

    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.

  18. Hidden in Plain sight: synthetic pheromone misleads beetles, protects trees

    Science.gov (United States)

    Paul Meznarich; Robert Progar

    2015-01-01

    In the last decade, pine forests throughout much of the western United States have been ravaged by the mountain pine beetle (Dendroctonus ponderosae). This bark beetle is native to the United States and has been responsible for massive tree kills in the past. The current outbreak, however, has been notably severe and wide ranging and the effects have been more dramatic...

  19. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available Lady beetles (Coleoptera: Coccinellidae prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L., Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas, Coleomegilla maculata (De Geer, Cycloneda munda (Say, and Olla v-nigrum (Mulsant were found in sorghum over both years. Lady beetle compositions in sorghum and cotton and in yellow pyramidal traps were similar. For both years, density of lady beetles generally was higher on cotton with sorghum than on control cotton. Our results indicate that sorghum was a source of lady beetles in cotton, and thus incorporation of a sorghum habitat in farmscapes with cotton has great potential to enhance biocontrol of insect pests in cotton.

  20. Biodiversity conservation in agricultural landscapes

    OpenAIRE

    Josefsson, Jonas

    2015-01-01

    Agricultural industrialization alters rural landscapes in Europe, causing large-scale and rapid loss of important biodiversity. The principal instruments to protect farmland biodiversity are various agri-environmental measures (AEMs) in the EU Common Agricultural Policy (CAP). However, growing awareness of shortcomings to CAP biodiversity integration prompts examination of causes and potential solutions. This thesis assesses the importance of structural heterogeneity of crop and non-crop habi...

  1. Making the case for biodiversity in South Africa: Re-framing biodiversity communications

    Directory of Open Access Journals (Sweden)

    Kristal Maze

    2016-12-01

    Conclusion: Based on the findings, a communications strategy known as ‘Making the case for biodiversity’ was developed that re-framed the economic, emotional and practical value propositions for biodiversity. The communications strategy has already resulted in greater political and economic attention towards biodiversity in South Africa.

  2. Breaking boundaries for biodiversity : expanding the policy agenda to halt biodiversity loss

    NARCIS (Netherlands)

    Veen, M.P.; Sanders, M.E.; Tekelenburg, A.; Gerritsen, A.L.; Lörzing, J.A.; Brink, Th.

    2010-01-01

    Our assessment from the perspective of the Netherlands, a country in the temperate zone, showed a slightly positive picture, in line with the overall results for this zone. The loss of biodiversity in the Netherlands has been slowed down, but the European target – halting the loss of biodiversity

  3. Longevity and viability of Taenia solium eggs in the digestive system of the beetle Ammophorus rubripes.

    Science.gov (United States)

    Gomez-Puerta, Luis Antonio; Lopez-Urbina, Maria Teresa; Garcia, Hector Hugo; Gonzalez, Armando Emiliano

    2014-03-01

    The present study evaluated the capacity of Ammophorus rubripes beetles to carry Taenia solium eggs, in terms of duration and viability of eggs in their digestive system. One hundred beetles were distributed into five polyethylene boxes, and then they were infected with T. solium eggs. Gravid proglottids of T. solium were crushed and then mixed with cattle feces. One gram of this mixture was placed in each box for 24 hours, after which each group of beetles was transferred into a new clean box. Then, five beetles were dissected every three days. Time was strongly associated with viability (r=0.89; PTaenia solium eggs were present in the beetle's digestive system for up to 39 days (13th sampling day out of 20), gradually reducing in numbers and viability, which was 0 on day 36 post-infection. Egg viability was around 40% up to day 24 post-infection, with a median number of eggs of 11 per beetle at this time. Dung beetles may potentially contribute towards dispersing T. solium eggs in endemic areas.

  4. Biodiversity in the Anthropocene: prospects and policy

    Science.gov (United States)

    Mace, Georgina M.; Mouillot, David; Vause, James; Walpole, Matt

    2016-01-01

    Meeting the ever-increasing needs of the Earth’s human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum—as well as opposition—is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem’s long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify ‘biodiversity services’ in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. PMID:27928040

  5. Biodiversity in the Anthropocene: prospects and policy.

    Science.gov (United States)

    Seddon, Nathalie; Mace, Georgina M; Naeem, Shahid; Tobias, Joseph A; Pigot, Alex L; Cavanagh, Rachel; Mouillot, David; Vause, James; Walpole, Matt

    2016-12-14

    Meeting the ever-increasing needs of the Earth's human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum-as well as opposition-is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem's long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify 'biodiversity services' in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. © 2016 The Author(s).

  6. Relationship between biodiversity and agricultural production

    OpenAIRE

    Brunetti, Ilaria; Tidball, Mabel; Couvet, Denis

    2018-01-01

    Agriculture is one of the main causes of biodiversity loss. In this work we model the interdependent relationship between biodiversity and agriculture on a farmed land, supposing that, while agriculture has a negative impact on biodiversity, the latter can increase agricultural production. Farmers act as myopic agents, who maximize their instantaneous profit without considering the negative effects of their practice on the evolution of biodiversity. We find that a tax on inputs can have a pos...

  7. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    Science.gov (United States)

    Navarro-Perez, Moramay; Tidball, Keith G.

    2012-01-01

    Biodiversity conservation has increasingly gained recognition in national and international agendas. The Convention on Biological Diversity (CBD) has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations. Nearly 20 years after its inception, results are not as expected, as shown in the…

  8. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    Science.gov (United States)

    Han, Xuemei; Smyth, Regan L; Young, Bruce E; Brooks, Thomas M; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H M; Larsen, Frank W; Hamilton, Healy; Hansen, Matthew C; Turner, Will R

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the protection of

  9. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    Directory of Open Access Journals (Sweden)

    Xuemei Han

    Full Text Available Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate, state of species (Red List Index, conservation response (protection of key biodiversity areas, and benefits to human populations (freshwater provision. Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the

  10. A Biodiversity Indicators Dashboard: Addressing Challenges to Monitoring Progress towards the Aichi Biodiversity Targets Using Disaggregated Global Data

    Science.gov (United States)

    Han, Xuemei; Smyth, Regan L.; Young, Bruce E.; Brooks, Thomas M.; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H. M.; Larsen, Frank W.; Hamilton, Healy; Hansen, Matthew C.; Turner, Will R.

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's “Aichi Targets”. These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity “dashboard” – a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the

  11. Evidence of an aggregation pheromone in the flea beetle,Phyllotreta Cruciferae (Goeze) (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Peng, C; Weiss, M J

    1992-06-01

    Laboratory olfactometer bioassays and field trapping experiments showed that the flea beetle,Phyllotreta cruciferae (Goeze), was highly attracted by oilseed rape(Brassica napus L.) when flea beetles were on the plant. This attraction was mediated by a flea beetle-produced aggregation pheromone based upon: (1) Oilseed rape damaged mechanically, or byP. cruciferae, or by diamondback moth,Plutella xylostella (L.), did not attractP. cruciferae. (2) Contact with the plants or feeding was required for the production of aggregation pheromone because oilseed rape alone was not attractive when separated from flea beetles by a screen. (3) Equal numbers of males and females were attracted.

  12. Economic growth, biodiversity loss and conservation effort.

    Science.gov (United States)

    Dietz, Simon; Adger, W Neil

    2003-05-01

    This paper investigates the relationship between economic growth, biodiversity loss and efforts to conserve biodiversity using a combination of panel and cross section data. If economic growth is a cause of biodiversity loss through habitat transformation and other means, then we would expect an inverse relationship. But if higher levels of income are associated with increasing real demand for biodiversity conservation, then investment to protect remaining diversity should grow and the rate of biodiversity loss should slow with growth. Initially, economic growth and biodiversity loss are examined within the framework of the environmental Kuznets hypothesis. Biodiversity is represented by predicted species richness, generated for tropical terrestrial biodiversity using a species-area relationship. The environmental Kuznets hypothesis is investigated with reference to comparison of fixed and random effects models to allow the relationship to vary for each country. It is concluded that an environmental Kuznets curve between income and rates of loss of habitat and species does not exist in this case. The role of conservation effort in addressing environmental problems is examined through state protection of land and the regulation of trade in endangered species, two important means of biodiversity conservation. This analysis shows that the extent of government environmental policy increases with economic development. We argue that, although the data are problematic, the implications of these models is that conservation effort can only ever result in a partial deceleration of biodiversity decline partly because protected areas serve multiple functions and are not necessarily designated to protect biodiversity. Nevertheless institutional and policy response components of the income biodiversity relationship are important but are not well captured through cross-country regression analysis.

  13. What is marine biodiversity? Towards common concepts and their implications for assessing biodiversity status

    Directory of Open Access Journals (Sweden)

    Sabine Cochrane

    2016-12-01

    Full Text Available ‘Biodiversity’ is one of the most common keywords used in environmental sciences, spanning from research to management, nature conservation and consultancy. Despite this, our understanding of the underlying concepts varies greatly, between and within disciplines as well as among the scientists themselves. Biodiversity can refer to descriptions or assessments of the status and condition of all or selected groups of organisms, from the genetic variability, to the species, populations, communities, and ecosystems. However, a concept of biodiversity also must encompass understanding the interactions and functions on all levels from individuals up to the whole ecosystem, including changes related to natural and anthropogenic environmental pressures. While biodiversity as such is an abstract and relative concept rooted in the spatial domain, it is central to most international, European and national governance initiatives aimed at protecting the marine environment. These rely on status assessments of biodiversity which typically require numerical targets and specific reference values, to allow comparison in space and/or time, often in association with some external structuring factors such as physical and biogeochemical conditions. Given that our ability to apply and interpret such assessments requires a solid conceptual understanding of marine biodiversity, here we define this and show how the abstract concept can and needs to be interpreted and subsequently applied in biodiversity assessments.

  14. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    International Nuclear Information System (INIS)

    Bright, B C; Hicke, J A; Hudak, A T

    2012-01-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40–50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75–89% of the study area had >25% AGC in killed trees and 3–6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale. (letter)

  15. Management of Chinese Rose Beetle (Adoretus sinicus) Adults Feeding on Cacao (Theobroma cacao) Using Insecticides

    Science.gov (United States)

    Spafford, Helen; Ching, Alexander; Manley, Megan; Hardin, Chelsea; Bittenbender, Harry

    2016-01-01

    The Chinese rose beetle (Adoretus sinicus Burmeister (Coleoptera: Scarabaeidae)) is an introduced, widely-established pest in Hawai’i. The adult beetles feed on the leaves of cacao (Theobroma cacao L.), which can lead to defoliation and even death of young trees. We evaluated the impact of five commercially available products with different active ingredients (imidacloprid, azadirachtin, Beauveria bassiana (Bals.-Criv.) Vuill., kaolin clay, and pyrethrin) and the presence or absence of weed mat cover in reducing adult beetle feeding on sapling cacao in the field. The use of weed mat cover reduced feeding damage compared to the untreated control, as did foliar application of imidacloprid, azadirachtin, and B. bassiana. In the laboratory, field-collected adult beetles were presented cacao leaf samples dipped in one of the five products and compared to a control. Beetles exposed to pyrethrin died rapidly. Among the other treatments, only exposure to imidacloprid significantly reduced survival relative to the control. Beetles fed very little on leaf samples with azadirachtin but their longevity was not significantly reduced. Imidacloprid, azadirachtin, and weed mat application had the most promise for reducing adult Chinese rose beetle feeding damage in young cacao and deserve further investigation for successful management of this significant pest. PMID:27348004

  16. European Biodiversity Observation Network – EBONE

    NARCIS (Netherlands)

    Halada, L.; Jongman, R.H.G.; Gerard, F.; Whittaker, L.; Bunce, R.G.H.; Bauch, B.; Schmeller, D.S.

    2009-01-01

    EBONE (European Biodiversity Observation Network) is a project developing a system of biodiversity observation at regional, national and European levels as a contribution to European reporting on biodiversity. The project focuses on GEO (Group of Earth Observations) task BI 07-01 to unify many of

  17. Detection Survey of Khapra Beetle in Stored Agricultural Products in Central Java

    Directory of Open Access Journals (Sweden)

    Suciati Hadi Wuryaningsih

    2009-07-01

    Full Text Available Khapra beetle, Trogoderma granarium Evert (Celeoptera: Dermestidae entered Central Java together with importation of stored products four decades ago. A survey was conducted to detect whether the Kaphra beetle existed in Central Java after they had been fumigated during commodity arrival. If the Kaphra beetle is absent, the data could be treated as the starting point toward declaring a pest free area (PFA of Kaphra beetle in Central Java. The survey employed the procedure established in Australia, except this survey lasted for 11 months starting from April 2008 to February 2009. Insect traps (Trécé Incorporation, Oklahoma, USA were placed in eight sites distributed in six districts identified as high risk for Kaphra beetle. The traps were substituted following the label. The traps were checked every 2–4 weeks making the total observations varying from 18–24 times, except one site (eight times. No Kaphra beetle was observed during this detection survey. This finding strongly suggests that Kaphra beetle is not present in Central Java. Survey should be continued to collect data sufficient to declare PFA of Kaphra beetle.   KumbangKhapra,Trogoderma granarium Evert (Celeoptera;Dermestidae masuk ke Jawa Tengah bersama sama dengan produk impor empat dekade lalu. Survei deteksi ini dilakukan untuk mendeteksi apakah kumbang Kaphra masih ada di Jawa Tengah setelah dilakukan fumigasi sejak kedatangannya. Jika kumbang Kaphra sudah tidak ada, data tersebut digunakan sebagai langkah awal penetapan area bebas hama (Pest FreeArea/PFA kumbang Kaphra di JawaTengah. Survei menggunakan prosedur yang telah ditetapkan di Australia, yang dilakukan selama 11 bulan mulai April 2008 hingga Februari 2009. Perangkap serangga (produk dari Trécé Incorporation, Oklahoma, USA diletakkan di delapan tempat yang tersebar di enam Kabupaten/kota yang diidentifikasi sebagai daerah berisiko tinggi terhadap keberadaan kumbang Kaphra. Perangkap diganti dengan interval

  18. In Defence of Biodiversity

    NARCIS (Netherlands)

    Archer, Alfred; Burch Brown, Joanna

    2017-01-01

    The concept of biodiversity has played a central role within conservation biology over the last thirty years. Precisely how it should be understood, however, is a matter of ongoing debate. In this paper we defend what we call a classic multidimensional conception of biodiversity. We begin by

  19. Studies on tiger beetles : 84. Additions to the tiger beetle fauna of Sulawesi, Indonesia (Coleoptera: Cicindelidae)

    NARCIS (Netherlands)

    Cassola, F.

    1996-01-01

    Distributional new data are provided for several interesting or poorly known tiger beetle species from Sulawesi, Indonesia. The generic attribution of Wallacedela brendelli Cassola, 1991, is confirmed, and moreover two new species, Wallacedela? problematica spec. nov. and Wallacedela butonensis

  20. Efficacy of imidacloprid, trunk-injected into Acer platanoides, for control of adult Asian longhorned beetles (Coleoptera: Cerambycidae).

    Science.gov (United States)

    Ugine, Todd A; Gardescu, Sana; Lewis, Phillip A; Hajek, Ann E

    2012-12-01

    Feeding experiments with Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) in a quarantine laboratory were used to assess the effectiveness of imidacloprid in reducing adult fecundity and survival. The beetles were fed twigs and leaves cut between June-September 2010 from Norway maples (Acer platanoides L.) in the beetle-infested area of Worcester, MA. Treated trees had been trunk-injected once with imidacloprid in spring 2010 under the U.S. Department of Agriculture-Animal and Plant Health Inspection Service operational eradication program. The 21 d LC50 value for adult beetles feeding on twig bark from imidacloprid-injected trees was 1.3 ppm. Adult reproductive output and survival were significantly reduced when beetles fed on twig bark or leaves from treated trees. However, results varied widely, with many twig samples having no detectable imidacloprid and little effect on the beetles. When twigs with > 1 ppm imidacloprid in the bark were fed to mated beetles, the number of larvae produced was reduced by 94% and median adult survival was reduced to 14 d. For twigs with 1 ppm). When given a choice of control twigs and twigs from injected trees, beetles did not show a strong preference.

  1. Significantly higher Carabid beetle (Coleoptera: Carabidae) catch in conventionally than in organically managed Christmas tree plantations

    DEFF Research Database (Denmark)

    Bagge, Søren; Lund, Malthe; Rønn, Regin

    2012-01-01

    Carabid beetles play an important role as consumers of pest organisms in forestry and agriculture. Application of pesticides may negatively affect abundance and activity of carabid beetles, thus reducing their potential beneficial effect. We investigated how abundance and diversity of pitfall...... trapped carabid beetles (Coleoptera, Carabidae) varied between conventionally and organically managed Caucasian Fir (Abies nordmanniana (Stev.)) plantations, in northern Zealand, Denmark. We recorded significantly higher numbers of carabid beetle specimens and species at conventionally than at organically...

  2. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    DEFF Research Database (Denmark)

    Naeem, S.; Prager, Case; Weeks, Brian

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity...... on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional...

  3. The role of dung beetles in reducing greenhouse gas emissions from cattle farming.

    Science.gov (United States)

    Slade, Eleanor M; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L

    2016-01-05

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results, [corrected] and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  4. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    Science.gov (United States)

    Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  5. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).

    Science.gov (United States)

    Lahr, Eleanor C; Sala, Anna

    2016-12-01

    Recent outbreaks of forest insects have been directly linked to climate change-induced warming and drought, but effects of tree stored resources on insects have received less attention. We asked whether tree stored resources changed following mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and whether they affected beetle development. We compared initial concentrations of stored resources in the sapwood of whitebark pine (Pinus albicaulis Engelmann) and lodgepole pine (Pinus contorta Douglas ex. Louden) with resource concentrations one year later, in trees that were naturally attacked by beetles and trees that remained unattacked. Beetles did not select host trees based on sapwood resources-there were no consistent a priori differences between attacked versus unattacked trees-but concentrations of nonstructural carbohydrate (NSC), lipids, and phosphorus declined in attacked trees, relative to initial concentrations and unattacked trees. Whitebark pine experienced greater resource declines than lodgepole pine; however, sapwood resources were not correlated with beetle success in either species. Experimental manipulation confirmed that the negative effect of beetles on sapwood and phloem NSC was not due to girdling. Instead, changes in sapwood resources were related to the percentage of sapwood with fungal blue-stain. Overall, mountain pine beetle attack affected sapwood resources, but sapwood resources did not contribute directly to beetle success; instead, sapwood resources may support colonization by beetle-vectored fungi that potentially accelerate tree mortality. Closer attention to stored resource dynamics will improve our understanding of the interaction between mountain pine beetles, fungi, and host trees, an issue that is relevant to our understanding of insect range expansion under climate change. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions

  6. Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress

    International Nuclear Information System (INIS)

    Grodzki, Wojciech; McManus, Michael; Knizek, Milos; Meshkova, Valentina; Mihalciuc, Vasile; Novotny, Julius; Turcani, Marek; Slobodyan, Yaroslav

    2004-01-01

    The spruce bark beetle, Ips typographus (L.) is the most serious pest of mature spruce stands, mainly Norway spruce, Picea abies (L.) Karst. throughout Eurasia. A complex of weather-related events and other environmental stresses are reported to predispose spruce stands to bark beetle attack and subsequent tree mortality; however the possible role of industrial pollution as a predisposing factor to attack by this species is poorly understood. The abundance and dynamics of I. typographus populations was evaluated in 60-80 year old Norway spruce stands occurring on 10x50 ha sites in five countries within the Carpathian range that were selected in proximity to established ozone measurement sites. Data were recorded on several parameters including the volume of infested trees, captures of adult beetles in pheromone traps, number of attacks, and the presence and relative abundance of associated bark beetle species. In several cases, stands adjacent to sites with higher ozone values were associated with higher bark beetle populations. The volume of sanitary cuttings, a reflection of tree mortality, and the mean daily capture of beetles in pheromone traps were significantly higher at sites where the O 3 level was higher. However, the mean infestation density on trees was higher in plots associated with lower O 3 levels. Captures of beetles in pheromone traps and infestation densities were higher in the zone above 800 m. However, none of the relationships was conclusive, suggesting that spruce bark beetle dynamics are driven by a complex interaction of biotic and abiotic factors and not by a single parameter such as air pollution. - Air pollution (ozone) can be one of predisposing factors that increases the susceptibility of mountain Norway spruce stands to attack by Ips typographus and associated bark beetle species

  7. Inter-American Biodiversity Information Network (IABIN)

    Science.gov (United States)

    site. IABIN Inter-American Biodiversity Information Network (IABIN) OAS » SEDI » DSD » IABIN IABIN GEF Logo inbio natserve usgs polpar wcm The Inter-American Biodiversity Information Network (IABIN , and use of biodiversity information relevant to policy and decision-making on natural resources

  8. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    Science.gov (United States)

    Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041

  9. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    Science.gov (United States)

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. © 2016 The Authors.

  10. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation

    International Nuclear Information System (INIS)

    Truong, Tien Van; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-01-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle. (paper)

  11. Fire injury reduces inducible defenses of lodgepole pine against Mountain pine beetle.

    Science.gov (United States)

    Powell, Erinn N; Raffa, Kenneth F

    2011-11-01

    We examined the effect of wildfire injury on lodgepole pine chemical defenses against mountain pine beetle. We compared the constitutive phloem chemistry among uninjured, lightly-, moderately-, and severely-injured trees, and the induced chemistry elicited by simulated beetle attack, among these same categories. We also compared the entry rates of caged female beetles into trees of these categories. The volatiles we studied included thirteen monoterpene hydrocarbons, four allylic monoterpene alcohols, one ester, and one phenyl propanoid, of which the monoterpene hydrocarbons always comprised 96% or more of the total. Fire injury reduced the total concentration of these compounds in the induced but not constitutive phloem tissue of lodgepole pines. Fire injury also affected the relative composition of some volatiles in both induced and constitutive phloem. For example, increased fire injury reduced 4-allylanisole, a host compound that inhibits mountain pine beetle aggregation. Increased fire injury also increased (-) α-pinene, which can serve as precursor of pheromone communication. However, it also reduced myrcene and terpinolene, which can serve as stimulants and synergists of pheromone communication. Beetle entry did not show statistical differences among fire injury categories, although there was a trend to increased entry with fire injury. These results suggest that the reduced ability of trees to mobilize induced chemical defenses is an important mechanism behind the higher incidence of attack on fire-injured trees in the field. Future studies should concentrate on whether beetles that enter fire-injured trees are more likely to elicit aggregation, based on the differences we observed in volatile composition.

  12. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    Science.gov (United States)

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  13. Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson

    Science.gov (United States)

    Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth

    2012-04-01

    One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.

  14. European mountain biodiversity

    Directory of Open Access Journals (Sweden)

    Nagy, Jennifer

    1998-12-01

    Full Text Available This paper, originally prepared as a discussion document for the ESF Exploratory Workshop «Trends in European Mountain Biodiversity - Research Planning Workshop», provides an overview of current mountain biodiversity research in Europe. It discusses (a biogeographical trends, (b the general properties of biodiversity, (c environmental factors and the regulation of biodiversity with respect to ecosystem function, (d the results of research on mountain freshwater ecosystems, and (e climate change and air pollution dominated environmental interactions.- The section on biogeographical trends highlights the importance of altitude and latitude on biodiversity. The implications of the existence of different scales over the different levels of biodiversity and across organism groups are emphasised as an inherent complex property of biodiversity. The discussion on ecosystem function and the regulation of biodiversity covers the role of environmental factors, productivity, perturbation, species migration and dispersal, and species interactions in the maintenance of biodiversity. Regional and long-term temporal patterns are also discussed. A section on the relatively overlooked topic of mountain freshwater ecosystems is presented before the final topic on the implications of recent climate change and air pollution for mountain biodiversity.

    [fr] Ce document a été préparé à l'origine comme une base de discussion pour «ESF Exploratory Workshop» intitulé «Trends in European Mountain Biodiversity - Research Planning Workshop»; il apporte une vue d'ensemble sur les recherches actuelles portant sur la biodiversité des montagnes en Europe. On y discute les (a traits biogéographiques, (b les caractéristiques générales- de la biodiversité, (c les facteurs environnementaux et la régulation de la biodiversité par rapport à la fonction des écosystèmes, (d les résultats des études sur les écosystèmes aquatiques des montagnes et (e les

  15. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    Science.gov (United States)

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  16. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack.

    Science.gov (United States)

    Wiley, Erin; Rogers, Bruce J; Hodgkinson, Robert; Landhäusser, Simon M

    2016-01-01

    Bark beetle outbreaks are an important cause of tree death, but the process by which trees die remains poorly understood. The effect of beetle attack on whole-tree nonstructural carbohydrate (NSC) dynamics is particularly unclear, despite the potential role of carbohydrates in plant defense and survival. We monitored NSC dynamics of all organs in attacked and protected lodgepole pines (Pinus contorta) during a mountain pine beetle (Dendroctonus ponderosae) outbreak in British Columbia, starting before beetle flight in June 2011 through October 2012, when most attacked trees had died. Following attack, NSC concentrations were first reduced in the attacked region of the bole. The first NSC reduction in a distant organ appeared in the needles at the end of 2011, while branch and root NSC did not decline until much later in 2012. Attacked trees that were still alive in October 2012 had less beetle damage, which was negatively correlated with initial bark sugar concentrations in the attack region. The NSC dynamics of dying trees indicate that trees were killed by a loss of water conduction and not girdling. Further, our results identify locally reduced carbohydrate availability as an important mechanism by which stressors like drought may increase tree susceptibility to biotic attack. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  18. A conceptual framework for quality assessment and management of biodiversity data

    Science.gov (United States)

    Saraiva, Antonio Mauro; Chapman, Arthur David; Morris, Paul John; Gendreau, Christian; Schigel, Dmitry; Robertson, Tim James

    2017-01-01

    The increasing availability of digitized biodiversity data worldwide, provided by an increasing number of institutions and researchers, and the growing use of those data for a variety of purposes have raised concerns related to the "fitness for use" of such data and the impact of data quality (DQ) on the outcomes of analyses, reports, and decisions. A consistent approach to assess and manage data quality is currently critical for biodiversity data users. However, achieving this goal has been particularly challenging because of idiosyncrasies inherent in the concept of quality. DQ assessment and management cannot be performed if we have not clearly established the quality needs from a data user’s standpoint. This paper defines a formal conceptual framework to support the biodiversity informatics community allowing for the description of the meaning of "fitness for use" from a data user’s perspective in a common and standardized manner. This proposed framework defines nine concepts organized into three classes: DQ Needs, DQ Solutions and DQ Report. The framework is intended to formalize human thinking into well-defined components to make it possible to share and reuse concepts of DQ needs, solutions and reports in a common way among user communities. With this framework, we establish a common ground for the collaborative development of solutions for DQ assessment and management based on data fitness for use principles. To validate the framework, we present a proof of concept based on a case study at the Museum of Comparative Zoology of Harvard University. In future work, we will use the framework to engage the biodiversity informatics community to formalize and share DQ profiles related to DQ needs across the community. PMID:28658288

  19. A conceptual framework for quality assessment and management of biodiversity data.

    Science.gov (United States)

    Veiga, Allan Koch; Saraiva, Antonio Mauro; Chapman, Arthur David; Morris, Paul John; Gendreau, Christian; Schigel, Dmitry; Robertson, Tim James

    2017-01-01

    The increasing availability of digitized biodiversity data worldwide, provided by an increasing number of institutions and researchers, and the growing use of those data for a variety of purposes have raised concerns related to the "fitness for use" of such data and the impact of data quality (DQ) on the outcomes of analyses, reports, and decisions. A consistent approach to assess and manage data quality is currently critical for biodiversity data users. However, achieving this goal has been particularly challenging because of idiosyncrasies inherent in the concept of quality. DQ assessment and management cannot be performed if we have not clearly established the quality needs from a data user's standpoint. This paper defines a formal conceptual framework to support the biodiversity informatics community allowing for the description of the meaning of "fitness for use" from a data user's perspective in a common and standardized manner. This proposed framework defines nine concepts organized into three classes: DQ Needs, DQ Solutions and DQ Report. The framework is intended to formalize human thinking into well-defined components to make it possible to share and reuse concepts of DQ needs, solutions and reports in a common way among user communities. With this framework, we establish a common ground for the collaborative development of solutions for DQ assessment and management based on data fitness for use principles. To validate the framework, we present a proof of concept based on a case study at the Museum of Comparative Zoology of Harvard University. In future work, we will use the framework to engage the biodiversity informatics community to formalize and share DQ profiles related to DQ needs across the community.

  20. Palm Oil in Myanmar: A Spatiotemporal Analysis of the Effects of Industrial Farming on Biodiversity Loss.

    Science.gov (United States)

    Nicholas, Khristopher; Fanzo, Jessica; MacManus, Kytt

    2018-03-21

    Palm oil consumption is potentially deleterious to human health, and its production has resulted in 11 million hectares of deforestation globally. Importing roughly 394,000 metric tons of palm oil in 2012 alone, the Burmese government has recently pushed for intensive oil palm development to sate domestic demand for consumption and become international market players. Given well-studied linkages between biodiversity loss and ecosystem instability, this study aims to characterize the nature of deforestation for oil palm production in Myanmar, its relationship to increased biodiversity loss, and contextualize the potential impacts of this loss on diets and human health in rural Myanmar. First, a GIS land suitability analysis overlaying spatial data on rainfall, elevation, and slope was conducted in order to identify areas of Myanmar best suited to oil palm tree growth. Second, after narrowing the geographic range, vegetation indices using varying spectral band models in ENVI (Environment for Visualizing Images) allowed a more granular examination of changes in vegetation phenology from 1975 to 2015. Lastly, ground truthing permitted an in-person verification of GIS and ENVI results and provided contextual understanding of oil palm development in Myanmar. GIS analysis revealed that the Tanintharyi Region, one of the most biodiverse regions in Myanmar, is highly suitable for oil palm growth. Next, vegetation indices revealed a progressive shift from smallholder farming, with little observable deforestation between 1975 and 1990, to industrial oil palm plantations all throughout Tanintharyi starting around 2000-a shift concomitant with biodiversity loss of primary forestland. Ground truthing indicated that plantation development has advanced rapidly, though not without barriers to growth. If these trends of Burmese oil palm intensification continue, 4 key outcomes may follow: (1) even higher levels of biodiversity loss, (2) increased access and affordability of edible

  1. Trophic habits of mesostigmatid mites associated with bark beetles in Mexico

    Science.gov (United States)

    M. Patricia Chaires-Grijalva; Edith G. Estrada-Venegas; Armando Equihua-Martinez; John C. Moser; Stacy R. Blomquist

    2016-01-01

    Samples of bark and logs damaged by bark beetles were collected from 16 states of Mexico from 2007 to 2012. Fifteen bark beetle species were found within the bark and log samples and were examined for phoretic mites and arthropod associates. Thirty-three species of mesostigmatid mites were discovered within the samples. They were identified in several trophic guilds...

  2. Biodiversity

    CSIR Research Space (South Africa)

    Scholes, RJ

    2006-01-01

    Full Text Available Biodiversity offers multiple opportunities for development and improving human well-being. It is the basis for essential environmental services upon which life on Earth depends. Thus, its conservation and sustainable use are of critical importance...

  3. Changes in food resources and conservation of scarab beetles

    DEFF Research Database (Denmark)

    Carpaneto, Giuseppe Maria; Mazziotta, Adriano; Piattella, Emanuele

    2005-01-01

    to dog dung, an impoverishment of the total richness was observed (from 19 to 9 species) together with an increase of individuals (by 7 times). Dog dung harboured 20% of the current scarab dung beetle fauna of Rome, probably as a consequence of the dog mixed diet, rich in cellulose. Both the communities...... showed a high percentage of tunnellers, probably because of the food shortage and, for dog scats, of the high dehydration rate. A comparison with other Roman scarab communities enhanced that: (1) the change in food resource determined a higher difference in species composition respect to other parameters......The aim of the research was to show how a change in land use influences the structure of a dung beetle assemblage and affect its conservation. In the Pineto Urban Regional Park (Rome), dog dung is the sole food resource currently available for scarab dung beetles, after the recent removal of wild...

  4. Measuring Biodiversity in Forest Communities – A Role of Biodiversity Indices

    Directory of Open Access Journals (Sweden)

    Lakićević Milena

    2018-03-01

    Full Text Available Biodiversity refers to genetic, species and ecosystems varieties within an area. Two main characteristics that should be investigated when considering biodiversity are richness and evenness. Richness is related to the number of different species in the analyzed area, while evenness corresponds to the homogeneity of the abundance of species. For quantifying these features, many indices have been defined, and this paper offers an overview of the most commonly used biodiversity indices, such as Shannon, Simpson, Margalef and Berger-Parker. The paper explains the process of calculating these indices on the case study example of four forest communities and discusses the results obtained. The Jaccard index analysis is used to discover a similarity between the analyzed forest communities. Results from this part of the research are visualized by creating appropriate dendrograms for making the interpretation easier. Calculating and analyzing these indices is useful not only for forest ecosystems, but for the other types of ecosystems as well, including agro-ecosystems. Biodiversity indices can be obtained in thespecialized software, for instance in EstimateS (Statistical Estimation of Species Richness and Shared Species from Samples, or by programming in the statistical package R, as it was done in this research.

  5. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-01-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in

  6. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  7. Water beetles in mountainous regions in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    MO. Segura

    Full Text Available Inventories provide information on the state of biodiversity at a site or for a geographic region. Species inventories are the basis for systematic study and critical to ecology, biogeography and identification of biological indicators and key species. They also provide key information for assessments of environmental change, for natural resource conservation or recovery of degraded ecosystems. Thus, inventories play a key role in planning strategies for conservation and sustainable use. This study aimed to inventory the fauna of water beetles, larvae and adults, in two mountainous regions in the state of São Paulo, in Serra da Mantiqueira (Parque Estadual de Campos do Jordão and Pindamonhangaba region and in Serra do Mar (Santa Virgínia and Picinguaba Divisions as well as to generate information about the habitats used by the different genera recorded. Specimens were collected in lotic and lentic systems, between the years 2005 to 2010. In total 14,492 specimens were collected and 16 families and 50 genera of Coleoptera were identified. This study in mountainous regions showed a significant portion of the faunal composition of South America and the state of São Paulo. The composition of the fauna, in terms of richness and abundance by family, indicated the predominance of Elmidae, followed by Hydrophilidae and Dytiscidae. Despite the diversity found, the results of estimated richness indicated the need for additional sampling effort for both regions, since the curves of estimated richness did not reach an asymptote, suggesting that new species can be found in future surveys.

  8. International Center for Himalayan Biodiversity (ICHB): Conserving Himalayan Biodiversity--A Global Responsibility

    Science.gov (United States)

    Ram Bhandari

    2006-01-01

    Biodiversity is a global endowment of nature. Conservation of biodiversity includes all species of plants, animals and other organisms, the range of genetic stocks within each species, and ecosystem diversity. Food, many types of medicine and industrial products are provided by the biological resources that are the basis of life on Earth. The value of the Earth’s...

  9. The origins of tropical marine biodiversity.

    Science.gov (United States)

    Bowen, Brian W; Rocha, Luiz A; Toonen, Robert J; Karl, Stephen A

    2013-06-01

    Recent phylogeographic studies have overturned three paradigms for the origins of marine biodiversity. (i) Physical (allopatric) isolation is not the sole avenue for marine speciation: many species diverge along ecological boundaries. (ii) Peripheral habitats such as oceanic archipelagos are not evolutionary graveyards: these regions can export biodiversity. (iii) Speciation in marine and terrestrial ecosystems follow similar processes but are not the same: opportunities for allopatric isolation are fewer in the oceans, leaving greater opportunity for speciation along ecological boundaries. Biodiversity hotspots such as the Caribbean Sea and the Indo-Pacific Coral Triangle produce and export species, but can also accumulate biodiversity produced in peripheral habitats. Both hotspots and peripheral ecosystems benefit from this exchange in a process dubbed biodiversity feedback. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Accounting for biodiversity in the dairy industry.

    Science.gov (United States)

    Sizemore, Grant C

    2015-05-15

    Biodiversity is an essential part of properly functioning ecosystems, yet the loss of biodiversity currently occurs at rates unparalleled in the modern era. One of the major causes of this phenomenon is habitat loss and modification as a result of intensified agricultural practices. This paper provides a starting point for considering biodiversity within dairy production, and, although focusing primarily on the United States, findings are applicable broadly. Biodiversity definitions and assessments (e.g., indicators, tools) are proposed and reviewed. Although no single indicator or tool currently meets all the needs of comprehensive assessment, many sustainable practices are readily adoptable as ways to conserve and promote biodiversity. These practices, as well as potential funding opportunities are identified. Given the state of uncertainty in addressing the complex nature of biodiversity assessments, the adoption of generally sustainable environmental practices may be the best currently available option for protecting biodiversity on dairy lands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.

    Science.gov (United States)

    Johansson, L Christoffer; Engel, Sophia; Baird, Emily; Dacke, Marie; Muijres, Florian T; Hedenström, Anders

    2012-10-07

    Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle's wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency.

  12. Dung beetles (Coleoptera: Scarabaeoidea in three landscapes in Mato Grosso do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    MM. Rodrigues

    Full Text Available Dung beetles (Coleoptera: Scarabaeoidea in three landscapes in Mato Grosso do Sul, Brazil. Dung Beetles are important for biological control of intestinal worms and dipterans of economic importance to cattle, because they feed and breed in dung, killing parasites inside it. They are also very useful as bioindicators of species diversity in agricultural or natural environments. The aims of this paper were to study the species richness, and abundance of dung beetles, helping to answer the question: are there differences in the patterns of dung beetle diversity in three environments (pasture, agriculture and forest in the municipality of Dourados, in the state of Mato Grosso do Sul. A total of 105 samplings were carried out weekly, from November 2005 to November 2007, using three pitfall traps in each environment. The traps were baited with fresh bovine dung, and 44,355 adult dung beetles from 54 species were captured: two from Hyborosidae and 52 from Scarabaeidae. Five species were constant, very abundant and dominant on the pasture, two in the agricultural environment, and two in the environment of Semideciduous forest. Most of the species were characterised as accessories, common and not-dominant. The species with higher abundance was Ataenius platensis Blanchard, 1844. The indexes of Shannon-Wiener diversity were: 2.90 in the pasture, 2.84 in the agricultural environment and 2.66 in the area of native forest. The medium positive presence of dung beetles in the traps in each environment were: 36.88, 42.73 and 20.18 individuals per trap, in the pasture, agricultural environment and in the native forest, respectively. The pasture environment presented a higher diversity index. The species diversity of dung beetles was superior where there was higher abundance and regularity of resource (bovine dung.

  13. Elevational Distribution and Conservation Biogeography of Phanaeine Dung Beetles (Coleoptera: Scarabaeinae) in Bolivia

    Science.gov (United States)

    Herzog, Sebastian K.; Hamel-Leigue, A. Caroli; Larsen, Trond H.; Mann, Darren J.; Soria-Auza, Rodrigo W.; Gill, Bruce D.; Edmonds, W. D.; Spector, Sacha

    2013-01-01

    Insect macroecology and conservation biogeography studies are disproportionately scarce, especially in the Neotropics. Dung beetles are an ideal focal taxon for biodiversity research and conservation. Using distribution and body size data on the ecologically important Phanaeini, the best-known Neotropical dung beetle tribe, we determined elevational patterns of species richness, endemism, body size, and elevational range in Bolivia, specifically testing Bergmann’s and Rapoport’s rule. Richness of all 39 species and of 15 ecoregional endemics showed a hump-shaped pattern peaking at 400 m, but overall declined strongly with elevation up to 4000 m. The relationship between endemic and total species richness appeared to be curvilinear, providing only partial support for the null hypothesis that species-rich areas are more likely to be centers of endemism by chance alone. An elevational increase in the proportion of ecoregional endemics suggests that deterministic factors also appear to influence endemism in the Andes. When controlling for the effect of area using different species-area relationships, the statistically significant richness peak became more pronounced and shifted upslope to 750 m. Larger species did not have higher elevational mid-points, and mean body size decreased significantly with elevation, contradicting Bergmann’s rule. Rapoport’s rule was supported: species with higher elevational mid-points had broader elevational ranges, and mean elevational range increased significantly with elevation. The elevational decrease of phanaeine richness is in accordance with studies that demonstrated the combined influence of temperature and water availability on species diversity, but also is consistent with niche conservatism. For invertebrates, confirmation of Rapoport’s and refutation of Bergmann’s rule appear to be scale-invariant general patterns. Analyses of biogeographic patterns across elevational gradients can provide important insights for

  14. Management for Mountain Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy?

    Directory of Open Access Journals (Sweden)

    Diana L. Six

    2014-01-01

    Full Text Available While the use of timber harvests is generally accepted as an effective approach to controlling bark beetles during outbreaks, in reality there has been a dearth of monitoring to assess outcomes, and failures are often not reported. Additionally, few studies have focused on how these treatments affect forest structure and function over the long term, or our forests’ ability to adapt to climate change. Despite this, there is a widespread belief in the policy arena that timber harvesting is an effective and necessary tool to address beetle infestations. That belief has led to numerous proposals for, and enactment of, significant changes in federal environmental laws to encourage more timber harvests for beetle control. In this review, we use mountain pine beetle as an exemplar to critically evaluate the state of science behind the use of timber harvest treatments for bark beetle suppression during outbreaks. It is our hope that this review will stimulate research to fill important gaps and to help guide the development of policy and management firmly based in science, and thus, more likely to aid in forest conservation, reduce financial waste, and bolster public trust in public agency decision-making and practice.

  15. Effect of gamma irradiation on the cigarette beetles reared on cayenne pepper

    International Nuclear Information System (INIS)

    Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko

    2009-01-01

    Effect of gamma irradiation on the survival of the cigarette beetles reared on cayenne pepper was investigated. Gamma ray at a dose of 62 Gy completely killed eggs and larvae of the beetles. Some pupae survived at 540 Gy, but all pupae were killed at 1076 Gy. (author)

  16. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Science.gov (United States)

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  17. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  18. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation

    Science.gov (United States)

    Christopher A. Lepczyk; Myla F. J. Aronson; Karl L. Evans; Mark A. Goddard; Susannah B. Lerman; J. Scott MacIvor

    2017-01-01

    As urban areas expand, understanding how ecological processes function in cities has become increasingly important for conserving biodiversity. Urban green spaces are critical habitats to support biodiversity, but we still have a limited understanding of their ecology and how they function to conserve biodiversity at local and landscape scales across multiple taxa....

  19. Urban lifestyle and urban biodiversity

    DEFF Research Database (Denmark)

    Petersen, L. K.; Lyytimäki, J.; Normander, B.

    2007-01-01

    This report is concerned with the relations between lifestyles of urban populations on one hand and protection of biodiversity in urban areas on the other. Urban areas are of importance for the general protection of biodiversity. In the surroundings of cities and within urban sprawls there can...... biodiversity, recreational, educational and other needs. However, uncovered and unsealed space is constantly under pressure for building and infrastructure development in the urban landscape, and the design and usages of urban green structure is a matter of differing interests and expectations. Integrating...... the green needs of urban lifestyle in the planning process does not come by itself. Nor does finding the synergies between urban lifestyle and urban biodiversity. Careful planning including stakeholder involvement is required. In this process various mapping techniques and use of indicators can be most...

  20. Warfare in biodiversity hotspots.

    Science.gov (United States)

    Hanson, Thor; Brooks, Thomas M; Da Fonseca, Gustavo A B; Hoffmann, Michael; Lamoreux, John F; Machlis, Gary; Mittermeier, Cristina G; Mittermeier, Russell A; Pilgrim, John D

    2009-06-01

    Conservation efforts are only as sustainable as the social and political context within which they take place. The weakening or collapse of sociopolitical frameworks during wartime can lead to habitat destruction and the erosion of conservation policies, but in some cases, may also confer ecological benefits through altered settlement patterns and reduced resource exploitation. Over 90% of the major armed conflicts between 1950 and 2000 occurred within countries containing biodiversity hotspots, and more than 80% took place directly within hotspot areas. Less than one-third of the 34 recognized hotspots escaped significant conflict during this period, and most suffered repeated episodes of violence. This pattern was remarkably consistent over these 5 decades. Evidence from the war-torn Eastern Afromontane hotspot suggests that biodiversity conservation is improved when international nongovernmental organizations support local protected area staff and remain engaged throughout the conflict. With biodiversity hotspots concentrated in politically volatile regions, the conservation community must maintain continuous involvement during periods of war, and biodiversity conservation should be incorporated into military, reconstruction, and humanitarian programs in the world's conflict zones. ©2009 Society for Conservation Biology.