WorldWideScience

Sample records for ground based weapon

  1. Microcontroller based ground weapon control system(Short Communication

    Directory of Open Access Journals (Sweden)

    M. Sankar Kishore

    2001-10-01

    Full Text Available Armoured vehicles and tanks generally consist of high resolution optical (both infrared and visible and display systems for recognition and identification of the targets. Different weapons/articles to engage the targets may be present. A fire control system (FCS controls all the above systems, monitors the status of the articles present and passes the information to the display system. Depending upon the health and availability of the articles, the FCS selects and fires the articles. Design and development of ground control unit which is the heart of the FCS, both in hardware and software, has been emphasised. The system has been developed using microcontroller and software developed in ASM 51 language. The system also has a facility to test all the systems and articles as initial power on condition. From the safety point of view, software and hardware interlocks have been provided in the critical operations, like firing sequence. "

  2. Assessing Expected Fractional Damage of Above-ground Buildings from Air-to-surface Weapons based on Indirect Fire Concept

    Directory of Open Access Journals (Sweden)

    Jong Yil Park

    2010-08-01

    Full Text Available For the expected fractional damage of building targets from air-to-surface weapons, the US has used the JMEM/AS method, which is based on the direct-fire concept. However, the damage redistribution assumption in the direct-fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the joint munitions effectiveness manuals/air-to-surface (JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons. fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons.Defence Science Journal, 2010, 60(5, pp.491-496, DOI:http://dx.doi.org/10.14429/dsj.60.571

  3. Musculoskeletal colloquialisms based on weapons.

    Science.gov (United States)

    Agrawal, Anuj

    2017-01-01

    Eponyms and colloquialisms are commonly used in orthopaedic literature and convey a great deal of information in a concise fashion. Several orthopaedic conditions have characteristic clinical or radiologic appearances, mimicking the appearance of certain arms or weapons. Most of these are easy to memorise and recognise, provided the orthopaedic surgeon is aware of the colloquialism and familiar with the appearance of the weapon on which it is based. Unfortunately, many such colloquialisms are based on traditional weapons no longer in current use, and their appearances are not familiar to most orthopaedists, creating confusion and difficulty in understanding them. In this paper, we have reviewed the musculoskeletal colloquialisms based on weapons, including a brief description of the weapon with illustrations, highlighting the importance of the colloquialism in diagnosis or treatment of musculoskeletal conditions.

  4. 基于地面目标群的陆战武器火力指数模型%Firepower Index Models of Land Warfare Weapons Based on Ground Target Group

    Institute of Scientific and Technical Information of China (English)

    郭占宽; 王永良; 常利胜

    2011-01-01

    给出了基于地面目标群的陆战武器火力指数模型,该模型与作战时节(持续的时间)、所要达成的作战目的、火力打击距离(射程)、发射的弹药量、目标性质(重要性)及毁伤效能有关,便于计算陆军参战武器的个体火力指数和战役总火力指数,并且能够计算对应于战场目标分布、重要目标分布的相应距离上的火力指数分布,从而便于武器对目标分配的战役估算;另外,还尝试了将模型在更大作战领域内的推广.火力指数模型所涉及的诸多综合因素是现行常见的火力指数模型所不具有的,它不仅体现了火力指数的宏观性,而且能较为精细地评估火力打击能力.%This paper gives firepower index models of land warfare weapons based on ground target group and the models are closely relative to operation stage, war goal,firing distances, firing ammunition's quantities, target nature, firing efficiency and so on. It is convenient for counting indices of individual weapon and all weapons in the operation and counting distributions of indices in same distances corresponding with the distributions of battlefield targets and important targets, so it is convenient for estimating weapons in the operation to assign battlefield targets. And extending the models to more large operation fields is also tried in the paper. The complex factors that are related to firepower index models in the paper are distinctive, which are distinguishable from the common firepower index models. With the firepower index models, the macro-scale of firepower index can be reflected and the capacity of fire attack can be finely evaluated.

  5. Historical fencing and scientific research medieval weapons: common ground

    Directory of Open Access Journals (Sweden)

    B. V. Hrynchyshyn

    2015-07-01

    We considered various approaches to the reconstruction of the historical fencing. It is proved that the activities of such societies has a positive effect on the process research of features of medieval weapons, fighting tactics of different periods The various approaches to the reconstruction of the historical fencing. Proved that the activities of such societies has a positive effect on the process research of features of medieval weapons, fighting tactics of different periods.

  6. Agent-based Modeling Methodology for Analyzing Weapons Systems

    Science.gov (United States)

    2015-03-26

    43 Figure 14: Simulation Study Methodology for the Weapon System Analysis Metrics Definition and Data Collection The analysis plan calls for...AGENT-BASED MODELING METHODOLOGY FOR ANALYZING WEAPONS SYSTEMS THESIS Casey D. Connors, Major, USA...AGENT-BASED MODELING METHODOLOGY FOR ANALYZING WEAPONS SYSTEMS THESIS Presented to the Faculty Department of Operational Sciences

  7. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    Science.gov (United States)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  8. A Novel Two-Staged Decision Support based Threat Evaluation and Weapon Assignment Algorithm, Asset-based Dynamic Weapon Scheduling using Artificial Intelligence Techinques

    CERN Document Server

    Naeem, Huma; Hussain, Mukhtar; Khan, Shoab A

    2009-01-01

    Surveillance control and reporting (SCR) system for air threats play an important role in the defense of a country. SCR system corresponds to air and ground situation management/processing along with information fusion, communication, coordination, simulation and other critical defense oriented tasks. Threat Evaluation and Weapon Assignment (TEWA) sits at the core of SCR system. In such a system, maximal or near maximal utilization of constrained resources is of extreme importance. Manual TEWA systems cannot provide optimality because of different limitations e.g.surface to air missile (SAM) can fire from a distance of 5Km, but manual TEWA systems are constrained by human vision range and other constraints. Current TEWA systems usually work on target-by-target basis using some type of greedy algorithm thus affecting the optimality of the solution and failing in multi-target scenario. his paper relates to a novel two-staged flexible dynamic decision support based optimal threat evaluation and weapon assignment...

  9. Ground shock from multiple earth penetrator bursts: Effects for hexagonal weapon arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.; Yarrington, P.

    1990-08-01

    Calculations have been performed with the HULL hydrocode to study ground shock effects for multiple earth penetrator weapon (EPW) bursts in hexagonal-close-packed (HCP) arrays. Several different calculational approaches were used to treat this problem. The first simulations involved two-dimensional (2D) calculations, where the hexagonal cross-section of a unit-cell in an effectively-infinite HCP array was approximated by an inscribed cylinder. Those calculations showed substantial ground shock enhancement below the center of the array. To refine the analysis, 3D unit-cell calculations were done where the actual hexagonal cross-section of the HCP array was modelled. Results of those calculations also suggested that the multiburst array would enhance ground shock effects over those for a single burst of comparable yield. Finally, 3D calculations were run in which an HCP array of seven bursts was modelled explicitly. In addition, the effects of non-simultaneity were investigated. Results of the seven-burst HCP array calculations were consistent with the unit-cell results and, in addition, provided information on the 3D lethal contour produced by such an array.

  10. Apparent chlorofluorocarbon age of ground water of the shallow aquifer system, Naval Weapons Station Yorktown, Yorktown, Virginia

    Science.gov (United States)

    Nelms, David L.; Harlow, George E.; Brockman, Allen R.

    2001-01-01

    Apparent ages of ground water are useful in the analysis of various components of flow systems, and results of this analysis can be incorporated into investigations of potential pathways of contaminant transport. This report presents the results of a study in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Naval Weapons Station Yorktown, Base Civil Engineer, Environmental Directorate, to describe the apparent age of ground water of the shallow aquifer system at the Station. Chlorofluorocarbons (CFCs), tritium (3H), dissolved gases, stable isotopes, and water-quality field properties were measured in samples from 14 wells and 16 springs on the Station in March 1997.Nitrogen-argon recharge temperatures range from 5.9°C to 17.3°C with a median temperature of 10.9°C, which indicates that ground-water recharge predominantly occurs in the cold months of the year. Concentrations of excess air vary depending upon geohydrologic setting (recharge and discharge areas). Apparent ground-water ages using a CFC-based dating technique range from 1 to 48 years with a median age of 10 years. The oldest apparent CFC ages occur in the upper parts of the Yorktown-Eastover aquifer, whereas the youngest apparent ages occur in the Columbia aquifer and the upper parts of the discharge area setting, especially springs. The vertical distribution of apparent CFC ages indicates that groundwater movement between aquifers is somewhat retarded by the leaky confining units, but the elapsed time is relatively short (generally less than 35 years), as evidenced by the presence of CFCs at depth. The identification of binary mixtures by CFC-based dating indicates that convergence of flow lines occurs not only at the actual point of discharge, but also in the subsurface.The CFC-based recharge dates are consistent with expected 3H concentrations measured in the water samples from the Station. The concentration of 3H in ground water ranges from below the USGS laboratory minimum

  11. A Ground Network Micro-Weapon System%一种地面网域化微武器系统

    Institute of Scientific and Technical Information of China (English)

    胡美艳; 杨卫; 徐薇; 岳元

    2011-01-01

    A ground network micro-weapon system is a new concept high-performance micro-smart weapon which proposed in this paper.It bases on wireless sensor network, integrates with perception,identification, location and attack.It is a sense of the battlefield area, can automatic identify and locate the person and vehicles target; complete preparations for battlefield reconnaissance and attack; it can make use of wireless sensor network to communicate, compose a group of micro-combat units to be some clusters in multi-mode coordinated attack ; it will play an important role in the fortress defense, the resident duty,border control and counter-terrorism operation.%基于无线传感器网络,集感知、识别、定位、攻击于一体的地面网域化微武器系统,提出的一种全新概念的高性能微型智能武器.能感知网域内战场态势,自动对人员、车辆目标识别和定位,完成战场侦察和攻击准备;能利用网络进行通讯,将一群微战斗单元组成若干个簇来对目标实施多模协同攻击;将在要塞防御、驻地值勤、边防职守以及反恐作战等方面发挥重要作用.

  12. The simulation of laser-based guided weapon engagements

    Science.gov (United States)

    Al-Jaberi, Mubarak; Richardson, Mark; Coath, John; Jenkin, Robin

    2006-05-01

    The laser is an integrated part of many weapon systems, such as laser guided bombs, laser guided missiles and laser beam-riding missiles. These systems pose a significant threat to military assets on the modern battlefield. The lasers used in beam-riding missiles are particularly hard to detect as they typically use relatively low power lasers. Beamriders are also particularly difficult to defeat as current countermeasure systems have not been optimized against this threat. Some recent field trails conducted in the United Arab Emirates desert have demonstrated poor performance of both laser beam-riding systems and the LWRs designed to detect them. The aim of this research is to build a complete evaluation tool capable of assessing all the phases of an engagement of a main battle tank or armoured fighting vehicle with a laser based guided weapon. To this end a software model has been produced using Matlab & Simulink. This complete model has been verified using lab based experimentation and by comparison to the result of the mentioned field trials. This project will enable both the evaluation and design of any generic laser warning receiver or missile seeker and specific systems if various parameters are known. Moreover, this model will be used as a guide to the development of reliable countermeasures for laser beam-riding missiles.

  13. Weapon carrying and psychopathic-like features in a population-based sample of Finnish adolescents.

    Science.gov (United States)

    Saukkonen, Suvi; Laajasalo, Taina; Jokela, Markus; Kivivuori, Janne; Salmi, Venla; Aronen, Eeva T

    2016-02-01

    We investigated the prevalence of juvenile weapon carrying and psychosocial and personality-related risk factors for carrying different types of weapons in a nationally representative, population-based sample of Finnish adolescents. Specifically, we aimed to investigate psychopathic-like personality features as a risk factor for weapon carrying. The participants were 15-16-year-old adolescents from the Finnish self-report delinquency study (n = 4855). Four different groups were formed based on self-reported weapon carrying: no weapon carrying, carrying knife, gun or other weapon. The associations between psychosocial factors, psychopathic-like features and weapon carrying were examined with multinomial logistic regression analysis. 9% of the participants had carried a weapon in the past 12 months. Adolescents with a history of delinquency, victimization and antisocial friends were more likely to carry weapons in general; however, delinquency and victimization were most strongly related to gun carrying, while perceived peer delinquency (antisocial friends) was most strongly related to carrying a knife. Better academic performance was associated with a reduced likelihood of carrying a gun and knife, while feeling secure correlated with a reduced likelihood of gun carrying only. Psychopathic-like features were related to a higher likelihood of weapon carrying, even after adjusting for other risk factors. The findings of the study suggest that adolescents carrying a weapon have a large cluster of problems in their lives, which may vary based on the type of weapon carried. Furthermore, psychopathic-like features strongly relate to a higher risk of carrying a weapon.

  14. Study on combat effectiveness of air defense missile weapon system based on queuing theory

    Science.gov (United States)

    Zhao, Z. Q.; Hao, J. X.; Li, L. J.

    2017-01-01

    Queuing Theory is a method to analyze the combat effectiveness of air defense missile weapon system. The model of service probability based on the queuing theory was constructed, and applied to analyzing the combat effectiveness of "Sidewinder" and "Tor-M1" air defense missile weapon system. Finally aimed at different targets densities, the combat effectiveness of different combat units of two types' defense missile weapon system is calculated. This method can be used to analyze the usefulness of air defense missile weapon system.

  15. Cargo/Weapons Elevator Land Based Engineering Site

    Data.gov (United States)

    Federal Laboratory Consortium — The Cargo and Weapons Facility consists of a suite of full scale and component test facilities contiguously located in building 77H. The site was constructed in 1987...

  16. Automated Navigation System based on Weapon-Target Assignment

    Directory of Open Access Journals (Sweden)

    Mohammad Khairudin

    2011-12-01

    Full Text Available Operating of weapon on the tank is mostly by manually. It is not desired performance for a critical operation. An automatic control system is required to operate the weapon with the target while maintaining the accuracy. In this paper has designed an automatic weapon control system using object image proccessing. Various an image processing methods used to improve the weapon accuracy to obtain the intended target. The method used in digital image processing is the Camshift motion tracking method. This method is compared with the Lucas Canade motion tracking method. This comparison is conducted to found more precise results between the two methods. Results of object image processing are used to control the direction of the weapon that towards the desired goal. The results show that the implementation of the Lucas Canade motion tracking method using fire simulation tools have been successful. The performance of the Lucas Canade motion tracking methods is better than the CamShift method. Using Lucas Canade method for weapon controller is accordance with the purposes.

  17. A Novel Two-Staged Decision Support based Threat Evaluation and Weapon Assignment Algorithm, Asset-based Dynamic Weapon Scheduling using Artificial Intelligence Techinques

    OpenAIRE

    Naeem, Huma; Masood, Asif; Hussain, Mukhtar; Shoab A. Khan

    2009-01-01

    Surveillance control and reporting (SCR) system for air threats play an important role in the defense of a country. SCR system corresponds to air and ground situation management/processing along with information fusion, communication, coordination, simulation and other critical defense oriented tasks. Threat Evaluation and Weapon Assignment (TEWA) sits at the core of SCR system. In such a system, maximal or near maximal utilization of constrained resources is of extreme importance. Manual TEW...

  18. Experimental Design of a UCAV-Based High-Energy Laser Weapon

    Science.gov (United States)

    2016-12-01

    DESIGN OF A UCAV-BASED HIGH- ENERGY LASER WEAPON by Antonios Lionis December 2016 Thesis Advisor: Keith R. Cohn Co-Advisor: Eugene Paulo...COVERED Master’s thesis 4. TITLE AND SUBTITLE EXPERIMENTAL DESIGN OF A UCAV-BASED HIGH- ENERGY LASER WEAPON 5. FUNDING NUMBERS 6. AUTHOR(S...NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES

  19. Distinguishing among weapons offenders, drug offenders, and weapons and drug offenders based on childhood predictors and adolescent correlates.

    Science.gov (United States)

    Stephens, Skye; Day, David M

    2013-07-01

    Weapons and drug offences incur a large cost to society and tend to be strongly associated. Improved understanding of their antecedents could inform targeted early intervention and prevention programmes. This study aimed to examine differences in criminal careers, childhood predictors and adolescent correlates among weapons-only offenders, drugs-only offenders and a versatile group of weapons + drugs offenders. We conducted a longitudinal records study of 455 young Canadians charged with drug and/or weapons offences who started their offending in late childhood/early adolescence. Consistent with expectation, differences emerged in their criminal careers as the versatile group had a longer criminal career and desisted from offending at a later age than weapons-only offenders. Against prediction, weapons-only offenders experienced the greatest number of childhood predictors and adolescent correlates. The three offending groups could be differentiated on offending trajectories and developmental factors.In making links between past events and later behaviour, life-course criminology may inform development of effective early intervention and prevention strategies.As weapons-only offenders experience the greatest level of adversity in childhood and adolescence, they may benefit most (of these three groups) from early intervention and prevention programmes.A reduction in weapon carrying and use might be achieved by early identification of children risk factors (e.g. family adversity) and appropriate intervention. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Mode Research on Space Weapons Systems Innovation Based Quality Function Deployment

    Directory of Open Access Journals (Sweden)

    Wang Xiuhong

    2011-06-01

    Full Text Available in the aviation industry, experts are enthusiastic over the research of sophisticated weapons. Little specialist pays attention to the innovation modes and methods. Up to now little quantization method suitable for aviation weapon systems innovation is presented. Base on the deep analysis and study on features of aviation weapon systems innovation and different innovation mode from the mass production, we have designed process model and quality chain model of aviation weapon systems innovation. Compared with the process model of large-scale innovation, the process models are more complex including many feedbacks and adding five steps: task decomposition, analysis of knowledge gap, accumulation of key knowledge, outsourcing selection, system integration. Meanwhile manufacturing process and R&D process are preformed simultaneously, and are involved in the process of module development. Technology application and diffusion are preformed with delivering the final innovation product to user. Quality function deployment and quality house are adopted to deal with the quality transfer among nodes. Quality demands of one node are converted into the technique features of another node in the quality house. We designed the top-down technique features transfer model and bottom-up demands transfer model to solve the quality transfer problems among nodes. At last an example is given to illustrate that this approach can accelerate to blaze the aviation weapon systems trails more than the existing methods and effectively reach quality management of aviation weapon systems innovation.

  1. Automatic Checkout System for Ground Electronics of a Weapon System (Short Communication

    Directory of Open Access Journals (Sweden)

    V. Ashok Kumar

    1997-04-01

    Full Text Available An automatic checkout system (ACOS designed and developed for a surface-to-air missile system is described. The system has a built-in self-check and has been extensively used for checking faults in the subsystems of ground electronics. It has resulted in saving a lot of effort in quickly diagnosing and rectifying faults. The salient features of the ACOS have been described and the scope for further work in this area has been outline.

  2. A Weapon Target Assignment Model Based on Weapon Utility%一种基于武器效用的武器目标分配模型

    Institute of Scientific and Technical Information of China (English)

    王金山; 李伟兵

    2015-01-01

    为解决武器优化分配中存在的2个问题,提出一种基于武器效用的武器目标分配模型。通过两类武器的效用分析,把目标达到期望毁伤概率作为武器效用最大的起点,设置两类武器的效用函数,以最大武器效用为准则,建立武器分配的线性整数规划模型,并对比2种模型的结果。实践结果证明:新模型求解分配的速度快耗时短,可满足战场需求,且结果更加合理。%In order to overtake two problems in weapon optimal assignment, propose a weapon target assignment model based on weapon utility. By two type weapons utility analysis, set expected kill probability as the start point of maximum weapon utility, and set utility function of two type weapons, takes maximum weapon utility as rule, establish linear integer planning model, and compare the results of two models. The practice results show that the new model has fast speed on solution distribution and use less time. It meets the battlefield requirements and has more reasonable results.

  3. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  4. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  5. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  6. Design of Ground Test Equipment for Missile Weapon System Based on Nested State Machine Model%基于嵌套式状态机模型的导弹武器系统地面监测系统设计

    Institute of Scientific and Technical Information of China (English)

    陈尧; 张靖; 尹明

    2009-01-01

    Working mechanism of state machine and its application in LabVIEW are introduced in detail according to basic principle of state machine. Combined with the development of ground test equipment for missile weapon system and multi-state system, the idea of nested state machine is presented. It is proved in project practice that the framework of nested state machine can be used to develop large-scale test system, making its complicated logical relationship more clear, and improving the expansibility, reusability and maintainability of software system greatly.%通过引入状态机的基本原理, 详细介绍了状态机的工作机理及其在LabVIEW中的实现方法.结合对炮射导弹武器系统地面监测系统的开发, 针对多状态系统, 提出了嵌套式状态机的设计思想.实践证明, 采用嵌套式状态机的架构模式开发大型测试系统可使复杂程序的逻辑关系更清晰, 极大地增强了软件系统的可扩展性、可重用性和可维护性.

  7. Use of non-petroleum fuels to reduce military energy vulnerabilities: self-sufficient bases and new weapon propulsion systems

    Energy Technology Data Exchange (ETDEWEB)

    Freiwald, D.A.

    1980-01-01

    The US fossil synfuels program may not have significant impact on domestic fuel supplies until near the year 2000, resulting in a continuing mobility fuels vulnerability for the US military until then. But there are other mobility fuel options for both propulsion systems and stationary base-energy sources, for which the base technology is commercially available or at least demonstrated. For example, for surface propulsion systems, hydrogen-fuel-cell/battery-electric hybrids may be considered; for weapons systems these may offer some new flexibilities, standardization possibilities, and multiple military-controlled fuel-supply options. Hydrogen-fueled aircraft may provide interesting longer-term possibilities in terms of military energy self-sufficiency and multiple supply options, as well as performance specifications. These scenarios will be discussed, along with possibilities for demonstrations in the MX-system ground vehicles.

  8. A Study of New Method for Weapon System Effectiveness Evaluation Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    YAN Dai-wei; GU Liang-xian; PAN Lei

    2008-01-01

    As weapon system effectiveness is affected by many factors, its evaluation is essentially a multi-criterion decision making problem for its complexity. The evaluation model of the effectiveness is established on the basis of metrics architecture of the effectiveness. The Bayesian network, which is used to evaluate the effectiveness, is established based on the metrics architecture and the evaluation models. For getting the weights of the metrics by Bayesian network, subjective initial values of the weights are given, gradient ascent algorithm is adopted, and the reasonable values of the weights are achieved. And then the effectiveness of every weapon system project is gained. The weapon system, whose effectiveness is relative maximum, is the optimization system. The research result shows that this method can solve the problem of AHP method which evaluation results are not compatible to the practice results and overcome the shortcoming of neural network in multilayer and multi-criterion decision. The method offers a new approaeh for evaluating the effectiveness.

  9. Space-based monitoring of ground deformation

    Science.gov (United States)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  10. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  11. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  12. Youths Carrying a Weapon or Using a Weapon in a Fight: What Makes the Difference?

    Science.gov (United States)

    Thurnherr, Judit; Michaud, Pierre-Andre; Berchtold, Andre; Akre, Christina; Suris, Joan-Carles

    2009-01-01

    The objective of this study was to characterize weapon-carrying adolescents and to assess whether weapon carriers differ from weapon users. Data were drawn from a cross-sectional school-based survey of 7548 adolescents aged 16-20 years in Switzerland. Youths carrying a weapon were compared with those who do not. Subsequently, weapon carriers were…

  13. A Study of Aviation Weapon Equipment Maintenance Based on the Semi-Markov Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the Semi-Markov mathematical description, the multiple states of maintenance processes for aviation weapon equipment are studied. Six kinds of maintenance states are determined and the Semi-Markov model of the maintenance process is given. According to maintenance characteristic, the multiple states maintenance processes are divided into the wait, use and alternate stages.Through using the mathematical model for the different stages, the probability in different states and effective index on different stages are obtained. These results are available to the maintenance practice.

  14. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  15. Radioactive Fallout From Nuclear Weapons Testing ...

    Science.gov (United States)

    2017-08-07

    Detonating nuclear weapons above ground sends radioactive materials into the atmosphere from the ground level up to very high elevations. Overtime, these materials settle out of the atmosphere and fall to the ground. Fallout typically contains hundreds of different radionuclides. Since the end of aboveground nuclear weapons testing, radionuclides have largely decayed away.

  16. Special Weapons

    Data.gov (United States)

    Federal Laboratory Consortium — Supporting Navy special weapons, the division provides an array of engineering services, technical publication support services, logistics support services, safety...

  17. The morality of weapons research.

    Science.gov (United States)

    Forge, John

    2004-07-01

    I ask whether weapons research is ever justified. Weapons research is identified as the business of the engineer. It is argued that the engineer has responsibility for the uses to which the tools that he designs can be put, and that responsibility extends to the use of weapons. It is maintained that there are no inherently defensive weapons, and hence there is no such thing as 'defensive' weapons research. The issue then is what responsibilities as a professional the engineer has in regard to such research. An account is given to ground the injunction not to provide the means to harm as a duty for the engineers. This account is not, however, absolutist, and as such it allows justifiable exceptions. The answer to my question is thus not that weapons research is never justified but there must be a strong assurance that the results will only be used as a just means in a just cause.

  18. 地面武器机动工程创新实践教学体系建设%The Construction of Ground Mobile Weapons Engineering Innovation and Practice Teaching System

    Institute of Scientific and Technical Information of China (English)

    李宏才; 闫清东

    2011-01-01

    Practice teaching plays an important role in improving the overall quality of students' innovative spirit and practical ability. To enhance the innovation and hands-on capability of undergraduates majored in ground mobile weapons engineering, an innovative practices teaching system featured with a combination of practical skill-training and innovation capacity-building in ground mobile weapons engineering was Set up, which combined the new development of the expertise and was based on modem technology and teaching philosophy. Provides a broad platform for independent design and development, the platform could help undergraduates their hands-on operation, expand training, simulation and design, which is extremely important to improve student learning and quality, practical and creative ability.%实践教学对于提高学生的综合素质、培养学生的创新精神和实践能力具有重要作用。为提升大学本科地面武器机动工程专业学生动手实践能力、创新能力,结合专业技术的新发展,依据现代技术和教育教学理念,建设实践技能锻炼和创新能力培养有机结合的地面武器机动工程专业创新实践教学体系。为大学生提供了动手操作、拓展训练、设计仿真和自主设计开发的广阔平台,对提高学生学习的兴趣和质量、实践能力和创新能力具有极其重要意义。

  19. Real-time threat evaluation in a ground based air defence environment

    Directory of Open Access Journals (Sweden)

    JN Roux

    2008-06-01

    Full Text Available In a military environment a ground based air defence operator is required to evaluate the tactical situation in real-time and protect Defended Assets (DAs on the ground against aerial threats by assigning available Weapon Systems (WSs to engage enemy aircraft. Since this aerial environment requires rapid operational planning and decision making in stress situations, the associated responsibilities are typically divided between a number of operators and computerized systems that aid these operators during the decision making processes. One such a Decision Support System (DSS, a threat evaluation and weapon assignment system, assigns threat values to aircraft (with respect to DAs in real-time and uses these values to propose possible engagements of observed enemy aircraft by anti-aircraft WSs. In this paper a design of the threat evaluation part of such a DSS is put forward. The design follows the structured approach suggested in [Roux JN & van Vuuren JH, 2007, Threat evaluation and weapon assignment decision support: A review of the state of the art, ORiON, 23(2, pp. 151-187], phasing in a suite of increasingly complex qualitative and quantitative model components as more (reliable data become available.

  20. The influence of the Lop Nor Nuclear Weapons Test Base to the population of the Republic of Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Zhumadilov, Kassym, E-mail: kassym@hiroshima-u.ac.j [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Ivannikov, Alexander [Medical Radiological Research Center, Korolev str. 4, Obninsk 249036 (Russian Federation); Zharlyganova, Dinara [Astana Medical University, Astana 010000 (Kazakhstan); Stepanenko, Valeriy [Medical Radiological Research Center, Korolev str. 4, Obninsk 249036 (Russian Federation); Zhumadilov, Zhaxybay [Nazarbayev University, Life Science Center, Astana 010000 (Kazakhstan); Apsalikov, Kazbek [Kazakh Scientific-Research Institute for Radiation Medicine and Ecology, Semey 071400 (Kazakhstan); Toyoda, Shin [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai, Okayama 700-0005 (Japan); Endo, Satoru [Department of Quantum Energy Applications, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Tanaka, Kenichi [Division of Physics, Department of Liberal Arts and Sciences, Center of Medical Education, Sapporo Medical University, South 1, West 17, Chuo-ku, Sapporo 060-8556 (Japan); Miyazawa, Chuzou [School of Dentistry, Ohu University, 31-1, Aza-Misumido, Tomita-machi, Koriyama-shi, Fukushima Pref. 963-8611 (Japan); Okamoto, Tetsuji [Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Sciences, Graduate School of Biomedical Sciences, Hiroshima University (Japan); Hoshi, Masaharu [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan)

    2011-04-15

    The method of electron spin resonance (ESR) dosimetry was applied to human tooth enamel to obtain estimates of individual absorbed dose for residents of Makanchi, Urdzhar and Taskesken settlements located near the Kazakhstan-Chinese border (about 400 km to the South-East, from the Semipalatinsk Nuclear Test Site (SNTS) and about 1000 km from the Lop Nor Nuclear Weapons Test Base, China). Since the ground and atmospheric nuclear tests (1964-1981) at Lop Nor, the people residing in these settlements are believed to have been heavily exposed to radioactive fallout. Tooth samples had been extracted for medical reasons during the course of ordinary dental treatment. The village of Kokpekty, located 400 km to the South-east of the SNTS, was chosen as the control group since it has not been subjected to any radioactive contamination. The mean excess doses in tooth enamel obtained after subtraction of the contribution of natural background radiation do not exceed 62 {+-} 28 mGy, 64 {+-} 30 mGy, 49 {+-} 27 mGy and -19 {+-} 36 mGy for all ages of the residents of Makanchi, Urdzhar, Taskesken and the control village of Kokpekty, respectively.

  1. [Biological weapons].

    Science.gov (United States)

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage. Georg Thieme Verlag KG Stuttgart * New York.

  2. A presentation of ATR processing chain validation procedure of IR terminal guidance version of the AASM modular air-to-ground weapon

    Science.gov (United States)

    Duclos, D.; Quinquis, N.; Broda, G.; Galmiche, F.; Oudyi, F.; Coulon, N.; Cordier, D.; Sonier, C.

    2009-05-01

    Developed by Sagem (SAFRAN Group), the AASM is a modular Air-To-Ground "Fire and Forget" weapon designed to be able to neutralise a large range of targets under all conditions. The AASM is composed of guidance and range enhancement kits that give bombs, already in service, new operational capabilities. AASM Guidance kit exists in two different versions. The IMU/GPS guidance version is able to achieve "ten-meter class" accuracy on target in all weather conditions. The IMU/GPS/IR guidance version is able to achieve "meter class" accuracy on target with poor precision geographic designation or in GPS-denied flight context, thanks to a IR sensor and a complex image processing chain. In this night/day IMU/GPS/IR version, the terminal guidance phase adjusts the missile navigation to the true target by matching the image viewed through the infrared sensor with a target model stored in the missile memory. This model will already have been drawn up on the ground using a mission planning system and, for example, a satellite image. This paper will present the main steps of the procedure applied to qualify the complete image processing chain of the AASM IMU/GPS/IR version, including open-loop validation of ATR algorithms on real and synthetic images, and closed-loop validation using AASM simulation reference model.

  3. Investigation of Contaminated Ground Water at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2006-2007

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2008-01-01

    The U.S. Geological Survey investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. The permeable reactive barrier (PRB) along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells 12MW-10S and 12MW-03S, upgradient from the PRB, showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest showed a sharp increase, followed by a decrease. In 2007, the VOC concentrations began to increase in well 12MW-12S, downgradient from the PRB and thought to be unaffected by the PRB. The VOC-concentration changes in the forest, such as at well 12MW-12S, may represent lateral shifting of the plume in response to changes in ground-water-flow direction or may represent movement of a contamination pulse through the forest.

  4. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  5. Multidisciplinary model-based-engineering for laser weapon systems: recent progress

    Science.gov (United States)

    Coy, Steve; Panthaki, Malcolm

    2013-09-01

    We are working to develop a comprehensive, integrated software framework and toolset to support model-based engineering (MBE) of laser weapons systems. MBE has been identified by the Office of the Director, Defense Science and Engineering as one of four potentially "game-changing" technologies that could bring about revolutionary advances across the entire DoD research and development and procurement cycle. To be effective, however, MBE requires robust underlying modeling and simulation technologies capable of modeling all the pertinent systems, subsystems, components, effects, and interactions at any level of fidelity that may be required in order to support crucial design decisions at any point in the system development lifecycle. Very often the greatest technical challenges are posed by systems involving interactions that cut across two or more distinct scientific or engineering domains; even in cases where there are excellent tools available for modeling each individual domain, generally none of these domain-specific tools can be used to model the cross-domain interactions. In the case of laser weapons systems R&D these tools need to be able to support modeling of systems involving combined interactions among structures, thermal, and optical effects, including both ray optics and wave optics, controls, atmospheric effects, target interaction, computational fluid dynamics, and spatiotemporal interactions between lasing light and the laser gain medium. To address this problem we are working to extend Comet™, to add the addition modeling and simulation capabilities required for this particular application area. In this paper we will describe our progress to date.

  6. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  7. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  8. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  9. Study on effectiveness evaluation of weapon systems based on grey relational analysis and TOPSIS

    Institute of Scientific and Technical Information of China (English)

    Gu Hui; Song Bifeng

    2009-01-01

    To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.

  10. Radioecological transfer of {sup 137}Cs from ground deposition to man from Chernobyl debris and from nuclear weapons fallout in different Swedish populations

    Energy Technology Data Exchange (ETDEWEB)

    Raeaef, C.L. [Malmoe Univ. Hospital, Lund Univ., Dept. of Radiation Physics, Malmoe (Sweden)

    2005-07-01

    A comparison of the estimated committed effective dose per unit activity deposition on ground was made between different critical groups in Sweden. The time-integrated aggregate transfer of {sup 137}Cs for the global fallout was 2-3 times higher than from Chernobyl debris for Swedish urban populations. For reindeer herders this difference is even more marked, with a factor of three to four higher time-integrated transfer factor of nuclear weapons fallout. Considering the transfer of Chernobyl {sup 137}Cs debris the time-integrated transfer factor appears to be more than 25 times higher for reindeer herders in Sweden than for the urban reference groups. An even more pronounced relative difference between the time integrated aggregate transfer was observed between reindeer herders and urban reference populations for the pre-Chernobyl fallout (a factor of 30). The projected committed effective dose from internal contamination of Chernobyl {sup 137}Cs per unit activity deposition is observed to be 2030 {mu}Sv/kBq m{sup -2}. The highest values in Sweden are obtained for reindeer herders with an estimated radioecological transfer of 0.5 mSv/kBq m{sup -2}. (au)

  11. 4 CFR 25.14 - Weapons and explosives.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Weapons and explosives. 25.14 Section 25.14 Accounts... AND ON ITS GROUNDS § 25.14 Weapons and explosives. No person while entering or in the GAO Building or on its grounds shall carry or possess firearms, other dangerous or deadly weapons, explosives or...

  12. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fontana, M.H. [Oak Ridge National Lab., TN (United States); Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A. [Los Alamos National Lab., NM (United States)

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  13. FGMOS Based Voltage-Controlled Grounded Resistor

    Directory of Open Access Journals (Sweden)

    R. Pandey

    2010-09-01

    Full Text Available This paper proposes a new floating gate MOSFET (FGMOS based voltage-controlled grounded resistor. In the proposed circuit FGMOS operating in the ohmic region is linearized by another conventional MOSFET operating in the saturation region. The major advantages of FGMOS based voltage-controlled grounded resistor (FGVCGR are simplicity, low total harmonic distortion (THD, and low power consumption. A simple application of this FGVCGR as a tunable high-pass filter is also suggested. The proposed circuits operate at the supply voltages of +/-0.75 V. The circuits are designed and simulated using SPICE in 0.25-µm CMOS technology. The simulation results of FGVCGR demonstrate a THD of 0.28% for the input signal 0.32 Vpp at 45 kHz, and a maximum power consumption of 254 µW.

  14. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  15. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  16. Why Model-Based Engineering and Manufacturing Makes Sense for the Plants and Laboratories of the Nuclear Weapon Complex

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, K W; Howell, L N; Lewis, D G; Neugebauer, C A; O' Brien, D W; Schilling, S A

    2001-05-15

    The purpose of this White Paper is to outline the benefits we expect to receive from Model-Based Engineering and Manufacturing (MBE/M) for the design, analysis, fabrication, and assembly of nuclear weapons for upcoming Life Extension Programs (LEPs). Industry experiences with model-based approaches and the NNSA/DP investments and experiences, discussed in this paper, indicate that model-based methods can achieve reliable refurbished weapons for the stockpile with less cost and time. In this the paper, we list both general and specific benefits of MBE/M for the upcoming LEPs and the metrics for determining the success of model-based approaches. We also present some outstanding issues and challenges to deploying and achieving long-term benefit from the MBE/M. In conclusion, we argue that successful completion of the upcoming LEPs--with very aggressive schedule and funding restrictions--will depend on electronic model-based methods. We ask for a strong commitment from LEP managers throughout the Nuclear Weapons Complex to support deployment and use of MBE/M systems to meet their program needs.

  17. Final Environmental Assessment for the Grace Hopper Bridge Embankment Repairs at Joint Base Charleston Weapons Station, South Carolina

    Science.gov (United States)

    2015-07-06

    5 FIGURE 2-1Work Space and Construction Area Grace Hopper Bridge Environmental AssessmentJoint Base Charleston - Weapons Station LEGEND ... LEGEND Approximate Construction Area Work Space Map Unit Name Aquic UdifluventsU Bohicket AssociationH Craveb loam, 0 to 2 percent slope Water ¯ 0 15075...danabeach@scccl.org Executive Director 843-723-8035 Coastal Conservation League –Charleston Office 328 East Bay Street Post Office Box 1765 Charleston

  18. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  19. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  20. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  1. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  3. Weapons Acquisition. Processes of Selected Foreign Government.

    Science.gov (United States)

    1986-02-01

    period from 1977 to 1985: (1) 5.56mm calibre assault rifle. (2) Milan and Hot antitank weapon systems. (3) Roland ground-to-air weapon system. (4) AMX 30...and standardization edicts . Awards and penalties are laid on accordingly. (7/17, 13/20) The ministries stand apart from one another in the same way

  4. 46 CFR 386.23 - Weapons and explosives.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Weapons and explosives. 386.23 Section 386.23 Shipping... AND GROUNDS AT THE UNITED STATES MERCHANT MARINE ACADEMY § 386.23 Weapons and explosives. No person shall carry or possess firearms, other dangerous or deadly weapons or parts thereof, explosives or items...

  5. 31 CFR 91.13 - Weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Weapons and explosives. 91.13 Section... CONDUCT IN OR ON THE BUREAU OF THE MINT BUILDINGS AND GROUNDS § 91.13 Weapons and explosives. No person while on the property shall carry firearms, other dangerous or deadly weapons, or explosives, either...

  6. 36 CFR 504.14 - Weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weapons and explosives. 504... GOVERNING SMITHSONIAN INSTITUTION BUILDINGS AND GROUNDS § 504.14 Weapons and explosives. No person while on the premises shall carry firearms, other dangerous or deadly weapons, or explosives, either openly or...

  7. 31 CFR 700.11 - Weapons and explosives.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Weapons and explosives. 700.11... FEDERAL LAW ENFORCEMENT TRAINING CENTER (FLETC) BUILDINGS AND GROUNDS § 700.11 Weapons and explosives. No person, while on the property, shall carry firearms, other dangerous or deadly weapons, or explosives...

  8. 15 CFR 265.39 - Weapons and explosives.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Weapons and explosives. 265.39 Section..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.39 Weapons and... dangerous or deadly weapons or materials, or explosives, either openly or concealed, without the written...

  9. Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm

    Institute of Scientific and Technical Information of China (English)

    Wang Yanxia; Qian Longjun; Guo Zhi; Ma Lifeng

    2008-01-01

    A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed.In order to save armament resource and attack the targets effectively,the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted.The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result.Ant colony algorithm has been successfully used in many fields,especially in combination optimization.The ant colony algorithm for this WTA problem is described by analyzing path selection,pheromone update,and tabu table update.The effectiveness of the model and the algorithm is demonstrated with an example.

  10. Confidence-Building in Cyberspace: A Comparison of Territorial and Weapons-based Regimes

    Science.gov (United States)

    2015-04-01

    Service Attacks • Cyberespionage • Preemptive strikes • Weaponization of code (Malware) • Encryption Issues How Addressed International Courts...risk of preemptive action by either side was high. If we consider how a security dilemma in real space is addressed when it is difficult to...distinguish between offensive and de- fensive activities, and between preemptive war and offensive war, we can draw insights into how similar dilemmas in

  11. The vulnerability of laser warning systems against guided weapons based on low power lasers

    OpenAIRE

    Al-Jaberi, Mubarak

    2006-01-01

    Laser assisted weapons, such as laser guided bombs, laser guided missiles and laser beam-riding missiles pose a significant threat to military assets in the modern battlefield. Laser beam-riding missiles are particularly hard to detect because they use low power lasers. Most laser warning systems produced so far can not detect laser beam-riding missiles because of their weak emissions which have signals less than 1% of laser range finder power . They are even harder to defeat because current ...

  12. The use of depleted uranium ammunition under contemporary international law: is there a need for a treaty-based ban on DU weapons?

    Science.gov (United States)

    Borrmann, Robin

    2010-01-01

    This article examines whether the use of Depleted Uranium (DU) munitions can be considered illegal under current public international law. The analysis covers the law of arms control and focuses in particular on international humanitarian law. The article argues that DU ammunition cannot be addressed adequately under existing treaty based weapon bans, such as the Chemical Weapons Convention, due to the fact that DU does not meet the criteria required to trigger the applicability of those treaties. Furthermore, it is argued that continuing uncertainties regarding the effects of DU munitions impedes a reliable review of the legality of their use under various principles of international law, including the prohibition on employing indiscriminate weapons; the prohibition on weapons that are intended, or may be expected, to cause widespread, long-term and severe damage to the natural environment; and the prohibition on causing unnecessary suffering or superfluous injury. All of these principles require complete knowledge of the effects of the weapon in question. Nevertheless, the author argues that the same uncertainty places restrictions on the use of DU under the precautionary principle. The paper concludes with an examination of whether or not there is a need for--and if so whether there is a possibility of achieving--a Convention that comprehensively outlaws the use, transfer and stockpiling of DU weapons, as proposed by some non-governmental organisations (NGOs).

  13. Current trends in ground based solar magnetometry

    Science.gov (United States)

    Gosain, Sanjay

    2016-07-01

    Continuous observations of the sun, over more than a century, have led to several important discoveries in solar astronomy. These include the discovery of the solar magnetism and its cyclic modulation, active region formation and decay and their role in energetic phenomena such as fares and coronal mass ejections (CMEs), fine structure and dynamics of the sunspots and small-scale organization of the magnetic flux in the form of flux tubes and so forth. In this article we give a brief overview of advancements in solar observational techniques in recent decades and the results obtained from the such observations. These include techniques to achieve high angular resolution, high spectral and polarimetric sensitivity and innovative new detectors. A wide range of spatial, temporal and spectral domains exploited by solar astronomers to understand the solar phenomena are discussed. Many new upcoming telescopes and instruments that are designed to address different aspects of solar physics problems are briefly described. Finally, we discuss the advantages of observing from the ground and how they can complement space-based observations.

  14. Advanced Naval Surface fire support weapon employment against mobile targets

    OpenAIRE

    Le, Hung B.

    1999-01-01

    Approved for public release; distribution is unlimited Key threat trends have identified shortfalls in Naval Surface Fire Support (NSFS), a mission area that is undergoing rapid evolution. The Navy's ability to effectively provide sea-based fire support to ground forces is profoundly challenged by mobile and reduced dwell time targets. Furthermore, longer range enemy weapon systems, which must be destroyed at greater ranges prior to their engagement of friendly forces, will make NSFS timel...

  15. 33 CFR 334.1380 - Marine Corps Base Hawaii (MCBH), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons...

    Science.gov (United States)

    2010-07-01

    ...), Kaneohe Bay, Island of Oahu, Hawaii-Ulupau Crater Weapons Training Range; danger zone. 334.1380 Section... Bay, Island of Oahu, Hawaii—Ulupau Crater Weapons Training Range; danger zone. (a) The danger zone...″ W Point C: Latitude 21°25′01.79″ N, Longitude 157°40′33.70″ W (b) The regulations. (1) Weapons...

  16. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  17. Power Gating Based Ground Bounce Noise Reduction

    Directory of Open Access Journals (Sweden)

    M. Uma Maheswari

    2014-08-01

    Full Text Available As low power circuits are most popular the decrease in supply voltage leads to increase in leakage power with respect to the technology scaling. So for removing this kind of leakages and to provide a better power efficiency many power gating techniques are used. But the leakage due to ground connection to the active part of the circuit is very high rather than all other leakages. As it is mainly due to the back EMF of the ground connection it was called it as ground bounce noise. To reduce this noise different methodologies are designed. In this paper the design of such an efficient technique related to ground bounce noise reduction using power gating circuits and comparing the results using DSCH and Microwind low power tools. In this paper the analysis of adders such as full adders using different types of power gated circuits using low power VLSI design techniques and to present the comparison results between different power gating methods.

  18. [Prevalence of weapons possession and associated factors and involvement in physical aggression among adolescents 15 to 18 years of age: a population-based study].

    Science.gov (United States)

    Silva, Ricardo Azevedo da; Jansen, Karen; Godoy, Russélia Vanila; Souza, Luciano Dias Mattos; Horta, Bernardo Lessa; Pinheiro, Ricardo Tavares

    2009-12-01

    This cross-sectional, population-based study aimed to evaluate the prevalence of weapons possession and associated factors and involvement in physical aggression among adolescents 15 to 18 years of age (n = 960) in the city of Pelotas, Rio Grande do Sul State, Brazil. Ninety of the city's 448 census tracts were selected, and 86 houses in each tract were visited. The statistical analysis used Poisson regression. Prevalence rates in the sample were 22.8% for involvement in fights with physical aggression and 9.6% for weapons possession in the previous 12 months. The study concluded that young males that use alcohol and/or illegal drugs and present minor psychiatric disorders show a higher probability of weapons possession and involvement in physical fights.

  19. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  20. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  1. Nuclear Weapons and Nuclear War. Papers Based on a Symposium of the Forum on Physics and Society of the American Physical Society, (Washington, D.C., April 1982).

    Science.gov (United States)

    Morrison, Philip; And Others

    Three papers on nuclear weapons and nuclear war, based on talks given by distinguished physicists during an American Physical Society-sponsored symposium, are provided in this booklet. They include "Caught Between Asymptotes" (Philip Morrison), "We are not Inferior to the Soviets" (Hans A. Bethe), and "MAD vs. NUTS" (Wolfgang K. H. Panofsky).…

  2. Analysis of the possibility of applying a condition-based maintenance model on an example of tank weapons

    Directory of Open Access Journals (Sweden)

    Igor J. Epler

    2013-12-01

    Full Text Available For any modern army it is very important to continuously maintain a high degree of operational (combat readiness (availability in order to maximize the effectiveness of the use of technical systems. Since determination and prediction of technical states and failures of technical systems in engineering, especially in armament, are difficult due to the impossibility of continuous condition monitoring with appropriate measuring equipment there is a need for a maintenance model that would be most helpful in taking timely action maintenance. In this paper, the subject of research is a model of maintenance of the M-84 tank  weapoons systems.   IntroductionThe M-84 tank is one of the most promising technical systems in the Serbian Army. Its use and modifications are foreseen in the next ten years. The  M-84 is characterized by good tactical and technical characteristics. It has a powerful 125 mm cannon, coupled 7.62 mm machine gun and 12.7 mm anti-aircraft machine gun. The M-84 tank has an automatic battery charger and a fire control system. The fire control system enables fast target tracking and stabilization of the cannon barrel, which is a prerequisite for timely and favorable effect on the target. There are certain ambiguities in the existing model of maintenance of tank weapons.   Technical diagnostics Technical diagnostics, as a part of the process of condition-based maintenance, should determine technical conditions of components or technical systems with certain accuracy at a point in time.   Maintenance strategy A maintenance strategy can be defined as a variant of a maintenance system determined by a concept, organization and character of maintenance procedures, as well as the relationship between the various levels at which maintenance is performed. It is defined for technical system parts, individual technical systems and for system maintenance as a whole. The basic maintenance strategies implemented today are: -      corrective

  3. Nuclear weapons modernizations

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  4. OPERATION GREENHOUSE. Scientific Director’s Report of Atomic Weapon Tests at Eniwetok, 1951, Annex 9.5. Base Facilities

    Science.gov (United States)

    1951-09-01

    pursued. The manpower question became more pressing in the light of the scheduling losses sustained during the suspension of shipping. By the...in operation were the following: 55 jeeps, 12 Cushman scooters , 9 cargo trucks, 19 pickup trucks, 26 weapons carriers, 3 fire trucks, 21 dump...and personnel carriers — including pickups, weapons carriers, jeeps, and motor scooters . As a result of these inspections, necessary re- pairs were

  5. Analysis on Operational capability for Truck-mounted Howitzers Weapon System Based on AHP%基于层次分析法的车载炮武器系统作战能力

    Institute of Scientific and Technical Information of China (English)

    汪洋

    2011-01-01

    The truck-mounted howitzers weapon system is a sort of novel army ground fire assault system,there is lots of uncertainty factors influenced the operational capability of truck-mounted Howitzers artillery division.In the paper,it made the quantization analysis for operational capability by means of AHP,and obtained the related data and conclusion.It provided a certain reference base for training and application of truck-mounted howitzers weapon system in troops.%车载炮武器系统是一种新型陆军地面火力打击系统,影响车载炮炮兵分队作战能力的不定因素很多,本文采用层次分析法对其作战能力进行了量化分析,得出了相关数据和结论,为车载炮武器系统在部队的训练和使用提供了一定的参考依据。

  6. A Quarter Active Suspension System Based Ground-Hook Controller

    OpenAIRE

    Turnip Arjon

    2016-01-01

    An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with ...

  7. Analysis of laser energy characteristics of laser guided weapons based on the hardware-in-the-loop simulation system

    Science.gov (United States)

    Zhu, Yawen; Cui, Xiaohong; Wang, Qianqian; Tong, Qiujie; Cui, Xutai; Li, Chenyu; Zhang, Le; Peng, Zhong

    2016-11-01

    The hardware-in-the-loop simulation system, which provides a precise, controllable and repeatable test conditions, is an important part of the development of the semi-active laser (SAL) guided weapons. In this paper, laser energy chain characteristics were studied, which provides a theoretical foundation for the SAL guidance technology and the hardware-in-the-loop simulation system. Firstly, a simplified equation was proposed to adjust the radar equation according to the principles of the hardware-in-the-loop simulation system. Secondly, a theoretical model and calculation method were given about the energy chain characteristics based on the hardware-in-the-loop simulation system. We then studied the reflection characteristics of target and the distance between the missile and target with major factors such as the weather factors. Finally, the accuracy of modeling was verified by experiment as the values measured experimentally generally follow the theoretical results from the model. And experimental results revealed that ratio of attenuation of the laser energy exhibited a non-linear change vs. pulse number, which were in accord with the actual condition.

  8. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  9. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    Science.gov (United States)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  10. Monitoring water supplies for weaponized bacteria and bacterial toxins using rapid fluorescence-based viability and affinity assays

    Science.gov (United States)

    Van Tassell, Roger L.; Evans, Mishell

    2004-03-01

    The rapid detection of weaponized bacteria and toxins is a major problem during a biological attack. Although sensitive detection formats exist for many biowarfare agents, they often require advanced training and complex procedures. Luna has developed simple, rapid means for determining the presence of pathogens and bacterial toxins in water supplies using fluorescence-based assays that can be adapted for field use. The batteries of rapid assays are designed for i) determining cell viability and bacterial loads by exploiting metabolic markers (e.g., acid-production, redox potentials, etc) and ii) detecting bacterial toxins using fluorescent, polymerized affinity liposomes (fluorosomes). The viability assays were characterized using E. coli, S. aureus and the anthrax simulant, B. globigii. The viability assays detected bacterial loads of ~ 104 CFU/ml and with simple filtration ~ 100CFU/ml could be detected. The affinity fluorosomes were characterized using cholera toxin (CT). Affinity liposomes displaying GM1 and anti-CT antibodies could detect CT at <μg/ml levels. Stability studies showed that affinity vesicles could be stored for weeks at 4°C or freeze-dried with no significant loss of binding capacity. Using an in-house fiber optic fluorescence system, Luna characterized the binding of affinity fluorosomes to respective targets and determined the responses of bacterial loads in the fluorescent viability assays. Using this two-tiered approach, Luna demonstrated that water susceptible to sabotage could be easily monitored and confirmed for specific agents using simple, general and specific fluorescence-based detection schemes based on metabolism and ligand-target interactions.

  11. Nonstrategic Nuclear Weapons

    Science.gov (United States)

    2014-01-03

    William Potter , and Nikolai Sokov, Reducing and Regulating Tactical (Nonstrategic) Nuclear Weapons in Europe, The James Martin Center For...See William C. Potter and Nikolai Sokov, “Nuclear Weapons that People Forget,” International Herald Tribune, May 31, 2000. 87 Sam Nunn, Igor...their security.97 94 Kent Harris , “NATO Allies Want U.S. Nuclear Weapons out of Europe

  12. Ground point filtering of UAV-based photogrammetric point clouds

    Science.gov (United States)

    Anders, Niels; Seijmonsbergen, Arie; Masselink, Rens; Keesstra, Saskia

    2016-04-01

    Unmanned Aerial Vehicles (UAVs) have proved invaluable for generating high-resolution and multi-temporal imagery. Based on photographic surveys, 3D surface reconstructions can be derived photogrammetrically so producing point clouds, orthophotos and surface models. For geomorphological or ecological applications it may be necessary to separate ground points from vegetation points. Existing filtering methods are designed for point clouds derived using other methods, e.g. laser scanning. The purpose of this paper is to test three filtering algorithms for the extraction of ground points from point clouds derived from low-altitude aerial photography. Three subareas were selected from a single flight which represent different scenarios: 1) low relief, sparsely vegetated area, 2) low relief, moderately vegetated area, 3) medium relief and moderately vegetated area. The three filtering methods are used to classify ground points in different ways, based on 1) RGB color values from training samples, 2) TIN densification as implemented in LAStools, and 3) an iterative surface lowering algorithm. Ground points are then interpolated into a digital terrain model using inverse distance weighting. The results suggest that different landscapes require different filtering methods for optimal ground point extraction. While iterative surface lowering and TIN densification are fully automated, color-based classification require fine-tuning in order to optimize the filtering results. Finally, we conclude that filtering photogrammetric point clouds could provide a cheap alternative to laser scan surveys for creating digital terrain models in sparsely vegetated areas.

  13. Reconversion of nuclear weapons

    CERN Document Server

    Kapitza, Sergei P

    1993-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  14. Broken Arrows: Radiological hazards from nuclear warhead accidents (the Minot USAF base nuclear weapons incident)

    CERN Document Server

    Liolios, Theodore

    2009-01-01

    According to numerous press reports, in 2007 at Minot US Air Force Base six AGM-129 Advanced Cruise Missiles mistakenly armed with W80-1 thermonuclear warheads were loaded on a B-52H heavy bomber in place of six unarmed AGM-129 missiles that were awaiting transport to Barksdale US Air Force Base for disposal. The live nuclear missiles were not reported missing, and stood unsecured and unguarded while mounted to the aircraft for a period of 36 hours. The present work investigates the radiological hazards associated with a worst-case postulated accident that would disperse the nuclear material of the six warheads in large metropolitan cities. Using computer simulations approximate estimates are derived for the ensuing cancer mortality and land contamination after the accident. Health, decontamination and evacuation costs are also estimated in the framework of the linear risk model.

  15. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  16. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  17. Model-based engineering:a strategy for RRW and future weapons programs.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Rick; Martinez, Jacky R.

    2007-05-01

    To meet Sandia's engineering challenges it is crucial that we shorten the product realization process. The challenge of RRW is to produce exceptional high quality designs and respond to changes quickly. Computer aided design models are an important element in realizing these objectives. Advances in the use of three dimensional geometric models on the Reliable Robust Warhead (RRW) activity have resulted in business advantage. This approach is directly applicable to other programs within the Laboratories. This paper describes the RRW approach and rationale. Keys to this approach are defined operational states that indicate a pathway for greater model-based realization and responsive infrastructure.

  18. A Quarter Active Suspension System Based Ground-Hook Controller

    Directory of Open Access Journals (Sweden)

    Turnip Arjon

    2016-01-01

    Full Text Available An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with semi-active suspension.

  19. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  20. Integrated Train Ground Radio Communication System Based TD-LTE

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongli; CAO Yuan; ZHU Li; XU Wei

    2016-01-01

    In existing metro systems, the train ground radio communication system for different applications are deployed independently. Investing and constructing the communication infrastructures repeatedly wastes substan-tial social resources, and it brings difficulties to maintain all these infrastructures. We present the communication Quality of service (QoS) requirement for different train ground radio applications. An integrated TD-LTE based train ground radio communication system for the metro system (LTE-M) is designed next. In order to test the LTE-M system performance, an indoor testing environment is set up. The channel simulator and programmable attenua-tors are used to simulate the real metro environment. Ex-tensive test results show that the designed LTE-M system performance satisfies metro communication requirements.

  1. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  2. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  3. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  4. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  5. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  6. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  7. Landmark-Based Navigation of an Unmanned Ground Vehicle (UGV)

    Science.gov (United States)

    2009-03-01

    against large measurement errors. 20090710280 RELEASE LIMITATION Approved for public release 4p fv^-Jo-osiit? Published by Weapons Systems Division...achieved as numerous low cost gyroscopes in the market meet this requirement. 24 DSTO-TR-2260 3.5.4 Sensitivity to Vehicle Speed In this subsection

  8. Overall View of Chemical and Biochemical Weapons

    Science.gov (United States)

    Pitschmann, Vladimír

    2014-01-01

    This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist. PMID:24902078

  9. Overall view of chemical and biochemical weapons.

    Science.gov (United States)

    Pitschmann, Vladimír

    2014-06-04

    This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist.

  10. Overall View of Chemical and Biochemical Weapons

    Directory of Open Access Journals (Sweden)

    Vladimír Pitschmann

    2014-06-01

    Full Text Available This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist.

  11. Virtual nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  12. Ground-based complex for checking the optical system

    Science.gov (United States)

    Grebenyuk, V.; Boreiko, V.; Dmitrotsa, A.; Gorbunov, N.; Khrenov, B.; Klimov, P.; Lavrova, M.; Popescu, E. M.; Sabirov, B.; Tkachenko, A.; Tkachev, L.; Volvach, A.; Yashin, I.

    2016-09-01

    The purpose TUS space experiment is to study cosmic rays of ultrahigh energies produced by extensive air showers from space. The concentrator is located on satellite, made in the form of the Fresnel mirror towards the earth's atmosphere, the focus of which is a photodetector. The angle of view of the mirror is ±4.5° that for a given height of the orbit corresponds to the area 80 × 80 km2 on ground. The ground complex consisting of a number of stations, to check the optical system of the experiment is created, (their location and the amount will be determined after the launch of the satellite based on its actual orbit).

  13. Ground extraction from airborne laser data based on wavelet analysis

    Science.gov (United States)

    Xu, Liang; Yang, Yan; Jiang, Bowen; Li, Jia

    2007-11-01

    With the advantages of high resolution and accuracy, airborne laser scanning data are widely used in topographic mapping. In order to generate a DTM, measurements from object features such as buildings, vehicles and vegetation have to be classified and removed. However, the automatic extraction of bare earth from point clouds acquired by airborne laser scanning equipment remains a problem in LIDAR data filtering nowadays. In this paper, a filter algorithm based on wavelet analysis is proposed. Relying on the capability of detecting discontinuities of continuous wavelet transform and the feature of multi-resolution analysis, the object points can be removed, while ground data are preserved. In order to evaluate the performance of this approach, we applied it to the data set used in the ISPRS filter test in 2003. 15 samples have been tested by the proposed approach. Results showed that it filtered most of the objects like vegetation and buildings, and extracted a well defined ground model.

  14. Neurotoxic Weapons and Syndromes.

    Science.gov (United States)

    Carota, Antonio; Calabrese, Pasquale; Bogousslavsky, Julien

    2016-01-01

    The modern era of chemical and biological warfare began in World War I with the large-scale production and use of blistering and choking agents (chlorine, phosgene and mustard gases) in the battlefield. International treaties (the 1925 Geneva Protocol, the 1975 Biological and Toxin Weapons Convention and the 1993 Chemical Weapons Convention) banned biological and chemical weapons. However, several countries are probably still engaged in their development. Hence, there is risk of these weapons being used in the future. This chapter will focus on neurotoxic weapons (e.g. nerve agents, chemical and biological neurotoxins, psychostimulants), which act specifically or preeminently on the central nervous system and/or the neuromuscular junction. Deeply affecting the function of the nervous system, these agents either have incapacitating effects or cause clusters of casualties who manifest primary symptoms of encephalopathy, seizures, muscle paralysis and respiratory failure. The neurologist should be prepared both to notice patterns of symptoms and signs that are sufficiently consistent to raise the alarm of neurotoxic attacks and to define specific therapeutic interventions. Additionally, extensive knowledge on neurotoxic syndromes should stimulate scientific research to produce more effective antidotes and antibodies (which are still lacking for most neurotoxic weapons) for rapid administration in aerosolized forms in the case of terrorist or warfare scenarios. © 2016 S. Karger AG, Basel.

  15. RESTRICTIONS BY THE USE OF WEAPONS OF RUSSIAN CITIZENS

    Directory of Open Access Journals (Sweden)

    Lyatsa A. Kodzokova

    2016-01-01

    Full Text Available Abstract: The article considers the restrictions imposed on the circulation of civilian and service weapons. The author analyzes the restrictions on the circulation of weapons, the procedure for their implementation in practice. Federal Law "On weapons" only in paragraph 6 p. 1, art. 6 "Restrictions imposed on the circulation of civilian and service weapons" refers to the prohibition of 'turnover as a civilian and service weapons and other items affecting the action is based on the use of radiation and biological factors; weapons and other items affecting the action is based on the use of electromagnetic, light, thermal, subsonic or ultrasonic radiation and which have output parameters that exceed the value set by state standards of the Russian Federation and the relevant regulations of the federal executive authority in the field of public health, as well as these weapons and items produced outside the Russian territory " How to regard this provision of the law? As the transfer of new weapons, not specific item. 25 of the Federal Law "On weapons", or items prohibited for circulation in the territory of our state? This inconsistency decreases the effectiveness of the legal regulation of arms trafficking. Unification of definitions in this area will allow applying the law correctly and reasonably, including criminal. But for this it is necessary taking into account the experience and the modern needs of the various branches of law provide a clearer definition of "weapon" and its species. The author's conclusions may be used in law enforcement. 

  16. Systems engineering analysis of kinetic energy weapon concepts

    Energy Technology Data Exchange (ETDEWEB)

    Senglaub, M.

    1996-06-01

    This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

  17. Systems engineering analysis of kinetic energy weapon concepts

    Energy Technology Data Exchange (ETDEWEB)

    Senglaub, M.

    1996-06-01

    This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

  18. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  19. Operational research in weapon system

    Directory of Open Access Journals (Sweden)

    R. S. Varma

    1958-04-01

    Full Text Available "The paper is divided into three parts: (a The first part deals with what operational research is. (bThe second part gives what we mean by Weapon Systems and discusses considerations that determine the choice of a particular weapon system from a class weapon systems. (cThe third part deals with some aspects of weapon replacement policy.The effectiveness of a weapon system is defined as E=D/C where E is weapon effectiveness (a comparative figure of merit; D is total damage inflicted or prevented and C is total cost, D and C being reduced to common dimensions. During the course of investigations, criteria regarding to choice of weapon or weapons from a set of weapon systems are established through production function and military effect curves. A procedure is described which maximizes the expectation of military utility in order to select a weapon system from the class of weapon systems. This is done under the following simplifying assumptions: (a Non- decreasing utility function; (b Constant average cost for each kind of weapons; and (c Independence of the performance of each unit of weapon. Some of the difficulties which arises when any of these restrictions is relaxed are briefly mentioned. Finally, the policy of weapon replacement and the factors governing the same are described."

  20. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  1. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  2. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  3. Granular analyzing of weapon SoS demand description

    Institute of Scientific and Technical Information of China (English)

    Zhao Qingsong; Yang Kewei; Chen Yingwu; Li Mengjun

    2009-01-01

    The systematism of weapon combat is the typical characteristic of a modern battlefield. The process of combat is complex and the demand description of weapon system of systems (SOS) is difficult. Granular analyzing is an important method for solving the complex problem in the world. Granular thinking is introduced into the demand description of weapon SoS. Granular computing and granular combination based on a relation of compatibility is proposed. Based on the level of degree and degree of detail, the granular resolution of weapon SoS is defined and an example is illustrated at the end.

  4. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  5. 基于Multi-Agent的防空导弹武器系统模型设计%Design of Multi-Agent Based Model on Air Defense Missile Weapon System

    Institute of Scientific and Technical Information of China (English)

    陈宝印; 栾立秋; 张成斌

    2011-01-01

    建立科学的结构模型是进行防空导弹武器系统仿真的基础和关键环节.针对防空导弹武器系统的特点,提出了基于Multi-Agent的防空导弹武器系统模型建模方法,设计了防空导弹武器系统模型结构.利用Multi-Agent建模技术,把防空导弹武器系统实体映射成相应的Multi-Agent系统,并以Agent的形式对防空导弹武器系统这一客观复杂系统进行了深刻的认识,为防空导弹武器系统建模仿真奠定了基础.%Forming a scientific system model is the key of Air Defense Missile Weapon System simulation. According to the characters of Air Defense Missile Weapon System, a modeling method of multi-agent based model on Air Defense Missile Weapon System is given. The framework on Air Defense Missile Weapon System is designed. Using the Multi-Agent modeling technology, maps the Air Defense Missile Weapon System entity the corresponding Multi-Agent system, and carries on the profound understanding by the Agent form to Air Defense Missile Weapon System this objective complicated, which will be helpful to realize the modeling simulation on Air Defense Missile Weapon System.

  6. Applications of FBG-based sensors to ground stability monitoring

    Institute of Scientific and Technical Information of China (English)

    An-Bin Huang; Chien-Chih Wang; Jui-Ting Lee; Yen-Te Ho

    2016-01-01

    Over the past few decades, many optical fiber sensing techniques have been developed. Among these available sensing methods, optical fiber Bragg grating (FBG) is probably the most popular one. With its unique capabilities, FBG-based geotechnical sensors can be used as a sensor array for distributive (profile) measurements, deployed under water (submersible), for localized high resolution and/or dif-ferential measurements. The authors have developed a series of FBG-based transducers that include inclination, linear displacement and gauge/differential pore pressure sensors. Techniques that involve the field deployment of FBG inclination, extension and pore-pressure sensor arrays for automated slope stability and ground subsidence monitoring have been developed. The paper provides a background of FBG and the design concepts behind the FBG-based field monitoring sensors. Cases of field monitoring using the FBG sensor arrays are presented, and their practical implications are discussed.

  7. 基于效费比的武器目标分配%Weapon Target Allocation Based on Cost-Effectiveness

    Institute of Scientific and Technical Information of China (English)

    茹伟; 高晓光

    2012-01-01

    Effective Weapon Target Allocation (WTA) is the core of anti-aircraft positions. We analyze the key tactical factors of the revenue target destruction and weapon damage, then propose WTA evaluation criteria based on cost-effectiveness and establish model for multi-objective WTA. Finally research the approach of genetic algorithm to solve the model. By designing a special chromosome encoding of WTA, we solve the problem with optimal preservation strategy selection operator, uniform crossover operator and non-uniform mutation operator. The simulation results demonstrate the rationality of model and validity of algorithm.%有效武器目标分配(WTA)是防空阵地的核心.分析了目标毁伤收益、武器损伤关键战术指标因素,提出基于效费比的WTA评价标准,建立了针对多目标的WTA模型,并研究了用遗传算法求解模型的方法.该遗传算法通过设计一种武器目标分配的染色体编码,利用最优保存策略选择运算、均匀交叉运算、非均匀变异运算来求解.仿真结果验证了模型的合理性和算法的有效性.

  8. Wounds and weapons

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, H. [Asklepios Klinik St. Georg, Roentgenabteilung, Lohmuehlenstrasse 5, 20099 Hamburg (Germany)], E-mail: Hermann.vogel@ak-stgeorg.lbk-hh.de; Dootz, B. [Asklepios Klinik St. Georg, Roentgenabteilung, Lohmuehlenstrasse 5, 20099 Hamburg (Germany)

    2007-08-15

    Purpose: X-ray findings are described, which are typical for injuries due to conventional weapons. It is intended to demonstrate that radiographs can show findings characteristic for weapons. Material and method: The radiograms have been collected in Vietnam, Croatia, Serbia, Bosnia, Chad, Iran, Afghanistan, USA, Great Britain, France, Israel, Palestine, and Germany. Results: Radiograms of injuries due to hand grenades show their content (globes) and cover fragments. The globes are localized regionally in the victim's body. Survivors of cluster bombs show singular or few globes; having been hit by many globes would have been lethal. Shotguns produce characteristic distributions of the pallets and depth of penetration different from those of hand grenades and cluster bombs; cover fragments are lacking. Gunshot wounds (GSW) can be differentiated in those to low velocity bullets, high velocity projectiles, and projectiles, which disintegrate on impact. The radiogram furnishes the information about a dangerous shock and helps to recognize the weapon. Radiograms of victims of explosion show fragments and injuries due to the blast, information valid for therapy planning and prognosis. The radiogram shows details which can be used in therapy, forensic medicine and in war propaganda - examples could be findings typical for cluster bombs and for dumdum bullets; it shows the cruelty of the employment of weapons against humans and the conflict between the goal of medical care and those of military actions. Conclusion: Radiographs may show, which weapon has been employed; they can be read as war reports.

  9. Wounds and weapons.

    Science.gov (United States)

    Vogel, H; Dootz, B

    2007-08-01

    X-ray findings are described, which are typical for injuries due to conventional weapons. It is intended to demonstrate that radiographs can show findings characteristic for weapons. The radiograms have been collected in Vietnam, Croatia, Serbia, Bosnia, Chad, Iran, Afghanistan, USA, Great Britain, France, Israel, Palestine, and Germany. Radiograms of injuries due to hand grenades show their content (globes) and cover fragments. The globes are localized regionally in the victim's body. Survivors of cluster bombs show singular or few globes; having been hit by many globes would have been lethal. Shotguns produce characteristic distributions of the pallets and depth of penetration different from those of hand grenades and cluster bombs; cover fragments are lacking. Gunshot wounds (GSW) can be differentiated in those to low velocity bullets, high velocity projectiles, and projectiles, which disintegrate on impact. The radiogram furnishes the information about a dangerous shock and helps to recognize the weapon. Radiograms of victims of explosion show fragments and injuries due to the blast, information valid for therapy planning and prognosis. The radiogram shows details which can be used in therapy, forensic medicine and in war propaganda - examples could be findings typical for cluster bombs and for dumdum bullets; it shows the cruelty of the employment of weapons against humans and the conflict between the goal of medical care and those of military actions. Radiographs may show, which weapon has been employed; they can be read as war reports.

  10. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  11. Real-time Gaussian Markov random-field-based ground tracking for ground penetrating radar data

    Science.gov (United States)

    Bradbury, Kyle; Torrione, Peter A.; Collins, Leslie

    2009-05-01

    Current ground penetrating radar algorithms for landmine detection require accurate estimates of the location of the air/ground interface to maintain high levels of performance. However, the presence of surface clutter, natural soil roughness, and antenna motion lead to uncertainty in these estimates. Previous work on improving estimates of the location of the air/ground interface have focused on one-dimensional filtering techniques to localize the air/ground interface. In this work, we propose an algorithm for interface localization using a 2- D Gaussian Markov random field (GMRF). The GMRF provides a statistical model of the surface structure, which enables the application of statistical optimization techniques. In this work, the ground location is inferred using iterated conditional modes (ICM) optimization which maximizes the conditional pseudo-likelihood of the GMRF at a point, conditioned on its neighbors. To illustrate the efficacy of the proposed interface localization approach, pre-screener performance with and without the proposed ground localization algorithm is compared. We show that accurate localization of the air/ground interface provides the potential for future performance improvements.

  12. Bioterrorism: toxins as weapons.

    Science.gov (United States)

    Anderson, Peter D

    2012-04-01

    The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.

  13. Results of field testing with the FightSight infrared-based projectile tracking and weapon-fire characterization technology

    Science.gov (United States)

    Snarski, Steve; Menozzi, Alberico; Sherrill, Todd; Volpe, Chris; Wille, Mark

    2010-04-01

    This paper describes experimental results from recent live-fire data collects that demonstrate the capability of a prototype system for projectile detection and tracking. This system, which is being developed at Applied Research Associates, Inc., under the FightSight program, consists of a high-speed thermal camera and sophisticated image processing algorithms to detect and track projectiles. The FightSight operational vision is automated situational intelligence to detect, track, and graphically map large-scale firefights and individual shooting events onto command and control (C2) systems in real time (shot location and direction, weapon ID, movements and trends). Gaining information on enemy-fire trajectories allows educated inferences on the enemy's intent, disposition, and strength. Our prototype projectile detection and tracking system has been tested at the Joint Readiness Training Center (Ft Polk, LA) during live-fire convoy and mortar registration exercises, in the summer of 2009. It was also tested during staged military-operations- on-urban-terrain (MOUT) firefight events at Aberdeen Test Center (Aberdeen, MD) under the Hostile Fire Defeat Army Technology Objective midterm experiment, also in the summer of 2009, where we introduced fusion with acoustic and EO sensors to provide 3D localization and near-real time display of firing events. Results are presented in this paper that demonstrate effective and accurate detection and localization of weapon fire (5.56mm, 7.62mm, .50cal, 81/120mm mortars, 40mm) in diverse and challenging environments (dust, heat, day and night, rain, arid open terrain, urban clutter). FightSight's operational capabilities demonstrated under these live-fire data collects can support closecombat scenarios. As development continues, FightSight will be able to feed C2 systems with a symbolic map of enemy actions.

  14. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  15. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  16. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  17. Weapon of the Weak?

    DEFF Research Database (Denmark)

    Amber, Van der Graaf; Otjes, Simon; Rasmussen, Anne

    2016-01-01

    Social media have the potential to offset existing inequalities in representation among interest groups and act as a ‘weapon of the weak’ by providing a technological infrastructure that allows even groups with limited resources to create content and interact across the globe. We expand on the sp......Social media have the potential to offset existing inequalities in representation among interest groups and act as a ‘weapon of the weak’ by providing a technological infrastructure that allows even groups with limited resources to create content and interact across the globe. We expand...

  18. DDCC-Based Quadrature Oscillator with Grounded Capacitors and Resistors

    Directory of Open Access Journals (Sweden)

    Montree Kumngern

    2009-01-01

    Full Text Available A new voltage-mode quadrature oscillator using two differential difference current conveyors (DDCCs, two grounded capacitors, and three grounded resistors is presented. The proposed oscillator provides the following advantages: the oscillation condition and oscillation frequency are orthogonally controlled; the oscillation frequency is controlled through a single grounded resistor; the use of only grounded capacitors and resistors makes the proposed circuit ideal for IC implementation; low passive and active sensitivities. Simulation results verifying the theoretical analysis are also included.

  19. The Optimum Replacement of Weapon

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao; ZHANG Jin-chun

    2002-01-01

    The theory of LCC (Life Cycle Cost) is applied in this paper. The relation between the economic life of weapon and the optimum replacement is analyzed. The method to define the optimum replacement time of weapon is discussed.

  20. Multiple smart weapons employment mechanism

    Energy Technology Data Exchange (ETDEWEB)

    McGlynn, M.P.; Meiklejohn, W.D.

    1993-07-20

    A digital communications armament network adaptor is described for carrying multiple smart weapons on a single wing pylon station of an aircraft, comprising: an aircraft having a weapons controller configured in compliance with MIL-STD 1553; multiple wing-mounted pylons on said aircraft, each providing a weapons station with communications and ejection and release mechanisms electrically connected to said controller for the airborne launch of smart weapons; a multiple ejector rack affixed to at least one pylon, said rack holding a plurality of smart weapons; and an electronic digital network connected between the controller and said rack-mounted smart weapons, said network located in said rack and including circuitry which receives coded digital communications from said controller and selectively rebroadcasts said communications to one of said smart weapons on said rack designated by said coded communications, thereby controlling all required functions of said designated smart weapon.

  1. Nuclear weapon detection categorization analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

  2. Applying Agile MethodstoWeapon/Weapon-Related Software

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

    2007-05-02

    This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

  3. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  4. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  5. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  6. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  7. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  8. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  9. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  10. Nonstrategic Nuclear Weapons

    Science.gov (United States)

    2017-02-21

    have eased in recent years, with their nuclear tests in 1998 and continued animosity toward each other, India and Pakistan have joined the list of...could be complex, difficult, and very time- consuming . 137 Given the large disparity in the numbers of U.S. and Russian nonstrategic nuclear weapons

  11. Medicalized weapons & modern war.

    Science.gov (United States)

    Gross, Michael L

    2010-01-01

    "Medicalized" weapons--those that rely on advances in neuroscience, physiology, and pharmacology--offer the prospect of reducing casualties and protecting civilians. They could be especially useful in modern asymmetric wars in which conventional states are pitted against guerrilla or insurgent forces. But may physicians and other medical workers participate in their development?

  12. Neutrino Counter Nuclear Weapon

    CERN Document Server

    Tang, Alfred

    2008-01-01

    Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

  13. Nuclear weapons in Europe

    CERN Document Server

    Calogero, F

    1981-01-01

    Information speech given by Prof. Calogero from the university of Roma to describe the actual situation of nuclear weapons in Europe, the strategical reasons or justifications for this deployment, the prospects of negociations, and what scientists could do and do on this issue.

  14. Pakistans Nuclear Weapons

    Science.gov (United States)

    2016-02-12

    Memorandum from Air Commodore Khalid Banuri, 2011. 84 Mahmud Ali Durrani, “Pakistan’s Strategic Thinking and the Role of Nuclear Weapons...Richard P. Cronin , K. Alan Kronstadt, and Sharon Squassoni. Also see CRS Report RL33498, Pakistan-U.S. Relations, by K. Alan Kronstadt. 168 For a

  15. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  16. A Scenario Tree based Stochastic Programming Approach for Multi-Stage Weapon Equipment Mix Production Planning in Defense Manufacturing

    Directory of Open Access Journals (Sweden)

    Li Xuan

    2016-01-01

    Full Text Available The evolving military capability requirements (CRs must be meted continuously by the multi-stage weapon equipment mix production planning (MWEMPP. Meanwhile, the CRs possess complex uncertainties with the variant military tasks in the whole planning horizon. The mean-value deterministic programming technique is difficult to deal with the multi-period and multi-level uncertain decision-making problem in MWEMPP. Therefore, a multi-stage stochastic programming approach is proposed to solve this problem. This approach first uses the scenario tree to quantitatively describe the bi-level uncertainty of the time and quantity of the CRs, and then build the whole off-line planning alternatives assembles for each possible scenario, at last the optimal planning alternative is selected on-line to flexibly encounter the real scenario in each period. A case is studied to validate the proposed approach. The results confirm that the proposed approach can better hedge against each scenario of the CRs than the traditional mean-value deterministic technique.

  17. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  18. Non-lethal weapons and their characteristics

    OpenAIRE

    DAMJANOVIC DRAGAN Z.

    2015-01-01

    Non-lethal weapons, also called less-lethal weapons, less-than lethal weapons, non-deadly weapons, compliance weapons, or pain-inducing weapons are weapons intended to be less likely to kill a living target than conventional weapons. It is often understood that accidental, incidental, and correlative casualties are risked wherever force is applied, but non-lethal weapons try to minimise the risk as much as possible. Non-lethal weapons are used in combat situations to limit the escalation of c...

  19. NON-LETHAL WEAPONS AND THEIR CHARACTERISTICS

    OpenAIRE

    2015-01-01

    Non-lethal weapons, also called less-lethal weapons, less-than lethal weapons, non-deadly weapons, compliance weapons, or pain-inducing weapons are weapons intended to be less likely to kill a living target than conventional weapons. It is often understood that accidental, incidental, and correlative casualties are risked wherever force is applied, but non-lethal weapons try to minimise the risk as much as possible. Non-lethal weapons are used in combat situations to limit the escalation of c...

  20. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  1. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  2. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  3. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  4. Threat evaluation and weapon assignment decision support: A review of the state of the art

    Directory of Open Access Journals (Sweden)

    JN Roux

    2007-12-01

    Full Text Available In a military environment an operator is typically required to evaluate the tactical situation in real-time and protect defended assets against enemy threats by assigning available weapon systems to engage enemy craft. This environment requires rapid operational planning and decision making under severe stress conditions, and the associated responsibilities are usually divided between a number of operators and computerized decision support systems that aid these operators during the decision making processes. The aim in this paper is to review the state of the art of this kind of threat evaluation and weapon assignment decision support process as it stands within the context of a ground based air defence system (GBADS at the turn of the twenty first century. However, much of the contents of the paper may be generalized to military environments other than a GBADS one.

  5. Radiological Weapons Control: A Soviet and US Perspective. Occasional Paper 29.

    Science.gov (United States)

    Issraelyan, Victor L.; Flowerree, Charles C.

    Two international diplomats from the Soviet Union and the United States focus on the need for a treaty to ban the use of radiological weapons. Radiological weapons are those based on the natural decay of nuclear material such as waste from military or civilian nuclear reactors. Such devices include both weapons and equipment, other than a nuclear…

  6. Bioterrorism: pathogens as weapons.

    Science.gov (United States)

    Anderson, Peter D; Bokor, Gyula

    2012-10-01

    Biowarfare has been used for centuries. The use of biological weapons in terrorism remains a threat. Biological weapons include infectious agents (pathogens) and toxins. The most devastating bioterrorism scenario would be the airborne dispersal of pathogens over a concentrated population area. Characteristics that make a specific pathogen a high-risk for bioterrorism include a low infective dose, ability to be aerosolized, high contagiousness, and survival in a variety of environmental conditions. The most dangerous potential bioterrorism agents include the microorganisms that produce anthrax, plague, tularemia, and smallpox. Other diseases of interest to bioterrorism include brucellosis, glanders, melioidosis, Q fever, and viral encephalitis. Food safety and water safety threats are another area of concern.

  7. Illegal Weapons Exports?

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Amnesty International, a human rights organization, released a report on June 11 accusing China of facilitating regional conflicts and human rights violations by exporting a large quantity of weapons to Sudan, Nepal, Myanmar and the Great Lakes countries of Africa. Responding to such charges, Teng Jianqun, a researcher with the China Arms Control and Disarmament Association, told the official Xinhua News Agency that China has always put its limited arms exports under strict control and surveillance, deno...

  8. Counterproliferation of Nuclear Weapons

    Science.gov (United States)

    2010-04-01

    an occurrence. In his book, Atomic Tragedy, Sean Malloy writes that Henry Stimson, the United States Secretary of War, warned in April, 1945 that...Ibid., 380. 41 Ibid. 42 Sean L. Malloy , Atomic Tragedy: Henry L. Stimson and the Decision to use the Bomb Against Japan (Ithaca, New York...Weapons of Mass Destruction in the Middle East, 96-97. 45 Robert M. Gates, National Defense Strategy (Washington, DC: US Government Printing Office

  9. 基于双层规划的航空兵对地武器挂载方案研究%On Weapon Mounting Scheme for Aviation Based on Bi-Level Programming

    Institute of Scientific and Technical Information of China (English)

    陈榕; 严建钢; 卞鸿斐

    2013-01-01

    The bi-level programming theory was proposed to study the weapon mounting in cooperative operation of aviation against ground. According to the quantitative method for choosing air-to-surface weapons and the requirements of cooperative operation, the bi-level programming model for air-to-surface weapon mounting was established. The objective function and constraint conditions of the upper level and lower level were given respectively in the model, which reflected the effect of the air-to-surface weapon mounting on force requirement and the expected battle damage. The hierarchical genetic algorithm was used to solve the bi-level programming, and the optimum weapon mounting scheme was obtained. The simulation result showed that the bi-level programming theory is effective on weapon mounting and is helpful to operation decision making.%针对航空兵协同对岸打击作战的背景,运用双层规划理论研究了航空兵协同对岸打击的武器挂载问题.依据空地武器选用的定量方法和协同作战的要求和特点,建立了航空兵对地武器挂载的双层规划模型,分别给出了上下层模型的目标函数和约束条件,体现了空地武器挂载对兵力需求和预期战损的影响.结合案例,运用层次遗传算法求解武器挂载规划模型,获得了最优武器挂载方案.仿真说明:建立的双层规划模型和提出的方法适用于求解航空兵协同对岸打击作战的最优武器挂载方案,可为作战决策提供依据.

  10. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  11. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  12. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  13. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  14. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  15. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  16. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  17. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  18. U.S. Army weapon systems human-computer interface style guide. Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.; Donohoo, D.T.

    1997-12-31

    A stated goal of the US Army has been the standardization of the human computer interfaces (HCIs) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of HCI design guidance documents. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4), in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA), now termed the Joint Technical Architecture-Army (JTA-A). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide, which resulted in the US Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide Version 1. Based on feedback from the user community, DISC4 further tasked PNNL to revise Version 1 and publish Version 2. The intent was to update some of the research and incorporate some enhancements. This document provides that revision. The purpose of this document is to provide HCI design guidance for the RT/NRT Army system domain across the weapon systems subdomains of ground, aviation, missile, and soldier systems. Each subdomain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their subdomains.

  19. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  20. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  1. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  2. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  3. 基于一种改进粒子群算法的水下远程武器航路规划%Route Planning of Underwater Long-range Weapon Based on an Improved PSO Algorithm

    Institute of Scientific and Technical Information of China (English)

    初磊; 纪金耀; 罗笛

    2011-01-01

    An improved particle swarm optimization (PSO) algorithm with particle exchanging is proposed to solve the problem of moving back in the route planning of underwater long-range weapon based on basic PSO. Combining the route planning model of the underwater long-range weapon, this improved PSO algorithm is used in a combat simulation system of a certain long-range weapon. Simulation result shows that this algorithm can enhance the effect of the route planning and be helpful to the operational application of the long-range weapon.%针对水下远程武器航路规划中,采用基本粒子群算法避障出现的航路倒退问题,提出了一种借鉴遗传算法采用粒子对换的改进粒子群优化(PSO)算法,并结合远程武器的航路规划设计模型,应用于水下武器作战仿真系统.计算结果表明,该算法可有效提高远程武器航路规划避障的计算效果,对水下远程武器的作战使用研究具有一定的参考价值.

  4. 32 CFR 234.10 - Weapons.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  5. Characterization of subarctic vegetation using ground based remote sensing methods

    Science.gov (United States)

    Finnell, D.; Garnello, A.; Palace, M. W.; Sullivan, F.; Herrick, C.; Anderson, S. M.; Crill, P. M.; Varner, R. K.

    2014-12-01

    Stordalen mire is located at 68°21'N and 19°02'E in the Swedish subarctic. Climate monitoring has revealed a warming trend spanning the past 150 years affecting the mires ability to hold stable palsa/hummock mounds. The micro-topography of the landscape has begun to degrade into thaw ponds changing the vegetation cover from ombrothrophic to minerotrophic. Hummocks are ecologically important due to their ability to act as a carbon sinks. Thaw ponds and sphagnum rich transitional zones have been documented as sources of atmospheric CH4. An objective of this project is to determine if a high resolution three band camera (RGB) and a RGNIR camera could detect differences in vegetation over five different site types. Species composition was collected for 50 plots with ten repetitions for each site type: palsa/hummock, tall shrub, semi-wet, tall graminoid, and wet. Sites were differentiated based on dominating species and features consisting of open water presence, sphagnum spp. cover, graminoid spp. cover, or the presence of dry raised plateaus/mounds. A pole based camera mount was used to collect images at a height of ~2.44m from the ground. The images were cropped in post-processing to fit a one-square meter quadrat. Texture analysis was performed on all images, including entropy, lacunarity, and angular second momentum. Preliminary results suggested that site type influences the number of species present. The p-values for the ability to predict site type using a t-test range from <0.0001 to 0.0461. A stepwise discriminant analysis on site type vs. texture yielded a 10% misclassification rate. Through the use of a stepwise regression of texture variables, actual vs. predicted percent of vegetation coverage provided R squared values of 0.73, 0.71, 0.67, and 0.89 for C. bigelowii, R. chamaemorus, Sphagnum spp., and open water respectively. These data have provided some support to the notion that texture analyses can be used for classification of mire site types. Future

  6. Handheld ultrasound concealed weapons detector

    Science.gov (United States)

    Felber, Franklin S.; Wild, Norbert C.; Nunan, Scott C.; Breuner, Dennis; Doft, Frank

    1998-12-01

    A handheld, battery-operated prototype of a remove concealed weapons detector has been built and tested. The concealed weapons detector will enable law enforcement and security officers to detect metallic and nonmetallic weapons concealed beneath clothing remotely from beyond arm's length to about 20 feet. These detectors may be used to: (1) allow hands-off, stand-off frisking of suspects for metallic and nonmetallic weapons; and (2) search for metallic and nonmetallic weapons on cooperative subjects at courthouse entrances and other monitored security portals. We have demonstrated that we image weapons concealed under heavy clothing, not just detect them, at ranges up to 15 feet using the same ultrasound frequency (40 kHz) used by commercial rangefinders. The concealed weapons detector operates much as a rangefinder, but at higher peak fluxes and pulse repetition frequencies. The detector alerts the user to concealed weapons audibly and visibly by detecting ultrasound glints above a body/clothing baseline, and by compensating for changing range and attenuation. The detector locates concealed weapons within a 6-inch illuminated spot at 10 feet. The signal processor eliminates any signal from behind the target.

  7. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  8. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  9. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  10. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  11. A coherency function model of ground motion at base rock corresponding to strike-slip fault

    Institute of Scientific and Technical Information of China (English)

    丁海平; 刘启方; 金星; 袁一凡

    2004-01-01

    At present, the method to study spatial variation of ground motions is statistic analysis based on dense array records such as SMART-1 array, etc. For lacking of information of ground motions, there is no coherency function model of base rock and different style site. Spatial variation of ground motions in elastic media is analyzed by deterministic method in this paper. Taking elastic half-space model with dislocation source of fault, near-field ground motions are simulated. This model takes strike-slip fault and earth media into account. A coherency function is proposed for base rock site.

  12. 基于模糊综合评判的空袭兵器识别方法%Air-Attack Weapons Identification Based on Fuzzy Comprehensive Evaluation

    Institute of Scientific and Technical Information of China (English)

    王毅; 粟琛钧; 蒋正芳; 王文博

    2012-01-01

    在对目标标准模型库建立的基础之上,通过把目标类型作为评判集,把探测参数作为因素集,并根据每个探测参数特点来构造隶属函数,提出了一种基于模糊综合评判的空袭兵器识别方法。最后实验结果验证,与模糊模型识别方法相比,文中法能够充分提取探测参数信息,具有识别准确、便于工程实现的特点。%Based on the setting up to standard model storehouse of the goal,through regarding goal types as the judgment set,regard the surveying parameters as the factor set,and make up the subjection function according to each one surveying parameter,a kind of air-attack weapons identification technique based on multi-class fuzzy comprehensive evaluation is brought forward.The experimental result proves finally,compared with the fuzzy model recognition method,this method can fully draw the surveying information,improve the identification precision and be used in project realizing easily.

  13. Insulin as a weapon.

    Science.gov (United States)

    Robinson, Samuel D; Safavi-Hemami, Helena

    2016-12-01

    The discovery of insulin and its use for the treatment of diabetes is undoubtedly one of the true successes of modern medicine. Injectable insulin would prove the first effective treatment for a previously incurable and usually fatal disease. Soon after however, the powerful effects of insulin overdose would be reported, and subsequently exploited for dubious medical and sometimes nefarious purposes. In this article we describe the discovery that certain venomous marine snails of the genus Conus also exploit the powerful effects of insulin overdose, employing it as a weapon for prey capture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  15. Ground-based gamma-ray telescopes as ground stations in deep-space lasercom

    CERN Document Server

    Carrasco-Casado, Alberto; Vergaz, Ricardo

    2016-01-01

    As the amount of information to be transmitted from deep-space rapidly increases, the radiofrequency technology has become a bottleneck in space communications. RF is already limiting the scientific outcome of deep-space missions and could be a significant obstacle in the developing of manned missions. Lasercom holds the promise to solve this problem, as it will considerably increase the data rate while decreasing the energy, mass and volume of onboard communication systems. In RF deep-space communications, where the received power is the main limitation, the traditional approach to boost the data throughput has been increasing the receiver's aperture, e.g. the 70-m antennas in the NASA's Deep Space Network. Optical communications also can benefit from this strategy, thus 10-m class telescopes have typically been suggested to support future deep-space links. However, the cost of big telescopes increase exponentially with their aperture, and new ideas are needed to optimize this ratio. Here, the use of ground-...

  16. Weapons barrel life cycle determination

    Directory of Open Access Journals (Sweden)

    Nebojša Pene Hristov

    2013-10-01

    Full Text Available This article describes the dynamic processes within the gun barrel during the firing process in exploitation. It generally defines the basic principles of constructing tube elements, and shows the distortion of the basic geometry of the tube interior due to wear as well as the impact it causes during exploitation. The article also defines basic empirical models as well as a model based on fracture mechanics for the calculation of a use-life of the barrel, and other elements essential for the safe use of the barrel as the basic weapon element. Erosion causes are analysed in order to control and reduce wear and prolong the lifetime of the gun barrel. It gives directions for the reparation of barrels with wasted resources. In conclusion, the most influential elements of tube wear are given as well as possible modifications of existing systems, primarily propellant charges, with a purpose of prolonging lifetime of gun barrels. The guidelines for a proper determination of the lifetime based on the barrel condition assessment are given as well. INTRODUCTION The barrel as the basic element of each weapon is described as well as the processes occurring during the firing that have impulsive character and are accompanied by large amounts of energy. The basic elements of barrel and itheir constructive characteristics are descibed. The relation between Internal ballistics, ie calculation of the propellant gas pressure in the firing process, and structural elements defined by the barrel material resistance is shown. In general, this part of the study explains the methodology of the gun barrel structural elements calculation, ie. barrel geometry, taking into account the degrees of safety in accordance with Military Standards.   TUBE WEAR AND DEFORMATIONS The weapon barrel gradually wears out during exploitation due to which it no longer satisfies the set requirements. It is considered that the barrel has experienced a lifetime when it fails to fulfill the

  17. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  18. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  19. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  20. Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion

    Institute of Scientific and Technical Information of China (English)

    YE Kun; LI Li; FANG Qin-han

    2008-01-01

    An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.

  1. Naval Weapons Station Earle Reassessment

    Science.gov (United States)

    2013-12-01

    surveys for their Section 110 compliance: Architectural Resources Survey, Naval Weapons Station Earle, Monmouth County, New Jersey (Louis Berger 1999...text within brackets. Berger Report 1999 Architectural Resources Survey, Naval Weapons Station Earle, Monmouth County, New Jersey (Louis Berger... architectural treatment of buildings at NWS Earle: a traditional vernacular theme with minimal decorative detailing. This so-called minimal traditional

  2. Proportionality and Autonomous Weapons Systems

    NARCIS (Netherlands)

    van den Boogaard, J.

    2015-01-01

    Given the swift technologic development, it may be expected that the availability of the first truly autonomous weapons systems is fast approaching. Once they are deployed, these weapons will use artificial intelligence to select and attack targets without further human intervention. Autonomous

  3. Proportionality and Autonomous Weapons Systems

    NARCIS (Netherlands)

    van den Boogaard, J.

    2015-01-01

    Given the swift technologic development, it may be expected that the availability of the first truly autonomous weapons systems is fast approaching. Once they are deployed, these weapons will use artificial intelligence to select and attack targets without further human intervention. Autonomous weap

  4. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  5. Nuclear weapon reliability evaluation methodology

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    This document provides an overview of those activities that are normally performed by Sandia National Laboratories to provide nuclear weapon reliability evaluations for the Department of Energy. These reliability evaluations are first provided as a prediction of the attainable stockpile reliability of a proposed weapon design. Stockpile reliability assessments are provided for each weapon type as the weapon is fielded and are continuously updated throughout the weapon stockpile life. The reliability predictions and assessments depend heavily on data from both laboratory simulation and actual flight tests. An important part of the methodology are the opportunities for review that occur throughout the entire process that assure a consistent approach and appropriate use of the data for reliability evaluation purposes.

  6. The US nuclear weapon infrastructure and a stable global nuclear weapon regime

    Energy Technology Data Exchange (ETDEWEB)

    Immele, John D [Los Alamos National Laboratory; Wagner, Richard L [Los Alamos National Laboratory

    2009-01-01

    US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in

  7. Ground-based Space Weather Monitoring with LOFAR

    Science.gov (United States)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  8. Analyses of Cryogenic Propellant Tank Pressurization based upon Ground Experiments

    OpenAIRE

    Ludwig, Carina; Dreyer, Michael

    2012-01-01

    The pressurization system of cryogenic propellant rockets requires on-board pressurant gas. The objective of this study was to analyze the influence of the pressurant gas temperature on the required pressurant gas mass in terms of lowering the launcher mass. First, ground experiments were performed in order to investigate the pressurization process with regard to the influence of the pressurant gas inlet temperature. Second, a system study for the cryogenic upper stage of a sma...

  9. Ground-based Remote Sensing of Cloud Liquid Water Path

    Science.gov (United States)

    Crewell, S.; Loehnert, U.

    Within the BALTEX Cloud LIquid WAter NETwork (CLIWA-NET) measurements of cloud parameters were performed to improve/evaluate cloud parameterizations in numerical weather prediction and climate models. The key variable is the cloud liq- uid water path (LWP) which is measured by passive microwave radiometry from the ground during three two-month CLIWA-NET observational periods. Additionally to the high temporal resolution time series from the ground, LWP fields are derived from satellite measurements. During the first two campaigns a continental scale network consisting of 12 stations was established. Most stations included further cloud sen- sitive instruments like infrared radiometer and lidar ceilometer. The third campaign started with a two-week long microwave intercomparison campaign (MICAM) in Cabauw, The Netherlands, and proceeded with a regional network within a 100 by 100 km area. The presentation will focus on the accuracy of LWP derived from the ground by in- vestigating the accuracy of the microwave brightness temperature measurement and examining the LWP retrieval uncertainty. Up to now microwave radiometer are no standard instruments and the seven radiometer involved in MICAM differ in frequen- cies, bandwidths, angular resolution, integration time etc. The influence of this instru- ment specifications on the LWP retrieval will be discussed.

  10. Screening adolescents in the emergency department for weapon carriage.

    Science.gov (United States)

    Cunningham, Rebecca M; Resko, Stella M; Harrison, Stephanie Roahen; Zimmerman, Marc; Stanley, Rachel; Chermack, Stephen T; Walton, Maureen A

    2010-02-01

    The objective was to describe the prevalence and correlates of past-year weapon involvement among adolescents seeking care in an inner-city emergency department (ED). This cross-sectional study administered a computerized survey to all eligible adolescents (age 14-18 years), 7 days a week, who were seeking care over an 18-month period at an inner-city Level 1 ED. Validated measures were administered, including measures of demographics, sexual activity, substance use, injury, violent behavior, weapon carriage, and/or weapon use. Zero-inflated Poisson (ZIP) regression models were used to identify correlates of the occurrence and past-year frequency of these weapons variables. Adolescents (n = 2069, 86% response rate) completed the computerized survey. Fifty-five percent were female; 56.5% were African American. In the past year, 20% of adolescents reported knife or razor carriage, 7% reported gun carriage, and 6% pulled a knife or gun on someone. Although gun carriage was more frequent among males, females were as likely to carry a knife or pull a weapon in the past year. One-fifth of all adolescents seeking care in this inner-city ED have carried a weapon. Understanding weapon carriage among teens seeking ED care is a critical first step to future ED-based injury prevention initiatives. (c) 2010 by the Society for Academic Emergency Medicine.

  11. Spectral invariance hypothesis study of polarized reflectance with Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI)

    Science.gov (United States)

    Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.

    2015-09-01

    Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.

  12. Weapon Possession Among College Students: A Study From a Midwestern University.

    Science.gov (United States)

    Jang, Hyunseok; Kang, Ji Hyon; Dierenfeldt, Rick; Lindsteadt, Greg

    2015-10-01

    Weapon possession on college campuses causes great concern, but there remains a lack of research examining the determinants of this phenomenon. Previous studies addressing weapon possession have primarily focused on either K-12 or the general adult population. Unlike previous studies, this study examined the weapon possession among college students using data collected from a mid-sized university in Missouri, and 451 students participated. Weapon possession and other theoretical factors were measured through the self-administered survey. Logistical regression analysis revealed that weapon socialization was the most significant factor in predicting student weapon carrying. Also, gender and age were significant factors in explaining campus-based weapon possession. This research has a limitation with generalizability because the data were collected from only a single university with convenient sampling. Future studies need to cover a wider range of college students from a variety of different universities with random sampling.

  13. Response of base isolation system excited by spectrum compatible ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, the response history analysis should be performed. Especially for the performance based design, where the failure probability of a system needs to be evaluated, the variation of response should be evaluated. In this study, the spectrum compatible ground motions, the artificial ground motion and the modified ground motion, were generated. Using these ground motions, the variations of seismic responses of a simplified isolation system were evaluated.

  14. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  15. A knowledge base system for ground control over abandoned mines

    Energy Technology Data Exchange (ETDEWEB)

    Nazimko, V.V.; Zviagilsky, E.L. [Donetsk State Technical University, Donetsk (Ukraine)

    1999-07-01

    The knowledge of engineering systems has been developed to choose optimal technology for subsidence prevention over abandoned mines. The expert system treats a specific case, maps consequences of actions and derives relevant technology (or a set of technologies) that should be used to prevent ground subsidence. Input parameters that characterise the case are treated using fuzzy logic and are then fed to a neural network. The network has been successfully trained by a backpropagation algorithm on the basis of three fuzzy rules. 5 refs., 2 figs., 3 tabs.

  16. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  17. Commercial off the Shelf Ground Control Supports Calibration and Conflation from Ground to Space Based Sensors

    Science.gov (United States)

    Danielová, M.; Hummel, P.

    2016-06-01

    The need for rapid deployment of aerial and satellite imagery in support of GIS and engineering integration projects require new sources of geodetic control to ensure the accuracy for geospatial projects. In the past, teams of surveyors would need to deploy to project areas to provide targeted or photo identifiable points that are used to provide data for orthorecificaion, QA/QC and calibration for multi-platform sensors. The challenge of integrating street view, UAS, airborne and Space based sensors to produce the common operational picture requires control to tie multiple sources together. Today commercial off the shelf delivery of existing photo identifiable control is increasing the speed of deployment of this data without having to revisit sites over and over again. The presentation will discuss the processes developed by CompassData to build a global library of 40,000 control points available today. International Organization for Standardization (ISO) based processes and initiatives ensure consistent quality of survey data, photo identifiable features selected and meta data to support photogrammetrist, engineers and GIS professionals to quickly deliver projects with better accuracy.

  18. Principle and Design of a Single-phase Inverter Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then...... margin subjecting to large range of load change. The PI method is taken as the comparative method and the performances of both control methods are presented in detail. Experimental results prove the effectiveness and novelty of the proposed grounding system and control method....

  19. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  20. Space- and ground-based particle physics meet at CERN

    CERN Document Server

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  1. Human Resources Data in Weapon System Design: An Initial Plan for Development of a Unified Data Base.

    Science.gov (United States)

    1980-11-01

    was established based o11 the results elf the first threeI tasks and oln an inilustry slur vey. This re liort DD I F’N7 1473 EDITION OF INOV 65 IS...systems) would not materialize . This would mean, of course, that the UDB experience data -51- would not be available to improve the predictive programs in

  2. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  3. Non-Lethal Weapon Psychological Effects Based on“Stress”Theory%基于“应激”的非致命武器心理效应

    Institute of Scientific and Technical Information of China (English)

    项德海; 庄弘炜; 卢玲

    2014-01-01

    针对非致命武器的实际使用效果与其预期效果总是存在差距这一现状,借助心理学的“应激”理论对其进行研究。以一起使用非致命武器处理暴乱事件为例,对非致命武器心理效应的产生、发展、结果进行分析,并建立心理效应的量化数学模型。结果表明,该研究对指导非致命武器在处突、反恐和解救人质中的应用具有一定的现实意义。%The author aims at the current present condition that there always exists some gap between the non-lethal weapons' practical effects and intended effects, conducts a study with the help of the“stress”theory of psychology. Taking a disposal riots case by using non-lethal weapons as example, analyses the generation, development and result of non-lethal weapon psychological effects, and establishes a quantitative mathematical model of psychological effect. The results show that it has great significance on the guidance of non-lethal weapons application in the conflict, terrorism and rescuing the hostages.

  4. Improved Artificial Immune Algorithm Based on Weapon-Target Assignment%基于改进人工免疫算法的火力分配

    Institute of Scientific and Technical Information of China (English)

    刘洪引; 李体方; 王立安

    2014-01-01

    随着现代武器杀伤力的极大提高,任何来袭目标的突防都可能造成极大的破坏,这对传统的火力分配提出了挑战。提出一种新的火力集中原则,在满足对来袭目标一定杀伤的前提下,适当转移火力,实现火力总的集中,据此建立了火力分配优化模型。通过改进人工免疫算法的抗体群,提高模型的求解速度,缩短方案的寻优时间。通过实例进行仿真,结果表明,基于改进人工免疫算法能较快速实现火力分配,算法具有一定的可行性。%With the great improvement of modern weapons,any target penetration may cause great damage,which challenges the traditional fire distribution. So a new firepower-concentrated principle is put forward in this paper. According to the principle,the fire total concentration can be obtained through transferring fire appropriately,and a fire distribution model is founded. An optimized fire distribution scheme is given based on the improved artificial immune algorithm. The simulation results show that the improved artificial immune algorithm is capable of distributing the firepower effectively and quickly,the method has certain feasibility.

  5. 武器装备体系能力矩阵评估方法%Matrix Methodology Based Capability Evaluation of Weapon System of Systems

    Institute of Scientific and Technical Information of China (English)

    曹强; 荆涛; 周少平

    2016-01-01

    针对武器装备体系能力难以客观、定量评估的问题,引入复杂网络理论,提出了基于矩阵运算的武器装备体系能力评估方法。分析了武器装备体系能力的概念,建立了武器装备体系的复杂层次网络模型,描述了装备网络的组成、运行过程,定义了装备网络的矩阵描述方法和矩阵运算规则,提出了装备网络作战能力描述参数,给出了装备网络能力的矩阵计算方法,进行了影响因素分析,最后通过实例验证了方法可行性、有效性和灵活性。%In order to evaluate capability of weapon system of systems more objectively and quantitively,complex networks theory is introduced,and a new matrix capability evaluation methodology is put forward. The capability definitions of weapon system of systems are analyzed,a layered complex network model of weapon system of systems is built,the components and operation process of the weapon network model are also described. Then matrix expression methods of weapon network and its special calculate rules are defined,tailor-made operation capability indexes of weapon network are brought out. The algorithm of using single-layer-matrixes and inter-layer-matrixes to compute whole weapon network’s capability is present; the influence factors of the algorithm are detailly analyzed. By the case study of a nominal operation network,the feasibility,validity and flexibility of proposed methodology are proved.

  6. Effectiveness Evaluation of Vehicle-Mounted Non-Lethal Weapon Based on ANP%车载非致命武器效能评估的 ANP 研究

    Institute of Scientific and Technical Information of China (English)

    王正蓝; 庄弘炜; 赵法栋

    2015-01-01

    Aiming at the solution of effectiveness evaluation of vehicle-mounted non-lethal weapons,Exploring based on the theory of analytic network process (ANP).According to the characteristics of vehicle-mounted non-lethal weapons,this paper established an analytic hierarchy index system of the combat effectiveness evaluation.It also analyzed and calculated three vehicle-mounted non-lethal weapons program under the super decision-making software.In addition,with comparative analysis of the results obtained by the method,the consequence verified the reasonableness of analytic network process which is applied to vehicle-mounted non-lethal weapons effectiveness evaluation.Finally it provides a scientific and feasible research method for conducting the effectiveness evaluation of related systems assessment.%针对车载非致命武器的效能评估问题,利用网络分析法(analytic network process,ANP)进行探索。阐述了利用 ANP 进行评估应用的计算方法,结合车载非致命武器的特点,建立了完善的效能评价指标体系,以3种车载非致命武器方案的效能评估为例,在超级决策软件中进行 ANP 建模和计算,最后通过对结果的分析,验证了网络分析法应用于车载非致命武器效能评估的可行性,为开展相关系统的效能评估提供了科学可行的研究方法。

  7. 防空导弹武控设备实现CBM方法的探讨%Research on the Condition Based Maintenance for Weapon Control Equipment of Air-defense Missile

    Institute of Scientific and Technical Information of China (English)

    曲宏宇; 向哲

    2012-01-01

    针对解决防空导弹武控设备目前维修方式中的诸多问题,基于状态的维修(CBM)方式是有效解决途径之一。分析了对防空导弹武控设备进行CBM时的状态监测、失效模型建立、故障预测和维修决策等关键技术问题,探讨了防空导弹武控设备实现CBM的技术对策。结果表明,CBM具有诸多优点,它的实践应用必将引发武控设备维修技术的根本变革,促进高新技术在防空导弹武控设备维修领域的应用。%The condition based maintenance(CBM) is one of effective maintenance methods for weapon control equipment of air-defense missile.The key techniques is analyzed about inspecting the condition,establishing invalidation modal,forecasting malfunction,maintenance decision-making of CBM that is used for weapon control equipment of air-defense missile,the technique countermeasure of carrying CBM is introduced.The results show CBM is effective,which will result in radical change in maintenance technique of weapon control equipment,and promote using of new techniques in maintenance for weapon control equipment of air-defense missile.

  8. 模糊优化理论的武器-目标分配模型及求解算法%Research on Weapon-target Assignment Model and Algorithm Based on the Fuzzy Optimization Theory

    Institute of Scientific and Technical Information of China (English)

    黄国锐; 李朋辉; 丁俊香; 韩玮

    2013-01-01

    Weapon-target assignment is a typical NP-complete problem, with the incrase in the number of weapons and targets, as well as the existence of the diversity of evaluation criterion for the allocation result, traditional optimzation algorithm such as implicit enumeration method, cutting plane method, branch and bound method is difficult to solve the problem effectively. This paper desctibes the multi-objiective hybrid optimization theory based on the fuzzy optimization method, establishes the optimal weapon-target assignment model of multi-indicator and applies the ant colony algorithm to solve problem, which provides an effective method to solve the complex problem of weapon-target assignment.%武器-目标分配问题是一个典型的NP完全问题,随着武器和目标数量的增多,以及分配结果评价标准多样性的存在,传统的优化求解算法如隐枚举法、割平面法、分支定界法等很难进行有效地求解.介绍一种基于模糊优选技术的多目标混合优化理论,运用该理论建立了多个指标下的最佳武器-目标分配模型,并将蚁群算法应用于对模型的求解,为解决复杂的武器-目标分配问题提供了一种有效方法.

  9. Analysis of Rocket Weapon System Decision Based on Virtual Simulation%基于虚拟仿真的火箭武器系统决策分析法

    Institute of Scientific and Technical Information of China (English)

    付昆; 于存贵

    2011-01-01

    In view of the defects in classical expert system exist that the lack of dynamic prediction function and principium illumination problem, an improved frame work of multiple rocket weapon expert system based on virtual simulation model is proposed. By building the virtual simulation model, and multiple rocket launch weapon system performance without servo system control, process control and intermittent control three control mode of the simulation analysis, and taking an example calculation. The results show that the model is feasible and effective, can provide an efficient and intuitionistic new way for solve the weapon system analysis.%针对传统武器专家系统缺少动态预测功能和机理性解释的问题,提出基于虚拟样机仿真的多管火箭武器专家系统集成框架,建立仿真模型,对多管火箭武器发射系统性能进行没有伺服系统控制、全过程控制和间断性控制3种控制方式的仿真分析,并通过实例进行演算.结果表明:该模型是可行、有效的,可为解决武器系统分析提供一种有效、直观的新途径.

  10. 基于马尔可夫过程的武器系统相关失效分析%Analysis of Weapon Systems Subject to Correlative Cause Failures Based on Markov Process

    Institute of Scientific and Technical Information of China (English)

    张振友; 郭强; 黄立坡; 杨岐子

    2012-01-01

    利用马尔可夫过程分别对共因失效和载荷共事失效两种相关失效的系统平均失效时间进行了建模分析.针对同时出现两种相关失效的武器系统进行了实例分析,并将结果和不考虑相关失效时的计算结果进行了对比,对相关失效分析在可靠性分析和评价中的重要作用进行了阐述.%The mean time to failure of weapon systems subject to common cause failures and load share cause failures is analyzed based on Markov process, the weapon systems in which common cause failures and load share? cause failures at the same time is analyzed. The result is compared with that without considering correlative cause failures. The results show that the Analysis of Weapon systems subject to correlative cause failures is very important.

  11. 基于不完全信息空战的火力分配建模与应用%Research on Weapon-Target Assignment Modeling and Application Based on Incomplete Information Air Combat

    Institute of Scientific and Technical Information of China (English)

    隋永华; 郭雷; 俞利新; 王海晏

    2012-01-01

    To solve the problem of weapon-target assignment in an incomplete information air combat, the common weapon-target assignment model is analized, the defect of which is pointed out, and an improved weapon-target assignment model is built. The computation method of the key arguments of the model is proposed according to the character of incomplete information air combat. The improved mode can work efficiently based on the limited papameters obtained easily in the condition of incomplete information. Finally,the efficiency of the model is validated through a typical air combat example.%为了解决不完全信息空战中的火力分配问题,分析了常规空战火力分配模型,指出了其中的不足,建立了一种改进的火力分配模型.针对不完全信息空战特点,给出了其中关键参数的确定方法.该改进模型可有效利用战机在不完全信息条件下容易获取的有限参数进行火力分配,具有很强的实用性.最后通过典型应用实例验证了模型的有效性.

  12. Analysis of Fire Effectiveness Based on High-rate-firing Naval Gun Weapon System%基于高射频舰炮武器系统的射击效力分析

    Institute of Scientific and Technical Information of China (English)

    胡小利; 王炳

    2015-01-01

    In the face of the improved missile penetration ability and its speed, the author proposes to increase the gun firing rate based on the existing high⁃rate⁃firing of naval gun weapon system for an effective way, with the grim situation of sea bat⁃tlefield as a background. And this paper analyzes the Shooting effectiveness of different firing rate naval gun weapon system through the establishment of the mathematics module for damage probability. There is an important guiding significance on the development of high⁃rate⁃firing automatic gun weapon system.%以严峻的海上战场形势为背景,面对飞行速度和突防能力不断加强的反舰导弹,在现有高射频舰炮武器系统基础上,提出以增加舰炮射速为途径的改进方式,并建立对空碰炸射击毁伤模型,对不同射频的舰炮武器系统进行射击效力分析,对高射频自动炮武器系统的研制有重要指导意义。

  13. 基于技术检测的装甲装备武器系统执行任务能力评估%Ability to Implement the Mandate Assessment of Armored Equipment Weapons System Based on Technical Detection

    Institute of Scientific and Technical Information of China (English)

    张辽宁; 屈洋; 张政; 邢旺

    2016-01-01

    Technology state affects the ability to implement the mandate of armored equipment weapons system greatly, yet there are few studies on its evaluation. Aimed at the problem, the paper put forward a method of evaluating the ability to implement the mandate of armored equipment based on the technical detection of equipment, and a case evaluation and analysis of a certain armored equipment weapon system is carried out. The method is operable and can provide data reference for the development of technical detection equipment and technology of armored equipment weapons system.%技术状态对装甲装备武器系统的执行任务能力有着重要影响,目前对其评估的研究还很少。针对这一问题,提出一种利用技术检测对装甲装备武器系统执行任务能力进行评估的方法,并结合某装甲装备武器系统进行了实例分析。分析结果表明:该方法具有可操作性,能够为装甲装备武器系统检测设备和技术的发展提供数据参考。

  14. Defense Acquisitions: Assessments of Selected Weapon Programs

    Science.gov (United States)

    2016-03-01

    of contractors delivering the 10 costliest programs have performed well relative to broad-based market indices, indicating that investors expect...16-329SP Assessments of Major Weapon Programs Two programs—the B-2 Extremely High Frequency Satellite Communications and Computer...expected. The B-2 Extremely High Frequency Satellite Communications and Computer Increment 1 date was revised to reflect the actual delivery of

  15. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  16. Improving the detection of explosive hazards with LIDAR-based ground plane estimation

    Science.gov (United States)

    Buck, A.; Keller, J. M.; Popescu, M.

    2016-05-01

    Three-dimensional point clouds generated by LIDAR offer the potential to build a more complete understanding of the environment in front of a moving vehicle. In particular, LIDAR data facilitates the development of a non-parametric ground plane model that can filter target predictions from other sensors into above-ground and below-ground sets. This allows for improved detection performance when, for example, a system designed to locate above-ground targets considers only the set of above-ground predictions. In this paper, we apply LIDAR-based ground plane filtering to a forward looking ground penetrating radar (FLGPR) sensor system and a side looking synthetic aperture acoustic (SAA) sensor system designed to detect explosive hazards along the side of a road. Additionally, we consider the value of the visual magnitude of the LIDAR return as a feature for identifying anomalies. The predictions from these sensors are evaluated independently with and without ground plane filtering and then fused to produce a combined prediction confidence. Sensor fusion is accomplished by interpolating the confidence scores of each sensor along the ground plane model to create a combined confidence vector at specified points in the environment. The methods are tested along an unpaved desert road at an arid U.S. Army test site.

  17. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  18. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  19. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between ...

  20. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available about the relationship between fires and solar UVR without local high-quality column or ground-based ambient air pollution (particulate matter in particular) data; however, the threat to public health from fires was acknowledged....

  1. Risk in the Weapons Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Noone, Bailey C [Los Alamos National Laboratory

    2012-08-14

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  2. Spectrally selective surfaces for ground and space-based instrumentation: support for a resource base

    Science.gov (United States)

    McCall, Susan H.; Sinclair, R. Lawrence; Pompea, Stephen M.; Breault, Robert P.

    1993-11-01

    The performance of space telescopes, space instruments, and space radiator systems depends critically upon the selection of appropriate spectrally selective surfaces. Many space programs have suffered severe performance limitations, schedule setbacks, and spent hundreds of thousands of dollars in damage control because of a lack of readily-accessible, accurate data on the properties of spectrally selective surfaces, particularly black surfaces. A Canadian effort is underway to develop a resource base (database and support service) to help alleviate this problem. The assistance of the community is required to make the resource base comprehensive and useful to the end users. The paper aims to describe the objectives of this project. In addition, a request for information and support is made for various aspects of the project. The resource base will be useful for both ground and space-based instrumentation.

  3. The Weaponization of Social Media

    Science.gov (United States)

    2016-06-10

    media efforts will be compared to similar Western business and civic social media centric marketing efforts from both a technical and theoretical...THE WEAPONIZATION OF SOCIAL MEDIA A thesis presented to the Faculty of the U.S. Army Command and General Staff College in...The Weaponization of Social Media 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jack B. Irby III, MAJ 5d

  4. Nanoassemblies Based on Supramolecular Complexes of Nonionic Amphiphilic Cyclodextrin and Sorafenib as Effective Weapons to Kill Human HCC Cells.

    Science.gov (United States)

    Bondì, Maria Luisa; Scala, Angela; Sortino, Giuseppe; Amore, Erika; Botto, Chiara; Azzolina, Antonina; Balasus, Daniele; Cervello, Melchiorre; Mazzaglia, Antonino

    2015-12-14

    Sorafenib (Sor), an effective chemiotherapeutic drug utilized against hepatocellular carcinoma (HCC), robustly interacts with nonionic amphiphilic cyclodextrin (aCD, SC6OH), forming, in aqueous solution, supramolecular complexes that behave as building blocks of highly water-dispersible colloidal nanoassemblies. SC6OH/Sor complex has been characterized by complementary spectroscopic techniques, such as UV-vis, steady-state fluorescence and anisotropy, resonance light scattering and (1)H NMR. The spectroscopic evidences and experiments carried out in the presence of an adamantane derivative, which competes with drug for CD cavity, agree with the entrapment of Sor in aCD, pointing out the role of the aCD cavity in the interaction between drug and amphiphile. Nanoassemblies based on SC6OH/Sor display size of ∼200 nm, negative zeta-potential (ζ = -11 mV), and both maximum loading capacity (LC ∼ 17%) and entrapment efficiency (EE ∼ 100%). Kinetic release profiles show a slower release of Sor from nanoassemblies with respect to the free drug. SC6OH/Sor nanoassemblies have very low hemolytic activity and high efficiency in vitro in decreasing cell growth and viability of HCC cell lines, such as HepG2, Hep3B, and PLC/PRF/5, opening promising chances to their in vivo applications.

  5. Research on Top-layer Planning and Overall Design Project Decision of Weapon System Based on Analytic Hierarchy Process

    Institute of Scientific and Technical Information of China (English)

    WU Rui-wen

    2012-01-01

    Based on analytic hierarchy process(AHP) theory,a vital important problem for top-layer planning and overall design of modern self-propelled gun-howitzer system,namely overall project decision-making,was analyzed.A hierarchy model was built to solve the complex and uncertain problem,and a decision-making index system was established.Then,the weights in all layers of the model were determined by simulating experts.Finally,according to the calculated results of the elements in each layer,the weights of the alternatives to the overall goal were calculated to conduct the hierarchy total decision.A decision example shows that the overall project of a self-propelled gun-howitzer A is much better than that of another self-propelled gun-howitzer B,digitalized in comprehensive efficiency,operability,system accuracy and economy,but inferior to it in the information capability,and there exists relatively larger gap between them in the information sharing index.

  6. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    Science.gov (United States)

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  7. Ground-based hyperspectral analysis of the urban nightscape

    Science.gov (United States)

    Alamús, Ramon; Bará, Salvador; Corbera, Jordi; Escofet, Jaume; Palà, Vicenç; Pipia, Luca; Tardà, Anna

    2017-02-01

    Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.

  8. Figure-ground organization based on three-dimensional symmetry

    Science.gov (United States)

    Michaux, Aaron; Jayadevan, Vijai; Delp, Edward; Pizlo, Zygmunt

    2016-11-01

    We present an approach to figure/ground organization using mirror symmetry as a general purpose and biologically motivated prior. Psychophysical evidence suggests that the human visual system makes use of symmetry in producing three-dimensional (3-D) percepts of objects. 3-D symmetry aids in scene organization because (i) almost all objects exhibit symmetry, and (ii) configurations of objects are not likely to be symmetric unless they share some additional relationship. No general purpose approach is known for solving 3-D symmetry correspondence in two-dimensional (2-D) camera images, because few invariants exist. Therefore, we present a general purpose method for finding 3-D symmetry correspondence by pairing the problem with the two-view geometry of the binocular correspondence problem. Mirror symmetry is a spatially global property that is not likely to be lost in the spatially local noise of binocular depth maps. We tested our approach on a corpus of 180 images collected indoors with a stereo camera system. K-means clustering was used as a baseline for comparison. The informative nature of the symmetry prior makes it possible to cluster data without a priori knowledge of which objects may appear in the scene, and without knowing how many objects there are in the scene.

  9. OIL AS POLITICAL WEAPON

    Directory of Open Access Journals (Sweden)

    Mariana, BUICAN

    2013-12-01

    Full Text Available Oil (called by some black gold has not always been as coveted and used, but only in the last hundred years has established itself as a highly sought after as an indispensable proper functioning of modern economic activity that an important factor in international politics. International oil regime has changed in the last decades. In 1960, oil regime was a private oligopol which had links with governments main consuming countries. By then the price of a barrel of oil was two U.S. dollars and seven major transnational oil companies decided the amount of oil that will be produced. Meanwhile the world region with the largest oil exports were more strongly expressed nationalism and decolonization. Result, it was so in the late 60s in the region occur independent states. They have created an organization aim of this resource to their advantage - OPEC (Organization of Petroleum Exporting Countries. Thus since 1973 there have been changes in the international regime governing oil field, namely producing countries were fixed production rate and price. After this time the oil weapon has become increasingly important in the management of international relations. Oil influenced the great powers to Middle East conflicts that occurred in the last century, but their attitude about the emergence of new sources of oil outside OPEC. In the late 90's, Russia has become a major supplier of oil to the West.

  10. DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2017-09-01

    Full Text Available The Ground-Based SAR (GBSAR is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  11. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer

    Institute of Scientific and Technical Information of China (English)

    PAN Lin-Jun; LU Da-Ren

    2012-01-01

    Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu- ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The compari- son shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.

  12. GROUND FILTERING LiDAR DATA BASED ON MULTI-SCALE ANALYSIS OF HEIGHT DIFFERENCE THRESHOLD

    Directory of Open Access Journals (Sweden)

    P. Rashidi

    2017-09-01

    Full Text Available Separating point clouds into ground and non-ground points is a necessary step to generate digital terrain model (DTM from LiDAR dataset. In this research, a new method based on multi-scale analysis of height difference threshold is proposed for ground filtering of LiDAR data. The proposed method utilizes three windows with different sizes in small, average and large to cover the entire LiDAR point clouds, then with a height difference threshold, point clouds can be separated to ground and non-ground in each local window. Meanwhile, the best threshold values for size of windows are considered based on physical characteristics of the ground surface and size of objects. Also, the minimum of height of object in each window selected as height difference threshold. In order to evaluate the performance of the proposed algorithm, two datasets in rural and urban area were applied. The overall accuracy in rural and urban area was 96.06% and 94.88% respectively. These results of the filtering showed that the proposed method can successfully filters non-ground points from LiDAR point clouds despite of the data area.

  13. Vessel Weapon System Baseline Deviation Analysis Based on ANSYS%基于ANSYS的舰船武器装备基准变化分析方法

    Institute of Scientific and Technical Information of China (English)

    张磊; 王安国; 李辉

    2013-01-01

    Vessel weapon system baseline deviation caused by external condition affects attack accuracy. The finite element model is constructed by ANSYS. 3D wave loads calculation method is used to simulate the wave force in sailing condition. Vessel weapon system baseline deviation in the case of two limit sea conditions is researched. The simulation result indicates that vessel weapon system baseline deviation of certain vessel structure of this text is remarkable in the rolling condition and the weapon baseline near stem and broadside has a tremendous influence. Therefore this certain vessel should be sailing a-gainst wave while it carries out combat duty in order to decrease the influence of rolling.%舰船武器装备基准在外界因素作用下产生变化,从而影响武器系统的打击精度.应用ANSYS平台建立舰船有限元模型,利用三维波浪载荷的计算方法模拟航行条件下舰船所受载荷,研究了舰船甲板面武器装备基准在两种极限海况下的变化情况.仿真结果表明:针对所选取的某型舰船主体结构而言,舰船横摇使武器装备基准产生较大的变化,并且靠近船体尾部和两舷位置处装备的基准变化较为显著,所以该型舰船在执行作战任务中,应尽量采取顶浪航行,减小舰船横摇对武器装备基准的影响.

  14. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  15. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Science.gov (United States)

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Brotopuspito, Kirbani Sri; Wilopo, Wahyu; Kiyono, Junji; Setianto, Agung; Putra, Rusnardi Rahmat

    2015-04-01

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green's function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  16. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  17. Establishing common ground in community-based arts in health.

    Science.gov (United States)

    White, Mike

    2006-05-01

    This article originates in current research into community-based arts in health. Arts in health is now a diverse field of practice, and community-based arts in health interventions have extended the work beyond healthcare settings into public health. Examples of this work can now be found internationally in different health systems and cultural contexts. The paper argues that researchers need to understand the processes through which community-based arts in health projects evolve, and how they work holistically in their attempt to produce therapeutic and social benefits for both individuals and communities, and to connect with a cultural base in healthcare services themselves. A development model that might be adapted to assist in analysing this is the World Health Organisation Quality of Life Index (WHOQOL). Issues raised in the paper around community engagement, healthy choice and self-esteem are then illustrated in case examples of community-based arts in health practice in South Africa and England; namely the DramAide and Siyazama projects in KwaZulu-Natal, and Looking Well Healthy Living Centre in North Yorkshire. In South Africa there are arts and media projects attempting to raise awareness about HIV/AIDS through mass messaging, but they also recognize that they lack models of longer-term community engagement. Looking Well by contrast addresses health issues identified by the community itself in ways that are personal, empathic and domesticated. But there are also similarities among these projects in their aims to generate a range of social, educational and economic benefits within a community-health framework, and they are successfully regenerating traditional cultural forms to create public participation in health promotion. Process evaluation may provide a framework in which community-based arts in health projects, especially if they are networked together to share practice and thinking, can assess their ability to address health inequalities and focus

  18. ENVIRONMENTAL CONTAMINATION FROM WEAPON TESTS

    Energy Technology Data Exchange (ETDEWEB)

    none

    1958-10-01

    The program of the Atomic Energy Commission on environmental contamination from weapons tests is designed for the overall evaluation of the hazard to humans from test operations. It is limited to studies of the deposition of activity at long range rather than the problems associated with immediate, close-in fallout. The program has largely been a study of Sr{sup 90}, since considerations based on experience and measurement indicate that it is the isotope of greatest potential hazard. Data are presented pertinent to the monitoring of long-range fallout, particularly Sr{sup 90} and Cs{sup 137}. Values are tabulated for the fallout deposition, air concentrations, water concentrations, and the amounts in foods and human bone. In addition, results are given for some experimental investigations. The report of these results is not interpretative although certain papers that do attempt to interpret the present situation with respect to Sr{sup 90} in particular are reprinted. Bibliographies are presented covering the period since the 1957 hearings before the Joint Committee on Atomic Energy concerning the nature of radioactive fallout and its effects on man. A document list of submissions to the United Nations Scientific Committee on the Effects of Atomic Radiation is given to illustrate the work done in other countries. Several papers on the subject, which have not been generally available, are reprinted.

  19. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    Science.gov (United States)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  20. Ground-Based Surveillance and Tracking System (GSTS)

    Science.gov (United States)

    1987-08-01

    reported availabilty of relatively high- paying jobs. The consequences of increased migration could be significant. No significant impacts at U.S. Army...Air Force Base are contributing to overdrawing the aquifers, and at current usage rates the aquifers could be depleted (44). The "Draft Environmental

  1. Simulation of Fighter Aircraft Weapon Systems for Design and Performance Evaluation

    OpenAIRE

    P. S. Subramanyam

    1997-01-01

    Simulation forms an essential tool in the system design and performance evaluation of fighter aircraft weapon systems. The various guidance strategies used for weapons like guns, missiles, bombs in the air-to-air or air-to-ground missions, for aiding the pilot for an effective delivery have been studied through extensive off-line and pilot-in-loop simulation. The pilot workload analysis carried out in the high fidelity cockpit simulator at the Aeronautical Development Agency , Bangalor...

  2. Tracking of urban aerosols using combined lidar-based remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    T.-Y. He

    2011-10-01

    Full Text Available A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic lidar operating at 1064 nm. In addition, PM10 concentrations of particles, NOx and meteorological data were continuously monitored within the lidar scanning region. Based on the collected data, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased lidar returns, which were found to be due to the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily maximum at around 17:00 Central European Time. We also found that the averaged horizontal atmospheric extinction within the scanning region 200 m above the ground is correlated to the PM10 concentration at the ground level with a correlation coefficient of 0.64, which may be due to relatively quiet meteorological conditions and basin-like terrain configuration.

  3. Ground Based GPS Phase Measurements for Atmospheric Sounding

    Science.gov (United States)

    2016-06-14

    based GPS observations for the correction of radar observations. 6 REFERENCES Alber, C., R. Ware, C. Rocken, and J. Braun, A new method for sensing ...rocken@ucar.edu Award #: N00014-97-1-0258 LONG-TERM GOAL The goal is to develop GPS remote sensing techniques to determine atmospheric signal delay and...agrees best with the observations in a least squares sense is selected. The corresponding refractivity profile is then selected. • We tested this

  4. Constraint-based Ground contact handling in Humanoid Robotics Simulation

    OpenAIRE

    Martin Moraud, Eduardo; Hale, Joshua G.; Cheng, Gordon

    2008-01-01

    International audience; This paper presents a method for resolving contact in dynamic simulations of articulated figures. It is intended for humanoids with polygonal feet and incorporates Coulomb friction exactly. The proposed technique is based on a constraint selection paradigm. Its implementation offers an exact mode which guarantees correct behavior, as well as an efficiency optimized mode which sacrifices accuracy for a tightly bounded computational burden, thus facilitating batch simula...

  5. Ground-based follow-up in relation to Kepler Asteroseismic Investigation

    CERN Document Server

    Uytterhoeven, K; Bruntt, H; De Cat, P; Frandsen, S; Gutierrez-Soto, J; Kiss, L; Kurtz, D W; Marconi, M; Molenda-Zakowicz, J; Ostensen, R; Randall, S; Southworth, J; Szabo, R

    2010-01-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-...

  6. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  7. Examination of Economic Feasibility of Nuclear Weapons in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Young A; Yim, Man Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    This observation implies that the popular view on nuclear weapons amongst Korean public is in part due to lack of knowledge about overall implications of possessing nuclear weapons. In this regard, pros and cons of nuclear weapons development need to be better characterized and understood by the public to support nuclear nonproliferation culture development. Noting lack of literature on characterizing the economics of nuclear weapons development, this study aims at performing economic feasibility analysis of nuclear weapons development in the ROK. For this purpose, an approach called Index technique based on the US experiences was applied to Korean historical data along with cost-benefit analysis and Multi-Criteria Decision Making Analysis. In this study, the scenario of nuclear weapons development against North Korean nuclear threat was compared with conventional weapons-based defense strategy. The comparison was based on cost benefit analysis and qualitative multi-criteria decision analysis. Results indicate that nuclear weapons development is not a desirable option. However, as this work was a rather simplistic academic exercise, further work is needed to support the outcome of the study. Outcome of these investigations would be useful for communication with the public regarding the need for nuclear weapons for national defense and to develop nuclear nonproliferation culture in the ROK.

  8. The Effects of Nuclear Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, Samuel

    1964-02-01

    This book is a revision of "The Effects of Nuclear Weapons" which was issued in 1957. It was prepared by the Defense Atomic Support Agency of the Department of Defense in coordination with other cognizant governmental agencies and was published by the U.S. Atomc Energy Commission. Although the complex nature of nuclear weapons effects does not always allow exact evaluation, the conclusions reached herein represent the combined judgment of a number of the most competent scientists working the problem. There is a need for widespread public understanding of the best information available on the effects of nuclear weapons. The purpose of this book is to present as accurately as possible, within the limits of national security, a comprehensive summary of this information.

  9. Analysis of English Complex Sentences based on Figure-Ground Theory

    Institute of Scientific and Technical Information of China (English)

    侯皓

    2015-01-01

    English is a language featuring its complex sentences composed of main and sub-ordinate clauses. The subordinate clause conveys the unifnished messages in main clause and it becomes quite complicated. English complex sentence is a fair impor-tant sentence type and also of importance in English teaching. Analyzing complex sentence based on Figure-Ground Theory, especially the Adverbial Clause, is help-ful to learn English and translate it. The Figure-Ground Theory originated in psychol-ogy studies and it was introduced in cognitive linguistics to explain some language phenomena. From Figure-Ground perspective, the essay studies attributive clause, adverbial clause and nominal clause and some critical sentence types have been analyzed carefully and the major ifnding is Figure-Ground Theory is dynamic not static.

  10. Novel identification strategy for ground coffee adulteration based on UPLC-HRMS oligosaccharide profiling.

    Science.gov (United States)

    Cai, Tie; Ting, Hu; Jin-Lan, Zhang

    2016-01-01

    Coffee is one of the most common and most valuable beverages. According to International Coffee Organization (ICO) reports, the adulteration of coffee for financial reasons is regarded as the most serious threat to the sustainable development of the coffee market. In this work, a novel strategy for adulteration identification in ground coffee was developed based on UPLC-HRMS oligosaccharide profiling. Along with integrated statistical analysis, 17 oligosaccharide composition were identified as markers for the identification of soybeans and rice in ground coffee. This strategy, validated by manual mixtures, optimized both the reliability and authority of adulteration identification. Rice and soybean adulterants present in ground coffee in amounts as low as 5% were identified and evaluated. Some commercial ground coffees were also successfully tested using this strategy.

  11. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Pena Diaz, Alfredo

    , the project "Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models" (RUNE) was established. The lidar measurement campaign started November 2015 and ended in February 2016 at the Danish North Sea coast at around 56.5 ◦N, 8.2 ◦E. 107 satellite SAR scenes were collected...... fields from the Sentinel-1A satellite using APL/NOAA’s SAROPS system with GFS model wind directions as input. For the presented cases CMOD5.n is used. Ground-based scanning lidar located on land can also cover near shore areas. In order to improve wind farm planning for near-shore coastal areas...

  12. Dust optical properties retrieved from ground-based polarimetric measurements.

    Science.gov (United States)

    Li, Zhengqiang; Goloub, Philippe; Blarel, Luc; Damiri, Bahaiddin; Podvin, Thierry; Jankowiak, Isabelle

    2007-03-20

    We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.

  13. Analysis of the substorm trigger phase using multiple ground-based instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kauristie, K.; Pulkkinen, T.I.; Pellinen, R.J. [Finnish Meteorological Institute, Helsinki (Finland)] [and others

    1995-08-01

    The authors discuss in detail the observation of an event of auroral activity fading during the trigger, or growth phase of a magnetic storm. This event was observed by all-sky cameras, EISCAT radar and magnetometers, riometers, and pulsation magnetometers, from ground based stations in Finland and Scandanavia. Based on their detailed analysis, they present a possible cause for the observed fading.

  14. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    Science.gov (United States)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  15. Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign

    Science.gov (United States)

    Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.

    2016-12-01

    Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.

  16. Analysis method on shoot precision of weapon in small-sample case

    Institute of Scientific and Technical Information of China (English)

    Jiang Jun; Song Baowei; Liang Qingwei

    2007-01-01

    Because of limits of cost, in general, the test data of weapons are shortness. It is always an important topic that to gain scientific results of weapon performance analyses in small-sample case. Based on the analysis of distribution function characteristics and grey mathematics, a weighting grey method in small-sample case is presented. According to the analysis of test data of a weapon, it is proved that the method is a good method to deal with data in the small-sample case and has a high value in the analysis of weapon performance.

  17. Tracing ground water input to base flow using sulfate (S, O) isotopes.

    Science.gov (United States)

    Gu, Ailiang; Gray, Floyd; Eastoe, Christopher J; Norman, Laura M; Duarte, Oscar; Long, Austin

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  18. Tracing ground water input to base flow using sulfate (S, O) isotopes

    Science.gov (United States)

    Gu, A.; Gray, F.; Eastoe, C.J.; Norman, L.M.; Duarte, O.; Long, A.

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  19. The Effects of Nuclear Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, Samuel

    1957-06-01

    This handbook prepared by the Armed Forces Special Weapons Project of the Department of Defense in coordination with other cognizant government agencies and published by the United States Atomic Energy Commission, is a comprehensive summary of current knowledge on the effects of nuclear weapons. The effects information contained herein is calculated for yields up to 20 megatons and the scaling laws for hypothetically extending the calculations beyond this limit are given. The figure of 20 megatons however is not be taken as an indication of capabilities or developments.

  20. Computation of Weapons Systems Effectiveness

    Science.gov (United States)

    2013-09-01

    Aircraft Dive Angle : Initial Weapon Release Velocity at x-axis VOx VOz x: x-axis z: z-axis : Initial Weapon Release Velocity at z...altitude Impact Velocity (x− axis), Vix = VOx (3.4) Impact Velocity (z− axis), Viz = VOz + (g ∗ TOF) (3.5) Impact Velocity, Vi = �Vix2 + Viz2 (3.6...compute the ballistic partials to examine the effects that varying h, VOx and VOz have on RB using the following equations: ∂RB ∂h = New RB−Old RB

  1. 一种高炮武器系统射击准备精度综合检测方法%An Integrated Test Method Based on Accuracy of Fire Preparation for Antiaircraft Artillery Weapon System

    Institute of Scientific and Technical Information of China (English)

    刘永鸿; 张文红

    2011-01-01

    In order to improve the fire preparation accuracy of antiaircraft artillery weapon system, put forward an integrated test method for accuracy of fire preparation based on CCD camera. The checkout equipment includes cold gun correction sighting telescope, the single chip application system, display equipment and storage battery and so on. Through the calculation of ballistic correction and the picture deviating techniques of interpretation based on muzzle aiming direction in linkage, realize the integrated test for error of fire preparation based on antiaircraft artillery weapon system.The application results show that the executed device has these characteristics of simple structure and high check precision etc.%为提高高炮武器系统射击准备精度,提出一种基于CCD摄像的射击准备精度综合检测方法.检测装置由冷炮校正器、单片机应用系统、显示器和蓄电池等构成,通过弹道修正量计算和联动状态下炮口指向的图像偏差判别方法,实现高炮武器系统射击准备误差的综合检测.应用结果表明,该实施装置具有结构简单、检测精度高等特点.

  2. A framework for recovery-oriented, COTS-based ground station networks

    Science.gov (United States)

    Cutler, James William

    The complexity of space communication has limited our access to space systems and kept mission operations costs high. Ultimately, this results in reduced mission capabilities and yields. In particular, ground stations, the access point between space and terrestrial networks, suffer from monolithic designs, narrow interfaces, and unreliability that raise significant financial barriers for low-cost, experimental satellite missions. This research reduces these barriers by developing technology for recovery-oriented, flexible access networks built from commercial-off-the-shelf (COTS) components. Based on our extensive small satellite experiences, we decomposed ground station services and captured them in an extensible framework that simplified reuse of ground station services and improved portability across heterogeneous installations. This capability, combined with selective customization through virtual machine technology, allowed us to deliver "just in time" ground stations for QuakeSat-1 at a fraction of the price of current commodity solutions. This decomposition is also informed by principles of robust system design. Thus, our ground station reference implementation called Mercury was a candidate for recursive recovery (RR), a high availability technique whose effectiveness in reducing recovery time has been demonstrated on research prototypes of Internet server systems. Augmenting Mercury to implement RR reduced recovery time of typical ground station software failures by a factor of four, dropping recovery time to within the "window of recovery" and effectively eliminating the adverse effects of these failures. Since the time of failures cannot be predicted, RR allowed us to mitigate the effects of the failures and greatly reduce their potential impact on ground station operations. Our ground station architecture harnessed the benefits of COTS components, including rapid prototyping and deployment, while overcoming the challenges of COTS reliability and mission

  3. A New Method of Desired Gait Synthesis for Biped Walking Robot Based on Ground Reaction Force

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method of desired gait synthesis for biped walking robot based on the ground reaction force was proposed. The relation between the ground reaction force and joint motion is derived using the D'Almbert principle. In view of dynamic walking with high stability, the ZMP(Zero Moment Point)stability criterion must be considered in the desired gait synthesis. After that, the joint trajectories of biped walking robot are decided by substituting the ground reaction force into the aforesaid relation based on the ZMP criterion. The trajectory of desired ZMP is determined by a fuzzy logic based upon the body posture of biped walking robot. The proposed scheme is simulated and experimented on a 10 degree of freedom biped walking robot. The results indicate that the proposed method is feasible.

  4. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  5. Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

    CERN Document Server

    Reddy, Vishnu; Corre, Lucille Le; Scully, Jennifer E C; Gaskell, Robert; Russell, Christopher T; Park, Ryan S; Nathues, Andreas; Raymond, Carol; Gaffey, Michael J; Sierks, Holger; Becker, Kris J; McFadden, Lucy A

    2013-01-01

    Observations of asteroid 4 Vesta by NASA's Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta's formation. Prior to Dawn's arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta's rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretati...

  6. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  7. Motion Controller of Remotely Operated Weapon Station Based on DSP%基于DSP技术的遥控武器站运动控制器

    Institute of Scientific and Technical Information of China (English)

    章百宝; 张颖

    2012-01-01

    In order to satisfy the need of the remotely operated weapon station precision servo control, this paper designs a motion controller using digital signals processor (DSP) TMS320F2812 as the core. The controller samples the sensor value by the hi-speed I/O in the DSP. The DSP sends orders to the motor. It realizes the position control and improves the accuracy of the control system. The controller is used in a certain type remotely operated weapon station. The practice shows that the motion controller is stable and reliable. It can be widely apply in the system of remotely operated weapon station.%为了满足遥控武器站控制精度要求,设计一种以数字信号处理器(digital signals processor,DSP) TMS320F2812为控制核心的运动控制器.该运动控制器通过DSP内部集成的高速I/O口对传感器位置值进行采样,由DSP控制给出指令,驱动电机运动,实现了位置控制,使控制精度大大提高,并已应用于某型号项目的遥控武器站控制系统.实践证明,该运动控制器运行稳定、可靠,可广泛应用于遥控武器站等控制系统.

  8. Analysis of Quantity Requirement and Its Marginal Utility of Weapon System Based on Random Theory%基于随机理论的武器系统数量需求及边际效用分析

    Institute of Scientific and Technical Information of China (English)

    张庆捷; 赵瑾; 张杰; 郑斌

    2012-01-01

    针对武器系统作战需求中的数量需求问题,提出了一种基于作战过程状态转移的研究思路.根据“侦察—信息处理与决策—火力打击”的一般作战过程,建立了状态转移方程,推导出了数量需求函数的解析表达式,并对其边际效用进行了分析.结果表明:增加武器系统数量和提高武器系统战技性能(tactical and technical characteristics,TTC)对火力打击效能均具有补偿作用,但它们的边际效用是有区分的,分水岭就是该武器系统是否具备精确打击能力.%To study the problem of quantity requirement in weapon system operational requirement, an idea based on state transition of operational process is put forward. With the general operational process of "reconnaissance-information processing and decision-fire attack", the state transition function is built, the analytic expressions of quantity requirement function is deduced and calculated, and the marginal utility is also analyzed. The main conclusion is made as follows, the increased quantity and the improved tactical and technical characteristics(TTC) of weapon system will make up fire efficiency both, but with different marginal utility, and weather this certain weapon system has accurate fire ability or not is regarded as the watershed.

  9. Evaluation of Real-Time Ground-Based GPS Meteorology

    Science.gov (United States)

    Fang, P.; Bock, Y.; Gutman, S.

    2003-04-01

    We demonstrate and evaluate a system to estimate zenith tropospheric delays in real time (5-10 minute latency) based on the technique of instantaneous GPS positioning as described by Bock et al. [2000] using data from the Orange County Real Time GPS Network. OCRTN is an upgrade of a sub-network of SCIGN sites in southern California to low latency (1-2 sec), high-rate (1 Hz) data streaming. Currently, ten sites are streaming data (Ashtech binary MBEN format) by means of dedicated, point-to-point radio modems to a network hub that translates the asynchronous serial data to TCP/IP and onto a PC workstation residing on a local area network. Software residing on the PC allows multiple clients to access the raw data simultaneously though TCP/IP. One of the clients is a Geodetics RTD server that receives and archives (1) the raw 1 Hz network data, (2) estimates of instantaneous positions and zenith tropospheric delays, and (3) RINEX data to decimated to 30 seconds. The network is composed of ten sites. The distribution of nine of the sites approximates a right triangle with two 60 km legs, and a tenth site on Catalina Island a distance of about 50 km (over water) from the hypotenuse of the triangle. Relative zenith delays are estimated every second with a latency less than a second. Median values are computed at a user-specified interval (e.g., 10 minutes) with outliers greater than 4 times the interquartile range rejected. We describe the results with those generated by our operational system using the GAMIT software, with a latency of 30-60 minutes. Earlier results (from a similar network) comparing 30-minute median RTD values to GAMIT 30-minute estimates indicate that the two solutions differ by about 1 cm. We also describe our approach to determining absolute zenith delays. If an Internet connection is available we will present a real-time demonstration. [Bock, Y., R. Nikolaidis, P. J. de Jonge, and M. Bevis, Instantaneous resolution of crustal motion at medium

  10. OGLE-2015-BLG-0196: Ground-based Gravitational Microlens Parallax Confirmed By Space-Based Observation

    CERN Document Server

    Han, C; Gould, A; Zhu, Wei; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Pawlak, M; Yee, J C; Beichman, C; Novati, S Calchi; Carey, S; Bryden, C; Fausnaugh, M; Gaudi, B S; Henderson, Calen B; Shvartzvald, Y; Wibking, B

    2016-01-01

    In this paper, we present the analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the {\\it Spitzer} telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the two-fold degeneracy: $u_00$ solutions caused by the well-known "ecliptic" degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses $M_1=0.38\\pm 0.04\\ M_\\odot$ ($0.50\\pm 0.05\\ M_\\odot)$ and $M_2=0.38\\pm 0.04\\ M_\\odot$ ($0.55\\pm 0.06\\ M_\\odot$) and the distance to the lens is $D_{\\rm L}=2.77\\pm 0.23$ kpc ($3.30\\pm 0.29$ kpc). Here the physical parameter...

  11. First ground-based FTIR-observations of methane in the tropics

    Directory of Open Access Journals (Sweden)

    A. K. Petersen

    2010-02-01

    Full Text Available Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname. The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  12. Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters

    OpenAIRE

    İnan, Umran Savaş; Graf, K. L.; Spasojevic, M.; Marshall, R. A.; Lehtinen, N. G.; Foust, F. R.

    2013-01-01

    JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 7783–7797, doi:10.1002/2013JA019337, 2013 Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters K. L. Graf,1 M. Spasojevic,1 R. A. Marshall,2 N. G. Lehtinen,1 F. R. Foust,1 and U. S. Inan1,3 Received 16 August 2013; revised 9 October 2013; accepted 11 November 2013; published 3 December 2013. [1] The effects of ground-based very low frequency (VLF) transmitters on the lower ionospher...

  13. A transit timing analysis with combined ground- and space-based photometry

    Directory of Open Access Journals (Sweden)

    Raetz St.

    2015-01-01

    The CoRoT satellite looks back on six years of high precision photometry of a very high number of stars. Thousands of transiting events are detected from which 27 were confirmed to be transiting planets so far. In my research I search and analyze TTVs in the CoRoT sample and combine the unprecedented precision of the light curves with ground-based follow-up photometry. Because CoRoT can observe transiting planets only for a maximum duration of 150 days the ground-based follow-up can help to refine the ephemeris. Here we present first examples.

  14. Status of advanced ground-based laser interferometers for gravitational-wave detection

    CERN Document Server

    Dooley, Katherine L; Dwyer, Sheila; Puppo, Paola

    2014-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years' worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO600 and KAGRA.

  15. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  16. Estimation of solar irradiance using ground-based whole sky imagers

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiation. Sky cameras are useful here because they provide additional information about cloud movement and coverage, which are otherwise not available from weather station data. Our setup includes ground-based weather stations at the same location as the imagers. We use their measurements to validate our methods.

  17. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  18. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    Science.gov (United States)

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  19. Precision simulation of ground-based lensing data using observations from space

    CERN Document Server

    Mandelbaum, Rachel; Leauthaud, Alexie; Massey, Richard J; Rhodes, Jason

    2011-01-01

    Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). In this paper, we introduce the SHERA (SHEar Reconvolution Analysis) software to simulate ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak len...

  20. 32 CFR 1903.10 - Weapons.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Weapons. 1903.10 Section 1903.10 National... INSTALLATIONS § 1903.10 Weapons. (a) Except as provided in paragraph (c) of this section, knowingly possessing or causing to be present a weapon on an Agency installation, or attempting to do so is prohibited. (b...

  1. 48 CFR 25.301-3 - Weapons.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Weapons. 25.301-3 Section... FOREIGN ACQUISITION Contracts Performed Outside the United States 25.301-3 Weapons. The contracting officer shall follow agency procedures and the weapons policy established by the combatant commander or...

  2. Bullying and weapon carrying: a meta-analysis.

    Science.gov (United States)

    van Geel, Mitch; Vedder, Paul; Tanilon, Jenny

    2014-08-01

    Studies suggest that adolescents involved in bullying are more likely to carry weapons than their uninvolved peers. To use meta-analyses to determine whether victims, bullies, and bully-victims are more likely to carry weapons than uninvolved peers. PsycINFO, ERIC, MEDLINE, LILACS, EMBASE, and Dissertation Abstracts International were searched for relevant publications (1950 through January 2014). The reference list of a review article and reference lists of retrieved articles were checked for further relevant studies. Studies were included if they provided an effect size comparing the weapon carrying of adolescent victims, bullies, or bully-victims with that of uninvolved peers. Studies that included individuals older than 21 years were excluded, as were studies that focused on incarcerated youth or youth diagnosed as having a psychopathologic condition. Studies were coded independently by 2 of us. The agreement rate was 93%. Effect sizes were coded that compared victims, bullies, or bully-victims with uninvolved peers. Meta-analyses were based on 22 studies for victims (n = 257 179), 15 studies for bullies (n = 236 145), and 8 studies for bully-victims (n = 199 563). This study focused on weapon carrying among adolescents. Hypotheses were formulated before the study. Victims (odds ratio, 1.97; 95% CI, 1.62-2.39), bullies (3.25; 2.72-3.89), and bully-victims (4.95; 3.77-6.50) were more likely to carry weapons than uninvolved peers. Analyses provided no indication of publication bias. Studies conducted in the United States found stronger relations between being a bully-victim and weapon carrying (odds ratio, 7.84; 95% CI, 6.02-10.21) than studies from other countries (3.62; 2.30-5.68; Q1 = 8.401; P = .004). Involvement in bullying as a victim, bully, or bully-victim is related to weapon carrying.

  3. Finding common ground in team-based qualitative research using the convergent interviewing method.

    Science.gov (United States)

    Driedger, S Michelle; Gallois, Cindy; Sanders, Carrie B; Santesso, Nancy

    2006-10-01

    Research councils, agencies, and researchers recognize the benefits of team-based health research. However, researchers involved in large-scale team-based research projects face multiple challenges as they seek to identify epistemological and ontological common ground. Typically, these challenges occur between quantitative and qualitative researchers but can occur between qualitative researchers, particularly when the project involves multiple disciplinary perspectives. The authors use the convergent interviewing technique in their multidisciplinary research project to overcome these challenges. This technique assists them in developing common epistemological and ontological ground while enabling swift and detailed data collection and analysis. Although convergent interviewing is a relatively new method described primarily in marketing research, it compares and contrasts well with grounded theory and other techniques. The authors argue that this process provides a rigorous method to structure and refine research projects and requires researchers to identify and be accountable for developing a common epistemological and ontological position.

  4. Handheld Concealed Weapons Detector Development

    Science.gov (United States)

    2003-03-01

    Enforcement, Edward M. Carapezza, Donald Spector, Eds., Proc. SPIE 2938, 110 - 119 (1997). 3. Franklin Felber, Norbert Wild, Scott Nunan , Dennis Breuner... Nunan , D. Breuner, and F. Doft, "Handheld Ultrasound Concealed-Weapons Detector," in Enforcement and Security Technologies, A. Trent DePersia, J. J

  5. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  6. Emergency department evaluation after conducted energy weapon use: review of the literature for the clinician.

    Science.gov (United States)

    Vilke, Gary M; Bozeman, William P; Chan, Theodore C

    2011-05-01

    Conductive energy weapons (CEWs) are used daily by law enforcement, and patients are often brought to an emergency department (ED) for medical clearance. To review the medical literature on the topic of CEWs and to offer evidence-based recommendations to Emergency Physicians for evaluation and treatment of patients who have received a CEW exposure. A MEDLINE literature search from 1988 to 2010 was performed and limited to human studies published from January 1988 to January 20, 2010 for English language articles with the following keywords: TASER, conductive energy device(s), electronic weapon(s), conductive energy weapon(s), non-lethal weapon(s), conducted energy device(s), conducted energy weapon(s), conductive electronic device(s), and electronic control device(s). Studies identified then underwent a structured review from which results could be evaluated. There were 140 articles on CEWs screened, and 20 appropriate articles were rigorously reviewed and recommendations given. These studies did not report any evidence of dangerous laboratory abnormalities, physiologic changes, or immediate or delayed cardiac ischemia or dysrhythmias after exposure to CEW electrical discharges of up to 15 s. The current medical literature does not support routine performance of laboratory studies, electrocardiograms, or prolonged ED observation or hospitalization for ongoing cardiac monitoring after CEW exposure in an otherwise asymptomatic awake and alert patient. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Simulation of the imaging quality of ground-based telescopes affected by atmospheric disturbances

    Science.gov (United States)

    Ren, Yubin; Kou, Songfeng; Gu, Bozhong

    2014-08-01

    Ground-based telescope imaging model is developed in this paper, the relationship between the atmospheric disturbances and the ground-based telescope image quality is studied. Simulation of the wave-front distortions caused by atmospheric turbulences has long been an important method in the study of the propagation of light through the atmosphere. The phase of the starlight wave-front is changed over time, but in an appropriate short exposure time, the atmospheric disturbances can be considered as "frozen". In accordance with Kolmogorov turbulence theory, simulating atmospheric disturbances of image model based on the phase screen distorted by atmospheric turbulences is achieved by the fast Fourier transform (FFT). Geiger mode avalanche photodiode array (APD arrays) model is used for atmospheric wave-front detection, the image is achieved by inversion method of photon counting after the target starlight goes through phase screens and ground-based telescopes. Ground-based telescope imaging model is established in this paper can accurately achieve the relationship between the quality of telescope imaging and monolayer or multilayer atmosphere disturbances, and it is great significance for the wave-front detection and optical correction in a Multi-conjugate Adaptive Optics system (MCAO).

  8. Hanford ground-water data base management guide and user's manual. [CIRMIS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs.

  9. A Robust and Efficient Homography Based Approach for Ground Plane Detection

    Directory of Open Access Journals (Sweden)

    Sanjeev Sofat

    2012-07-01

    Full Text Available This paper presents a homography based ground planedetection method. The method is developed as a part of stereovision based obstacle detection technique for the visuallyimpaired people. The method assumes the presence of a texturedominant ground plane in the lower portion of the scene, whichis not severe restriction in a real world. SIFT algorithm is usedto extract features in the stereo images. The extracted SIFTfeatures are robustly matched by model fitting using RANSAC.A sample of putative matches lying in the lower portion of theimage is selected. A fitness function is developed to selectmatches from this sample, which are used to estimate groundplane homography hypothesis. The ground plane homographyhypothesis is used to classify the SIFT features as eitherbelonging to ground plane or not. Image segmentation usingmean shift and normalized cut is further used to filter theoutliers and augment the ground plane. Experimental testshave been conducted to test the performance of the proposedapproach. The tests indicate that the proposed approach hasgood classification rate and have operating distance rangefrom 3 feet to 12 feet.

  10. Development of access-based metrics for site location of ground segment in LEO missions

    Directory of Open Access Journals (Sweden)

    Hossein Bonyan Khamseh

    2010-09-01

    Full Text Available The classical metrics of ground segment site location do not take account of the pattern of ground segment access to the satellite. In this paper, based on the pattern of access between the ground segment and the satellite, two metrics for site location of ground segments in Low Earth Orbits (LEO missions were developed. The two developed access-based metrics are total accessibility duration and longest accessibility gap in a given period of time. It is shown that repeatability cycle is the minimum necessary time interval to study the steady behavior of the two proposed metrics. System and subsystem characteristics of the satellite represented by each of the metrics are discussed. Incorporation of the two proposed metrics, along with the classical ones, in the ground segment site location process results in financial saving in satellite development phase and reduces the minimum required level of in-orbit autonomy of the satellite. To show the effectiveness of the proposed metrics, simulation results are included for illustration.

  11. Which future for electromagnetic Astronomy: Ground Based vs Space Borne Large Astrophysical Facilities

    Science.gov (United States)

    Ubertini, Pietro

    2015-08-01

    The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.

  12. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  13. [Modern pneumatic weapons and injuries they cause].

    Science.gov (United States)

    Kozachenko, I N

    2013-01-01

    The data on the history of development and further improvement of pneumatic weapons are presented with special reference to specific features of different types and varieties of these weapons, cartridges for them, and the sphere of their application. Investigations into peculiarities of damages caused by high-capacity pneumatic weapons to the objects of forensic medical expertise affected from different distances are reviewed. Results of forensic medical expertise and clinical studies on the structure of body injuries inflicted by gunshots from pneumatic weapons to the human body are discussed. The author emphasizes the necessity of developing up-to-date terminology and classification of gunshot injuries caused by shooting from pneumatic weapons.

  14. Predictors of Weapon Carrying in Youth Attending Drop-in Centers

    Science.gov (United States)

    Blumberg, Elaine J.; Liles, Sandy; Kelley, Norma J.; Hovell, Melbourne F.; Bousman, Chad A.; Shillington, Audrey M.; Ji, Ming; Clapp, John

    2009-01-01

    Objective: To test and compare 2 predictive models of weapon carrying in youth (n=308) recruited from 4 drop-in centers in San Diego and Imperial counties. Methods: Both models were based on the Behavioral Ecological Model (BEM). Results: The first and second models significantly explained 39% and 53% of the variance in weapon carrying,…

  15. 基于综合定权-变权模型的非致命武器采购风险评估%Risk Evaluation of Non-lethal Weapon Procurement Based on Comprehensive Fixed Weight- variable Weight Model

    Institute of Scientific and Technical Information of China (English)

    董超; 王方; 黄彩福

    2015-01-01

    To make fixed weight confirmation more scientific and rational, this paper introduces entropy theory and improves original fixed weight - variable weight model based on fixed weight -variable weight model. This paper takes non-lethal weapon procurement for example,applies improved fixed weight - variable weight model for risk evaluation and compares fixed weight - variable weight model before and after the improvement visually and clearly according to the chart. Risk evaluation results comply with actual situations. This paper provides reliable and important basis for risk management of non-lethal weapon procurement.%为使定权的确定更加科学合理,在定权- 变权模型的基础上,引入了熵理论,改进了原有定权- 变权模型,以非致命武器采购为例,利用改进后的定权- 变权模型进行了风险评估,依据图表直观清晰地比较了改进前与改进后的定权- 变权模型,风险评估结果符合实际情况,为非致命武器采购风险管理提供了科学可靠的重要依据.

  16. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  17. Facilitating Grounded Online Interactions in Video-Case-Based Teacher Professional Development

    Science.gov (United States)

    Nemirovsky, Ricardo; Galvis, Alvaro

    2004-01-01

    The use of interactive video cases for teacher professional development is an emergent medium inspired by case study methods used extensively in law, management, and medicine, and by the advent of multimedia technology available to support online discussions. This paper focuses on Web-based "grounded" discussions--in which the participants base…

  18. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Science.gov (United States)

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  19. Identifying Barriers in Implementing Outcomes-Based Assessment Program Review: A Grounded Theory Analysis

    Science.gov (United States)

    Bresciani, Marilee J.

    2011-01-01

    The purpose of this grounded theory study was to identify the typical barriers encountered by faculty and administrators when implementing outcomes-based assessment program review. An analysis of interviews with faculty and administrators at nine institutions revealed a theory that faculty and administrators' promotion, tenure (if applicable),…

  20. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  1. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  2. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions (discussion)

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2015-01-01

    A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lid

  3. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2016-01-01

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  4. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis...

  5. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    Science.gov (United States)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  6. Testing three explanations of the emergence of weapon carrying in peer context: the roles of aggression, victimization, and the social network.

    Science.gov (United States)

    Dijkstra, Jan Kornelis; Gest, Scott D; Lindenberg, Siegwart; Veenstra, René; Cillessen, Antonius H N

    2012-04-01

    To examine the relative contribution of weapon carrying of peers, aggression, and victimization to weapon carrying of male and female adolescents over time. Data were derived from a population-based sample of male (N = 224) and female (N = 244) adolescents followed from grade 10 (M age = 15.5) to grade 11 (M age = 16.5). Peer networks were derived from best friend nominations. Self-reports were used to assess weapon carrying. Aggression and victimization were assessed using both self- and peer-reports. Use of dynamic social network modeling (SIENA) allowed prediction of weapon carrying in grade 11 as a function of weapon carrying of befriended peers, aggression, and victimization in grade 10, while selection processes and structural network effects (reciprocity and transitivity) were controlled for. Peer influence processes accounted for changes in weapon carrying over time. Self-reported victimization decreased weapon carrying 1 year later. Peer-reported victimization increased the likelihood of weapon carrying, particularly for highly aggressive adolescents. Boys were more likely to carry weapons than girls, but the processes associated with weapon carrying did not differ for boys and girls. These findings revealed that, in this population-based sample, weapon carrying of best friends, as well as aggression, contributed to the proliferation of weapons in friendship networks, suggesting processes of peer contagion as well as individual vulnerability to weapon carrying. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  7. FEATURES ADMINISTRATIVE VIOLATIONS IN THE WEAPONS CIRCULATION SPHERE

    Directory of Open Access Journals (Sweden)

    Lyatsa A. KODZOKOVA

    2016-01-01

    Full Text Available Any offense in the area of arms trafficking is the increased danger. On the one hand, the guilty person through weapons reinforces the illegality or even facilitates the commission of their illegal actions, on the other hand, these activities cause significant harm to individuals and society. Offences related to illicit trafficking in arms (activity without the necessary licenses and permits, for the most part involve criminal responsibility (Article 222 -..225 of the Criminal Code, etc., but some violations in this area is not covered by criminlaw. In these cases, the violators shall apply administrative sanctions (for example, when sending weapons, the illicit manufacture of pneumatic weapons, etc.. Specificity of weapons is that it is endowed with certain peculiar features of quality, depending on which branch of law regulates its turnover. Currently, the legal regime of weapons is regulated by several branches of law (civil, administrative, military, criminal, etc., Each of which considers it based on the specifics of its subject and method, and has its own legal framework, regulating the circulation of arms.

  8. An Improved Algorithm of Grounding Grids Corrosion Diagnosis Based on Total Least Square Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-jiao; NIU Tao; WANG Sen

    2011-01-01

    A new model considering corrosion property for grounding grids diagnosis is proposed, which provides reference solutions of ambiguous branches. The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm. The improvement can weaken the influence of the model's error, which results from the differences between design paper and actual grid. Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account. Simulation results show the validity of this approach.

  9. Why Sexually Selected Weapons Are Not Ornaments.

    Science.gov (United States)

    McCullough, Erin L; Miller, Christine W; Emlen, Douglas J

    2016-10-01

    The elaboration and diversification of sexually selected weapons remain poorly understood. We argue that progress in this topic has been hindered by a strong bias in sexual selection research, and a tendency for weapons to be conflated with ornaments used in mate choice. Here, we outline how male-male competition and female choice are distinct mechanisms of sexual selection, and why weapons and ornaments are fundamentally different types of traits. We call for research on the factors contributing to weapon divergence, the potential for male-male competition to drive speciation, and the specific use of weapons in the context of direct fights versus displays. Given that weapons are first and foremost fighting structures, biomechanical approaches are an especially promising direction for understanding weapon design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evaluation of Operational Effectiveness of Space-based Strike Weapon and Sensitivity Analysis%天基对地武器作战效能评估及其灵敏度分析

    Institute of Scientific and Technical Information of China (English)

    周鼎; 张安; 常欢

    2016-01-01

    通过分析影响天基对地武器作战效能的主要因素,建立天基对地武器作战效能评估指标体系,对天基对地武器进行作战效能评估,从而为天基对地武器总体设计提供参考和建议。针对显著影响天基对地武器作战效能的因素,从参数灵敏度分析的角度进行研究。针对传统作战效能灵敏度分析方法存在的缺陷,提出了基于遗传算法优化的区间灵敏度分析方法,通过仿真计算获得各个参数对天基对地武器作战效能的灵敏度,并对仿真数据进行了统计学分析。结果表明:参数TNT当量和命中精度的灵敏度较大,基础隐蔽效能指数、体积和形状的灵敏度次之,而雷达反射截面积的灵敏度较小,基于遗传算法的区间灵敏度分析方法显著提高了灵敏度分析的精度。%Abstar ct:The main factors affecting the operational effectiveness of space-based strike weapon were analyzed ,and the evaluation system of operational effectiveness was established , and the evaluation was carried out in order to offer reference for overall design of space-based strike weapon .The factors significantly affecting the operational effectiveness of space-based strike weapon was analyzed through sensitivity analysis .Aiming at the shortcomings of traditional sensitivity analysis methods , the interval mathematics sensitivity analysis method based on Genetic Algorithms was proposed .The sensitivity was obtained through simulation ,and the result was analyzed by statistical analysis .The result shows that the sensitivity of TNT equivalent and hit precision is greater .The sensitivity of hidden index and volume and shape is second ,and the sensitivity of radar cross section is small .The interval sensitivity analysis method based on genetic algorithm greatly improves the accuracy of sensitivity analysis .

  11. A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling where...... the demand can be highly irregular and specified on time intervals as short as five minutes. Ground handling operations are subject to a high degree of cooperation and specialization that require workers with different qualifications to be planned together. Different labor regulations or organizational rules...... can apply to different ground handling operations, so the rules and restrictions can be numerous and vary significantly. This is modeled using flexible volume constraints that limit the creation of certain shifts. We present a fast heuristic for the heterogeneous shift design problem based on dynamic...

  12. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    Science.gov (United States)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  13. Protection Measures for Buildings Based on Coordinating Action Theory of Ground, Foundation and Structure

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of curvature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is advisable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of "angle of break of building" is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.

  14. Ground truth delineation for medical image segmentation based on Local Consistency and Distribution Map analysis.

    Science.gov (United States)

    Cheng, Irene; Sun, Xinyao; Alsufyani, Noura; Xiong, Zhihui; Major, Paul; Basu, Anup

    2015-01-01

    Computer-aided detection (CAD) systems are being increasingly deployed for medical applications in recent years with the goal to speed up tedious tasks and improve precision. Among others, segmentation is an important component in CAD systems as a preprocessing step to help recognize patterns in medical images. In order to assess the accuracy of a CAD segmentation algorithm, comparison with ground truth data is necessary. To-date, ground truth delineation relies mainly on contours that are either manually defined by clinical experts or automatically generated by software. In this paper, we propose a systematic ground truth delineation method based on a Local Consistency Set Analysis approach, which can be used to establish an accurate ground truth representation, or if ground truth is available, to assess the accuracy of a CAD generated segmentation algorithm. We validate our computational model using medical data. Experimental results demonstrate the robustness of our approach. In contrast to current methods, our model also provides consistency information at distributed boundary pixel level, and thus is invariant to global compensation error.

  15. Cardiac fibrillation risk of Taser weapons.

    Science.gov (United States)

    Leitgeb, Norbert

    2014-06-01

    The debate on potential health hazards associated with delivering electric discharges to incapacitated subjects, in particular on whether electric discharge weapons are lethal, less lethal or non-lethal, is still controversial. The cardiac fibrillation risks of Taser weapons X26 and X3 have been investigated by measuring the delivered high-tension pulses in dependence on load impedance. Excitation thresholds and sinus-to-Taser conversion factors have been determined by numerical modeling of endocardial, myocardial, and epicardial cells. Detailed quantitative assessment of cardiac electric exposure has been performed by numerical simulation at the normal-weighted anatomical model NORMAN. The impact of anatomical variation has been quantified at an overweight model (Visible Man), both with a spatial resolution of 2 × 2 × 2 mm voxels. Spacing and location of dart electrodes were systematically varied and the worst-case position determined. Based on volume-weighted cardiac exposure assessment, the fibrillation probability of the worst-case hit was determined to 30% (Taser X26) and 9% (Taser X3). The overall risk assessment of Taser application accounting for realistic spatial hit distributions was derived from training sessions of police officers under realistic scenarios and by accounting for the influence of body (over-)weight as well as gender. The analysis of the results showed that the overall fibrillation risk of Taser use is not negligible. It is higher at Taser X26 than at Taser X3 and amounts to about 1% for Europeans with an about 20% higher risk for Asians. Results demonstrate that enhancement as well as further reduction of fibrillation risk depends on responsible use or abuse of Taser weapons.

  16. Particle production during inflation and gravitational waves detectable by ground-based interferometers

    OpenAIRE

    Cook, Jessica L.; Sorbo, Lorenzo

    2011-01-01

    Inflation typically predicts a quasi scale-invariant spectrum of gravitational waves. In models of slow-roll inflation, the amplitude of such a background is too small to allow direct detection without a dedicated space-based experiment such as the proposed BBO or DECIGO. In this paper we note that particle production during inflation can generate a feature in the spectrum of primordial gravitational waves. We discuss the possibility that such a feature might be detected by ground-based laser...

  17. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  18. 基于TRL武器装备研制项目定价分析%Analysis on TRL-Based in Field of Weapon Equipment Price

    Institute of Scientific and Technical Information of China (English)

    李思; 李孟军

    2011-01-01

    复杂的国际环境促使军事技术飞速发展,军品需求结构发生了根本性变化,高新技术武器装备的研制成为提高国防实力的重要手段,风险成为技术研发的主要障碍。该文以技术成熟度为衡量标准,对费用总预算进行调节,同时考虑风险共担的市场公平性原则,建立有效的激励机制,对武器装备研制项目进行定价分析,实现军事装备的研制过程中直接、全面的监督和控制。%Complex international environment impels the rapid development of millitary technology, and millitary needs structure has changed fundamentally. Development of high tech weapons and equipment becomes an important means to enhance national defense capabilities, while risks turn into a major obstacle to technology research and development. The article adjusts the total budget cost by the measure of TRL, considering the market risk-sharing principle of fairness, modeling an effect incentive mechanism, analysizing weapon equipment pricing, to implement a direct and comprehensive supervision and control during the reaserch and development of millitary equipment.

  19. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Institute of Scientific and Technical Information of China (English)

    Zhou Yanguo; Sun Zhengbo; Chen Jie; Chen Yunmin; Chen Renpeng

    2017-01-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice.In this paper,a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (Vs)-void ratio (e) of sandy soils,and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available.The detailed procedures of pre-and post-improvement liquefaction evaluations and stone column design are given.According to this approach,the required level of ground improvement will be met once the target Vs of soil is raised high enough (i.e.,no less than the critical velocity) to resist the given earthquake loading according to the CRR-Vs relationship,and then this requirement is transferred to the control of target void ratio (i.e.,the critical e) according to the Vs-e relationship.As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature,specific considerations of the densification mechanism and effect are given,and the effects of drainage and reinforcement of stone columns are also discussed.A case study of a thermal power plant in Indonesia is introduced,where the effectiveness of stone column improved ground was evaluated by the proposed Vs-based method and compared with the SPT-based evaluation.This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  20. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  1. Key Ground-Based and Space-Based Assets to Disentangle Magnetic Field Sources in the Earth's Environment

    Science.gov (United States)

    Chulliat, A.; Matzka, J.; Masson, A.; Milan, S. E.

    2016-10-01

    The magnetic field measured on the ground or in space is the addition of several sources: from flows within the Earth's core to electric currents in distant regions of the magnetosphere. Properly separating and characterizing these sources requires appropriate observations, both ground-based and space-based. In the present paper, we review the existing observational infrastructure, from magnetic observatories and magnetometer arrays on the ground to satellites in low-Earth (Swarm) and highly elliptical (Cluster) orbits. We also review the capability of SuperDARN to provide polar ionospheric convection patterns supporting magnetic observations. The past two decades have been marked by exciting new developments in all observation types. We review these developments, focusing on how they complement each other and how they have led or could lead in the near future to improved separation and modeling of the geomagnetic sources.

  2. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  3. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  4. Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection

    CERN Document Server

    Defrère, D; Foresto, V Coudé du; Danchi, W C; Hartog, R den

    2008-01-01

    Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrumen...

  5. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  6. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  7. DEM extraction and its accuracy analysis with ground-based SAR interferometry

    Science.gov (United States)

    Dong, J.; Yue, J. P.; Li, L. H.

    2014-03-01

    Two altimetry models extracting DEM (Digital Elevation Model) with the GBSAR (Ground-Based Synthetic Aperture Radar) technology are studied and their accuracies are analyzed in detail. The approximate and improved altimetry models of GBSAR were derived from the spaceborne radar altimetry based on the principles of the GBSAR technology. The error caused by the parallel ray approximation in the approximate model was analyzed quantitatively, and the results show that the errors cannot be ignored for the ground-based radar system. For the improved altimetry model, the elevation error expression can be acquired by simulating and analyzing the error propagation coefficients of baseline length, wavelength, differential phase and range distance in the mathematical model. By analyzing the elevation error with the baseline and range distance, the results show that the improved altimetry model is suitable for high-precision DEM and the accuracy can be improved by adjusting baseline and shortening slant distance.

  8. Empirically Grounded Agent-Based Models of Innovation Diffusion: A Critical Review

    CERN Document Server

    Zhang, Haifeng

    2016-01-01

    Innovation diffusion has been studied extensively in a variety of disciplines, including sociology, economics, marketing, ecology, and computer science. Traditional literature on innovation diffusion has been dominated by models of aggregate behavior and trends. However, the agent-based modeling (ABM) paradigm is gaining popularity as it captures agent heterogeneity and enables fine-grained modeling of interactions mediated by social and geographic networks. While most ABM work on innovation diffusion is theoretical, empirically grounded models are increasingly important, particularly in guiding policy decisions. We present a critical review of empirically grounded agent-based models of innovation diffusion, developing a categorization of this research based on types of agent models as well as applications. By connecting the modeling methodologies in the fields of information and innovation diffusion, we suggest that the maximum likelihood estimation framework widely used in the former is a promising paradigm...

  9. History of Laser Weapon Research

    Science.gov (United States)

    2012-01-01

    surgery/medicine, hair re- moval, presentation pointers, law enforcement, ranging and sighting devices, welding applications, and much more. Using...other laser technology develop- ments. The first chemical laser, hydrogen fluoride ( HF ), was built in 1965, producing 1 kW. It was then that DoD became...energy laser (HEL) weapons. In industry, the more powerful CO2 lasers are used for weld - ing, drilling, and cutting. There are many different types

  10. Deterrence and Cyber-Weapons

    Science.gov (United States)

    2013-03-01

    67, no. 4 (2012): 41. 4 Scott Shackelford , “Estonia Three Years Later,” Journal of Internet Law 8, no. 13 (2010): 25. 3 weapons were employed...effects of 134 Scott Shackelford , “From Nuclear War to Net War: Analogizing Cyber-Attacks in...International Law,” (unpublished paper, Stanford University), 5-6. 135 Shackelford , unpublished paper, 76. 136 Ibid., 73. 137 Mary Ellen O’Connell, “Cyber

  11. A novel intelligent adaptive control of laser-based ground thermal test

    Directory of Open Access Journals (Sweden)

    Gan Zhengtao

    2016-08-01

    Full Text Available Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance. The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID controller and the conventional PID type fuzzy (F-PID controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  12. A novel intelligent adaptive control of laser-based ground thermal test

    Institute of Scientific and Technical Information of China (English)

    Gan Zhengtao; Yu Gang; Li Shaoxia; He Xiuli; Chen Ru; Zheng Caiyun; Ning Weijian

    2016-01-01

    Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the pro-posed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  13. Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; ZHANG Zhiqiang; YU Danru; YANG Hu; ZHAO Chonghui; ZHONG Lingzhi

    2012-01-01

    A prototype space-based cloud radar has been developed and was installed on an airplane to observe a precipitation system over Tianjin,China in July 2010.Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths,spatial resolutions and platform radars is presented.The reflectivity biases,correlation coefficients and standard deviations between the radars are analyzed.The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution.The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB,and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity,but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter.The measured reflectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar),and 13.7 dB stronger than that by the ground-based cloud radar.The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar.This study could provide a method for the quantitative examination of the observation ability for space-based radars.

  14. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  15. The comparison between a ground based and a space based probabilistic landslide susceptibility assessment

    Science.gov (United States)

    Reichenbach, P.; Mondini, A.; Guzzetti, F.; Rossi, M.; Ardizzone, F.; Cardinali, M.

    2009-04-01

    , thematic maps obtained processing satellite data can be an effective alternative to maps prepared using more traditional, ground based methods.

  16. Ground Motion Prediction Trends For Eastern North America Based on the Next Generation Attenuation East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2010-12-01

    A five-year Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), has begun at the Pacific Earthquake Engineering Research (PEER) Center funded by the Nuclear Regulatory Commission (NRC), the U.S. Geological Survey (USGS), the Electric Power Research Institute (EPRI), and the Department of Energy (DOE). The initial effort focused on database design and collection of appropriate M>4 ENA broadband and accelerograph records to populate the database. Ongoing work has focused on adding records from smaller ENA earthquakes and from other SCRs such as Europe, Australia, and India. Currently, over 6500 horizontal and vertical component records from 60 ENA earthquakes have been collected and prepared (instrument response removed, filtering to acceptable-signal band, determining peak and spectral parameter values, quality assurance, etc.) for the database. Geologic Survey of Canada (GSC) strong motion recordings, previously not available, have also been added to the NGA East database. The additional earthquakes increase the number of ground motion recordings in the 10 - 100 km range, particularly from the 2008 M5.2 Mt. Carmel, IL event, and the 2005 M4.7 Riviere du Loup and 2010 M5.0 Val des Bois earthquakes in Quebec, Canada. The goal is to complete the ENA database and make it available in 2011 followed by a SCR database in 2012. Comparisons of ground motion observations from four recent M5 ENA earthquakes with current ENA ground motion prediction equations (GMPEs) suggest that current GMPEs, as a group, reasonably agree with M5 observations at short periods, particularly at distances less than 200 km. However, at one second, current GMPEs over predict M5 ground motion observations. The 2001 M7.6 Bhuj, India, earthquake provides some constraint at large magnitudes, as geology and regional attenuation is analogous to ENA. Cramer and Kumar, 2003, have

  17. Flow Characteristics of Tidewater Glaciers in Greenland and Alaska using Ground-Based LiDAR

    Science.gov (United States)

    Finnegan, D. C.; Stearns, L. A.; Hamilton, G. S.; O'Neel, S.

    2010-12-01

    LiDAR scanning systems have been employed to characterize and quantify multi-temporal glacier and ice sheet changes for nearly three decades. Until recently, LiDAR scanning systems were limited to airborne and space-based platforms which come at a significant cost to deploy and are limited in spatial and temporal sampling capabilities necessary to compare with in-situ field measurements. Portable ground-based LiDAR scanning systems are now being used as a glaciological tool. We discuss research efforts to employ ground-based near-infrared LiDAR systems at two differing tidewater glacier systems in the spring of 2009; Helheim Glacier in southeast Greenland and Columbia Glacier in southeast Alaska. Preliminary results allow us to characterize short term displacement rates and detailed observations of calving processes. These results highlight the operational limitations and capabilities of commercially available LiDAR systems, and allow us to identify optimal operating characteristics for monitoring small to large-scale tidewater glaciers in near real-time. Furthermore, by identifying the operational limitations of these sensors it allows for optimal design characteristics of new sensors necessary to meet ground-based calibration and validation requirements of ongoing scientific missions.

  18. Acquiring Affordable Weapons Systems.

    Science.gov (United States)

    1977-05-01

    a greater emphasis on O&S costs during system development may result in somewhat increased development, acquisition and/or produccion costs. This...assumed levels of manpower pools fur other functions, and where manual backup procedures must supplant automated operations when equipment casualties...identified, 25 and the final CIS was to be computer based although inputs to the system could either be manually generated or provided on automatic

  19. Entry Dispersion Analysis for the Hayabusa Spacecraft using Ground Based Optical Observation

    CERN Document Server

    Yamaguchi, T; Yagi, M; Tholen, D J

    2011-01-01

    Hayabusa asteroid explorer successfully released the sample capsule to Australia on June 13, 2010. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper investigates the reentry dispersion using ground based optical observation as a backup observation for radiometric observation. Several scenarios are calculated and compared for the reentry phase of the Hayabusa to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluate the landing dispersion of the Hayabusa only with the optical observation.

  20. Ground-based walking training improves quality of life and exercise capacity in COPD.

    Science.gov (United States)

    Wootton, Sally L; Ng, L W Cindy; McKeough, Zoe J; Jenkins, Sue; Hill, Kylie; Eastwood, Peter R; Hillman, David R; Cecins, Nola; Spencer, Lissa M; Jenkins, Christine; Alison, Jennifer A

    2014-10-01

    This study was designed to determine the effect of ground-based walking training on health-related quality of life and exercise capacity in people with chronic obstructive pulmonary disease (COPD). People with COPD were randomised to either a walking group that received supervised, ground-based walking training two to three times a week for 8-10 weeks, or a control group that received usual medical care and did not participate in exercise training. 130 out of 143 participants (mean±sd age 69±8 years, forced expiratory volume in 1 s 43±15% predicted) completed the study. Compared to the control group, the walking group demonstrated greater improvements in the St George's Respiratory Questionnaire total score (mean difference -6 points (95% CI -10- -2), pimproves quality of life and endurance exercise capacity in people with COPD.

  1. Coherent receiving efficiency in satellite-ground coherent laser communication system based on analysis of polarization

    Science.gov (United States)

    Hao, Shiqi; Zhang, Dai; Zhao, Qingsong; Wang, Lei; Zhao, Qi

    2017-06-01

    Aimed at analyzing the coherent receiving efficiency of a satellite-ground coherent laser communication system, polarization state of the received light is analyzed. We choose the circularly polarized, partially coherent laser as transmitted light source. The analysis process includes 3 parts. Firstly, an theoretical model to analyze received light's polarization state is constructed based on Gaussian-Schell model (GSM) and cross spectral density function matrix. Then, analytic formulas to calculate coherent receiving efficiency are derived in which both initial ellipticity modification and deflection angle between polarization axes of the received light and the intrinsic light are considered. At last, numerical simulations are operated based on our study. The research findings investigate variations of polarization state and obtain analytic formulas to calculate the coherent receiving efficiency. Our study has theoretical guiding significances in construction and optimization of satellite-ground coherent laser communication system.

  2. Techniques to extend the reach of ground based gravitational wave detectors

    Science.gov (United States)

    Dwyer, Sheila

    2016-03-01

    While the current generation of advanced ground based detectors will open the gravitational wave universe to observation, ground based interferometry has the potential to extend the reach of these observatories to high redshifts. Several techniques have the potential to improve the advanced detectors beyond design sensitivity, including the use of squeezed light, upgraded suspensions, and possibly new optical coatings, new test mass materials, and cryogenic suspensions. To improve the sensitivity by more than a factor of 10 compared to advanced detectors new, longer facilities will be needed. Future observatories capable of hosting interferometers 10s of kilometers long have the potential to extend the reach of gravitational wave astronomy to cosmological distances, enabling detection of binary inspirals from throughout the history of star formation.

  3. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  4. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  5. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  6. Single Phase-to-Ground Fault Line Identification and Section Location Method for Non-Effectively Grounded Distribution Systems Based on Signal Injection

    Institute of Scientific and Technical Information of China (English)

    PAN Zhencun; WANG Chengshan; CONG Wei; ZHANG Fan

    2008-01-01

    A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in thisi oaper. A special diagnostic signal current is injected into the fault distribution system, and then it is de- tected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section. The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.

  7. Seismic Response of Base-Isolated Structures under Multi-component Ground Motion Excitation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square response of the system is obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored.

  8. 基于博弈网的武器装备论证多方案分析与评估方法%Analysis & Evaluation Method of Weapon Demonstration Alternatives Based on Games Network

    Institute of Scientific and Technical Information of China (English)

    罗小明; 姚宏林; 刘一

    2013-01-01

    博弈网模型是对超博弈问题进行描述的图模型.基于博弈网的多方案分析方法引入了不确定性和有限理性的处理机制,将武器装备论证多方案生成和评估过程抽象为某个局中人作为决策者的单方博弈网的建立、修正和求解过程.分析了武器装备论证超博弈问题的基本特征,提出了利用博弈网进行超博弈问题建模的基本流程,建立了基于博弈网的武器装备论证多方案分析与评估模型,给出了其综合均衡策略求解、优化可行策略集确定以及优化策略风险评估方法.%Games network model is a graph model which is used to describe super games problem. Indeterminacy and limited rationality disposal mechanism is introduced in analysis of alternatives method based on games network, the analysis and evaluation process of weapon demonstration alternatives are described for someone of the players, who as decision maker, construct, correct and resolve one-way of game network. In this paper, essential character of super games problem is analyzed, essential process of super games problem model is put forward utilizing games network, and alternatives analysis and evaluation model of weapon demonstration based on network of games is constituted. Integrated equilibrium strategy, optimization feasible tactics sets determination and optimization tactics risk assessment method are proposed.

  9. CoRoT and asteroseismology. Preparatory work and simultaneous ground-based monitoring

    CERN Document Server

    Poretti, Ennio; Uytterhoeven, Katrien; Cutispoto, Giuseppe; Distefano, Elisa; Romano, Paolo

    2007-01-01

    The successful launch of the CoRoT (COnvection, ROtation and planetary Transits) satellite opens a new era in asteroseismology. The space photometry is complemented by high-resolution spectroscopy and multicolour photometry from ground, to disclose the pulsational content of the asteroseismic targets in the most complete way. Some preliminary results obtained with both types of data are presented. The paper is based on observations collected at S. Pedro Martir, Serra La Nave, La Silla, and Telescopio Nazionale Galileo Observatories.

  10. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6...

  11. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...11 Track to Budget 17 Cost and Funding 18 Low Rate Initial Production 23 Foreign Military Sales 24 Nuclear Costs 24 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition

  12. A Ground-Based Validation System of Teleoperation for a Space Robot

    OpenAIRE

    Xueqian Wang; Houde Liu; Wenfu Xu; Bin Liang; Yingchun Zhang

    2012-01-01

    Teleoperation of space robots is very important for future on‐orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground‐based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and ima...

  13. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    Science.gov (United States)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  14. The Gaia Era: synergy between space missions and ground based surveys

    CERN Document Server

    Vallenari, A

    2008-01-01

    The Gaia mission is expected to provide highly accurate astrometric, photometric, and spectroscopic measurements for about $10^9$ objects. Automated classification of detected sources is a key part of the data processing. Here a few aspects of the Gaia classification process are presented. Information from other surveys at longer wavelengths, and from follow-up ground based observations will be complementary to Gaia data especially at faint magnitudes, and will offer a great opportunity to understand our Galaxy.

  15. 36 CFR 2.4 - Weapons, traps and nets.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  16. A proposal for the classification of biological weapons sensu lato.

    Science.gov (United States)

    Rozsa, Lajos

    2014-12-01

    Due to historical and legislation reasons, the category of bioweapons is rather poorly defined. Authors often disagree on involving or excluding agents like hormones, psychochemicals, certain plants and animals (such as weeds or pests) or synthetic organisms. Applying a wide definition apparently threatens by eroding the regime of international legislation, while narrow definitions abandon several important issues. Therefore, I propose a category of 'biological weapons sensu lato' (BWsl) that is defined here as any tool of human aggression whose acting principle is based on disciplines of biology including particularly microbiology, epidemiology, medical biology, physiology, psychology, pharmacology and ecology, but excluding those based on inorganic agents. Synthetically produced equivalents (not necessarily exact copies) and mock weapons are also included. This definition does not involve any claim to subject all these weapons to international legislation but serves a purely scholarly purpose. BWsl may be properly categorized on the base of the magnitude of the human population potentially targeted (4 levels: individuals, towns, countries, global) and the biological nature of the weapons' intended effects (4 levels: agricultural-ecological agents, and non-pathogenic, pathogenic, or lethal agents against humans).

  17. First-generation Science Cases for Ground-based Terahertz Telescopes

    CERN Document Server

    Hirashita, Hiroyuki; Matsushita, Satoki; Takakuwa, Shigehisa; Nakamura, Masanori; Asada, Keiichi; Liu, Hauyu Baobab; Urata, Yuji; Wang, Ming-Jye; Wang, Wei-Hao; Takahashi, Satoko; Tang, Ya-Wen; Chang, Hsian-Hong; Huang, Kuiyun; Morata, Oscar; Otsuka, Masaaki; Lin, Kai-Yang; Tsai, An-Li; Lin, Yen-Ting; Srinivasan, Sundar; Martin-Cocher, Pierre; Pu, Hung-Yi; Kemper, Francisca; Patel, Nimesh; Grimes, Paul; Huang, Yau-De; Han, Chih-Chiang; Huang, Yen-Ru; Nishioka, Hiroaki; Lin, Lupin Chun-Che; Zhang, Qizhou; Keto, Eric; Burgos, Roberto; Chen, Ming-Tang; Inoue, Makoto; Ho, Paul T P

    2015-01-01

    Ground-based observations at terahertz (THz) frequencies are a newly explorable area of astronomy for the next ten years. We discuss science cases for a first-generation 10-m class THz telescope, focusing on the Greenland Telescope as an example of such a facility. We propose science cases and provide quantitative estimates for each case. The largest advantage of ground-based THz telescopes is their higher angular resolution (~ 4 arcsec for a 10-m dish), as compared to space or airborne THz telescopes. Thus, high-resolution mapping is an important scientific argument. In particular, we can isolate zones of interest for Galactic and extragalactic star-forming regions. The THz windows are suitable for observations of high-excitation CO lines and [N II] 205 um lines, which are scientifically relevant tracers of star formation and stellar feedback. Those lines are the brightest lines in the THz windows, so that they are suitable for the initiation of ground-based THz observations. THz polarization of star-forming...

  18. Interactive dynamic three-dimensional scene for the ground-based three-dimensional display

    Science.gov (United States)

    Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.

  19. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  20. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    Science.gov (United States)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  1. Kepler and Ground-based Transits of the Exo-Neptune HAT-P-11b

    CERN Document Server

    Deming, Drake; Jackson, Brian; Peterson, Steven W; Agol, Eric; Knutson, Heather A; Jennings, Donald E; Haase, Flynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B-band) and near-IR (J-band). Both the planet and host star are smaller than previously believed; our analysis yields Rp=4.31 +/-0.06 Earth-radii, and Rs = 0.683 +/-0.009 solar radii, both about 3-sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler tr...

  2. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    Science.gov (United States)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation team, Granada occultation team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  3. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    Science.gov (United States)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  4. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers

    CERN Document Server

    Romano, Joseph D; Cornish, Neil J; Gair, Jonathan; Mingarelli, Chiara M F; van Haasteren, Rutger

    2015-01-01

    We extend the formalisms developed in Gair et al. and Cornish and van Haasteren to create maps of gravitational-wave backgrounds using a network of ground-based laser interferometers. We show that in contrast to pulsar timing arrays, which are insensitive to half of the gravitational-wave sky (the curl modes), a network of ground-based interferometers is sensitive to both the gradient and curl components of the background. The spatial separation of a network of interferometers, or of a single interferometer at different times during its rotational and orbital motion around the Sun, allows for recovery of both components. We derive expressions for the response functions of a laser interferometer in the small-antenna limit, and use these expressions to calculate the overlap reduction function for a pair of interferometers. We also construct maximum-likelihood estimates of the + and x-polarization modes of the gravitational-wave sky in terms of the response matrix for a network of ground-based interferometers, e...

  5. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    Science.gov (United States)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  6. Optimization of Aimpoints for Coordinate Seeking Weapons

    Science.gov (United States)

    2015-09-01

    process. The program works by first taking in the number of weapons used and arranging them in a fixed uniform spacing on a circle centered on the...MATLAB program is used as the coding tool for the development of this algorithm and the optimization process. The program works by first taking in the...number of weapons used and arranging them in a fixed uniform spacing on a circle centered on the assumed target location. Then, the weapon

  7. New weapons and the arms race

    Energy Technology Data Exchange (ETDEWEB)

    Tsipis, K.

    1983-01-01

    In speaking about technologies that could further animate the weapons competition between the US and the USSR, it is useful to distinguish between technologies that have already been incorporated into specific weapons systems, and new technologies that are of a generic nature, can be used in a variety of applications, and can best be described by the tasks that they can perform rather than any specific weapons' application. The author discusses these in reverse order.

  8. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    Science.gov (United States)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; Kauffman, Jobriath; Prisley, Stephen

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  9. A different kind of weapon focus: simulated training with ballistic weapons reduces change blindness

    OpenAIRE

    Taylor, J. Eric T.; Witt, Jessica K.; Pratt, Jay

    2017-01-01

    Attentional allocation is flexibly altered by action-related priorities. Given that tools – and specifically weapons – can affect attentional allocation, we asked whether training with a weapon or holding a weapon during search would affect change detection. In three experiments, participants searched for changes to agents, shootable objects, or environments in the popular flicker paradigm. Participants trained with a simulated weapon or watched a video from the same training perspective and ...

  10. 76 FR 6087 - Draft Weapons Safety Assessment on the Use of Enhanced Weapons; Notice of Availability and...

    Science.gov (United States)

    2011-02-03

    ... Draft Weapons Safety Assessment on the Use of Enhanced Weapons; Notice of Availability and Request for... ``Weapons Safety Assessment'' (WSA). This guidance would be used by licensees and certificate holders applying to the NRC to obtain enhanced weapons under the NRC's proposed rule titled ``Enhanced Weapons...

  11. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  12. Adaptive method for real-time gait phase detection based on ground contact forces.

    Science.gov (United States)

    Yu, Lie; Zheng, Jianbin; Wang, Yang; Song, Zhengge; Zhan, Enqi

    2015-01-01

    A novel method is presented to detect real-time gait phases based on ground contact forces (GCFs) measured by force sensitive resistors (FSRs). The traditional threshold method (TM) sets a threshold to divide the GCFs into on-ground and off-ground statuses. However, TM is neither an adaptive nor real-time method. The threshold setting is based on body weight or the maximum and minimum GCFs in the gait cycles, resulting in different thresholds needed for different walking conditions. Additionally, the maximum and minimum GCFs are only obtainable after data processing. Therefore, this paper proposes a proportion method (PM) that calculates the sums and proportions of GCFs wherein the GCFs are obtained from FSRs. A gait analysis is then implemented by the proposed gait phase detection algorithm (GPDA). Finally, the PM reliability is determined by comparing the detection results between PM and TM. Experimental results demonstrate that the proposed PM is highly reliable in all walking conditions. In addition, PM could be utilized to analyze gait phases in real time. Finally, PM exhibits strong adaptability to different walking conditions.

  13. Pc5 Oscillation Analysis by the Satellite and Ground-Based Data

    Institute of Scientific and Technical Information of China (English)

    A. Potapov; T. Polyushkina; T. L. Zhang; H. Zhao; A. Guglielmi; J. Kultima

    2005-01-01

    Large amplitude Pc5 event was observed in the space and on ground on August 3, 2001, about three hours after contact of the strong discontinuity in the solar wind with the magnetosphere according to data from ACE and Wind satellites. The Pc5 amplitude was as high as 15 nT in the tail of magnetosphere and about 5 nT at the ground based stations. In the magnetosphere Pc5 waves were observed by Cluster and Polar satellites, which occupied positions in the morning part of the near tail at the close field lines but were parted by distance of 11.5 Re, mainly along the x-axis of the GSM coordinate system. Both compressional and transverse components of the Pc5 wave activity were observed in the space, with the transverse component having the larger amplitude. Time delay between the Cluster and Polar satellites was about 8 minutes, which could be interpreted as a wave propagation from the geomagnetic tail to the Earth with the 150km/s group velocity.The ground-based Pc5 activity was analysed by using data from the Image magnetometer network. Doubtless demonstrations of a field line resonant structure were found in variations of amplitude and polarization with latitude. Finnish chain of search coil magnetometers observed modulated Pc1 emission simultaneously with the Pc5 wave train. A possibility of non-linear impact of Pc5 wave energy on the plasma and waves in the magnetosphere is discussed.

  14. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  15. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  16. Hail prevention by ground-based silver iodide generators: Results of historical and modern field projects

    Science.gov (United States)

    Dessens, J.; Sánchez, J. L.; Berthet, C.; Hermida, L.; Merino, A.

    2016-03-01

    The science of hail suppression by silver iodide (AgI) cloud seeding was developed during the second half of the 20th century in laboratory and tested in several research or operational projects using three delivery methods for the ice forming particles: ground generators, aircraft, and rockets. The randomization process for the seeding was often considered as the imperative method for a better evaluation but failed to give firm results, mostly because the projects did not last long enough considering the hazardous occurrence of severe hailfalls, and also probably due to the use of improper hail parameters. At the same time and until now, a continuous long-term research and operational field project (1952-2015) using ground generator networks has been conducted in France under the leadership of the Association Nationale d'Etude et de Lutte contre les Fléaux Atmosphériques (ANELFA), with a control initially based on annual insurance loss-to-risk ratios, then on hailpad data. More recently (2000-2009), a companion ground seeding project was developed in the north of Spain, with control mostly based on microphysical and hailpad data. The present paper, which focuses on hail suppression by ground seeding, reviews the production of the AgI nuclei, their dispersion and measurement in the atmosphere, as well as their observed or simulated effects in clouds. The paper summarizes the results of the main historical projects in Switzerland, Argentina, and North America, and finally concentrates on the current French and Spanish projects, with a review of already published results, complemented by new ones recently collected in Spain. The conclusion, at least for France and Spain, is that if ground seeding is performed starting 3 hours before the hail falls at the ground with a 10-km mesh AgI generator network located in the developing hailstorm areas, each generator burning about 9 g of AgI per hour, the hailfall energy of the most severe hail days is decreased by about 50%.

  17. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    Science.gov (United States)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  18. A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles

    Directory of Open Access Journals (Sweden)

    Chang-sheng Gao

    2016-01-01

    Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.

  19. Multiscale Recognition Algorithm for Eye Ground Texture Based on Fusion Threshold Equalization

    Directory of Open Access Journals (Sweden)

    Zhongsheng Qiu

    2014-09-01

    Full Text Available The eye ground texture is disturbed by non ideal imaging factor such as noise, it will affect the clinical diagnosis in practice, an improved multi scale retina eye ground texture recognition algorithm is proposed based on fusion area threshold. The nonlinear sampling multi-scale transform is used to analyze the geometric space coefficient of retinal vessels with multi direction and shift invariant features, the regional threshold filtering is integrated, it is used to suppress the effect of non-uniform blocks for texture recognition. The maximum likelihood local mean standard deviation analysis is used for texture parameters estimation and recognition. The noise reduced greatly, accurate identification of texture feature is obtained. Simulation results show that the algorithm can well characterize the retinal vascular texture, it has good performance in different texture feature recognition, the recognition accuracy is improved, and it has good robustness.

  20. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  1. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  2. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  3. Boost-Phase ballistic missile trajectory estimation with ground based radar

    Institute of Scientific and Technical Information of China (English)

    Tang Yuyan; Huang Peikang

    2006-01-01

    A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.

  4. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  5. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    Science.gov (United States)

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  6. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  7. Advanced ground-based gravitational-wave detectors' potential to detect generic deviations from general relativity

    CERN Document Server

    Narikawa, Tatsuya

    2016-01-01

    We discuss the potential of the advanced ground-based gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, to detect generic deviations of gravitational waveforms from the prediction of General Relativity. We use the parameterized post-Einsteinian formalism to characterize the deviations, and assess how much magnitude of the deviations are detectable by using an approximate decision scheme based on Bayesian statistics. We find that there exist detectable regions of the parameterized post-Einsteinian parameters by using a single gravitational wave event. The regions are not excluded by currently existing binary pulsar observations for the parameterized post-Einsteinian parameters at higher post-Newtonian order.

  8. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  9. Displacement response analysis of base-isolated buildings subjected to near-fault ground motions with velocity pulse

    Science.gov (United States)

    He, Qiumei; Li, Xiaojun; Yang, Yu; Liu, Aiwen; Li, Yaqi

    2016-04-01

    In order to study the influence of the velocity pulse to seismic displacement response of base-isolated buildings and the differences of the influent of the two types of near-fault ground motions with velocity pulse to seismic response of base-isolated buildings, the seismic responses are analyzed by three dimensional finite element models for three base-isolated buildings, 4 stories, 9 stories and 14 stories. In this study, comparative analyses were done for the seismic displacement responses of the base-isolated structures under 6 near-fault ground motion records with velocity pulse and no velocity pulse, in which, 6 artificial ground motion time histories with same elastic response spectrum as the 6 near-fault ground motion records are used as the ground motion with no velocity pulse. This study indicates that under the ground motions with velocity pulse the seismic displacement response of base-isolated buildings is significantly increased than the ground motions with no velocity pulse. To the median-low base-isolated buildings, the impact of forward directivity pulses is bigger than fling-step pulses. To the high base-isolated buildings, the impact of fling-step pulses is bigger than forward directivity pulses. The fling-step pulses lead to large displacement response in the lower stories. This work has been supported by the National Natural Science Foundation of China (Grant No.51408560)

  10. Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation

    Science.gov (United States)

    Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.

    2016-12-01

    We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on

  11. Impact of Advanced Avionics Technology on Ground Attack Weapon Systems.

    Science.gov (United States)

    1982-02-01

    alors qua l’obstacla qua V’on vaut datecter dans la precipitation a up temps de d~corr~lation plut~t de l’ordre de 30 ma. Un gain de traitenant de 8...comme de nuit, par brouillards divers et precipitations relativement importantes, conditions qui couvrent 99 % des cas d’emnloi. Rgf~rences : (1...to Direct Voice Input ( DVI ) with its counterpart, Synthetic Speech, helping to a lesser extent. These items are now considered in turn. AUTOMATION

  12. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  13. Proceedings of the Tungsten Workshop for Hard Target Weapons Program

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Hayden, H.W.; Davis, R.M.

    1995-06-01

    The purpose of this meeting was to review and exchange information and provide technical input for improving technologies relevant to the Hard Target Weapons Program. This workshop was attended by representatives from 17 organizations, including 4 Department of Defense (DoD) agencies, 8 industrial companies, and 5 laboratories within DOE. Hard targets are defined as reinforced underground structures that house enemy forces, weapon systems, and support equipment. DOE-ORO and Martin Marietta Energy Systems, Inc. (Energy Systems) have been involved in advanced materials research and development (R&D) for several DOE and DoD programs. These programs are conducted in close collaboration with Eglin AFB, Department of the Army`s Picatinny Arsenal, and other DoD agencies. As part of this ongoing collaboration, Eglin AFB and Oak Ridge National Laboratory planned and conducted this workshop to support the Hard Target Weapons Program. The objectives of this workshop were to (1) review and identify the technology base that exists (primarily due to anti-armor applications) and assess the applicability of this technology to the Hard Target Weapons Program requirements; (2) determine future directions to establish the W materials, processing, and manufacturing technologies suitable for use in fixed, hard target penetrators; and (3) identify and prioritize the potential areas for technical collaboration among the participants.

  14. The Russian biological weapons program: vanished or disappeared?

    Science.gov (United States)

    Shoham, Dany; Wolfson, Ze'ev

    2004-01-01

    The legacy and arsenal of biological weapons Russia inherited from USSR in 1991 became a lingering unsolved issue, in terms of a prime strategic arm that ought to be eliminated, advisably, in accordance with the Biological Weapons Convention Russia is committed to, and considering further undertakings and declarations made by the Russian regime. Indeed, that inheritance was created by USSR as a powerful, highly sophisticated component of utmost importance within the Soviet military paradigm, based on a wide spectrum of virulent, stabilized pathogens and toxins plus delivery systems. Moreover, remarkably advanced biotechnologies were thus applied to procure stockpiles of military-grade pathogens and toxins. Yet, an intriguing debate aroused with regard to the extent of the weaponized biological inventory accumulated by USSR, as well as the in effect attitude of Russia towards perpetuating or wiping out that inheritance. It turned out to form a far reaching and challenging complexity, both strategically and scientifically. The present study concentrates on the strategic as well as scientific spheres shaping that overall issue at large, attempting to thoroughly analyze it through an innovative methodology. One main conclusion thereby reached at is that the Russian military still poses a potential menance, in terms of both stockpiled, probably deployable biological weapons, and prevailing production capacities.

  15. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    Directory of Open Access Journals (Sweden)

    G. Bernhard

    2015-03-01

    Full Text Available The Dutch-Finnish Ozone Monitoring Instrument (OMI on board NASA's Aura spacecraft provides estimates of erythemal (sunburning ultraviolet (UV dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (eight vs. two years and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0–11%. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55%. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59%. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  16. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  17. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  18. Constellation design for earth observation based on the characteristics of the satellite ground track

    Science.gov (United States)

    Luo, Xin; Wang, Maocai; Dai, Guangming; Song, Zhiming

    2017-04-01

    This paper responds to the increasing need for Earth observation missions and deals with the design of Repeating Sun-Synchronous Constellations (RSSCs) which takes into consideration of constellations composed of one or more orbital planes. Based on the mature design approach of Repeating Sun-synchronous orbits, a novel technique to design RSSCs is presented, which takes the second gravitational zonal harmonic into consideration. In order to obtain regular cycles of observation of the Earth by a single satellite, the orbital relationships have to be satisfied firstly are illustrated. Then, by making full analyses of the characteristics of the satellite ground track, orbital parameters are properly calculated to make other satellites pass on the same or different ground track of the single satellite. Last, single-plane or multi-plane constellations are used to improve the repetitions of the observation and the ground resolution. RSSCs allow observing the same region once at the same local time in a solar day and several times at the different local time in a solar day. Therefore, this kind of constellations meets all requirements for the remote sensing applications, which need to observe the same region under the same or different visible conditions. Through various case studies, the calculation technique is successfully demonstrated.

  19. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing.

    Science.gov (United States)

    Xu, Jia; Huang, Zuzhen; Yan, Liang; Zhou, Xu; Zhang, Furu; Long, Teng

    2016-10-12

    For modern synthetic aperture radar (SAR), it has much more urgent demands on ground moving target indication (GMTI), which includes not only the point moving targets like cars, truck or tanks but also the distributed moving targets like river or ocean surfaces. Among the existing GMTI methods, displaced phase center antenna (DPCA) can effectively cancel the strong ground clutter and has been widely used. However, its detection performance is closely related to the target's signal-to-clutter ratio (SCR) as well as radial velocity, and it cannot effectively detect the weak large-sized river surfaces in strong ground clutter due to their low SCR caused by specular scattering. This paper proposes a novel method called relative residue of DPCA (RR-DPCA), which jointly utilizes the DPCA cancellation outputs and the multi-look images to improve the detection performance of weak river surfaces. Furthermore, based on the statistics analysis of the RR-DPCA outputs on the homogenous background, the cell average (CA) method can be well applied for subsequent constant false alarm rate (CFAR) detection. The proposed RR-DPCA method can well detect the point moving targets and distributed moving targets simultaneously. Finally, the results of both simulated and real data are provided to demonstrate the effectiveness of the proposed SAR/GMTI method.

  20. Function-based design process for an intelligent ground vehicle vision system

    Science.gov (United States)

    Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.

    2010-10-01

    An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.

  1. SPARCL: a high-altitude tethered balloon-based optical space-to-ground communication system

    Science.gov (United States)

    Badesha, Surjit S.

    2002-12-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has conducted a feasibility study to determine if a high altitude (20 km) tethered balloon-based space-to-ground optical communication system is a feasible concept. To support this effort, a detailed concept definition was developed and associated issues were identified and analyzed systematically. Of all the adverse atmospheric phenomena, cloud coverage was identified as the most prohibitive obstacle for a space-to-ground optical communication link. However, by placing a receiver on a balloon at a 20 km altitude, the proposed high altitude system avoids virtually all atmospheric effects. A practical notional scenario was developed (i.e. surveillance and/or reconnaissance of a regional conflict) involving end-to-end optical communication architecture to identify system elements, system level requirements, and to quantify realistic data rate requirements. Analysis of the proposed space-to-ground communication elements indicates that while significant development is required, the system is technically feasible and is a very cost effective 24/7solution.

  2. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing

    Directory of Open Access Journals (Sweden)

    Jia Xu

    2016-10-01

    Full Text Available For modern synthetic aperture radar (SAR, it has much more urgent demands on ground moving target indication (GMTI, which includes not only the point moving targets like cars, truck or tanks but also the distributed moving targets like river or ocean surfaces. Among the existing GMTI methods, displaced phase center antenna (DPCA can effectively cancel the strong ground clutter and has been widely used. However, its detection performance is closely related to the target’s signal-to-clutter ratio (SCR as well as radial velocity, and it cannot effectively detect the weak large-sized river surfaces in strong ground clutter due to their low SCR caused by specular scattering. This paper proposes a novel method called relative residue of DPCA (RR-DPCA, which jointly utilizes the DPCA cancellation outputs and the multi-look images to improve the detection performance of weak river surfaces. Furthermore, based on the statistics analysis of the RR-DPCA outputs on the homogenous background, the cell average (CA method can be well applied for subsequent constant false alarm rate (CFAR detection. The proposed RR-DPCA method can well detect the point moving targets and distributed moving targets simultaneously. Finally, the results of both simulated and real data are provided to demonstrate the effectiveness of the proposed SAR/GMTI method.

  3. [Myocardial infarction after conduction electrical weapon shock].

    Science.gov (United States)

    Ben Ahmed, H; Bouzouita, K; Selmi, K; Chelli, M; Mokaddem, A; Ben Ameur, Y; Boujnah, M R

    2013-04-01

    Controversy persists over the safety of conducted electrical weapons, which are increasingly used by law enforcement agencies around the world. We report a case of 33-year-old man who had an acute inferior myocardial infarction after he was shot in the chest with an electrical weapon. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. Color image fusion for concealed weapon detection

    NARCIS (Netherlands)

    Toet, A.

    2003-01-01

    Recent advances in passive and active imaging sensor technology offer the potential to detect weapons that are concealed underneath a person's clothing or carried along in bags. Although the concealed weapons can sometimes easily be detected, it can be difficult to perceive their context, due to the

  5. Nuclear weapons, nuclear effects, nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  6. Color image fusion for concealed weapon detection

    NARCIS (Netherlands)

    Toet, A.

    2003-01-01

    Recent advances in passive and active imaging sensor technology offer the potential to detect weapons that are concealed underneath a person's clothing or carried along in bags. Although the concealed weapons can sometimes easily be detected, it can be difficult to perceive their context, due to the

  7. Overview of surplus weapons plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, G.

    1996-05-01

    The safe disposition of surplus weapons useable plutonium is a very important and urgent task. While the functions of long term storage and disposition directly relate to the Department`s weapons program and the environmental management program, the focus of this effort is particularly national security and nonproliferation.

  8. Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data

    Science.gov (United States)

    Vijayakumar, K.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-06-01

    In this paper, we study aerosol characteristics over an urban station in Western India, during a dust event that occurred between 19 and 26 March 2012, with the help of ground-based and satellite measurements and model simulation data. The aerosol parameters are found to change significantly during dust events and they suggest dominance of coarse mode aerosols. The fine mode fraction, size distribution and single scattering albedo reveal that dust (natural) aerosols dominate the anthropogenic aerosols over the study region. Ground-based measurements show drastic reduction in visibility on the dust-laden day (22 March 2012). Additionally, HYSPLIT model and satellite daily data have been used to trace the source, path and spatial extent of dust storm events. Most of the dust aerosols, during the study period, travel from west-to-east pathway from source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO and synoptic meteorological parameters from ECMWF re-analysis data reveal a layer of thick dust extending from surface to an altitude of about 4 km, and decrease in temperature and increase in specific humidity, respectively. The aerosol radiative forcing calculations indicate more cooling at the surface and warming in the atmosphere during dust event. The results of satellite observations are found to have good consistency with ground-based air quality measurements. Synthesis of satellite data integrated with ground-based observations, supplemented by model analysis, is found to be a promising technique for improved understanding of dust storm phenomenon and its impact on regional climate.

  9. Childhood maltreatment and threats with weapons.

    Science.gov (United States)

    Casiano, Hygiea; Mota, Natalie; Afifi, Tracie O; Enns, Murray W; Sareen, Jitender

    2009-11-01

    The relationship between childhood maltreatment and future threats with weapons is unknown. We examined data from the nationally representative National Comorbidity Survey Replication (n = 5692) and conducted multiple logistic regression analyses to determine the association between childhood maltreatment and lifetime behavior of threatening others with a gun or other weapon. After adjusting for sociodemographic variables, physical abuse, sexual abuse, and witnessing domestic violence were significantly associated with threats made with a gun (adjusted odds ratios [AOR] ranging between 3.38 and 4.07) and other weapons (AOR ranging between 2.16 and 2.83). The greater the number of types of maltreatment experienced, the stronger the association with lifetime threats made to others with guns and any weapons. Over 94% of respondents who experienced maltreatment and made threats reported that the maltreatment occurred prior to threatening others with weapons. Prevention efforts that reduce exposure to maltreatment may reduce violent behavior in later life.

  10. Weapon Control System for Airborne Application.

    Directory of Open Access Journals (Sweden)

    M. Sankar Kishore

    2000-07-01

    Full Text Available The integrated fire' control system (IFCS plays an important role in the present-day fighter aircraft and helicopters. Wecapons, such as missiles (active/passive, rockets and guns may be present on thelfighter aircraft or helicopter .IFCS monitors the status of the weapons present on the vehicle and passes the information to pilot/co-pilot. Depending upon the health/availability of the weapons, IFCS selects/fires the weapons. An attempt has been made to bring out the details of one such IFCS. As a I stepping stone, smaller version is developed and same philosophy can be used for integrating ftlore and I more weapons. Here, emphasis has been made on design and development of weapon control unit which is the heart f IFCS, both in hardware and software. The system has been developed using a 486 DX2 processor, and an elaborate software has been developed in PL/M.

  11. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    Science.gov (United States)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  12. Automated Planning of Science Products Based on Nadir Overflights and Alerts for Onboard and Ground Processing

    Science.gov (United States)

    Chien, Steve A.; McLaren, David A.; Rabideau, Gregg R.; Mandl, Daniel; Hengemihle, Jerry

    2013-01-01

    A set of automated planning algorithms is the current operations baseline approach for the Intelligent Payload Module (IPM) of the proposed Hyper spectral Infrared Imager (HyspIRI) mission. For this operations concept, there are only local (e.g. non-depletable) operations constraints, such as real-time downlink and onboard memory, and the forward sweeping algorithm is optimal for determining which science products should be generated onboard and on ground based on geographical overflights, science priorities, alerts, requests, and onboard and ground processing constraints. This automated planning approach was developed for the HyspIRI IPM concept. The HyspIRI IPM is proposed to use an X-band Direct Broadcast (DB) capability that would enable data to be delivered to ground stations virtually as it is acquired. However, the HyspIRI VSWIR and TIR instruments will produce approximately 1 Gbps data, while the DB capability is 15 Mbps for a approx. =60X oversubscription. In order to address this mismatch, this innovation determines which data to downlink based on both the type of surface the spacecraft is overflying, and the onboard processing of data to detect events. For example, when the spacecraft is overflying Polar Regions, it might downlink a snow/ice product. Additionally, the onboard software will search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected, thereby reducing data volume. The planning system described above automatically generated the IPM mission plan based on requested products, the overflight regions, and available resources.

  13. Estimation of Antarctic ozone loss from Ground-based total column measurements

    Directory of Open Access Journals (Sweden)

    J. Kuttippurath

    2010-03-01

    Full Text Available The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy and are well reproduced by the model (Reprobus and SLIMCAT calculations.

    The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet.

    At southern mid-latitudes, a total ozone reduction of 40–50% is observed at the newly installed station Rio Gallegos and 25–35% at Kerguelen in October–November of 2008–2009 and 2005–2009 (except 2008 respectively, and of 10–20% at Macquarie Island in July–August of 2006–2009. This illustrates the significance of measurements at the edges of Antarctica.

  14. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    Science.gov (United States)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  15. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  16. Mesospheric minor species determinations from rocket and ground-based i.r. measurements

    Science.gov (United States)

    Ulwick, J. C.; Baker, K. D.; Baker, D. J.; Steed, A. J.; Pendleton, W. R.; Grossmann, K.; Brückelmann, H. G.

    As part of the MAP/WINE campaign the infrared hydroxyl airglow layer was investigated at Kiruna, Sweden, by simultaneous measurements with rocket probes of OH ≠ and O2( a1Δg) infrared emissions and concentrations of odd oxygen species (O and O 3). Coordinated measurements of OH ≠ and O2( a1Δg) zenith radiance and emission spectra and their time histories were made from the ground. The rocket-borne Λ = 1.55 μm radiometer ( ΔΛ ≊ 0.23 μm) provided volume emission rates for OH for both rocket ascent and descent, showing a peak near 87 km with a maximum of nearly 10 6 photons sec -1 cm -3. The atomic oxygen distribution showed a concentration of about 10 11 cm -3 between 88 and 100 km, dropping off sharply below 85 km. The ground-based radiometer at Λ = 1.56 μm, which had a similar filter bandpass to the rocket-borne instrument, yielded an equivalent of 130 kR for the total OH Δv = 2 sequence, which is consistent with the zenith-corrected rocket-based sequence radiance value of ≌ 110 kR. The rotational temperature of the OH night airglow obtained from the rotational structure of the OH M (3,1) band observed by the ground-based interferometer was about 195K at the time of the rocket measurement. Atomic oxygen concentrations were calculated from the OH profile and show agreement with the directly measured values. Atomic hydrogen concentrations of a few times 10 7 cm -3 near 85 km were inferred from the data set.

  17. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  18. Regional estimation of base recharge to ground water using water balance and a base-flow index.

    Science.gov (United States)

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2003-01-01

    Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.

  19. Weapon Involvement in the Victimization of Children.

    Science.gov (United States)

    Mitchell, Kimberly J; Hamby, Sherry L; Turner, Heather A; Shattuck, Anne; Jones, Lisa M

    2015-07-01

    To report the prevalence of weapons involved in the victimization of youth with particular emphasis on weapons with a "high lethality risk" and how such exposure fits into the broader victimization and life experiences of children and adolescents. Data were collected as part of the Second National Survey of Children's Exposure to Violence, a nationally representative telephone survey of youth ages 2 to 17 years and caregivers (N = 4114) conducted in 2011. Estimates from the Second National Survey of Children's Exposure to Violence indicate that almost 14 million youth, ages 2–17, in the United States have been exposed to violence involving a weapon in their lifetimes as witnesses or victims,or .1 in 5 children in this age group [corrected]. More than 2 million youth in the United States (1 in 33) have been directly assaulted in incidents where the high lethality risk weapons of guns and knives were used. Differences were noted between victimizations involving higher and lower lethality risk weapons as well as between any weapon involvement versus none. Poly-victims, youth with 7 or more victimization types, were particularly likely to experience victimization with any weapon, as well as victimization with a highly lethal weapon compared with nonpoly-victims. Findings add to the field's broadening conceptualization of youth victimization highlighting the potentially highly consequential risk factor of weapon exposure as a component of victimization experiences on the mental health of youth. Further work on improving gun safety practices and taking steps to reduce children's exposure to weapon-involved violence is warranted to reduce this problem. Copyright © 2015 by the American Academy of Pediatrics.

  20. Concealed weapons detection using electromagnetic resonances

    Science.gov (United States)

    Hunt, Allen R.; Hogg, R. Douglas; Foreman, William

    1998-12-01

    Concealed weapons pose a significant threat to both law enforcement and security agency personnel. The uncontrolled environments associated with peacekeeping and the move toward relaxation of concealed weapons laws here in the U.S. provide a strong motivation for developing weapons detection technologies which are noninvasive and can function noncooperatively. Existing weapons detection systems are primarily oriented to detecting metal and require the cooperation of the person being searched. The new generation of detectors under development that focuses primarily on imaging methods, faces problems associated with privacy issues. There remains a need for a weapons detector which is portable, detects weapons remotely, avoids the issues associated with privacy rights, can tell the difference between car keys and a knife, and is affordable enough that one can be issued to every peacekeeper and law enforcement officer. AKELA is developing a concealed weapons detector that uses wideband radar techniques to excite natural electromagnetic resonances that characterize the size, shape, and material composition of an object. Neural network processing is used to classify the difference between weapons and nuisance objects. We have constructed both time and frequency domain test systems and used them to gather experimental data on a variety of armed and unarmed individuals. These experiments have been performed in an environment similar to the operational environment. Preliminary results from these experiments show that it is possible to detect a weapon being carried by an individual from a distance of 10 to 15 feet, and to detect a weapon being concealed behind the back. The power required is about 100 milliwatts. A breadboard system is being fabricated and will be used by AKELA and our law enforcement partner to gather data in operationally realistic situations. While a laptop computer will control the breadboard system, the wideband radar electronics will fit in a box the

  1. Ground-based measurements of aerosol optical properties and radiative forcing in North China

    Institute of Scientific and Technical Information of China (English)

    Hongbin Chen; Xiangao Xia; Pucai Wang; Wenxing Zhang

    2007-01-01

    In order to gain an insight into the aerosol properties and their climatic effect over the continental source regions of China, it is of significance to carry out long-term ground-based measurements of aerosol optical properties and radiative forcing. A couple of temporary and permanent Aerosol Robotic Network (AERONET) sites and three comprehensive radiative sites were established in China as a result of international cooperation in recent years. Heavy aerosol loading and significant temporal and spatial variation over North China are revealed by the AERONET data.Aerosol-induced reductions in surface radiation budget are examined on the basis of collocated observations by sun photometers and pyranometers.

  2. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  3. Solar diameter, eclipses and transits: the importance of ground-based observations

    CERN Document Server

    Sigismondi, Costantino

    2012-01-01

    According to satellite measurements the difference between polar and equatorial radius does not exceed 10 milliarcsec. These measurements are differential, and the absolute value of the solar diameter is not precisely known to a level of accuracy needed for finding variations during years or decades. Moreover the lifetime of a satellite is limited, and its calibration is not stable. This shows the need to continue ground-based observations of the Sun exploiting in particular the methods less affected by atmospheric turbulence, as the planetary transits and the total and annular eclipses. The state of art, the advantages and the limits of these two methods are here considered.

  4. Asteroseismology of Solar-type stars with Kepler III. Ground-based Data

    CERN Document Server

    Molenda-Zakowicz, Joanna; Sousa, Sergio; Frasca, Antonio; Biazzo, Katia; Huber, Daniel; Ireland, Mike; Bedding, Tim; Stello, Dennis; Uytterhoeven, Katrien; Dreizler, Stefan; De Cat, Peter; Briquet, Maryline; Catanzaro, Giovanni; Karoff, Chistoffer; Frandsen, Soeren; Spezzi, Loredana; Catala, Claude

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than thousand objects which are the subject of an intensive study of the Kepler Asteroseismic Science Consortium Working Group 1 (KASC WG-1). The main goal of this coordinated research is the determination of the fundamental stellar atmospheric parameters, which are used for the computing of their asteroseismic models, as well as for the verification of the Kepler Input Catalogue (KIC).

  5. Integrated interpretation of helicopter and ground-based geophysical data recorded within the Okavango Delta, Botswana

    DEFF Research Database (Denmark)

    Podgorski, Joel E.; Green, Alan G.; Kalscheuer, Thomas

    2015-01-01

    ) data recorded across most of the delta, (ii) 2D models and images derived from ground-based electrical resistance tomographic, transient electromagnetic, and high resolution seismic reflection/refraction tomographic data acquired at four selected sites in western and north-central regions of the delta...... resistivities and very low to low P-wave velocities. Except for images of several buried abandoned river channels, it is non-reflective. The laterally extensive underlying unit of low resistivities, low P-wave velocity, and subhorizontal reflectors very likely contains saline-water-saturated sands and clays...... reflectivity. The interface between the POM unit and basement is a prominent seismic reflector....

  6. Hypergravity Facilities in the ESA Ground-Based Facility Program - Current Research Activities and Future Tasks

    Science.gov (United States)

    Frett, Timo; Petrat, Guido; W. A. van Loon, Jack J.; Hemmersbach, Ruth; Anken, Ralf

    2016-06-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article gives a short review about the background of Artificial Gravity with respect to hypergravity (including partial gravity) and provides information about actual ESA ground-based facilities for research on a variety of biosystems such as cells, plants, animals or, particularly, humans.

  7. Images of Neptune's ring arcs obtained by a ground-based telescope

    Science.gov (United States)

    Sicardy, B.; Roddier, F.; Roddier, C.; Perozzi, E.; Graves, J. E.; Guyon, O.; Northcott, M. J.

    1999-08-01

    Neptune has a collection of incomplete narrow rings, known as ring arcs, which should in isolation be destroyed by differential motion in a matter of months. Yet since first discovered by stellar occultations in 1984, they appear to have persisted, perhaps through a gravitational resonance effect involving the satellite Galatea. Here we report ground-based observations of the ring arcs, obtained using an adaptive optics system. Our data, and those obtained using the Hubble Space Telescope (reported in a companion paper), indicate that the ring arcs are near, but not within the resonance with Galatea, in contrast to what is predicted by some models.

  8. SCENARIO AND TARGET SIMULATION FOR A GROUND BASED MULTIFUNCTION PHASED ARRAY RADAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a scenario and target simulation which operates in non real-time to provide full closed-loop operation of the ground based multifunction phased array radar simulation system in support of ballistic missile defence experiments against countermeasure.By simulating the target scattering signature and dynamical signature,this scenario and target simulation provide re- alistic scenario source to evaluate the system performance of multifunction phased array radar,and the key algorithms verification and validation such as target tracking,multi-target imaging and target recognition.

  9. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  10. A Rule-Based Local Search Algorithm for General Shift Design Problems in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider a generalized version of the shift design problem where shifts are created to cover a multiskilled demand and fit the parameters of the workforce. We present a collection of constraints and objectives for the generalized shift design problem. A local search solution framework with mul...... with multiple neighborhoods and a loosely coupled rule engine based on simulated annealing is presented. Computational experiments on real-life data from various airport ground handling organization show the performance and flexibility of the proposed algorithm....

  11. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    Science.gov (United States)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  12. Height Compensation Using Ground Inclination Estimation in Inertial Sensor-Based Pedestrian Navigation

    Directory of Open Access Journals (Sweden)

    Sang Kyeong Park

    2011-08-01

    Full Text Available In an inertial sensor-based pedestrian navigation system, the position is estimated by double integrating external acceleration. A new algorithm is proposed to reduce z axis position (height error. When a foot is on the ground, a foot angle is estimated using accelerometer output. Using a foot angle, the inclination angle of a road is estimated. Using this road inclination angle, height difference of one walking step is estimated and this estimation is used to reduce height error. Through walking experiments on roads with different inclination angles, the usefulness of the proposed algorithm is verified.

  13. Planet Sensitivity from Combined Ground- and Space-based Microlensing Observations

    CERN Document Server

    Zhu, Wei; Beichman, Charles; Novati, Sebastiano Calchi; Carey, Sean; Gaudi, B Scott; Henderson, Calen B; Penny, Matthew; Shvartzvald, Yossi; Yee, Jennifer C; Udalski, A; Poleski, R; Skowron, J; Kozlowski, S; Mroz, P; Pietrukowicz, P; Pietrzynski, G; Szymanski, M K; Soszynski, I; Ulaczyk, K; Wyrzykowski, L; Abe, F; Barry, R K; Bennett, D P; Bhattacharya, A; Fukunaga, D; Inayama, K; Koshimoto, N; Namba, S; Sumi, T; Suzuki, D; Tristram, P J; Wakiyama, Y; Yonehara, A; Maoz, D; Kaspi, S; Friedmann, M

    2015-01-01

    To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet sensitivity and therefore probability to detect planets. The implications of our results to the ongoing and future space-based microlensing experiments to measure the Galactic distribution of planets are discussed.

  14. Ground-Based Gas-Liquid Flow Research in Microgravity Conditions: State of Knowledge

    Science.gov (United States)

    McQuillen, J.; Colin, C.; Fabre, J.

    1999-01-01

    During the last decade, ground-based microgravity facilities have been utilized in order to obtain predictions for spacecraft system designers and further the fundamental understanding of two-phase flow. Although flow regime, pressure drop and heat transfer coefficient data has been obtained for straight tubes and a limited number of fittings, measurements of the void fraction, film thickness, wall shear stress, local velocity and void information are also required in order to develop general mechanistic models that can be utilized to ascertain the effects of fluid properties, tube geometry and acceleration levels. A review of this research is presented and includes both empirical data and mechanistic models of the flow behavior.

  15. Ground-based and spaceborn observations of the type II burst with developed fine structure

    Science.gov (United States)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  16. Ground-based follow-up in relation to Kepler asteroseismic investigation

    Science.gov (United States)

    Uytterhoeven, K.; Briquet, M.; Bruntt, H.; De Cat, P.; Frandsen, S.; Gutiérrez-Soto, J.; Kiss, L.; Kurtz, D. W.; Marconi, M.; Molenda-Żakowicz, J.; Østensen, R.; Randall, S.; Southworth, J.; Szabó, R.

    2010-12-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous and high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as T_eff, log g, metallicity, and v sin i, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. Based on observations made with the Isaac Newton Telescope and William Herschel Telescope operated by the Isaac Newton Group, with the Nordic Optical Telescope, operated jointly by Denmark, Finland, Iceland, Norway, and Sweden, with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica), and with the Mercator telescope, operated by the Flemish Community, all on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC). Based on observations made with the IAC-80 operated on the island of Tenerife by the IAC at the Spanish Observatorio del Teide. Also based on observations taken at the observatories of Sierra Nevada, San Pedro Mártir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt. Wilson, Białków Observatory of the Wrocław University, Piszkésteto Mountain Station, and Observatoire de Haute Provence. Based on spectra taken at the Loiano (INAF - OA Bologna), Serra La Nave (INAF - OA Catania) and Asiago (INAF - OA Padova) observatories. Also

  17. Ground-based Observations of the Solar Sources of Space Weather (Invited Review)

    CERN Document Server

    Veronig, Astrid M

    2016-01-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold H$\\alpha$ spectral line, which enables us to detect and study solar flares, filaments, filament eruptions, and Moreton waves. Existing H$\\alpha$ networks such as the GONG and the Global High-Resolution H$\\alpha$ Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of H$\\alpha$ flares and filaments established at Kanzelh\\"ohe Observatory (KSO; Austria) in the...

  18. Phantom-based ground-truth generation for cerebral vessel segmentation and pulsatile deformation analysis

    Science.gov (United States)

    Schetelig, Daniel; Säring, Dennis; Illies, Till; Sedlacik, Jan; Kording, Fabian; Werner, René

    2016-03-01

    Hemodynamic and mechanical factors of the vascular system are assumed to play a major role in understanding, e.g., initiation, growth and rupture of cerebral aneurysms. Among those factors, cardiac cycle-related pulsatile motion and deformation of cerebral vessels currently attract much interest. However, imaging of those effects requires high spatial and temporal resolution and remains challenging { and similarly does the analysis of the acquired images: Flow velocity changes and contrast media inflow cause vessel intensity variations in related temporally resolved computed tomography and magnetic resonance angiography data over the cardiac cycle and impede application of intensity threshold-based segmentation and subsequent motion analysis. In this work, a flow phantom for generation of ground-truth images for evaluation of appropriate segmentation and motion analysis algorithms is developed. The acquired ground-truth data is used to illustrate the interplay between intensity fluctuations and (erroneous) motion quantification by standard threshold-based segmentation, and an adaptive threshold-based segmentation approach is proposed that alleviates respective issues. The results of the phantom study are further demonstrated to be transferable to patient data.

  19. Modelling systematics of ground-based transit photometry I. Implications on transit timing variations

    CERN Document Server

    von Essen, C; Mallonn, M; Tingley, B; Marcussen, M

    2016-01-01

    The transit timing variation technique (TTV) has been widely used to detect and characterize multiple planetary systems. Due to the observational biases imposed mainly by the photometric conditions and instrumentation and the high signal-to-noise required to produce primary transit observations, ground-based data acquired using small telescopes limit the technique to the follow-up of hot Jupiters. However, space-based missions such as Kepler and CoRoT have already revealed that hot Jupiters are mainly found in single systems. Thus, it is natural to question ourselves if we are properly using the observing time at hand carrying out such follow-ups, or if the use of medium-to-low quality transit light curves, combined with current standard techniques of data analysis, could be playing a main role against exoplanetary search via TTVs. The purpose of this work is to investigate to what extent ground-based observations treated with current modelling techniques are reliable to detect and characterize additional pla...

  20. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  1. Ground-based and spacecraft observations of lightning activity on Saturn

    Science.gov (United States)

    Zakharenko, V.; Mylostna, C.; Konovalenko, A.; Zarka, P.; Fischer, G.; Grießmeier, J.-M.; Litvinenko, G.; Rucker, H.; Sidorchuk, M.; Ryabov, B.; Vavriv, D.; Ryabov, V.; Cecconi, B.; Coffre, A.; Denis, L.; Fabrice, C.; Pallier, L.; Schneider, J.; Kozhyn, R.; Vinogradov, V.; Mukha, D.; Weber, R.; Shevchenko, V.; Nikolaenko, V.

    2012-02-01

    In late 2007, Saturn electrostatic discharges (SED) were simultaneously observed at the radio telescope UTR-2 and with the Cassini spacecraft. Observations at UTR-2 were performed with a multichannel receiver in the frequency range 12-33 MHz, and those performed on Cassini-with a swept frequency receiver that is part of the RPWS (Radio and Plasma Wave Science) instrument in the frequency band 1.8-16 MHz. We got a very good coincidence between data of UTR-2 and Cassini. It is shown for the first time that ground-based radio astronomy lets us detect Saturn's lightning with a high degree of reliability despite terrestrial interferences. This is the necessary basis for further detailed study of the temporal and spectral characteristics of the SEDs with ground based radio telescopes. Based on six observation sessions, several parameters of SEDs were determined, in particularly a correlation of 0.77±0.15 between the average intensity of storms and the e-folding time.

  2. Raster-based regolith thickness of the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of raster-based generalized thickness of regolith (unconsolidated sediments) overlying bedrock in the Lost Creek Designated Ground Water Basin,...

  3. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  4. Development of Neural Network Model for Predicting Peak Ground Acceleration Based on Microtremor Measurement and Soil Boring Test Data

    National Research Council Canada - National Science Library

    Kerh, T; Lin, J. S; Gunaratnam, D

    2012-01-01

    .... This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site...

  5. Integrated water vapor from IGS ground-based GPS observations. Initial results from a global 5-min data set

    Energy Technology Data Exchange (ETDEWEB)

    Heise, S.; Dick, G.; Gendt, G.; Schmidt, T.; Wickert, J. [GFZ German Research Centre for Geosciences, Potsdam (Germany). Dept. 1 Geodesy and Remote Sensing

    2009-07-01

    Ground based GPS zenith path delay (ZPD) measurements are well established as a powerful tool for integrated water vapor (IWV) observation. The International GNSS Service (IGS) provides ZPD data of currently more than 300 globally distributed GPS stations. To derive IWV from these data, meteorological information (ground pressure and mean temperature above the station) are needed. Only a limited number of IGS stations is equipped with meteorological ground sensors up to now. Thus, meteorological data for IWV conversion are usually derived from nearby ground meteorological observations (ground pressure) and meteorological analyses (mean temperature). In this paper we demonstrate for the first time the applicability of ground pressure data from ECMWF meteorological analysis fields in this context. Beside simplified data handling (no single station data and quality control) this approach allows for IWV derivation if nearby meteorological stations are not available. Using ECMWF ground pressure and mean temperature data the new IGS 5-min ZPD data set has been converted to IWV for the first time. We present initial results from selected stations with ground meteorological sensors including pressure and temperature comparisons between ECMWF and local measurements. The GPS IWV is generally validated by comparison with ECMWF IWV. The ECMWF derived station meteorological data are compared with local measurements at all accordingly equipped stations. Based on this comparison, the mean error (in terms of standard deviation) introduced by time interpolation of the 6-hourly ECMWF data is estimated below 0.2 mm IWV. (orig.)

  6. 基于任务的炮兵武器系统信息能力需求指标分析%Indexes Analysis of Artillery Weapon System Information Ability Requirements Based on Mission

    Institute of Scientific and Technical Information of China (English)

    张庆捷; 吴柏林; 郑斌; 赵瑾

    2011-01-01

    Information ability is regarded as an important part of combat requirement demonstration of artillery weapon system. Based on artillery mission procedure of future combat model-reconnaissance strike integration, the definition of information ability is put forwarded, the continuation of mission flow is taken as the premier of information flow continuation is also made as the conclusion based on the guarantee of information quantity and quality. Thus the three parts of information ability requirements of artillery weapon system are taken as information support ability, information defense ability, and information attack ability. The requirements indexes system and the corresponding indexes of information support ability and information defense ability are mainly discussed based on the criterion and method of building indexes system.%信息能力是炮兵武器系统作战需求论证中的一个重要内容,分析了信息能力的内涵,依据炮兵的未来作战模式-侦察打击一体化作战的炮兵任务流程,从完成火力毁伤任务的角度,得出在保证用户所需信息数量、质量的基础上,信息流的连续是任务流连续的前提的结论。在这一结论下,提出了炮兵武器系统的信息能力需求包含信息支持能力、信息防护能力和信息攻击能力3个方面,从构建指标体系原则、方法出发,结合炮兵的任务和武器系统编成特点,重点研究了信息支持能力、信息防护能力的需求指标体系及相应的测评指标。

  7. Human Walking Pattern Recognition Based on KPCA and SVM with Ground Reflex Pressure Signal

    Directory of Open Access Journals (Sweden)

    Zhaoqin Peng

    2013-01-01

    Full Text Available Algorithms based on the ground reflex pressure (GRF signal obtained from a pair of sensing shoes for human walking pattern recognition were investigated. The dimensionality reduction algorithms based on principal component analysis (PCA and kernel principal component analysis (KPCA for walking pattern data compression were studied in order to obtain higher recognition speed. Classifiers based on support vector machine (SVM, SVM-PCA, and SVM-KPCA were designed, and the classification performances of these three kinds of algorithms were compared using data collected from a person who was wearing the sensing shoes. Experimental results showed that the algorithm fusing SVM and KPCA had better recognition performance than the other two methods. Experimental outcomes also confirmed that the sensing shoes developed in this paper can be employed for automatically recognizing human walking pattern in unlimited environments which demonstrated the potential application in the control of exoskeleton robots.

  8. Ground penetrating detection using miniaturized radar system based on solid state microwave sensor.

    Science.gov (United States)

    Yao, B M; Fu, L; Chen, X S; Lu, W; Guo, H; Gui, Y S; Hu, C-M

    2013-12-01

    We propose a solid-state-sensor-based miniaturized microwave radar technique, which allows a rapid microwave phase detection for continuous wave operation using a lock-in amplifier rather than using expensive and complicated instruments such as vector network analyzers. To demonstrate the capability of this sensor-based imaging technique, the miniaturized system has been used to detect embedded targets in sand by measuring the reflection for broadband microwaves. Using the reconstruction algorithm, the imaging of the embedded target with a diameter less than 5 cm buried in the sands with a depth of 5 cm or greater is clearly detected. Therefore, the sensor-based approach emerges as an innovative and cost-effective way for ground penetrating detection.

  9. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    Science.gov (United States)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using

  10. 精确制导武器天基路径规划平台概念研究%Conceptual Study of Space-based Attacking Path Planning Platform for Precision Guided Weapon

    Institute of Scientific and Technical Information of China (English)

    李恩奇; 李桢; 果琳丽; 梁鲁

    2015-01-01

    美国提出了C4KISR的作战概念,将K ( Kill,杀伤、摧毁能力)嵌入C4ISR系统(一体化指挥、控制、通信、计算机、情报、监视和侦察的信息系统, Command, Control, Communication, Computer, Information, Spy, Reconnais-sance)之中,将传统的C4ISR系统与杀伤紧密结合起来,实现侦察/监视———决策———杀伤———打击评估过程的一体化,形成同步、连续、动态、有机统一的C4KISR过程,产生新的作战能力。为了实现C4KISR,在武器精确打击的基础上更应该重视武器在发射之后的可控性。例如使用2枚巡航导弹打击敌指挥所,在第一枚命中目标后,需要确定第二枚导弹飞行轨迹、打击方式和打击位置,即实现巡航导弹“人在回路”的可控攻击模式。此时应为巡航导弹提供战场态势感知、打击效果评估、武器攻击路径时时规划等保障支持,天基平台无疑是这种保障支持的最佳选择。本文从现有文献到的精确制导武器用天需求出发,提出了建立精确制导武器攻击路径规划天基平台的概念。该平台主要由战场侦察、打击效果评估、精确制导武器通讯链路和武器任务规划四大系统组成。最后初步分析了可承担攻击路径规划天基平台任务的飞行器类型和各自优缺点,给出需进一步解决的关键技术。%C4KISR is a new concept put forward on the basis of C4ISR for meeting the current operation requirements of the American Army,constituted a integrated System for reconnaissance decision damage and assessment. For the realization of C4KISR, more attention need be payed to the controllability of precision guided weapon. Supposing 2 cruise missiles at-tacking a command post, after the first missile hitting the target, the flight trajectory, attack mode and attack position should be ascertained for the second one, which would achieve a attack mode with man in the loop. Space-based platform is the best choice

  11. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  12. A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat

    Science.gov (United States)

    2009-01-01

    A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat Ronald L. Cypert Scientific...units, along with coordination at the state and federal agency level, a dynamic process modeling capability was chosen to chart the myriad...COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE A Process Model for Deployment Planning of Ground-based Air Defense System Against

  13. Taser and Conducted Energy Weapons.

    Science.gov (United States)

    LeClair, Thomas G; Meriano, Tony

    2015-01-01

    It is clear that CEWs are an increasingly prevalent law enforcement tool, adopted to address a complex and challenging problem. The potential for serious injury from a single deployment of a CEW is extremely low. The debate regarding the link between these electrical weapons and sudden in-custody death is likely to continue because their use is often in complex and volatile situations. Any consideration of injuries has to be put into that context. One must also consider what injuries to a subject would result if an alternative force method was used. Furthermore, the potential benefits of CEWs, including reduction in injuries to the public and law-enforcement officers, need to be considered.

  14. Air guns: toys or weapons?

    Science.gov (United States)

    Aslan, Sahin; Uzkeser, Mustafa; Katirci, Yavuz; Cakir, Zeynep; Bilir, Ozlem; Bilge, Fatih; Cakir, Murtaza

    2006-09-01

    Air guns and blank guns may appear relatively harmless at first glance, but they are, in fact, potentially destructive, even lethal, weapons. Approximately 2 to 2.5 million nonpowder firearms are sold annually, and again approximately 12.9 per 100,000 population are treated for such injuries in hospital emergency departments each year in the United States. Unfortunately, these guns are considered to be a toy for children. Therefore, incidents of air gun injuries are gradually increasing. Although such injuries may initially be considered trivial, it may signify severe internal tissue pathologies. These apparently trivial injuries may have catastrophic consequences if unnoticed. In this study, we report 4 cases with head injury due to a shot by these guns. The cases indicate that these people had used the guns belonging to their parents for the purpose of suicide. The cases also show that these machines are not innocent.

  15. Electronic eyebox for weapon sights

    Science.gov (United States)

    Szapiel, Stan; Greenhalgh, Catherine; Wagner, Kevin; Nobes, Ryan

    2016-05-01

    We expand the effective size of the eyebox of a magnified telescopic weapon sight by following the movements of the operator's eye to create a larger, `electronic eyebox'. The original eyebox of the telescope is dynamically relocated in space so that proper overlap between the pupil of the eye and the exit pupil of the device is maintained. Therefore, the operator will perceive the entire field of view of the instrument in a much bigger spatial region than the one defined by the original eyebox. Proof-of-the-concept results are presented with a more than 3.5X enlargement of the eyebox volume along with recommendations for the next phase of development.

  16. Asteroseismology with the WIRE satellite. I. Combining Ground- and Space-based Photometry of the Delta Scuti Star Epsilon Cephei

    CERN Document Server

    Bruntt, H; Bedding, T R; Buzasi, D L; Moya, A; Amado, P J; Martin-Ruiz, S; Garrido, R; De Coca, P L; Rolland, A; Costa, V; Olivares, I; Garcia-Pelayo, J M

    2006-01-01

    We have analysed ground-based multi-colour Stromgren photometry and single-filter photometry from the star tracker on the WIRE satellite of the delta scuti star Epsilon Cephei. The ground-based data set consists of 16 nights of data collected over 164 days, while the satellite data are nearly continuous coverage of the star during 14 days. The spectral window and noise level of the satellite data are superior to the ground-based data and this data set is used to locate the frequencies. However, we can use the ground-based data to improve the accuracy of the frequencies due to the much longer time baseline. We detect 26 oscillation frequencies in the WIRE data set, but only some of these can be seen clearly in the ground-based data. We have used the multi-colour ground-based photometry to determine amplitude and phase differences in the Stromgren b-y colour and the y filter in an attempt to identify the radial degree of the oscillation frequencies. We conclude that the accuracies of the amplitudes and phases a...

  17. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  18. Potential use of ground-based sensor technologies for weed detection.

    Science.gov (United States)

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  19. Ozone vertical distribution retrieval from ground-based high resolution infrared solar spectra

    Science.gov (United States)

    Pougatchev, N. S.; Connor, B. J.; Rinsland, C. P.

    1995-01-01

    A practical procedure for the retrieval of ozone vertical profiles from ground-based high resolution Fourier transform infrared solar spectra has been developed. The analysis is based on a multilayer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method of Rodgers. The 1002.6-1003.2 cm(exp -1) spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. This interval contains numerous ozone lines covering a range of intensities and providing retrieval sensitivity from ground level to about 35 km. Characterization of the method and an error analysis have been performed. For a spectral resolution of 0.05-0.01 cm(exp -1) and a signal-to-noise ratio greater than or equal to 100 the retrieval is stable with a vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Synthetic spectra studies show that the a priori profile and weak constraints selected for the retrievals introduce no significant biases for a wide range of ozone profiles.

  20. Relationship between soft stratum thickness and predominant frequency of ground based on microtremor observation data

    Science.gov (United States)

    Chia, Kenny; Lau, Tze Liang

    2017-07-01

    Despite categorized as low seismicity group, until being affected by distant earthquake ground motion from Sumatra and the recent 2015 Sabah Earthquake, Malaysia has come to realize that seismic hazard in the country is real and has the potential to threaten the public safety and welfare. The major concern in this paper is to study the effect of local site condition, where it could amplify the magnitude of ground vibration at sites. The aim for this study is to correlate the thickness of soft stratum with the predominant frequency of soil. Single point microtremor measurements were carried out at 24 selected points where the site investigation reports are available. Predominant period and frequency at each site are determined by Nakamura's method. The predominant period varies from 0.22 s to 0.98 s. Generally, the predominant period increases when getting closer to the shoreline which has thicker sediments. As far as the thickness of the soft stratum could influence the amplification of seismic wave, the advancement of micotremor observation to predict the thickness of soft stratum (h) from predominant frequency (fr) is of the concern. Thus an empirical relationship h =54.917 fr-1.314 is developed based on the microtremor observation data. The empirical relationship will be benefited in the prediction of thickness of soft stratum based on microtremor observation for seismic design with minimal cost compared to conventional boring method.

  1. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  2. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  4. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Towards the development of tamper-resistant, ground-based mobile sensor nodes

    Science.gov (United States)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-11-01

    Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.

  6. Understanding the Laminar Distribution of Tropospheric Ozone from Ground-Based, Airborne, Spaceborne, and Modeling Perspectives

    Science.gov (United States)

    Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong

    2016-01-01

    Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.

  7. Ground-Based Transit Observations of the Super-Earth 55 Cnc e

    CERN Document Server

    de Mooij, E J W; Karjalainen, R; Hrudkova, M; Jayawardhana, R

    2014-01-01

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2-meter-class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ~700 and ~250, spanning the Johnson BVR photometric bands. We find a white-light planet-to-star radius ratio of 0.0190 -0.0027+0.0023 from the 2013 observations and 0.0200 -0.0018+0.0017 from the 2014 observations. The two datasets combined results in a radius ratio of 0.0198 -0.0014+0.0013. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-size telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite (TESS) around bright st...

  8. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    Science.gov (United States)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (DBeer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  9. Evaluation of brightness temperature from a forward model of ground-based microwave radiometer

    Indian Academy of Sciences (India)

    S Rambabu; J S Pillai; A Agarwal; G Pandithurai

    2014-06-01

    Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature () includes the inversion algorithm, which uses the background information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated s and radiometer measured s at Mahabaleshwar (73.66°E and 17.93°N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.

  10. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  14. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  15. De-mystifying earned value management for ground based astronomy projects, large and small

    Science.gov (United States)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  16. Augmenting WFIRST Microlensing with a Ground-based Optical Telescope Network

    CERN Document Server

    Zhu, Wei

    2016-01-01

    Augmenting the WFIRST microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable one-dimensional (1-D) microlens parallax measurements over the entire mass range $M\\gtrsim M_\\oplus$. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging a few years after the observations. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. The addition of such a ground-based survey would also yield full 2-D vector parallax measurements, with largest sensitivity to low-mass lenses, which (being non-luminous) are not subject to followup imaging. These 2-D parallax measurements will directly yield mass and distance measurements for most planetary and binary events. It would also yield additional complete solutions for single-len...

  17. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    Directory of Open Access Journals (Sweden)

    G. van Harten

    2014-06-01

    Full Text Available Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX for accurate spectropolarimetry, based on the passive, robust, athermal and snapshot spectral polarization modulation technique, and hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~ 5 × 10−3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the co-located AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  18. Analysis of Remote Weapon Station Bracket Stiffness,Strength and Fatigue Life Based on Virtual Prototype%基于虚拟样机的遥控武器站托架刚强度与疲劳寿命分析

    Institute of Scientific and Technical Information of China (English)

    毛保全; 梁博巍; 宋鹏

    2015-01-01

    Aiming at the practical problem that remote weapon station bracket which in fire system is under high load and measuring difficulties,based on remote weapon station virtual prototype,we explored analy-sis method of remote weapon station bracket stiffness,strength and fatigue life,and practiced it on a cer-tain type of remote controlled weapon station bracket,finally we got key problems of the analysis of remote weapon station bracket stiffness,strength and fatigue life. The analysis method could provide the theory reference on other core component.%针对遥控武器站火力系统中托架承受载荷较强与测量困难的实际问题,在遥控武器站虚拟样机的基础上,研究了遥控武器站托架的刚强度与疲劳寿命的分析方法,并实践于某型遥控武器站托架,最终得到了遥控武器站刚强度与疲劳寿命分析时应注意的重点问题。提出了适用于武器站托架的分析方法。分析方法可为其他关重件的刚强度校核与寿命分析提供理论参考与借鉴。

  19. Toward a nuclear weapons free world?

    Energy Technology Data Exchange (ETDEWEB)

    Maaranen, S.A. [Los Alamos National Lab., NM (United States). Center for International Security Affairs

    1996-09-01

    Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures and dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.

  20. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system

    Science.gov (United States)

    Shen, Ziyu; Shen, Wen-Bin; Zhang, Shuangxi

    2016-08-01

    In this study, we propose an approach for determining the geopotential difference using high-frequency-stability microwave links between satellite and ground station based on Doppler cancellation system. Suppose a satellite and a ground station are equipped with precise optical-atomic clocks (OACs) and oscillators. The ground oscillator emits a signal with frequency fa towards the satellite and the satellite receiver (connected with the satellite oscillator) receives this signal with frequency fb which contains the gravitational frequency shift effect and other signals and noises. After receiving this signal, the satellite oscillator transmits and emits, respectively, two signals with frequencies fb and fc towards the ground station. Via Doppler cancellation technique, the geopotential difference between the satellite and the ground station can be determined based on gravitational frequency shift equation by a combination of these three frequencies. For arbitrary two stations on ground, based on similar procedures as described above, we may determine the geopotential difference between these two stations via a satellite. Our analysis shows that the accuracy can reach 1 m2 s- 2 based on the clocks' inaccuracy of about 10-17 (s s-1) level. Since OACs with instability around 10-18 in several hours and inaccuracy around 10-18 level have been generated in laboratory, the proposed approach may have prospective applications in geoscience, and especially, based on this approach a unified world height system could be realized with one-centimetre level accuracy in the near future.